PR gold/11658
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Return the object for an input section.
1753
1754 Relobj*
1755 Output_section::Input_section::relobj() const
1756 {
1757 if (this->is_input_section())
1758 return this->u2_.object;
1759 else if (this->is_merge_section())
1760 {
1761 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1762 return this->u2_.pomb->first_relobj();
1763 }
1764 else if (this->is_relaxed_input_section())
1765 return this->u2_.poris->relobj();
1766 else
1767 gold_unreachable();
1768 }
1769
1770 // Return the input section index for an input section.
1771
1772 unsigned int
1773 Output_section::Input_section::shndx() const
1774 {
1775 if (this->is_input_section())
1776 return this->shndx_;
1777 else if (this->is_merge_section())
1778 {
1779 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1780 return this->u2_.pomb->first_shndx();
1781 }
1782 else if (this->is_relaxed_input_section())
1783 return this->u2_.poris->shndx();
1784 else
1785 gold_unreachable();
1786 }
1787
1788 // Set the address and file offset.
1789
1790 void
1791 Output_section::Input_section::set_address_and_file_offset(
1792 uint64_t address,
1793 off_t file_offset,
1794 off_t section_file_offset)
1795 {
1796 if (this->is_input_section())
1797 this->u2_.object->set_section_offset(this->shndx_,
1798 file_offset - section_file_offset);
1799 else
1800 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1801 }
1802
1803 // Reset the address and file offset.
1804
1805 void
1806 Output_section::Input_section::reset_address_and_file_offset()
1807 {
1808 if (!this->is_input_section())
1809 this->u2_.posd->reset_address_and_file_offset();
1810 }
1811
1812 // Finalize the data size.
1813
1814 void
1815 Output_section::Input_section::finalize_data_size()
1816 {
1817 if (!this->is_input_section())
1818 this->u2_.posd->finalize_data_size();
1819 }
1820
1821 // Try to turn an input offset into an output offset. We want to
1822 // return the output offset relative to the start of this
1823 // Input_section in the output section.
1824
1825 inline bool
1826 Output_section::Input_section::output_offset(
1827 const Relobj* object,
1828 unsigned int shndx,
1829 section_offset_type offset,
1830 section_offset_type *poutput) const
1831 {
1832 if (!this->is_input_section())
1833 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1834 else
1835 {
1836 if (this->shndx_ != shndx || this->u2_.object != object)
1837 return false;
1838 *poutput = offset;
1839 return true;
1840 }
1841 }
1842
1843 // Return whether this is the merge section for the input section
1844 // SHNDX in OBJECT.
1845
1846 inline bool
1847 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1848 unsigned int shndx) const
1849 {
1850 if (this->is_input_section())
1851 return false;
1852 return this->u2_.posd->is_merge_section_for(object, shndx);
1853 }
1854
1855 // Write out the data. We don't have to do anything for an input
1856 // section--they are handled via Object::relocate--but this is where
1857 // we write out the data for an Output_section_data.
1858
1859 void
1860 Output_section::Input_section::write(Output_file* of)
1861 {
1862 if (!this->is_input_section())
1863 this->u2_.posd->write(of);
1864 }
1865
1866 // Write the data to a buffer. As for write(), we don't have to do
1867 // anything for an input section.
1868
1869 void
1870 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1871 {
1872 if (!this->is_input_section())
1873 this->u2_.posd->write_to_buffer(buffer);
1874 }
1875
1876 // Print to a map file.
1877
1878 void
1879 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1880 {
1881 switch (this->shndx_)
1882 {
1883 case OUTPUT_SECTION_CODE:
1884 case MERGE_DATA_SECTION_CODE:
1885 case MERGE_STRING_SECTION_CODE:
1886 this->u2_.posd->print_to_mapfile(mapfile);
1887 break;
1888
1889 case RELAXED_INPUT_SECTION_CODE:
1890 {
1891 Output_relaxed_input_section* relaxed_section =
1892 this->relaxed_input_section();
1893 mapfile->print_input_section(relaxed_section->relobj(),
1894 relaxed_section->shndx());
1895 }
1896 break;
1897 default:
1898 mapfile->print_input_section(this->u2_.object, this->shndx_);
1899 break;
1900 }
1901 }
1902
1903 // Output_section methods.
1904
1905 // Construct an Output_section. NAME will point into a Stringpool.
1906
1907 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1908 elfcpp::Elf_Xword flags)
1909 : name_(name),
1910 addralign_(0),
1911 entsize_(0),
1912 load_address_(0),
1913 link_section_(NULL),
1914 link_(0),
1915 info_section_(NULL),
1916 info_symndx_(NULL),
1917 info_(0),
1918 type_(type),
1919 flags_(flags),
1920 out_shndx_(-1U),
1921 symtab_index_(0),
1922 dynsym_index_(0),
1923 input_sections_(),
1924 first_input_offset_(0),
1925 fills_(),
1926 postprocessing_buffer_(NULL),
1927 needs_symtab_index_(false),
1928 needs_dynsym_index_(false),
1929 should_link_to_symtab_(false),
1930 should_link_to_dynsym_(false),
1931 after_input_sections_(false),
1932 requires_postprocessing_(false),
1933 found_in_sections_clause_(false),
1934 has_load_address_(false),
1935 info_uses_section_index_(false),
1936 input_section_order_specified_(false),
1937 may_sort_attached_input_sections_(false),
1938 must_sort_attached_input_sections_(false),
1939 attached_input_sections_are_sorted_(false),
1940 is_relro_(false),
1941 is_relro_local_(false),
1942 is_last_relro_(false),
1943 is_first_non_relro_(false),
1944 is_small_section_(false),
1945 is_large_section_(false),
1946 is_interp_(false),
1947 is_dynamic_linker_section_(false),
1948 generate_code_fills_at_write_(false),
1949 is_entsize_zero_(false),
1950 section_offsets_need_adjustment_(false),
1951 is_noload_(false),
1952 tls_offset_(0),
1953 checkpoint_(NULL),
1954 lookup_maps_(new Output_section_lookup_maps)
1955 {
1956 // An unallocated section has no address. Forcing this means that
1957 // we don't need special treatment for symbols defined in debug
1958 // sections.
1959 if ((flags & elfcpp::SHF_ALLOC) == 0)
1960 this->set_address(0);
1961 }
1962
1963 Output_section::~Output_section()
1964 {
1965 delete this->checkpoint_;
1966 }
1967
1968 // Set the entry size.
1969
1970 void
1971 Output_section::set_entsize(uint64_t v)
1972 {
1973 if (this->is_entsize_zero_)
1974 ;
1975 else if (this->entsize_ == 0)
1976 this->entsize_ = v;
1977 else if (this->entsize_ != v)
1978 {
1979 this->entsize_ = 0;
1980 this->is_entsize_zero_ = 1;
1981 }
1982 }
1983
1984 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1985 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1986 // relocation section which applies to this section, or 0 if none, or
1987 // -1U if more than one. Return the offset of the input section
1988 // within the output section. Return -1 if the input section will
1989 // receive special handling. In the normal case we don't always keep
1990 // track of input sections for an Output_section. Instead, each
1991 // Object keeps track of the Output_section for each of its input
1992 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1993 // track of input sections here; this is used when SECTIONS appears in
1994 // a linker script.
1995
1996 template<int size, bool big_endian>
1997 off_t
1998 Output_section::add_input_section(Layout* layout,
1999 Sized_relobj<size, big_endian>* object,
2000 unsigned int shndx,
2001 const char* secname,
2002 const elfcpp::Shdr<size, big_endian>& shdr,
2003 unsigned int reloc_shndx,
2004 bool have_sections_script)
2005 {
2006 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2007 if ((addralign & (addralign - 1)) != 0)
2008 {
2009 object->error(_("invalid alignment %lu for section \"%s\""),
2010 static_cast<unsigned long>(addralign), secname);
2011 addralign = 1;
2012 }
2013
2014 if (addralign > this->addralign_)
2015 this->addralign_ = addralign;
2016
2017 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2018 uint64_t entsize = shdr.get_sh_entsize();
2019
2020 // .debug_str is a mergeable string section, but is not always so
2021 // marked by compilers. Mark manually here so we can optimize.
2022 if (strcmp(secname, ".debug_str") == 0)
2023 {
2024 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2025 entsize = 1;
2026 }
2027
2028 this->update_flags_for_input_section(sh_flags);
2029 this->set_entsize(entsize);
2030
2031 // If this is a SHF_MERGE section, we pass all the input sections to
2032 // a Output_data_merge. We don't try to handle relocations for such
2033 // a section. We don't try to handle empty merge sections--they
2034 // mess up the mappings, and are useless anyhow.
2035 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2036 && reloc_shndx == 0
2037 && shdr.get_sh_size() > 0)
2038 {
2039 // Keep information about merged input sections for rebuilding fast
2040 // lookup maps if we have sections-script or we do relaxation.
2041 bool keeps_input_sections =
2042 have_sections_script || parameters->target().may_relax();
2043 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2044 addralign, keeps_input_sections))
2045 {
2046 // Tell the relocation routines that they need to call the
2047 // output_offset method to determine the final address.
2048 return -1;
2049 }
2050 }
2051
2052 off_t offset_in_section = this->current_data_size_for_child();
2053 off_t aligned_offset_in_section = align_address(offset_in_section,
2054 addralign);
2055
2056 // Determine if we want to delay code-fill generation until the output
2057 // section is written. When the target is relaxing, we want to delay fill
2058 // generating to avoid adjusting them during relaxation.
2059 if (!this->generate_code_fills_at_write_
2060 && !have_sections_script
2061 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2062 && parameters->target().has_code_fill()
2063 && parameters->target().may_relax())
2064 {
2065 gold_assert(this->fills_.empty());
2066 this->generate_code_fills_at_write_ = true;
2067 }
2068
2069 if (aligned_offset_in_section > offset_in_section
2070 && !this->generate_code_fills_at_write_
2071 && !have_sections_script
2072 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2073 && parameters->target().has_code_fill())
2074 {
2075 // We need to add some fill data. Using fill_list_ when
2076 // possible is an optimization, since we will often have fill
2077 // sections without input sections.
2078 off_t fill_len = aligned_offset_in_section - offset_in_section;
2079 if (this->input_sections_.empty())
2080 this->fills_.push_back(Fill(offset_in_section, fill_len));
2081 else
2082 {
2083 std::string fill_data(parameters->target().code_fill(fill_len));
2084 Output_data_const* odc = new Output_data_const(fill_data, 1);
2085 this->input_sections_.push_back(Input_section(odc));
2086 }
2087 }
2088
2089 this->set_current_data_size_for_child(aligned_offset_in_section
2090 + shdr.get_sh_size());
2091
2092 // We need to keep track of this section if we are already keeping
2093 // track of sections, or if we are relaxing. Also, if this is a
2094 // section which requires sorting, or which may require sorting in
2095 // the future, we keep track of the sections. If the
2096 // --section-ordering-file option is used to specify the order of
2097 // sections, we need to keep track of sections.
2098 if (have_sections_script
2099 || !this->input_sections_.empty()
2100 || this->may_sort_attached_input_sections()
2101 || this->must_sort_attached_input_sections()
2102 || parameters->options().user_set_Map()
2103 || parameters->target().may_relax()
2104 || parameters->options().section_ordering_file())
2105 {
2106 Input_section isecn(object, shndx, shdr.get_sh_size(), addralign);
2107 if (parameters->options().section_ordering_file())
2108 {
2109 unsigned int section_order_index =
2110 layout->find_section_order_index(std::string(secname));
2111 if (section_order_index != 0)
2112 {
2113 isecn.set_section_order_index(section_order_index);
2114 this->set_input_section_order_specified();
2115 }
2116 }
2117 this->input_sections_.push_back(isecn);
2118 }
2119
2120 return aligned_offset_in_section;
2121 }
2122
2123 // Add arbitrary data to an output section.
