* options.h (class General_options): Add --spare-dynamic-tags.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/stat.h>
32 #include <algorithm>
33 #include "libiberty.h"
34
35 #include "parameters.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "reloc.h"
39 #include "merge.h"
40 #include "descriptors.h"
41 #include "output.h"
42
43 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
44 #ifndef MAP_ANONYMOUS
45 # define MAP_ANONYMOUS MAP_ANON
46 #endif
47
48 #ifndef HAVE_POSIX_FALLOCATE
49 // A dummy, non general, version of posix_fallocate. Here we just set
50 // the file size and hope that there is enough disk space. FIXME: We
51 // could allocate disk space by walking block by block and writing a
52 // zero byte into each block.
53 static int
54 posix_fallocate(int o, off_t offset, off_t len)
55 {
56 return ftruncate(o, offset + len);
57 }
58 #endif // !defined(HAVE_POSIX_FALLOCATE)
59
60 namespace gold
61 {
62
63 // Output_data variables.
64
65 bool Output_data::allocated_sizes_are_fixed;
66
67 // Output_data methods.
68
69 Output_data::~Output_data()
70 {
71 }
72
73 // Return the default alignment for the target size.
74
75 uint64_t
76 Output_data::default_alignment()
77 {
78 return Output_data::default_alignment_for_size(
79 parameters->target().get_size());
80 }
81
82 // Return the default alignment for a size--32 or 64.
83
84 uint64_t
85 Output_data::default_alignment_for_size(int size)
86 {
87 if (size == 32)
88 return 4;
89 else if (size == 64)
90 return 8;
91 else
92 gold_unreachable();
93 }
94
95 // Output_section_header methods. This currently assumes that the
96 // segment and section lists are complete at construction time.
97
98 Output_section_headers::Output_section_headers(
99 const Layout* layout,
100 const Layout::Segment_list* segment_list,
101 const Layout::Section_list* section_list,
102 const Layout::Section_list* unattached_section_list,
103 const Stringpool* secnamepool,
104 const Output_section* shstrtab_section)
105 : layout_(layout),
106 segment_list_(segment_list),
107 section_list_(section_list),
108 unattached_section_list_(unattached_section_list),
109 secnamepool_(secnamepool),
110 shstrtab_section_(shstrtab_section)
111 {
112 }
113
114 // Compute the current data size.
115
116 off_t
117 Output_section_headers::do_size() const
118 {
119 // Count all the sections. Start with 1 for the null section.
120 off_t count = 1;
121 if (!parameters->options().relocatable())
122 {
123 for (Layout::Segment_list::const_iterator p =
124 this->segment_list_->begin();
125 p != this->segment_list_->end();
126 ++p)
127 if ((*p)->type() == elfcpp::PT_LOAD)
128 count += (*p)->output_section_count();
129 }
130 else
131 {
132 for (Layout::Section_list::const_iterator p =
133 this->section_list_->begin();
134 p != this->section_list_->end();
135 ++p)
136 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
137 ++count;
138 }
139 count += this->unattached_section_list_->size();
140
141 const int size = parameters->target().get_size();
142 int shdr_size;
143 if (size == 32)
144 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
145 else if (size == 64)
146 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
147 else
148 gold_unreachable();
149
150 return count * shdr_size;
151 }
152
153 // Write out the section headers.
154
155 void
156 Output_section_headers::do_write(Output_file* of)
157 {
158 switch (parameters->size_and_endianness())
159 {
160 #ifdef HAVE_TARGET_32_LITTLE
161 case Parameters::TARGET_32_LITTLE:
162 this->do_sized_write<32, false>(of);
163 break;
164 #endif
165 #ifdef HAVE_TARGET_32_BIG
166 case Parameters::TARGET_32_BIG:
167 this->do_sized_write<32, true>(of);
168 break;
169 #endif
170 #ifdef HAVE_TARGET_64_LITTLE
171 case Parameters::TARGET_64_LITTLE:
172 this->do_sized_write<64, false>(of);
173 break;
174 #endif
175 #ifdef HAVE_TARGET_64_BIG
176 case Parameters::TARGET_64_BIG:
177 this->do_sized_write<64, true>(of);
178 break;
179 #endif
180 default:
181 gold_unreachable();
182 }
183 }
184
185 template<int size, bool big_endian>
186 void
187 Output_section_headers::do_sized_write(Output_file* of)
188 {
189 off_t all_shdrs_size = this->data_size();
190 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
191
192 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
193 unsigned char* v = view;
194
195 {
196 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
197 oshdr.put_sh_name(0);
198 oshdr.put_sh_type(elfcpp::SHT_NULL);
199 oshdr.put_sh_flags(0);
200 oshdr.put_sh_addr(0);
201 oshdr.put_sh_offset(0);
202
203 size_t section_count = (this->data_size()
204 / elfcpp::Elf_sizes<size>::shdr_size);
205 if (section_count < elfcpp::SHN_LORESERVE)
206 oshdr.put_sh_size(0);
207 else
208 oshdr.put_sh_size(section_count);
209
210 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
211 if (shstrndx < elfcpp::SHN_LORESERVE)
212 oshdr.put_sh_link(0);
213 else
214 oshdr.put_sh_link(shstrndx);
215
216 size_t segment_count = this->segment_list_->size();
217 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
218
219 oshdr.put_sh_addralign(0);
220 oshdr.put_sh_entsize(0);
221 }
222
223 v += shdr_size;
224
225 unsigned int shndx = 1;
226 if (!parameters->options().relocatable())
227 {
228 for (Layout::Segment_list::const_iterator p =
229 this->segment_list_->begin();
230 p != this->segment_list_->end();
231 ++p)
232 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
233 this->secnamepool_,
234 v,
235 &shndx);
236 }
237 else
238 {
239 for (Layout::Section_list::const_iterator p =
240 this->section_list_->begin();
241 p != this->section_list_->end();
242 ++p)
243 {
244 // We do unallocated sections below, except that group
245 // sections have to come first.
246 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
247 && (*p)->type() != elfcpp::SHT_GROUP)
248 continue;
249 gold_assert(shndx == (*p)->out_shndx());
250 elfcpp::Shdr_write<size, big_endian> oshdr(v);
251 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
252 v += shdr_size;
253 ++shndx;
254 }
255 }
256
257 for (Layout::Section_list::const_iterator p =
258 this->unattached_section_list_->begin();
259 p != this->unattached_section_list_->end();
260 ++p)
261 {
262 // For a relocatable link, we did unallocated group sections
263 // above, since they have to come first.
264 if ((*p)->type() == elfcpp::SHT_GROUP
265 && parameters->options().relocatable())
266 continue;
267 gold_assert(shndx == (*p)->out_shndx());
268 elfcpp::Shdr_write<size, big_endian> oshdr(v);
269 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
270 v += shdr_size;
271 ++shndx;
272 }
273
274 of->write_output_view(this->offset(), all_shdrs_size, view);
275 }
276
277 // Output_segment_header methods.
278
279 Output_segment_headers::Output_segment_headers(
280 const Layout::Segment_list& segment_list)
281 : segment_list_(segment_list)
282 {
283 }
284
285 void
286 Output_segment_headers::do_write(Output_file* of)
287 {
288 switch (parameters->size_and_endianness())
289 {
290 #ifdef HAVE_TARGET_32_LITTLE
291 case Parameters::TARGET_32_LITTLE:
292 this->do_sized_write<32, false>(of);
293 break;
294 #endif
295 #ifdef HAVE_TARGET_32_BIG
296 case Parameters::TARGET_32_BIG:
297 this->do_sized_write<32, true>(of);
298 break;
299 #endif
300 #ifdef HAVE_TARGET_64_LITTLE
301 case Parameters::TARGET_64_LITTLE:
302 this->do_sized_write<64, false>(of);
303 break;
304 #endif
305 #ifdef HAVE_TARGET_64_BIG
306 case Parameters::TARGET_64_BIG:
307 this->do_sized_write<64, true>(of);
308 break;
309 #endif
310 default:
311 gold_unreachable();
312 }
313 }
314
315 template<int size, bool big_endian>
316 void
317 Output_segment_headers::do_sized_write(Output_file* of)
318 {
319 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
320 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
321 gold_assert(all_phdrs_size == this->data_size());
322 unsigned char* view = of->get_output_view(this->offset(),
323 all_phdrs_size);
324 unsigned char* v = view;
325 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
326 p != this->segment_list_.end();
327 ++p)
328 {
329 elfcpp::Phdr_write<size, big_endian> ophdr(v);
330 (*p)->write_header(&ophdr);
331 v += phdr_size;
332 }
333
334 gold_assert(v - view == all_phdrs_size);
335
336 of->write_output_view(this->offset(), all_phdrs_size, view);
337 }
338
339 off_t
340 Output_segment_headers::do_size() const
341 {
342 const int size = parameters->target().get_size();
343 int phdr_size;
344 if (size == 32)
345 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
346 else if (size == 64)
347 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
348 else
349 gold_unreachable();
350
351 return this->segment_list_.size() * phdr_size;
352 }
353
354 // Output_file_header methods.
355
356 Output_file_header::Output_file_header(const Target* target,
357 const Symbol_table* symtab,
358 const Output_segment_headers* osh,
359 const char* entry)
360 : target_(target),
361 symtab_(symtab),
362 segment_header_(osh),
363 section_header_(NULL),
364 shstrtab_(NULL),
365 entry_(entry)
366 {
367 this->set_data_size(this->do_size());
368 }
369
370 // Set the section table information for a file header.
371
372 void
373 Output_file_header::set_section_info(const Output_section_headers* shdrs,
374 const Output_section* shstrtab)
375 {
376 this->section_header_ = shdrs;
377 this->shstrtab_ = shstrtab;
378 }
379
380 // Write out the file header.
381
382 void
383 Output_file_header::do_write(Output_file* of)
384 {
385 gold_assert(this->offset() == 0);
386
387 switch (parameters->size_and_endianness())
388 {
389 #ifdef HAVE_TARGET_32_LITTLE
390 case Parameters::TARGET_32_LITTLE:
391 this->do_sized_write<32, false>(of);
392 break;
393 #endif
394 #ifdef HAVE_TARGET_32_BIG
395 case Parameters::TARGET_32_BIG:
396 this->do_sized_write<32, true>(of);
397 break;
398 #endif
399 #ifdef HAVE_TARGET_64_LITTLE
400 case Parameters::TARGET_64_LITTLE:
401 this->do_sized_write<64, false>(of);
402 break;
403 #endif
404 #ifdef HAVE_TARGET_64_BIG
405 case Parameters::TARGET_64_BIG:
406 this->do_sized_write<64, true>(of);
407 break;
408 #endif
409 default:
410 gold_unreachable();
411 }
412 }
413
414 // Write out the file header with appropriate size and endianess.
415
416 template<int size, bool big_endian>
417 void
418 Output_file_header::do_sized_write(Output_file* of)
419 {
420 gold_assert(this->offset() == 0);
421
422 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
423 unsigned char* view = of->get_output_view(0, ehdr_size);
424 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
425
426 unsigned char e_ident[elfcpp::EI_NIDENT];
427 memset(e_ident, 0, elfcpp::EI_NIDENT);
428 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
429 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
430 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
431 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
432 if (size == 32)
433 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
434 else if (size == 64)
435 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
436 else
437 gold_unreachable();
438 e_ident[elfcpp::EI_DATA] = (big_endian
439 ? elfcpp::ELFDATA2MSB
440 : elfcpp::ELFDATA2LSB);
441 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
442 oehdr.put_e_ident(e_ident);
443
444 elfcpp::ET e_type;
445 if (parameters->options().relocatable())
446 e_type = elfcpp::ET_REL;
447 else if (parameters->options().output_is_position_independent())
448 e_type = elfcpp::ET_DYN;
449 else
450 e_type = elfcpp::ET_EXEC;
451 oehdr.put_e_type(e_type);
452
453 oehdr.put_e_machine(this->target_->machine_code());
454 oehdr.put_e_version(elfcpp::EV_CURRENT);
455
456 oehdr.put_e_entry(this->entry<size>());
457
458 if (this->segment_header_ == NULL)
459 oehdr.put_e_phoff(0);
460 else
461 oehdr.put_e_phoff(this->segment_header_->offset());
462
463 oehdr.put_e_shoff(this->section_header_->offset());
464 oehdr.put_e_flags(this->target_->processor_specific_flags());
465 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
466
467 if (this->segment_header_ == NULL)
468 {
469 oehdr.put_e_phentsize(0);
470 oehdr.put_e_phnum(0);
471 }
472 else
473 {
474 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
475 size_t phnum = (this->segment_header_->data_size()
476 / elfcpp::Elf_sizes<size>::phdr_size);
477 if (phnum > elfcpp::PN_XNUM)
478 phnum = elfcpp::PN_XNUM;
479 oehdr.put_e_phnum(phnum);
480 }
481
482 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
483 size_t section_count = (this->section_header_->data_size()
484 / elfcpp::Elf_sizes<size>::shdr_size);
485
486 if (section_count < elfcpp::SHN_LORESERVE)
487 oehdr.put_e_shnum(this->section_header_->data_size()
488 / elfcpp::Elf_sizes<size>::shdr_size);
489 else
490 oehdr.put_e_shnum(0);
491
492 unsigned int shstrndx = this->shstrtab_->out_shndx();
493 if (shstrndx < elfcpp::SHN_LORESERVE)
494 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
495 else
496 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
497
498 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
499 // the e_ident field.
500 parameters->target().adjust_elf_header(view, ehdr_size);
501
502 of->write_output_view(0, ehdr_size, view);
503 }
504
505 // Return the value to use for the entry address. THIS->ENTRY_ is the
506 // symbol specified on the command line, if any.
507
508 template<int size>
509 typename elfcpp::Elf_types<size>::Elf_Addr
510 Output_file_header::entry()
511 {
512 const bool should_issue_warning = (this->entry_ != NULL
513 && !parameters->options().relocatable()
514 && !parameters->options().shared());
515
516 // FIXME: Need to support target specific entry symbol.
517 const char* entry = this->entry_;
518 if (entry == NULL)
519 entry = "_start";
520
521 Symbol* sym = this->symtab_->lookup(entry);
522
523 typename Sized_symbol<size>::Value_type v;
524 if (sym != NULL)
525 {
526 Sized_symbol<size>* ssym;
527 ssym = this->symtab_->get_sized_symbol<size>(sym);
528 if (!ssym->is_defined() && should_issue_warning)
529 gold_warning("entry symbol '%s' exists but is not defined", entry);
530 v = ssym->value();
531 }
532 else
533 {
534 // We couldn't find the entry symbol. See if we can parse it as
535 // a number. This supports, e.g., -e 0x1000.
536 char* endptr;
537 v = strtoull(entry, &endptr, 0);
538 if (*endptr != '\0')
539 {
540 if (should_issue_warning)
541 gold_warning("cannot find entry symbol '%s'", entry);
542 v = 0;
543 }
544 }
545
546 return v;
547 }
548
549 // Compute the current data size.
550
551 off_t
552 Output_file_header::do_size() const
553 {
554 const int size = parameters->target().get_size();
555 if (size == 32)
556 return elfcpp::Elf_sizes<32>::ehdr_size;
557 else if (size == 64)
558 return elfcpp::Elf_sizes<64>::ehdr_size;
559 else
560 gold_unreachable();
561 }
562
563 // Output_data_const methods.
564
565 void
566 Output_data_const::do_write(Output_file* of)
567 {
568 of->write(this->offset(), this->data_.data(), this->data_.size());
569 }
570
571 // Output_data_const_buffer methods.
572
573 void
574 Output_data_const_buffer::do_write(Output_file* of)
575 {
576 of->write(this->offset(), this->p_, this->data_size());
577 }
578
579 // Output_section_data methods.
580
581 // Record the output section, and set the entry size and such.
582
583 void
584 Output_section_data::set_output_section(Output_section* os)
585 {
586 gold_assert(this->output_section_ == NULL);
587 this->output_section_ = os;
588 this->do_adjust_output_section(os);
589 }
590
591 // Return the section index of the output section.
592
593 unsigned int
594 Output_section_data::do_out_shndx() const
595 {
596 gold_assert(this->output_section_ != NULL);
597 return this->output_section_->out_shndx();
598 }
599
600 // Set the alignment, which means we may need to update the alignment
601 // of the output section.
602
603 void
604 Output_section_data::set_addralign(uint64_t addralign)
605 {
606 this->addralign_ = addralign;
607 if (this->output_section_ != NULL
608 && this->output_section_->addralign() < addralign)
609 this->output_section_->set_addralign(addralign);
610 }
611
612 // Output_data_strtab methods.
613
614 // Set the final data size.
615
616 void
617 Output_data_strtab::set_final_data_size()
618 {
619 this->strtab_->set_string_offsets();
620 this->set_data_size(this->strtab_->get_strtab_size());
621 }
622
623 // Write out a string table.
624
625 void
626 Output_data_strtab::do_write(Output_file* of)
627 {
628 this->strtab_->write(of, this->offset());
629 }
630
631 // Output_reloc methods.
632
633 // A reloc against a global symbol.
634
635 template<bool dynamic, int size, bool big_endian>
636 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
637 Symbol* gsym,
638 unsigned int type,
639 Output_data* od,
640 Address address,
641 bool is_relative,
642 bool is_symbolless)
643 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
644 is_relative_(is_relative), is_symbolless_(is_symbolless),
645 is_section_symbol_(false), shndx_(INVALID_CODE)
646 {
647 // this->type_ is a bitfield; make sure TYPE fits.
648 gold_assert(this->type_ == type);
649 this->u1_.gsym = gsym;
650 this->u2_.od = od;
651 if (dynamic)
652 this->set_needs_dynsym_index();
653 }
654
655 template<bool dynamic, int size, bool big_endian>
656 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
657 Symbol* gsym,
658 unsigned int type,
659 Sized_relobj<size, big_endian>* relobj,
660 unsigned int shndx,
661 Address address,
662 bool is_relative,
663 bool is_symbolless)
664 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
665 is_relative_(is_relative), is_symbolless_(is_symbolless),
666 is_section_symbol_(false), shndx_(shndx)
667 {
668 gold_assert(shndx != INVALID_CODE);
669 // this->type_ is a bitfield; make sure TYPE fits.
