Refactor Output_data_reloc_base::do_write for MIPS-specific relocs.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Standard relocation writer, which just calls Output_reloc::write().
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 struct Output_reloc_writer
1259 {
1260 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1261 typedef std::vector<Output_reloc_type> Relocs;
1262
1263 static void
1264 write(typename Relocs::const_iterator p, unsigned char* pov)
1265 { p->write(pov); }
1266 };
1267
1268 // Write out relocation data.
1269
1270 template<int sh_type, bool dynamic, int size, bool big_endian>
1271 void
1272 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1273 Output_file* of)
1274 {
1275 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1276 this->do_write_generic<Writer>(of);
1277 }
1278
1279 // Class Output_relocatable_relocs.
1280
1281 template<int sh_type, int size, bool big_endian>
1282 void
1283 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1284 {
1285 this->set_data_size(this->rr_->output_reloc_count()
1286 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1287 }
1288
1289 // class Output_data_group.
1290
1291 template<int size, bool big_endian>
1292 Output_data_group<size, big_endian>::Output_data_group(
1293 Sized_relobj_file<size, big_endian>* relobj,
1294 section_size_type entry_count,
1295 elfcpp::Elf_Word flags,
1296 std::vector<unsigned int>* input_shndxes)
1297 : Output_section_data(entry_count * 4, 4, false),
1298 relobj_(relobj),
1299 flags_(flags)
1300 {
1301 this->input_shndxes_.swap(*input_shndxes);
1302 }
1303
1304 // Write out the section group, which means translating the section
1305 // indexes to apply to the output file.
1306
1307 template<int size, bool big_endian>
1308 void
1309 Output_data_group<size, big_endian>::do_write(Output_file* of)
1310 {
1311 const off_t off = this->offset();
1312 const section_size_type oview_size =
1313 convert_to_section_size_type(this->data_size());
1314 unsigned char* const oview = of->get_output_view(off, oview_size);
1315
1316 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1317 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1318 ++contents;
1319
1320 for (std::vector<unsigned int>::const_iterator p =
1321 this->input_shndxes_.begin();
1322 p != this->input_shndxes_.end();
1323 ++p, ++contents)
1324 {
1325 Output_section* os = this->relobj_->output_section(*p);
1326
1327 unsigned int output_shndx;
1328 if (os != NULL)
1329 output_shndx = os->out_shndx();
1330 else
1331 {
1332 this->relobj_->error(_("section group retained but "
1333 "group element discarded"));
1334 output_shndx = 0;
1335 }
1336
1337 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1338 }
1339
1340 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1341 gold_assert(wrote == oview_size);
1342
1343 of->write_output_view(off, oview_size, oview);
1344
1345 // We no longer need this information.
1346 this->input_shndxes_.clear();
1347 }
1348
1349 // Output_data_got::Got_entry methods.
1350
1351 // Write out the entry.
1352
1353 template<int got_size, bool big_endian>
1354 void
1355 Output_data_got<got_size, big_endian>::Got_entry::write(
1356 unsigned int got_indx,
1357 unsigned char* pov) const
1358 {
1359 Valtype val = 0;
1360
1361 switch (this->local_sym_index_)
1362 {
1363 case GSYM_CODE:
1364 {
1365 // If the symbol is resolved locally, we need to write out the
1366 // link-time value, which will be relocated dynamically by a
1367 // RELATIVE relocation.
1368 Symbol* gsym = this->u_.gsym;
1369 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1370 val = parameters->target().plt_address_for_global(gsym);
1371 else
1372 {
1373 switch (parameters->size_and_endianness())
1374 {
1375 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1376 case Parameters::TARGET_32_LITTLE:
1377 case Parameters::TARGET_32_BIG:
1378 {
1379 // This cast is ugly. We don't want to put a
1380 // virtual method in Symbol, because we want Symbol
1381 // to be as small as possible.
1382 Sized_symbol<32>::Value_type v;
1383 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1384 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1385 }
1386 break;
1387 #endif
1388 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1389 case Parameters::TARGET_64_LITTLE:
1390 case Parameters::TARGET_64_BIG:
1391 {
1392 Sized_symbol<64>::Value_type v;
1393 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1394 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1395 }
1396 break;
1397 #endif
1398 default:
1399 gold_unreachable();
1400 }
1401 if (this->use_plt_or_tls_offset_
1402 && gsym->type() == elfcpp::STT_TLS)
1403 val += parameters->target().tls_offset_for_global(gsym,
1404 got_indx);
1405 }
1406 }
1407 break;
1408
1409 case CONSTANT_CODE:
1410 val = this->u_.constant;
1411 break;
1412
1413 case RESERVED_CODE:
1414 // If we're doing an incremental update, don't touch this GOT entry.
1415 if (parameters->incremental_update())
1416 return;
1417 val = this->u_.constant;
1418 break;
1419
1420 default:
1421 {
1422 const Relobj* object = this->u_.object;
1423 const unsigned int lsi = this->local_sym_index_;
1424 bool is_tls = object->local_is_tls(lsi);
1425 if (this->use_plt_or_tls_offset_ && !is_tls)
1426 val = parameters->target().plt_address_for_local(object, lsi);
1427 else
1428 {
1429 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1430 val = convert_types<Valtype, uint64_t>(lval);
1431 if (this->use_plt_or_tls_offset_ && is_tls)
1432 val += parameters->target().tls_offset_for_local(object, lsi,
1433 got_indx);
1434 }
1435 }
1436 break;
1437 }
1438
1439 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1440 }
1441
1442 // Output_data_got methods.
1443
1444 // Add an entry for a global symbol to the GOT. This returns true if
1445 // this is a new GOT entry, false if the symbol already had a GOT
1446 // entry.
1447
1448 template<int got_size, bool big_endian>
1449 bool
1450 Output_data_got<got_size, big_endian>::add_global(
1451 Symbol* gsym,
1452 unsigned int got_type)
1453 {
1454 if (gsym->has_got_offset(got_type))
1455 return false;
1456
1457 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1458 gsym->set_got_offset(got_type, got_offset);
1459 return true;
1460 }
1461
1462 // Like add_global, but use the PLT offset.
1463
1464 template<int got_size, bool big_endian>
1465 bool
1466 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1467 unsigned int got_type)
1468 {
1469 if (gsym->has_got_offset(got_type))
1470 return false;
1471
1472 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1473 gsym->set_got_offset(got_type, got_offset);
1474 return true;
1475 }
1476
1477 // Add an entry for a global symbol to the GOT, and add a dynamic
1478 // relocation of type R_TYPE for the GOT entry.
1479
1480 template<int got_size, bool big_endian>
1481 void
1482 Output_data_got<got_size, big_endian>::add_global_with_rel(
1483 Symbol* gsym,
1484 unsigned int got_type,
1485 Output_data_reloc_generic* rel_dyn,
1486 unsigned int r_type)
1487 {
1488 if (gsym->has_got_offset(got_type))
1489 return;
1490
1491 unsigned int got_offset = this->add_got_entry(Got_entry());
1492 gsym->set_got_offset(got_type, got_offset);
1493 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1494 }
1495
1496 // Add a pair of entries for a global symbol to the GOT, and add
1497 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1498 // If R_TYPE_2 == 0, add the second entry with no relocation.
1499 template<int got_size, bool big_endian>
1500 void
1501 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1502 Symbol* gsym,
1503 unsigned int got_type,
1504 Output_data_reloc_generic* rel_dyn,
1505 unsigned int r_type_1,
1506 unsigned int r_type_2)
1507 {
1508 if (gsym->has_got_offset(got_type))
1509 return;
1510
1511 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1512 gsym->set_got_offset(got_type, got_offset);
1513 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1514
1515 if (r_type_2 != 0)
1516 rel_dyn->add_global_generic(gsym, r_type_2, this,
1517 got_offset + got_size / 8, 0);
1518 }
1519
1520 // Add an entry for a local symbol to the GOT. This returns true if
1521 // this is a new GOT entry, false if the symbol already has a GOT
1522 // entry.
1523
1524 template<int got_size, bool big_endian>
1525 bool
1526 Output_data_got<got_size, big_endian>::add_local(
1527 Relobj* object,
1528 unsigned int symndx,
1529 unsigned int got_type)
1530 {
1531 if (object->local_has_got_offset(symndx, got_type))
1532 return false;
1533
1534 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1535 false));
1536 object->set_local_got_offset(symndx, got_type, got_offset);
1537 return true;
1538 }
1539
1540 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1541 // true if this is a new GOT entry, false if the symbol already has a GOT
1542 // entry.
1543
1544 template<int got_size, bool big_endian>
1545 bool
1546 Output_data_got<got_size, big_endian>::add_local(
1547 Relobj* object,
1548 unsigned int symndx,
1549 unsigned int got_type,
1550 uint64_t addend)
1551 {
1552 if (object->local_has_got_offset(symndx, got_type, addend))
1553 return false;
1554
1555 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1556 false, addend));
1557 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1558 return true;
1559 }
1560
1561 // Like add_local, but use the PLT offset.
1562
1563 template<int got_size, bool big_endian>
1564 bool
1565 Output_data_got<got_size, big_endian>::add_local_plt(
1566 Relobj* object,
1567 unsigned int symndx,
1568 unsigned int got_type)
1569 {
1570 if (object->local_has_got_offset(symndx, got_type))
1571 return false;
1572
1573 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1574 true));
1575 object->set_local_got_offset(symndx, got_type, got_offset);
1576 return true;
1577 }
1578
1579 // Add an entry for a local symbol to the GOT, and add a dynamic
1580 // relocation of type R_TYPE for the GOT entry.
1581
1582 template<int got_size, bool big_endian>
1583 void
1584 Output_data_got<got_size, big_endian>::add_local_with_rel(
1585 Relobj* object,
1586 unsigned int symndx,
1587 unsigned int got_type,
1588 Output_data_reloc_generic* rel_dyn,
1589 unsigned int r_type)
1590 {
1591 if (object->local_has_got_offset(symndx, got_type))
1592 return;
1593
1594 unsigned int got_offset = this->add_got_entry(Got_entry());
1595 object->set_local_got_offset(symndx, got_type, got_offset);
1596 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1597 }
1598
1599 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1600 // relocation of type R_TYPE for the GOT entry.
1601
1602 template<int got_size, bool big_endian>
1603 void
1604 Output_data_got<got_size, big_endian>::add_local_with_rel(
1605 Relobj* object,
1606 unsigned int symndx,
1607 unsigned int got_type,
1608 Output_data_reloc_generic* rel_dyn,
1609 unsigned int r_type, uint64_t addend)
1610 {
1611 if (object->local_has_got_offset(symndx, got_type, addend))
1612 return;
1613
1614 unsigned int got_offset = this->add_got_entry(Got_entry());
1615 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1616 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1617 addend);
1618 }
1619
1620 // Add a pair of entries for a local symbol to the GOT, and add
1621 // a dynamic relocation of type R_TYPE using the section symbol of
1622 // the output section to which input section SHNDX maps, on the first.
1623 // The first got entry will have a value of zero, the second the
1624 // value of the local symbol.
1625 template<int got_size, bool big_endian>
1626 void
1627 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1628 Relobj* object,
1629 unsigned int symndx,
1630 unsigned int shndx,
1631 unsigned int got_type,
1632 Output_data_reloc_generic* rel_dyn,
1633 unsigned int r_type)
1634 {
1635 if (object->local_has_got_offset(symndx, got_type))
1636 return;
1637
1638 unsigned int got_offset =
1639 this->add_got_entry_pair(Got_entry(),
1640 Got_entry(object, symndx, false));
1641 object->set_local_got_offset(symndx, got_type, got_offset);
1642 Output_section* os = object->output_section(shndx);
1643 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1644 }
1645
1646 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1647 // a dynamic relocation of type R_TYPE using the section symbol of
1648 // the output section to which input section SHNDX maps, on the first.
1649 // The first got entry will have a value of zero, the second the
1650 // value of the local symbol.
1651 template<int got_size, bool big_endian>
1652 void
1653 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1654 Relobj* object,
1655 unsigned int symndx,
1656 unsigned int shndx,
1657 unsigned int got_type,
1658 Output_data_reloc_generic* rel_dyn,
1659 unsigned int r_type, uint64_t addend)
1660 {
1661 if (object->local_has_got_offset(symndx, got_type, addend))
1662 return;
1663
1664 unsigned int got_offset =
1665 this->add_got_entry_pair(Got_entry(),
1666 Got_entry(object, symndx, false, addend));
1667 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1668 Output_section* os = object->output_section(shndx);
1669 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1670 }
1671
1672 // Add a pair of entries for a local symbol to the GOT, and add
1673 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1674 // The first got entry will have a value of zero, the second the
1675 // value of the local symbol offset by Target::tls_offset_for_local.
1676 template<int got_size, bool big_endian>
1677 void
1678 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1679 Relobj* object,
1680 unsigned int symndx,
1681 unsigned int got_type,
1682 Output_data_reloc_generic* rel_dyn,
1683 unsigned int r_type)
1684 {
1685 if (object->local_has_got_offset(symndx, got_type))
1686 return;
1687
1688 unsigned int got_offset
1689 = this->add_got_entry_pair(Got_entry(),
1690 Got_entry(object, symndx, true));
1691 object->set_local_got_offset(symndx, got_type, got_offset);
1692 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1693 }
1694
1695 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1696
1697 template<int got_size, bool big_endian>
1698 void
1699 Output_data_got<got_size, big_endian>::reserve_local(
1700 unsigned int i,
1701 Relobj* object,
1702 unsigned int sym_index,
1703 unsigned int got_type)
1704 {
1705 this->do_reserve_slot(i);
1706 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1707 }
1708
1709 // Reserve a slot in the GOT for a global symbol.
1710
1711 template<int got_size, bool big_endian>
1712 void
1713 Output_data_got<got_size, big_endian>::reserve_global(
1714 unsigned int i,
1715 Symbol* gsym,
1716 unsigned int got_type)
1717 {
1718 this->do_reserve_slot(i);
1719 gsym->set_got_offset(got_type, this->got_offset(i));
1720 }
1721
1722 // Write out the GOT.
1723
1724 template<int got_size, bool big_endian>
1725 void
1726 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1727 {
1728 const int add = got_size / 8;
1729
1730 const off_t off = this->offset();
1731 const off_t oview_size = this->data_size();
1732 unsigned char* const oview = of->get_output_view(off, oview_size);
1733
1734 unsigned char* pov = oview;
1735 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1736 {
1737 this->entries_[i].write(i, pov);
1738 pov += add;
1739 }
1740
1741 gold_assert(pov - oview == oview_size);
1742
1743 of->write_output_view(off, oview_size, oview);
1744
1745 // We no longer need the GOT entries.
1746 this->entries_.clear();
1747 }
1748
1749 // Create a new GOT entry and return its offset.
1750
1751 template<int got_size, bool big_endian>
1752 unsigned int
1753 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1754 {
1755 if (!this->is_data_size_valid())
1756 {
1757 this->entries_.push_back(got_entry);
1758 this->set_got_size();
1759 return this->last_got_offset();
1760 }
1761 else
1762 {
1763 // For an incremental update, find an available slot.
1764 off_t got_offset = this->free_list_.allocate(got_size / 8,
1765 got_size / 8, 0);
1766 if (got_offset == -1)
1767 gold_fallback(_("out of patch space (GOT);"
1768 " relink with --incremental-full"));
1769 unsigned int got_index = got_offset / (got_size / 8);
1770 gold_assert(got_index < this->entries_.size());
1771 this->entries_[got_index] = got_entry;
1772 return static_cast<unsigned int>(got_offset);
1773 }
1774 }
1775
1776 // Create a pair of new GOT entries and return the offset of the first.
1777
1778 template<int got_size, bool big_endian>
1779 unsigned int
1780 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1781 Got_entry got_entry_1,
1782 Got_entry got_entry_2)
1783 {
1784 if (!this->is_data_size_valid())
1785 {
1786 unsigned int got_offset;
1787 this->entries_.push_back(got_entry_1);
1788 got_offset = this->last_got_offset();
1789 this->entries_.push_back(got_entry_2);
1790 this->set_got_size();
1791 return got_offset;
1792 }
1793 else
1794 {
1795 // For an incremental update, find an available pair of slots.