2124
2125 void
2126 Output_section::add_output_section_data(Output_section_data* posd)
2127 {
2128 Input_section inp(posd);
2129 this->add_output_section_data(&inp);
2130
2131 if (posd->is_data_size_valid())
2132 {
2133 off_t offset_in_section = this->current_data_size_for_child();
2134 off_t aligned_offset_in_section = align_address(offset_in_section,
2135 posd->addralign());
2136 this->set_current_data_size_for_child(aligned_offset_in_section
2137 + posd->data_size());
2138 }
2139 }
2140
2141 // Add a relaxed input section.
2142
2143 void
2144 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2145 {
2146 Input_section inp(poris);
2147 this->add_output_section_data(&inp);
2148 if (this->lookup_maps_->is_valid())
2149 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2150 poris->shndx(), poris);
2151
2152 // For a relaxed section, we use the current data size. Linker scripts
2153 // get all the input sections, including relaxed one from an output
2154 // section and add them back to them same output section to compute the
2155 // output section size. If we do not account for sizes of relaxed input
2156 // sections, an output section would be incorrectly sized.
2157 off_t offset_in_section = this->current_data_size_for_child();
2158 off_t aligned_offset_in_section = align_address(offset_in_section,
2159 poris->addralign());
2160 this->set_current_data_size_for_child(aligned_offset_in_section
2161 + poris->current_data_size());
2162 }
2163
2164 // Add arbitrary data to an output section by Input_section.
2165
2166 void
2167 Output_section::add_output_section_data(Input_section* inp)
2168 {
2169 if (this->input_sections_.empty())
2170 this->first_input_offset_ = this->current_data_size_for_child();
2171
2172 this->input_sections_.push_back(*inp);
2173
2174 uint64_t addralign = inp->addralign();
2175 if (addralign > this->addralign_)
2176 this->addralign_ = addralign;
2177
2178 inp->set_output_section(this);
2179 }
2180
2181 // Add a merge section to an output section.
2182
2183 void
2184 Output_section::add_output_merge_section(Output_section_data* posd,
2185 bool is_string, uint64_t entsize)
2186 {
2187 Input_section inp(posd, is_string, entsize);
2188 this->add_output_section_data(&inp);
2189 }
2190
2191 // Add an input section to a SHF_MERGE section.
2192
2193 bool
2194 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2195 uint64_t flags, uint64_t entsize,
2196 uint64_t addralign,
2197 bool keeps_input_sections)
2198 {
2199 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2200
2201 // We only merge strings if the alignment is not more than the
2202 // character size. This could be handled, but it's unusual.
2203 if (is_string && addralign > entsize)
2204 return false;
2205
2206 // We cannot restore merged input section states.
2207 gold_assert(this->checkpoint_ == NULL);
2208
2209 // Look up merge sections by required properties.
2210 // Currently, we only invalidate the lookup maps in script processing
2211 // and relaxation. We should not have done either when we reach here.
2212 // So we assume that the lookup maps are valid to simply code.
2213 gold_assert(this->lookup_maps_->is_valid());
2214 Merge_section_properties msp(is_string, entsize, addralign);
2215 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2216 bool is_new = false;
2217 if (pomb != NULL)
2218 {
2219 gold_assert(pomb->is_string() == is_string
2220 && pomb->entsize() == entsize
2221 && pomb->addralign() == addralign);
2222 }
2223 else
2224 {
2225 // Create a new Output_merge_data or Output_merge_string_data.
2226 if (!is_string)
2227 pomb = new Output_merge_data(entsize, addralign);
2228 else
2229 {
2230 switch (entsize)
2231 {
2232 case 1:
2233 pomb = new Output_merge_string<char>(addralign);
2234 break;
2235 case 2:
2236 pomb = new Output_merge_string<uint16_t>(addralign);
2237 break;
2238 case 4:
2239 pomb = new Output_merge_string<uint32_t>(addralign);
2240 break;
2241 default:
2242 return false;
2243 }
2244 }
2245 // If we need to do script processing or relaxation, we need to keep
2246 // the original input sections to rebuild the fast lookup maps.
2247 if (keeps_input_sections)
2248 pomb->set_keeps_input_sections();
2249 is_new = true;
2250 }
2251
2252 if (pomb->add_input_section(object, shndx))
2253 {
2254 // Add new merge section to this output section and link merge
2255 // section properties to new merge section in map.
2256 if (is_new)
2257 {
2258 this->add_output_merge_section(pomb, is_string, entsize);
2259 this->lookup_maps_->add_merge_section(msp, pomb);
2260 }
2261
2262 // Add input section to new merge section and link input section to new
2263 // merge section in map.
2264 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2265 return true;
2266 }
2267 else
2268 {
2269 // If add_input_section failed, delete new merge section to avoid
2270 // exporting empty merge sections in Output_section::get_input_section.
2271 if (is_new)
2272 delete pomb;
2273 return false;
2274 }
2275 }
2276
2277 // Build a relaxation map to speed up relaxation of existing input sections.
2278 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2279
2280 void
2281 Output_section::build_relaxation_map(
2282 const Input_section_list& input_sections,
2283 size_t limit,
2284 Relaxation_map* relaxation_map) const
2285 {
2286 for (size_t i = 0; i < limit; ++i)
2287 {
2288 const Input_section& is(input_sections[i]);
2289 if (is.is_input_section() || is.is_relaxed_input_section())
2290 {
2291 Section_id sid(is.relobj(), is.shndx());
2292 (*relaxation_map)[sid] = i;
2293 }
2294 }
2295 }
2296
2297 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2298 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2299 // indices of INPUT_SECTIONS.
2300
2301 void
2302 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2303 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2304 const Relaxation_map& map,
2305 Input_section_list* input_sections)
2306 {
2307 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2308 {
2309 Output_relaxed_input_section* poris = relaxed_sections[i];
2310 Section_id sid(poris->relobj(), poris->shndx());
2311 Relaxation_map::const_iterator p = map.find(sid);
2312 gold_assert(p != map.end());
2313 gold_assert((*input_sections)[p->second].is_input_section());
2314 (*input_sections)[p->second] = Input_section(poris);
2315 }
2316 }
2317
2318 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2319 // is a vector of pointers to Output_relaxed_input_section or its derived
2320 // classes. The relaxed sections must correspond to existing input sections.
2321
2322 void
2323 Output_section::convert_input_sections_to_relaxed_sections(
2324 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2325 {
2326 gold_assert(parameters->target().may_relax());
2327
2328 // We want to make sure that restore_states does not undo the effect of
2329 // this. If there is no checkpoint active, just search the current
2330 // input section list and replace the sections there. If there is
2331 // a checkpoint, also replace the sections there.
2332
2333 // By default, we look at the whole list.
2334 size_t limit = this->input_sections_.size();
2335
2336 if (this->checkpoint_ != NULL)
2337 {
2338 // Replace input sections with relaxed input section in the saved
2339 // copy of the input section list.
2340 if (this->checkpoint_->input_sections_saved())
2341 {
2342 Relaxation_map map;
2343 this->build_relaxation_map(
2344 *(this->checkpoint_->input_sections()),
2345 this->checkpoint_->input_sections()->size(),
2346 &map);
2347 this->convert_input_sections_in_list_to_relaxed_sections(
2348 relaxed_sections,
2349 map,
2350 this->checkpoint_->input_sections());
2351 }
2352 else
2353 {
2354 // We have not copied the input section list yet. Instead, just
2355 // look at the portion that would be saved.
2356 limit = this->checkpoint_->input_sections_size();
2357 }
2358 }
2359
2360 // Convert input sections in input_section_list.
2361 Relaxation_map map;
2362 this->build_relaxation_map(this->input_sections_, limit, &map);
2363 this->convert_input_sections_in_list_to_relaxed_sections(
2364 relaxed_sections,
2365 map,
2366 &this->input_sections_);
2367
2368 // Update fast look-up map.
2369 if (this->lookup_maps_->is_valid())
2370 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2371 {
2372 Output_relaxed_input_section* poris = relaxed_sections[i];
2373 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2374 poris->shndx(), poris);
2375 }
2376 }
2377
2378 // Update the output section flags based on input section flags.
2379
2380 void
2381 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2382 {
2383 // If we created the section with SHF_ALLOC clear, we set the
2384 // address. If we are now setting the SHF_ALLOC flag, we need to
2385 // undo that.
2386 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2387 && (flags & elfcpp::SHF_ALLOC) != 0)
2388 this->mark_address_invalid();
2389
2390 this->flags_ |= (flags
2391 & (elfcpp::SHF_WRITE
2392 | elfcpp::SHF_ALLOC
2393 | elfcpp::SHF_EXECINSTR));
2394
2395 if ((flags & elfcpp::SHF_MERGE) == 0)
2396 this->flags_ &=~ elfcpp::SHF_MERGE;
2397 else
2398 {
2399 if (this->current_data_size_for_child() == 0)
2400 this->flags_ |= elfcpp::SHF_MERGE;
2401 }
2402
2403 if ((flags & elfcpp::SHF_STRINGS) == 0)
2404 this->flags_ &=~ elfcpp::SHF_STRINGS;
2405 else
2406 {
2407 if (this->current_data_size_for_child() == 0)
2408 this->flags_ |= elfcpp::SHF_STRINGS;
2409 }
2410 }
2411
2412 // Find the merge section into which an input section with index SHNDX in
2413 // OBJECT has been added. Return NULL if none found.
2414
2415 Output_section_data*
2416 Output_section::find_merge_section(const Relobj* object,
2417 unsigned int shndx) const
2418 {
2419 if (!this->lookup_maps_->is_valid())
2420 this->build_lookup_maps();
2421 return this->lookup_maps_->find_merge_section(object, shndx);
2422 }
2423
2424 // Build the lookup maps for merge and relaxed sections. This is needs
2425 // to be declared as a const methods so that it is callable with a const
2426 // Output_section pointer. The method only updates states of the maps.
2427
2428 void
2429 Output_section::build_lookup_maps() const
2430 {
2431 this->lookup_maps_->clear();
2432 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2433 p != this->input_sections_.end();
2434 ++p)
2435 {
2436 if (p->is_merge_section())
2437 {
2438 Output_merge_base* pomb = p->output_merge_base();
2439 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2440 pomb->addralign());
2441 this->lookup_maps_->add_merge_section(msp, pomb);
2442 for (Output_merge_base::Input_sections::const_iterator is =
2443 pomb->input_sections_begin();
2444 is != pomb->input_sections_end();
2445 ++is)
2446 {
2447 const Const_section_id& csid = *is;
2448 this->lookup_maps_->add_merge_input_section(csid.first,
2449 csid.second, pomb);
2450 }
2451
2452 }
2453 else if (p->is_relaxed_input_section())
2454 {
2455 Output_relaxed_input_section* poris = p->relaxed_input_section();
2456 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2457 poris->shndx(), poris);
2458 }
2459 }
2460 }
2461
2462 // Find an relaxed input section corresponding to an input section
2463 // in OBJECT with index SHNDX.
2464
2465 const Output_relaxed_input_section*
2466 Output_section::find_relaxed_input_section(const Relobj* object,
2467 unsigned int shndx) const
2468 {
2469 if (!this->lookup_maps_->is_valid())
2470 this->build_lookup_maps();
2471 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2472 }
2473
2474 // Given an address OFFSET relative to the start of input section
2475 // SHNDX in OBJECT, return whether this address is being included in
2476 // the final link. This should only be called if SHNDX in OBJECT has
2477 // a special mapping.
2478
2479 bool
2480 Output_section::is_input_address_mapped(const Relobj* object,
2481 unsigned int shndx,
2482 off_t offset) const
2483 {
2484 // Look at the Output_section_data_maps first.