670 gold_assert(this->type_ == type);
671 this->u1_.gsym = gsym;
672 this->u2_.relobj = relobj;
673 if (dynamic)
674 this->set_needs_dynsym_index();
675 }
676
677 // A reloc against a local symbol.
678
679 template<bool dynamic, int size, bool big_endian>
680 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
681 Sized_relobj<size, big_endian>* relobj,
682 unsigned int local_sym_index,
683 unsigned int type,
684 Output_data* od,
685 Address address,
686 bool is_relative,
687 bool is_symbolless,
688 bool is_section_symbol)
689 : address_(address), local_sym_index_(local_sym_index), type_(type),
690 is_relative_(is_relative), is_symbolless_(is_symbolless),
691 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
692 {
693 gold_assert(local_sym_index != GSYM_CODE
694 && local_sym_index != INVALID_CODE);
695 // this->type_ is a bitfield; make sure TYPE fits.
696 gold_assert(this->type_ == type);
697 this->u1_.relobj = relobj;
698 this->u2_.od = od;
699 if (dynamic)
700 this->set_needs_dynsym_index();
701 }
702
703 template<bool dynamic, int size, bool big_endian>
704 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
705 Sized_relobj<size, big_endian>* relobj,
706 unsigned int local_sym_index,
707 unsigned int type,
708 unsigned int shndx,
709 Address address,
710 bool is_relative,
711 bool is_symbolless,
712 bool is_section_symbol)
713 : address_(address), local_sym_index_(local_sym_index), type_(type),
714 is_relative_(is_relative), is_symbolless_(is_symbolless),
715 is_section_symbol_(is_section_symbol), shndx_(shndx)
716 {
717 gold_assert(local_sym_index != GSYM_CODE
718 && local_sym_index != INVALID_CODE);
719 gold_assert(shndx != INVALID_CODE);
720 // this->type_ is a bitfield; make sure TYPE fits.
721 gold_assert(this->type_ == type);
722 this->u1_.relobj = relobj;
723 this->u2_.relobj = relobj;
724 if (dynamic)
725 this->set_needs_dynsym_index();
726 }
727
728 // A reloc against the STT_SECTION symbol of an output section.
729
730 template<bool dynamic, int size, bool big_endian>
731 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
732 Output_section* os,
733 unsigned int type,
734 Output_data* od,
735 Address address)
736 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
737 is_relative_(false), is_symbolless_(false),
738 is_section_symbol_(true), shndx_(INVALID_CODE)
739 {
740 // this->type_ is a bitfield; make sure TYPE fits.
741 gold_assert(this->type_ == type);
742 this->u1_.os = os;
743 this->u2_.od = od;
744 if (dynamic)
745 this->set_needs_dynsym_index();
746 else
747 os->set_needs_symtab_index();
748 }
749
750 template<bool dynamic, int size, bool big_endian>
751 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
752 Output_section* os,
753 unsigned int type,
754 Sized_relobj<size, big_endian>* relobj,
755 unsigned int shndx,
756 Address address)
757 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
758 is_relative_(false), is_symbolless_(false),
759 is_section_symbol_(true), shndx_(shndx)
760 {
761 gold_assert(shndx != INVALID_CODE);
762 // this->type_ is a bitfield; make sure TYPE fits.
763 gold_assert(this->type_ == type);
764 this->u1_.os = os;
765 this->u2_.relobj = relobj;
766 if (dynamic)
767 this->set_needs_dynsym_index();
768 else
769 os->set_needs_symtab_index();
770 }
771
772 // An absolute relocation.
773
774 template<bool dynamic, int size, bool big_endian>
775 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
776 unsigned int type,
777 Output_data* od,
778 Address address)
779 : address_(address), local_sym_index_(0), type_(type),
780 is_relative_(false), is_symbolless_(false),
781 is_section_symbol_(false), shndx_(INVALID_CODE)
782 {
783 // this->type_ is a bitfield; make sure TYPE fits.
784 gold_assert(this->type_ == type);
785 this->u1_.relobj = NULL;
786 this->u2_.od = od;
787 }
788
789 template<bool dynamic, int size, bool big_endian>
790 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
791 unsigned int type,
792 Sized_relobj<size, big_endian>* relobj,
793 unsigned int shndx,
794 Address address)
795 : address_(address), local_sym_index_(0), type_(type),
796 is_relative_(false), is_symbolless_(false),
797 is_section_symbol_(false), shndx_(shndx)
798 {
799 gold_assert(shndx != INVALID_CODE);
800 // this->type_ is a bitfield; make sure TYPE fits.
801 gold_assert(this->type_ == type);
802 this->u1_.relobj = NULL;
803 this->u2_.relobj = relobj;
804 }
805
806 // A target specific relocation.
807
808 template<bool dynamic, int size, bool big_endian>
809 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
810 unsigned int type,
811 void* arg,
812 Output_data* od,
813 Address address)
814 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
815 is_relative_(false), is_symbolless_(false),
816 is_section_symbol_(false), shndx_(INVALID_CODE)
817 {
818 // this->type_ is a bitfield; make sure TYPE fits.
819 gold_assert(this->type_ == type);
820 this->u1_.arg = arg;
821 this->u2_.od = od;
822 }
823
824 template<bool dynamic, int size, bool big_endian>
825 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
826 unsigned int type,
827 void* arg,
828 Sized_relobj<size, big_endian>* relobj,
829 unsigned int shndx,
830 Address address)
831 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
832 is_relative_(false), is_symbolless_(false),
833 is_section_symbol_(false), shndx_(shndx)
834 {
835 gold_assert(shndx != INVALID_CODE);
836 // this->type_ is a bitfield; make sure TYPE fits.
837 gold_assert(this->type_ == type);
838 this->u1_.arg = arg;
839 this->u2_.relobj = relobj;
840 }
841
842 // Record that we need a dynamic symbol index for this relocation.
843
844 template<bool dynamic, int size, bool big_endian>
845 void
846 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
847 set_needs_dynsym_index()
848 {
849 if (this->is_symbolless_)
850 return;
851 switch (this->local_sym_index_)
852 {
853 case INVALID_CODE:
854 gold_unreachable();
855
856 case GSYM_CODE:
857 this->u1_.gsym->set_needs_dynsym_entry();
858 break;
859
860 case SECTION_CODE:
861 this->u1_.os->set_needs_dynsym_index();
862 break;
863
864 case TARGET_CODE:
865 // The target must take care of this if necessary.
866 break;
867
868 case 0:
869 break;
870
871 default:
872 {
873 const unsigned int lsi = this->local_sym_index_;
874 if (!this->is_section_symbol_)
875 this->u1_.relobj->set_needs_output_dynsym_entry(lsi);
876 else
877 this->u1_.relobj->output_section(lsi)->set_needs_dynsym_index();
878 }
879 break;
880 }
881 }
882
883 // Get the symbol index of a relocation.
884
885 template<bool dynamic, int size, bool big_endian>
886 unsigned int
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
888 const
889 {
890 unsigned int index;
891 if (this->is_symbolless_)
892 return 0;
893 switch (this->local_sym_index_)
894 {
895 case INVALID_CODE:
896 gold_unreachable();
897
898 case GSYM_CODE:
899 if (this->u1_.gsym == NULL)
900 index = 0;
901 else if (dynamic)
902 index = this->u1_.gsym->dynsym_index();
903 else
904 index = this->u1_.gsym->symtab_index();
905 break;
906
907 case SECTION_CODE:
908 if (dynamic)
909 index = this->u1_.os->dynsym_index();
910 else
911 index = this->u1_.os->symtab_index();
912 break;
913
914 case TARGET_CODE:
915 index = parameters->target().reloc_symbol_index(this->u1_.arg,
916 this->type_);
917 break;
918
919 case 0:
920 // Relocations without symbols use a symbol index of 0.
921 index = 0;
922 break;
923
924 default:
925 {
926 const unsigned int lsi = this->local_sym_index_;
927 if (!this->is_section_symbol_)
928 {
929 if (dynamic)
930 index = this->u1_.relobj->dynsym_index(lsi);
931 else
932 index = this->u1_.relobj->symtab_index(lsi);
933 }
934 else
935 {
936 Output_section* os = this->u1_.relobj->output_section(lsi);
937 gold_assert(os != NULL);
938 if (dynamic)
939 index = os->dynsym_index();
940 else
941 index = os->symtab_index();
942 }
943 }
944 break;
945 }
946 gold_assert(index != -1U);
947 return index;
948 }
949
950 // For a local section symbol, get the address of the offset ADDEND
951 // within the input section.
952
953 template<bool dynamic, int size, bool big_endian>
954 typename elfcpp::Elf_types<size>::Elf_Addr
955 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
956 local_section_offset(Addend addend) const
957 {
958 gold_assert(this->local_sym_index_ != GSYM_CODE
959 && this->local_sym_index_ != SECTION_CODE
960 && this->local_sym_index_ != TARGET_CODE
961 && this->local_sym_index_ != INVALID_CODE
962 && this->local_sym_index_ != 0
963 && this->is_section_symbol_);
964 const unsigned int lsi = this->local_sym_index_;
965 Output_section* os = this->u1_.relobj->output_section(lsi);
966 gold_assert(os != NULL);
967 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
968 if (offset != invalid_address)
969 return offset + addend;
970 // This is a merge section.
971 offset = os->output_address(this->u1_.relobj, lsi, addend);
972 gold_assert(offset != invalid_address);
973 return offset;
974 }
975
976 // Get the output address of a relocation.
977
978 template<bool dynamic, int size, bool big_endian>
979 typename elfcpp::Elf_types<size>::Elf_Addr
980 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
981 {
982 Address address = this->address_;
983 if (this->shndx_ != INVALID_CODE)
984 {
985 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
986 gold_assert(os != NULL);
987 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
988 if (off != invalid_address)
989 address += os->address() + off;
990 else
991 {
992 address = os->output_address(this->u2_.relobj, this->shndx_,
993 address);
994 gold_assert(address != invalid_address);
995 }
996 }
997 else if (this->u2_.od != NULL)
998 address += this->u2_.od->address();
999 return address;
1000 }
1001
1002 // Write out the offset and info fields of a Rel or Rela relocation
1003 // entry.
1004
1005 template<bool dynamic, int size, bool big_endian>
1006 template<typename Write_rel>
1007 void
1008 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1009 Write_rel* wr) const
1010 {
1011 wr->put_r_offset(this->get_address());
1012 unsigned int sym_index = this->get_symbol_index();
1013 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1014 }
1015
1016 // Write out a Rel relocation.
1017
1018 template<bool dynamic, int size, bool big_endian>
1019 void
1020 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1021 unsigned char* pov) const
1022 {
1023 elfcpp::Rel_write<size, big_endian> orel(pov);
1024 this->write_rel(&orel);
1025 }
1026
1027 // Get the value of the symbol referred to by a Rel relocation.
1028
1029 template<bool dynamic, int size, bool big_endian>
1030 typename elfcpp::Elf_types<size>::Elf_Addr
1031 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1032 Addend addend) const
1033 {
1034 if (this->local_sym_index_ == GSYM_CODE)
1035 {
1036 const Sized_symbol<size>* sym;
1037 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1038 return sym->value() + addend;
1039 }
1040 gold_assert(this->local_sym_index_ != SECTION_CODE
1041 && this->local_sym_index_ != TARGET_CODE
1042 && this->local_sym_index_ != INVALID_CODE
1043 && this->local_sym_index_ != 0
1044 && !this->is_section_symbol_);
1045 const unsigned int lsi = this->local_sym_index_;
1046 const Symbol_value<size>* symval = this->u1_.relobj->local_symbol(lsi);
1047 return symval->value(this->u1_.relobj, addend);
1048 }
1049
1050 // Reloc comparison. This function sorts the dynamic relocs for the
1051 // benefit of the dynamic linker. First we sort all relative relocs
1052 // to the front. Among relative relocs, we sort by output address.
1053 // Among non-relative relocs, we sort by symbol index, then by output
1054 // address.
1055
1056 template<bool dynamic, int size, bool big_endian>
1057 int
1058 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1059 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1060 const
1061 {
1062 if (this->is_relative_)
1063 {
1064 if (!r2.is_relative_)
1065 return -1;
1066 // Otherwise sort by reloc address below.
1067 }
1068 else if (r2.is_relative_)
1069 return 1;
1070 else
1071 {
1072 unsigned int sym1 = this->get_symbol_index();
1073 unsigned int sym2 = r2.get_symbol_index();
1074 if (sym1 < sym2)
1075 return -1;
1076 else if (sym1 > sym2)
1077 return 1;
1078 // Otherwise sort by reloc address.
1079 }
1080
1081 section_offset_type addr1 = this->get_address();
1082 section_offset_type addr2 = r2.get_address();
1083 if (addr1 < addr2)
1084 return -1;
1085 else if (addr1 > addr2)
1086 return 1;
1087
1088 // Final tie breaker, in order to generate the same output on any
1089 // host: reloc type.
1090 unsigned int type1 = this->type_;
1091 unsigned int type2 = r2.type_;
1092 if (type1 < type2)
1093 return -1;
1094 else if (type1 > type2)
1095 return 1;
1096
1097 // These relocs appear to be exactly the same.
1098 return 0;
1099 }
1100
1101 // Write out a Rela relocation.
1102
1103 template<bool dynamic, int size, bool big_endian>
1104 void
1105 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1106 unsigned char* pov) const
1107 {
1108 elfcpp::Rela_write<size, big_endian> orel(pov);
1109 this->rel_.write_rel(&orel);
1110 Addend addend = this->addend_;
1111 if (this->rel_.is_target_specific())
1112 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1113 this->rel_.type(), addend);
1114 else if (this->rel_.is_symbolless())
1115 addend = this->rel_.symbol_value(addend);
1116 else if (this->rel_.is_local_section_symbol())
1117 addend = this->rel_.local_section_offset(addend);
1118 orel.put_r_addend(addend);
1119 }
1120
1121 // Output_data_reloc_base methods.
1122
1123 // Adjust the output section.
1124
1125 template<int sh_type, bool dynamic, int size, bool big_endian>
1126 void
1127 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1128 ::do_adjust_output_section(Output_section* os)
1129 {
1130 if (sh_type == elfcpp::SHT_REL)
1131 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1132 else if (sh_type == elfcpp::SHT_RELA)
1133 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1134 else
1135 gold_unreachable();
1136 if (dynamic)
1137 os->set_should_link_to_dynsym();
1138 else
1139 os->set_should_link_to_symtab();
1140 }
1141
1142 // Write out relocation data.
1143
1144 template<int sh_type, bool dynamic, int size, bool big_endian>
1145 void
1146 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1147 Output_file* of)
1148 {
1149 const off_t off = this->offset();
1150 const off_t oview_size = this->data_size();
1151 unsigned char* const oview = of->get_output_view(off, oview_size);
1152
1153 if (this->sort_relocs())
1154 {
1155 gold_assert(dynamic);
1156 std::sort(this->relocs_.begin(), this->relocs_.end(),
1157 Sort_relocs_comparison());
1158 }
1159
1160 unsigned char* pov = oview;
1161 for (typename Relocs::const_iterator p = this->relocs_.begin();
1162 p != this->relocs_.end();
1163 ++p)
1164 {
1165 p->write(pov);
1166 pov += reloc_size;
1167 }
1168
1169 gold_assert(pov - oview == oview_size);
1170
1171 of->write_output_view(off, oview_size, oview);
1172
1173 // We no longer need the relocation entries.
1174 this->relocs_.clear();
1175 }
1176
1177 // Class Output_relocatable_relocs.
1178
1179 template<int sh_type, int size, bool big_endian>
1180 void
1181 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1182 {
1183 this->set_data_size(this->rr_->output_reloc_count()
1184 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1185 }
1186
1187 // class Output_data_group.
1188
1189 template<int size, bool big_endian>
1190 Output_data_group<size, big_endian>::Output_data_group(
1191 Sized_relobj<size, big_endian>* relobj,
1192 section_size_type entry_count,
1193 elfcpp::Elf_Word flags,
1194 std::vector<unsigned int>* input_shndxes)
1195 : Output_section_data(entry_count * 4, 4, false),
1196 relobj_(relobj),
1197 flags_(flags)
1198 {
1199 this->input_shndxes_.swap(*input_shndxes);
1200 }
1201
1202 // Write out the section group, which means translating the section
1203 // indexes to apply to the output file.
1204
1205 template<int size, bool big_endian>
1206 void
1207 Output_data_group<size, big_endian>::do_write(Output_file* of)
1208 {
1209 const off_t off = this->offset();
1210 const section_size_type oview_size =
1211 convert_to_section_size_type(this->data_size());
1212 unsigned char* const oview = of->get_output_view(off, oview_size);
1213
1214 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1215 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1216 ++contents;
1217
1218 for (std::vector<unsigned int>::const_iterator p =
1219 this->input_shndxes_.begin();
1220 p != this->input_shndxes_.end();
1221 ++p, ++contents)
1222 {
1223 Output_section* os = this->relobj_->output_section(*p);
1224
1225 unsigned int output_shndx;
1226 if (os != NULL)
1227 output_shndx = os->out_shndx();
1228 else
1229 {
1230 this->relobj_->error(_("section group retained but "
1231 "group element discarded"));
1232 output_shndx = 0;
1233 }
1234
1235 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1236 }
1237
1238 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1239 gold_assert(wrote == oview_size);
1240
1241 of->write_output_view(off, oview_size, oview);
1242
1243 // We no longer need this information.
1244 this->input_shndxes_.clear();
1245 }
1246
1247 // Output_data_got::Got_entry methods.
1248
1249 // Write out the entry.