1796 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1797 got_size / 8, 0);
1798 if (got_offset == -1)
1799 gold_fallback(_("out of patch space (GOT);"
1800 " relink with --incremental-full"));
1801 unsigned int got_index = got_offset / (got_size / 8);
1802 gold_assert(got_index < this->entries_.size());
1803 this->entries_[got_index] = got_entry_1;
1804 this->entries_[got_index + 1] = got_entry_2;
1805 return static_cast<unsigned int>(got_offset);
1806 }
1807 }
1808
1809 // Replace GOT entry I with a new value.
1810
1811 template<int got_size, bool big_endian>
1812 void
1813 Output_data_got<got_size, big_endian>::replace_got_entry(
1814 unsigned int i,
1815 Got_entry got_entry)
1816 {
1817 gold_assert(i < this->entries_.size());
1818 this->entries_[i] = got_entry;
1819 }
1820
1821 // Output_data_dynamic::Dynamic_entry methods.
1822
1823 // Write out the entry.
1824
1825 template<int size, bool big_endian>
1826 void
1827 Output_data_dynamic::Dynamic_entry::write(
1828 unsigned char* pov,
1829 const Stringpool* pool) const
1830 {
1831 typename elfcpp::Elf_types<size>::Elf_WXword val;
1832 switch (this->offset_)
1833 {
1834 case DYNAMIC_NUMBER:
1835 val = this->u_.val;
1836 break;
1837
1838 case DYNAMIC_SECTION_SIZE:
1839 val = this->u_.od->data_size();
1840 if (this->od2 != NULL)
1841 val += this->od2->data_size();
1842 break;
1843
1844 case DYNAMIC_SYMBOL:
1845 {
1846 const Sized_symbol<size>* s =
1847 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1848 val = s->value();
1849 }
1850 break;
1851
1852 case DYNAMIC_STRING:
1853 val = pool->get_offset(this->u_.str);
1854 break;
1855
1856 case DYNAMIC_CUSTOM:
1857 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1858 break;
1859
1860 default:
1861 val = this->u_.od->address() + this->offset_;
1862 break;
1863 }
1864
1865 elfcpp::Dyn_write<size, big_endian> dw(pov);
1866 dw.put_d_tag(this->tag_);
1867 dw.put_d_val(val);
1868 }
1869
1870 // Output_data_dynamic methods.
1871
1872 // Adjust the output section to set the entry size.
1873
1874 void
1875 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1876 {
1877 if (parameters->target().get_size() == 32)
1878 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1879 else if (parameters->target().get_size() == 64)
1880 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1881 else
1882 gold_unreachable();
1883 }
1884
1885 // Set the final data size.
1886
1887 void
1888 Output_data_dynamic::set_final_data_size()
1889 {
1890 // Add the terminating entry if it hasn't been added.
1891 // Because of relaxation, we can run this multiple times.
1892 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1893 {
1894 int extra = parameters->options().spare_dynamic_tags();
1895 for (int i = 0; i < extra; ++i)
1896 this->add_constant(elfcpp::DT_NULL, 0);
1897 this->add_constant(elfcpp::DT_NULL, 0);
1898 }
1899
1900 int dyn_size;
1901 if (parameters->target().get_size() == 32)
1902 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1903 else if (parameters->target().get_size() == 64)
1904 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1905 else
1906 gold_unreachable();
1907 this->set_data_size(this->entries_.size() * dyn_size);
1908 }
1909
1910 // Write out the dynamic entries.
1911
1912 void
1913 Output_data_dynamic::do_write(Output_file* of)
1914 {
1915 switch (parameters->size_and_endianness())
1916 {
1917 #ifdef HAVE_TARGET_32_LITTLE
1918 case Parameters::TARGET_32_LITTLE:
1919 this->sized_write<32, false>(of);
1920 break;
1921 #endif
1922 #ifdef HAVE_TARGET_32_BIG
1923 case Parameters::TARGET_32_BIG:
1924 this->sized_write<32, true>(of);
1925 break;
1926 #endif
1927 #ifdef HAVE_TARGET_64_LITTLE
1928 case Parameters::TARGET_64_LITTLE:
1929 this->sized_write<64, false>(of);
1930 break;
1931 #endif
1932 #ifdef HAVE_TARGET_64_BIG
1933 case Parameters::TARGET_64_BIG:
1934 this->sized_write<64, true>(of);
1935 break;
1936 #endif
1937 default:
1938 gold_unreachable();
1939 }
1940 }
1941
1942 template<int size, bool big_endian>
1943 void
1944 Output_data_dynamic::sized_write(Output_file* of)
1945 {
1946 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1947
1948 const off_t offset = this->offset();
1949 const off_t oview_size = this->data_size();
1950 unsigned char* const oview = of->get_output_view(offset, oview_size);
1951
1952 unsigned char* pov = oview;
1953 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1954 p != this->entries_.end();
1955 ++p)
1956 {
1957 p->write<size, big_endian>(pov, this->pool_);
1958 pov += dyn_size;
1959 }
1960
1961 gold_assert(pov - oview == oview_size);
1962
1963 of->write_output_view(offset, oview_size, oview);
1964
1965 // We no longer need the dynamic entries.
1966 this->entries_.clear();
1967 }
1968
1969 // Class Output_symtab_xindex.
1970
1971 void
1972 Output_symtab_xindex::do_write(Output_file* of)
1973 {
1974 const off_t offset = this->offset();
1975 const off_t oview_size = this->data_size();
1976 unsigned char* const oview = of->get_output_view(offset, oview_size);
1977
1978 memset(oview, 0, oview_size);
1979
1980 if (parameters->target().is_big_endian())
1981 this->endian_do_write<true>(oview);
1982 else
1983 this->endian_do_write<false>(oview);
1984
1985 of->write_output_view(offset, oview_size, oview);
1986
1987 // We no longer need the data.
1988 this->entries_.clear();
1989 }
1990
1991 template<bool big_endian>
1992 void
1993 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1994 {
1995 for (Xindex_entries::const_iterator p = this->entries_.begin();
1996 p != this->entries_.end();
1997 ++p)
1998 {
1999 unsigned int symndx = p->first;
2000 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2001 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2002 }
2003 }
2004
2005 // Output_fill_debug_info methods.
2006
2007 // Return the minimum size needed for a dummy compilation unit header.
2008
2009 size_t
2010 Output_fill_debug_info::do_minimum_hole_size() const
2011 {
2012 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2013 // address_size.
2014 const size_t len = 4 + 2 + 4 + 1;
2015 // For type units, add type_signature, type_offset.
2016 if (this->is_debug_types_)
2017 return len + 8 + 4;
2018 return len;
2019 }
2020
2021 // Write a dummy compilation unit header to fill a hole in the
2022 // .debug_info or .debug_types section.
2023
2024 void
2025 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2026 {
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, debug_abbrev_offset,
2036 // address_size.
2037 if (this->is_big_endian())
2038 {
2039 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2040 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2041 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2042 }
2043 else
2044 {
2045 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2046 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2047 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2048 }
2049 pov += 4 + 2 + 4;
2050 *pov++ = 4;
2051
2052 // For type units, the additional header fields -- type_signature,
2053 // type_offset -- can be filled with zeroes.
2054
2055 // Fill the remainder of the free space with zeroes. The first
2056 // zero should tell the consumer there are no DIEs to read in this
2057 // compilation unit.
2058 if (pov < oview + len)
2059 memset(pov, 0, oview + len - pov);
2060
2061 of->write_output_view(off, len, oview);
2062 }
2063
2064 // Output_fill_debug_line methods.
2065
2066 // Return the minimum size needed for a dummy line number program header.
2067
2068 size_t
2069 Output_fill_debug_line::do_minimum_hole_size() const
2070 {
2071 // Line number program header fields: unit_length, version, header_length,
2072 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2073 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2074 const size_t len = 4 + 2 + 4 + this->header_length;
2075 return len;
2076 }
2077
2078 // Write a dummy line number program header to fill a hole in the
2079 // .debug_line section.
2080
2081 void
2082 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2083 {
2084 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2085 static_cast<long>(off), static_cast<long>(len));
2086
2087 gold_assert(len >= this->do_minimum_hole_size());
2088
2089 unsigned char* const oview = of->get_output_view(off, len);
2090 unsigned char* pov = oview;
2091
2092 // Write header fields: unit_length, version, header_length,
2093 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2094 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2095 // We set the header_length field to cover the entire hole, so the
2096 // line number program is empty.
2097 if (this->is_big_endian())
2098 {
2099 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2100 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2101 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2102 }
2103 else
2104 {
2105 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2106 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2107 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2108 }
2109 pov += 4 + 2 + 4;
2110 *pov++ = 1; // minimum_instruction_length
2111 *pov++ = 0; // default_is_stmt
2112 *pov++ = 0; // line_base
2113 *pov++ = 5; // line_range
2114 *pov++ = 13; // opcode_base
2115 *pov++ = 0; // standard_opcode_lengths[1]
2116 *pov++ = 1; // standard_opcode_lengths[2]
2117 *pov++ = 1; // standard_opcode_lengths[3]
2118 *pov++ = 1; // standard_opcode_lengths[4]
2119 *pov++ = 1; // standard_opcode_lengths[5]
2120 *pov++ = 0; // standard_opcode_lengths[6]
2121 *pov++ = 0; // standard_opcode_lengths[7]
2122 *pov++ = 0; // standard_opcode_lengths[8]
2123 *pov++ = 1; // standard_opcode_lengths[9]
2124 *pov++ = 0; // standard_opcode_lengths[10]
2125 *pov++ = 0; // standard_opcode_lengths[11]
2126 *pov++ = 1; // standard_opcode_lengths[12]
2127 *pov++ = 0; // include_directories (empty)
2128 *pov++ = 0; // filenames (empty)
2129
2130 // Some consumers don't check the header_length field, and simply
2131 // start reading the line number program immediately following the
2132 // header. For those consumers, we fill the remainder of the free
2133 // space with DW_LNS_set_basic_block opcodes. These are effectively
2134 // no-ops: the resulting line table program will not create any rows.
2135 if (pov < oview + len)
2136 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2137
2138 of->write_output_view(off, len, oview);
2139 }
2140
2141 // Output_section::Input_section methods.
2142
2143 // Return the current data size. For an input section we store the size here.
2144 // For an Output_section_data, we have to ask it for the size.
2145
2146 off_t
2147 Output_section::Input_section::current_data_size() const
2148 {
2149 if (this->is_input_section())
2150 return this->u1_.data_size;
2151 else
2152 {
2153 this->u2_.posd->pre_finalize_data_size();
2154 return this->u2_.posd->current_data_size();
2155 }
2156 }
2157
2158 // Return the data size. For an input section we store the size here.
2159 // For an Output_section_data, we have to ask it for the size.
2160
2161 off_t
2162 Output_section::Input_section::data_size() const
2163 {
2164 if (this->is_input_section())
2165 return this->u1_.data_size;
2166 else
2167 return this->u2_.posd->data_size();
2168 }
2169
2170 // Return the object for an input section.
2171
2172 Relobj*
2173 Output_section::Input_section::relobj() const
2174 {
2175 if (this->is_input_section())
2176 return this->u2_.object;
2177 else if (this->is_merge_section())
2178 {
2179 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2180 return this->u2_.pomb->first_relobj();
2181 }
2182 else if (this->is_relaxed_input_section())
2183 return this->u2_.poris->relobj();
2184 else
2185 gold_unreachable();
2186 }
2187
2188 // Return the input section index for an input section.
2189
2190 unsigned int
2191 Output_section::Input_section::shndx() const
2192 {
2193 if (this->is_input_section())
2194 return this->shndx_;
2195 else if (this->is_merge_section())
2196 {
2197 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2198 return this->u2_.pomb->first_shndx();
2199 }
2200 else if (this->is_relaxed_input_section())
2201 return this->u2_.poris->shndx();
2202 else
2203 gold_unreachable();
2204 }
2205
2206 // Set the address and file offset.
2207
2208 void
2209 Output_section::Input_section::set_address_and_file_offset(
2210 uint64_t address,
2211 off_t file_offset,
2212 off_t section_file_offset)
2213 {
2214 if (this->is_input_section())
2215 this->u2_.object->set_section_offset(this->shndx_,
2216 file_offset - section_file_offset);
2217 else
2218 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2219 }
2220
2221 // Reset the address and file offset.
2222
2223 void
2224 Output_section::Input_section::reset_address_and_file_offset()
2225 {
2226 if (!this->is_input_section())
2227 this->u2_.posd->reset_address_and_file_offset();
2228 }
2229
2230 // Finalize the data size.
2231
2232 void
2233 Output_section::Input_section::finalize_data_size()
2234 {
2235 if (!this->is_input_section())
2236 this->u2_.posd->finalize_data_size();
2237 }
2238
2239 // Try to turn an input offset into an output offset. We want to
2240 // return the output offset relative to the start of this
2241 // Input_section in the output section.
2242
2243 inline bool
2244 Output_section::Input_section::output_offset(
2245 const Relobj* object,
2246 unsigned int shndx,
2247 section_offset_type offset,
2248 section_offset_type* poutput) const
2249 {
2250 if (!this->is_input_section())
2251 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2252 else
2253 {
2254 if (this->shndx_ != shndx || this->u2_.object != object)
2255 return false;
2256 *poutput = offset;
2257 return true;
2258 }
2259 }
2260
2261 // Write out the data. We don't have to do anything for an input
2262 // section--they are handled via Object::relocate--but this is where
2263 // we write out the data for an Output_section_data.
2264
2265 void
2266 Output_section::Input_section::write(Output_file* of)
2267 {
2268 if (!this->is_input_section())
2269 this->u2_.posd->write(of);
2270 }
2271
2272 // Write the data to a buffer. As for write(), we don't have to do
2273 // anything for an input section.
2274
2275 void
2276 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2277 {
2278 if (!this->is_input_section())
2279 this->u2_.posd->write_to_buffer(buffer);
2280 }
2281
2282 // Print to a map file.
2283
2284 void
2285 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2286 {
2287 switch (this->shndx_)
2288 {
2289 case OUTPUT_SECTION_CODE:
2290 case MERGE_DATA_SECTION_CODE:
2291 case MERGE_STRING_SECTION_CODE:
2292 this->u2_.posd->print_to_mapfile(mapfile);
2293 break;
2294
2295 case RELAXED_INPUT_SECTION_CODE:
2296 {
2297 Output_relaxed_input_section* relaxed_section =
2298 this->relaxed_input_section();
2299 mapfile->print_input_section(relaxed_section->relobj(),
2300 relaxed_section->shndx());
2301 }
2302 break;
2303 default:
2304 mapfile->print_input_section(this->u2_.object, this->shndx_);
2305 break;
2306 }
2307 }
2308
2309 // Output_section methods.
2310
2311 // Construct an Output_section. NAME will point into a Stringpool.
2312
2313 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2314 elfcpp::Elf_Xword flags)
2315 : name_(name),
2316 addralign_(0),
2317 entsize_(0),
2318 load_address_(0),
2319 link_section_(NULL),
2320 link_(0),
2321 info_section_(NULL),
2322 info_symndx_(NULL),
2323 info_(0),
2324 type_(type),
2325 flags_(flags),
2326 order_(ORDER_INVALID),
2327 out_shndx_(-1U),
2328 symtab_index_(0),
2329 dynsym_index_(0),
2330 input_sections_(),
2331 first_input_offset_(0),
2332 fills_(),
2333 postprocessing_buffer_(NULL),
2334 needs_symtab_index_(false),
2335 needs_dynsym_index_(false),
2336 should_link_to_symtab_(false),
2337 should_link_to_dynsym_(false),
2338 after_input_sections_(false),
2339 requires_postprocessing_(false),
2340 found_in_sections_clause_(false),
2341 has_load_address_(false),
2342 info_uses_section_index_(false),
2343 input_section_order_specified_(false),
2344 may_sort_attached_input_sections_(false),
2345 must_sort_attached_input_sections_(false),
2346 attached_input_sections_are_sorted_(false),
2347 is_relro_(false),
2348 is_small_section_(false),
2349 is_large_section_(false),
2350 generate_code_fills_at_write_(false),
2351 is_entsize_zero_(false),
2352 section_offsets_need_adjustment_(false),
2353 is_noload_(false),
2354 always_keeps_input_sections_(false),
2355 has_fixed_layout_(false),
2356 is_patch_space_allowed_(false),
2357 is_unique_segment_(false),
2358 tls_offset_(0),
2359 extra_segment_flags_(0),
2360 segment_alignment_(0),
2361 checkpoint_(NULL),
2362 lookup_maps_(new Output_section_lookup_maps),
2363 free_list_(),
2364 free_space_fill_(NULL),
2365 patch_space_(0)
2366 {
2367 // An unallocated section has no address. Forcing this means that
2368 // we don't need special treatment for symbols defined in debug
2369 // sections.