2485 const Output_section_data* posd = this->find_merge_section(object, shndx);
2486 if (posd == NULL)
2487 posd = this->find_relaxed_input_section(object, shndx);
2488
2489 if (posd != NULL)
2490 {
2491 section_offset_type output_offset;
2492 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2493 gold_assert(found);
2494 return output_offset != -1;
2495 }
2496
2497 // Fall back to the slow look-up.
2498 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2499 p != this->input_sections_.end();
2500 ++p)
2501 {
2502 section_offset_type output_offset;
2503 if (p->output_offset(object, shndx, offset, &output_offset))
2504 return output_offset != -1;
2505 }
2506
2507 // By default we assume that the address is mapped. This should
2508 // only be called after we have passed all sections to Layout. At
2509 // that point we should know what we are discarding.
2510 return true;
2511 }
2512
2513 // Given an address OFFSET relative to the start of input section
2514 // SHNDX in object OBJECT, return the output offset relative to the
2515 // start of the input section in the output section. This should only
2516 // be called if SHNDX in OBJECT has a special mapping.
2517
2518 section_offset_type
2519 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2520 section_offset_type offset) const
2521 {
2522 // This can only be called meaningfully when we know the data size
2523 // of this.
2524 gold_assert(this->is_data_size_valid());
2525
2526 // Look at the Output_section_data_maps first.
2527 const Output_section_data* posd = this->find_merge_section(object, shndx);
2528 if (posd == NULL)
2529 posd = this->find_relaxed_input_section(object, shndx);
2530 if (posd != NULL)
2531 {
2532 section_offset_type output_offset;
2533 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2534 gold_assert(found);
2535 return output_offset;
2536 }
2537
2538 // Fall back to the slow look-up.
2539 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2540 p != this->input_sections_.end();
2541 ++p)
2542 {
2543 section_offset_type output_offset;
2544 if (p->output_offset(object, shndx, offset, &output_offset))
2545 return output_offset;
2546 }
2547 gold_unreachable();
2548 }
2549
2550 // Return the output virtual address of OFFSET relative to the start
2551 // of input section SHNDX in object OBJECT.
2552
2553 uint64_t
2554 Output_section::output_address(const Relobj* object, unsigned int shndx,
2555 off_t offset) const
2556 {
2557 uint64_t addr = this->address() + this->first_input_offset_;
2558
2559 // Look at the Output_section_data_maps first.
2560 const Output_section_data* posd = this->find_merge_section(object, shndx);
2561 if (posd == NULL)
2562 posd = this->find_relaxed_input_section(object, shndx);
2563 if (posd != NULL && posd->is_address_valid())
2564 {
2565 section_offset_type output_offset;
2566 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2567 gold_assert(found);
2568 return posd->address() + output_offset;
2569 }
2570
2571 // Fall back to the slow look-up.
2572 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2573 p != this->input_sections_.end();
2574 ++p)
2575 {
2576 addr = align_address(addr, p->addralign());
2577 section_offset_type output_offset;
2578 if (p->output_offset(object, shndx, offset, &output_offset))
2579 {
2580 if (output_offset == -1)
2581 return -1ULL;
2582 return addr + output_offset;
2583 }
2584 addr += p->data_size();
2585 }
2586
2587 // If we get here, it means that we don't know the mapping for this
2588 // input section. This might happen in principle if
2589 // add_input_section were called before add_output_section_data.
2590 // But it should never actually happen.
2591
2592 gold_unreachable();
2593 }
2594
2595 // Find the output address of the start of the merged section for
2596 // input section SHNDX in object OBJECT.
2597
2598 bool
2599 Output_section::find_starting_output_address(const Relobj* object,
2600 unsigned int shndx,
2601 uint64_t* paddr) const
2602 {
2603 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2604 // Looking up the merge section map does not always work as we sometimes
2605 // find a merge section without its address set.
2606 uint64_t addr = this->address() + this->first_input_offset_;
2607 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2608 p != this->input_sections_.end();
2609 ++p)
2610 {
2611 addr = align_address(addr, p->addralign());
2612
2613 // It would be nice if we could use the existing output_offset
2614 // method to get the output offset of input offset 0.
2615 // Unfortunately we don't know for sure that input offset 0 is
2616 // mapped at all.
2617 if (p->is_merge_section_for(object, shndx))
2618 {
2619 *paddr = addr;
2620 return true;
2621 }
2622
2623 addr += p->data_size();
2624 }
2625
2626 // We couldn't find a merge output section for this input section.
2627 return false;
2628 }
2629
2630 // Set the data size of an Output_section. This is where we handle
2631 // setting the addresses of any Output_section_data objects.
2632
2633 void
2634 Output_section::set_final_data_size()
2635 {
2636 if (this->input_sections_.empty())
2637 {
2638 this->set_data_size(this->current_data_size_for_child());
2639 return;
2640 }
2641
2642 if (this->must_sort_attached_input_sections()
2643 || this->input_section_order_specified())
2644 this->sort_attached_input_sections();
2645
2646 uint64_t address = this->address();
2647 off_t startoff = this->offset();
2648 off_t off = startoff + this->first_input_offset_;
2649 for (Input_section_list::iterator p = this->input_sections_.begin();
2650 p != this->input_sections_.end();
2651 ++p)
2652 {
2653 off = align_address(off, p->addralign());
2654 p->set_address_and_file_offset(address + (off - startoff), off,
2655 startoff);
2656 off += p->data_size();
2657 }
2658
2659 this->set_data_size(off - startoff);
2660 }
2661
2662 // Reset the address and file offset.
2663
2664 void
2665 Output_section::do_reset_address_and_file_offset()
2666 {
2667 // An unallocated section has no address. Forcing this means that
2668 // we don't need special treatment for symbols defined in debug
2669 // sections. We do the same in the constructor. This does not
2670 // apply to NOLOAD sections though.
2671 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2672 this->set_address(0);
2673
2674 for (Input_section_list::iterator p = this->input_sections_.begin();
2675 p != this->input_sections_.end();
2676 ++p)
2677 p->reset_address_and_file_offset();
2678 }
2679
2680 // Return true if address and file offset have the values after reset.
2681
2682 bool
2683 Output_section::do_address_and_file_offset_have_reset_values() const
2684 {
2685 if (this->is_offset_valid())
2686 return false;
2687
2688 // An unallocated section has address 0 after its construction or a reset.
2689 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2690 return this->is_address_valid() && this->address() == 0;
2691 else
2692 return !this->is_address_valid();
2693 }
2694
2695 // Set the TLS offset. Called only for SHT_TLS sections.
2696
2697 void
2698 Output_section::do_set_tls_offset(uint64_t tls_base)
2699 {
2700 this->tls_offset_ = this->address() - tls_base;
2701 }
2702
2703 // In a few cases we need to sort the input sections attached to an
2704 // output section. This is used to implement the type of constructor
2705 // priority ordering implemented by the GNU linker, in which the
2706 // priority becomes part of the section name and the sections are
2707 // sorted by name. We only do this for an output section if we see an
2708 // attached input section matching ".ctor.*", ".dtor.*",
2709 // ".init_array.*" or ".fini_array.*".
2710
2711 class Output_section::Input_section_sort_entry
2712 {
2713 public:
2714 Input_section_sort_entry()
2715 : input_section_(), index_(-1U), section_has_name_(false),
2716 section_name_()
2717 { }
2718
2719 Input_section_sort_entry(const Input_section& input_section,
2720 unsigned int index,
2721 bool must_sort_attached_input_sections)
2722 : input_section_(input_section), index_(index),
2723 section_has_name_(input_section.is_input_section()
2724 || input_section.is_relaxed_input_section())
2725 {
2726 if (this->section_has_name_
2727 && must_sort_attached_input_sections)
2728 {
2729 // This is only called single-threaded from Layout::finalize,
2730 // so it is OK to lock. Unfortunately we have no way to pass
2731 // in a Task token.
2732 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2733 Object* obj = (input_section.is_input_section()
2734 ? input_section.relobj()
2735 : input_section.relaxed_input_section()->relobj());
2736 Task_lock_obj<Object> tl(dummy_task, obj);
2737
2738 // This is a slow operation, which should be cached in
2739 // Layout::layout if this becomes a speed problem.
2740 this->section_name_ = obj->section_name(input_section.shndx());
2741 }
2742 }
2743
2744 // Return the Input_section.
2745 const Input_section&
2746 input_section() const
2747 {
2748 gold_assert(this->index_ != -1U);
2749 return this->input_section_;
2750 }
2751
2752 // The index of this entry in the original list. This is used to
2753 // make the sort stable.
2754 unsigned int
2755 index() const
2756 {
2757 gold_assert(this->index_ != -1U);
2758 return this->index_;
2759 }
2760
2761 // Whether there is a section name.
2762 bool
2763 section_has_name() const
2764 { return this->section_has_name_; }
2765
2766 // The section name.
2767 const std::string&
2768 section_name() const
2769 {
2770 gold_assert(this->section_has_name_);
2771 return this->section_name_;
2772 }
2773
2774 // Return true if the section name has a priority. This is assumed
2775 // to be true if it has a dot after the initial dot.
2776 bool
2777 has_priority() const
2778 {
2779 gold_assert(this->section_has_name_);
2780 return this->section_name_.find('.', 1) != std::string::npos;
2781 }
2782
2783 // Return true if this an input file whose base name matches
2784 // FILE_NAME. The base name must have an extension of ".o", and
2785 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2786 // This is to match crtbegin.o as well as crtbeginS.o without
2787 // getting confused by other possibilities. Overall matching the
2788 // file name this way is a dreadful hack, but the GNU linker does it
2789 // in order to better support gcc, and we need to be compatible.
2790 bool
2791 match_file_name(const char* match_file_name) const
2792 {
2793 const std::string& file_name(this->input_section_.relobj()->name());
2794 const char* base_name = lbasename(file_name.c_str());
2795 size_t match_len = strlen(match_file_name);
2796 if (strncmp(base_name, match_file_name, match_len) != 0)
2797 return false;
2798 size_t base_len = strlen(base_name);
2799 if (base_len != match_len + 2 && base_len != match_len + 3)
2800 return false;
2801 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2802 }
2803
2804 // Returns 1 if THIS should appear before S in section order, -1 if S
2805 // appears before THIS and 0 if they are not comparable.
2806 int
2807 compare_section_ordering(const Input_section_sort_entry& s) const
2808 {
2809 unsigned int this_secn_index = this->input_section_.section_order_index();
2810 unsigned int s_secn_index = s.input_section().section_order_index();
2811 if (this_secn_index > 0 && s_secn_index > 0)
2812 {
2813 if (this_secn_index < s_secn_index)
2814 return 1;
2815 else if (this_secn_index > s_secn_index)
2816 return -1;
2817 }
2818 return 0;
2819 }
2820
2821 private:
2822 // The Input_section we are sorting.
2823 Input_section input_section_;
2824 // The index of this Input_section in the original list.
2825 unsigned int index_;
2826 // Whether this Input_section has a section name--it won't if this
2827 // is some random Output_section_data.
2828 bool section_has_name_;
2829 // The section name if there is one.
2830 std::string section_name_;
2831 };
2832
2833 // Return true if S1 should come before S2 in the output section.
2834
2835 bool
2836 Output_section::Input_section_sort_compare::operator()(
2837 const Output_section::Input_section_sort_entry& s1,
2838 const Output_section::Input_section_sort_entry& s2) const
2839 {
2840 // crtbegin.o must come first.
2841 bool s1_begin = s1.match_file_name("crtbegin");
2842 bool s2_begin = s2.match_file_name("crtbegin");
2843 if (s1_begin || s2_begin)
2844 {
2845 if (!s1_begin)
2846 return false;
2847 if (!s2_begin)
2848 return true;
2849 return s1.index() < s2.index();
2850 }
2851
2852 // crtend.o must come last.