1250
1251 template<int size, bool big_endian>
1252 void
1253 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1254 {
1255 Valtype val = 0;
1256
1257 switch (this->local_sym_index_)
1258 {
1259 case GSYM_CODE:
1260 {
1261 // If the symbol is resolved locally, we need to write out the
1262 // link-time value, which will be relocated dynamically by a
1263 // RELATIVE relocation.
1264 Symbol* gsym = this->u_.gsym;
1265 Sized_symbol<size>* sgsym;
1266 // This cast is a bit ugly. We don't want to put a
1267 // virtual method in Symbol, because we want Symbol to be
1268 // as small as possible.
1269 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1270 val = sgsym->value();
1271 }
1272 break;
1273
1274 case CONSTANT_CODE:
1275 val = this->u_.constant;
1276 break;
1277
1278 default:
1279 {
1280 const unsigned int lsi = this->local_sym_index_;
1281 const Symbol_value<size>* symval = this->u_.object->local_symbol(lsi);
1282 val = symval->value(this->u_.object, 0);
1283 }
1284 break;
1285 }
1286
1287 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1288 }
1289
1290 // Output_data_got methods.
1291
1292 // Add an entry for a global symbol to the GOT. This returns true if
1293 // this is a new GOT entry, false if the symbol already had a GOT
1294 // entry.
1295
1296 template<int size, bool big_endian>
1297 bool
1298 Output_data_got<size, big_endian>::add_global(
1299 Symbol* gsym,
1300 unsigned int got_type)
1301 {
1302 if (gsym->has_got_offset(got_type))
1303 return false;
1304
1305 this->entries_.push_back(Got_entry(gsym));
1306 this->set_got_size();
1307 gsym->set_got_offset(got_type, this->last_got_offset());
1308 return true;
1309 }
1310
1311 // Add an entry for a global symbol to the GOT, and add a dynamic
1312 // relocation of type R_TYPE for the GOT entry.
1313 template<int size, bool big_endian>
1314 void
1315 Output_data_got<size, big_endian>::add_global_with_rel(
1316 Symbol* gsym,
1317 unsigned int got_type,
1318 Rel_dyn* rel_dyn,
1319 unsigned int r_type)
1320 {
1321 if (gsym->has_got_offset(got_type))
1322 return;
1323
1324 this->entries_.push_back(Got_entry());
1325 this->set_got_size();
1326 unsigned int got_offset = this->last_got_offset();
1327 gsym->set_got_offset(got_type, got_offset);
1328 rel_dyn->add_global(gsym, r_type, this, got_offset);
1329 }
1330
1331 template<int size, bool big_endian>
1332 void
1333 Output_data_got<size, big_endian>::add_global_with_rela(
1334 Symbol* gsym,
1335 unsigned int got_type,
1336 Rela_dyn* rela_dyn,
1337 unsigned int r_type)
1338 {
1339 if (gsym->has_got_offset(got_type))
1340 return;
1341
1342 this->entries_.push_back(Got_entry());
1343 this->set_got_size();
1344 unsigned int got_offset = this->last_got_offset();
1345 gsym->set_got_offset(got_type, got_offset);
1346 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1347 }
1348
1349 // Add a pair of entries for a global symbol to the GOT, and add
1350 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1351 // If R_TYPE_2 == 0, add the second entry with no relocation.
1352 template<int size, bool big_endian>
1353 void
1354 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1355 Symbol* gsym,
1356 unsigned int got_type,
1357 Rel_dyn* rel_dyn,
1358 unsigned int r_type_1,
1359 unsigned int r_type_2)
1360 {
1361 if (gsym->has_got_offset(got_type))
1362 return;
1363
1364 this->entries_.push_back(Got_entry());
1365 unsigned int got_offset = this->last_got_offset();
1366 gsym->set_got_offset(got_type, got_offset);
1367 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1368
1369 this->entries_.push_back(Got_entry());
1370 if (r_type_2 != 0)
1371 {
1372 got_offset = this->last_got_offset();
1373 rel_dyn->add_global(gsym, r_type_2, this, got_offset);
1374 }
1375
1376 this->set_got_size();
1377 }
1378
1379 template<int size, bool big_endian>
1380 void
1381 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1382 Symbol* gsym,
1383 unsigned int got_type,
1384 Rela_dyn* rela_dyn,
1385 unsigned int r_type_1,
1386 unsigned int r_type_2)
1387 {
1388 if (gsym->has_got_offset(got_type))
1389 return;
1390
1391 this->entries_.push_back(Got_entry());
1392 unsigned int got_offset = this->last_got_offset();
1393 gsym->set_got_offset(got_type, got_offset);
1394 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1395
1396 this->entries_.push_back(Got_entry());
1397 if (r_type_2 != 0)
1398 {
1399 got_offset = this->last_got_offset();
1400 rela_dyn->add_global(gsym, r_type_2, this, got_offset, 0);
1401 }
1402
1403 this->set_got_size();
1404 }
1405
1406 // Add an entry for a local symbol to the GOT. This returns true if
1407 // this is a new GOT entry, false if the symbol already has a GOT
1408 // entry.
1409
1410 template<int size, bool big_endian>
1411 bool
1412 Output_data_got<size, big_endian>::add_local(
1413 Sized_relobj<size, big_endian>* object,
1414 unsigned int symndx,
1415 unsigned int got_type)
1416 {
1417 if (object->local_has_got_offset(symndx, got_type))
1418 return false;
1419
1420 this->entries_.push_back(Got_entry(object, symndx));
1421 this->set_got_size();
1422 object->set_local_got_offset(symndx, got_type, this->last_got_offset());
1423 return true;
1424 }
1425
1426 // Add an entry for a local symbol to the GOT, and add a dynamic
1427 // relocation of type R_TYPE for the GOT entry.
1428 template<int size, bool big_endian>
1429 void
1430 Output_data_got<size, big_endian>::add_local_with_rel(
1431 Sized_relobj<size, big_endian>* object,
1432 unsigned int symndx,
1433 unsigned int got_type,
1434 Rel_dyn* rel_dyn,
1435 unsigned int r_type)
1436 {
1437 if (object->local_has_got_offset(symndx, got_type))
1438 return;
1439
1440 this->entries_.push_back(Got_entry());
1441 this->set_got_size();
1442 unsigned int got_offset = this->last_got_offset();
1443 object->set_local_got_offset(symndx, got_type, got_offset);
1444 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1445 }
1446
1447 template<int size, bool big_endian>
1448 void
1449 Output_data_got<size, big_endian>::add_local_with_rela(
1450 Sized_relobj<size, big_endian>* object,
1451 unsigned int symndx,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (object->local_has_got_offset(symndx, got_type))
1457 return;
1458
1459 this->entries_.push_back(Got_entry());
1460 this->set_got_size();
1461 unsigned int got_offset = this->last_got_offset();
1462 object->set_local_got_offset(symndx, got_type, got_offset);
1463 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1464 }
1465
1466 // Add a pair of entries for a local symbol to the GOT, and add
1467 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1468 // If R_TYPE_2 == 0, add the second entry with no relocation.
1469 template<int size, bool big_endian>
1470 void
1471 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1472 Sized_relobj<size, big_endian>* object,
1473 unsigned int symndx,
1474 unsigned int shndx,
1475 unsigned int got_type,
1476 Rel_dyn* rel_dyn,
1477 unsigned int r_type_1,
1478 unsigned int r_type_2)
1479 {
1480 if (object->local_has_got_offset(symndx, got_type))
1481 return;
1482
1483 this->entries_.push_back(Got_entry());
1484 unsigned int got_offset = this->last_got_offset();
1485 object->set_local_got_offset(symndx, got_type, got_offset);
1486 Output_section* os = object->output_section(shndx);
1487 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1488
1489 this->entries_.push_back(Got_entry(object, symndx));
1490 if (r_type_2 != 0)
1491 {
1492 got_offset = this->last_got_offset();
1493 rel_dyn->add_output_section(os, r_type_2, this, got_offset);
1494 }
1495
1496 this->set_got_size();
1497 }
1498
1499 template<int size, bool big_endian>
1500 void
1501 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1502 Sized_relobj<size, big_endian>* object,
1503 unsigned int symndx,
1504 unsigned int shndx,
1505 unsigned int got_type,
1506 Rela_dyn* rela_dyn,
1507 unsigned int r_type_1,
1508 unsigned int r_type_2)
1509 {
1510 if (object->local_has_got_offset(symndx, got_type))
1511 return;
1512
1513 this->entries_.push_back(Got_entry());
1514 unsigned int got_offset = this->last_got_offset();
1515 object->set_local_got_offset(symndx, got_type, got_offset);
1516 Output_section* os = object->output_section(shndx);
1517 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1518
1519 this->entries_.push_back(Got_entry(object, symndx));
1520 if (r_type_2 != 0)
1521 {
1522 got_offset = this->last_got_offset();
1523 rela_dyn->add_output_section(os, r_type_2, this, got_offset, 0);
1524 }
1525
1526 this->set_got_size();
1527 }
1528
1529 // Write out the GOT.
1530
1531 template<int size, bool big_endian>
1532 void
1533 Output_data_got<size, big_endian>::do_write(Output_file* of)
1534 {
1535 const int add = size / 8;
1536
1537 const off_t off = this->offset();
1538 const off_t oview_size = this->data_size();
1539 unsigned char* const oview = of->get_output_view(off, oview_size);
1540
1541 unsigned char* pov = oview;
1542 for (typename Got_entries::const_iterator p = this->entries_.begin();
1543 p != this->entries_.end();
1544 ++p)
1545 {
1546 p->write(pov);
1547 pov += add;
1548 }
1549
1550 gold_assert(pov - oview == oview_size);
1551
1552 of->write_output_view(off, oview_size, oview);
1553
1554 // We no longer need the GOT entries.
1555 this->entries_.clear();
1556 }
1557
1558 // Output_data_dynamic::Dynamic_entry methods.
1559
1560 // Write out the entry.
1561
1562 template<int size, bool big_endian>
1563 void
1564 Output_data_dynamic::Dynamic_entry::write(
1565 unsigned char* pov,
1566 const Stringpool* pool) const
1567 {
1568 typename elfcpp::Elf_types<size>::Elf_WXword val;
1569 switch (this->offset_)
1570 {
1571 case DYNAMIC_NUMBER:
1572 val = this->u_.val;
1573 break;
1574
1575 case DYNAMIC_SECTION_SIZE:
1576 val = this->u_.od->data_size();
1577 if (this->od2 != NULL)
1578 val += this->od2->data_size();
1579 break;
1580
1581 case DYNAMIC_SYMBOL:
1582 {
1583 const Sized_symbol<size>* s =
1584 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1585 val = s->value();
1586 }
1587 break;
1588
1589 case DYNAMIC_STRING:
1590 val = pool->get_offset(this->u_.str);
1591 break;
1592
1593 default:
1594 val = this->u_.od->address() + this->offset_;
1595 break;
1596 }
1597
1598 elfcpp::Dyn_write<size, big_endian> dw(pov);
1599 dw.put_d_tag(this->tag_);
1600 dw.put_d_val(val);
1601 }
1602
1603 // Output_data_dynamic methods.
1604
1605 // Adjust the output section to set the entry size.
1606
1607 void
1608 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1609 {
1610 if (parameters->target().get_size() == 32)
1611 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1612 else if (parameters->target().get_size() == 64)
1613 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1614 else
1615 gold_unreachable();
1616 }
1617
1618 // Set the final data size.
1619
1620 void
1621 Output_data_dynamic::set_final_data_size()
1622 {
1623 // Add the terminating entry if it hasn't been added.
1624 // Because of relaxation, we can run this multiple times.
1625 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1626 {
1627 int extra = parameters->options().spare_dynamic_tags();
1628 for (int i = 0; i < extra; ++i)
1629 this->add_constant(elfcpp::DT_NULL, 0);
1630 this->add_constant(elfcpp::DT_NULL, 0);
1631 }
1632
1633 int dyn_size;
1634 if (parameters->target().get_size() == 32)
1635 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1636 else if (parameters->target().get_size() == 64)
1637 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1638 else
1639 gold_unreachable();
1640 this->set_data_size(this->entries_.size() * dyn_size);
1641 }
1642
1643 // Write out the dynamic entries.
1644
1645 void
1646 Output_data_dynamic::do_write(Output_file* of)
1647 {
1648 switch (parameters->size_and_endianness())
1649 {
1650 #ifdef HAVE_TARGET_32_LITTLE
1651 case Parameters::TARGET_32_LITTLE:
1652 this->sized_write<32, false>(of);
1653 break;
1654 #endif
1655 #ifdef HAVE_TARGET_32_BIG
1656 case Parameters::TARGET_32_BIG:
1657 this->sized_write<32, true>(of);
1658 break;
1659 #endif
1660 #ifdef HAVE_TARGET_64_LITTLE
1661 case Parameters::TARGET_64_LITTLE:
1662 this->sized_write<64, false>(of);
1663 break;
1664 #endif
1665 #ifdef HAVE_TARGET_64_BIG
1666 case Parameters::TARGET_64_BIG:
1667 this->sized_write<64, true>(of);
1668 break;
1669 #endif
1670 default:
1671 gold_unreachable();
1672 }
1673 }
1674
1675 template<int size, bool big_endian>
1676 void
1677 Output_data_dynamic::sized_write(Output_file* of)
1678 {
1679 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1680
1681 const off_t offset = this->offset();
1682 const off_t oview_size = this->data_size();
1683 unsigned char* const oview = of->get_output_view(offset, oview_size);
1684
1685 unsigned char* pov = oview;
1686 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1687 p != this->entries_.end();
1688 ++p)
1689 {
1690 p->write<size, big_endian>(pov, this->pool_);
1691 pov += dyn_size;
1692 }
1693
1694 gold_assert(pov - oview == oview_size);
1695
1696 of->write_output_view(offset, oview_size, oview);
1697
1698 // We no longer need the dynamic entries.
1699 this->entries_.clear();
1700 }
1701
1702 // Class Output_symtab_xindex.
1703
1704 void
1705 Output_symtab_xindex::do_write(Output_file* of)
1706 {
1707 const off_t offset = this->offset();
1708 const off_t oview_size = this->data_size();
1709 unsigned char* const oview = of->get_output_view(offset, oview_size);
1710
1711 memset(oview, 0, oview_size);
1712
1713 if (parameters->target().is_big_endian())
1714 this->endian_do_write<true>(oview);
1715 else
1716 this->endian_do_write<false>(oview);
1717
1718 of->write_output_view(offset, oview_size, oview);
1719
1720 // We no longer need the data.
1721 this->entries_.clear();
1722 }
1723
1724 template<bool big_endian>
1725 void
1726 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1727 {
1728 for (Xindex_entries::const_iterator p = this->entries_.begin();
1729 p != this->entries_.end();
1730 ++p)
1731 {
1732 unsigned int symndx = p->first;
1733 gold_assert(symndx * 4 < this->data_size());
1734 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1735 }
1736 }
1737
1738 // Output_section::Input_section methods.
1739
1740 // Return the data size. For an input section we store the size here.
1741 // For an Output_section_data, we have to ask it for the size.
1742
1743 off_t
1744 Output_section::Input_section::data_size() const
1745 {
1746 if (this->is_input_section())
1747 return this->u1_.data_size;
1748 else
1749 return this->u2_.posd->data_size();
1750 }
1751
1752 // Set the address and file offset.
1753
1754 void
1755 Output_section::Input_section::set_address_and_file_offset(
1756 uint64_t address,
1757 off_t file_offset,
1758 off_t section_file_offset)
1759 {
1760 if (this->is_input_section())
1761 this->u2_.object->set_section_offset(this->shndx_,
1762 file_offset - section_file_offset);
1763 else
1764 this->u2_.posd->set_address_and_file_offset(address, file_offset);
1765 }
1766
1767 // Reset the address and file offset.
1768
1769 void
1770 Output_section::Input_section::reset_address_and_file_offset()
1771 {
1772 if (!this->is_input_section())
1773 this->u2_.posd->reset_address_and_file_offset();
1774 }
1775
1776 // Finalize the data size.
1777
1778 void
1779 Output_section::Input_section::finalize_data_size()
1780 {
1781 if (!this->is_input_section())
1782 this->u2_.posd->finalize_data_size();
1783 }
1784
1785 // Try to turn an input offset into an output offset. We want to
1786 // return the output offset relative to the start of this
1787 // Input_section in the output section.
1788
1789 inline bool
1790 Output_section::Input_section::output_offset(
1791 const Relobj* object,
1792 unsigned int shndx,
1793 section_offset_type offset,
1794 section_offset_type *poutput) const
1795 {
1796 if (!this->is_input_section())
1797 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
1798 else
1799 {
1800 if (this->shndx_ != shndx || this->u2_.object != object)
1801 return false;
1802 *poutput = offset;
1803 return true;
1804 }
1805 }
1806
1807 // Return whether this is the merge section for the input section
1808 // SHNDX in OBJECT.
1809
1810 inline bool
1811 Output_section::Input_section::is_merge_section_for(const Relobj* object,
1812 unsigned int shndx) const
1813 {
1814 if (this->is_input_section())
1815 return false;
1816 return this->u2_.posd->is_merge_section_for(object, shndx);
1817 }
1818
1819 // Write out the data. We don't have to do anything for an input
1820 // section--they are handled via Object::relocate--but this is where
1821 // we write out the data for an Output_section_data.
1822
1823 void
1824 Output_section::Input_section::write(Output_file* of)
1825 {
1826 if (!this->is_input_section())
1827 this->u2_.posd->write(of);
1828 }
1829
1830 // Write the data to a buffer. As for write(), we don't have to do
1831 // anything for an input section.
1832
1833 void
1834 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
1835 {
1836 if (!this->is_input_section())
1837 this->u2_.posd->write_to_buffer(buffer);
1838 }
1839
1840 // Print to a map file.
