Fix spelling mistakes.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "parameters.h"
40 #include "object.h"
41 #include "symtab.h"
42 #include "reloc.h"
43 #include "merge.h"
44 #include "descriptors.h"
45 #include "output.h"
46
47 // For systems without mmap support.
48 #ifndef HAVE_MMAP
49 # define mmap gold_mmap
50 # define munmap gold_munmap
51 # define mremap gold_mremap
52 # ifndef MAP_FAILED
53 # define MAP_FAILED (reinterpret_cast<void*>(-1))
54 # endif
55 # ifndef PROT_READ
56 # define PROT_READ 0
57 # endif
58 # ifndef PROT_WRITE
59 # define PROT_WRITE 0
60 # endif
61 # ifndef MAP_PRIVATE
62 # define MAP_PRIVATE 0
63 # endif
64 # ifndef MAP_ANONYMOUS
65 # define MAP_ANONYMOUS 0
66 # endif
67 # ifndef MAP_SHARED
68 # define MAP_SHARED 0
69 # endif
70
71 # ifndef ENOSYS
72 # define ENOSYS EINVAL
73 # endif
74
75 static void *
76 gold_mmap(void *, size_t, int, int, int, off_t)
77 {
78 errno = ENOSYS;
79 return MAP_FAILED;
80 }
81
82 static int
83 gold_munmap(void *, size_t)
84 {
85 errno = ENOSYS;
86 return -1;
87 }
88
89 static void *
90 gold_mremap(void *, size_t, size_t, int)
91 {
92 errno = ENOSYS;
93 return MAP_FAILED;
94 }
95
96 #endif
97
98 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
99 # define mremap gold_mremap
100 extern "C" void *gold_mremap(void *, size_t, size_t, int);
101 #endif
102
103 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
104 #ifndef MAP_ANONYMOUS
105 # define MAP_ANONYMOUS MAP_ANON
106 #endif
107
108 #ifndef MREMAP_MAYMOVE
109 # define MREMAP_MAYMOVE 1
110 #endif
111
112 #ifndef HAVE_POSIX_FALLOCATE
113 // A dummy, non general, version of posix_fallocate. Here we just set
114 // the file size and hope that there is enough disk space. FIXME: We
115 // could allocate disk space by walking block by block and writing a
116 // zero byte into each block.
117 static int
118 posix_fallocate(int o, off_t offset, off_t len)
119 {
120 return ftruncate(o, offset + len);
121 }
122 #endif // !defined(HAVE_POSIX_FALLOCATE)
123
124 // Mingw does not have S_ISLNK.
125 #ifndef S_ISLNK
126 # define S_ISLNK(mode) 0
127 #endif
128
129 namespace gold
130 {
131
132 // Output_data variables.
133
134 bool Output_data::allocated_sizes_are_fixed;
135
136 // Output_data methods.
137
138 Output_data::~Output_data()
139 {
140 }
141
142 // Return the default alignment for the target size.
143
144 uint64_t
145 Output_data::default_alignment()
146 {
147 return Output_data::default_alignment_for_size(
148 parameters->target().get_size());
149 }
150
151 // Return the default alignment for a size--32 or 64.
152
153 uint64_t
154 Output_data::default_alignment_for_size(int size)
155 {
156 if (size == 32)
157 return 4;
158 else if (size == 64)
159 return 8;
160 else
161 gold_unreachable();
162 }
163
164 // Output_section_header methods. This currently assumes that the
165 // segment and section lists are complete at construction time.
166
167 Output_section_headers::Output_section_headers(
168 const Layout* layout,
169 const Layout::Segment_list* segment_list,
170 const Layout::Section_list* section_list,
171 const Layout::Section_list* unattached_section_list,
172 const Stringpool* secnamepool,
173 const Output_section* shstrtab_section)
174 : layout_(layout),
175 segment_list_(segment_list),
176 section_list_(section_list),
177 unattached_section_list_(unattached_section_list),
178 secnamepool_(secnamepool),
179 shstrtab_section_(shstrtab_section)
180 {
181 }
182
183 // Compute the current data size.
184
185 off_t
186 Output_section_headers::do_size() const
187 {
188 // Count all the sections. Start with 1 for the null section.
189 off_t count = 1;
190 if (!parameters->options().relocatable())
191 {
192 for (Layout::Segment_list::const_iterator p =
193 this->segment_list_->begin();
194 p != this->segment_list_->end();
195 ++p)
196 if ((*p)->type() == elfcpp::PT_LOAD)
197 count += (*p)->output_section_count();
198 }
199 else
200 {
201 for (Layout::Section_list::const_iterator p =
202 this->section_list_->begin();
203 p != this->section_list_->end();
204 ++p)
205 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
206 ++count;
207 }
208 count += this->unattached_section_list_->size();
209
210 const int size = parameters->target().get_size();
211 int shdr_size;
212 if (size == 32)
213 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
214 else if (size == 64)
215 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
216 else
217 gold_unreachable();
218
219 return count * shdr_size;
220 }
221
222 // Write out the section headers.
223
224 void
225 Output_section_headers::do_write(Output_file* of)
226 {
227 switch (parameters->size_and_endianness())
228 {
229 #ifdef HAVE_TARGET_32_LITTLE
230 case Parameters::TARGET_32_LITTLE:
231 this->do_sized_write<32, false>(of);
232 break;
233 #endif
234 #ifdef HAVE_TARGET_32_BIG
235 case Parameters::TARGET_32_BIG:
236 this->do_sized_write<32, true>(of);
237 break;
238 #endif
239 #ifdef HAVE_TARGET_64_LITTLE
240 case Parameters::TARGET_64_LITTLE:
241 this->do_sized_write<64, false>(of);
242 break;
243 #endif
244 #ifdef HAVE_TARGET_64_BIG
245 case Parameters::TARGET_64_BIG:
246 this->do_sized_write<64, true>(of);
247 break;
248 #endif
249 default:
250 gold_unreachable();
251 }
252 }
253
254 template<int size, bool big_endian>
255 void
256 Output_section_headers::do_sized_write(Output_file* of)
257 {
258 off_t all_shdrs_size = this->data_size();
259 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
260
261 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
262 unsigned char* v = view;
263
264 {
265 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
266 oshdr.put_sh_name(0);
267 oshdr.put_sh_type(elfcpp::SHT_NULL);
268 oshdr.put_sh_flags(0);
269 oshdr.put_sh_addr(0);
270 oshdr.put_sh_offset(0);
271
272 size_t section_count = (this->data_size()
273 / elfcpp::Elf_sizes<size>::shdr_size);
274 if (section_count < elfcpp::SHN_LORESERVE)
275 oshdr.put_sh_size(0);
276 else
277 oshdr.put_sh_size(section_count);
278
279 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
280 if (shstrndx < elfcpp::SHN_LORESERVE)
281 oshdr.put_sh_link(0);
282 else
283 oshdr.put_sh_link(shstrndx);
284
285 size_t segment_count = this->segment_list_->size();
286 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
287
288 oshdr.put_sh_addralign(0);
289 oshdr.put_sh_entsize(0);
290 }
291
292 v += shdr_size;
293
294 unsigned int shndx = 1;
295 if (!parameters->options().relocatable())
296 {
297 for (Layout::Segment_list::const_iterator p =
298 this->segment_list_->begin();
299 p != this->segment_list_->end();
300 ++p)
301 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
302 this->secnamepool_,
303 v,
304 &shndx);
305 }
306 else
307 {
308 for (Layout::Section_list::const_iterator p =
309 this->section_list_->begin();
310 p != this->section_list_->end();
311 ++p)
312 {
313 // We do unallocated sections below, except that group
314 // sections have to come first.
315 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
316 && (*p)->type() != elfcpp::SHT_GROUP)
317 continue;
318 gold_assert(shndx == (*p)->out_shndx());
319 elfcpp::Shdr_write<size, big_endian> oshdr(v);
320 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
321 v += shdr_size;
322 ++shndx;
323 }
324 }
325
326 for (Layout::Section_list::const_iterator p =
327 this->unattached_section_list_->begin();
328 p != this->unattached_section_list_->end();
329 ++p)
330 {
331 // For a relocatable link, we did unallocated group sections
332 // above, since they have to come first.
333 if ((*p)->type() == elfcpp::SHT_GROUP
334 && parameters->options().relocatable())
335 continue;
336 gold_assert(shndx == (*p)->out_shndx());
337 elfcpp::Shdr_write<size, big_endian> oshdr(v);
338 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
339 v += shdr_size;
340 ++shndx;
341 }
342
343 of->write_output_view(this->offset(), all_shdrs_size, view);
344 }
345
346 // Output_segment_header methods.