2853 bool s1_end = s1.match_file_name("crtend");
2854 bool s2_end = s2.match_file_name("crtend");
2855 if (s1_end || s2_end)
2856 {
2857 if (!s1_end)
2858 return true;
2859 if (!s2_end)
2860 return false;
2861 return s1.index() < s2.index();
2862 }
2863
2864 // We sort all the sections with no names to the end.
2865 if (!s1.section_has_name() || !s2.section_has_name())
2866 {
2867 if (s1.section_has_name())
2868 return true;
2869 if (s2.section_has_name())
2870 return false;
2871 return s1.index() < s2.index();
2872 }
2873
2874 // A section with a priority follows a section without a priority.
2875 bool s1_has_priority = s1.has_priority();
2876 bool s2_has_priority = s2.has_priority();
2877 if (s1_has_priority && !s2_has_priority)
2878 return false;
2879 if (!s1_has_priority && s2_has_priority)
2880 return true;
2881
2882 // Check if a section order exists for these sections through a section
2883 // ordering file. If sequence_num is 0, an order does not exist.
2884 int sequence_num = s1.compare_section_ordering(s2);
2885 if (sequence_num != 0)
2886 return sequence_num == 1;
2887
2888 // Otherwise we sort by name.
2889 int compare = s1.section_name().compare(s2.section_name());
2890 if (compare != 0)
2891 return compare < 0;
2892
2893 // Otherwise we keep the input order.
2894 return s1.index() < s2.index();
2895 }
2896
2897 // Return true if S1 should come before S2 in an .init_array or .fini_array
2898 // output section.
2899
2900 bool
2901 Output_section::Input_section_sort_init_fini_compare::operator()(
2902 const Output_section::Input_section_sort_entry& s1,
2903 const Output_section::Input_section_sort_entry& s2) const
2904 {
2905 // We sort all the sections with no names to the end.
2906 if (!s1.section_has_name() || !s2.section_has_name())
2907 {
2908 if (s1.section_has_name())
2909 return true;
2910 if (s2.section_has_name())
2911 return false;
2912 return s1.index() < s2.index();
2913 }
2914
2915 // A section without a priority follows a section with a priority.
2916 // This is the reverse of .ctors and .dtors sections.
2917 bool s1_has_priority = s1.has_priority();
2918 bool s2_has_priority = s2.has_priority();
2919 if (s1_has_priority && !s2_has_priority)
2920 return true;
2921 if (!s1_has_priority && s2_has_priority)
2922 return false;
2923
2924 // Check if a section order exists for these sections through a section
2925 // ordering file. If sequence_num is 0, an order does not exist.
2926 int sequence_num = s1.compare_section_ordering(s2);
2927 if (sequence_num != 0)
2928 return sequence_num == 1;
2929
2930 // Otherwise we sort by name.
2931 int compare = s1.section_name().compare(s2.section_name());
2932 if (compare != 0)
2933 return compare < 0;
2934
2935 // Otherwise we keep the input order.
2936 return s1.index() < s2.index();
2937 }
2938
2939 // Return true if S1 should come before S2. Sections that do not match
2940 // any pattern in the section ordering file are placed ahead of the sections
2941 // that match some pattern.
2942
2943 bool
2944 Output_section::Input_section_sort_section_order_index_compare::operator()(
2945 const Output_section::Input_section_sort_entry& s1,
2946 const Output_section::Input_section_sort_entry& s2) const
2947 {
2948 unsigned int s1_secn_index = s1.input_section().section_order_index();
2949 unsigned int s2_secn_index = s2.input_section().section_order_index();
2950
2951 // Keep input order if section ordering cannot determine order.
2952 if (s1_secn_index == s2_secn_index)
2953 return s1.index() < s2.index();
2954
2955 return s1_secn_index < s2_secn_index;
2956 }
2957
2958 // Sort the input sections attached to an output section.
2959
2960 void
2961 Output_section::sort_attached_input_sections()
2962 {
2963 if (this->attached_input_sections_are_sorted_)
2964 return;
2965
2966 if (this->checkpoint_ != NULL
2967 && !this->checkpoint_->input_sections_saved())
2968 this->checkpoint_->save_input_sections();
2969
2970 // The only thing we know about an input section is the object and
2971 // the section index. We need the section name. Recomputing this
2972 // is slow but this is an unusual case. If this becomes a speed
2973 // problem we can cache the names as required in Layout::layout.
2974
2975 // We start by building a larger vector holding a copy of each
2976 // Input_section, plus its current index in the list and its name.
2977 std::vector<Input_section_sort_entry> sort_list;
2978
2979 unsigned int i = 0;
2980 for (Input_section_list::iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2982 ++p, ++i)
2983 sort_list.push_back(Input_section_sort_entry(*p, i,
2984 this->must_sort_attached_input_sections()));
2985
2986 // Sort the input sections.
2987 if (this->must_sort_attached_input_sections())
2988 {
2989 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2990 || this->type() == elfcpp::SHT_INIT_ARRAY
2991 || this->type() == elfcpp::SHT_FINI_ARRAY)
2992 std::sort(sort_list.begin(), sort_list.end(),
2993 Input_section_sort_init_fini_compare());
2994 else
2995 std::sort(sort_list.begin(), sort_list.end(),
2996 Input_section_sort_compare());
2997 }
2998 else
2999 {
3000 gold_assert(parameters->options().section_ordering_file());
3001 std::sort(sort_list.begin(), sort_list.end(),
3002 Input_section_sort_section_order_index_compare());
3003 }
3004
3005 // Copy the sorted input sections back to our list.
3006 this->input_sections_.clear();
3007 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3008 p != sort_list.end();
3009 ++p)
3010 this->input_sections_.push_back(p->input_section());
3011 sort_list.clear();
3012
3013 // Remember that we sorted the input sections, since we might get
3014 // called again.
3015 this->attached_input_sections_are_sorted_ = true;
3016 }
3017
3018 // Write the section header to *OSHDR.
3019
3020 template<int size, bool big_endian>
3021 void
3022 Output_section::write_header(const Layout* layout,
3023 const Stringpool* secnamepool,
3024 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3025 {
3026 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3027 oshdr->put_sh_type(this->type_);
3028
3029 elfcpp::Elf_Xword flags = this->flags_;
3030 if (this->info_section_ != NULL && this->info_uses_section_index_)
3031 flags |= elfcpp::SHF_INFO_LINK;
3032 oshdr->put_sh_flags(flags);
3033
3034 oshdr->put_sh_addr(this->address());
3035 oshdr->put_sh_offset(this->offset());
3036 oshdr->put_sh_size(this->data_size());
3037 if (this->link_section_ != NULL)
3038 oshdr->put_sh_link(this->link_section_->out_shndx());
3039 else if (this->should_link_to_symtab_)
3040 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3041 else if (this->should_link_to_dynsym_)
3042 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3043 else
3044 oshdr->put_sh_link(this->link_);
3045
3046 elfcpp::Elf_Word info;
3047 if (this->info_section_ != NULL)
3048 {
3049 if (this->info_uses_section_index_)
3050 info = this->info_section_->out_shndx();
3051 else
3052 info = this->info_section_->symtab_index();
3053 }
3054 else if (this->info_symndx_ != NULL)
3055 info = this->info_symndx_->symtab_index();
3056 else
3057 info = this->info_;
3058 oshdr->put_sh_info(info);
3059
3060 oshdr->put_sh_addralign(this->addralign_);
3061 oshdr->put_sh_entsize(this->entsize_);
3062 }
3063
3064 // Write out the data. For input sections the data is written out by
3065 // Object::relocate, but we have to handle Output_section_data objects
3066 // here.
3067
3068 void
3069 Output_section::do_write(Output_file* of)
3070 {
3071 gold_assert(!this->requires_postprocessing());
3072
3073 // If the target performs relaxation, we delay filler generation until now.
3074 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3075
3076 off_t output_section_file_offset = this->offset();
3077 for (Fill_list::iterator p = this->fills_.begin();
3078 p != this->fills_.end();
3079 ++p)
3080 {
3081 std::string fill_data(parameters->target().code_fill(p->length()));
3082 of->write(output_section_file_offset + p->section_offset(),
3083 fill_data.data(), fill_data.size());
3084 }
3085
3086 off_t off = this->offset() + this->first_input_offset_;
3087 for (Input_section_list::iterator p = this->input_sections_.begin();
3088 p != this->input_sections_.end();
3089 ++p)
3090 {
3091 off_t aligned_off = align_address(off, p->addralign());
3092 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3093 {
3094 size_t fill_len = aligned_off - off;
3095 std::string fill_data(parameters->target().code_fill(fill_len));
3096 of->write(off, fill_data.data(), fill_data.size());
3097 }
3098
3099 p->write(of);
3100 off = aligned_off + p->data_size();
3101 }
3102 }
3103
3104 // If a section requires postprocessing, create the buffer to use.
3105
3106 void
3107 Output_section::create_postprocessing_buffer()
3108 {
3109 gold_assert(this->requires_postprocessing());
3110
3111 if (this->postprocessing_buffer_ != NULL)
3112 return;
3113
3114 if (!this->input_sections_.empty())
3115 {
3116 off_t off = this->first_input_offset_;
3117 for (Input_section_list::iterator p = this->input_sections_.begin();
3118 p != this->input_sections_.end();
3119 ++p)
3120 {
3121 off = align_address(off, p->addralign());
3122 p->finalize_data_size();
3123 off += p->data_size();
3124 }
3125 this->set_current_data_size_for_child(off);
3126 }
3127
3128 off_t buffer_size = this->current_data_size_for_child();
3129 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3130 }
3131
3132 // Write all the data of an Output_section into the postprocessing
3133 // buffer. This is used for sections which require postprocessing,
3134 // such as compression. Input sections are handled by
3135 // Object::Relocate.
3136
3137 void
3138 Output_section::write_to_postprocessing_buffer()
3139 {
3140 gold_assert(this->requires_postprocessing());
3141
3142 // If the target performs relaxation, we delay filler generation until now.
3143 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3144
3145 unsigned char* buffer = this->postprocessing_buffer();
3146 for (Fill_list::iterator p = this->fills_.begin();
3147 p != this->fills_.end();
3148 ++p)
3149 {
3150 std::string fill_data(parameters->target().code_fill(p->length()));
3151 memcpy(buffer + p->section_offset(), fill_data.data(),
3152 fill_data.size());
3153 }
3154
3155 off_t off = this->first_input_offset_;
3156 for (Input_section_list::iterator p = this->input_sections_.begin();
3157 p != this->input_sections_.end();
3158 ++p)
3159 {
3160 off_t aligned_off = align_address(off, p->addralign());
3161 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3162 {
3163 size_t fill_len = aligned_off - off;
3164 std::string fill_data(parameters->target().code_fill(fill_len));
3165 memcpy(buffer + off, fill_data.data(), fill_data.size());
3166 }
3167
3168 p->write_to_buffer(buffer + aligned_off);
3169 off = aligned_off + p->data_size();
3170 }
3171 }
3172
3173 // Get the input sections for linker script processing. We leave
3174 // behind the Output_section_data entries. Note that this may be
3175 // slightly incorrect for merge sections. We will leave them behind,
3176 // but it is possible that the script says that they should follow
3177 // some other input sections, as in:
3178 // .rodata { *(.rodata) *(.rodata.cst*) }
3179 // For that matter, we don't handle this correctly:
3180 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3181 // With luck this will never matter.
3182
3183 uint64_t
3184 Output_section::get_input_sections(
3185 uint64_t address,
3186 const std::string& fill,
3187 std::list<Input_section>* input_sections)
3188 {
3189 if (this->checkpoint_ != NULL
3190 && !this->checkpoint_->input_sections_saved())
3191 this->checkpoint_->save_input_sections();
3192
3193 // Invalidate fast look-up maps.