1841
1842 void
1843 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
1844 {
1845 switch (this->shndx_)
1846 {
1847 case OUTPUT_SECTION_CODE:
1848 case MERGE_DATA_SECTION_CODE:
1849 case MERGE_STRING_SECTION_CODE:
1850 this->u2_.posd->print_to_mapfile(mapfile);
1851 break;
1852
1853 case RELAXED_INPUT_SECTION_CODE:
1854 {
1855 Output_relaxed_input_section* relaxed_section =
1856 this->relaxed_input_section();
1857 mapfile->print_input_section(relaxed_section->relobj(),
1858 relaxed_section->shndx());
1859 }
1860 break;
1861 default:
1862 mapfile->print_input_section(this->u2_.object, this->shndx_);
1863 break;
1864 }
1865 }
1866
1867 // Output_section methods.
1868
1869 // Construct an Output_section. NAME will point into a Stringpool.
1870
1871 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
1872 elfcpp::Elf_Xword flags)
1873 : name_(name),
1874 addralign_(0),
1875 entsize_(0),
1876 load_address_(0),
1877 link_section_(NULL),
1878 link_(0),
1879 info_section_(NULL),
1880 info_symndx_(NULL),
1881 info_(0),
1882 type_(type),
1883 flags_(flags),
1884 out_shndx_(-1U),
1885 symtab_index_(0),
1886 dynsym_index_(0),
1887 input_sections_(),
1888 first_input_offset_(0),
1889 fills_(),
1890 postprocessing_buffer_(NULL),
1891 needs_symtab_index_(false),
1892 needs_dynsym_index_(false),
1893 should_link_to_symtab_(false),
1894 should_link_to_dynsym_(false),
1895 after_input_sections_(false),
1896 requires_postprocessing_(false),
1897 found_in_sections_clause_(false),
1898 has_load_address_(false),
1899 info_uses_section_index_(false),
1900 may_sort_attached_input_sections_(false),
1901 must_sort_attached_input_sections_(false),
1902 attached_input_sections_are_sorted_(false),
1903 is_relro_(false),
1904 is_relro_local_(false),
1905 is_last_relro_(false),
1906 is_first_non_relro_(false),
1907 is_small_section_(false),
1908 is_large_section_(false),
1909 is_interp_(false),
1910 is_dynamic_linker_section_(false),
1911 generate_code_fills_at_write_(false),
1912 is_entsize_zero_(false),
1913 section_offsets_need_adjustment_(false),
1914 tls_offset_(0),
1915 checkpoint_(NULL),
1916 merge_section_map_(),
1917 merge_section_by_properties_map_(),
1918 relaxed_input_section_map_(),
1919 is_relaxed_input_section_map_valid_(true)
1920 {
1921 // An unallocated section has no address. Forcing this means that
1922 // we don't need special treatment for symbols defined in debug
1923 // sections.
1924 if ((flags & elfcpp::SHF_ALLOC) == 0)
1925 this->set_address(0);
1926 }
1927
1928 Output_section::~Output_section()
1929 {
1930 delete this->checkpoint_;
1931 }
1932
1933 // Set the entry size.
1934
1935 void
1936 Output_section::set_entsize(uint64_t v)
1937 {
1938 if (this->is_entsize_zero_)
1939 ;
1940 else if (this->entsize_ == 0)
1941 this->entsize_ = v;
1942 else if (this->entsize_ != v)
1943 {
1944 this->entsize_ = 0;
1945 this->is_entsize_zero_ = 1;
1946 }
1947 }
1948
1949 // Add the input section SHNDX, with header SHDR, named SECNAME, in
1950 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
1951 // relocation section which applies to this section, or 0 if none, or
1952 // -1U if more than one. Return the offset of the input section
1953 // within the output section. Return -1 if the input section will
1954 // receive special handling. In the normal case we don't always keep
1955 // track of input sections for an Output_section. Instead, each
1956 // Object keeps track of the Output_section for each of its input
1957 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
1958 // track of input sections here; this is used when SECTIONS appears in
1959 // a linker script.
1960
1961 template<int size, bool big_endian>
1962 off_t
1963 Output_section::add_input_section(Sized_relobj<size, big_endian>* object,
1964 unsigned int shndx,
1965 const char* secname,
1966 const elfcpp::Shdr<size, big_endian>& shdr,
1967 unsigned int reloc_shndx,
1968 bool have_sections_script)
1969 {
1970 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
1971 if ((addralign & (addralign - 1)) != 0)
1972 {
1973 object->error(_("invalid alignment %lu for section \"%s\""),
1974 static_cast<unsigned long>(addralign), secname);
1975 addralign = 1;
1976 }
1977
1978 if (addralign > this->addralign_)
1979 this->addralign_ = addralign;
1980
1981 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1982 uint64_t entsize = shdr.get_sh_entsize();
1983
1984 // .debug_str is a mergeable string section, but is not always so
1985 // marked by compilers. Mark manually here so we can optimize.
1986 if (strcmp(secname, ".debug_str") == 0)
1987 {
1988 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
1989 entsize = 1;
1990 }
1991
1992 this->update_flags_for_input_section(sh_flags);
1993 this->set_entsize(entsize);
1994
1995 // If this is a SHF_MERGE section, we pass all the input sections to
1996 // a Output_data_merge. We don't try to handle relocations for such
1997 // a section. We don't try to handle empty merge sections--they
1998 // mess up the mappings, and are useless anyhow.
1999 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2000 && reloc_shndx == 0
2001 && shdr.get_sh_size() > 0)
2002 {
2003 if (this->add_merge_input_section(object, shndx, sh_flags,
2004 entsize, addralign))
2005 {
2006 // Tell the relocation routines that they need to call the
2007 // output_offset method to determine the final address.
2008 return -1;
2009 }
2010 }
2011
2012 off_t offset_in_section = this->current_data_size_for_child();
2013 off_t aligned_offset_in_section = align_address(offset_in_section,
2014 addralign);
2015
2016 // Determine if we want to delay code-fill generation until the output
2017 // section is written. When the target is relaxing, we want to delay fill
2018 // generating to avoid adjusting them during relaxation.
2019 if (!this->generate_code_fills_at_write_
2020 && !have_sections_script
2021 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2022 && parameters->target().has_code_fill()
2023 && parameters->target().may_relax())
2024 {
2025 gold_assert(this->fills_.empty());
2026 this->generate_code_fills_at_write_ = true;
2027 }
2028
2029 if (aligned_offset_in_section > offset_in_section
2030 && !this->generate_code_fills_at_write_
2031 && !have_sections_script
2032 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2033 && parameters->target().has_code_fill())
2034 {
2035 // We need to add some fill data. Using fill_list_ when
2036 // possible is an optimization, since we will often have fill
2037 // sections without input sections.
2038 off_t fill_len = aligned_offset_in_section - offset_in_section;
2039 if (this->input_sections_.empty())
2040 this->fills_.push_back(Fill(offset_in_section, fill_len));
2041 else
2042 {
2043 std::string fill_data(parameters->target().code_fill(fill_len));
2044 Output_data_const* odc = new Output_data_const(fill_data, 1);
2045 this->input_sections_.push_back(Input_section(odc));
2046 }
2047 }
2048
2049 this->set_current_data_size_for_child(aligned_offset_in_section
2050 + shdr.get_sh_size());
2051
2052 // We need to keep track of this section if we are already keeping
2053 // track of sections, or if we are relaxing. Also, if this is a
2054 // section which requires sorting, or which may require sorting in
2055 // the future, we keep track of the sections.
2056 if (have_sections_script
2057 || !this->input_sections_.empty()
2058 || this->may_sort_attached_input_sections()
2059 || this->must_sort_attached_input_sections()
2060 || parameters->options().user_set_Map()
2061 || parameters->target().may_relax())
2062 this->input_sections_.push_back(Input_section(object, shndx,
2063 shdr.get_sh_size(),
2064 addralign));
2065
2066 return aligned_offset_in_section;
2067 }
2068
2069 // Add arbitrary data to an output section.
2070
2071 void
2072 Output_section::add_output_section_data(Output_section_data* posd)
2073 {
2074 Input_section inp(posd);
2075 this->add_output_section_data(&inp);
2076
2077 if (posd->is_data_size_valid())
2078 {
2079 off_t offset_in_section = this->current_data_size_for_child();
2080 off_t aligned_offset_in_section = align_address(offset_in_section,
2081 posd->addralign());
2082 this->set_current_data_size_for_child(aligned_offset_in_section
2083 + posd->data_size());
2084 }
2085 }
2086
2087 // Add a relaxed input section.
2088
2089 void
2090 Output_section::add_relaxed_input_section(Output_relaxed_input_section* poris)
2091 {
2092 Input_section inp(poris);
2093 this->add_output_section_data(&inp);
2094 if (this->is_relaxed_input_section_map_valid_)
2095 {
2096 Const_section_id csid(poris->relobj(), poris->shndx());
2097 this->relaxed_input_section_map_[csid] = poris;
2098 }
2099
2100 // For a relaxed section, we use the current data size. Linker scripts
2101 // get all the input sections, including relaxed one from an output
2102 // section and add them back to them same output section to compute the
2103 // output section size. If we do not account for sizes of relaxed input
2104 // sections, an output section would be incorrectly sized.
2105 off_t offset_in_section = this->current_data_size_for_child();
2106 off_t aligned_offset_in_section = align_address(offset_in_section,
2107 poris->addralign());
2108 this->set_current_data_size_for_child(aligned_offset_in_section
2109 + poris->current_data_size());
2110 }
2111
2112 // Add arbitrary data to an output section by Input_section.
2113
2114 void
2115 Output_section::add_output_section_data(Input_section* inp)
2116 {
2117 if (this->input_sections_.empty())
2118 this->first_input_offset_ = this->current_data_size_for_child();
2119
2120 this->input_sections_.push_back(*inp);
2121
2122 uint64_t addralign = inp->addralign();
2123 if (addralign > this->addralign_)
2124 this->addralign_ = addralign;
2125
2126 inp->set_output_section(this);
2127 }
2128
2129 // Add a merge section to an output section.
2130
2131 void
2132 Output_section::add_output_merge_section(Output_section_data* posd,
2133 bool is_string, uint64_t entsize)
2134 {
2135 Input_section inp(posd, is_string, entsize);
2136 this->add_output_section_data(&inp);
2137 }
2138
2139 // Add an input section to a SHF_MERGE section.
2140
2141 bool
2142 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2143 uint64_t flags, uint64_t entsize,
2144 uint64_t addralign)
2145 {
2146 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2147
2148 // We only merge strings if the alignment is not more than the
2149 // character size. This could be handled, but it's unusual.
2150 if (is_string && addralign > entsize)
2151 return false;
2152
2153 // We cannot restore merged input section states.
2154 gold_assert(this->checkpoint_ == NULL);
2155
2156 // Look up merge sections by required properties.
2157 Merge_section_properties msp(is_string, entsize, addralign);
2158 Merge_section_by_properties_map::const_iterator p =
2159 this->merge_section_by_properties_map_.find(msp);
2160 if (p != this->merge_section_by_properties_map_.end())
2161 {
2162 Output_merge_base* merge_section = p->second;
2163 merge_section->add_input_section(object, shndx);
2164 gold_assert(merge_section->is_string() == is_string
2165 && merge_section->entsize() == entsize
2166 && merge_section->addralign() == addralign);
2167
2168 // Link input section to found merge section.
2169 Const_section_id csid(object, shndx);
2170 this->merge_section_map_[csid] = merge_section;
2171 return true;
2172 }
2173
2174 // We handle the actual constant merging in Output_merge_data or
2175 // Output_merge_string_data.
2176 Output_merge_base* pomb;
2177 if (!is_string)
2178 pomb = new Output_merge_data(entsize, addralign);
2179 else
2180 {
2181 switch (entsize)
2182 {
2183 case 1:
2184 pomb = new Output_merge_string<char>(addralign);
2185 break;
2186 case 2:
2187 pomb = new Output_merge_string<uint16_t>(addralign);
2188 break;
2189 case 4:
2190 pomb = new Output_merge_string<uint32_t>(addralign);
2191 break;
2192 default:
2193 return false;
2194 }
2195 }
2196
2197 // Add new merge section to this output section and link merge section
2198 // properties to new merge section in map.
2199 this->add_output_merge_section(pomb, is_string, entsize);
2200 this->merge_section_by_properties_map_[msp] = pomb;
2201
2202 // Add input section to new merge section and link input section to new
2203 // merge section in map.
2204 pomb->add_input_section(object, shndx);
2205 Const_section_id csid(object, shndx);
2206 this->merge_section_map_[csid] = pomb;
2207
2208 return true;
2209 }
2210
2211 // Build a relaxation map to speed up relaxation of existing input sections.
2212 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2213
2214 void
2215 Output_section::build_relaxation_map(
2216 const Input_section_list& input_sections,
2217 size_t limit,
2218 Relaxation_map* relaxation_map) const
2219 {
2220 for (size_t i = 0; i < limit; ++i)
2221 {
2222 const Input_section& is(input_sections[i]);
2223 if (is.is_input_section() || is.is_relaxed_input_section())
2224 {
2225 Section_id sid(is.relobj(), is.shndx());
2226 (*relaxation_map)[sid] = i;
2227 }
2228 }
2229 }
2230
2231 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2232 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2233 // indices of INPUT_SECTIONS.
2234
2235 void
2236 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2237 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2238 const Relaxation_map& map,
2239 Input_section_list* input_sections)
2240 {
2241 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2242 {
2243 Output_relaxed_input_section* poris = relaxed_sections[i];
2244 Section_id sid(poris->relobj(), poris->shndx());
2245 Relaxation_map::const_iterator p = map.find(sid);
2246 gold_assert(p != map.end());
2247 gold_assert((*input_sections)[p->second].is_input_section());
2248 (*input_sections)[p->second] = Input_section(poris);
2249 }
2250 }
2251
2252 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2253 // is a vector of pointers to Output_relaxed_input_section or its derived
2254 // classes. The relaxed sections must correspond to existing input sections.
2255
2256 void
2257 Output_section::convert_input_sections_to_relaxed_sections(
2258 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2259 {
2260 gold_assert(parameters->target().may_relax());
2261
2262 // We want to make sure that restore_states does not undo the effect of
2263 // this. If there is no checkpoint active, just search the current
2264 // input section list and replace the sections there. If there is
2265 // a checkpoint, also replace the sections there.
2266
2267 // By default, we look at the whole list.
2268 size_t limit = this->input_sections_.size();
2269
2270 if (this->checkpoint_ != NULL)
2271 {
2272 // Replace input sections with relaxed input section in the saved
2273 // copy of the input section list.
2274 if (this->checkpoint_->input_sections_saved())
2275 {
2276 Relaxation_map map;
2277 this->build_relaxation_map(
2278 *(this->checkpoint_->input_sections()),
2279 this->checkpoint_->input_sections()->size(),
2280 &map);
2281 this->convert_input_sections_in_list_to_relaxed_sections(
2282 relaxed_sections,
2283 map,
2284 this->checkpoint_->input_sections());
2285 }
2286 else
2287 {
2288 // We have not copied the input section list yet. Instead, just
2289 // look at the portion that would be saved.
2290 limit = this->checkpoint_->input_sections_size();
2291 }
2292 }
2293
2294 // Convert input sections in input_section_list.
2295 Relaxation_map map;
2296 this->build_relaxation_map(this->input_sections_, limit, &map);
2297 this->convert_input_sections_in_list_to_relaxed_sections(
2298 relaxed_sections,
2299 map,
2300 &this->input_sections_);
2301
2302 // Update fast look-up map.
2303 if (this->is_relaxed_input_section_map_valid_)
2304 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2305 {
2306 Output_relaxed_input_section* poris = relaxed_sections[i];
2307 Const_section_id csid(poris->relobj(), poris->shndx());
2308 this->relaxed_input_section_map_[csid] = poris;
2309 }
2310 }
2311
2312 // Update the output section flags based on input section flags.
2313
2314 void
2315 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2316 {
2317 // If we created the section with SHF_ALLOC clear, we set the
2318 // address. If we are now setting the SHF_ALLOC flag, we need to
2319 // undo that.
2320 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2321 && (flags & elfcpp::SHF_ALLOC) != 0)
2322 this->mark_address_invalid();
2323
2324 this->flags_ |= (flags
2325 & (elfcpp::SHF_WRITE
2326 | elfcpp::SHF_ALLOC
2327 | elfcpp::SHF_EXECINSTR));
2328
2329 if ((flags & elfcpp::SHF_MERGE) == 0)
2330 this->flags_ &=~ elfcpp::SHF_MERGE;
2331 else
2332 {
2333 if (this->current_data_size_for_child() == 0)
2334 this->flags_ |= elfcpp::SHF_MERGE;
2335 }
2336
2337 if ((flags & elfcpp::SHF_STRINGS) == 0)
2338 this->flags_ &=~ elfcpp::SHF_STRINGS;
2339 else
2340 {
2341 if (this->current_data_size_for_child() == 0)
2342 this->flags_ |= elfcpp::SHF_STRINGS;
2343 }
2344 }
2345
2346 // Find the merge section into which an input section with index SHNDX in
2347 // OBJECT has been added. Return NULL if none found.
2348
2349 Output_section_data*
2350 Output_section::find_merge_section(const Relobj* object,
2351 unsigned int shndx) const
2352 {
2353 Const_section_id csid(object, shndx);
2354 Output_section_data_by_input_section_map::const_iterator p =
2355 this->merge_section_map_.find(csid);
2356 if (p != this->merge_section_map_.end())
2357 {
2358 Output_section_data* posd = p->second;
2359 gold_assert(posd->is_merge_section_for(object, shndx));
2360 return posd;
2361 }
2362 else
2363 return NULL;
2364 }
2365
2366 // Find an relaxed input section corresponding to an input section
2367 // in OBJECT with index SHNDX.
2368
2369 const Output_relaxed_input_section*
2370 Output_section::find_relaxed_input_section(const Relobj* object,
2371 unsigned int shndx) const
2372 {
2373 // Be careful that the map may not be valid due to input section export
2374 // to scripts or a check-point restore.