2370 if ((flags & elfcpp::SHF_ALLOC) == 0)
2371 this->set_address(0);
2372 }
2373
2374 Output_section::~Output_section()
2375 {
2376 delete this->checkpoint_;
2377 }
2378
2379 // Set the entry size.
2380
2381 void
2382 Output_section::set_entsize(uint64_t v)
2383 {
2384 if (this->is_entsize_zero_)
2385 ;
2386 else if (this->entsize_ == 0)
2387 this->entsize_ = v;
2388 else if (this->entsize_ != v)
2389 {
2390 this->entsize_ = 0;
2391 this->is_entsize_zero_ = 1;
2392 }
2393 }
2394
2395 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2396 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2397 // relocation section which applies to this section, or 0 if none, or
2398 // -1U if more than one. Return the offset of the input section
2399 // within the output section. Return -1 if the input section will
2400 // receive special handling. In the normal case we don't always keep
2401 // track of input sections for an Output_section. Instead, each
2402 // Object keeps track of the Output_section for each of its input
2403 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2404 // track of input sections here; this is used when SECTIONS appears in
2405 // a linker script.
2406
2407 template<int size, bool big_endian>
2408 off_t
2409 Output_section::add_input_section(Layout* layout,
2410 Sized_relobj_file<size, big_endian>* object,
2411 unsigned int shndx,
2412 const char* secname,
2413 const elfcpp::Shdr<size, big_endian>& shdr,
2414 unsigned int reloc_shndx,
2415 bool have_sections_script)
2416 {
2417 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2418 if ((addralign & (addralign - 1)) != 0)
2419 {
2420 object->error(_("invalid alignment %lu for section \"%s\""),
2421 static_cast<unsigned long>(addralign), secname);
2422 addralign = 1;
2423 }
2424
2425 if (addralign > this->addralign_)
2426 this->addralign_ = addralign;
2427
2428 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2429 uint64_t entsize = shdr.get_sh_entsize();
2430
2431 // .debug_str is a mergeable string section, but is not always so
2432 // marked by compilers. Mark manually here so we can optimize.
2433 if (strcmp(secname, ".debug_str") == 0)
2434 {
2435 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2436 entsize = 1;
2437 }
2438
2439 this->update_flags_for_input_section(sh_flags);
2440 this->set_entsize(entsize);
2441
2442 // If this is a SHF_MERGE section, we pass all the input sections to
2443 // a Output_data_merge. We don't try to handle relocations for such
2444 // a section. We don't try to handle empty merge sections--they
2445 // mess up the mappings, and are useless anyhow.
2446 // FIXME: Need to handle merge sections during incremental update.
2447 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2448 && reloc_shndx == 0
2449 && shdr.get_sh_size() > 0
2450 && !parameters->incremental())
2451 {
2452 // Keep information about merged input sections for rebuilding fast
2453 // lookup maps if we have sections-script or we do relaxation.
2454 bool keeps_input_sections = (this->always_keeps_input_sections_
2455 || have_sections_script
2456 || parameters->target().may_relax());
2457
2458 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2459 addralign, keeps_input_sections))
2460 {
2461 // Tell the relocation routines that they need to call the
2462 // output_offset method to determine the final address.
2463 return -1;
2464 }
2465 }
2466
2467 section_size_type input_section_size = shdr.get_sh_size();
2468 section_size_type uncompressed_size;
2469 if (object->section_is_compressed(shndx, &uncompressed_size))
2470 input_section_size = uncompressed_size;
2471
2472 off_t offset_in_section;
2473
2474 if (this->has_fixed_layout())
2475 {
2476 // For incremental updates, find a chunk of unused space in the section.
2477 offset_in_section = this->free_list_.allocate(input_section_size,
2478 addralign, 0);
2479 if (offset_in_section == -1)
2480 gold_fallback(_("out of patch space in section %s; "
2481 "relink with --incremental-full"),
2482 this->name());
2483 return offset_in_section;
2484 }
2485
2486 offset_in_section = this->current_data_size_for_child();
2487 off_t aligned_offset_in_section = align_address(offset_in_section,
2488 addralign);
2489 this->set_current_data_size_for_child(aligned_offset_in_section
2490 + input_section_size);
2491
2492 // Determine if we want to delay code-fill generation until the output
2493 // section is written. When the target is relaxing, we want to delay fill
2494 // generating to avoid adjusting them during relaxation. Also, if we are
2495 // sorting input sections we must delay fill generation.
2496 if (!this->generate_code_fills_at_write_
2497 && !have_sections_script
2498 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2499 && parameters->target().has_code_fill()
2500 && (parameters->target().may_relax()
2501 || layout->is_section_ordering_specified()))
2502 {
2503 gold_assert(this->fills_.empty());
2504 this->generate_code_fills_at_write_ = true;
2505 }
2506
2507 if (aligned_offset_in_section > offset_in_section
2508 && !this->generate_code_fills_at_write_
2509 && !have_sections_script
2510 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2511 && parameters->target().has_code_fill())
2512 {
2513 // We need to add some fill data. Using fill_list_ when
2514 // possible is an optimization, since we will often have fill
2515 // sections without input sections.
2516 off_t fill_len = aligned_offset_in_section - offset_in_section;
2517 if (this->input_sections_.empty())
2518 this->fills_.push_back(Fill(offset_in_section, fill_len));
2519 else
2520 {
2521 std::string fill_data(parameters->target().code_fill(fill_len));
2522 Output_data_const* odc = new Output_data_const(fill_data, 1);
2523 this->input_sections_.push_back(Input_section(odc));
2524 }
2525 }
2526
2527 // We need to keep track of this section if we are already keeping
2528 // track of sections, or if we are relaxing. Also, if this is a
2529 // section which requires sorting, or which may require sorting in
2530 // the future, we keep track of the sections. If the
2531 // --section-ordering-file option is used to specify the order of
2532 // sections, we need to keep track of sections.
2533 if (this->always_keeps_input_sections_
2534 || have_sections_script
2535 || !this->input_sections_.empty()
2536 || this->may_sort_attached_input_sections()
2537 || this->must_sort_attached_input_sections()
2538 || parameters->options().user_set_Map()
2539 || parameters->target().may_relax()
2540 || layout->is_section_ordering_specified())
2541 {
2542 Input_section isecn(object, shndx, input_section_size, addralign);
2543 /* If section ordering is requested by specifying a ordering file,
2544 using --section-ordering-file, match the section name with
2545 a pattern. */
2546 if (parameters->options().section_ordering_file())
2547 {
2548 unsigned int section_order_index =
2549 layout->find_section_order_index(std::string(secname));
2550 if (section_order_index != 0)
2551 {
2552 isecn.set_section_order_index(section_order_index);
2553 this->set_input_section_order_specified();
2554 }
2555 }
2556 this->input_sections_.push_back(isecn);
2557 }
2558
2559 return aligned_offset_in_section;
2560 }
2561
2562 // Add arbitrary data to an output section.
2563
2564 void
2565 Output_section::add_output_section_data(Output_section_data* posd)
2566 {
2567 Input_section inp(posd);
2568 this->add_output_section_data(&inp);
2569
2570 if (posd->is_data_size_valid())
2571 {
2572 off_t offset_in_section;
2573 if (this->has_fixed_layout())
2574 {
2575 // For incremental updates, find a chunk of unused space.
2576 offset_in_section = this->free_list_.allocate(posd->data_size(),
2577 posd->addralign(), 0);
2578 if (offset_in_section == -1)
2579 gold_fallback(_("out of patch space in section %s; "
2580 "relink with --incremental-full"),
2581 this->name());
2582 // Finalize the address and offset now.
2583 uint64_t addr = this->address();
2584 off_t offset = this->offset();
2585 posd->set_address_and_file_offset(addr + offset_in_section,
2586 offset + offset_in_section);
2587 }
2588 else
2589 {
2590 offset_in_section = this->current_data_size_for_child();
2591 off_t aligned_offset_in_section = align_address(offset_in_section,
2592 posd->addralign());
2593 this->set_current_data_size_for_child(aligned_offset_in_section
2594 + posd->data_size());
2595 }
2596 }
2597 else if (this->has_fixed_layout())
2598 {
2599 // For incremental updates, arrange for the data to have a fixed layout.
2600 // This will mean that additions to the data must be allocated from
2601 // free space within the containing output section.
2602 uint64_t addr = this->address();
2603 posd->set_address(addr);
2604 posd->set_file_offset(0);
2605 // FIXME: This should eventually be unreachable.
2606 // gold_unreachable();
2607 }
2608 }
2609
2610 // Add a relaxed input section.
2611
2612 void
2613 Output_section::add_relaxed_input_section(Layout* layout,
2614 Output_relaxed_input_section* poris,
2615 const std::string& name)
2616 {
2617 Input_section inp(poris);
2618
2619 // If the --section-ordering-file option is used to specify the order of
2620 // sections, we need to keep track of sections.
2621 if (layout->is_section_ordering_specified())
2622 {
2623 unsigned int section_order_index =
2624 layout->find_section_order_index(name);
2625 if (section_order_index != 0)
2626 {
2627 inp.set_section_order_index(section_order_index);
2628 this->set_input_section_order_specified();
2629 }
2630 }
2631
2632 this->add_output_section_data(&inp);
2633 if (this->lookup_maps_->is_valid())
2634 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2635 poris->shndx(), poris);
2636
2637 // For a relaxed section, we use the current data size. Linker scripts
2638 // get all the input sections, including relaxed one from an output
2639 // section and add them back to the same output section to compute the
2640 // output section size. If we do not account for sizes of relaxed input
2641 // sections, an output section would be incorrectly sized.
2642 off_t offset_in_section = this->current_data_size_for_child();
2643 off_t aligned_offset_in_section = align_address(offset_in_section,
2644 poris->addralign());
2645 this->set_current_data_size_for_child(aligned_offset_in_section
2646 + poris->current_data_size());
2647 }
2648
2649 // Add arbitrary data to an output section by Input_section.
2650
2651 void
2652 Output_section::add_output_section_data(Input_section* inp)
2653 {
2654 if (this->input_sections_.empty())
2655 this->first_input_offset_ = this->current_data_size_for_child();
2656
2657 this->input_sections_.push_back(*inp);
2658
2659 uint64_t addralign = inp->addralign();
2660 if (addralign > this->addralign_)
2661 this->addralign_ = addralign;
2662
2663 inp->set_output_section(this);
2664 }
2665
2666 // Add a merge section to an output section.
2667
2668 void
2669 Output_section::add_output_merge_section(Output_section_data* posd,
2670 bool is_string, uint64_t entsize)
2671 {
2672 Input_section inp(posd, is_string, entsize);
2673 this->add_output_section_data(&inp);
2674 }
2675
2676 // Add an input section to a SHF_MERGE section.
2677
2678 bool
2679 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2680 uint64_t flags, uint64_t entsize,
2681 uint64_t addralign,
2682 bool keeps_input_sections)
2683 {
2684 // We cannot merge sections with entsize == 0.
2685 if (entsize == 0)
2686 return false;
2687
2688 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2689
2690 // We cannot restore merged input section states.
2691 gold_assert(this->checkpoint_ == NULL);
2692
2693 // Look up merge sections by required properties.
2694 // Currently, we only invalidate the lookup maps in script processing
2695 // and relaxation. We should not have done either when we reach here.
2696 // So we assume that the lookup maps are valid to simply code.
2697 gold_assert(this->lookup_maps_->is_valid());
2698 Merge_section_properties msp(is_string, entsize, addralign);
2699 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2700 bool is_new = false;
2701 if (pomb != NULL)
2702 {
2703 gold_assert(pomb->is_string() == is_string
2704 && pomb->entsize() == entsize
2705 && pomb->addralign() == addralign);
2706 }
2707 else
2708 {
2709 // Create a new Output_merge_data or Output_merge_string_data.
2710 if (!is_string)
2711 pomb = new Output_merge_data(entsize, addralign);
2712 else
2713 {
2714 switch (entsize)
2715 {
2716 case 1:
2717 pomb = new Output_merge_string<char>(addralign);
2718 break;
2719 case 2:
2720 pomb = new Output_merge_string<uint16_t>(addralign);
2721 break;
2722 case 4:
2723 pomb = new Output_merge_string<uint32_t>(addralign);
2724 break;
2725 default:
2726 return false;
2727 }
2728 }
2729 // If we need to do script processing or relaxation, we need to keep
2730 // the original input sections to rebuild the fast lookup maps.
2731 if (keeps_input_sections)
2732 pomb->set_keeps_input_sections();
2733 is_new = true;
2734 }
2735
2736 if (pomb->add_input_section(object, shndx))
2737 {
2738 // Add new merge section to this output section and link merge
2739 // section properties to new merge section in map.
2740 if (is_new)
2741 {
2742 this->add_output_merge_section(pomb, is_string, entsize);
2743 this->lookup_maps_->add_merge_section(msp, pomb);
2744 }
2745
2746 return true;
2747 }
2748 else
2749 {
2750 // If add_input_section failed, delete new merge section to avoid
2751 // exporting empty merge sections in Output_section::get_input_section.
2752 if (is_new)
2753 delete pomb;
2754 return false;
2755 }
2756 }
2757
2758 // Build a relaxation map to speed up relaxation of existing input sections.
2759 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2760
2761 void
2762 Output_section::build_relaxation_map(
2763 const Input_section_list& input_sections,
2764 size_t limit,
2765 Relaxation_map* relaxation_map) const
2766 {
2767 for (size_t i = 0; i < limit; ++i)
2768 {
2769 const Input_section& is(input_sections[i]);
2770 if (is.is_input_section() || is.is_relaxed_input_section())
2771 {
2772 Section_id sid(is.relobj(), is.shndx());
2773 (*relaxation_map)[sid] = i;
2774 }
2775 }
2776 }
2777
2778 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2779 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2780 // indices of INPUT_SECTIONS.
2781
2782 void
2783 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2784 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2785 const Relaxation_map& map,
2786 Input_section_list* input_sections)
2787 {
2788 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2789 {
2790 Output_relaxed_input_section* poris = relaxed_sections[i];
2791 Section_id sid(poris->relobj(), poris->shndx());
2792 Relaxation_map::const_iterator p = map.find(sid);
2793 gold_assert(p != map.end());
2794 gold_assert((*input_sections)[p->second].is_input_section());
2795
2796 // Remember section order index of original input section
2797 // if it is set. Copy it to the relaxed input section.
2798 unsigned int soi =
2799 (*input_sections)[p->second].section_order_index();
2800 (*input_sections)[p->second] = Input_section(poris);
2801 (*input_sections)[p->second].set_section_order_index(soi);
2802 }
2803 }
2804
2805 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2806 // is a vector of pointers to Output_relaxed_input_section or its derived
2807 // classes. The relaxed sections must correspond to existing input sections.
2808
2809 void
2810 Output_section::convert_input_sections_to_relaxed_sections(
2811 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2812 {
2813 gold_assert(parameters->target().may_relax());
2814
2815 // We want to make sure that restore_states does not undo the effect of
2816 // this. If there is no checkpoint active, just search the current
2817 // input section list and replace the sections there. If there is
2818 // a checkpoint, also replace the sections there.
2819
2820 // By default, we look at the whole list.
2821 size_t limit = this->input_sections_.size();
2822
2823 if (this->checkpoint_ != NULL)
2824 {
2825 // Replace input sections with relaxed input section in the saved
2826 // copy of the input section list.
2827 if (this->checkpoint_->input_sections_saved())
2828 {
2829 Relaxation_map map;
2830 this->build_relaxation_map(
2831 *(this->checkpoint_->input_sections()),
2832 this->checkpoint_->input_sections()->size(),
2833 &map);
2834 this->convert_input_sections_in_list_to_relaxed_sections(
2835 relaxed_sections,
2836 map,
2837 this->checkpoint_->input_sections());
2838 }
2839 else
2840 {
2841 // We have not copied the input section list yet. Instead, just
2842 // look at the portion that would be saved.
2843 limit = this->checkpoint_->input_sections_size();
2844 }
2845 }
2846
2847 // Convert input sections in input_section_list.
2848 Relaxation_map map;
2849 this->build_relaxation_map(this->input_sections_, limit, &map);
2850 this->convert_input_sections_in_list_to_relaxed_sections(
2851 relaxed_sections,
2852 map,
2853 &this->input_sections_);
2854
2855 // Update fast look-up map.