3194 this->lookup_maps_->invalidate();
3195
3196 uint64_t orig_address = address;
3197
3198 address = align_address(address, this->addralign());
3199
3200 Input_section_list remaining;
3201 for (Input_section_list::iterator p = this->input_sections_.begin();
3202 p != this->input_sections_.end();
3203 ++p)
3204 {
3205 if (p->is_input_section()
3206 || p->is_relaxed_input_section()
3207 || p->is_merge_section())
3208 input_sections->push_back(*p);
3209 else
3210 {
3211 uint64_t aligned_address = align_address(address, p->addralign());
3212 if (aligned_address != address && !fill.empty())
3213 {
3214 section_size_type length =
3215 convert_to_section_size_type(aligned_address - address);
3216 std::string this_fill;
3217 this_fill.reserve(length);
3218 while (this_fill.length() + fill.length() <= length)
3219 this_fill += fill;
3220 if (this_fill.length() < length)
3221 this_fill.append(fill, 0, length - this_fill.length());
3222
3223 Output_section_data* posd = new Output_data_const(this_fill, 0);
3224 remaining.push_back(Input_section(posd));
3225 }
3226 address = aligned_address;
3227
3228 remaining.push_back(*p);
3229
3230 p->finalize_data_size();
3231 address += p->data_size();
3232 }
3233 }
3234
3235 this->input_sections_.swap(remaining);
3236 this->first_input_offset_ = 0;
3237
3238 uint64_t data_size = address - orig_address;
3239 this->set_current_data_size_for_child(data_size);
3240 return data_size;
3241 }
3242
3243 // Add a script input section. SIS is an Output_section::Input_section,
3244 // which can be either a plain input section or a special input section like
3245 // a relaxed input section. For a special input section, its size must be
3246 // finalized.
3247
3248 void
3249 Output_section::add_script_input_section(const Input_section& sis)
3250 {
3251 uint64_t data_size = sis.data_size();
3252 uint64_t addralign = sis.addralign();
3253 if (addralign > this->addralign_)
3254 this->addralign_ = addralign;
3255
3256 off_t offset_in_section = this->current_data_size_for_child();
3257 off_t aligned_offset_in_section = align_address(offset_in_section,
3258 addralign);
3259
3260 this->set_current_data_size_for_child(aligned_offset_in_section
3261 + data_size);
3262
3263 this->input_sections_.push_back(sis);
3264
3265 // Update fast lookup maps if necessary.
3266 if (this->lookup_maps_->is_valid())
3267 {
3268 if (sis.is_merge_section())
3269 {
3270 Output_merge_base* pomb = sis.output_merge_base();
3271 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3272 pomb->addralign());
3273 this->lookup_maps_->add_merge_section(msp, pomb);
3274 for (Output_merge_base::Input_sections::const_iterator p =
3275 pomb->input_sections_begin();
3276 p != pomb->input_sections_end();
3277 ++p)
3278 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3279 pomb);
3280 }
3281 else if (sis.is_relaxed_input_section())
3282 {
3283 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3284 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3285 poris->shndx(), poris);
3286 }
3287 }
3288 }
3289
3290 // Save states for relaxation.
3291
3292 void
3293 Output_section::save_states()
3294 {
3295 gold_assert(this->checkpoint_ == NULL);
3296 Checkpoint_output_section* checkpoint =
3297 new Checkpoint_output_section(this->addralign_, this->flags_,
3298 this->input_sections_,
3299 this->first_input_offset_,
3300 this->attached_input_sections_are_sorted_);
3301 this->checkpoint_ = checkpoint;
3302 gold_assert(this->fills_.empty());
3303 }
3304
3305 void
3306 Output_section::discard_states()
3307 {
3308 gold_assert(this->checkpoint_ != NULL);
3309 delete this->checkpoint_;
3310 this->checkpoint_ = NULL;
3311 gold_assert(this->fills_.empty());
3312
3313 // Simply invalidate the fast lookup maps since we do not keep
3314 // track of them.
3315 this->lookup_maps_->invalidate();
3316 }
3317
3318 void
3319 Output_section::restore_states()
3320 {
3321 gold_assert(this->checkpoint_ != NULL);
3322 Checkpoint_output_section* checkpoint = this->checkpoint_;
3323
3324 this->addralign_ = checkpoint->addralign();
3325 this->flags_ = checkpoint->flags();
3326 this->first_input_offset_ = checkpoint->first_input_offset();
3327
3328 if (!checkpoint->input_sections_saved())
3329 {
3330 // If we have not copied the input sections, just resize it.
3331 size_t old_size = checkpoint->input_sections_size();
3332 gold_assert(this->input_sections_.size() >= old_size);
3333 this->input_sections_.resize(old_size);
3334 }
3335 else
3336 {
3337 // We need to copy the whole list. This is not efficient for
3338 // extremely large output with hundreads of thousands of input
3339 // objects. We may need to re-think how we should pass sections
3340 // to scripts.
3341 this->input_sections_ = *checkpoint->input_sections();
3342 }
3343
3344 this->attached_input_sections_are_sorted_ =
3345 checkpoint->attached_input_sections_are_sorted();
3346
3347 // Simply invalidate the fast lookup maps since we do not keep
3348 // track of them.
3349 this->lookup_maps_->invalidate();
3350 }
3351
3352 // Update the section offsets of input sections in this. This is required if
3353 // relaxation causes some input sections to change sizes.
3354
3355 void
3356 Output_section::adjust_section_offsets()
3357 {
3358 if (!this->section_offsets_need_adjustment_)
3359 return;
3360
3361 off_t off = 0;
3362 for (Input_section_list::iterator p = this->input_sections_.begin();
3363 p != this->input_sections_.end();
3364 ++p)
3365 {
3366 off = align_address(off, p->addralign());
3367 if (p->is_input_section())
3368 p->relobj()->set_section_offset(p->shndx(), off);
3369 off += p->data_size();
3370 }
3371
3372 this->section_offsets_need_adjustment_ = false;
3373 }
3374
3375 // Print to the map file.
3376
3377 void
3378 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3379 {
3380 mapfile->print_output_section(this);
3381
3382 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3383 p != this->input_sections_.end();
3384 ++p)
3385 p->print_to_mapfile(mapfile);
3386 }
3387
3388 // Print stats for merge sections to stderr.
3389
3390 void
3391 Output_section::print_merge_stats()
3392 {
3393 Input_section_list::iterator p;
3394 for (p = this->input_sections_.begin();
3395 p != this->input_sections_.end();
3396 ++p)
3397 p->print_merge_stats(this->name_);
3398 }
3399
3400 // Output segment methods.
3401
3402 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3403 : output_data_(),
3404 output_bss_(),
3405 vaddr_(0),
3406 paddr_(0),
3407 memsz_(0),
3408 max_align_(0),
3409 min_p_align_(0),
3410 offset_(0),
3411 filesz_(0),
3412 type_(type),
3413 flags_(flags),
3414 is_max_align_known_(false),
3415 are_addresses_set_(false),
3416 is_large_data_segment_(false)
3417 {
3418 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3419 // the flags.
3420 if (type == elfcpp::PT_TLS)
3421 this->flags_ = elfcpp::PF_R;
3422 }
3423
3424 // Add an Output_section to an Output_segment.
3425
3426 void
3427 Output_segment::add_output_section(Output_section* os,
3428 elfcpp::Elf_Word seg_flags,
3429 bool do_sort)
3430 {
3431 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3432 gold_assert(!this->is_max_align_known_);
3433 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3434 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3435
3436 this->update_flags_for_output_section(seg_flags);
3437
3438 Output_segment::Output_data_list* pdl;
3439 if (os->type() == elfcpp::SHT_NOBITS)
3440 pdl = &this->output_bss_;
3441 else
3442 pdl = &this->output_data_;
3443
3444 // Note that while there may be many input sections in an output
3445 // section, there are normally only a few output sections in an
3446 // output segment. The loops below are expected to be fast.
3447
3448 // So that PT_NOTE segments will work correctly, we need to ensure
3449 // that all SHT_NOTE sections are adjacent.
3450 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3451 {
3452 Output_segment::Output_data_list::iterator p = pdl->end();
3453 do
3454 {
3455 --p;
3456 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3457 {
3458 ++p;
3459 pdl->insert(p, os);
3460 return;
3461 }
3462 }
3463 while (p != pdl->begin());
3464 }
3465
3466 // Similarly, so that PT_TLS segments will work, we need to group
3467 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3468 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3469 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3470 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3471 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3472 // segment.
3473 if (this->type_ != elfcpp::PT_TLS
3474 && (os->flags() & elfcpp::SHF_TLS) != 0)
3475 {
3476 pdl = &this->output_data_;
3477 if (!pdl->empty())
3478 {
3479 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3480 bool sawtls = false;
3481 Output_segment::Output_data_list::iterator p = pdl->end();
3482 gold_assert(p != pdl->begin());
3483 do
3484 {
3485 --p;
3486 bool insert;
3487 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3488 {
3489 sawtls = true;
3490 // Put a NOBITS section after the first TLS section.
3491 // Put a PROGBITS section after the first
3492 // TLS/PROGBITS section.
3493 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3494 }
3495 else
3496 {
3497 // If we've gone past the TLS sections, but we've
3498 // seen a TLS section, then we need to insert this
3499 // section now.
3500 insert = sawtls;
3501 }
3502
3503 if (insert)
3504 {
3505 ++p;
3506 pdl->insert(p, os);
3507 return;
3508 }
3509 }
3510 while (p != pdl->begin());
3511 }
3512
3513 // There are no TLS sections yet; put this one at the requested
3514 // location in the section list.
3515 }
3516
3517 if (do_sort)
3518 {
3519 // For the PT_GNU_RELRO segment, we need to group relro
3520 // sections, and we need to put them before any non-relro
3521 // sections. Any relro local sections go before relro non-local
3522 // sections. One section may be marked as the last relro
3523 // section.
3524 if (os->is_relro())
3525 {
3526 gold_assert(pdl == &this->output_data_);
3527 Output_segment::Output_data_list::iterator p;
3528 for (p = pdl->begin(); p != pdl->end(); ++p)
3529 {
3530 if (!(*p)->is_section())
3531 break;
3532
3533 Output_section* pos = (*p)->output_section();
3534 if (!pos->is_relro()
3535 || (os->is_relro_local() && !pos->is_relro_local())
3536 || (!os->is_last_relro() && pos->is_last_relro()))
3537 break;
3538 }
3539
3540 pdl->insert(p, os);
3541 return;
3542 }
3543
3544 // One section may be marked as the first section which follows
3545 // the relro sections.
3546 if (os->is_first_non_relro())
3547 {
3548 gold_assert(pdl == &this->output_data_);
3549 Output_segment::Output_data_list::iterator p;
3550 for (p = pdl->begin(); p != pdl->end(); ++p)
3551 {
3552 if (!(*p)->is_section())
3553 break;
3554
3555 Output_section* pos = (*p)->output_section();
3556 if (!pos->is_relro())
3557 break;
3558 }
3559
3560 pdl->insert(p, os);
3561 return;
3562 }
3563 }
3564
3565 // Small data sections go at the end of the list of data sections.
3566 // If OS is not small, and there are small sections, we have to
3567 // insert it before the first small section.
3568 if (os->type() != elfcpp::SHT_NOBITS
3569 && !os->is_small_section()
3570 && !pdl->empty()
3571 && pdl->back()->is_section()
3572 && pdl->back()->output_section()->is_small_section())
3573 {
3574 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3575 p != pdl->end();
3576 ++p)
3577 {
3578 if ((*p)->is_section()
3579 && (*p)->output_section()->is_small_section())
3580 {
3581 pdl->insert(p, os);
3582 return;
3583 }
3584 }
3585 gold_unreachable();
3586 }
3587
3588 // A small BSS section goes at the start of the BSS sections, after
3589 // other small BSS sections.