2375 if (!this->is_relaxed_input_section_map_valid_)
2376 {
2377 // Rebuild the map as needed.
2378 this->relaxed_input_section_map_.clear();
2379 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2380 p != this->input_sections_.end();
2381 ++p)
2382 if (p->is_relaxed_input_section())
2383 {
2384 Const_section_id csid(p->relobj(), p->shndx());
2385 this->relaxed_input_section_map_[csid] =
2386 p->relaxed_input_section();
2387 }
2388 this->is_relaxed_input_section_map_valid_ = true;
2389 }
2390
2391 Const_section_id csid(object, shndx);
2392 Output_relaxed_input_section_by_input_section_map::const_iterator p =
2393 this->relaxed_input_section_map_.find(csid);
2394 if (p != this->relaxed_input_section_map_.end())
2395 return p->second;
2396 else
2397 return NULL;
2398 }
2399
2400 // Given an address OFFSET relative to the start of input section
2401 // SHNDX in OBJECT, return whether this address is being included in
2402 // the final link. This should only be called if SHNDX in OBJECT has
2403 // a special mapping.
2404
2405 bool
2406 Output_section::is_input_address_mapped(const Relobj* object,
2407 unsigned int shndx,
2408 off_t offset) const
2409 {
2410 // Look at the Output_section_data_maps first.
2411 const Output_section_data* posd = this->find_merge_section(object, shndx);
2412 if (posd == NULL)
2413 posd = this->find_relaxed_input_section(object, shndx);
2414
2415 if (posd != NULL)
2416 {
2417 section_offset_type output_offset;
2418 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2419 gold_assert(found);
2420 return output_offset != -1;
2421 }
2422
2423 // Fall back to the slow look-up.
2424 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2425 p != this->input_sections_.end();
2426 ++p)
2427 {
2428 section_offset_type output_offset;
2429 if (p->output_offset(object, shndx, offset, &output_offset))
2430 return output_offset != -1;
2431 }
2432
2433 // By default we assume that the address is mapped. This should
2434 // only be called after we have passed all sections to Layout. At
2435 // that point we should know what we are discarding.
2436 return true;
2437 }
2438
2439 // Given an address OFFSET relative to the start of input section
2440 // SHNDX in object OBJECT, return the output offset relative to the
2441 // start of the input section in the output section. This should only
2442 // be called if SHNDX in OBJECT has a special mapping.
2443
2444 section_offset_type
2445 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2446 section_offset_type offset) const
2447 {
2448 // This can only be called meaningfully when we know the data size
2449 // of this.
2450 gold_assert(this->is_data_size_valid());
2451
2452 // Look at the Output_section_data_maps first.
2453 const Output_section_data* posd = this->find_merge_section(object, shndx);
2454 if (posd == NULL)
2455 posd = this->find_relaxed_input_section(object, shndx);
2456 if (posd != NULL)
2457 {
2458 section_offset_type output_offset;
2459 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2460 gold_assert(found);
2461 return output_offset;
2462 }
2463
2464 // Fall back to the slow look-up.
2465 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2466 p != this->input_sections_.end();
2467 ++p)
2468 {
2469 section_offset_type output_offset;
2470 if (p->output_offset(object, shndx, offset, &output_offset))
2471 return output_offset;
2472 }
2473 gold_unreachable();
2474 }
2475
2476 // Return the output virtual address of OFFSET relative to the start
2477 // of input section SHNDX in object OBJECT.
2478
2479 uint64_t
2480 Output_section::output_address(const Relobj* object, unsigned int shndx,
2481 off_t offset) const
2482 {
2483 uint64_t addr = this->address() + this->first_input_offset_;
2484
2485 // Look at the Output_section_data_maps first.
2486 const Output_section_data* posd = this->find_merge_section(object, shndx);
2487 if (posd == NULL)
2488 posd = this->find_relaxed_input_section(object, shndx);
2489 if (posd != NULL && posd->is_address_valid())
2490 {
2491 section_offset_type output_offset;
2492 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2493 gold_assert(found);
2494 return posd->address() + output_offset;
2495 }
2496
2497 // Fall back to the slow look-up.
2498 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2499 p != this->input_sections_.end();
2500 ++p)
2501 {
2502 addr = align_address(addr, p->addralign());
2503 section_offset_type output_offset;
2504 if (p->output_offset(object, shndx, offset, &output_offset))
2505 {
2506 if (output_offset == -1)
2507 return -1ULL;
2508 return addr + output_offset;
2509 }
2510 addr += p->data_size();
2511 }
2512
2513 // If we get here, it means that we don't know the mapping for this
2514 // input section. This might happen in principle if
2515 // add_input_section were called before add_output_section_data.
2516 // But it should never actually happen.
2517
2518 gold_unreachable();
2519 }
2520
2521 // Find the output address of the start of the merged section for
2522 // input section SHNDX in object OBJECT.
2523
2524 bool
2525 Output_section::find_starting_output_address(const Relobj* object,
2526 unsigned int shndx,
2527 uint64_t* paddr) const
2528 {
2529 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2530 // Looking up the merge section map does not always work as we sometimes
2531 // find a merge section without its address set.
2532 uint64_t addr = this->address() + this->first_input_offset_;
2533 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2534 p != this->input_sections_.end();
2535 ++p)
2536 {
2537 addr = align_address(addr, p->addralign());
2538
2539 // It would be nice if we could use the existing output_offset
2540 // method to get the output offset of input offset 0.
2541 // Unfortunately we don't know for sure that input offset 0 is
2542 // mapped at all.
2543 if (p->is_merge_section_for(object, shndx))
2544 {
2545 *paddr = addr;
2546 return true;
2547 }
2548
2549 addr += p->data_size();
2550 }
2551
2552 // We couldn't find a merge output section for this input section.
2553 return false;
2554 }
2555
2556 // Set the data size of an Output_section. This is where we handle
2557 // setting the addresses of any Output_section_data objects.
2558
2559 void
2560 Output_section::set_final_data_size()
2561 {
2562 if (this->input_sections_.empty())
2563 {
2564 this->set_data_size(this->current_data_size_for_child());
2565 return;
2566 }
2567
2568 if (this->must_sort_attached_input_sections())
2569 this->sort_attached_input_sections();
2570
2571 uint64_t address = this->address();
2572 off_t startoff = this->offset();
2573 off_t off = startoff + this->first_input_offset_;
2574 for (Input_section_list::iterator p = this->input_sections_.begin();
2575 p != this->input_sections_.end();
2576 ++p)
2577 {
2578 off = align_address(off, p->addralign());
2579 p->set_address_and_file_offset(address + (off - startoff), off,
2580 startoff);
2581 off += p->data_size();
2582 }
2583
2584 this->set_data_size(off - startoff);
2585 }
2586
2587 // Reset the address and file offset.
2588
2589 void
2590 Output_section::do_reset_address_and_file_offset()
2591 {
2592 // An unallocated section has no address. Forcing this means that
2593 // we don't need special treatment for symbols defined in debug
2594 // sections. We do the same in the constructor.
2595 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2596 this->set_address(0);
2597
2598 for (Input_section_list::iterator p = this->input_sections_.begin();
2599 p != this->input_sections_.end();
2600 ++p)
2601 p->reset_address_and_file_offset();
2602 }
2603
2604 // Return true if address and file offset have the values after reset.
2605
2606 bool
2607 Output_section::do_address_and_file_offset_have_reset_values() const
2608 {
2609 if (this->is_offset_valid())
2610 return false;
2611
2612 // An unallocated section has address 0 after its construction or a reset.
2613 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
2614 return this->is_address_valid() && this->address() == 0;
2615 else
2616 return !this->is_address_valid();
2617 }
2618
2619 // Set the TLS offset. Called only for SHT_TLS sections.
2620
2621 void
2622 Output_section::do_set_tls_offset(uint64_t tls_base)
2623 {
2624 this->tls_offset_ = this->address() - tls_base;
2625 }
2626
2627 // In a few cases we need to sort the input sections attached to an
2628 // output section. This is used to implement the type of constructor
2629 // priority ordering implemented by the GNU linker, in which the
2630 // priority becomes part of the section name and the sections are
2631 // sorted by name. We only do this for an output section if we see an
2632 // attached input section matching ".ctor.*", ".dtor.*",
2633 // ".init_array.*" or ".fini_array.*".
2634
2635 class Output_section::Input_section_sort_entry
2636 {
2637 public:
2638 Input_section_sort_entry()
2639 : input_section_(), index_(-1U), section_has_name_(false),
2640 section_name_()
2641 { }
2642
2643 Input_section_sort_entry(const Input_section& input_section,
2644 unsigned int index)
2645 : input_section_(input_section), index_(index),
2646 section_has_name_(input_section.is_input_section()
2647 || input_section.is_relaxed_input_section())
2648 {
2649 if (this->section_has_name_)
2650 {
2651 // This is only called single-threaded from Layout::finalize,
2652 // so it is OK to lock. Unfortunately we have no way to pass
2653 // in a Task token.
2654 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
2655 Object* obj = (input_section.is_input_section()
2656 ? input_section.relobj()
2657 : input_section.relaxed_input_section()->relobj());
2658 Task_lock_obj<Object> tl(dummy_task, obj);
2659
2660 // This is a slow operation, which should be cached in
2661 // Layout::layout if this becomes a speed problem.
2662 this->section_name_ = obj->section_name(input_section.shndx());
2663 }
2664 }
2665
2666 // Return the Input_section.
2667 const Input_section&
2668 input_section() const
2669 {
2670 gold_assert(this->index_ != -1U);
2671 return this->input_section_;
2672 }
2673
2674 // The index of this entry in the original list. This is used to
2675 // make the sort stable.
2676 unsigned int
2677 index() const
2678 {
2679 gold_assert(this->index_ != -1U);
2680 return this->index_;
2681 }
2682
2683 // Whether there is a section name.
2684 bool
2685 section_has_name() const
2686 { return this->section_has_name_; }
2687
2688 // The section name.
2689 const std::string&
2690 section_name() const
2691 {
2692 gold_assert(this->section_has_name_);
2693 return this->section_name_;
2694 }
2695
2696 // Return true if the section name has a priority. This is assumed
2697 // to be true if it has a dot after the initial dot.
2698 bool
2699 has_priority() const
2700 {
2701 gold_assert(this->section_has_name_);
2702 return this->section_name_.find('.', 1) != std::string::npos;
2703 }
2704
2705 // Return true if this an input file whose base name matches
2706 // FILE_NAME. The base name must have an extension of ".o", and
2707 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
2708 // This is to match crtbegin.o as well as crtbeginS.o without
2709 // getting confused by other possibilities. Overall matching the
2710 // file name this way is a dreadful hack, but the GNU linker does it
2711 // in order to better support gcc, and we need to be compatible.
2712 bool
2713 match_file_name(const char* match_file_name) const
2714 {
2715 const std::string& file_name(this->input_section_.relobj()->name());
2716 const char* base_name = lbasename(file_name.c_str());
2717 size_t match_len = strlen(match_file_name);
2718 if (strncmp(base_name, match_file_name, match_len) != 0)
2719 return false;
2720 size_t base_len = strlen(base_name);
2721 if (base_len != match_len + 2 && base_len != match_len + 3)
2722 return false;
2723 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
2724 }
2725
2726 private:
2727 // The Input_section we are sorting.
2728 Input_section input_section_;
2729 // The index of this Input_section in the original list.
2730 unsigned int index_;
2731 // Whether this Input_section has a section name--it won't if this
2732 // is some random Output_section_data.
2733 bool section_has_name_;
2734 // The section name if there is one.
2735 std::string section_name_;
2736 };
2737
2738 // Return true if S1 should come before S2 in the output section.
2739
2740 bool
2741 Output_section::Input_section_sort_compare::operator()(
2742 const Output_section::Input_section_sort_entry& s1,
2743 const Output_section::Input_section_sort_entry& s2) const
2744 {
2745 // crtbegin.o must come first.
2746 bool s1_begin = s1.match_file_name("crtbegin");
2747 bool s2_begin = s2.match_file_name("crtbegin");
2748 if (s1_begin || s2_begin)
2749 {
2750 if (!s1_begin)
2751 return false;
2752 if (!s2_begin)
2753 return true;
2754 return s1.index() < s2.index();
2755 }
2756
2757 // crtend.o must come last.
2758 bool s1_end = s1.match_file_name("crtend");
2759 bool s2_end = s2.match_file_name("crtend");
2760 if (s1_end || s2_end)
2761 {
2762 if (!s1_end)
2763 return true;
2764 if (!s2_end)
2765 return false;
2766 return s1.index() < s2.index();
2767 }
2768
2769 // We sort all the sections with no names to the end.
2770 if (!s1.section_has_name() || !s2.section_has_name())
2771 {
2772 if (s1.section_has_name())
2773 return true;
2774 if (s2.section_has_name())
2775 return false;
2776 return s1.index() < s2.index();
2777 }
2778
2779 // A section with a priority follows a section without a priority.
2780 bool s1_has_priority = s1.has_priority();
2781 bool s2_has_priority = s2.has_priority();
2782 if (s1_has_priority && !s2_has_priority)
2783 return false;
2784 if (!s1_has_priority && s2_has_priority)
2785 return true;
2786
2787 // Otherwise we sort by name.
2788 int compare = s1.section_name().compare(s2.section_name());
2789 if (compare != 0)
2790 return compare < 0;
2791
2792 // Otherwise we keep the input order.
2793 return s1.index() < s2.index();
2794 }
2795
2796 // Return true if S1 should come before S2 in an .init_array or .fini_array
2797 // output section.
2798
2799 bool
2800 Output_section::Input_section_sort_init_fini_compare::operator()(
2801 const Output_section::Input_section_sort_entry& s1,
2802 const Output_section::Input_section_sort_entry& s2) const
2803 {
2804 // We sort all the sections with no names to the end.
2805 if (!s1.section_has_name() || !s2.section_has_name())
2806 {
2807 if (s1.section_has_name())
2808 return true;
2809 if (s2.section_has_name())
2810 return false;
2811 return s1.index() < s2.index();
2812 }
2813
2814 // A section without a priority follows a section with a priority.
2815 // This is the reverse of .ctors and .dtors sections.
2816 bool s1_has_priority = s1.has_priority();
2817 bool s2_has_priority = s2.has_priority();
2818 if (s1_has_priority && !s2_has_priority)
2819 return true;
2820 if (!s1_has_priority && s2_has_priority)
2821 return false;
2822
2823 // Otherwise we sort by name.
2824 int compare = s1.section_name().compare(s2.section_name());
2825 if (compare != 0)
2826 return compare < 0;
2827
2828 // Otherwise we keep the input order.
2829 return s1.index() < s2.index();
2830 }
2831
2832 // Sort the input sections attached to an output section.
2833
2834 void
2835 Output_section::sort_attached_input_sections()
2836 {
2837 if (this->attached_input_sections_are_sorted_)
2838 return;
2839
2840 if (this->checkpoint_ != NULL
2841 && !this->checkpoint_->input_sections_saved())
2842 this->checkpoint_->save_input_sections();
2843
2844 // The only thing we know about an input section is the object and
2845 // the section index. We need the section name. Recomputing this
2846 // is slow but this is an unusual case. If this becomes a speed
2847 // problem we can cache the names as required in Layout::layout.
2848
2849 // We start by building a larger vector holding a copy of each
2850 // Input_section, plus its current index in the list and its name.
2851 std::vector<Input_section_sort_entry> sort_list;
2852
2853 unsigned int i = 0;
2854 for (Input_section_list::iterator p = this->input_sections_.begin();
2855 p != this->input_sections_.end();
2856 ++p, ++i)
2857 sort_list.push_back(Input_section_sort_entry(*p, i));
2858
2859 // Sort the input sections.
2860 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
2861 || this->type() == elfcpp::SHT_INIT_ARRAY
2862 || this->type() == elfcpp::SHT_FINI_ARRAY)
2863 std::sort(sort_list.begin(), sort_list.end(),
2864 Input_section_sort_init_fini_compare());
2865 else
2866 std::sort(sort_list.begin(), sort_list.end(),
2867 Input_section_sort_compare());
2868
2869 // Copy the sorted input sections back to our list.
2870 this->input_sections_.clear();
2871 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
2872 p != sort_list.end();
2873 ++p)
2874 this->input_sections_.push_back(p->input_section());
2875
2876 // Remember that we sorted the input sections, since we might get
2877 // called again.
2878 this->attached_input_sections_are_sorted_ = true;
2879 }
2880
2881 // Write the section header to *OSHDR.
2882
2883 template<int size, bool big_endian>
2884 void
2885 Output_section::write_header(const Layout* layout,
2886 const Stringpool* secnamepool,
2887 elfcpp::Shdr_write<size, big_endian>* oshdr) const
2888 {
2889 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
2890 oshdr->put_sh_type(this->type_);
2891
2892 elfcpp::Elf_Xword flags = this->flags_;
2893 if (this->info_section_ != NULL && this->info_uses_section_index_)
2894 flags |= elfcpp::SHF_INFO_LINK;
2895 oshdr->put_sh_flags(flags);
2896
2897 oshdr->put_sh_addr(this->address());
2898 oshdr->put_sh_offset(this->offset());
2899 oshdr->put_sh_size(this->data_size());
2900 if (this->link_section_ != NULL)
2901 oshdr->put_sh_link(this->link_section_->out_shndx());
2902 else if (this->should_link_to_symtab_)
2903 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
2904 else if (this->should_link_to_dynsym_)
2905 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
2906 else
2907 oshdr->put_sh_link(this->link_);
2908
2909 elfcpp::Elf_Word info;
2910 if (this->info_section_ != NULL)
2911 {
2912 if (this->info_uses_section_index_)
2913 info = this->info_section_->out_shndx();
2914 else
2915 info = this->info_section_->symtab_index();
2916 }
2917 else if (this->info_symndx_ != NULL)
2918 info = this->info_symndx_->symtab_index();
2919 else
2920 info = this->info_;
2921 oshdr->put_sh_info(info);
2922
2923 oshdr->put_sh_addralign(this->addralign_);
2924 oshdr->put_sh_entsize(this->entsize_);
2925 }
2926
2927 // Write out the data. For input sections the data is written out by
2928 // Object::relocate, but we have to handle Output_section_data objects
2929 // here.