2856 if (this->lookup_maps_->is_valid())
2857 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2858 {
2859 Output_relaxed_input_section* poris = relaxed_sections[i];
2860 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2861 poris->shndx(), poris);
2862 }
2863 }
2864
2865 // Update the output section flags based on input section flags.
2866
2867 void
2868 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2869 {
2870 // If we created the section with SHF_ALLOC clear, we set the
2871 // address. If we are now setting the SHF_ALLOC flag, we need to
2872 // undo that.
2873 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2874 && (flags & elfcpp::SHF_ALLOC) != 0)
2875 this->mark_address_invalid();
2876
2877 this->flags_ |= (flags
2878 & (elfcpp::SHF_WRITE
2879 | elfcpp::SHF_ALLOC
2880 | elfcpp::SHF_EXECINSTR));
2881
2882 if ((flags & elfcpp::SHF_MERGE) == 0)
2883 this->flags_ &=~ elfcpp::SHF_MERGE;
2884 else
2885 {
2886 if (this->current_data_size_for_child() == 0)
2887 this->flags_ |= elfcpp::SHF_MERGE;
2888 }
2889
2890 if ((flags & elfcpp::SHF_STRINGS) == 0)
2891 this->flags_ &=~ elfcpp::SHF_STRINGS;
2892 else
2893 {
2894 if (this->current_data_size_for_child() == 0)
2895 this->flags_ |= elfcpp::SHF_STRINGS;
2896 }
2897 }
2898
2899 // Find the merge section into which an input section with index SHNDX in
2900 // OBJECT has been added. Return NULL if none found.
2901
2902 const Output_section_data*
2903 Output_section::find_merge_section(const Relobj* object,
2904 unsigned int shndx) const
2905 {
2906 return object->find_merge_section(shndx);
2907 }
2908
2909 // Build the lookup maps for relaxed sections. This needs
2910 // to be declared as a const method so that it is callable with a const
2911 // Output_section pointer. The method only updates states of the maps.
2912
2913 void
2914 Output_section::build_lookup_maps() const
2915 {
2916 this->lookup_maps_->clear();
2917 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2918 p != this->input_sections_.end();
2919 ++p)
2920 {
2921 if (p->is_relaxed_input_section())
2922 {
2923 Output_relaxed_input_section* poris = p->relaxed_input_section();
2924 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2925 poris->shndx(), poris);
2926 }
2927 }
2928 }
2929
2930 // Find an relaxed input section corresponding to an input section
2931 // in OBJECT with index SHNDX.
2932
2933 const Output_relaxed_input_section*
2934 Output_section::find_relaxed_input_section(const Relobj* object,
2935 unsigned int shndx) const
2936 {
2937 if (!this->lookup_maps_->is_valid())
2938 this->build_lookup_maps();
2939 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2940 }
2941
2942 // Given an address OFFSET relative to the start of input section
2943 // SHNDX in OBJECT, return whether this address is being included in
2944 // the final link. This should only be called if SHNDX in OBJECT has
2945 // a special mapping.
2946
2947 bool
2948 Output_section::is_input_address_mapped(const Relobj* object,
2949 unsigned int shndx,
2950 off_t offset) const
2951 {
2952 // Look at the Output_section_data_maps first.
2953 const Output_section_data* posd = this->find_merge_section(object, shndx);
2954 if (posd == NULL)
2955 posd = this->find_relaxed_input_section(object, shndx);
2956
2957 if (posd != NULL)
2958 {
2959 section_offset_type output_offset;
2960 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2961 // By default we assume that the address is mapped. See comment at the
2962 // end.
2963 if (!found)
2964 return true;
2965 return output_offset != -1;
2966 }
2967
2968 // Fall back to the slow look-up.
2969 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2970 p != this->input_sections_.end();
2971 ++p)
2972 {
2973 section_offset_type output_offset;
2974 if (p->output_offset(object, shndx, offset, &output_offset))
2975 return output_offset != -1;
2976 }
2977
2978 // By default we assume that the address is mapped. This should
2979 // only be called after we have passed all sections to Layout. At
2980 // that point we should know what we are discarding.
2981 return true;
2982 }
2983
2984 // Given an address OFFSET relative to the start of input section
2985 // SHNDX in object OBJECT, return the output offset relative to the
2986 // start of the input section in the output section. This should only
2987 // be called if SHNDX in OBJECT has a special mapping.
2988
2989 section_offset_type
2990 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2991 section_offset_type offset) const
2992 {
2993 // This can only be called meaningfully when we know the data size
2994 // of this.
2995 gold_assert(this->is_data_size_valid());
2996
2997 // Look at the Output_section_data_maps first.
2998 const Output_section_data* posd = this->find_merge_section(object, shndx);
2999 if (posd == NULL)
3000 posd = this->find_relaxed_input_section(object, shndx);
3001 if (posd != NULL)
3002 {
3003 section_offset_type output_offset;
3004 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3005 gold_assert(found);
3006 return output_offset;
3007 }
3008
3009 // Fall back to the slow look-up.
3010 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3011 p != this->input_sections_.end();
3012 ++p)
3013 {
3014 section_offset_type output_offset;
3015 if (p->output_offset(object, shndx, offset, &output_offset))
3016 return output_offset;
3017 }
3018 gold_unreachable();
3019 }
3020
3021 // Return the output virtual address of OFFSET relative to the start
3022 // of input section SHNDX in object OBJECT.
3023
3024 uint64_t
3025 Output_section::output_address(const Relobj* object, unsigned int shndx,
3026 off_t offset) const
3027 {
3028 uint64_t addr = this->address() + this->first_input_offset_;
3029
3030 // Look at the Output_section_data_maps first.
3031 const Output_section_data* posd = this->find_merge_section(object, shndx);
3032 if (posd == NULL)
3033 posd = this->find_relaxed_input_section(object, shndx);
3034 if (posd != NULL && posd->is_address_valid())
3035 {
3036 section_offset_type output_offset;
3037 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3038 gold_assert(found);
3039 return posd->address() + output_offset;
3040 }
3041
3042 // Fall back to the slow look-up.
3043 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3044 p != this->input_sections_.end();
3045 ++p)
3046 {
3047 addr = align_address(addr, p->addralign());
3048 section_offset_type output_offset;
3049 if (p->output_offset(object, shndx, offset, &output_offset))
3050 {
3051 if (output_offset == -1)
3052 return -1ULL;
3053 return addr + output_offset;
3054 }
3055 addr += p->data_size();
3056 }
3057
3058 // If we get here, it means that we don't know the mapping for this
3059 // input section. This might happen in principle if
3060 // add_input_section were called before add_output_section_data.
3061 // But it should never actually happen.
3062
3063 gold_unreachable();
3064 }
3065
3066 // Find the output address of the start of the merged section for
3067 // input section SHNDX in object OBJECT.
3068
3069 bool
3070 Output_section::find_starting_output_address(const Relobj* object,
3071 unsigned int shndx,
3072 uint64_t* paddr) const
3073 {
3074 const Output_section_data* data = this->find_merge_section(object, shndx);
3075 if (data == NULL)
3076 return false;
3077
3078 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3079 // Looking up the merge section map does not always work as we sometimes
3080 // find a merge section without its address set.
3081 uint64_t addr = this->address() + this->first_input_offset_;
3082 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3083 p != this->input_sections_.end();
3084 ++p)
3085 {
3086 addr = align_address(addr, p->addralign());
3087
3088 // It would be nice if we could use the existing output_offset
3089 // method to get the output offset of input offset 0.
3090 // Unfortunately we don't know for sure that input offset 0 is
3091 // mapped at all.
3092 if (!p->is_input_section() && p->output_section_data() == data)
3093 {
3094 *paddr = addr;
3095 return true;
3096 }
3097
3098 addr += p->data_size();
3099 }
3100
3101 // We couldn't find a merge output section for this input section.
3102 return false;
3103 }
3104
3105 // Update the data size of an Output_section.
3106
3107 void
3108 Output_section::update_data_size()
3109 {
3110 if (this->input_sections_.empty())
3111 return;
3112
3113 if (this->must_sort_attached_input_sections()
3114 || this->input_section_order_specified())
3115 this->sort_attached_input_sections();
3116
3117 off_t off = this->first_input_offset_;
3118 for (Input_section_list::iterator p = this->input_sections_.begin();
3119 p != this->input_sections_.end();
3120 ++p)
3121 {
3122 off = align_address(off, p->addralign());
3123 off += p->current_data_size();
3124 }
3125
3126 this->set_current_data_size_for_child(off);
3127 }
3128
3129 // Set the data size of an Output_section. This is where we handle
3130 // setting the addresses of any Output_section_data objects.
3131
3132 void
3133 Output_section::set_final_data_size()
3134 {
3135 off_t data_size;
3136
3137 if (this->input_sections_.empty())
3138 data_size = this->current_data_size_for_child();
3139 else
3140 {
3141 if (this->must_sort_attached_input_sections()
3142 || this->input_section_order_specified())
3143 this->sort_attached_input_sections();
3144
3145 uint64_t address = this->address();
3146 off_t startoff = this->offset();
3147 off_t off = startoff + this->first_input_offset_;
3148 for (Input_section_list::iterator p = this->input_sections_.begin();
3149 p != this->input_sections_.end();
3150 ++p)
3151 {
3152 off = align_address(off, p->addralign());
3153 p->set_address_and_file_offset(address + (off - startoff), off,
3154 startoff);
3155 off += p->data_size();
3156 }
3157 data_size = off - startoff;
3158 }
3159
3160 // For full incremental links, we want to allocate some patch space
3161 // in most sections for subsequent incremental updates.
3162 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3163 {
3164 double pct = parameters->options().incremental_patch();
3165 size_t extra = static_cast<size_t>(data_size * pct);
3166 if (this->free_space_fill_ != NULL
3167 && this->free_space_fill_->minimum_hole_size() > extra)
3168 extra = this->free_space_fill_->minimum_hole_size();
3169 off_t new_size = align_address(data_size + extra, this->addralign());
3170 this->patch_space_ = new_size - data_size;
3171 gold_debug(DEBUG_INCREMENTAL,
3172 "set_final_data_size: %08lx + %08lx: section %s",
3173 static_cast<long>(data_size),
3174 static_cast<long>(this->patch_space_),
3175 this->name());
3176 data_size = new_size;
3177 }
3178
3179 this->set_data_size(data_size);
3180 }
3181
3182 // Reset the address and file offset.
3183
3184 void
3185 Output_section::do_reset_address_and_file_offset()
3186 {
3187 // An unallocated section has no address. Forcing this means that
3188 // we don't need special treatment for symbols defined in debug
3189 // sections. We do the same in the constructor. This does not
3190 // apply to NOLOAD sections though.
3191 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3192 this->set_address(0);
3193
3194 for (Input_section_list::iterator p = this->input_sections_.begin();
3195 p != this->input_sections_.end();
3196 ++p)
3197 p->reset_address_and_file_offset();
3198
3199 // Remove any patch space that was added in set_final_data_size.
3200 if (this->patch_space_ > 0)
3201 {
3202 this->set_current_data_size_for_child(this->current_data_size_for_child()
3203 - this->patch_space_);
3204 this->patch_space_ = 0;
3205 }
3206 }
3207
3208 // Return true if address and file offset have the values after reset.
3209
3210 bool
3211 Output_section::do_address_and_file_offset_have_reset_values() const
3212 {
3213 if (this->is_offset_valid())
3214 return false;
3215
3216 // An unallocated section has address 0 after its construction or a reset.
3217 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3218 return this->is_address_valid() && this->address() == 0;
3219 else
3220 return !this->is_address_valid();
3221 }
3222
3223 // Set the TLS offset. Called only for SHT_TLS sections.
3224
3225 void
3226 Output_section::do_set_tls_offset(uint64_t tls_base)
3227 {
3228 this->tls_offset_ = this->address() - tls_base;
3229 }
3230
3231 // In a few cases we need to sort the input sections attached to an
3232 // output section. This is used to implement the type of constructor
3233 // priority ordering implemented by the GNU linker, in which the
3234 // priority becomes part of the section name and the sections are
3235 // sorted by name. We only do this for an output section if we see an
3236 // attached input section matching ".ctors.*", ".dtors.*",
3237 // ".init_array.*" or ".fini_array.*".
3238
3239 class Output_section::Input_section_sort_entry
3240 {
3241 public:
3242 Input_section_sort_entry()
3243 : input_section_(), index_(-1U), section_name_()
3244 { }
3245
3246 Input_section_sort_entry(const Input_section& input_section,
3247 unsigned int index,
3248 bool must_sort_attached_input_sections,
3249 const char* output_section_name)
3250 : input_section_(input_section), index_(index), section_name_()
3251 {
3252 if ((input_section.is_input_section()
3253 || input_section.is_relaxed_input_section())
3254 && must_sort_attached_input_sections)
3255 {
3256 // This is only called single-threaded from Layout::finalize,
3257 // so it is OK to lock. Unfortunately we have no way to pass
3258 // in a Task token.
3259 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3260 Object* obj = (input_section.is_input_section()
3261 ? input_section.relobj()
3262 : input_section.relaxed_input_section()->relobj());
3263 Task_lock_obj<Object> tl(dummy_task, obj);
3264
3265 // This is a slow operation, which should be cached in
3266 // Layout::layout if this becomes a speed problem.
3267 this->section_name_ = obj->section_name(input_section.shndx());
3268 }
3269 else if (input_section.is_output_section_data()
3270 && must_sort_attached_input_sections)
3271 {
3272 // For linker-generated sections, use the output section name.
3273 this->section_name_.assign(output_section_name);
3274 }
3275 }
3276
3277 // Return the Input_section.
3278 const Input_section&
3279 input_section() const
3280 {
3281 gold_assert(this->index_ != -1U);
3282 return this->input_section_;
3283 }
3284
3285 // The index of this entry in the original list. This is used to
3286 // make the sort stable.
3287 unsigned int
3288 index() const
3289 {
3290 gold_assert(this->index_ != -1U);
3291 return this->index_;
3292 }
3293
3294 // The section name.
3295 const std::string&
3296 section_name() const
3297 {
3298 return this->section_name_;
3299 }
3300
3301 // Return true if the section name has a priority. This is assumed
3302 // to be true if it has a dot after the initial dot.
3303 bool
3304 has_priority() const
3305 {
3306 return this->section_name_.find('.', 1) != std::string::npos;
3307 }
3308
3309 // Return the priority. Believe it or not, gcc encodes the priority
3310 // differently for .ctors/.dtors and .init_array/.fini_array
3311 // sections.
3312 unsigned int
3313 get_priority() const
3314 {
3315 bool is_ctors;
3316 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3317 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3318 is_ctors = true;
3319 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3320 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3321 is_ctors = false;
3322 else
3323 return 0;
3324 char* end;
3325 unsigned long prio = strtoul((this->section_name_.c_str()
3326 + (is_ctors ? 7 : 12)),
3327 &end, 10);
3328 if (*end != '\0')
3329 return 0;
3330 else if (is_ctors)
3331 return 65535 - prio;
3332 else
3333 return prio;
3334 }
3335
3336 // Return true if this an input file whose base name matches
3337 // FILE_NAME. The base name must have an extension of ".o", and
3338 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3339 // This is to match crtbegin.o as well as crtbeginS.o without
3340 // getting confused by other possibilities. Overall matching the
3341 // file name this way is a dreadful hack, but the GNU linker does it
3342 // in order to better support gcc, and we need to be compatible.
3343 bool
3344 match_file_name(const char* file_name) const
3345 {
3346 if (this->input_section_.is_output_section_data())
3347 return false;
3348 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3349 }
3350
3351 // Returns 1 if THIS should appear before S in section order, -1 if S
3352 // appears before THIS and 0 if they are not comparable.
3353 int
3354 compare_section_ordering(const Input_section_sort_entry& s) const
3355 {
3356 unsigned int this_secn_index = this->input_section_.section_order_index();
3357 unsigned int s_secn_index = s.input_section().section_order_index();
3358 if (this_secn_index > 0 && s_secn_index > 0)
3359 {
3360 if (this_secn_index < s_secn_index)
3361 return 1;
3362 else if (this_secn_index > s_secn_index)
3363 return -1;
3364 }
3365 return 0;
3366 }
3367
3368 private:
3369 // The Input_section we are sorting.