3590 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3591 {
3592 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3593 p != pdl->end();
3594 ++p)
3595 {
3596 if (!(*p)->is_section()
3597 || !(*p)->output_section()->is_small_section())
3598 {
3599 pdl->insert(p, os);
3600 return;
3601 }
3602 }
3603 }
3604
3605 // A large BSS section goes at the end of the BSS sections, which
3606 // means that one that is not large must come before the first large
3607 // one.
3608 if (os->type() == elfcpp::SHT_NOBITS
3609 && !os->is_large_section()
3610 && !pdl->empty()
3611 && pdl->back()->is_section()
3612 && pdl->back()->output_section()->is_large_section())
3613 {
3614 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3615 p != pdl->end();
3616 ++p)
3617 {
3618 if ((*p)->is_section()
3619 && (*p)->output_section()->is_large_section())
3620 {
3621 pdl->insert(p, os);
3622 return;
3623 }
3624 }
3625 gold_unreachable();
3626 }
3627
3628 // We do some further output section sorting in order to make the
3629 // generated program run more efficiently. We should only do this
3630 // when not using a linker script, so it is controled by the DO_SORT
3631 // parameter.
3632 if (do_sort)
3633 {
3634 // FreeBSD requires the .interp section to be in the first page
3635 // of the executable. That is a more efficient location anyhow
3636 // for any OS, since it means that the kernel will have the data
3637 // handy after it reads the program headers.
3638 if (os->is_interp() && !pdl->empty())
3639 {
3640 pdl->insert(pdl->begin(), os);
3641 return;
3642 }
3643
3644 // Put loadable non-writable notes immediately after the .interp
3645 // sections, so that the PT_NOTE segment is on the first page of
3646 // the executable.
3647 if (os->type() == elfcpp::SHT_NOTE
3648 && (os->flags() & elfcpp::SHF_WRITE) == 0
3649 && !pdl->empty())
3650 {
3651 Output_segment::Output_data_list::iterator p = pdl->begin();
3652 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3653 ++p;
3654 pdl->insert(p, os);
3655 return;
3656 }
3657
3658 // If this section is used by the dynamic linker, and it is not
3659 // writable, then put it first, after the .interp section and
3660 // any loadable notes. This makes it more likely that the
3661 // dynamic linker will have to read less data from the disk.
3662 if (os->is_dynamic_linker_section()
3663 && !pdl->empty()
3664 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3665 {
3666 bool is_reloc = (os->type() == elfcpp::SHT_REL
3667 || os->type() == elfcpp::SHT_RELA);
3668 Output_segment::Output_data_list::iterator p = pdl->begin();
3669 while (p != pdl->end()
3670 && (*p)->is_section()
3671 && ((*p)->output_section()->is_dynamic_linker_section()
3672 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3673 {
3674 // Put reloc sections after the other ones. Putting the
3675 // dynamic reloc sections first confuses BFD, notably
3676 // objcopy and strip.
3677 if (!is_reloc
3678 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3679 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3680 break;
3681 ++p;
3682 }
3683 pdl->insert(p, os);
3684 return;
3685 }
3686 }
3687
3688 // If there were no constraints on the output section, just add it
3689 // to the end of the list.
3690 pdl->push_back(os);
3691 }
3692
3693 // Remove an Output_section from this segment. It is an error if it
3694 // is not present.
3695
3696 void
3697 Output_segment::remove_output_section(Output_section* os)
3698 {
3699 // We only need this for SHT_PROGBITS.
3700 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3701 for (Output_data_list::iterator p = this->output_data_.begin();
3702 p != this->output_data_.end();
3703 ++p)
3704 {
3705 if (*p == os)
3706 {
3707 this->output_data_.erase(p);
3708 return;
3709 }
3710 }
3711 gold_unreachable();
3712 }
3713
3714 // Add an Output_data (which need not be an Output_section) to the
3715 // start of a segment.
3716
3717 void
3718 Output_segment::add_initial_output_data(Output_data* od)
3719 {
3720 gold_assert(!this->is_max_align_known_);
3721 this->output_data_.push_front(od);
3722 }
3723
3724 // Return whether the first data section is a relro section.
3725
3726 bool
3727 Output_segment::is_first_section_relro() const
3728 {
3729 return (!this->output_data_.empty()
3730 && this->output_data_.front()->is_section()
3731 && this->output_data_.front()->output_section()->is_relro());
3732 }
3733
3734 // Return the maximum alignment of the Output_data in Output_segment.
3735
3736 uint64_t
3737 Output_segment::maximum_alignment()
3738 {
3739 if (!this->is_max_align_known_)
3740 {
3741 uint64_t addralign;
3742
3743 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3744 if (addralign > this->max_align_)
3745 this->max_align_ = addralign;
3746
3747 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3748 if (addralign > this->max_align_)
3749 this->max_align_ = addralign;
3750
3751 this->is_max_align_known_ = true;
3752 }
3753
3754 return this->max_align_;
3755 }
3756
3757 // Return the maximum alignment of a list of Output_data.
3758
3759 uint64_t
3760 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3761 {
3762 uint64_t ret = 0;
3763 for (Output_data_list::const_iterator p = pdl->begin();
3764 p != pdl->end();
3765 ++p)
3766 {
3767 uint64_t addralign = (*p)->addralign();
3768 if (addralign > ret)
3769 ret = addralign;
3770 }
3771 return ret;
3772 }
3773
3774 // Return the number of dynamic relocs applied to this segment.
3775
3776 unsigned int
3777 Output_segment::dynamic_reloc_count() const
3778 {
3779 return (this->dynamic_reloc_count_list(&this->output_data_)
3780 + this->dynamic_reloc_count_list(&this->output_bss_));
3781 }
3782
3783 // Return the number of dynamic relocs applied to an Output_data_list.
3784
3785 unsigned int
3786 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3787 {
3788 unsigned int count = 0;
3789 for (Output_data_list::const_iterator p = pdl->begin();
3790 p != pdl->end();
3791 ++p)
3792 count += (*p)->dynamic_reloc_count();
3793 return count;
3794 }
3795
3796 // Set the section addresses for an Output_segment. If RESET is true,
3797 // reset the addresses first. ADDR is the address and *POFF is the
3798 // file offset. Set the section indexes starting with *PSHNDX.
3799 // Return the address of the immediately following segment. Update
3800 // *POFF and *PSHNDX.
3801
3802 uint64_t
3803 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3804 uint64_t addr,
3805 unsigned int increase_relro,
3806 off_t* poff,
3807 unsigned int* pshndx)
3808 {
3809 gold_assert(this->type_ == elfcpp::PT_LOAD);
3810
3811 off_t orig_off = *poff;
3812
3813 // If we have relro sections, we need to pad forward now so that the
3814 // relro sections plus INCREASE_RELRO end on a common page boundary.
3815 if (parameters->options().relro()
3816 && this->is_first_section_relro()
3817 && (!this->are_addresses_set_ || reset))
3818 {
3819 uint64_t relro_size = 0;
3820 off_t off = *poff;
3821 for (Output_data_list::iterator p = this->output_data_.begin();
3822 p != this->output_data_.end();
3823 ++p)
3824 {
3825 if (!(*p)->is_section())
3826 break;
3827 Output_section* pos = (*p)->output_section();
3828 if (!pos->is_relro())
3829 break;
3830 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3831 if ((*p)->is_address_valid())
3832 relro_size += (*p)->data_size();
3833 else
3834 {
3835 // FIXME: This could be faster.
3836 (*p)->set_address_and_file_offset(addr + relro_size,
3837 off + relro_size);
3838 relro_size += (*p)->data_size();
3839 (*p)->reset_address_and_file_offset();
3840 }
3841 }
3842 relro_size += increase_relro;
3843
3844 uint64_t page_align = parameters->target().common_pagesize();
3845
3846 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3847 uint64_t desired_align = page_align - (relro_size % page_align);
3848 if (desired_align < *poff % page_align)
3849 *poff += page_align - *poff % page_align;
3850 *poff += desired_align - *poff % page_align;
3851 addr += *poff - orig_off;
3852 orig_off = *poff;
3853 }
3854
3855 if (!reset && this->are_addresses_set_)
3856 {
3857 gold_assert(this->paddr_ == addr);
3858 addr = this->vaddr_;
3859 }
3860 else
3861 {
3862 this->vaddr_ = addr;
3863 this->paddr_ = addr;
3864 this->are_addresses_set_ = true;
3865 }
3866
3867 bool in_tls = false;
3868
3869 this->offset_ = orig_off;
3870
3871 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3872 addr, poff, pshndx, &in_tls);
3873 this->filesz_ = *poff - orig_off;
3874
3875 off_t off = *poff;
3876
3877 uint64_t ret = this->set_section_list_addresses(layout, reset,
3878 &this->output_bss_,
3879 addr, poff, pshndx,
3880 &in_tls);
3881
3882 // If the last section was a TLS section, align upward to the
3883 // alignment of the TLS segment, so that the overall size of the TLS
3884 // segment is aligned.
3885 if (in_tls)
3886 {
3887 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3888 *poff = align_address(*poff, segment_align);
3889 }
3890
3891 this->memsz_ = *poff - orig_off;
3892
3893 // Ignore the file offset adjustments made by the BSS Output_data
3894 // objects.
3895 *poff = off;
3896
3897 return ret;
3898 }
3899
3900 // Set the addresses and file offsets in a list of Output_data
3901 // structures.
3902
3903 uint64_t
3904 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3905 Output_data_list* pdl,
3906 uint64_t addr, off_t* poff,
3907 unsigned int* pshndx,
3908 bool* in_tls)
3909 {
3910 off_t startoff = *poff;
3911
3912 off_t off = startoff;
3913 for (Output_data_list::iterator p = pdl->begin();
3914 p != pdl->end();
3915 ++p)
3916 {
3917 if (reset)
3918 (*p)->reset_address_and_file_offset();
3919
3920 // When using a linker script the section will most likely
3921 // already have an address.
3922 if (!(*p)->is_address_valid())
3923 {
3924 uint64_t align = (*p)->addralign();
3925
3926 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3927 {
3928 // Give the first TLS section the alignment of the
3929 // entire TLS segment. Otherwise the TLS segment as a
3930 // whole may be misaligned.
3931 if (!*in_tls)
3932 {
3933 Output_segment* tls_segment = layout->tls_segment();
3934 gold_assert(tls_segment != NULL);
3935 uint64_t segment_align = tls_segment->maximum_alignment();
3936 gold_assert(segment_align >= align);
3937 align = segment_align;
3938
3939 *in_tls = true;
3940 }
3941 }
3942 else
3943 {
3944 // If this is the first section after the TLS segment,
3945 // align it to at least the alignment of the TLS
3946 // segment, so that the size of the overall TLS segment
3947 // is aligned.
3948 if (*in_tls)
3949 {
3950 uint64_t segment_align =
3951 layout->tls_segment()->maximum_alignment();
3952 if (segment_align > align)
3953 align = segment_align;
3954
3955 *in_tls = false;
3956 }
3957 }
3958
3959 off = align_address(off, align);
3960 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3961 }
3962 else
3963 {
3964 // The script may have inserted a skip forward, but it
3965 // better not have moved backward.
3966 if ((*p)->address() >= addr + (off - startoff))
3967 off += (*p)->address() - (addr + (off - startoff));
3968 else
3969 {
3970 if (!layout->script_options()->saw_sections_clause())
3971 gold_unreachable();
3972 else
3973 {
3974 Output_section* os = (*p)->output_section();
3975
3976 // Cast to unsigned long long to avoid format warnings.
3977 unsigned long long previous_dot =
3978 static_cast<unsigned long long>(addr + (off - startoff));
3979 unsigned long long dot =
3980 static_cast<unsigned long long>((*p)->address());
3981
3982 if (os == NULL)
3983 gold_error(_("dot moves backward in linker script "
3984 "from 0x%llx to 0x%llx"), previous_dot, dot);
3985 else
3986 gold_error(_("address of section '%s' moves backward "
3987 "from 0x%llx to 0x%llx"),
3988 os->name(), previous_dot, dot);
3989 }
3990 }
3991 (*p)->set_file_offset(off);
3992 (*p)->finalize_data_size();
3993 }
3994
3995 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3996 // section. Such a section does not affect the size of a
3997 // PT_LOAD segment.