2930
2931 void
2932 Output_section::do_write(Output_file* of)
2933 {
2934 gold_assert(!this->requires_postprocessing());
2935
2936 // If the target performs relaxation, we delay filler generation until now.
2937 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
2938
2939 off_t output_section_file_offset = this->offset();
2940 for (Fill_list::iterator p = this->fills_.begin();
2941 p != this->fills_.end();
2942 ++p)
2943 {
2944 std::string fill_data(parameters->target().code_fill(p->length()));
2945 of->write(output_section_file_offset + p->section_offset(),
2946 fill_data.data(), fill_data.size());
2947 }
2948
2949 off_t off = this->offset() + this->first_input_offset_;
2950 for (Input_section_list::iterator p = this->input_sections_.begin();
2951 p != this->input_sections_.end();
2952 ++p)
2953 {
2954 off_t aligned_off = align_address(off, p->addralign());
2955 if (this->generate_code_fills_at_write_ && (off != aligned_off))
2956 {
2957 size_t fill_len = aligned_off - off;
2958 std::string fill_data(parameters->target().code_fill(fill_len));
2959 of->write(off, fill_data.data(), fill_data.size());
2960 }
2961
2962 p->write(of);
2963 off = aligned_off + p->data_size();
2964 }
2965 }
2966
2967 // If a section requires postprocessing, create the buffer to use.
2968
2969 void
2970 Output_section::create_postprocessing_buffer()
2971 {
2972 gold_assert(this->requires_postprocessing());
2973
2974 if (this->postprocessing_buffer_ != NULL)
2975 return;
2976
2977 if (!this->input_sections_.empty())
2978 {
2979 off_t off = this->first_input_offset_;
2980 for (Input_section_list::iterator p = this->input_sections_.begin();
2981 p != this->input_sections_.end();
2982 ++p)
2983 {
2984 off = align_address(off, p->addralign());
2985 p->finalize_data_size();
2986 off += p->data_size();
2987 }
2988 this->set_current_data_size_for_child(off);
2989 }
2990
2991 off_t buffer_size = this->current_data_size_for_child();
2992 this->postprocessing_buffer_ = new unsigned char[buffer_size];
2993 }
2994
2995 // Write all the data of an Output_section into the postprocessing
2996 // buffer. This is used for sections which require postprocessing,
2997 // such as compression. Input sections are handled by
2998 // Object::Relocate.
2999
3000 void
3001 Output_section::write_to_postprocessing_buffer()
3002 {
3003 gold_assert(this->requires_postprocessing());
3004
3005 // If the target performs relaxation, we delay filler generation until now.
3006 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3007
3008 unsigned char* buffer = this->postprocessing_buffer();
3009 for (Fill_list::iterator p = this->fills_.begin();
3010 p != this->fills_.end();
3011 ++p)
3012 {
3013 std::string fill_data(parameters->target().code_fill(p->length()));
3014 memcpy(buffer + p->section_offset(), fill_data.data(),
3015 fill_data.size());
3016 }
3017
3018 off_t off = this->first_input_offset_;
3019 for (Input_section_list::iterator p = this->input_sections_.begin();
3020 p != this->input_sections_.end();
3021 ++p)
3022 {
3023 off_t aligned_off = align_address(off, p->addralign());
3024 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3025 {
3026 size_t fill_len = aligned_off - off;
3027 std::string fill_data(parameters->target().code_fill(fill_len));
3028 memcpy(buffer + off, fill_data.data(), fill_data.size());
3029 }
3030
3031 p->write_to_buffer(buffer + aligned_off);
3032 off = aligned_off + p->data_size();
3033 }
3034 }
3035
3036 // Get the input sections for linker script processing. We leave
3037 // behind the Output_section_data entries. Note that this may be
3038 // slightly incorrect for merge sections. We will leave them behind,
3039 // but it is possible that the script says that they should follow
3040 // some other input sections, as in:
3041 // .rodata { *(.rodata) *(.rodata.cst*) }
3042 // For that matter, we don't handle this correctly:
3043 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3044 // With luck this will never matter.
3045
3046 uint64_t
3047 Output_section::get_input_sections(
3048 uint64_t address,
3049 const std::string& fill,
3050 std::list<Simple_input_section>* input_sections)
3051 {
3052 if (this->checkpoint_ != NULL
3053 && !this->checkpoint_->input_sections_saved())
3054 this->checkpoint_->save_input_sections();
3055
3056 // Invalidate the relaxed input section map.
3057 this->is_relaxed_input_section_map_valid_ = false;
3058
3059 uint64_t orig_address = address;
3060
3061 address = align_address(address, this->addralign());
3062
3063 Input_section_list remaining;
3064 for (Input_section_list::iterator p = this->input_sections_.begin();
3065 p != this->input_sections_.end();
3066 ++p)
3067 {
3068 if (p->is_input_section())
3069 input_sections->push_back(Simple_input_section(p->relobj(),
3070 p->shndx()));
3071 else if (p->is_relaxed_input_section())
3072 input_sections->push_back(
3073 Simple_input_section(p->relaxed_input_section()));
3074 else
3075 {
3076 uint64_t aligned_address = align_address(address, p->addralign());
3077 if (aligned_address != address && !fill.empty())
3078 {
3079 section_size_type length =
3080 convert_to_section_size_type(aligned_address - address);
3081 std::string this_fill;
3082 this_fill.reserve(length);
3083 while (this_fill.length() + fill.length() <= length)
3084 this_fill += fill;
3085 if (this_fill.length() < length)
3086 this_fill.append(fill, 0, length - this_fill.length());
3087
3088 Output_section_data* posd = new Output_data_const(this_fill, 0);
3089 remaining.push_back(Input_section(posd));
3090 }
3091 address = aligned_address;
3092
3093 remaining.push_back(*p);
3094
3095 p->finalize_data_size();
3096 address += p->data_size();
3097 }
3098 }
3099
3100 this->input_sections_.swap(remaining);
3101 this->first_input_offset_ = 0;
3102
3103 uint64_t data_size = address - orig_address;
3104 this->set_current_data_size_for_child(data_size);
3105 return data_size;
3106 }
3107
3108 // Add an simple input section.
3109
3110 void
3111 Output_section::add_simple_input_section(const Simple_input_section& sis,
3112 off_t data_size,
3113 uint64_t addralign)
3114 {
3115 if (addralign > this->addralign_)
3116 this->addralign_ = addralign;
3117
3118 off_t offset_in_section = this->current_data_size_for_child();
3119 off_t aligned_offset_in_section = align_address(offset_in_section,
3120 addralign);
3121
3122 this->set_current_data_size_for_child(aligned_offset_in_section
3123 + data_size);
3124
3125 Input_section is =
3126 (sis.is_relaxed_input_section()
3127 ? Input_section(sis.relaxed_input_section())
3128 : Input_section(sis.relobj(), sis.shndx(), data_size, addralign));
3129 this->input_sections_.push_back(is);
3130 }
3131
3132 // Save states for relaxation.
3133
3134 void
3135 Output_section::save_states()
3136 {
3137 gold_assert(this->checkpoint_ == NULL);
3138 Checkpoint_output_section* checkpoint =
3139 new Checkpoint_output_section(this->addralign_, this->flags_,
3140 this->input_sections_,
3141 this->first_input_offset_,
3142 this->attached_input_sections_are_sorted_);
3143 this->checkpoint_ = checkpoint;
3144 gold_assert(this->fills_.empty());
3145 }
3146
3147 void
3148 Output_section::discard_states()
3149 {
3150 gold_assert(this->checkpoint_ != NULL);
3151 delete this->checkpoint_;
3152 this->checkpoint_ = NULL;
3153 gold_assert(this->fills_.empty());
3154
3155 // Simply invalidate the relaxed input section map since we do not keep
3156 // track of it.
3157 this->is_relaxed_input_section_map_valid_ = false;
3158 }
3159
3160 void
3161 Output_section::restore_states()
3162 {
3163 gold_assert(this->checkpoint_ != NULL);
3164 Checkpoint_output_section* checkpoint = this->checkpoint_;
3165
3166 this->addralign_ = checkpoint->addralign();
3167 this->flags_ = checkpoint->flags();
3168 this->first_input_offset_ = checkpoint->first_input_offset();
3169
3170 if (!checkpoint->input_sections_saved())
3171 {
3172 // If we have not copied the input sections, just resize it.
3173 size_t old_size = checkpoint->input_sections_size();
3174 gold_assert(this->input_sections_.size() >= old_size);
3175 this->input_sections_.resize(old_size);
3176 }
3177 else
3178 {
3179 // We need to copy the whole list. This is not efficient for
3180 // extremely large output with hundreads of thousands of input
3181 // objects. We may need to re-think how we should pass sections
3182 // to scripts.
3183 this->input_sections_ = *checkpoint->input_sections();
3184 }
3185
3186 this->attached_input_sections_are_sorted_ =
3187 checkpoint->attached_input_sections_are_sorted();
3188
3189 // Simply invalidate the relaxed input section map since we do not keep
3190 // track of it.
3191 this->is_relaxed_input_section_map_valid_ = false;
3192 }
3193
3194 // Update the section offsets of input sections in this. This is required if
3195 // relaxation causes some input sections to change sizes.
3196
3197 void
3198 Output_section::adjust_section_offsets()
3199 {
3200 if (!this->section_offsets_need_adjustment_)
3201 return;
3202
3203 off_t off = 0;
3204 for (Input_section_list::iterator p = this->input_sections_.begin();
3205 p != this->input_sections_.end();
3206 ++p)
3207 {
3208 off = align_address(off, p->addralign());
3209 if (p->is_input_section())
3210 p->relobj()->set_section_offset(p->shndx(), off);
3211 off += p->data_size();
3212 }
3213
3214 this->section_offsets_need_adjustment_ = false;
3215 }
3216
3217 // Print to the map file.
3218
3219 void
3220 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3221 {
3222 mapfile->print_output_section(this);
3223
3224 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3225 p != this->input_sections_.end();
3226 ++p)
3227 p->print_to_mapfile(mapfile);
3228 }
3229
3230 // Print stats for merge sections to stderr.
3231
3232 void
3233 Output_section::print_merge_stats()
3234 {
3235 Input_section_list::iterator p;
3236 for (p = this->input_sections_.begin();
3237 p != this->input_sections_.end();
3238 ++p)
3239 p->print_merge_stats(this->name_);
3240 }
3241
3242 // Output segment methods.
3243
3244 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3245 : output_data_(),
3246 output_bss_(),
3247 vaddr_(0),
3248 paddr_(0),
3249 memsz_(0),
3250 max_align_(0),
3251 min_p_align_(0),
3252 offset_(0),
3253 filesz_(0),
3254 type_(type),
3255 flags_(flags),
3256 is_max_align_known_(false),
3257 are_addresses_set_(false),
3258 is_large_data_segment_(false)
3259 {
3260 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3261 // the flags.
3262 if (type == elfcpp::PT_TLS)
3263 this->flags_ = elfcpp::PF_R;
3264 }
3265
3266 // Add an Output_section to an Output_segment.
3267
3268 void
3269 Output_segment::add_output_section(Output_section* os,
3270 elfcpp::Elf_Word seg_flags,
3271 bool do_sort)
3272 {
3273 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3274 gold_assert(!this->is_max_align_known_);
3275 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3276 gold_assert(this->type() == elfcpp::PT_LOAD || !do_sort);
3277
3278 this->update_flags_for_output_section(seg_flags);
3279
3280 Output_segment::Output_data_list* pdl;
3281 if (os->type() == elfcpp::SHT_NOBITS)
3282 pdl = &this->output_bss_;
3283 else
3284 pdl = &this->output_data_;
3285
3286 // Note that while there may be many input sections in an output
3287 // section, there are normally only a few output sections in an
3288 // output segment. The loops below are expected to be fast.
3289
3290 // So that PT_NOTE segments will work correctly, we need to ensure
3291 // that all SHT_NOTE sections are adjacent.
3292 if (os->type() == elfcpp::SHT_NOTE && !pdl->empty())
3293 {
3294 Output_segment::Output_data_list::iterator p = pdl->end();
3295 do
3296 {
3297 --p;
3298 if ((*p)->is_section_type(elfcpp::SHT_NOTE))
3299 {
3300 ++p;
3301 pdl->insert(p, os);
3302 return;
3303 }
3304 }
3305 while (p != pdl->begin());
3306 }
3307
3308 // Similarly, so that PT_TLS segments will work, we need to group
3309 // SHF_TLS sections. An SHF_TLS/SHT_NOBITS section is a special
3310 // case: we group the SHF_TLS/SHT_NOBITS sections right after the
3311 // SHF_TLS/SHT_PROGBITS sections. This lets us set up PT_TLS
3312 // correctly. SHF_TLS sections get added to both a PT_LOAD segment
3313 // and the PT_TLS segment; we do this grouping only for the PT_LOAD
3314 // segment.
3315 if (this->type_ != elfcpp::PT_TLS
3316 && (os->flags() & elfcpp::SHF_TLS) != 0)
3317 {
3318 pdl = &this->output_data_;
3319 if (!pdl->empty())
3320 {
3321 bool nobits = os->type() == elfcpp::SHT_NOBITS;
3322 bool sawtls = false;
3323 Output_segment::Output_data_list::iterator p = pdl->end();
3324 gold_assert(p != pdl->begin());
3325 do
3326 {
3327 --p;
3328 bool insert;
3329 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3330 {
3331 sawtls = true;
3332 // Put a NOBITS section after the first TLS section.
3333 // Put a PROGBITS section after the first
3334 // TLS/PROGBITS section.
3335 insert = nobits || !(*p)->is_section_type(elfcpp::SHT_NOBITS);
3336 }
3337 else
3338 {
3339 // If we've gone past the TLS sections, but we've
3340 // seen a TLS section, then we need to insert this
3341 // section now.
3342 insert = sawtls;
3343 }
3344
3345 if (insert)
3346 {
3347 ++p;
3348 pdl->insert(p, os);
3349 return;
3350 }
3351 }
3352 while (p != pdl->begin());
3353 }
3354
3355 // There are no TLS sections yet; put this one at the requested
3356 // location in the section list.
3357 }
3358
3359 if (do_sort)
3360 {
3361 // For the PT_GNU_RELRO segment, we need to group relro
3362 // sections, and we need to put them before any non-relro
3363 // sections. Any relro local sections go before relro non-local
3364 // sections. One section may be marked as the last relro
3365 // section.
3366 if (os->is_relro())
3367 {
3368 gold_assert(pdl == &this->output_data_);
3369 Output_segment::Output_data_list::iterator p;
3370 for (p = pdl->begin(); p != pdl->end(); ++p)
3371 {
3372 if (!(*p)->is_section())
3373 break;
3374
3375 Output_section* pos = (*p)->output_section();
3376 if (!pos->is_relro()
3377 || (os->is_relro_local() && !pos->is_relro_local())
3378 || (!os->is_last_relro() && pos->is_last_relro()))
3379 break;
3380 }
3381
3382 pdl->insert(p, os);
3383 return;
3384 }
3385
3386 // One section may be marked as the first section which follows
3387 // the relro sections.
3388 if (os->is_first_non_relro())
3389 {
3390 gold_assert(pdl == &this->output_data_);
3391 Output_segment::Output_data_list::iterator p;
3392 for (p = pdl->begin(); p != pdl->end(); ++p)
3393 {
3394 if (!(*p)->is_section())
3395 break;
3396
3397 Output_section* pos = (*p)->output_section();
3398 if (!pos->is_relro())
3399 break;
3400 }
3401
3402 pdl->insert(p, os);
3403 return;
3404 }
3405 }
3406
3407 // Small data sections go at the end of the list of data sections.
3408 // If OS is not small, and there are small sections, we have to
3409 // insert it before the first small section.
3410 if (os->type() != elfcpp::SHT_NOBITS
3411 && !os->is_small_section()
3412 && !pdl->empty()
3413 && pdl->back()->is_section()
3414 && pdl->back()->output_section()->is_small_section())
3415 {
3416 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3417 p != pdl->end();
3418 ++p)
3419 {
3420 if ((*p)->is_section()
3421 && (*p)->output_section()->is_small_section())
3422 {
3423 pdl->insert(p, os);
3424 return;
3425 }
3426 }
3427 gold_unreachable();
3428 }
3429
3430 // A small BSS section goes at the start of the BSS sections, after
3431 // other small BSS sections.
3432 if (os->type() == elfcpp::SHT_NOBITS && os->is_small_section())
3433 {
3434 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3435 p != pdl->end();
3436 ++p)
3437 {
3438 if (!(*p)->is_section()
3439 || !(*p)->output_section()->is_small_section())
3440 {
3441 pdl->insert(p, os);
3442 return;
3443 }
3444 }
3445 }
3446
3447 // A large BSS section goes at the end of the BSS sections, which
3448 // means that one that is not large must come before the first large
3449 // one.
3450 if (os->type() == elfcpp::SHT_NOBITS
3451 && !os->is_large_section()
3452 && !pdl->empty()
3453 && pdl->back()->is_section()
3454 && pdl->back()->output_section()->is_large_section())
3455 {
3456 for (Output_segment::Output_data_list::iterator p = pdl->begin();
3457 p != pdl->end();
3458 ++p)
3459 {
3460 if ((*p)->is_section()
3461 && (*p)->output_section()->is_large_section())
3462 {
3463 pdl->insert(p, os);
3464 return;
3465 }
3466 }
3467 gold_unreachable();
3468 }
3469
3470 // We do some further output section sorting in order to make the
3471 // generated program run more efficiently. We should only do this
3472 // when not using a linker script, so it is controled by the DO_SORT
3473 // parameter.