347
348 Output_segment_headers::Output_segment_headers(
349 const Layout::Segment_list& segment_list)
350 : segment_list_(segment_list)
351 {
352 this->set_current_data_size_for_child(this->do_size());
353 }
354
355 void
356 Output_segment_headers::do_write(Output_file* of)
357 {
358 switch (parameters->size_and_endianness())
359 {
360 #ifdef HAVE_TARGET_32_LITTLE
361 case Parameters::TARGET_32_LITTLE:
362 this->do_sized_write<32, false>(of);
363 break;
364 #endif
365 #ifdef HAVE_TARGET_32_BIG
366 case Parameters::TARGET_32_BIG:
367 this->do_sized_write<32, true>(of);
368 break;
369 #endif
370 #ifdef HAVE_TARGET_64_LITTLE
371 case Parameters::TARGET_64_LITTLE:
372 this->do_sized_write<64, false>(of);
373 break;
374 #endif
375 #ifdef HAVE_TARGET_64_BIG
376 case Parameters::TARGET_64_BIG:
377 this->do_sized_write<64, true>(of);
378 break;
379 #endif
380 default:
381 gold_unreachable();
382 }
383 }
384
385 template<int size, bool big_endian>
386 void
387 Output_segment_headers::do_sized_write(Output_file* of)
388 {
389 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
390 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
391 gold_assert(all_phdrs_size == this->data_size());
392 unsigned char* view = of->get_output_view(this->offset(),
393 all_phdrs_size);
394 unsigned char* v = view;
395 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
396 p != this->segment_list_.end();
397 ++p)
398 {
399 elfcpp::Phdr_write<size, big_endian> ophdr(v);
400 (*p)->write_header(&ophdr);
401 v += phdr_size;
402 }
403
404 gold_assert(v - view == all_phdrs_size);
405
406 of->write_output_view(this->offset(), all_phdrs_size, view);
407 }
408
409 off_t
410 Output_segment_headers::do_size() const
411 {
412 const int size = parameters->target().get_size();
413 int phdr_size;
414 if (size == 32)
415 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
416 else if (size == 64)
417 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
418 else
419 gold_unreachable();
420
421 return this->segment_list_.size() * phdr_size;
422 }
423
424 // Output_file_header methods.
425
426 Output_file_header::Output_file_header(const Target* target,
427 const Symbol_table* symtab,
428 const Output_segment_headers* osh)
429 : target_(target),
430 symtab_(symtab),
431 segment_header_(osh),
432 section_header_(NULL),
433 shstrtab_(NULL)
434 {
435 this->set_data_size(this->do_size());
436 }
437
438 // Set the section table information for a file header.
439
440 void
441 Output_file_header::set_section_info(const Output_section_headers* shdrs,
442 const Output_section* shstrtab)
443 {
444 this->section_header_ = shdrs;
445 this->shstrtab_ = shstrtab;
446 }
447
448 // Write out the file header.
449
450 void
451 Output_file_header::do_write(Output_file* of)
452 {
453 gold_assert(this->offset() == 0);
454
455 switch (parameters->size_and_endianness())
456 {
457 #ifdef HAVE_TARGET_32_LITTLE
458 case Parameters::TARGET_32_LITTLE:
459 this->do_sized_write<32, false>(of);
460 break;
461 #endif
462 #ifdef HAVE_TARGET_32_BIG
463 case Parameters::TARGET_32_BIG:
464 this->do_sized_write<32, true>(of);
465 break;
466 #endif
467 #ifdef HAVE_TARGET_64_LITTLE
468 case Parameters::TARGET_64_LITTLE:
469 this->do_sized_write<64, false>(of);
470 break;
471 #endif
472 #ifdef HAVE_TARGET_64_BIG
473 case Parameters::TARGET_64_BIG:
474 this->do_sized_write<64, true>(of);
475 break;
476 #endif
477 default:
478 gold_unreachable();
479 }
480 }
481
482 // Write out the file header with appropriate size and endianness.
483
484 template<int size, bool big_endian>
485 void
486 Output_file_header::do_sized_write(Output_file* of)
487 {
488 gold_assert(this->offset() == 0);
489
490 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
491 unsigned char* view = of->get_output_view(0, ehdr_size);
492 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
493
494 unsigned char e_ident[elfcpp::EI_NIDENT];
495 memset(e_ident, 0, elfcpp::EI_NIDENT);
496 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
497 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
498 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
499 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
500 if (size == 32)
501 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
502 else if (size == 64)
503 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
504 else
505 gold_unreachable();
506 e_ident[elfcpp::EI_DATA] = (big_endian
507 ? elfcpp::ELFDATA2MSB
508 : elfcpp::ELFDATA2LSB);
509 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
510 oehdr.put_e_ident(e_ident);
511
512 elfcpp::ET e_type;
513 if (parameters->options().relocatable())
514 e_type = elfcpp::ET_REL;
515 else if (parameters->options().output_is_position_independent())
516 e_type = elfcpp::ET_DYN;
517 else
518 e_type = elfcpp::ET_EXEC;
519 oehdr.put_e_type(e_type);
520
521 oehdr.put_e_machine(this->target_->machine_code());
522 oehdr.put_e_version(elfcpp::EV_CURRENT);
523
524 oehdr.put_e_entry(this->entry<size>());
525
526 if (this->segment_header_ == NULL)
527 oehdr.put_e_phoff(0);
528 else
529 oehdr.put_e_phoff(this->segment_header_->offset());
530
531 oehdr.put_e_shoff(this->section_header_->offset());
532 oehdr.put_e_flags(this->target_->processor_specific_flags());
533 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
534
535 if (this->segment_header_ == NULL)
536 {
537 oehdr.put_e_phentsize(0);
538 oehdr.put_e_phnum(0);
539 }
540 else
541 {
542 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
543 size_t phnum = (this->segment_header_->data_size()
544 / elfcpp::Elf_sizes<size>::phdr_size);
545 if (phnum > elfcpp::PN_XNUM)
546 phnum = elfcpp::PN_XNUM;
547 oehdr.put_e_phnum(phnum);
548 }
549
550 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
551 size_t section_count = (this->section_header_->data_size()
552 / elfcpp::Elf_sizes<size>::shdr_size);
553
554 if (section_count < elfcpp::SHN_LORESERVE)
555 oehdr.put_e_shnum(this->section_header_->data_size()
556 / elfcpp::Elf_sizes<size>::shdr_size);
557 else
558 oehdr.put_e_shnum(0);
559
560 unsigned int shstrndx = this->shstrtab_->out_shndx();
561 if (shstrndx < elfcpp::SHN_LORESERVE)
562 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
563 else
564 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
565
566 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
567 // the e_ident field.
568 parameters->target().adjust_elf_header(view, ehdr_size);
569
570 of->write_output_view(0, ehdr_size, view);
571 }
572
573 // Return the value to use for the entry address.
574
575 template<int size>
576 typename elfcpp::Elf_types<size>::Elf_Addr
577 Output_file_header::entry()
578 {
579 const bool should_issue_warning = (parameters->options().entry() != NULL
580 && !parameters->options().relocatable()
581 && !parameters->options().shared());
582 const char* entry = parameters->entry();
583 Symbol* sym = this->symtab_->lookup(entry);
584
585 typename Sized_symbol<size>::Value_type v;
586 if (sym != NULL)
587 {
588 Sized_symbol<size>* ssym;
589 ssym = this->symtab_->get_sized_symbol<size>(sym);
590 if (!ssym->is_defined() && should_issue_warning)
591 gold_warning("entry symbol '%s' exists but is not defined", entry);
592 v = ssym->value();
593 }
594 else
595 {
596 // We couldn't find the entry symbol. See if we can parse it as
597 // a number. This supports, e.g., -e 0x1000.
598 char* endptr;
599 v = strtoull(entry, &endptr, 0);
600 if (*endptr != '\0')
601 {
602 if (should_issue_warning)
603 gold_warning("cannot find entry symbol '%s'", entry);
604 v = 0;
605 }
606 }
607
608 return v;
609 }
610
611 // Compute the current data size.
612
613 off_t
614 Output_file_header::do_size() const
615 {
616 const int size = parameters->target().get_size();
617 if (size == 32)
618 return elfcpp::Elf_sizes<32>::ehdr_size;
619 else if (size == 64)
620 return elfcpp::Elf_sizes<64>::ehdr_size;
621 else
622 gold_unreachable();
623 }
624
625 // Output_data_const methods.
626
627 void
628 Output_data_const::do_write(Output_file* of)
629 {
630 of->write(this->offset(), this->data_.data(), this->data_.size());
631 }
632
633 // Output_data_const_buffer methods.
634
635 void
636 Output_data_const_buffer::do_write(Output_file* of)
637 {
638 of->write(this->offset(), this->p_, this->data_size());
639 }
640
641 // Output_section_data methods.
642
643 // Record the output section, and set the entry size and such.
644
645 void
646 Output_section_data::set_output_section(Output_section* os)
647 {
648 gold_assert(this->output_section_ == NULL);
649 this->output_section_ = os;
650 this->do_adjust_output_section(os);
651 }
652
653 // Return the section index of the output section.