3370 Input_section input_section_;
3371 // The index of this Input_section in the original list.
3372 unsigned int index_;
3373 // The section name if there is one.
3374 std::string section_name_;
3375 };
3376
3377 // Return true if S1 should come before S2 in the output section.
3378
3379 bool
3380 Output_section::Input_section_sort_compare::operator()(
3381 const Output_section::Input_section_sort_entry& s1,
3382 const Output_section::Input_section_sort_entry& s2) const
3383 {
3384 // crtbegin.o must come first.
3385 bool s1_begin = s1.match_file_name("crtbegin");
3386 bool s2_begin = s2.match_file_name("crtbegin");
3387 if (s1_begin || s2_begin)
3388 {
3389 if (!s1_begin)
3390 return false;
3391 if (!s2_begin)
3392 return true;
3393 return s1.index() < s2.index();
3394 }
3395
3396 // crtend.o must come last.
3397 bool s1_end = s1.match_file_name("crtend");
3398 bool s2_end = s2.match_file_name("crtend");
3399 if (s1_end || s2_end)
3400 {
3401 if (!s1_end)
3402 return true;
3403 if (!s2_end)
3404 return false;
3405 return s1.index() < s2.index();
3406 }
3407
3408 // A section with a priority follows a section without a priority.
3409 bool s1_has_priority = s1.has_priority();
3410 bool s2_has_priority = s2.has_priority();
3411 if (s1_has_priority && !s2_has_priority)
3412 return false;
3413 if (!s1_has_priority && s2_has_priority)
3414 return true;
3415
3416 // Check if a section order exists for these sections through a section
3417 // ordering file. If sequence_num is 0, an order does not exist.
3418 int sequence_num = s1.compare_section_ordering(s2);
3419 if (sequence_num != 0)
3420 return sequence_num == 1;
3421
3422 // Otherwise we sort by name.
3423 int compare = s1.section_name().compare(s2.section_name());
3424 if (compare != 0)
3425 return compare < 0;
3426
3427 // Otherwise we keep the input order.
3428 return s1.index() < s2.index();
3429 }
3430
3431 // Return true if S1 should come before S2 in an .init_array or .fini_array
3432 // output section.
3433
3434 bool
3435 Output_section::Input_section_sort_init_fini_compare::operator()(
3436 const Output_section::Input_section_sort_entry& s1,
3437 const Output_section::Input_section_sort_entry& s2) const
3438 {
3439 // A section without a priority follows a section with a priority.
3440 // This is the reverse of .ctors and .dtors sections.
3441 bool s1_has_priority = s1.has_priority();
3442 bool s2_has_priority = s2.has_priority();
3443 if (s1_has_priority && !s2_has_priority)
3444 return true;
3445 if (!s1_has_priority && s2_has_priority)
3446 return false;
3447
3448 // .ctors and .dtors sections without priority come after
3449 // .init_array and .fini_array sections without priority.
3450 if (!s1_has_priority
3451 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3452 && s1.section_name() != s2.section_name())
3453 return false;
3454 if (!s2_has_priority
3455 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3456 && s2.section_name() != s1.section_name())
3457 return true;
3458
3459 // Sort by priority if we can.
3460 if (s1_has_priority)
3461 {
3462 unsigned int s1_prio = s1.get_priority();
3463 unsigned int s2_prio = s2.get_priority();
3464 if (s1_prio < s2_prio)
3465 return true;
3466 else if (s1_prio > s2_prio)
3467 return false;
3468 }
3469
3470 // Check if a section order exists for these sections through a section
3471 // ordering file. If sequence_num is 0, an order does not exist.
3472 int sequence_num = s1.compare_section_ordering(s2);
3473 if (sequence_num != 0)
3474 return sequence_num == 1;
3475
3476 // Otherwise we sort by name.
3477 int compare = s1.section_name().compare(s2.section_name());
3478 if (compare != 0)
3479 return compare < 0;
3480
3481 // Otherwise we keep the input order.
3482 return s1.index() < s2.index();
3483 }
3484
3485 // Return true if S1 should come before S2. Sections that do not match
3486 // any pattern in the section ordering file are placed ahead of the sections
3487 // that match some pattern.
3488
3489 bool
3490 Output_section::Input_section_sort_section_order_index_compare::operator()(
3491 const Output_section::Input_section_sort_entry& s1,
3492 const Output_section::Input_section_sort_entry& s2) const
3493 {
3494 unsigned int s1_secn_index = s1.input_section().section_order_index();
3495 unsigned int s2_secn_index = s2.input_section().section_order_index();
3496
3497 // Keep input order if section ordering cannot determine order.
3498 if (s1_secn_index == s2_secn_index)
3499 return s1.index() < s2.index();
3500
3501 return s1_secn_index < s2_secn_index;
3502 }
3503
3504 // Return true if S1 should come before S2. This is the sort comparison
3505 // function for .text to sort sections with prefixes
3506 // .text.{unlikely,exit,startup,hot} before other sections.
3507
3508 bool
3509 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3510 ::operator()(
3511 const Output_section::Input_section_sort_entry& s1,
3512 const Output_section::Input_section_sort_entry& s2) const
3513 {
3514 // Some input section names have special ordering requirements.
3515 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3516 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3517 if (o1 != o2)
3518 {
3519 if (o1 < 0)
3520 return false;
3521 else if (o2 < 0)
3522 return true;
3523 else
3524 return o1 < o2;
3525 }
3526
3527 // Keep input order otherwise.
3528 return s1.index() < s2.index();
3529 }
3530
3531 // Return true if S1 should come before S2. This is the sort comparison
3532 // function for sections to sort them by name.
3533
3534 bool
3535 Output_section::Input_section_sort_section_name_compare
3536 ::operator()(
3537 const Output_section::Input_section_sort_entry& s1,
3538 const Output_section::Input_section_sort_entry& s2) const
3539 {
3540 // We sort by name.
3541 int compare = s1.section_name().compare(s2.section_name());
3542 if (compare != 0)
3543 return compare < 0;
3544
3545 // Keep input order otherwise.
3546 return s1.index() < s2.index();
3547 }
3548
3549 // This updates the section order index of input sections according to the
3550 // the order specified in the mapping from Section id to order index.
3551
3552 void
3553 Output_section::update_section_layout(
3554 const Section_layout_order* order_map)
3555 {
3556 for (Input_section_list::iterator p = this->input_sections_.begin();
3557 p != this->input_sections_.end();
3558 ++p)
3559 {
3560 if (p->is_input_section()
3561 || p->is_relaxed_input_section())
3562 {
3563 Relobj* obj = (p->is_input_section()
3564 ? p->relobj()
3565 : p->relaxed_input_section()->relobj());
3566 unsigned int shndx = p->shndx();
3567 Section_layout_order::const_iterator it
3568 = order_map->find(Section_id(obj, shndx));
3569 if (it == order_map->end())
3570 continue;
3571 unsigned int section_order_index = it->second;
3572 if (section_order_index != 0)
3573 {
3574 p->set_section_order_index(section_order_index);
3575 this->set_input_section_order_specified();
3576 }
3577 }
3578 }
3579 }
3580
3581 // Sort the input sections attached to an output section.
3582
3583 void
3584 Output_section::sort_attached_input_sections()
3585 {
3586 if (this->attached_input_sections_are_sorted_)
3587 return;
3588
3589 if (this->checkpoint_ != NULL
3590 && !this->checkpoint_->input_sections_saved())
3591 this->checkpoint_->save_input_sections();
3592
3593 // The only thing we know about an input section is the object and
3594 // the section index. We need the section name. Recomputing this
3595 // is slow but this is an unusual case. If this becomes a speed
3596 // problem we can cache the names as required in Layout::layout.
3597
3598 // We start by building a larger vector holding a copy of each
3599 // Input_section, plus its current index in the list and its name.
3600 std::vector<Input_section_sort_entry> sort_list;
3601
3602 unsigned int i = 0;
3603 for (Input_section_list::iterator p = this->input_sections_.begin();
3604 p != this->input_sections_.end();
3605 ++p, ++i)
3606 sort_list.push_back(Input_section_sort_entry(*p, i,
3607 this->must_sort_attached_input_sections(),
3608 this->name()));
3609
3610 // Sort the input sections.
3611 if (this->must_sort_attached_input_sections())
3612 {
3613 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3614 || this->type() == elfcpp::SHT_INIT_ARRAY
3615 || this->type() == elfcpp::SHT_FINI_ARRAY)
3616 std::sort(sort_list.begin(), sort_list.end(),
3617 Input_section_sort_init_fini_compare());
3618 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3619 std::sort(sort_list.begin(), sort_list.end(),
3620 Input_section_sort_section_name_compare());
3621 else if (strcmp(this->name(), ".text") == 0)
3622 std::sort(sort_list.begin(), sort_list.end(),
3623 Input_section_sort_section_prefix_special_ordering_compare());
3624 else
3625 std::sort(sort_list.begin(), sort_list.end(),
3626 Input_section_sort_compare());
3627 }
3628 else
3629 {
3630 gold_assert(this->input_section_order_specified());
3631 std::sort(sort_list.begin(), sort_list.end(),
3632 Input_section_sort_section_order_index_compare());
3633 }
3634
3635 // Copy the sorted input sections back to our list.
3636 this->input_sections_.clear();
3637 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3638 p != sort_list.end();
3639 ++p)
3640 this->input_sections_.push_back(p->input_section());
3641 sort_list.clear();
3642
3643 // Remember that we sorted the input sections, since we might get
3644 // called again.
3645 this->attached_input_sections_are_sorted_ = true;
3646 }
3647
3648 // Write the section header to *OSHDR.
3649
3650 template<int size, bool big_endian>
3651 void
3652 Output_section::write_header(const Layout* layout,
3653 const Stringpool* secnamepool,
3654 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3655 {
3656 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3657 oshdr->put_sh_type(this->type_);
3658
3659 elfcpp::Elf_Xword flags = this->flags_;
3660 if (this->info_section_ != NULL && this->info_uses_section_index_)
3661 flags |= elfcpp::SHF_INFO_LINK;
3662 oshdr->put_sh_flags(flags);
3663
3664 oshdr->put_sh_addr(this->address());
3665 oshdr->put_sh_offset(this->offset());
3666 oshdr->put_sh_size(this->data_size());
3667 if (this->link_section_ != NULL)
3668 oshdr->put_sh_link(this->link_section_->out_shndx());
3669 else if (this->should_link_to_symtab_)
3670 oshdr->put_sh_link(layout->symtab_section_shndx());
3671 else if (this->should_link_to_dynsym_)
3672 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3673 else
3674 oshdr->put_sh_link(this->link_);
3675
3676 elfcpp::Elf_Word info;
3677 if (this->info_section_ != NULL)
3678 {
3679 if (this->info_uses_section_index_)
3680 info = this->info_section_->out_shndx();
3681 else
3682 info = this->info_section_->symtab_index();
3683 }
3684 else if (this->info_symndx_ != NULL)
3685 info = this->info_symndx_->symtab_index();
3686 else
3687 info = this->info_;
3688 oshdr->put_sh_info(info);
3689
3690 oshdr->put_sh_addralign(this->addralign_);
3691 oshdr->put_sh_entsize(this->entsize_);
3692 }
3693
3694 // Write out the data. For input sections the data is written out by
3695 // Object::relocate, but we have to handle Output_section_data objects
3696 // here.
3697
3698 void
3699 Output_section::do_write(Output_file* of)
3700 {
3701 gold_assert(!this->requires_postprocessing());
3702
3703 // If the target performs relaxation, we delay filler generation until now.
3704 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3705
3706 off_t output_section_file_offset = this->offset();
3707 for (Fill_list::iterator p = this->fills_.begin();
3708 p != this->fills_.end();
3709 ++p)
3710 {
3711 std::string fill_data(parameters->target().code_fill(p->length()));
3712 of->write(output_section_file_offset + p->section_offset(),
3713 fill_data.data(), fill_data.size());
3714 }
3715
3716 off_t off = this->offset() + this->first_input_offset_;
3717 for (Input_section_list::iterator p = this->input_sections_.begin();
3718 p != this->input_sections_.end();
3719 ++p)
3720 {
3721 off_t aligned_off = align_address(off, p->addralign());
3722 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3723 {
3724 size_t fill_len = aligned_off - off;
3725 std::string fill_data(parameters->target().code_fill(fill_len));
3726 of->write(off, fill_data.data(), fill_data.size());
3727 }
3728
3729 p->write(of);
3730 off = aligned_off + p->data_size();
3731 }
3732
3733 // For incremental links, fill in unused chunks in debug sections
3734 // with dummy compilation unit headers.
3735 if (this->free_space_fill_ != NULL)
3736 {
3737 for (Free_list::Const_iterator p = this->free_list_.begin();
3738 p != this->free_list_.end();
3739 ++p)
3740 {
3741 off_t off = p->start_;
3742 size_t len = p->end_ - off;
3743 this->free_space_fill_->write(of, this->offset() + off, len);
3744 }
3745 if (this->patch_space_ > 0)
3746 {
3747 off_t off = this->current_data_size_for_child() - this->patch_space_;
3748 this->free_space_fill_->write(of, this->offset() + off,
3749 this->patch_space_);
3750 }
3751 }
3752 }
3753
3754 // If a section requires postprocessing, create the buffer to use.
3755
3756 void
3757 Output_section::create_postprocessing_buffer()
3758 {
3759 gold_assert(this->requires_postprocessing());
3760
3761 if (this->postprocessing_buffer_ != NULL)
3762 return;
3763
3764 if (!this->input_sections_.empty())
3765 {
3766 off_t off = this->first_input_offset_;
3767 for (Input_section_list::iterator p = this->input_sections_.begin();
3768 p != this->input_sections_.end();
3769 ++p)
3770 {
3771 off = align_address(off, p->addralign());
3772 p->finalize_data_size();
3773 off += p->data_size();
3774 }
3775 this->set_current_data_size_for_child(off);
3776 }
3777
3778 off_t buffer_size = this->current_data_size_for_child();
3779 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3780 }
3781
3782 // Write all the data of an Output_section into the postprocessing
3783 // buffer. This is used for sections which require postprocessing,
3784 // such as compression. Input sections are handled by
3785 // Object::Relocate.
3786
3787 void
3788 Output_section::write_to_postprocessing_buffer()
3789 {
3790 gold_assert(this->requires_postprocessing());
3791
3792 // If the target performs relaxation, we delay filler generation until now.
3793 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3794
3795 unsigned char* buffer = this->postprocessing_buffer();
3796 for (Fill_list::iterator p = this->fills_.begin();
3797 p != this->fills_.end();
3798 ++p)
3799 {
3800 std::string fill_data(parameters->target().code_fill(p->length()));
3801 memcpy(buffer + p->section_offset(), fill_data.data(),
3802 fill_data.size());
3803 }
3804
3805 off_t off = this->first_input_offset_;
3806 for (Input_section_list::iterator p = this->input_sections_.begin();
3807 p != this->input_sections_.end();
3808 ++p)
3809 {
3810 off_t aligned_off = align_address(off, p->addralign());
3811 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3812 {
3813 size_t fill_len = aligned_off - off;
3814 std::string fill_data(parameters->target().code_fill(fill_len));
3815 memcpy(buffer + off, fill_data.data(), fill_data.size());
3816 }
3817
3818 p->write_to_buffer(buffer + aligned_off);
3819 off = aligned_off + p->data_size();
3820 }
3821 }
3822
3823 // Get the input sections for linker script processing. We leave
3824 // behind the Output_section_data entries. Note that this may be
3825 // slightly incorrect for merge sections. We will leave them behind,
3826 // but it is possible that the script says that they should follow
3827 // some other input sections, as in:
3828 // .rodata { *(.rodata) *(.rodata.cst*) }
3829 // For that matter, we don't handle this correctly:
3830 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3831 // With luck this will never matter.
3832
3833 uint64_t
3834 Output_section::get_input_sections(
3835 uint64_t address,
3836 const std::string& fill,
3837 std::list<Input_section>* input_sections)
3838 {
3839 if (this->checkpoint_ != NULL
3840 && !this->checkpoint_->input_sections_saved())
3841 this->checkpoint_->save_input_sections();
3842
3843 // Invalidate fast look-up maps.