3474 if (do_sort)
3475 {
3476 // FreeBSD requires the .interp section to be in the first page
3477 // of the executable. That is a more efficient location anyhow
3478 // for any OS, since it means that the kernel will have the data
3479 // handy after it reads the program headers.
3480 if (os->is_interp() && !pdl->empty())
3481 {
3482 pdl->insert(pdl->begin(), os);
3483 return;
3484 }
3485
3486 // Put loadable non-writable notes immediately after the .interp
3487 // sections, so that the PT_NOTE segment is on the first page of
3488 // the executable.
3489 if (os->type() == elfcpp::SHT_NOTE
3490 && (os->flags() & elfcpp::SHF_WRITE) == 0
3491 && !pdl->empty())
3492 {
3493 Output_segment::Output_data_list::iterator p = pdl->begin();
3494 if ((*p)->is_section() && (*p)->output_section()->is_interp())
3495 ++p;
3496 pdl->insert(p, os);
3497 return;
3498 }
3499
3500 // If this section is used by the dynamic linker, and it is not
3501 // writable, then put it first, after the .interp section and
3502 // any loadable notes. This makes it more likely that the
3503 // dynamic linker will have to read less data from the disk.
3504 if (os->is_dynamic_linker_section()
3505 && !pdl->empty()
3506 && (os->flags() & elfcpp::SHF_WRITE) == 0)
3507 {
3508 bool is_reloc = (os->type() == elfcpp::SHT_REL
3509 || os->type() == elfcpp::SHT_RELA);
3510 Output_segment::Output_data_list::iterator p = pdl->begin();
3511 while (p != pdl->end()
3512 && (*p)->is_section()
3513 && ((*p)->output_section()->is_dynamic_linker_section()
3514 || (*p)->output_section()->type() == elfcpp::SHT_NOTE))
3515 {
3516 // Put reloc sections after the other ones. Putting the
3517 // dynamic reloc sections first confuses BFD, notably
3518 // objcopy and strip.
3519 if (!is_reloc
3520 && ((*p)->output_section()->type() == elfcpp::SHT_REL
3521 || (*p)->output_section()->type() == elfcpp::SHT_RELA))
3522 break;
3523 ++p;
3524 }
3525 pdl->insert(p, os);
3526 return;
3527 }
3528 }
3529
3530 // If there were no constraints on the output section, just add it
3531 // to the end of the list.
3532 pdl->push_back(os);
3533 }
3534
3535 // Remove an Output_section from this segment. It is an error if it
3536 // is not present.
3537
3538 void
3539 Output_segment::remove_output_section(Output_section* os)
3540 {
3541 // We only need this for SHT_PROGBITS.
3542 gold_assert(os->type() == elfcpp::SHT_PROGBITS);
3543 for (Output_data_list::iterator p = this->output_data_.begin();
3544 p != this->output_data_.end();
3545 ++p)
3546 {
3547 if (*p == os)
3548 {
3549 this->output_data_.erase(p);
3550 return;
3551 }
3552 }
3553 gold_unreachable();
3554 }
3555
3556 // Add an Output_data (which need not be an Output_section) to the
3557 // start of a segment.
3558
3559 void
3560 Output_segment::add_initial_output_data(Output_data* od)
3561 {
3562 gold_assert(!this->is_max_align_known_);
3563 this->output_data_.push_front(od);
3564 }
3565
3566 // Return whether the first data section is a relro section.
3567
3568 bool
3569 Output_segment::is_first_section_relro() const
3570 {
3571 return (!this->output_data_.empty()
3572 && this->output_data_.front()->is_section()
3573 && this->output_data_.front()->output_section()->is_relro());
3574 }
3575
3576 // Return the maximum alignment of the Output_data in Output_segment.
3577
3578 uint64_t
3579 Output_segment::maximum_alignment()
3580 {
3581 if (!this->is_max_align_known_)
3582 {
3583 uint64_t addralign;
3584
3585 addralign = Output_segment::maximum_alignment_list(&this->output_data_);
3586 if (addralign > this->max_align_)
3587 this->max_align_ = addralign;
3588
3589 addralign = Output_segment::maximum_alignment_list(&this->output_bss_);
3590 if (addralign > this->max_align_)
3591 this->max_align_ = addralign;
3592
3593 this->is_max_align_known_ = true;
3594 }
3595
3596 return this->max_align_;
3597 }
3598
3599 // Return the maximum alignment of a list of Output_data.
3600
3601 uint64_t
3602 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3603 {
3604 uint64_t ret = 0;
3605 for (Output_data_list::const_iterator p = pdl->begin();
3606 p != pdl->end();
3607 ++p)
3608 {
3609 uint64_t addralign = (*p)->addralign();
3610 if (addralign > ret)
3611 ret = addralign;
3612 }
3613 return ret;
3614 }
3615
3616 // Return the number of dynamic relocs applied to this segment.
3617
3618 unsigned int
3619 Output_segment::dynamic_reloc_count() const
3620 {
3621 return (this->dynamic_reloc_count_list(&this->output_data_)
3622 + this->dynamic_reloc_count_list(&this->output_bss_));
3623 }
3624
3625 // Return the number of dynamic relocs applied to an Output_data_list.
3626
3627 unsigned int
3628 Output_segment::dynamic_reloc_count_list(const Output_data_list* pdl) const
3629 {
3630 unsigned int count = 0;
3631 for (Output_data_list::const_iterator p = pdl->begin();
3632 p != pdl->end();
3633 ++p)
3634 count += (*p)->dynamic_reloc_count();
3635 return count;
3636 }
3637
3638 // Set the section addresses for an Output_segment. If RESET is true,
3639 // reset the addresses first. ADDR is the address and *POFF is the
3640 // file offset. Set the section indexes starting with *PSHNDX.
3641 // Return the address of the immediately following segment. Update
3642 // *POFF and *PSHNDX.
3643
3644 uint64_t
3645 Output_segment::set_section_addresses(const Layout* layout, bool reset,
3646 uint64_t addr,
3647 unsigned int increase_relro,
3648 off_t* poff,
3649 unsigned int* pshndx)
3650 {
3651 gold_assert(this->type_ == elfcpp::PT_LOAD);
3652
3653 off_t orig_off = *poff;
3654
3655 // If we have relro sections, we need to pad forward now so that the
3656 // relro sections plus INCREASE_RELRO end on a common page boundary.
3657 if (parameters->options().relro()
3658 && this->is_first_section_relro()
3659 && (!this->are_addresses_set_ || reset))
3660 {
3661 uint64_t relro_size = 0;
3662 off_t off = *poff;
3663 for (Output_data_list::iterator p = this->output_data_.begin();
3664 p != this->output_data_.end();
3665 ++p)
3666 {
3667 if (!(*p)->is_section())
3668 break;
3669 Output_section* pos = (*p)->output_section();
3670 if (!pos->is_relro())
3671 break;
3672 gold_assert(!(*p)->is_section_flag_set(elfcpp::SHF_TLS));
3673 if ((*p)->is_address_valid())
3674 relro_size += (*p)->data_size();
3675 else
3676 {
3677 // FIXME: This could be faster.
3678 (*p)->set_address_and_file_offset(addr + relro_size,
3679 off + relro_size);
3680 relro_size += (*p)->data_size();
3681 (*p)->reset_address_and_file_offset();
3682 }
3683 }
3684 relro_size += increase_relro;
3685
3686 uint64_t page_align = parameters->target().common_pagesize();
3687
3688 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
3689 uint64_t desired_align = page_align - (relro_size % page_align);
3690 if (desired_align < *poff % page_align)
3691 *poff += page_align - *poff % page_align;
3692 *poff += desired_align - *poff % page_align;
3693 addr += *poff - orig_off;
3694 orig_off = *poff;
3695 }
3696
3697 if (!reset && this->are_addresses_set_)
3698 {
3699 gold_assert(this->paddr_ == addr);
3700 addr = this->vaddr_;
3701 }
3702 else
3703 {
3704 this->vaddr_ = addr;
3705 this->paddr_ = addr;
3706 this->are_addresses_set_ = true;
3707 }
3708
3709 bool in_tls = false;
3710
3711 this->offset_ = orig_off;
3712
3713 addr = this->set_section_list_addresses(layout, reset, &this->output_data_,
3714 addr, poff, pshndx, &in_tls);
3715 this->filesz_ = *poff - orig_off;
3716
3717 off_t off = *poff;
3718
3719 uint64_t ret = this->set_section_list_addresses(layout, reset,
3720 &this->output_bss_,
3721 addr, poff, pshndx,
3722 &in_tls);
3723
3724 // If the last section was a TLS section, align upward to the
3725 // alignment of the TLS segment, so that the overall size of the TLS
3726 // segment is aligned.
3727 if (in_tls)
3728 {
3729 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
3730 *poff = align_address(*poff, segment_align);
3731 }
3732
3733 this->memsz_ = *poff - orig_off;
3734
3735 // Ignore the file offset adjustments made by the BSS Output_data
3736 // objects.
3737 *poff = off;
3738
3739 return ret;
3740 }
3741
3742 // Set the addresses and file offsets in a list of Output_data
3743 // structures.
3744
3745 uint64_t
3746 Output_segment::set_section_list_addresses(const Layout* layout, bool reset,
3747 Output_data_list* pdl,
3748 uint64_t addr, off_t* poff,
3749 unsigned int* pshndx,
3750 bool* in_tls)
3751 {
3752 off_t startoff = *poff;
3753
3754 off_t off = startoff;
3755 for (Output_data_list::iterator p = pdl->begin();
3756 p != pdl->end();
3757 ++p)
3758 {
3759 if (reset)
3760 (*p)->reset_address_and_file_offset();
3761
3762 // When using a linker script the section will most likely
3763 // already have an address.
3764 if (!(*p)->is_address_valid())
3765 {
3766 uint64_t align = (*p)->addralign();
3767
3768 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3769 {
3770 // Give the first TLS section the alignment of the
3771 // entire TLS segment. Otherwise the TLS segment as a
3772 // whole may be misaligned.
3773 if (!*in_tls)
3774 {
3775 Output_segment* tls_segment = layout->tls_segment();
3776 gold_assert(tls_segment != NULL);
3777 uint64_t segment_align = tls_segment->maximum_alignment();
3778 gold_assert(segment_align >= align);
3779 align = segment_align;
3780
3781 *in_tls = true;
3782 }
3783 }
3784 else
3785 {
3786 // If this is the first section after the TLS segment,
3787 // align it to at least the alignment of the TLS
3788 // segment, so that the size of the overall TLS segment
3789 // is aligned.
3790 if (*in_tls)
3791 {
3792 uint64_t segment_align =
3793 layout->tls_segment()->maximum_alignment();
3794 if (segment_align > align)
3795 align = segment_align;
3796
3797 *in_tls = false;
3798 }
3799 }
3800
3801 off = align_address(off, align);
3802 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
3803 }
3804 else
3805 {
3806 // The script may have inserted a skip forward, but it
3807 // better not have moved backward.
3808 if ((*p)->address() >= addr + (off - startoff))
3809 off += (*p)->address() - (addr + (off - startoff));
3810 else
3811 {
3812 if (!layout->script_options()->saw_sections_clause())
3813 gold_unreachable();
3814 else
3815 {
3816 Output_section* os = (*p)->output_section();
3817
3818 // Cast to unsigned long long to avoid format warnings.
3819 unsigned long long previous_dot =
3820 static_cast<unsigned long long>(addr + (off - startoff));
3821 unsigned long long dot =
3822 static_cast<unsigned long long>((*p)->address());
3823
3824 if (os == NULL)
3825 gold_error(_("dot moves backward in linker script "
3826 "from 0x%llx to 0x%llx"), previous_dot, dot);
3827 else
3828 gold_error(_("address of section '%s' moves backward "
3829 "from 0x%llx to 0x%llx"),
3830 os->name(), previous_dot, dot);
3831 }
3832 }
3833 (*p)->set_file_offset(off);
3834 (*p)->finalize_data_size();
3835 }
3836
3837 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
3838 // section. Such a section does not affect the size of a
3839 // PT_LOAD segment.
3840 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
3841 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
3842 off += (*p)->data_size();
3843
3844 if ((*p)->is_section())
3845 {
3846 (*p)->set_out_shndx(*pshndx);
3847 ++*pshndx;
3848 }
3849 }
3850
3851 *poff = off;
3852 return addr + (off - startoff);
3853 }
3854
3855 // For a non-PT_LOAD segment, set the offset from the sections, if
3856 // any. Add INCREASE to the file size and the memory size.
3857
3858 void
3859 Output_segment::set_offset(unsigned int increase)
3860 {
3861 gold_assert(this->type_ != elfcpp::PT_LOAD);
3862
3863 gold_assert(!this->are_addresses_set_);
3864
3865 if (this->output_data_.empty() && this->output_bss_.empty())
3866 {
3867 gold_assert(increase == 0);
3868 this->vaddr_ = 0;
3869 this->paddr_ = 0;
3870 this->are_addresses_set_ = true;
3871 this->memsz_ = 0;
3872 this->min_p_align_ = 0;
3873 this->offset_ = 0;
3874 this->filesz_ = 0;
3875 return;
3876 }
3877
3878 const Output_data* first;
3879 if (this->output_data_.empty())
3880 first = this->output_bss_.front();
3881 else
3882 first = this->output_data_.front();
3883 this->vaddr_ = first->address();
3884 this->paddr_ = (first->has_load_address()
3885 ? first->load_address()
3886 : this->vaddr_);
3887 this->are_addresses_set_ = true;
3888 this->offset_ = first->offset();
3889
3890 if (this->output_data_.empty())
3891 this->filesz_ = 0;
3892 else
3893 {
3894 const Output_data* last_data = this->output_data_.back();
3895 this->filesz_ = (last_data->address()
3896 + last_data->data_size()
3897 - this->vaddr_);
3898 }
3899
3900 const Output_data* last;
3901 if (this->output_bss_.empty())
3902 last = this->output_data_.back();
3903 else
3904 last = this->output_bss_.back();
3905 this->memsz_ = (last->address()
3906 + last->data_size()
3907 - this->vaddr_);
3908
3909 this->filesz_ += increase;
3910 this->memsz_ += increase;
3911
3912 // If this is a TLS segment, align the memory size. The code in
3913 // set_section_list ensures that the section after the TLS segment
3914 // is aligned to give us room.
3915 if (this->type_ == elfcpp::PT_TLS)
3916 {
3917 uint64_t segment_align = this->maximum_alignment();
3918 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
3919 this->memsz_ = align_address(this->memsz_, segment_align);
3920 }
3921 }
3922
3923 // Set the TLS offsets of the sections in the PT_TLS segment.
3924
3925 void
3926 Output_segment::set_tls_offsets()
3927 {
3928 gold_assert(this->type_ == elfcpp::PT_TLS);
3929
3930 for (Output_data_list::iterator p = this->output_data_.begin();
3931 p != this->output_data_.end();
3932 ++p)
3933 (*p)->set_tls_offset(this->vaddr_);
3934
3935 for (Output_data_list::iterator p = this->output_bss_.begin();
3936 p != this->output_bss_.end();
3937 ++p)
3938 (*p)->set_tls_offset(this->vaddr_);
3939 }
3940
3941 // Return the address of the first section.
3942
3943 uint64_t
3944 Output_segment::first_section_load_address() const
3945 {
3946 for (Output_data_list::const_iterator p = this->output_data_.begin();
3947 p != this->output_data_.end();
3948 ++p)
3949 if ((*p)->is_section())
3950 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3951
3952 for (Output_data_list::const_iterator p = this->output_bss_.begin();
3953 p != this->output_bss_.end();
3954 ++p)
3955 if ((*p)->is_section())
3956 return (*p)->has_load_address() ? (*p)->load_address() : (*p)->address();
3957
3958 gold_unreachable();
3959 }
3960
3961 // Return the number of Output_sections in an Output_segment.
3962
3963 unsigned int
3964 Output_segment::output_section_count() const
3965 {
3966 return (this->output_section_count_list(&this->output_data_)
3967 + this->output_section_count_list(&this->output_bss_));
3968 }
3969
3970 // Return the number of Output_sections in an Output_data_list.
3971
3972 unsigned int
3973 Output_segment::output_section_count_list(const Output_data_list* pdl) const
3974 {
3975 unsigned int count = 0;
3976 for (Output_data_list::const_iterator p = pdl->begin();
3977 p != pdl->end();
3978 ++p)
3979 {
3980 if ((*p)->is_section())
3981 ++count;
3982 }
3983 return count;
3984 }
3985
3986 // Return the section attached to the list segment with the lowest
3987 // load address. This is used when handling a PHDRS clause in a
3988 // linker script.
3989
3990 Output_section*
3991 Output_segment::section_with_lowest_load_address() const
3992 {
3993 Output_section* found = NULL;
3994 uint64_t found_lma = 0;
3995 this->lowest_load_address_in_list(&this->output_data_, &found, &found_lma);
3996
3997 Output_section* found_data = found;
3998 this->lowest_load_address_in_list(&this->output_bss_, &found, &found_lma);
3999 if (found != found_data && found_data != NULL)
4000 {
4001 gold_error(_("nobits section %s may not precede progbits section %s "
4002 "in same segment"),
4003 found->name(), found_data->name());
4004 return NULL;
4005 }
4006
4007 return found;
4008 }
4009
4010 // Look through a list for a section with a lower load address.
4011
4012 void
4013 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4014 Output_section** found,
4015 uint64_t* found_lma) const
4016 {
4017 for (Output_data_list::const_iterator p = pdl->begin();
4018 p != pdl->end();
4019 ++p)
4020 {
4021 if (!(*p)->is_section())
4022 continue;
4023 Output_section* os = static_cast<Output_section*>(*p);
4024 uint64_t lma = (os->has_load_address()
4025 ? os->load_address()
4026 : os->address());
4027 if (*found == NULL || lma < *found_lma)
4028 {
4029 *found = os;
4030 *found_lma = lma;
4031 }
4032 }
4033 }
4034
4035 // Write the segment data into *OPHDR.