654
655 unsigned int
656 Output_section_data::do_out_shndx() const
657 {
658 gold_assert(this->output_section_ != NULL);
659 return this->output_section_->out_shndx();
660 }
661
662 // Set the alignment, which means we may need to update the alignment
663 // of the output section.
664
665 void
666 Output_section_data::set_addralign(uint64_t addralign)
667 {
668 this->addralign_ = addralign;
669 if (this->output_section_ != NULL
670 && this->output_section_->addralign() < addralign)
671 this->output_section_->set_addralign(addralign);
672 }
673
674 // Output_data_strtab methods.
675
676 // Set the final data size.
677
678 void
679 Output_data_strtab::set_final_data_size()
680 {
681 this->strtab_->set_string_offsets();
682 this->set_data_size(this->strtab_->get_strtab_size());
683 }
684
685 // Write out a string table.
686
687 void
688 Output_data_strtab::do_write(Output_file* of)
689 {
690 this->strtab_->write(of, this->offset());
691 }
692
693 // Output_reloc methods.
694
695 // A reloc against a global symbol.
696
697 template<bool dynamic, int size, bool big_endian>
698 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
699 Symbol* gsym,
700 unsigned int type,
701 Output_data* od,
702 Address address,
703 bool is_relative,
704 bool is_symbolless)
705 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
706 is_relative_(is_relative), is_symbolless_(is_symbolless),
707 is_section_symbol_(false), shndx_(INVALID_CODE)
708 {
709 // this->type_ is a bitfield; make sure TYPE fits.
710 gold_assert(this->type_ == type);
711 this->u1_.gsym = gsym;
712 this->u2_.od = od;
713 if (dynamic)
714 this->set_needs_dynsym_index();
715 }
716
717 template<bool dynamic, int size, bool big_endian>
718 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
719 Symbol* gsym,
720 unsigned int type,
721 Sized_relobj<size, big_endian>* relobj,
722 unsigned int shndx,
723 Address address,
724 bool is_relative,
725 bool is_symbolless)
726 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
727 is_relative_(is_relative), is_symbolless_(is_symbolless),
728 is_section_symbol_(false), shndx_(shndx)
729 {
730 gold_assert(shndx != INVALID_CODE);
731 // this->type_ is a bitfield; make sure TYPE fits.
732 gold_assert(this->type_ == type);
733 this->u1_.gsym = gsym;
734 this->u2_.relobj = relobj;
735 if (dynamic)
736 this->set_needs_dynsym_index();
737 }
738
739 // A reloc against a local symbol.
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Sized_relobj<size, big_endian>* relobj,
744 unsigned int local_sym_index,
745 unsigned int type,
746 Output_data* od,
747 Address address,
748 bool is_relative,
749 bool is_symbolless,
750 bool is_section_symbol)
751 : address_(address), local_sym_index_(local_sym_index), type_(type),
752 is_relative_(is_relative), is_symbolless_(is_symbolless),
753 is_section_symbol_(is_section_symbol), shndx_(INVALID_CODE)
754 {
755 gold_assert(local_sym_index != GSYM_CODE
756 && local_sym_index != INVALID_CODE);
757 // this->type_ is a bitfield; make sure TYPE fits.
758 gold_assert(this->type_ == type);
759 this->u1_.relobj = relobj;
760 this->u2_.od = od;
761 if (dynamic)
762 this->set_needs_dynsym_index();
763 }
764
765 template<bool dynamic, int size, bool big_endian>
766 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
767 Sized_relobj<size, big_endian>* relobj,
768 unsigned int local_sym_index,
769 unsigned int type,
770 unsigned int shndx,
771 Address address,
772 bool is_relative,
773 bool is_symbolless,
774 bool is_section_symbol)
775 : address_(address), local_sym_index_(local_sym_index), type_(type),
776 is_relative_(is_relative), is_symbolless_(is_symbolless),
777 is_section_symbol_(is_section_symbol), shndx_(shndx)
778 {
779 gold_assert(local_sym_index != GSYM_CODE
780 && local_sym_index != INVALID_CODE);
781 gold_assert(shndx != INVALID_CODE);
782 // this->type_ is a bitfield; make sure TYPE fits.
783 gold_assert(this->type_ == type);
784 this->u1_.relobj = relobj;
785 this->u2_.relobj = relobj;
786 if (dynamic)
787 this->set_needs_dynsym_index();
788 }
789
790 // A reloc against the STT_SECTION symbol of an output section.
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794 Output_section* os,
795 unsigned int type,
796 Output_data* od,
797 Address address)
798 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
799 is_relative_(false), is_symbolless_(false),
800 is_section_symbol_(true), shndx_(INVALID_CODE)
801 {
802 // this->type_ is a bitfield; make sure TYPE fits.
803 gold_assert(this->type_ == type);
804 this->u1_.os = os;
805 this->u2_.od = od;
806 if (dynamic)
807 this->set_needs_dynsym_index();
808 else
809 os->set_needs_symtab_index();
810 }
811
812 template<bool dynamic, int size, bool big_endian>
813 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
814 Output_section* os,
815 unsigned int type,
816 Sized_relobj<size, big_endian>* relobj,
817 unsigned int shndx,
818 Address address)
819 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
820 is_relative_(false), is_symbolless_(false),
821 is_section_symbol_(true), shndx_(shndx)
822 {
823 gold_assert(shndx != INVALID_CODE);
824 // this->type_ is a bitfield; make sure TYPE fits.
825 gold_assert(this->type_ == type);
826 this->u1_.os = os;
827 this->u2_.relobj = relobj;
828 if (dynamic)
829 this->set_needs_dynsym_index();
830 else
831 os->set_needs_symtab_index();
832 }
833
834 // An absolute relocation.
835
836 template<bool dynamic, int size, bool big_endian>
837 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
838 unsigned int type,
839 Output_data* od,
840 Address address)
841 : address_(address), local_sym_index_(0), type_(type),
842 is_relative_(false), is_symbolless_(false),
843 is_section_symbol_(false), shndx_(INVALID_CODE)
844 {
845 // this->type_ is a bitfield; make sure TYPE fits.
846 gold_assert(this->type_ == type);
847 this->u1_.relobj = NULL;
848 this->u2_.od = od;
849 }
850
851 template<bool dynamic, int size, bool big_endian>
852 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
853 unsigned int type,
854 Sized_relobj<size, big_endian>* relobj,
855 unsigned int shndx,
856 Address address)
857 : address_(address), local_sym_index_(0), type_(type),
858 is_relative_(false), is_symbolless_(false),
859 is_section_symbol_(false), shndx_(shndx)
860 {
861 gold_assert(shndx != INVALID_CODE);
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
865 this->u2_.relobj = relobj;
866 }
867
868 // A target specific relocation.
869
870 template<bool dynamic, int size, bool big_endian>
871 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
872 unsigned int type,
873 void* arg,
874 Output_data* od,
875 Address address)
876 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
877 is_relative_(false), is_symbolless_(false),
878 is_section_symbol_(false), shndx_(INVALID_CODE)
879 {
880 // this->type_ is a bitfield; make sure TYPE fits.
881 gold_assert(this->type_ == type);
882 this->u1_.arg = arg;
883 this->u2_.od = od;
884 }
885
886 template<bool dynamic, int size, bool big_endian>
887 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
888 unsigned int type,
889 void* arg,
890 Sized_relobj<size, big_endian>* relobj,
891 unsigned int shndx,
892 Address address)
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894 is_relative_(false), is_symbolless_(false),
895 is_section_symbol_(false), shndx_(shndx)
896 {
897 gold_assert(shndx != INVALID_CODE);
898 // this->type_ is a bitfield; make sure TYPE fits.
899 gold_assert(this->type_ == type);
900 this->u1_.arg = arg;
901 this->u2_.relobj = relobj;
902 }
903
904 // Record that we need a dynamic symbol index for this relocation.
905
906 template<bool dynamic, int size, bool big_endian>
907 void
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
909 set_needs_dynsym_index()
910 {
911 if (this->is_symbolless_)
912 return;
913 switch (this->local_sym_index_)
914 {
915 case INVALID_CODE:
916 gold_unreachable();
917
918 case GSYM_CODE:
919 this->u1_.gsym->set_needs_dynsym_entry();
920 break;
921
922 case SECTION_CODE:
923 this->u1_.os->set_needs_dynsym_index();
924 break;
925
926 case TARGET_CODE:
927 // The target must take care of this if necessary.
928 break;
929
930 case 0:
931 break;
932
933 default:
934 {
935 const unsigned int lsi = this->local_sym_index_;
936 Sized_relobj_file<size, big_endian>* relobj =
937 this->u1_.relobj->sized_relobj();
938 gold_assert(relobj != NULL);
939 if (!this->is_section_symbol_)
940 relobj->set_needs_output_dynsym_entry(lsi);
941 else
942 relobj->output_section(lsi)->set_needs_dynsym_index();
943 }
944 break;
945 }
946 }
947
948 // Get the symbol index of a relocation.