3844 this->lookup_maps_->invalidate();
3845
3846 uint64_t orig_address = address;
3847
3848 address = align_address(address, this->addralign());
3849
3850 Input_section_list remaining;
3851 for (Input_section_list::iterator p = this->input_sections_.begin();
3852 p != this->input_sections_.end();
3853 ++p)
3854 {
3855 if (p->is_input_section()
3856 || p->is_relaxed_input_section()
3857 || p->is_merge_section())
3858 input_sections->push_back(*p);
3859 else
3860 {
3861 uint64_t aligned_address = align_address(address, p->addralign());
3862 if (aligned_address != address && !fill.empty())
3863 {
3864 section_size_type length =
3865 convert_to_section_size_type(aligned_address - address);
3866 std::string this_fill;
3867 this_fill.reserve(length);
3868 while (this_fill.length() + fill.length() <= length)
3869 this_fill += fill;
3870 if (this_fill.length() < length)
3871 this_fill.append(fill, 0, length - this_fill.length());
3872
3873 Output_section_data* posd = new Output_data_const(this_fill, 0);
3874 remaining.push_back(Input_section(posd));
3875 }
3876 address = aligned_address;
3877
3878 remaining.push_back(*p);
3879
3880 p->finalize_data_size();
3881 address += p->data_size();
3882 }
3883 }
3884
3885 this->input_sections_.swap(remaining);
3886 this->first_input_offset_ = 0;
3887
3888 uint64_t data_size = address - orig_address;
3889 this->set_current_data_size_for_child(data_size);
3890 return data_size;
3891 }
3892
3893 // Add a script input section. SIS is an Output_section::Input_section,
3894 // which can be either a plain input section or a special input section like
3895 // a relaxed input section. For a special input section, its size must be
3896 // finalized.
3897
3898 void
3899 Output_section::add_script_input_section(const Input_section& sis)
3900 {
3901 uint64_t data_size = sis.data_size();
3902 uint64_t addralign = sis.addralign();
3903 if (addralign > this->addralign_)
3904 this->addralign_ = addralign;
3905
3906 off_t offset_in_section = this->current_data_size_for_child();
3907 off_t aligned_offset_in_section = align_address(offset_in_section,
3908 addralign);
3909
3910 this->set_current_data_size_for_child(aligned_offset_in_section
3911 + data_size);
3912
3913 this->input_sections_.push_back(sis);
3914
3915 // Update fast lookup maps if necessary.
3916 if (this->lookup_maps_->is_valid())
3917 {
3918 if (sis.is_relaxed_input_section())
3919 {
3920 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3921 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3922 poris->shndx(), poris);
3923 }
3924 }
3925 }
3926
3927 // Save states for relaxation.
3928
3929 void
3930 Output_section::save_states()
3931 {
3932 gold_assert(this->checkpoint_ == NULL);
3933 Checkpoint_output_section* checkpoint =
3934 new Checkpoint_output_section(this->addralign_, this->flags_,
3935 this->input_sections_,
3936 this->first_input_offset_,
3937 this->attached_input_sections_are_sorted_);
3938 this->checkpoint_ = checkpoint;
3939 gold_assert(this->fills_.empty());
3940 }
3941
3942 void
3943 Output_section::discard_states()
3944 {
3945 gold_assert(this->checkpoint_ != NULL);
3946 delete this->checkpoint_;
3947 this->checkpoint_ = NULL;
3948 gold_assert(this->fills_.empty());
3949
3950 // Simply invalidate the fast lookup maps since we do not keep
3951 // track of them.
3952 this->lookup_maps_->invalidate();
3953 }
3954
3955 void
3956 Output_section::restore_states()
3957 {
3958 gold_assert(this->checkpoint_ != NULL);
3959 Checkpoint_output_section* checkpoint = this->checkpoint_;
3960
3961 this->addralign_ = checkpoint->addralign();
3962 this->flags_ = checkpoint->flags();
3963 this->first_input_offset_ = checkpoint->first_input_offset();
3964
3965 if (!checkpoint->input_sections_saved())
3966 {
3967 // If we have not copied the input sections, just resize it.
3968 size_t old_size = checkpoint->input_sections_size();
3969 gold_assert(this->input_sections_.size() >= old_size);
3970 this->input_sections_.resize(old_size);
3971 }
3972 else
3973 {
3974 // We need to copy the whole list. This is not efficient for
3975 // extremely large output with hundreads of thousands of input
3976 // objects. We may need to re-think how we should pass sections
3977 // to scripts.
3978 this->input_sections_ = *checkpoint->input_sections();
3979 }
3980
3981 this->attached_input_sections_are_sorted_ =
3982 checkpoint->attached_input_sections_are_sorted();
3983
3984 // Simply invalidate the fast lookup maps since we do not keep
3985 // track of them.
3986 this->lookup_maps_->invalidate();
3987 }
3988
3989 // Update the section offsets of input sections in this. This is required if
3990 // relaxation causes some input sections to change sizes.
3991
3992 void
3993 Output_section::adjust_section_offsets()
3994 {
3995 if (!this->section_offsets_need_adjustment_)
3996 return;
3997
3998 off_t off = 0;
3999 for (Input_section_list::iterator p = this->input_sections_.begin();
4000 p != this->input_sections_.end();
4001 ++p)
4002 {
4003 off = align_address(off, p->addralign());
4004 if (p->is_input_section())
4005 p->relobj()->set_section_offset(p->shndx(), off);
4006 off += p->data_size();
4007 }
4008
4009 this->section_offsets_need_adjustment_ = false;
4010 }
4011
4012 // Print to the map file.
4013
4014 void
4015 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4016 {
4017 mapfile->print_output_section(this);
4018
4019 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4020 p != this->input_sections_.end();
4021 ++p)
4022 p->print_to_mapfile(mapfile);
4023 }
4024
4025 // Print stats for merge sections to stderr.
4026
4027 void
4028 Output_section::print_merge_stats()
4029 {
4030 Input_section_list::iterator p;
4031 for (p = this->input_sections_.begin();
4032 p != this->input_sections_.end();
4033 ++p)
4034 p->print_merge_stats(this->name_);
4035 }
4036
4037 // Set a fixed layout for the section. Used for incremental update links.
4038
4039 void
4040 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4041 off_t sh_size, uint64_t sh_addralign)
4042 {
4043 this->addralign_ = sh_addralign;
4044 this->set_current_data_size(sh_size);
4045 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4046 this->set_address(sh_addr);
4047 this->set_file_offset(sh_offset);
4048 this->finalize_data_size();
4049 this->free_list_.init(sh_size, false);
4050 this->has_fixed_layout_ = true;
4051 }
4052
4053 // Reserve space within the fixed layout for the section. Used for
4054 // incremental update links.
4055
4056 void
4057 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4058 {
4059 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4060 }
4061
4062 // Allocate space from the free list for the section. Used for
4063 // incremental update links.
4064
4065 off_t
4066 Output_section::allocate(off_t len, uint64_t addralign)
4067 {
4068 return this->free_list_.allocate(len, addralign, 0);
4069 }
4070
4071 // Output segment methods.
4072
4073 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4074 : vaddr_(0),
4075 paddr_(0),
4076 memsz_(0),
4077 max_align_(0),
4078 min_p_align_(0),
4079 offset_(0),
4080 filesz_(0),
4081 type_(type),
4082 flags_(flags),
4083 is_max_align_known_(false),
4084 are_addresses_set_(false),
4085 is_large_data_segment_(false),
4086 is_unique_segment_(false)
4087 {
4088 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4089 // the flags.
4090 if (type == elfcpp::PT_TLS)
4091 this->flags_ = elfcpp::PF_R;
4092 }
4093
4094 // Add an Output_section to a PT_LOAD Output_segment.
4095
4096 void
4097 Output_segment::add_output_section_to_load(Layout* layout,
4098 Output_section* os,
4099 elfcpp::Elf_Word seg_flags)
4100 {
4101 gold_assert(this->type() == elfcpp::PT_LOAD);
4102 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4103 gold_assert(!this->is_max_align_known_);
4104 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4105
4106 this->update_flags_for_output_section(seg_flags);
4107
4108 // We don't want to change the ordering if we have a linker script
4109 // with a SECTIONS clause.
4110 Output_section_order order = os->order();
4111 if (layout->script_options()->saw_sections_clause())
4112 order = static_cast<Output_section_order>(0);
4113 else
4114 gold_assert(order != ORDER_INVALID);
4115
4116 this->output_lists_[order].push_back(os);
4117 }
4118
4119 // Add an Output_section to a non-PT_LOAD Output_segment.
4120
4121 void
4122 Output_segment::add_output_section_to_nonload(Output_section* os,
4123 elfcpp::Elf_Word seg_flags)
4124 {
4125 gold_assert(this->type() != elfcpp::PT_LOAD);
4126 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4127 gold_assert(!this->is_max_align_known_);
4128
4129 this->update_flags_for_output_section(seg_flags);
4130
4131 this->output_lists_[0].push_back(os);
4132 }
4133
4134 // Remove an Output_section from this segment. It is an error if it
4135 // is not present.
4136
4137 void
4138 Output_segment::remove_output_section(Output_section* os)
4139 {
4140 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4141 {
4142 Output_data_list* pdl = &this->output_lists_[i];
4143 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4144 {
4145 if (*p == os)
4146 {
4147 pdl->erase(p);
4148 return;
4149 }
4150 }
4151 }
4152 gold_unreachable();
4153 }
4154
4155 // Add an Output_data (which need not be an Output_section) to the
4156 // start of a segment.
4157
4158 void
4159 Output_segment::add_initial_output_data(Output_data* od)
4160 {
4161 gold_assert(!this->is_max_align_known_);
4162 Output_data_list::iterator p = this->output_lists_[0].begin();
4163 this->output_lists_[0].insert(p, od);
4164 }
4165
4166 // Return true if this segment has any sections which hold actual
4167 // data, rather than being a BSS section.
4168
4169 bool
4170 Output_segment::has_any_data_sections() const
4171 {
4172 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4173 {
4174 const Output_data_list* pdl = &this->output_lists_[i];
4175 for (Output_data_list::const_iterator p = pdl->begin();
4176 p != pdl->end();
4177 ++p)
4178 {
4179 if (!(*p)->is_section())
4180 return true;
4181 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4182 return true;
4183 }
4184 }
4185 return false;
4186 }
4187
4188 // Return whether the first data section (not counting TLS sections)
4189 // is a relro section.
4190
4191 bool
4192 Output_segment::is_first_section_relro() const
4193 {
4194 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4195 {
4196 if (i == static_cast<int>(ORDER_TLS_BSS))
4197 continue;
4198 const Output_data_list* pdl = &this->output_lists_[i];
4199 if (!pdl->empty())
4200 {
4201 Output_data* p = pdl->front();
4202 return p->is_section() && p->output_section()->is_relro();
4203 }
4204 }
4205 return false;
4206 }
4207
4208 // Return the maximum alignment of the Output_data in Output_segment.
4209
4210 uint64_t
4211 Output_segment::maximum_alignment()
4212 {
4213 if (!this->is_max_align_known_)
4214 {
4215 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4216 {
4217 const Output_data_list* pdl = &this->output_lists_[i];
4218 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4219 if (addralign > this->max_align_)
4220 this->max_align_ = addralign;
4221 }
4222 this->is_max_align_known_ = true;
4223 }
4224
4225 return this->max_align_;
4226 }
4227
4228 // Return the maximum alignment of a list of Output_data.
4229
4230 uint64_t
4231 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4232 {
4233 uint64_t ret = 0;
4234 for (Output_data_list::const_iterator p = pdl->begin();
4235 p != pdl->end();
4236 ++p)
4237 {
4238 uint64_t addralign = (*p)->addralign();
4239 if (addralign > ret)
4240 ret = addralign;
4241 }
4242 return ret;
4243 }
4244
4245 // Return whether this segment has any dynamic relocs.
4246
4247 bool
4248 Output_segment::has_dynamic_reloc() const
4249 {
4250 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4251 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4252 return true;
4253 return false;
4254 }
4255
4256 // Return whether this Output_data_list has any dynamic relocs.
4257
4258 bool
4259 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4260 {
4261 for (Output_data_list::const_iterator p = pdl->begin();
4262 p != pdl->end();
4263 ++p)
4264 if ((*p)->has_dynamic_reloc())
4265 return true;
4266 return false;
4267 }
4268
4269 // Set the section addresses for an Output_segment. If RESET is true,
4270 // reset the addresses first. ADDR is the address and *POFF is the
4271 // file offset. Set the section indexes starting with *PSHNDX.
4272 // INCREASE_RELRO is the size of the portion of the first non-relro
4273 // section that should be included in the PT_GNU_RELRO segment.
4274 // If this segment has relro sections, and has been aligned for
4275 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4276 // the immediately following segment. Update *HAS_RELRO, *POFF,
4277 // and *PSHNDX.
4278
4279 uint64_t
4280 Output_segment::set_section_addresses(const Target* target,
4281 Layout* layout, bool reset,
4282 uint64_t addr,
4283 unsigned int* increase_relro,
4284 bool* has_relro,
4285 off_t* poff,
4286 unsigned int* pshndx)
4287 {
4288 gold_assert(this->type_ == elfcpp::PT_LOAD);
4289
4290 uint64_t last_relro_pad = 0;
4291 off_t orig_off = *poff;
4292
4293 bool in_tls = false;
4294
4295 // If we have relro sections, we need to pad forward now so that the
4296 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4297 if (parameters->options().relro()
4298 && this->is_first_section_relro()
4299 && (!this->are_addresses_set_ || reset))
4300 {
4301 uint64_t relro_size = 0;
4302 off_t off = *poff;
4303 uint64_t max_align = 0;
4304 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4305 {
4306 Output_data_list* pdl = &this->output_lists_[i];
4307 Output_data_list::iterator p;
4308 for (p = pdl->begin(); p != pdl->end(); ++p)
4309 {
4310 if (!(*p)->is_section())
4311 break;
4312 uint64_t align = (*p)->addralign();
4313 if (align > max_align)
4314 max_align = align;
4315 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4316 in_tls = true;
4317 else if (in_tls)
4318 {
4319 // Align the first non-TLS section to the alignment
4320 // of the TLS segment.
4321 align = max_align;
4322 in_tls = false;
4323 }
4324 // Ignore the size of the .tbss section.
4325 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4326 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4327 continue;
4328 relro_size = align_address(relro_size, align);
4329 if ((*p)->is_address_valid())
4330 relro_size += (*p)->data_size();
4331 else
4332 {
4333 // FIXME: This could be faster.
4334 (*p)->set_address_and_file_offset(relro_size,
4335 relro_size);
4336 relro_size += (*p)->data_size();
4337 (*p)->reset_address_and_file_offset();
4338 }
4339 }
4340 if (p != pdl->end())
4341 break;
4342 }
4343 relro_size += *increase_relro;
4344 // Pad the total relro size to a multiple of the maximum
4345 // section alignment seen.
4346 uint64_t aligned_size = align_address(relro_size, max_align);
4347 // Note the amount of padding added after the last relro section.
4348 last_relro_pad = aligned_size - relro_size;
4349 *has_relro = true;
4350
4351 uint64_t page_align = parameters->target().abi_pagesize();
4352
4353 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4354 uint64_t desired_align = page_align - (aligned_size % page_align);
4355 if (desired_align < off % page_align)
4356 off += page_align;
4357 off += desired_align - off % page_align;
4358 addr += off - orig_off;
4359 orig_off = off;
4360 *poff = off;
4361 }
4362
4363 if (!reset && this->are_addresses_set_)
4364 {
4365 gold_assert(this->paddr_ == addr);
4366 addr = this->vaddr_;
4367 }
4368 else
4369 {
4370 this->vaddr_ = addr;
4371 this->paddr_ = addr;
4372 this->are_addresses_set_ = true;
4373 }
4374
4375 in_tls = false;
4376
4377 this->offset_ = orig_off;
4378
4379 off_t off = 0;
4380 uint64_t ret;
4381 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4382 {
4383 if (i == static_cast<int>(ORDER_RELRO_LAST))
4384 {
4385 *poff += last_relro_pad;
4386 addr += last_relro_pad;
4387 if (this->output_lists_[i].empty())
4388 {
4389 // If there is nothing in the ORDER_RELRO_LAST list,
4390 // the padding will occur at the end of the relro
4391 // segment, and we need to add it to *INCREASE_RELRO.