4036
4037 template<int size, bool big_endian>
4038 void
4039 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4040 {
4041 ophdr->put_p_type(this->type_);
4042 ophdr->put_p_offset(this->offset_);
4043 ophdr->put_p_vaddr(this->vaddr_);
4044 ophdr->put_p_paddr(this->paddr_);
4045 ophdr->put_p_filesz(this->filesz_);
4046 ophdr->put_p_memsz(this->memsz_);
4047 ophdr->put_p_flags(this->flags_);
4048 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4049 }
4050
4051 // Write the section headers into V.
4052
4053 template<int size, bool big_endian>
4054 unsigned char*
4055 Output_segment::write_section_headers(const Layout* layout,
4056 const Stringpool* secnamepool,
4057 unsigned char* v,
4058 unsigned int *pshndx) const
4059 {
4060 // Every section that is attached to a segment must be attached to a
4061 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4062 // segments.
4063 if (this->type_ != elfcpp::PT_LOAD)
4064 return v;
4065
4066 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4067 &this->output_data_,
4068 v, pshndx);
4069 v = this->write_section_headers_list<size, big_endian>(layout, secnamepool,
4070 &this->output_bss_,
4071 v, pshndx);
4072 return v;
4073 }
4074
4075 template<int size, bool big_endian>
4076 unsigned char*
4077 Output_segment::write_section_headers_list(const Layout* layout,
4078 const Stringpool* secnamepool,
4079 const Output_data_list* pdl,
4080 unsigned char* v,
4081 unsigned int* pshndx) const
4082 {
4083 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4084 for (Output_data_list::const_iterator p = pdl->begin();
4085 p != pdl->end();
4086 ++p)
4087 {
4088 if ((*p)->is_section())
4089 {
4090 const Output_section* ps = static_cast<const Output_section*>(*p);
4091 gold_assert(*pshndx == ps->out_shndx());
4092 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4093 ps->write_header(layout, secnamepool, &oshdr);
4094 v += shdr_size;
4095 ++*pshndx;
4096 }
4097 }
4098 return v;
4099 }
4100
4101 // Print the output sections to the map file.
4102
4103 void
4104 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4105 {
4106 if (this->type() != elfcpp::PT_LOAD)
4107 return;
4108 this->print_section_list_to_mapfile(mapfile, &this->output_data_);
4109 this->print_section_list_to_mapfile(mapfile, &this->output_bss_);
4110 }
4111
4112 // Print an output section list to the map file.
4113
4114 void
4115 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4116 const Output_data_list* pdl) const
4117 {
4118 for (Output_data_list::const_iterator p = pdl->begin();
4119 p != pdl->end();
4120 ++p)
4121 (*p)->print_to_mapfile(mapfile);
4122 }
4123
4124 // Output_file methods.
4125
4126 Output_file::Output_file(const char* name)
4127 : name_(name),
4128 o_(-1),
4129 file_size_(0),
4130 base_(NULL),
4131 map_is_anonymous_(false),
4132 is_temporary_(false)
4133 {
4134 }
4135
4136 // Try to open an existing file. Returns false if the file doesn't
4137 // exist, has a size of 0 or can't be mmapped.
4138
4139 bool
4140 Output_file::open_for_modification()
4141 {
4142 // The name "-" means "stdout".
4143 if (strcmp(this->name_, "-") == 0)
4144 return false;
4145
4146 // Don't bother opening files with a size of zero.
4147 struct stat s;
4148 if (::stat(this->name_, &s) != 0 || s.st_size == 0)
4149 return false;
4150
4151 int o = open_descriptor(-1, this->name_, O_RDWR, 0);
4152 if (o < 0)
4153 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4154 this->o_ = o;
4155 this->file_size_ = s.st_size;
4156
4157 // If the file can't be mmapped, copying the content to an anonymous
4158 // map will probably negate the performance benefits of incremental
4159 // linking. This could be helped by using views and loading only
4160 // the necessary parts, but this is not supported as of now.
4161 if (!this->map_no_anonymous())
4162 {
4163 release_descriptor(o, true);
4164 this->o_ = -1;
4165 this->file_size_ = 0;
4166 return false;
4167 }
4168
4169 return true;
4170 }
4171
4172 // Open the output file.
4173
4174 void
4175 Output_file::open(off_t file_size)
4176 {
4177 this->file_size_ = file_size;
4178
4179 // Unlink the file first; otherwise the open() may fail if the file
4180 // is busy (e.g. it's an executable that's currently being executed).
4181 //
4182 // However, the linker may be part of a system where a zero-length
4183 // file is created for it to write to, with tight permissions (gcc
4184 // 2.95 did something like this). Unlinking the file would work
4185 // around those permission controls, so we only unlink if the file
4186 // has a non-zero size. We also unlink only regular files to avoid
4187 // trouble with directories/etc.
4188 //
4189 // If we fail, continue; this command is merely a best-effort attempt
4190 // to improve the odds for open().
4191
4192 // We let the name "-" mean "stdout"
4193 if (!this->is_temporary_)
4194 {
4195 if (strcmp(this->name_, "-") == 0)
4196 this->o_ = STDOUT_FILENO;
4197 else
4198 {
4199 struct stat s;
4200 if (::stat(this->name_, &s) == 0
4201 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4202 {
4203 if (s.st_size != 0)
4204 ::unlink(this->name_);
4205 else if (!parameters->options().relocatable())
4206 {
4207 // If we don't unlink the existing file, add execute
4208 // permission where read permissions already exist
4209 // and where the umask permits.
4210 int mask = ::umask(0);
4211 ::umask(mask);
4212 s.st_mode |= (s.st_mode & 0444) >> 2;
4213 ::chmod(this->name_, s.st_mode & ~mask);
4214 }
4215 }
4216
4217 int mode = parameters->options().relocatable() ? 0666 : 0777;
4218 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4219 mode);
4220 if (o < 0)
4221 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4222 this->o_ = o;
4223 }
4224 }
4225
4226 this->map();
4227 }
4228
4229 // Resize the output file.
4230
4231 void
4232 Output_file::resize(off_t file_size)
4233 {
4234 // If the mmap is mapping an anonymous memory buffer, this is easy:
4235 // just mremap to the new size. If it's mapping to a file, we want
4236 // to unmap to flush to the file, then remap after growing the file.
4237 if (this->map_is_anonymous_)
4238 {
4239 void* base = ::mremap(this->base_, this->file_size_, file_size,
4240 MREMAP_MAYMOVE);
4241 if (base == MAP_FAILED)
4242 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4243 this->base_ = static_cast<unsigned char*>(base);
4244 this->file_size_ = file_size;
4245 }
4246 else
4247 {
4248 this->unmap();
4249 this->file_size_ = file_size;
4250 if (!this->map_no_anonymous())
4251 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4252 }
4253 }
4254
4255 // Map an anonymous block of memory which will later be written to the
4256 // file. Return whether the map succeeded.
4257
4258 bool
4259 Output_file::map_anonymous()
4260 {
4261 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4262 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4263 if (base != MAP_FAILED)
4264 {
4265 this->map_is_anonymous_ = true;
4266 this->base_ = static_cast<unsigned char*>(base);
4267 return true;
4268 }
4269 return false;
4270 }
4271
4272 // Map the file into memory. Return whether the mapping succeeded.
4273
4274 bool
4275 Output_file::map_no_anonymous()
4276 {
4277 const int o = this->o_;
4278
4279 // If the output file is not a regular file, don't try to mmap it;
4280 // instead, we'll mmap a block of memory (an anonymous buffer), and
4281 // then later write the buffer to the file.
4282 void* base;
4283 struct stat statbuf;
4284 if (o == STDOUT_FILENO || o == STDERR_FILENO
4285 || ::fstat(o, &statbuf) != 0
4286 || !S_ISREG(statbuf.st_mode)
4287 || this->is_temporary_)
4288 return false;
4289
4290 // Ensure that we have disk space available for the file. If we
4291 // don't do this, it is possible that we will call munmap, close,
4292 // and exit with dirty buffers still in the cache with no assigned
4293 // disk blocks. If the disk is out of space at that point, the
4294 // output file will wind up incomplete, but we will have already
4295 // exited. The alternative to fallocate would be to use fdatasync,
4296 // but that would be a more significant performance hit.
4297 if (::posix_fallocate(o, 0, this->file_size_) < 0)
4298 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4299
4300 // Map the file into memory.
4301 base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4302 MAP_SHARED, o, 0);
4303
4304 // The mmap call might fail because of file system issues: the file
4305 // system might not support mmap at all, or it might not support
4306 // mmap with PROT_WRITE.
4307 if (base == MAP_FAILED)
4308 return false;
4309
4310 this->map_is_anonymous_ = false;
4311 this->base_ = static_cast<unsigned char*>(base);
4312 return true;
4313 }
4314
4315 // Map the file into memory.
4316
4317 void
4318 Output_file::map()
4319 {
4320 if (this->map_no_anonymous())
4321 return;
4322
4323 // The mmap call might fail because of file system issues: the file
4324 // system might not support mmap at all, or it might not support
4325 // mmap with PROT_WRITE. I'm not sure which errno values we will
4326 // see in all cases, so if the mmap fails for any reason and we
4327 // don't care about file contents, try for an anonymous map.
4328 if (this->map_anonymous())
4329 return;
4330
4331 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4332 this->name_, static_cast<unsigned long>(this->file_size_),
4333 strerror(errno));
4334 }
4335
4336 // Unmap the file from memory.
4337
4338 void
4339 Output_file::unmap()
4340 {
4341 if (::munmap(this->base_, this->file_size_) < 0)
4342 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4343 this->base_ = NULL;
4344 }
4345
4346 // Close the output file.
4347
4348 void
4349 Output_file::close()
4350 {
4351 // If the map isn't file-backed, we need to write it now.
4352 if (this->map_is_anonymous_ && !this->is_temporary_)
4353 {
4354 size_t bytes_to_write = this->file_size_;
4355 size_t offset = 0;
4356 while (bytes_to_write > 0)
4357 {
4358 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4359 bytes_to_write);
4360 if (bytes_written == 0)
4361 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4362 else if (bytes_written < 0)
4363 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4364 else
4365 {
4366 bytes_to_write -= bytes_written;
4367 offset += bytes_written;
4368 }
4369 }
4370 }
4371 this->unmap();
4372
4373 // We don't close stdout or stderr
4374 if (this->o_ != STDOUT_FILENO
4375 && this->o_ != STDERR_FILENO
4376 && !this->is_temporary_)
4377 if (::close(this->o_) < 0)
4378 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4379 this->o_ = -1;
4380 }
4381
4382 // Instantiate the templates we need. We could use the configure
4383 // script to restrict this to only the ones for implemented targets.
4384
4385 #ifdef HAVE_TARGET_32_LITTLE
4386 template
4387 off_t
4388 Output_section::add_input_section<32, false>(
4389 Sized_relobj<32, false>* object,
4390 unsigned int shndx,
4391 const char* secname,
4392 const elfcpp::Shdr<32, false>& shdr,
4393 unsigned int reloc_shndx,
4394 bool have_sections_script);
4395 #endif
4396
4397 #ifdef HAVE_TARGET_32_BIG
4398 template
4399 off_t
4400 Output_section::add_input_section<32, true>(
4401 Sized_relobj<32, true>* object,
4402 unsigned int shndx,
4403 const char* secname,
4404 const elfcpp::Shdr<32, true>& shdr,
4405 unsigned int reloc_shndx,
4406 bool have_sections_script);
4407 #endif
4408
4409 #ifdef HAVE_TARGET_64_LITTLE
4410 template
4411 off_t
4412 Output_section::add_input_section<64, false>(
4413 Sized_relobj<64, false>* object,
4414 unsigned int shndx,
4415 const char* secname,
4416 const elfcpp::Shdr<64, false>& shdr,
4417 unsigned int reloc_shndx,
4418 bool have_sections_script);
4419 #endif
4420
4421 #ifdef HAVE_TARGET_64_BIG
4422 template
4423 off_t
4424 Output_section::add_input_section<64, true>(
4425 Sized_relobj<64, true>* object,
4426 unsigned int shndx,
4427 const char* secname,
4428 const elfcpp::Shdr<64, true>& shdr,
4429 unsigned int reloc_shndx,
4430 bool have_sections_script);
4431 #endif
4432
4433 #ifdef HAVE_TARGET_32_LITTLE
4434 template
4435 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4436 #endif
4437
4438 #ifdef HAVE_TARGET_32_BIG
4439 template
4440 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4441 #endif
4442
4443 #ifdef HAVE_TARGET_64_LITTLE
4444 template
4445 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4446 #endif
4447
4448 #ifdef HAVE_TARGET_64_BIG
4449 template
4450 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4451 #endif
4452
4453 #ifdef HAVE_TARGET_32_LITTLE
4454 template
4455 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4456 #endif
4457
4458 #ifdef HAVE_TARGET_32_BIG
4459 template
4460 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4461 #endif
4462
4463 #ifdef HAVE_TARGET_64_LITTLE
4464 template
4465 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4466 #endif
4467
4468 #ifdef HAVE_TARGET_64_BIG
4469 template
4470 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4471 #endif
4472
4473 #ifdef HAVE_TARGET_32_LITTLE
4474 template
4475 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4476 #endif
4477
4478 #ifdef HAVE_TARGET_32_BIG
4479 template
4480 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4481 #endif
4482
4483 #ifdef HAVE_TARGET_64_LITTLE
4484 template
4485 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4486 #endif
4487
4488 #ifdef HAVE_TARGET_64_BIG
4489 template
4490 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4491 #endif
4492
4493 #ifdef HAVE_TARGET_32_LITTLE
4494 template
4495 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4496 #endif
4497
4498 #ifdef HAVE_TARGET_32_BIG
4499 template
4500 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4501 #endif
4502
4503 #ifdef HAVE_TARGET_64_LITTLE
4504 template
4505 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
4506 #endif
4507
4508 #ifdef HAVE_TARGET_64_BIG
4509 template
4510 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
4511 #endif
4512
4513 #ifdef HAVE_TARGET_32_LITTLE
4514 template
4515 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
4516 #endif
4517
4518 #ifdef HAVE_TARGET_32_BIG
4519 template
4520 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
4521 #endif
4522
4523 #ifdef HAVE_TARGET_64_LITTLE
4524 template
4525 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
4526 #endif
4527
4528 #ifdef HAVE_TARGET_64_BIG
4529 template
4530 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
4531 #endif
4532
4533 #ifdef HAVE_TARGET_32_LITTLE
4534 template
4535 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
4536 #endif
4537
4538 #ifdef HAVE_TARGET_32_BIG
4539 template
4540 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
4541 #endif
4542
4543 #ifdef HAVE_TARGET_64_LITTLE
4544 template
4545 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
4546 #endif
4547
4548 #ifdef HAVE_TARGET_64_BIG
4549 template
4550 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
4551 #endif
4552
4553 #ifdef HAVE_TARGET_32_LITTLE
4554 template
4555 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
4556 #endif
4557
4558 #ifdef HAVE_TARGET_32_BIG
4559 template
4560 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
4561 #endif
4562
4563 #ifdef HAVE_TARGET_64_LITTLE
4564 template
4565 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
4566 #endif
4567
4568 #ifdef HAVE_TARGET_64_BIG
4569 template
4570 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
4571 #endif
4572
4573 #ifdef HAVE_TARGET_32_LITTLE
4574 template
4575 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
4576 #endif
4577
4578 #ifdef HAVE_TARGET_32_BIG
4579 template
4580 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
4581 #endif
4582
4583 #ifdef HAVE_TARGET_64_LITTLE
4584 template
4585 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
4586 #endif
4587
4588 #ifdef HAVE_TARGET_64_BIG
4589 template
4590 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
4591 #endif
4592
4593 #ifdef HAVE_TARGET_32_LITTLE
4594 template
4595 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
4596 #endif
4597
4598 #ifdef HAVE_TARGET_32_BIG
4599 template
4600 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
4601 #endif
4602
4603 #ifdef HAVE_TARGET_64_LITTLE
4604 template
4605 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
4606 #endif
4607
4608 #ifdef HAVE_TARGET_64_BIG
4609 template
4610 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
4611 #endif
4612
4613 #ifdef HAVE_TARGET_32_LITTLE
4614 template
4615 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
4616 #endif
4617
4618 #ifdef HAVE_TARGET_32_BIG
4619 template
4620 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
4621 #endif
4622
4623 #ifdef HAVE_TARGET_64_LITTLE
4624 template
4625 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
4626 #endif
4627
4628 #ifdef HAVE_TARGET_64_BIG
4629 template
4630 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
4631 #endif
4632
4633 #ifdef HAVE_TARGET_32_LITTLE
4634 template
4635 class Output_data_group<32, false>;
4636 #endif
4637
4638 #ifdef HAVE_TARGET_32_BIG
4639 template
4640 class Output_data_group<32, true>;
4641 #endif
4642
4643 #ifdef HAVE_TARGET_64_LITTLE
4644 template
4645 class Output_data_group<64, false>;
4646 #endif
4647
4648 #ifdef HAVE_TARGET_64_BIG
4649 template
4650 class Output_data_group<64, true>;
4651 #endif
4652
4653 #ifdef HAVE_TARGET_32_LITTLE
4654 template
4655 class Output_data_got<32, false>;
4656 #endif
4657
4658 #ifdef HAVE_TARGET_32_BIG
4659 template
4660 class Output_data_got<32, true>;
4661 #endif
4662
4663 #ifdef HAVE_TARGET_64_LITTLE
4664 template
4665 class Output_data_got<64, false>;
4666 #endif
4667
4668 #ifdef HAVE_TARGET_64_BIG
4669 template
4670 class Output_data_got<64, true>;
4671 #endif
4672
4673 } // End namespace gold.
This page took 0.163487 seconds and 5 git commands to generate.