949
950 template<bool dynamic, int size, bool big_endian>
951 unsigned int
952 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
953 const
954 {
955 unsigned int index;
956 if (this->is_symbolless_)
957 return 0;
958 switch (this->local_sym_index_)
959 {
960 case INVALID_CODE:
961 gold_unreachable();
962
963 case GSYM_CODE:
964 if (this->u1_.gsym == NULL)
965 index = 0;
966 else if (dynamic)
967 index = this->u1_.gsym->dynsym_index();
968 else
969 index = this->u1_.gsym->symtab_index();
970 break;
971
972 case SECTION_CODE:
973 if (dynamic)
974 index = this->u1_.os->dynsym_index();
975 else
976 index = this->u1_.os->symtab_index();
977 break;
978
979 case TARGET_CODE:
980 index = parameters->target().reloc_symbol_index(this->u1_.arg,
981 this->type_);
982 break;
983
984 case 0:
985 // Relocations without symbols use a symbol index of 0.
986 index = 0;
987 break;
988
989 default:
990 {
991 const unsigned int lsi = this->local_sym_index_;
992 Sized_relobj_file<size, big_endian>* relobj =
993 this->u1_.relobj->sized_relobj();
994 gold_assert(relobj != NULL);
995 if (!this->is_section_symbol_)
996 {
997 if (dynamic)
998 index = relobj->dynsym_index(lsi);
999 else
1000 index = relobj->symtab_index(lsi);
1001 }
1002 else
1003 {
1004 Output_section* os = relobj->output_section(lsi);
1005 gold_assert(os != NULL);
1006 if (dynamic)
1007 index = os->dynsym_index();
1008 else
1009 index = os->symtab_index();
1010 }
1011 }
1012 break;
1013 }
1014 gold_assert(index != -1U);
1015 return index;
1016 }
1017
1018 // For a local section symbol, get the address of the offset ADDEND
1019 // within the input section.
1020
1021 template<bool dynamic, int size, bool big_endian>
1022 typename elfcpp::Elf_types<size>::Elf_Addr
1023 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1024 local_section_offset(Addend addend) const
1025 {
1026 gold_assert(this->local_sym_index_ != GSYM_CODE
1027 && this->local_sym_index_ != SECTION_CODE
1028 && this->local_sym_index_ != TARGET_CODE
1029 && this->local_sym_index_ != INVALID_CODE
1030 && this->local_sym_index_ != 0
1031 && this->is_section_symbol_);
1032 const unsigned int lsi = this->local_sym_index_;
1033 Output_section* os = this->u1_.relobj->output_section(lsi);
1034 gold_assert(os != NULL);
1035 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1036 if (offset != invalid_address)
1037 return offset + addend;
1038 // This is a merge section.
1039 Sized_relobj_file<size, big_endian>* relobj =
1040 this->u1_.relobj->sized_relobj();
1041 gold_assert(relobj != NULL);
1042 offset = os->output_address(relobj, lsi, addend);
1043 gold_assert(offset != invalid_address);
1044 return offset;
1045 }
1046
1047 // Get the output address of a relocation.
1048
1049 template<bool dynamic, int size, bool big_endian>
1050 typename elfcpp::Elf_types<size>::Elf_Addr
1051 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1052 {
1053 Address address = this->address_;
1054 if (this->shndx_ != INVALID_CODE)
1055 {
1056 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1057 gold_assert(os != NULL);
1058 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1059 if (off != invalid_address)
1060 address += os->address() + off;
1061 else
1062 {
1063 Sized_relobj_file<size, big_endian>* relobj =
1064 this->u2_.relobj->sized_relobj();
1065 gold_assert(relobj != NULL);
1066 address = os->output_address(relobj, this->shndx_, address);
1067 gold_assert(address != invalid_address);
1068 }
1069 }
1070 else if (this->u2_.od != NULL)
1071 address += this->u2_.od->address();
1072 return address;
1073 }
1074
1075 // Write out the offset and info fields of a Rel or Rela relocation
1076 // entry.
1077
1078 template<bool dynamic, int size, bool big_endian>
1079 template<typename Write_rel>
1080 void
1081 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1082 Write_rel* wr) const
1083 {
1084 wr->put_r_offset(this->get_address());
1085 unsigned int sym_index = this->get_symbol_index();
1086 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1087 }
1088
1089 // Write out a Rel relocation.
1090
1091 template<bool dynamic, int size, bool big_endian>
1092 void
1093 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1094 unsigned char* pov) const
1095 {
1096 elfcpp::Rel_write<size, big_endian> orel(pov);
1097 this->write_rel(&orel);
1098 }
1099
1100 // Get the value of the symbol referred to by a Rel relocation.
1101
1102 template<bool dynamic, int size, bool big_endian>
1103 typename elfcpp::Elf_types<size>::Elf_Addr
1104 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1105 Addend addend) const
1106 {
1107 if (this->local_sym_index_ == GSYM_CODE)
1108 {
1109 const Sized_symbol<size>* sym;
1110 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1111 return sym->value() + addend;
1112 }
1113 gold_assert(this->local_sym_index_ != SECTION_CODE
1114 && this->local_sym_index_ != TARGET_CODE
1115 && this->local_sym_index_ != INVALID_CODE
1116 && this->local_sym_index_ != 0
1117 && !this->is_section_symbol_);
1118 const unsigned int lsi = this->local_sym_index_;
1119 Sized_relobj_file<size, big_endian>* relobj =
1120 this->u1_.relobj->sized_relobj();
1121 gold_assert(relobj != NULL);
1122 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1123 return symval->value(relobj, addend);
1124 }
1125
1126 // Reloc comparison. This function sorts the dynamic relocs for the
1127 // benefit of the dynamic linker. First we sort all relative relocs
1128 // to the front. Among relative relocs, we sort by output address.
1129 // Among non-relative relocs, we sort by symbol index, then by output
1130 // address.
1131
1132 template<bool dynamic, int size, bool big_endian>
1133 int
1134 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1135 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1136 const
1137 {
1138 if (this->is_relative_)
1139 {
1140 if (!r2.is_relative_)
1141 return -1;
1142 // Otherwise sort by reloc address below.
1143 }
1144 else if (r2.is_relative_)
1145 return 1;
1146 else
1147 {
1148 unsigned int sym1 = this->get_symbol_index();
1149 unsigned int sym2 = r2.get_symbol_index();
1150 if (sym1 < sym2)
1151 return -1;
1152 else if (sym1 > sym2)
1153 return 1;
1154 // Otherwise sort by reloc address.
1155 }
1156
1157 section_offset_type addr1 = this->get_address();
1158 section_offset_type addr2 = r2.get_address();
1159 if (addr1 < addr2)
1160 return -1;
1161 else if (addr1 > addr2)
1162 return 1;
1163
1164 // Final tie breaker, in order to generate the same output on any
1165 // host: reloc type.
1166 unsigned int type1 = this->type_;
1167 unsigned int type2 = r2.type_;
1168 if (type1 < type2)
1169 return -1;
1170 else if (type1 > type2)
1171 return 1;
1172
1173 // These relocs appear to be exactly the same.
1174 return 0;
1175 }
1176
1177 // Write out a Rela relocation.
1178
1179 template<bool dynamic, int size, bool big_endian>
1180 void
1181 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1182 unsigned char* pov) const
1183 {
1184 elfcpp::Rela_write<size, big_endian> orel(pov);
1185 this->rel_.write_rel(&orel);
1186 Addend addend = this->addend_;
1187 if (this->rel_.is_target_specific())
1188 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1189 this->rel_.type(), addend);
1190 else if (this->rel_.is_symbolless())
1191 addend = this->rel_.symbol_value(addend);
1192 else if (this->rel_.is_local_section_symbol())
1193 addend = this->rel_.local_section_offset(addend);
1194 orel.put_r_addend(addend);
1195 }
1196
1197 // Output_data_reloc_base methods.
1198
1199 // Adjust the output section.
1200
1201 template<int sh_type, bool dynamic, int size, bool big_endian>
1202 void
1203 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1204 ::do_adjust_output_section(Output_section* os)
1205 {
1206 if (sh_type == elfcpp::SHT_REL)
1207 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1208 else if (sh_type == elfcpp::SHT_RELA)
1209 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1210 else
1211 gold_unreachable();
1212
1213 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1214 // static link. The backends will generate a dynamic reloc section
1215 // to hold this. In that case we don't want to link to the dynsym
1216 // section, because there isn't one.
1217 if (!dynamic)
1218 os->set_should_link_to_symtab();
1219 else if (parameters->doing_static_link())
1220 ;
1221 else
1222 os->set_should_link_to_dynsym();
1223 }
1224
1225 // Write out relocation data.