3998 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3999 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4000 off += (*p)->data_size();
4001
4002 if ((*p)->is_section())
4003 {
4004 (*p)->set_out_shndx(*pshndx);
4005 ++*pshndx;
4006 }
4007 }
4008
4009 *poff = off;
4010 return addr + (off - startoff);
4011 }
4012
4013 // For a non-PT_LOAD segment, set the offset from the sections, if
4014 // any. Add INCREASE to the file size and the memory size.
4015
4016 void
4017 Output_segment::set_offset(unsigned int increase)
4018 {
4019 gold_assert(this->type_ != elfcpp::PT_LOAD);
4020
4021 gold_assert(!this->are_addresses_set_);
4022
4023 if (this->output_data_.empty() && this->output_bss_.empty())
4024 {
4025 gold_assert(increase == 0);
4026 this->vaddr_ = 0;
4027 this->paddr_ = 0;
4028 this->are_addresses_set_ = true;
4029 this->memsz_ = 0;
4030 this->min_p_align_ = 0;
4031 this->offset_ = 0;
4032 this->filesz_ = 0;
4033 return;
4034 }
4035
4036 const Output_data* first;
4037 if (this->output_data_.empty())
4038 first = this->output_bss_.front();
4039 else
4040 first = this->output_data_.front();
4041 this->vaddr_ = first->address();
4042 this->paddr_ = (first->has_load_address()
4043 ? first->load_address()
4044 : this->vaddr_);
4045 this->are_addresses_set_ = true;
4046 this->offset_ = first->offset();
4047
4048 if (this->output_data_.empty())
4049 this->filesz_ = 0;
4050 else
4051 {
4052 const Output_data* last_data = this->output_data_.back();
4053 this->filesz_ = (last_data->address()
4054 + last_data->data_size()
4055 - this->vaddr_);
4056 }
4057
4058 const Output_data* last;
4059 if (this->output_bss_.empty())
4060 last = this->output_data_.back();
4061 else
4062 last = this->output_bss_.back();
4063 this->memsz_ = (last->address()
4064 + last->data_size()
4065 - this->vaddr_);
4066
4067 this->filesz_ += increase;
4068 this->memsz_ += increase;
4069
4070 // If this is a TLS segment, align the memory size. The code in
4071 // set_section_list ensures that the section after the TLS segment
4072 // is aligned to give us room.
4073 if (this->type_ == elfcpp::PT_TLS)
4074 {
4075 uint64_t segment_align = this->maximum_alignment();
4076 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4077 this->memsz_ = align_address(this->memsz_, segment_align);
4078 }
4079 }
4080
4081 // Set the TLS offsets of the sections in the PT_TLS segment.
4082
4083 void
4084 Output_segment::set_tls_offsets()
4085 {
4086 gold_assert(this->type_ == elfcpp::PT_TLS);
4087
4088 for (Output_data_list::iterator p = this->output_data_.begin();
4089 p != this->output_data_.end();
4090 ++p)
4091 (*p)->set_tls_offset(this->vaddr_);
4092
4093 for (Output_data_list::iterator p = this->output_bss_.begin();
4094 p != this->output_bss_.end();
4095 ++p)
4096 (*p)->set_tls_offset(this->vaddr_);
4097 }
4098
4099 // Return the address of the first section.
4100
4101 uint64_t
4102 Output_segment::first_section_load_address() const
4103 {
4104 for (Output_data_list::const_iterator p = this->output_data_.begin();
4105 p != this->output_data_.end();
4106 ++p)
4107 if ((*p)->is_section())
4108 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4109
4110 for (Output_data_list::const_iterator p = this->output_bss_.begin();
4111 p != this->output_bss_.end();
4112 ++p)
4113 if ((*p)->is_section())
4114 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
4115
4116 gold_unreachable();
4117 }
4118
4119 // Return the number of Output_sections in an Output_segment.
4120
4121 unsigned int
4122 Output_segment::output_section_count() const
4123 {
4124 return (this->output_section_count_list(&this->output_data_)
4125 + this->output_section_count_list(&this->output_bss_));
4126 }
4127
4128 // Return the number of Output_sections in an Output_data_list.
4129
4130 unsigned int
4131 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4132 {
4133 unsigned int count = 0;
4134 for (Output_data_list::const_iterator p = pdl->begin();
4135 p != pdl->end();
4136 ++p)
4137 {
4138 if ((*p)->is_section())
4139 ++count;
4140 }
4141 return count;
4142 }
4143
4144 // Return the section attached to the list segment with the lowest
4145 // load address. This is used when handling a PHDRS clause in a
4146 // linker script.
4147
4148 Output_section*
4149 Output_segment::section_with_lowest_load_address() const
4150 {
4151 Output_section* found = NULL;
4152 uint64_t found_lma = 0;
4153 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
4154
4155 Output_section* found_data = found;
4156 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
4157 if (found != found_data && found_data != NULL)
4158 {
4159 gold_error(_("nobits section %s may not precede progbits section %s "
4160 "in same segment"),
4161 found->name(), found_data->name());
4162 return NULL;
4163 }
4164
4165 return found;
4166 }
4167
4168 // Look through a list for a section with a lower load address.
4169
4170 void
4171 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4172 Output_section** found,
4173 uint64_t* found_lma) const
4174 {
4175 for (Output_data_list::const_iterator p = pdl->begin();
4176 p != pdl->end();
4177 ++p)
4178 {
4179 if (!(*p)->is_section())
4180 continue;
4181 Output_section* os = static_cast<Output_section*>(*p);
4182 uint64_t lma = (os->has_load_address()
4183 ? os->load_address()
4184 : os->address());
4185 if (*found == NULL || lma < *found_lma)
4186 {
4187 *found = os;
4188 *found_lma = lma;
4189 }
4190 }
4191 }
4192
4193 // Write the segment data into *OPHDR.
4194
4195 template<int size, bool big_endian>
4196 void
4197 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4198 {
4199 ophdr->put_p_type(this->type_);
4200 ophdr->put_p_offset(this->offset_);
4201 ophdr->put_p_vaddr(this->vaddr_);
4202 ophdr->put_p_paddr(this->paddr_);
4203 ophdr->put_p_filesz(this->filesz_);
4204 ophdr->put_p_memsz(this->memsz_);
4205 ophdr->put_p_flags(this->flags_);
4206 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4207 }
4208
4209 // Write the section headers into V.
4210
4211 template<int size, bool big_endian>
4212 unsigned char*
4213 Output_segment::write_section_headers(const Layout* layout,
4214 const Stringpool* secnamepool,
4215 unsigned char* v,
4216 unsigned int *pshndx) const
4217 {
4218 // Every section that is attached to a segment must be attached to a
4219 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4220 // segments.
4221 if (this->type_ != elfcpp::PT_LOAD)
4222 return v;
4223
4224 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4225 &this->output_data_,
4226 v, pshndx);
4227 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4228 &this->output_bss_,
4229 v, pshndx);
4230 return v;
4231 }
4232
4233 template<int size, bool big_endian>
4234 unsigned char*
4235 Output_segment::write_section_headers_list(const Layout* layout,
4236 const Stringpool* secnamepool,
4237 const Output_data_list* pdl,
4238 unsigned char* v,
4239 unsigned int* pshndx) const
4240 {
4241 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4242 for (Output_data_list::const_iterator p = pdl->begin();
4243 p != pdl->end();
4244 ++p)
4245 {
4246 if ((*p)->is_section())
4247 {
4248 const Output_section* ps = static_cast<const Output_section*>(*p);
4249 gold_assert(*pshndx == ps->out_shndx());
4250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4251 ps->write_header(layout, secnamepool, &oshdr);
4252 v += shdr_size;
4253 ++*pshndx;
4254 }
4255 }
4256 return v;
4257 }
4258
4259 // Print the output sections to the map file.
4260
4261 void
4262 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4263 {
4264 if (this->type() != elfcpp::PT_LOAD)
4265 return;
4266 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4267 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4268 }
4269
4270 // Print an output section list to the map file.
4271
4272 void
4273 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4274 const Output_data_list* pdl) const
4275 {
4276 for (Output_data_list::const_iterator p = pdl->begin();
4277 p != pdl->end();
4278 ++p)
4279 (*p)->print_to_mapfile(mapfile);
4280 }
4281
4282 // Output_file methods.
4283
4284 Output_file::Output_file(const char* name)
4285 : name_(name),
4286 o_(-1),
4287 file_size_(0),
4288 base_(NULL),
4289 map_is_anonymous_(false),
4290 is_temporary_(false)
4291 {
4292 }
4293
4294 // Try to open an existing file. Returns false if the file doesn't
4295 // exist, has a size of 0 or can't be mmapped.
4296
4297 bool
4298 Output_file::open_for_modification()
4299 {
4300 // The name "-" means "stdout".
4301 if (strcmp(this->name_, "-") == 0)
4302 return false;
4303
4304 // Don't bother opening files with a size of zero.
4305 struct stat s;
4306 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4307 return false;
4308
4309 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4310 if (o < 0)
4311 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4312 this->o_ = o;
4313 this->file_size_ = s.st_size;
4314
4315 // If the file can't be mmapped, copying the content to an anonymous
4316 // map will probably negate the performance benefits of incremental
4317 // linking. This could be helped by using views and loading only
4318 // the necessary parts, but this is not supported as of now.
4319 if (!this->map_no_anonymous())
4320 {
4321 release_descriptor(o, true);
4322 this->o_ = -1;
4323 this->file_size_ = 0;
4324 return false;
4325 }
4326
4327 return true;
4328 }
4329
4330 // Open the output file.
4331
4332 void
4333 Output_file::open(off_t file_size)
4334 {
4335 this->file_size_ = file_size;
4336
4337 // Unlink the file first; otherwise the open() may fail if the file
4338 // is busy (e.g. it's an executable that's currently being executed).
4339 //
4340 // However, the linker may be part of a system where a zero-length
4341 // file is created for it to write to, with tight permissions (gcc
4342 // 2.95 did something like this). Unlinking the file would work
4343 // around those permission controls, so we only unlink if the file
4344 // has a non-zero size. We also unlink only regular files to avoid
4345 // trouble with directories/etc.
4346 //
4347 // If we fail, continue; this command is merely a best-effort attempt
4348 // to improve the odds for open().
4349
4350 // We let the name "-" mean "stdout"
4351 if (!this->is_temporary_)
4352 {
4353 if (strcmp(this->name_, "-") == 0)
4354 this->o_ = STDOUT_FILENO;
4355 else
4356 {
4357 struct stat s;
4358 if (::stat(this->name_, &s) == 0
4359 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4360 {
4361 if (s.st_size != 0)
4362 ::unlink(this->name_);
4363 else if (!parameters->options().relocatable())
4364 {
4365 // If we don't unlink the existing file, add execute
4366 // permission where read permissions already exist
4367 // and where the umask permits.
4368 int mask = ::umask(0);
4369 ::umask(mask);
4370 s.st_mode |= (s.st_mode & 0444) >> 2;
4371 ::chmod(this->name_, s.st_mode & ~mask);
4372 }
4373 }
4374
4375 int mode = parameters->options().relocatable() ? 0666 : 0777;
4376 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4377 mode);
4378 if (o < 0)
4379 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4380 this->o_ = o;
4381 }
4382 }
4383
4384 this->map();
4385 }
4386
4387 // Resize the output file.