4392 *increase_relro += last_relro_pad;
4393 }
4394 }
4395 addr = this->set_section_list_addresses(layout, reset,
4396 &this->output_lists_[i],
4397 addr, poff, pshndx, &in_tls);
4398 if (i < static_cast<int>(ORDER_SMALL_BSS))
4399 {
4400 this->filesz_ = *poff - orig_off;
4401 off = *poff;
4402 }
4403
4404 ret = addr;
4405 }
4406
4407 // If the last section was a TLS section, align upward to the
4408 // alignment of the TLS segment, so that the overall size of the TLS
4409 // segment is aligned.
4410 if (in_tls)
4411 {
4412 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4413 *poff = align_address(*poff, segment_align);
4414 }
4415
4416 this->memsz_ = *poff - orig_off;
4417
4418 // Ignore the file offset adjustments made by the BSS Output_data
4419 // objects.
4420 *poff = off;
4421
4422 // If code segments must contain only code, and this code segment is
4423 // page-aligned in the file, then fill it out to a whole page with
4424 // code fill (the tail of the segment will not be within any section).
4425 // Thus the entire code segment can be mapped from the file as whole
4426 // pages and that mapping will contain only valid instructions.
4427 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4428 {
4429 uint64_t abi_pagesize = target->abi_pagesize();
4430 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4431 {
4432 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4433
4434 std::string fill_data;
4435 if (target->has_code_fill())
4436 fill_data = target->code_fill(fill_size);
4437 else
4438 fill_data.resize(fill_size); // Zero fill.
4439
4440 Output_data_const* fill = new Output_data_const(fill_data, 0);
4441 fill->set_address(this->vaddr_ + this->memsz_);
4442 fill->set_file_offset(off);
4443 layout->add_relax_output(fill);
4444
4445 off += fill_size;
4446 gold_assert(off % abi_pagesize == 0);
4447 ret += fill_size;
4448 gold_assert(ret % abi_pagesize == 0);
4449
4450 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4451 this->memsz_ = this->filesz_ += fill_size;
4452
4453 *poff = off;
4454 }
4455 }
4456
4457 return ret;
4458 }
4459
4460 // Set the addresses and file offsets in a list of Output_data
4461 // structures.
4462
4463 uint64_t
4464 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4465 Output_data_list* pdl,
4466 uint64_t addr, off_t* poff,
4467 unsigned int* pshndx,
4468 bool* in_tls)
4469 {
4470 off_t startoff = *poff;
4471 // For incremental updates, we may allocate non-fixed sections from
4472 // free space in the file. This keeps track of the high-water mark.
4473 off_t maxoff = startoff;
4474
4475 off_t off = startoff;
4476 for (Output_data_list::iterator p = pdl->begin();
4477 p != pdl->end();
4478 ++p)
4479 {
4480 if (reset)
4481 (*p)->reset_address_and_file_offset();
4482
4483 // When doing an incremental update or when using a linker script,
4484 // the section will most likely already have an address.
4485 if (!(*p)->is_address_valid())
4486 {
4487 uint64_t align = (*p)->addralign();
4488
4489 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4490 {
4491 // Give the first TLS section the alignment of the
4492 // entire TLS segment. Otherwise the TLS segment as a
4493 // whole may be misaligned.
4494 if (!*in_tls)
4495 {
4496 Output_segment* tls_segment = layout->tls_segment();
4497 gold_assert(tls_segment != NULL);
4498 uint64_t segment_align = tls_segment->maximum_alignment();
4499 gold_assert(segment_align >= align);
4500 align = segment_align;
4501
4502 *in_tls = true;
4503 }
4504 }
4505 else
4506 {
4507 // If this is the first section after the TLS segment,
4508 // align it to at least the alignment of the TLS
4509 // segment, so that the size of the overall TLS segment
4510 // is aligned.
4511 if (*in_tls)
4512 {
4513 uint64_t segment_align =
4514 layout->tls_segment()->maximum_alignment();
4515 if (segment_align > align)
4516 align = segment_align;
4517
4518 *in_tls = false;
4519 }
4520 }
4521
4522 if (!parameters->incremental_update())
4523 {
4524 off = align_address(off, align);
4525 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4526 }
4527 else
4528 {
4529 // Incremental update: allocate file space from free list.
4530 (*p)->pre_finalize_data_size();
4531 off_t current_size = (*p)->current_data_size();
4532 off = layout->allocate(current_size, align, startoff);
4533 if (off == -1)
4534 {
4535 gold_assert((*p)->output_section() != NULL);
4536 gold_fallback(_("out of patch space for section %s; "
4537 "relink with --incremental-full"),
4538 (*p)->output_section()->name());
4539 }
4540 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4541 if ((*p)->data_size() > current_size)
4542 {
4543 gold_assert((*p)->output_section() != NULL);
4544 gold_fallback(_("%s: section changed size; "
4545 "relink with --incremental-full"),
4546 (*p)->output_section()->name());
4547 }
4548 }
4549 }
4550 else if (parameters->incremental_update())
4551 {
4552 // For incremental updates, use the fixed offset for the
4553 // high-water mark computation.
4554 off = (*p)->offset();
4555 }
4556 else
4557 {
4558 // The script may have inserted a skip forward, but it
4559 // better not have moved backward.
4560 if ((*p)->address() >= addr + (off - startoff))
4561 off += (*p)->address() - (addr + (off - startoff));
4562 else
4563 {
4564 if (!layout->script_options()->saw_sections_clause())
4565 gold_unreachable();
4566 else
4567 {
4568 Output_section* os = (*p)->output_section();
4569
4570 // Cast to unsigned long long to avoid format warnings.
4571 unsigned long long previous_dot =
4572 static_cast<unsigned long long>(addr + (off - startoff));
4573 unsigned long long dot =
4574 static_cast<unsigned long long>((*p)->address());
4575
4576 if (os == NULL)
4577 gold_error(_("dot moves backward in linker script "
4578 "from 0x%llx to 0x%llx"), previous_dot, dot);
4579 else
4580 gold_error(_("address of section '%s' moves backward "
4581 "from 0x%llx to 0x%llx"),
4582 os->name(), previous_dot, dot);
4583 }
4584 }
4585 (*p)->set_file_offset(off);
4586 (*p)->finalize_data_size();
4587 }
4588
4589 if (parameters->incremental_update())
4590 gold_debug(DEBUG_INCREMENTAL,
4591 "set_section_list_addresses: %08lx %08lx %s",
4592 static_cast<long>(off),
4593 static_cast<long>((*p)->data_size()),
4594 ((*p)->output_section() != NULL
4595 ? (*p)->output_section()->name() : "(special)"));
4596
4597 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4598 // section. Such a section does not affect the size of a
4599 // PT_LOAD segment.
4600 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4601 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4602 off += (*p)->data_size();
4603
4604 if (off > maxoff)
4605 maxoff = off;
4606
4607 if ((*p)->is_section())
4608 {
4609 (*p)->set_out_shndx(*pshndx);
4610 ++*pshndx;
4611 }
4612 }
4613
4614 *poff = maxoff;
4615 return addr + (maxoff - startoff);
4616 }
4617
4618 // For a non-PT_LOAD segment, set the offset from the sections, if
4619 // any. Add INCREASE to the file size and the memory size.
4620
4621 void
4622 Output_segment::set_offset(unsigned int increase)
4623 {
4624 gold_assert(this->type_ != elfcpp::PT_LOAD);
4625
4626 gold_assert(!this->are_addresses_set_);
4627
4628 // A non-load section only uses output_lists_[0].
4629
4630 Output_data_list* pdl = &this->output_lists_[0];
4631
4632 if (pdl->empty())
4633 {
4634 gold_assert(increase == 0);
4635 this->vaddr_ = 0;
4636 this->paddr_ = 0;
4637 this->are_addresses_set_ = true;
4638 this->memsz_ = 0;
4639 this->min_p_align_ = 0;
4640 this->offset_ = 0;
4641 this->filesz_ = 0;
4642 return;
4643 }
4644
4645 // Find the first and last section by address.
4646 const Output_data* first = NULL;
4647 const Output_data* last_data = NULL;
4648 const Output_data* last_bss = NULL;
4649 for (Output_data_list::const_iterator p = pdl->begin();
4650 p != pdl->end();
4651 ++p)
4652 {
4653 if (first == NULL
4654 || (*p)->address() < first->address()
4655 || ((*p)->address() == first->address()
4656 && (*p)->data_size() < first->data_size()))
4657 first = *p;
4658 const Output_data** plast;
4659 if ((*p)->is_section()
4660 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4661 plast = &last_bss;
4662 else
4663 plast = &last_data;
4664 if (*plast == NULL
4665 || (*p)->address() > (*plast)->address()
4666 || ((*p)->address() == (*plast)->address()
4667 && (*p)->data_size() > (*plast)->data_size()))
4668 *plast = *p;
4669 }
4670
4671 this->vaddr_ = first->address();
4672 this->paddr_ = (first->has_load_address()
4673 ? first->load_address()
4674 : this->vaddr_);
4675 this->are_addresses_set_ = true;
4676 this->offset_ = first->offset();
4677
4678 if (last_data == NULL)
4679 this->filesz_ = 0;
4680 else
4681 this->filesz_ = (last_data->address()
4682 + last_data->data_size()
4683 - this->vaddr_);
4684
4685 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4686 this->memsz_ = (last->address()
4687 + last->data_size()
4688 - this->vaddr_);
4689
4690 this->filesz_ += increase;
4691 this->memsz_ += increase;
4692
4693 // If this is a RELRO segment, verify that the segment ends at a
4694 // page boundary.
4695 if (this->type_ == elfcpp::PT_GNU_RELRO)
4696 {
4697 uint64_t page_align = parameters->target().abi_pagesize();
4698 uint64_t segment_end = this->vaddr_ + this->memsz_;
4699 if (parameters->incremental_update())
4700 {
4701 // The INCREASE_RELRO calculation is bypassed for an incremental
4702 // update, so we need to adjust the segment size manually here.
4703 segment_end = align_address(segment_end, page_align);
4704 this->memsz_ = segment_end - this->vaddr_;
4705 }
4706 else
4707 gold_assert(segment_end == align_address(segment_end, page_align));
4708 }
4709
4710 // If this is a TLS segment, align the memory size. The code in
4711 // set_section_list ensures that the section after the TLS segment
4712 // is aligned to give us room.
4713 if (this->type_ == elfcpp::PT_TLS)
4714 {
4715 uint64_t segment_align = this->maximum_alignment();
4716 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4717 this->memsz_ = align_address(this->memsz_, segment_align);
4718 }
4719 }
4720
4721 // Set the TLS offsets of the sections in the PT_TLS segment.
4722
4723 void
4724 Output_segment::set_tls_offsets()
4725 {
4726 gold_assert(this->type_ == elfcpp::PT_TLS);
4727
4728 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4729 p != this->output_lists_[0].end();
4730 ++p)
4731 (*p)->set_tls_offset(this->vaddr_);
4732 }
4733
4734 // Return the first section.
4735
4736 Output_section*
4737 Output_segment::first_section() const
4738 {
4739 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4740 {
4741 const Output_data_list* pdl = &this->output_lists_[i];
4742 for (Output_data_list::const_iterator p = pdl->begin();
4743 p != pdl->end();
4744 ++p)
4745 {
4746 if ((*p)->is_section())
4747 return (*p)->output_section();
4748 }
4749 }
4750 gold_unreachable();
4751 }
4752
4753 // Return the number of Output_sections in an Output_segment.
4754
4755 unsigned int
4756 Output_segment::output_section_count() const
4757 {
4758 unsigned int ret = 0;
4759 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4760 ret += this->output_section_count_list(&this->output_lists_[i]);
4761 return ret;
4762 }
4763
4764 // Return the number of Output_sections in an Output_data_list.
4765
4766 unsigned int
4767 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4768 {
4769 unsigned int count = 0;
4770 for (Output_data_list::const_iterator p = pdl->begin();
4771 p != pdl->end();
4772 ++p)
4773 {
4774 if ((*p)->is_section())
4775 ++count;
4776 }
4777 return count;
4778 }
4779
4780 // Return the section attached to the list segment with the lowest
4781 // load address. This is used when handling a PHDRS clause in a
4782 // linker script.
4783
4784 Output_section*
4785 Output_segment::section_with_lowest_load_address() const
4786 {
4787 Output_section* found = NULL;
4788 uint64_t found_lma = 0;
4789 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4790 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4791 &found_lma);
4792 return found;
4793 }
4794
4795 // Look through a list for a section with a lower load address.
4796
4797 void
4798 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4799 Output_section** found,
4800 uint64_t* found_lma) const
4801 {
4802 for (Output_data_list::const_iterator p = pdl->begin();
4803 p != pdl->end();
4804 ++p)
4805 {
4806 if (!(*p)->is_section())
4807 continue;
4808 Output_section* os = static_cast<Output_section*>(*p);
4809 uint64_t lma = (os->has_load_address()
4810 ? os->load_address()
4811 : os->address());
4812 if (*found == NULL || lma < *found_lma)
4813 {
4814 *found = os;
4815 *found_lma = lma;
4816 }
4817 }
4818 }
4819
4820 // Write the segment data into *OPHDR.
4821
4822 template<int size, bool big_endian>
4823 void
4824 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4825 {
4826 ophdr->put_p_type(this->type_);
4827 ophdr->put_p_offset(this->offset_);
4828 ophdr->put_p_vaddr(this->vaddr_);
4829 ophdr->put_p_paddr(this->paddr_);
4830 ophdr->put_p_filesz(this->filesz_);
4831 ophdr->put_p_memsz(this->memsz_);
4832 ophdr->put_p_flags(this->flags_);
4833 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4834 }
4835
4836 // Write the section headers into V.
4837
4838 template<int size, bool big_endian>
4839 unsigned char*
4840 Output_segment::write_section_headers(const Layout* layout,
4841 const Stringpool* secnamepool,
4842 unsigned char* v,
4843 unsigned int* pshndx) const
4844 {
4845 // Every section that is attached to a segment must be attached to a
4846 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4847 // segments.
4848 if (this->type_ != elfcpp::PT_LOAD)
4849 return v;
4850
4851 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4852 {
4853 const Output_data_list* pdl = &this->output_lists_[i];
4854 v = this->write_section_headers_list<size, big_endian>(layout,
4855 secnamepool,
4856 pdl,
4857 v, pshndx);
4858 }
4859
4860 return v;
4861 }
4862
4863 template<int size, bool big_endian>
4864 unsigned char*
4865 Output_segment::write_section_headers_list(const Layout* layout,
4866 const Stringpool* secnamepool,
4867 const Output_data_list* pdl,
4868 unsigned char* v,
4869 unsigned int* pshndx) const
4870 {
4871 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4872 for (Output_data_list::const_iterator p = pdl->begin();
4873 p != pdl->end();
4874 ++p)
4875 {
4876 if ((*p)->is_section())
4877 {
4878 const Output_section* ps = static_cast<const Output_section*>(*p);
4879 gold_assert(*pshndx == ps->out_shndx());
4880 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4881 ps->write_header(layout, secnamepool, &oshdr);
4882 v += shdr_size;
4883 ++*pshndx;
4884 }
4885 }
4886 return v;
4887 }
4888
4889 // Print the output sections to the map file.
4890
4891 void
4892 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4893 {
4894 if (this->type() != elfcpp::PT_LOAD)
4895 return;
4896 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4897 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4898 }
4899
4900 // Print an output section list to the map file.
4901
4902 void
4903 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4904 const Output_data_list* pdl) const
4905 {
4906 for (Output_data_list::const_iterator p = pdl->begin();
4907 p != pdl->end();
4908 ++p)
4909 (*p)->print_to_mapfile(mapfile);
4910 }
4911
4912 // Output_file methods.
4913
4914 Output_file::Output_file(const char* name)
4915 : name_(name),
4916 o_(-1),
4917 file_size_(0),
4918 base_(NULL),
4919 map_is_anonymous_(false),
4920 map_is_allocated_(false),
4921 is_temporary_(false)
4922 {
4923 }
4924
4925 // Try to open an existing file. Returns false if the file doesn't
4926 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4927 // NULL, open that file as the base for incremental linking, and
4928 // copy its contents to the new output file. This routine can
4929 // be called for incremental updates, in which case WRITABLE should
4930 // be true, or by the incremental-dump utility, in which case
4931 // WRITABLE should be false.
4932
4933 bool
4934 Output_file::open_base_file(const char* base_name, bool writable)
4935 {
4936 // The name "-" means "stdout".