1226
1227 template<int sh_type, bool dynamic, int size, bool big_endian>
1228 void
1229 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1230 Output_file* of)
1231 {
1232 const off_t off = this->offset();
1233 const off_t oview_size = this->data_size();
1234 unsigned char* const oview = of->get_output_view(off, oview_size);
1235
1236 if (this->sort_relocs())
1237 {
1238 gold_assert(dynamic);
1239 std::sort(this->relocs_.begin(), this->relocs_.end(),
1240 Sort_relocs_comparison());
1241 }
1242
1243 unsigned char* pov = oview;
1244 for (typename Relocs::const_iterator p = this->relocs_.begin();
1245 p != this->relocs_.end();
1246 ++p)
1247 {
1248 p->write(pov);
1249 pov += reloc_size;
1250 }
1251
1252 gold_assert(pov - oview == oview_size);
1253
1254 of->write_output_view(off, oview_size, oview);
1255
1256 // We no longer need the relocation entries.
1257 this->relocs_.clear();
1258 }
1259
1260 // Class Output_relocatable_relocs.
1261
1262 template<int sh_type, int size, bool big_endian>
1263 void
1264 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1265 {
1266 this->set_data_size(this->rr_->output_reloc_count()
1267 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1268 }
1269
1270 // class Output_data_group.
1271
1272 template<int size, bool big_endian>
1273 Output_data_group<size, big_endian>::Output_data_group(
1274 Sized_relobj_file<size, big_endian>* relobj,
1275 section_size_type entry_count,
1276 elfcpp::Elf_Word flags,
1277 std::vector<unsigned int>* input_shndxes)
1278 : Output_section_data(entry_count * 4, 4, false),
1279 relobj_(relobj),
1280 flags_(flags)
1281 {
1282 this->input_shndxes_.swap(*input_shndxes);
1283 }
1284
1285 // Write out the section group, which means translating the section
1286 // indexes to apply to the output file.
1287
1288 template<int size, bool big_endian>
1289 void
1290 Output_data_group<size, big_endian>::do_write(Output_file* of)
1291 {
1292 const off_t off = this->offset();
1293 const section_size_type oview_size =
1294 convert_to_section_size_type(this->data_size());
1295 unsigned char* const oview = of->get_output_view(off, oview_size);
1296
1297 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1298 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1299 ++contents;
1300
1301 for (std::vector<unsigned int>::const_iterator p =
1302 this->input_shndxes_.begin();
1303 p != this->input_shndxes_.end();
1304 ++p, ++contents)
1305 {
1306 Output_section* os = this->relobj_->output_section(*p);
1307
1308 unsigned int output_shndx;
1309 if (os != NULL)
1310 output_shndx = os->out_shndx();
1311 else
1312 {
1313 this->relobj_->error(_("section group retained but "
1314 "group element discarded"));
1315 output_shndx = 0;
1316 }
1317
1318 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1319 }
1320
1321 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1322 gold_assert(wrote == oview_size);
1323
1324 of->write_output_view(off, oview_size, oview);
1325
1326 // We no longer need this information.
1327 this->input_shndxes_.clear();
1328 }
1329
1330 // Output_data_got::Got_entry methods.
1331
1332 // Write out the entry.
1333
1334 template<int size, bool big_endian>
1335 void
1336 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1337 {
1338 Valtype val = 0;
1339
1340 switch (this->local_sym_index_)
1341 {
1342 case GSYM_CODE:
1343 {
1344 // If the symbol is resolved locally, we need to write out the
1345 // link-time value, which will be relocated dynamically by a
1346 // RELATIVE relocation.
1347 Symbol* gsym = this->u_.gsym;
1348 if (this->use_plt_offset_ && gsym->has_plt_offset())
1349 val = (parameters->target().plt_section_for_global(gsym)->address()
1350 + gsym->plt_offset());
1351 else
1352 {
1353 Sized_symbol<size>* sgsym;
1354 // This cast is a bit ugly. We don't want to put a
1355 // virtual method in Symbol, because we want Symbol to be
1356 // as small as possible.
1357 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1358 val = sgsym->value();
1359 }
1360 }
1361 break;
1362
1363 case CONSTANT_CODE:
1364 val = this->u_.constant;
1365 break;
1366
1367 case RESERVED_CODE:
1368 // If we're doing an incremental update, don't touch this GOT entry.
1369 if (parameters->incremental_update())
1370 return;
1371 val = this->u_.constant;
1372 break;
1373
1374 default:
1375 {
1376 const Sized_relobj_file<size, big_endian>* object = this->u_.object;
1377 const unsigned int lsi = this->local_sym_index_;
1378 const Symbol_value<size>* symval = object->local_symbol(lsi);
1379 if (!this->use_plt_offset_)
1380 val = symval->value(this->u_.object, 0);
1381 else
1382 {
1383 const Output_data* plt =
1384 parameters->target().plt_section_for_local(object, lsi);
1385 val = plt->address() + object->local_plt_offset(lsi);
1386 }
1387 }
1388 break;
1389 }
1390
1391 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1392 }
1393
1394 // Output_data_got methods.
1395
1396 // Add an entry for a global symbol to the GOT. This returns true if
1397 // this is a new GOT entry, false if the symbol already had a GOT
1398 // entry.
1399
1400 template<int size, bool big_endian>
1401 bool
1402 Output_data_got<size, big_endian>::add_global(
1403 Symbol* gsym,
1404 unsigned int got_type)
1405 {
1406 if (gsym->has_got_offset(got_type))
1407 return false;
1408
1409 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1410 gsym->set_got_offset(got_type, got_offset);
1411 return true;
1412 }
1413
1414 // Like add_global, but use the PLT offset.
1415
1416 template<int size, bool big_endian>
1417 bool
1418 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1419 unsigned int got_type)
1420 {
1421 if (gsym->has_got_offset(got_type))
1422 return false;
1423
1424 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1425 gsym->set_got_offset(got_type, got_offset);
1426 return true;
1427 }
1428
1429 // Add an entry for a global symbol to the GOT, and add a dynamic
1430 // relocation of type R_TYPE for the GOT entry.
1431
1432 template<int size, bool big_endian>
1433 void
1434 Output_data_got<size, big_endian>::add_global_with_rel(
1435 Symbol* gsym,
1436 unsigned int got_type,
1437 Rel_dyn* rel_dyn,
1438 unsigned int r_type)
1439 {
1440 if (gsym->has_got_offset(got_type))
1441 return;
1442
1443 unsigned int got_offset = this->add_got_entry(Got_entry());
1444 gsym->set_got_offset(got_type, got_offset);
1445 rel_dyn->add_global(gsym, r_type, this, got_offset);
1446 }
1447
1448 template<int size, bool big_endian>
1449 void
1450 Output_data_got<size, big_endian>::add_global_with_rela(
1451 Symbol* gsym,
1452 unsigned int got_type,
1453 Rela_dyn* rela_dyn,
1454 unsigned int r_type)
1455 {
1456 if (gsym->has_got_offset(got_type))
1457 return;
1458
1459 unsigned int got_offset = this->add_got_entry(Got_entry());
1460 gsym->set_got_offset(got_type, got_offset);
1461 rela_dyn->add_global(gsym, r_type, this, got_offset, 0);
1462 }
1463
1464 // Add a pair of entries for a global symbol to the GOT, and add
1465 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1466 // If R_TYPE_2 == 0, add the second entry with no relocation.
1467 template<int size, bool big_endian>
1468 void
1469 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1470 Symbol* gsym,
1471 unsigned int got_type,
1472 Rel_dyn* rel_dyn,
1473 unsigned int r_type_1,
1474 unsigned int r_type_2)
1475 {
1476 if (gsym->has_got_offset(got_type))
1477 return;
1478
1479 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1480 gsym->set_got_offset(got_type, got_offset);
1481 rel_dyn->add_global(gsym, r_type_1, this, got_offset);
1482
1483 if (r_type_2 != 0)
1484 rel_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8);
1485 }
1486
1487 template<int size, bool big_endian>
1488 void
1489 Output_data_got<size, big_endian>::add_global_pair_with_rela(
1490 Symbol* gsym,
1491 unsigned int got_type,
1492 Rela_dyn* rela_dyn,
1493 unsigned int r_type_1,
1494 unsigned int r_type_2)
1495 {
1496 if (gsym->has_got_offset(got_type))
1497 return;
1498
1499 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1500 gsym->set_got_offset(got_type, got_offset);
1501 rela_dyn->add_global(gsym, r_type_1, this, got_offset, 0);
1502
1503 if (r_type_2 != 0)
1504 rela_dyn->add_global(gsym, r_type_2, this, got_offset + size / 8, 0);
1505 }
1506
1507 // Add an entry for a local symbol to the GOT. This returns true if
1508 // this is a new GOT entry, false if the symbol already has a GOT
1509 // entry.