4388
4389 void
4390 Output_file::resize(off_t file_size)
4391 {
4392 // If the mmap is mapping an anonymous memory buffer, this is easy:
4393 // just mremap to the new size. If it's mapping to a file, we want
4394 // to unmap to flush to the file, then remap after growing the file.
4395 if (this->map_is_anonymous_)
4396 {
4397 void* base = ::mremap(this->base_, this->file_size_, file_size,
4398 MREMAP_MAYMOVE);
4399 if (base == MAP_FAILED)
4400 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4401 this->base_ = static_cast<unsigned char*>(base);
4402 this->file_size_ = file_size;
4403 }
4404 else
4405 {
4406 this->unmap();
4407 this->file_size_ = file_size;
4408 if (!this->map_no_anonymous())
4409 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4410 }
4411 }
4412
4413 // Map an anonymous block of memory which will later be written to the
4414 // file. Return whether the map succeeded.
4415
4416 bool
4417 Output_file::map_anonymous()
4418 {
4419 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4420 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4421 if (base != MAP_FAILED)
4422 {
4423 this->map_is_anonymous_ = true;
4424 this->base_ = static_cast<unsigned char*>(base);
4425 return true;
4426 }
4427 return false;
4428 }
4429
4430 // Map the file into memory. Return whether the mapping succeeded.
4431
4432 bool
4433 Output_file::map_no_anonymous()
4434 {
4435 const int o = this->o_;
4436
4437 // If the output file is not a regular file, don't try to mmap it;
4438 // instead, we'll mmap a block of memory (an anonymous buffer), and
4439 // then later write the buffer to the file.
4440 void* base;
4441 struct stat statbuf;
4442 if (o == STDOUT_FILENO || o == STDERR_FILENO
4443 || ::fstat(o, &statbuf) != 0
4444 || !S_ISREG(statbuf.st_mode)
4445 || this->is_temporary_)
4446 return false;
4447
4448 // Ensure that we have disk space available for the file. If we
4449 // don't do this, it is possible that we will call munmap, close,
4450 // and exit with dirty buffers still in the cache with no assigned
4451 // disk blocks. If the disk is out of space at that point, the
4452 // output file will wind up incomplete, but we will have already
4453 // exited. The alternative to fallocate would be to use fdatasync,
4454 // but that would be a more significant performance hit.
4455 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4456 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4457
4458 // Map the file into memory.
4459 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4460 MAP_SHARED, o, 0);
4461
4462 // The mmap call might fail because of file system issues: the file
4463 // system might not support mmap at all, or it might not support
4464 // mmap with PROT_WRITE.
4465 if (base == MAP_FAILED)
4466 return false;
4467
4468 this->map_is_anonymous_ = false;
4469 this->base_ = static_cast<unsigned char*>(base);
4470 return true;
4471 }
4472
4473 // Map the file into memory.
4474
4475 void
4476 Output_file::map()
4477 {
4478 if (this->map_no_anonymous())
4479 return;
4480
4481 // The mmap call might fail because of file system issues: the file
4482 // system might not support mmap at all, or it might not support
4483 // mmap with PROT_WRITE. I'm not sure which errno values we will
4484 // see in all cases, so if the mmap fails for any reason and we
4485 // don't care about file contents, try for an anonymous map.
4486 if (this->map_anonymous())
4487 return;
4488
4489 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4490 this->name_, static_cast<unsigned long>(this->file_size_),
4491 strerror(errno));
4492 }
4493
4494 // Unmap the file from memory.
4495
4496 void
4497 Output_file::unmap()
4498 {
4499 if (::munmap(this->base_, this->file_size_) < 0)
4500 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4501 this->base_ = NULL;
4502 }
4503
4504 // Close the output file.
4505
4506 void
4507 Output_file::close()
4508 {
4509 // If the map isn't file-backed, we need to write it now.
4510 if (this->map_is_anonymous_ && !this->is_temporary_)
4511 {
4512 size_t bytes_to_write = this->file_size_;
4513 size_t offset = 0;
4514 while (bytes_to_write > 0)
4515 {
4516 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4517 bytes_to_write);
4518 if (bytes_written == 0)
4519 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4520 else if (bytes_written < 0)
4521 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4522 else
4523 {
4524 bytes_to_write -= bytes_written;
4525 offset += bytes_written;
4526 }
4527 }
4528 }
4529 this->unmap();
4530
4531 // We don't close stdout or stderr
4532 if (this->o_ != STDOUT_FILENO
4533 && this->o_ != STDERR_FILENO
4534 && !this->is_temporary_)
4535 if (::close(this->o_) < 0)
4536 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4537 this->o_ = -1;
4538 }
4539
4540 // Instantiate the templates we need. We could use the configure
4541 // script to restrict this to only the ones for implemented targets.
4542
4543 #ifdef HAVE_TARGET_32_LITTLE
4544 template
4545 off_t
4546 Output_section::add_input_section<32, false>(
4547 Layout* layout,
4548 Sized_relobj<32, false>* object,
4549 unsigned int shndx,
4550 const char* secname,
4551 const elfcpp::Shdr<32, false>& shdr,
4552 unsigned int reloc_shndx,
4553 bool have_sections_script);
4554 #endif
4555
4556 #ifdef HAVE_TARGET_32_BIG
4557 template
4558 off_t
4559 Output_section::add_input_section<32, true>(
4560 Layout* layout,
4561 Sized_relobj<32, true>* object,
4562 unsigned int shndx,
4563 const char* secname,
4564 const elfcpp::Shdr<32, true>& shdr,
4565 unsigned int reloc_shndx,
4566 bool have_sections_script);
4567 #endif
4568
4569 #ifdef HAVE_TARGET_64_LITTLE
4570 template
4571 off_t
4572 Output_section::add_input_section<64, false>(
4573 Layout* layout,
4574 Sized_relobj<64, false>* object,
4575 unsigned int shndx,
4576 const char* secname,
4577 const elfcpp::Shdr<64, false>& shdr,
4578 unsigned int reloc_shndx,
4579 bool have_sections_script);
4580 #endif
4581
4582 #ifdef HAVE_TARGET_64_BIG
4583 template
4584 off_t
4585 Output_section::add_input_section<64, true>(
4586 Layout* layout,
4587 Sized_relobj<64, true>* object,
4588 unsigned int shndx,
4589 const char* secname,
4590 const elfcpp::Shdr<64, true>& shdr,
4591 unsigned int reloc_shndx,
4592 bool have_sections_script);
4593 #endif
4594
4595 #ifdef HAVE_TARGET_32_LITTLE
4596 template
4597 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4598 #endif
4599
4600 #ifdef HAVE_TARGET_32_BIG
4601 template
4602 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4603 #endif
4604
4605 #ifdef HAVE_TARGET_64_LITTLE
4606 template
4607 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4608 #endif
4609
4610 #ifdef HAVE_TARGET_64_BIG
4611 template
4612 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4613 #endif
4614
4615 #ifdef HAVE_TARGET_32_LITTLE
4616 template
4617 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4618 #endif
4619
4620 #ifdef HAVE_TARGET_32_BIG
4621 template
4622 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4623 #endif
4624
4625 #ifdef HAVE_TARGET_64_LITTLE
4626 template
4627 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4628 #endif
4629
4630 #ifdef HAVE_TARGET_64_BIG
4631 template
4632 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4633 #endif
4634
4635 #ifdef HAVE_TARGET_32_LITTLE
4636 template
4637 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4638 #endif
4639
4640 #ifdef HAVE_TARGET_32_BIG
4641 template
4642 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4643 #endif
4644
4645 #ifdef HAVE_TARGET_64_LITTLE
4646 template
4647 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4648 #endif
4649
4650 #ifdef HAVE_TARGET_64_BIG
4651 template
4652 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4653 #endif
4654
4655 #ifdef HAVE_TARGET_32_LITTLE
4656 template
4657 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4658 #endif
4659
4660 #ifdef HAVE_TARGET_32_BIG
4661 template
4662 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4663 #endif
4664
4665 #ifdef HAVE_TARGET_64_LITTLE
4666 template
4667 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4668 #endif
4669
4670 #ifdef HAVE_TARGET_64_BIG
4671 template
4672 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4673 #endif
4674
4675 #ifdef HAVE_TARGET_32_LITTLE
4676 template
4677 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4678 #endif
4679
4680 #ifdef HAVE_TARGET_32_BIG
4681 template
4682 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4683 #endif
4684
4685 #ifdef HAVE_TARGET_64_LITTLE
4686 template
4687 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4688 #endif
4689
4690 #ifdef HAVE_TARGET_64_BIG
4691 template
4692 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4693 #endif
4694
4695 #ifdef HAVE_TARGET_32_LITTLE
4696 template
4697 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4698 #endif
4699
4700 #ifdef HAVE_TARGET_32_BIG
4701 template
4702 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4703 #endif
4704
4705 #ifdef HAVE_TARGET_64_LITTLE
4706 template
4707 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4708 #endif
4709
4710 #ifdef HAVE_TARGET_64_BIG
4711 template
4712 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4713 #endif
4714
4715 #ifdef HAVE_TARGET_32_LITTLE
4716 template
4717 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4718 #endif
4719
4720 #ifdef HAVE_TARGET_32_BIG
4721 template
4722 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4723 #endif
4724
4725 #ifdef HAVE_TARGET_64_LITTLE
4726 template
4727 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4728 #endif
4729
4730 #ifdef HAVE_TARGET_64_BIG
4731 template
4732 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4733 #endif
4734
4735 #ifdef HAVE_TARGET_32_LITTLE
4736 template
4737 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4738 #endif
4739
4740 #ifdef HAVE_TARGET_32_BIG
4741 template
4742 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4743 #endif
4744
4745 #ifdef HAVE_TARGET_64_LITTLE
4746 template
4747 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4748 #endif
4749
4750 #ifdef HAVE_TARGET_64_BIG
4751 template
4752 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4753 #endif
4754
4755 #ifdef HAVE_TARGET_32_LITTLE
4756 template
4757 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4758 #endif
4759
4760 #ifdef HAVE_TARGET_32_BIG
4761 template
4762 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4763 #endif
4764
4765 #ifdef HAVE_TARGET_64_LITTLE
4766 template
4767 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4768 #endif
4769
4770 #ifdef HAVE_TARGET_64_BIG
4771 template
4772 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4773 #endif
4774
4775 #ifdef HAVE_TARGET_32_LITTLE
4776 template
4777 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4778 #endif
4779
4780 #ifdef HAVE_TARGET_32_BIG
4781 template
4782 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4783 #endif
4784
4785 #ifdef HAVE_TARGET_64_LITTLE
4786 template
4787 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4788 #endif
4789
4790 #ifdef HAVE_TARGET_64_BIG
4791 template
4792 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4793 #endif
4794
4795 #ifdef HAVE_TARGET_32_LITTLE
4796 template
4797 class Output_data_group<32, false>;
4798 #endif
4799
4800 #ifdef HAVE_TARGET_32_BIG
4801 template
4802 class Output_data_group<32, true>;
4803 #endif
4804
4805 #ifdef HAVE_TARGET_64_LITTLE
4806 template
4807 class Output_data_group<64, false>;
4808 #endif
4809
4810 #ifdef HAVE_TARGET_64_BIG
4811 template
4812 class Output_data_group<64, true>;
4813 #endif
4814
4815 #ifdef HAVE_TARGET_32_LITTLE
4816 template
4817 class Output_data_got<32, false>;
4818 #endif
4819
4820 #ifdef HAVE_TARGET_32_BIG
4821 template
4822 class Output_data_got<32, true>;
4823 #endif
4824
4825 #ifdef HAVE_TARGET_64_LITTLE
4826 template
4827 class Output_data_got<64, false>;
4828 #endif
4829
4830 #ifdef HAVE_TARGET_64_BIG
4831 template
4832 class Output_data_got<64, true>;
4833 #endif
4834
4835 } // End namespace gold.
This page took 0.201008 seconds and 5 git commands to generate.