4937 if (strcmp(this->name_, "-") == 0)
4938 return false;
4939
4940 bool use_base_file = base_name != NULL;
4941 if (!use_base_file)
4942 base_name = this->name_;
4943 else if (strcmp(base_name, this->name_) == 0)
4944 gold_fatal(_("%s: incremental base and output file name are the same"),
4945 base_name);
4946
4947 // Don't bother opening files with a size of zero.
4948 struct stat s;
4949 if (::stat(base_name, &s) != 0)
4950 {
4951 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4952 return false;
4953 }
4954 if (s.st_size == 0)
4955 {
4956 gold_info(_("%s: incremental base file is empty"), base_name);
4957 return false;
4958 }
4959
4960 // If we're using a base file, we want to open it read-only.
4961 if (use_base_file)
4962 writable = false;
4963
4964 int oflags = writable ? O_RDWR : O_RDONLY;
4965 int o = open_descriptor(-1, base_name, oflags, 0);
4966 if (o < 0)
4967 {
4968 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4969 return false;
4970 }
4971
4972 // If the base file and the output file are different, open a
4973 // new output file and read the contents from the base file into
4974 // the newly-mapped region.
4975 if (use_base_file)
4976 {
4977 this->open(s.st_size);
4978 ssize_t bytes_to_read = s.st_size;
4979 unsigned char* p = this->base_;
4980 while (bytes_to_read > 0)
4981 {
4982 ssize_t len = ::read(o, p, bytes_to_read);
4983 if (len < 0)
4984 {
4985 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4986 return false;
4987 }
4988 if (len == 0)
4989 {
4990 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4991 base_name,
4992 static_cast<long long>(s.st_size - bytes_to_read),
4993 static_cast<long long>(s.st_size));
4994 return false;
4995 }
4996 p += len;
4997 bytes_to_read -= len;
4998 }
4999 ::close(o);
5000 return true;
5001 }
5002
5003 this->o_ = o;
5004 this->file_size_ = s.st_size;
5005
5006 if (!this->map_no_anonymous(writable))
5007 {
5008 release_descriptor(o, true);
5009 this->o_ = -1;
5010 this->file_size_ = 0;
5011 return false;
5012 }
5013
5014 return true;
5015 }
5016
5017 // Open the output file.
5018
5019 void
5020 Output_file::open(off_t file_size)
5021 {
5022 this->file_size_ = file_size;
5023
5024 // Unlink the file first; otherwise the open() may fail if the file
5025 // is busy (e.g. it's an executable that's currently being executed).
5026 //
5027 // However, the linker may be part of a system where a zero-length
5028 // file is created for it to write to, with tight permissions (gcc
5029 // 2.95 did something like this). Unlinking the file would work
5030 // around those permission controls, so we only unlink if the file
5031 // has a non-zero size. We also unlink only regular files to avoid
5032 // trouble with directories/etc.
5033 //
5034 // If we fail, continue; this command is merely a best-effort attempt
5035 // to improve the odds for open().
5036
5037 // We let the name "-" mean "stdout"
5038 if (!this->is_temporary_)
5039 {
5040 if (strcmp(this->name_, "-") == 0)
5041 this->o_ = STDOUT_FILENO;
5042 else
5043 {
5044 struct stat s;
5045 if (::stat(this->name_, &s) == 0
5046 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5047 {
5048 if (s.st_size != 0)
5049 ::unlink(this->name_);
5050 else if (!parameters->options().relocatable())
5051 {
5052 // If we don't unlink the existing file, add execute
5053 // permission where read permissions already exist
5054 // and where the umask permits.
5055 int mask = ::umask(0);
5056 ::umask(mask);
5057 s.st_mode |= (s.st_mode & 0444) >> 2;
5058 ::chmod(this->name_, s.st_mode & ~mask);
5059 }
5060 }
5061
5062 int mode = parameters->options().relocatable() ? 0666 : 0777;
5063 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5064 mode);
5065 if (o < 0)
5066 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5067 this->o_ = o;
5068 }
5069 }
5070
5071 this->map();
5072 }
5073
5074 // Resize the output file.
5075
5076 void
5077 Output_file::resize(off_t file_size)
5078 {
5079 // If the mmap is mapping an anonymous memory buffer, this is easy:
5080 // just mremap to the new size. If it's mapping to a file, we want
5081 // to unmap to flush to the file, then remap after growing the file.
5082 if (this->map_is_anonymous_)
5083 {
5084 void* base;
5085 if (!this->map_is_allocated_)
5086 {
5087 base = ::mremap(this->base_, this->file_size_, file_size,
5088 MREMAP_MAYMOVE);
5089 if (base == MAP_FAILED)
5090 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5091 }
5092 else
5093 {
5094 base = realloc(this->base_, file_size);
5095 if (base == NULL)
5096 gold_nomem();
5097 if (file_size > this->file_size_)
5098 memset(static_cast<char*>(base) + this->file_size_, 0,
5099 file_size - this->file_size_);
5100 }
5101 this->base_ = static_cast<unsigned char*>(base);
5102 this->file_size_ = file_size;
5103 }
5104 else
5105 {
5106 this->unmap();
5107 this->file_size_ = file_size;
5108 if (!this->map_no_anonymous(true))
5109 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5110 }
5111 }
5112
5113 // Map an anonymous block of memory which will later be written to the
5114 // file. Return whether the map succeeded.
5115
5116 bool
5117 Output_file::map_anonymous()
5118 {
5119 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5120 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5121 if (base == MAP_FAILED)
5122 {
5123 base = malloc(this->file_size_);
5124 if (base == NULL)
5125 return false;
5126 memset(base, 0, this->file_size_);
5127 this->map_is_allocated_ = true;
5128 }
5129 this->base_ = static_cast<unsigned char*>(base);
5130 this->map_is_anonymous_ = true;
5131 return true;
5132 }
5133
5134 // Map the file into memory. Return whether the mapping succeeded.
5135 // If WRITABLE is true, map with write access.
5136
5137 bool
5138 Output_file::map_no_anonymous(bool writable)
5139 {
5140 const int o = this->o_;
5141
5142 // If the output file is not a regular file, don't try to mmap it;
5143 // instead, we'll mmap a block of memory (an anonymous buffer), and
5144 // then later write the buffer to the file.
5145 void* base;
5146 struct stat statbuf;
5147 if (o == STDOUT_FILENO || o == STDERR_FILENO
5148 || ::fstat(o, &statbuf) != 0
5149 || !S_ISREG(statbuf.st_mode)
5150 || this->is_temporary_)
5151 return false;
5152
5153 // Ensure that we have disk space available for the file. If we
5154 // don't do this, it is possible that we will call munmap, close,
5155 // and exit with dirty buffers still in the cache with no assigned
5156 // disk blocks. If the disk is out of space at that point, the
5157 // output file will wind up incomplete, but we will have already
5158 // exited. The alternative to fallocate would be to use fdatasync,
5159 // but that would be a more significant performance hit.
5160 if (writable)
5161 {
5162 int err = gold_fallocate(o, 0, this->file_size_);
5163 if (err != 0)
5164 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5165 }
5166
5167 // Map the file into memory.
5168 int prot = PROT_READ;
5169 if (writable)
5170 prot |= PROT_WRITE;
5171 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5172
5173 // The mmap call might fail because of file system issues: the file
5174 // system might not support mmap at all, or it might not support
5175 // mmap with PROT_WRITE.
5176 if (base == MAP_FAILED)
5177 return false;
5178
5179 this->map_is_anonymous_ = false;
5180 this->base_ = static_cast<unsigned char*>(base);
5181 return true;
5182 }
5183
5184 // Map the file into memory.
5185
5186 void
5187 Output_file::map()
5188 {
5189 if (parameters->options().mmap_output_file()
5190 && this->map_no_anonymous(true))
5191 return;
5192
5193 // The mmap call might fail because of file system issues: the file
5194 // system might not support mmap at all, or it might not support
5195 // mmap with PROT_WRITE. I'm not sure which errno values we will
5196 // see in all cases, so if the mmap fails for any reason and we
5197 // don't care about file contents, try for an anonymous map.
5198 if (this->map_anonymous())
5199 return;
5200
5201 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5202 this->name_, static_cast<unsigned long>(this->file_size_),
5203 strerror(errno));
5204 }
5205
5206 // Unmap the file from memory.
5207
5208 void
5209 Output_file::unmap()
5210 {
5211 if (this->map_is_anonymous_)
5212 {
5213 // We've already written out the data, so there is no reason to
5214 // waste time unmapping or freeing the memory.
5215 }
5216 else
5217 {
5218 if (::munmap(this->base_, this->file_size_) < 0)
5219 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5220 }
5221 this->base_ = NULL;
5222 }
5223
5224 // Close the output file.
5225
5226 void
5227 Output_file::close()
5228 {
5229 // If the map isn't file-backed, we need to write it now.
5230 if (this->map_is_anonymous_ && !this->is_temporary_)
5231 {
5232 size_t bytes_to_write = this->file_size_;
5233 size_t offset = 0;
5234 while (bytes_to_write > 0)
5235 {
5236 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5237 bytes_to_write);
5238 if (bytes_written == 0)
5239 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5240 else if (bytes_written < 0)
5241 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5242 else
5243 {
5244 bytes_to_write -= bytes_written;
5245 offset += bytes_written;
5246 }
5247 }
5248 }
5249 this->unmap();
5250
5251 // We don't close stdout or stderr
5252 if (this->o_ != STDOUT_FILENO
5253 && this->o_ != STDERR_FILENO
5254 && !this->is_temporary_)
5255 if (::close(this->o_) < 0)
5256 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5257 this->o_ = -1;
5258 }
5259
5260 // Instantiate the templates we need. We could use the configure
5261 // script to restrict this to only the ones for implemented targets.
5262
5263 #ifdef HAVE_TARGET_32_LITTLE
5264 template
5265 off_t
5266 Output_section::add_input_section<32, false>(
5267 Layout* layout,
5268 Sized_relobj_file<32, false>* object,
5269 unsigned int shndx,
5270 const char* secname,
5271 const elfcpp::Shdr<32, false>& shdr,
5272 unsigned int reloc_shndx,
5273 bool have_sections_script);
5274 #endif
5275
5276 #ifdef HAVE_TARGET_32_BIG
5277 template
5278 off_t
5279 Output_section::add_input_section<32, true>(
5280 Layout* layout,
5281 Sized_relobj_file<32, true>* object,
5282 unsigned int shndx,
5283 const char* secname,
5284 const elfcpp::Shdr<32, true>& shdr,
5285 unsigned int reloc_shndx,
5286 bool have_sections_script);
5287 #endif
5288
5289 #ifdef HAVE_TARGET_64_LITTLE
5290 template
5291 off_t
5292 Output_section::add_input_section<64, false>(
5293 Layout* layout,
5294 Sized_relobj_file<64, false>* object,
5295 unsigned int shndx,
5296 const char* secname,
5297 const elfcpp::Shdr<64, false>& shdr,
5298 unsigned int reloc_shndx,
5299 bool have_sections_script);
5300 #endif
5301
5302 #ifdef HAVE_TARGET_64_BIG
5303 template
5304 off_t
5305 Output_section::add_input_section<64, true>(
5306 Layout* layout,
5307 Sized_relobj_file<64, true>* object,
5308 unsigned int shndx,
5309 const char* secname,
5310 const elfcpp::Shdr<64, true>& shdr,
5311 unsigned int reloc_shndx,
5312 bool have_sections_script);
5313 #endif
5314
5315 #ifdef HAVE_TARGET_32_LITTLE
5316 template
5317 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5318 #endif
5319
5320 #ifdef HAVE_TARGET_32_BIG
5321 template
5322 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5323 #endif
5324
5325 #ifdef HAVE_TARGET_64_LITTLE
5326 template
5327 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5328 #endif
5329
5330 #ifdef HAVE_TARGET_64_BIG
5331 template
5332 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5333 #endif
5334
5335 #ifdef HAVE_TARGET_32_LITTLE
5336 template
5337 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5338 #endif
5339
5340 #ifdef HAVE_TARGET_32_BIG
5341 template
5342 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5343 #endif
5344
5345 #ifdef HAVE_TARGET_64_LITTLE
5346 template
5347 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5348 #endif
5349
5350 #ifdef HAVE_TARGET_64_BIG
5351 template
5352 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5353 #endif
5354
5355 #ifdef HAVE_TARGET_32_LITTLE
5356 template
5357 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5358 #endif
5359
5360 #ifdef HAVE_TARGET_32_BIG
5361 template
5362 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5363 #endif
5364
5365 #ifdef HAVE_TARGET_64_LITTLE
5366 template
5367 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5368 #endif
5369
5370 #ifdef HAVE_TARGET_64_BIG
5371 template
5372 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5373 #endif
5374
5375 #ifdef HAVE_TARGET_32_LITTLE
5376 template
5377 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5378 #endif
5379
5380 #ifdef HAVE_TARGET_32_BIG
5381 template
5382 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5383 #endif
5384
5385 #ifdef HAVE_TARGET_64_LITTLE
5386 template
5387 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5388 #endif
5389
5390 #ifdef HAVE_TARGET_64_BIG
5391 template
5392 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5393 #endif
5394
5395 #ifdef HAVE_TARGET_32_LITTLE
5396 template
5397 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5398 #endif
5399
5400 #ifdef HAVE_TARGET_32_BIG
5401 template
5402 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5403 #endif
5404
5405 #ifdef HAVE_TARGET_64_LITTLE
5406 template
5407 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5408 #endif
5409
5410 #ifdef HAVE_TARGET_64_BIG
5411 template
5412 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5413 #endif
5414
5415 #ifdef HAVE_TARGET_32_LITTLE
5416 template
5417 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5418 #endif
5419
5420 #ifdef HAVE_TARGET_32_BIG
5421 template
5422 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5423 #endif
5424
5425 #ifdef HAVE_TARGET_64_LITTLE
5426 template
5427 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5428 #endif
5429
5430 #ifdef HAVE_TARGET_64_BIG
5431 template
5432 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5433 #endif
5434
5435 #ifdef HAVE_TARGET_32_LITTLE
5436 template
5437 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5438 #endif
5439
5440 #ifdef HAVE_TARGET_32_BIG
5441 template
5442 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5443 #endif
5444
5445 #ifdef HAVE_TARGET_64_LITTLE
5446 template
5447 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5448 #endif
5449
5450 #ifdef HAVE_TARGET_64_BIG
5451 template
5452 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5453 #endif
5454
5455 #ifdef HAVE_TARGET_32_LITTLE
5456 template
5457 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5458 #endif
5459
5460 #ifdef HAVE_TARGET_32_BIG
5461 template
5462 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5463 #endif
5464
5465 #ifdef HAVE_TARGET_64_LITTLE
5466 template
5467 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5468 #endif
5469
5470 #ifdef HAVE_TARGET_64_BIG
5471 template
5472 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5473 #endif
5474
5475 #ifdef HAVE_TARGET_32_LITTLE
5476 template
5477 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5478 #endif
5479
5480 #ifdef HAVE_TARGET_32_BIG
5481 template
5482 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5483 #endif
5484
5485 #ifdef HAVE_TARGET_64_LITTLE
5486 template
5487 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5488 #endif
5489
5490 #ifdef HAVE_TARGET_64_BIG
5491 template
5492 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5493 #endif
5494
5495 #ifdef HAVE_TARGET_32_LITTLE
5496 template
5497 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5498 #endif
5499
5500 #ifdef HAVE_TARGET_32_BIG
5501 template
5502 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5503 #endif
5504
5505 #ifdef HAVE_TARGET_64_LITTLE
5506 template
5507 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5508 #endif
5509
5510 #ifdef HAVE_TARGET_64_BIG
5511 template
5512 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5513 #endif
5514
5515 #ifdef HAVE_TARGET_32_LITTLE
5516 template
5517 class Output_data_group<32, false>;
5518 #endif
5519
5520 #ifdef HAVE_TARGET_32_BIG
5521 template
5522 class Output_data_group<32, true>;
5523 #endif
5524
5525 #ifdef HAVE_TARGET_64_LITTLE
5526 template
5527 class Output_data_group<64, false>;
5528 #endif
5529
5530 #ifdef HAVE_TARGET_64_BIG
5531 template
5532 class Output_data_group<64, true>;
5533 #endif
5534
5535 template
5536 class Output_data_got<32, false>;
5537
5538 template
5539 class Output_data_got<32, true>;
5540
5541 template
5542 class Output_data_got<64, false>;
5543
5544 template
5545 class Output_data_got<64, true>;
5546
5547 } // End namespace gold.
This page took 0.15932 seconds and 5 git commands to generate.