1510
1511 template<int size, bool big_endian>
1512 bool
1513 Output_data_got<size, big_endian>::add_local(
1514 Sized_relobj_file<size, big_endian>* object,
1515 unsigned int symndx,
1516 unsigned int got_type)
1517 {
1518 if (object->local_has_got_offset(symndx, got_type))
1519 return false;
1520
1521 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1522 false));
1523 object->set_local_got_offset(symndx, got_type, got_offset);
1524 return true;
1525 }
1526
1527 // Like add_local, but use the PLT offset.
1528
1529 template<int size, bool big_endian>
1530 bool
1531 Output_data_got<size, big_endian>::add_local_plt(
1532 Sized_relobj_file<size, big_endian>* object,
1533 unsigned int symndx,
1534 unsigned int got_type)
1535 {
1536 if (object->local_has_got_offset(symndx, got_type))
1537 return false;
1538
1539 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1540 true));
1541 object->set_local_got_offset(symndx, got_type, got_offset);
1542 return true;
1543 }
1544
1545 // Add an entry for a local symbol to the GOT, and add a dynamic
1546 // relocation of type R_TYPE for the GOT entry.
1547
1548 template<int size, bool big_endian>
1549 void
1550 Output_data_got<size, big_endian>::add_local_with_rel(
1551 Sized_relobj_file<size, big_endian>* object,
1552 unsigned int symndx,
1553 unsigned int got_type,
1554 Rel_dyn* rel_dyn,
1555 unsigned int r_type)
1556 {
1557 if (object->local_has_got_offset(symndx, got_type))
1558 return;
1559
1560 unsigned int got_offset = this->add_got_entry(Got_entry());
1561 object->set_local_got_offset(symndx, got_type, got_offset);
1562 rel_dyn->add_local(object, symndx, r_type, this, got_offset);
1563 }
1564
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_with_rela(
1568 Sized_relobj_file<size, big_endian>* object,
1569 unsigned int symndx,
1570 unsigned int got_type,
1571 Rela_dyn* rela_dyn,
1572 unsigned int r_type)
1573 {
1574 if (object->local_has_got_offset(symndx, got_type))
1575 return;
1576
1577 unsigned int got_offset = this->add_got_entry(Got_entry());
1578 object->set_local_got_offset(symndx, got_type, got_offset);
1579 rela_dyn->add_local(object, symndx, r_type, this, got_offset, 0);
1580 }
1581
1582 // Add a pair of entries for a local symbol to the GOT, and add
1583 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1584 // If R_TYPE_2 == 0, add the second entry with no relocation.
1585 template<int size, bool big_endian>
1586 void
1587 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1588 Sized_relobj_file<size, big_endian>* object,
1589 unsigned int symndx,
1590 unsigned int shndx,
1591 unsigned int got_type,
1592 Rel_dyn* rel_dyn,
1593 unsigned int r_type_1,
1594 unsigned int r_type_2)
1595 {
1596 if (object->local_has_got_offset(symndx, got_type))
1597 return;
1598
1599 unsigned int got_offset =
1600 this->add_got_entry_pair(Got_entry(),
1601 Got_entry(object, symndx, false));
1602 object->set_local_got_offset(symndx, got_type, got_offset);
1603 Output_section* os = object->output_section(shndx);
1604 rel_dyn->add_output_section(os, r_type_1, this, got_offset);
1605
1606 if (r_type_2 != 0)
1607 rel_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8);
1608 }
1609
1610 template<int size, bool big_endian>
1611 void
1612 Output_data_got<size, big_endian>::add_local_pair_with_rela(
1613 Sized_relobj_file<size, big_endian>* object,
1614 unsigned int symndx,
1615 unsigned int shndx,
1616 unsigned int got_type,
1617 Rela_dyn* rela_dyn,
1618 unsigned int r_type_1,
1619 unsigned int r_type_2)
1620 {
1621 if (object->local_has_got_offset(symndx, got_type))
1622 return;
1623
1624 unsigned int got_offset =
1625 this->add_got_entry_pair(Got_entry(),
1626 Got_entry(object, symndx, false));
1627 object->set_local_got_offset(symndx, got_type, got_offset);
1628 Output_section* os = object->output_section(shndx);
1629 rela_dyn->add_output_section(os, r_type_1, this, got_offset, 0);
1630
1631 if (r_type_2 != 0)
1632 rela_dyn->add_output_section(os, r_type_2, this, got_offset + size / 8, 0);
1633 }
1634
1635 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1636
1637 template<int size, bool big_endian>
1638 void
1639 Output_data_got<size, big_endian>::reserve_local(
1640 unsigned int i,
1641 Sized_relobj<size, big_endian>* object,
1642 unsigned int sym_index,
1643 unsigned int got_type)
1644 {
1645 this->reserve_slot(i);
1646 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1647 }
1648
1649 // Reserve a slot in the GOT for a global symbol.
1650
1651 template<int size, bool big_endian>
1652 void
1653 Output_data_got<size, big_endian>::reserve_global(
1654 unsigned int i,
1655 Symbol* gsym,
1656 unsigned int got_type)
1657 {
1658 this->reserve_slot(i);
1659 gsym->set_got_offset(got_type, this->got_offset(i));
1660 }
1661
1662 // Write out the GOT.
1663
1664 template<int size, bool big_endian>
1665 void
1666 Output_data_got<size, big_endian>::do_write(Output_file* of)
1667 {
1668 const int add = size / 8;
1669
1670 const off_t off = this->offset();
1671 const off_t oview_size = this->data_size();
1672 unsigned char* const oview = of->get_output_view(off, oview_size);
1673
1674 unsigned char* pov = oview;
1675 for (typename Got_entries::const_iterator p = this->entries_.begin();
1676 p != this->entries_.end();
1677 ++p)
1678 {
1679 p->write(pov);
1680 pov += add;
1681 }
1682
1683 gold_assert(pov - oview == oview_size);
1684
1685 of->write_output_view(off, oview_size, oview);
1686
1687 // We no longer need the GOT entries.
1688 this->entries_.clear();
1689 }
1690
1691 // Create a new GOT entry and return its offset.
1692
1693 template<int size, bool big_endian>
1694 unsigned int
1695 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1696 {
1697 if (!this->is_data_size_valid())
1698 {
1699 this->entries_.push_back(got_entry);
1700 this->set_got_size();
1701 return this->last_got_offset();
1702 }
1703 else
1704 {
1705 // For an incremental update, find an available slot.
1706 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1707 if (got_offset == -1)
1708 gold_fatal(_("out of patch space (GOT);"
1709 " relink with --incremental-full"));
1710 unsigned int got_index = got_offset / (size / 8);
1711 gold_assert(got_index < this->entries_.size());
1712 this->entries_[got_index] = got_entry;
1713 return static_cast<unsigned int>(got_offset);
1714 }
1715 }
1716
1717 // Create a pair of new GOT entries and return the offset of the first.
1718
1719 template<int size, bool big_endian>
1720 unsigned int
1721 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1722 Got_entry got_entry_2)
1723 {
1724 if (!this->is_data_size_valid())
1725 {
1726 unsigned int got_offset;
1727 this->entries_.push_back(got_entry_1);
1728 got_offset = this->last_got_offset();
1729 this->entries_.push_back(got_entry_2);
1730 this->set_got_size();
1731 return got_offset;
1732 }
1733 else
1734 {
1735 // For an incremental update, find an available pair of slots.
1736 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1737 if (got_offset == -1)
1738 gold_fatal(_("out of patch space (GOT);"
1739 " relink with --incremental-full"));
1740 unsigned int got_index = got_offset / (size / 8);
1741 gold_assert(got_index < this->entries_.size());
1742 this->entries_[got_index] = got_entry_1;
1743 this->entries_[got_index + 1] = got_entry_2;
1744 return static_cast<unsigned int>(got_offset);
1745 }
1746 }
1747
1748 // Output_data_dynamic::Dynamic_entry methods.
1749
1750 // Write out the entry.
1751
1752 template<int size, bool big_endian>
1753 void
1754 Output_data_dynamic::Dynamic_entry::write(
1755 unsigned char* pov,
1756 const Stringpool* pool) const
1757 {
1758 typename elfcpp::Elf_types<size>::Elf_WXword val;
1759 switch (this->offset_)
1760 {
1761 case DYNAMIC_NUMBER:
1762 val = this->u_.val;
1763 break;
1764
1765 case DYNAMIC_SECTION_SIZE:
1766 val = this->u_.od->data_size();
1767 if (this->od2 != NULL)
1768 val += this->od2->data_size();
1769 break;
1770
1771 case DYNAMIC_SYMBOL:
1772 {
1773 const Sized_symbol<size>* s =
1774 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1775 val = s->value();
1776 }
1777 break;
1778
1779 case DYNAMIC_STRING:
1780 val = pool->get_offset(this->u_.str);
1781 break;
1782
1783 default:
1784 val = this->u_.od->address() + this->offset_;
1785 break;
1786 }
1787
1788 elfcpp::Dyn_write<size, big_endian> dw(pov);
1789 dw.put_d_tag(this->tag_);
1790 dw.put_d_val(val);
1791 }
1792
1793 // Output_data_dynamic methods.
1794
1795 // Adjust the output section to set the entry size.
1796
1797 void
1798 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1799 {
1800 if (parameters->target().get_size() == 32)
1801 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1802 else if (parameters->target().get_size() == 64)
1803 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1804 else
1805 gold_unreachable();
1806 }
1807
1808 // Set the final data size.
1809
1810 void
1811 Output_data_dynamic::set_final_data_size()
1812 {
1813 // Add the terminating entry if it hasn't been added.
1814 // Because of relaxation, we can run this multiple times.
1815 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1816 {
1817 int extra = parameters->options().spare_dynamic_tags();
1818 for (int i = 0; i < extra; ++i)
1819 this->add_constant(elfcpp::DT_NULL, 0);
1820 this->add_constant(elfcpp::DT_NULL, 0);
1821 }
1822
1823 int dyn_size;
1824 if (parameters->target().get_size() == 32)
1825 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1826 else if (parameters->target().get_size() == 64)
1827 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1828 else
1829 gold_unreachable();
1830 this->set_data_size(this->entries_.size() * dyn_size);
1831 }
1832
1833 // Write out the dynamic entries.
1834
1835 void
1836 Output_data_dynamic::do_write(Output_file* of)
1837 {
1838 switch (parameters->size_and_endianness())
1839 {
1840 #ifdef HAVE_TARGET_32_LITTLE
1841 case Parameters::TARGET_32_LITTLE:
1842 this->sized_write<32, false>(of);
1843 break;
1844 #endif
1845 #ifdef HAVE_TARGET_32_BIG
1846 case Parameters::TARGET_32_BIG:
1847 this->sized_write<32, true>(of);
1848 break;
1849 #endif
1850 #ifdef HAVE_TARGET_64_LITTLE
1851 case Parameters::TARGET_64_LITTLE:
1852 this->sized_write<64, false>(of);
1853 break;
1854 #endif
1855 #ifdef HAVE_TARGET_64_BIG
1856 case Parameters::TARGET_64_BIG:
1857 this->sized_write<64, true>(of);
1858 break;
1859 #endif
1860 default:
1861 gold_unreachable();
1862 }
1863 }
1864
1865 template<int size, bool big_endian>
1866 void
1867 Output_data_dynamic::sized_write(Output_file* of)
1868 {
1869 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1870
1871 const off_t offset = this->offset();
1872 const off_t oview_size = this->data_size();
1873 unsigned char* const oview = of->get_output_view(offset, oview_size);
1874
1875 unsigned char* pov = oview;
1876 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1877 p != this->entries_.end();
1878 ++p)
1879 {
1880 p->write<size, big_endian>(pov, this->pool_);
1881 pov += dyn_size;
1882 }
1883
1884 gold_assert(pov - oview == oview_size);
1885
1886 of->write_output_view(offset, oview_size, oview);
1887
1888 // We no longer need the dynamic entries.
1889 this->entries_.clear();
1890 }
1891
1892 // Class Output_symtab_xindex.
1893
1894 void
1895 Output_symtab_xindex::do_write(Output_file* of)
1896 {
1897 const off_t offset = this->offset();
1898 const off_t oview_size = this->data_size();
1899 unsigned char* const oview = of->get_output_view(offset, oview_size);
1900
1901 memset(oview, 0, oview_size);
1902
1903 if (parameters->target().is_big_endian())
1904 this->endian_do_write<true>(oview);
1905 else
1906 this->endian_do_write<false>(oview);
1907
1908 of->write_output_view(offset, oview_size, oview);
1909
1910 // We no longer need the data.
1911 this->entries_.clear();
1912 }
1913
1914 template<bool big_endian>
1915 void
1916 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1917 {
1918 for (Xindex_entries::const_iterator p = this->entries_.begin();
1919 p != this->entries_.end();
1920 ++p)
1921 {
1922 unsigned int symndx = p->first;
1923 gold_assert(symndx * 4 < this->data_size());
1924 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1925 }
1926 }
1927
1928 // Output_section::Input_section methods.
1929
1930 // Return the current data size. For an input section we store the size here.
1931 // For an Output_section_data, we have to ask it for the size.
1932
1933 off_t
1934 Output_section::Input_section::current_data_size() const
1935 {
1936 if (this->is_input_section())
1937 return this->u1_.data_size;
1938 else
1939 {
1940 this->u2_.posd->pre_finalize_data_size();
1941 return this->u2_.posd->current_data_size();
1942 }
1943 }
1944
1945 // Return the data size. For an input section we store the size here.
1946 // For an Output_section_data, we have to ask it for the size.
1947
1948 off_t
1949 Output_section::Input_section::data_size() const
1950 {
1951 if (this->is_input_section())
1952 return this->u1_.data_size;
1953 else
1954 return this->u2_.posd->data_size();
1955 }
1956
1957 // Return the object for an input section.
1958
1959 Relobj*
1960 Output_section::Input_section::relobj() const
1961 {
1962 if (this->is_input_section())
1963 return this->u2_.object;
1964 else if (this->is_merge_section())
1965 {
1966 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1967 return this->u2_.pomb->first_relobj();
1968 }
1969 else if (this->is_relaxed_input_section())
1970 return this->u2_.poris->relobj();
1971 else
1972 gold_unreachable();
1973 }
1974
1975 // Return the input section index for an input section.
1976
1977 unsigned int
1978 Output_section::Input_section::shndx() const
1979 {
1980 if (this->is_input_section())
1981 return this->shndx_;
1982 else if (this->is_merge_section())
1983 {
1984 gold_assert(this->u2_.pomb->first_relobj() != NULL);
1985 return this->u2_.pomb->first_shndx();
1986 }
1987 else if (this->is_relaxed_input_section())
1988 return this->u2_.poris->shndx();
1989 else
1990 gold_unreachable();
1991 }
1992
1993 // Set the address and file offset.
1994
1995 void
1996 Output_section::Input_section::set_address_and_file_offset(
1997 uint64_t address,
1998 off_t file_offset,
1999 off_t section_file_offset)
2000 {
2001 if (this->is_input_section())
2002 this->u2_.object->set_section_offset(this->shndx_,
2003 file_offset - section_file_offset);
2004 else
2005 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2006 }
2007
2008 // Reset the address and file offset.
2009
2010 void
2011 Output_section::Input_section::reset_address_and_file_offset()
2012 {
2013 if (!this->is_input_section())
2014 this->u2_.posd->reset_address_and_file_offset();
2015 }
2016
2017 // Finalize the data size.
2018
2019 void
2020 Output_section::Input_section::finalize_data_size()
2021 {
2022 if (!this->is_input_section())
2023 this->u2_.posd->finalize_data_size();
2024 }
2025
2026 // Try to turn an input offset into an output offset. We want to
2027 // return the output offset relative to the start of this
2028 // Input_section in the output section.
2029
2030 inline bool
2031 Output_section::Input_section::output_offset(
2032 const Relobj* object,
2033 unsigned int shndx,
2034 section_offset_type offset,
2035 section_offset_type* poutput) const
2036 {
2037 if (!this->is_input_section())
2038 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2039 else
2040 {
2041 if (this->shndx_ != shndx || this->u2_.object != object)
2042 return false;
2043 *poutput = offset;
2044 return true;
2045 }
2046 }
2047
2048 // Return whether this is the merge section for the input section
2049 // SHNDX in OBJECT.
2050
2051 inline bool
2052 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2053 unsigned int shndx) const
2054 {
2055 if (this->is_input_section())
2056 return false;
2057 return this->u2_.posd->is_merge_section_for(object, shndx);
2058 }
2059
2060 // Write out the data. We don't have to do anything for an input
2061 // section--they are handled via Object::relocate--but this is where
2062 // we write out the data for an Output_section_data.
2063
2064 void
2065 Output_section::Input_section::write(Output_file* of)
2066 {
2067 if (!this->is_input_section())
2068 this->u2_.posd->write(of);
2069 }
2070
2071 // Write the data to a buffer. As for write(), we don't have to do
2072 // anything for an input section.
2073
2074 void
2075 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2076 {
2077 if (!this->is_input_section())
2078 this->u2_.posd->write_to_buffer(buffer);
2079 }
2080
2081 // Print to a map file.
2082
2083 void
2084 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2085 {
2086 switch (this->shndx_)
2087 {
2088 case OUTPUT_SECTION_CODE:
2089 case MERGE_DATA_SECTION_CODE:
2090 case MERGE_STRING_SECTION_CODE:
2091 this->u2_.posd->print_to_mapfile(mapfile);
2092 break;
2093
2094 case RELAXED_INPUT_SECTION_CODE:
2095 {
2096 Output_relaxed_input_section* relaxed_section =
2097 this->relaxed_input_section();
2098 mapfile->print_input_section(relaxed_section->relobj(),
2099 relaxed_section->shndx());
2100 }
2101 break;
2102 default:
2103 mapfile->print_input_section(this->u2_.object, this->shndx_);
2104 break;
2105 }
2106 }
2107
2108 // Output_section methods.
2109
2110 // Construct an Output_section. NAME will point into a Stringpool.
2111
2112 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2113 elfcpp::Elf_Xword flags)
2114 : name_(name),
2115 addralign_(0),
2116 entsize_(0),
2117 load_address_(0),
2118 link_section_(NULL),
2119 link_(0),
2120 info_section_(NULL),
2121 info_symndx_(NULL),
2122 info_(0),
2123 type_(type),
2124 flags_(flags),
2125 order_(ORDER_INVALID),
2126 out_shndx_(-1U),
2127 symtab_index_(0),
2128 dynsym_index_(0),
2129 input_sections_(),
2130 first_input_offset_(0),
2131 fills_(),
2132 postprocessing_buffer_(NULL),
2133 needs_symtab_index_(false),
2134 needs_dynsym_index_(false),
2135 should_link_to_symtab_(false),
2136 should_link_to_dynsym_(false),
2137 after_input_sections_(false),
2138 requires_postprocessing_(false),
2139 found_in_sections_clause_(false),
2140 has_load_address_(false),
2141 info_uses_section_index_(false),
2142 input_section_order_specified_(false),
2143 may_sort_attached_input_sections_(false),
2144 must_sort_attached_input_sections_(false),
2145 attached_input_sections_are_sorted_(false),
2146 is_relro_(false),
2147 is_small_section_(false),
2148 is_large_section_(false),
2149 generate_code_fills_at_write_(false),
2150 is_entsize_zero_(false),
2151 section_offsets_need_adjustment_(false),
2152 is_noload_(false),
2153 always_keeps_input_sections_(false),
2154 has_fixed_layout_(false),
2155 tls_offset_(0),
2156 checkpoint_(NULL),
2157 lookup_maps_(new Output_section_lookup_maps),
2158 free_list_()
2159 {
2160 // An unallocated section has no address. Forcing this means that
2161 // we don't need special treatment for symbols defined in debug
2162 // sections.
2163 if ((flags & elfcpp::SHF_ALLOC) == 0)
2164 this->set_address(0);
2165 }
2166
2167 Output_section::~Output_section()
2168 {
2169 delete this->checkpoint_;
2170 }
2171
2172 // Set the entry size.
2173
2174 void
2175 Output_section::set_entsize(uint64_t v)
2176 {
2177 if (this->is_entsize_zero_)
2178 ;
2179 else if (this->entsize_ == 0)
2180 this->entsize_ = v;
2181 else if (this->entsize_ != v)
2182 {
2183 this->entsize_ = 0;
2184 this->is_entsize_zero_ = 1;
2185 }
2186 }
2187
2188 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2189 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2190 // relocation section which applies to this section, or 0 if none, or
2191 // -1U if more than one. Return the offset of the input section
2192 // within the output section. Return -1 if the input section will
2193 // receive special handling. In the normal case we don't always keep
2194 // track of input sections for an Output_section. Instead, each
2195 // Object keeps track of the Output_section for each of its input
2196 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2197 // track of input sections here; this is used when SECTIONS appears in
2198 // a linker script.
2199
2200 template<int size, bool big_endian>
2201 off_t
2202 Output_section::add_input_section(Layout* layout,
2203 Sized_relobj_file<size, big_endian>* object,
2204 unsigned int shndx,
2205 const char* secname,
2206 const elfcpp::Shdr<size, big_endian>& shdr,
2207 unsigned int reloc_shndx,
2208 bool have_sections_script)
2209 {
2210 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2211 if ((addralign & (addralign - 1)) != 0)
2212 {
2213 object->error(_("invalid alignment %lu for section \"%s\""),
2214 static_cast<unsigned long>(addralign), secname);
2215 addralign = 1;
2216 }
2217
2218 if (addralign > this->addralign_)
2219 this->addralign_ = addralign;
2220
2221 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2222 uint64_t entsize = shdr.get_sh_entsize();
2223
2224 // .debug_str is a mergeable string section, but is not always so
2225 // marked by compilers. Mark manually here so we can optimize.
2226 if (strcmp(secname, ".debug_str") == 0)
2227 {
2228 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2229 entsize = 1;
2230 }
2231
2232 this->update_flags_for_input_section(sh_flags);
2233 this->set_entsize(entsize);
2234
2235 // If this is a SHF_MERGE section, we pass all the input sections to
2236 // a Output_data_merge. We don't try to handle relocations for such
2237 // a section. We don't try to handle empty merge sections--they
2238 // mess up the mappings, and are useless anyhow.
2239 // FIXME: Need to handle merge sections during incremental update.
2240 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2241 && reloc_shndx == 0
2242 && shdr.get_sh_size() > 0
2243 && !parameters->incremental())
2244 {
2245 // Keep information about merged input sections for rebuilding fast
2246 // lookup maps if we have sections-script or we do relaxation.
2247 bool keeps_input_sections = (this->always_keeps_input_sections_
2248 || have_sections_script
2249 || parameters->target().may_relax());
2250
2251 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2252 addralign, keeps_input_sections))
2253 {
2254 // Tell the relocation routines that they need to call the
2255 // output_offset method to determine the final address.
2256 return -1;
2257 }
2258 }
2259
2260 section_size_type input_section_size = shdr.get_sh_size();
2261 section_size_type uncompressed_size;
2262 if (object->section_is_compressed(shndx, &uncompressed_size))
2263 input_section_size = uncompressed_size;
2264
2265 off_t offset_in_section;
2266 off_t aligned_offset_in_section;
2267 if (this->has_fixed_layout())
2268 {
2269 // For incremental updates, find a chunk of unused space in the section.
2270 offset_in_section = this->free_list_.allocate(input_section_size,
2271 addralign, 0);
2272 if (offset_in_section == -1)
2273 gold_fatal(_("out of patch space; relink with --incremental-full"));
2274 aligned_offset_in_section = offset_in_section;
2275 }
2276 else
2277 {
2278 offset_in_section = this->current_data_size_for_child();
2279 aligned_offset_in_section = align_address(offset_in_section,
2280 addralign);
2281 this->set_current_data_size_for_child(aligned_offset_in_section
2282 + input_section_size);
2283 }
2284
2285 // Determine if we want to delay code-fill generation until the output
2286 // section is written. When the target is relaxing, we want to delay fill
2287 // generating to avoid adjusting them during relaxation. Also, if we are
2288 // sorting input sections we must delay fill generation.
2289 if (!this->generate_code_fills_at_write_
2290 && !have_sections_script
2291 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2292 && parameters->target().has_code_fill()
2293 && (parameters->target().may_relax()
2294 || parameters->options().section_ordering_file()))
2295 {
2296 gold_assert(this->fills_.empty());
2297 this->generate_code_fills_at_write_ = true;
2298 }
2299
2300 if (aligned_offset_in_section > offset_in_section
2301 && !this->generate_code_fills_at_write_
2302 && !have_sections_script
2303 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2304 && parameters->target().has_code_fill())
2305 {
2306 // We need to add some fill data. Using fill_list_ when
2307 // possible is an optimization, since we will often have fill
2308 // sections without input sections.
2309 off_t fill_len = aligned_offset_in_section - offset_in_section;
2310 if (this->input_sections_.empty())
2311 this->fills_.push_back(Fill(offset_in_section, fill_len));
2312 else
2313 {
2314 std::string fill_data(parameters->target().code_fill(fill_len));
2315 Output_data_const* odc = new Output_data_const(fill_data, 1);
2316 this->input_sections_.push_back(Input_section(odc));
2317 }
2318 }
2319
2320 // We need to keep track of this section if we are already keeping
2321 // track of sections, or if we are relaxing. Also, if this is a
2322 // section which requires sorting, or which may require sorting in
2323 // the future, we keep track of the sections. If the
2324 // --section-ordering-file option is used to specify the order of
2325 // sections, we need to keep track of sections.
2326 if (this->always_keeps_input_sections_
2327 || have_sections_script
2328 || !this->input_sections_.empty()
2329 || this->may_sort_attached_input_sections()
2330 || this->must_sort_attached_input_sections()
2331 || parameters->options().user_set_Map()
2332 || parameters->target().may_relax()
2333 || parameters->options().section_ordering_file())
2334 {
2335 Input_section isecn(object, shndx, input_section_size, addralign);
2336 if (parameters->options().section_ordering_file())
2337 {
2338 unsigned int section_order_index =
2339 layout->find_section_order_index(std::string(secname));
2340 if (section_order_index != 0)
2341 {
2342 isecn.set_section_order_index(section_order_index);
2343 this->set_input_section_order_specified();
2344 }
2345 }
2346 if (this->has_fixed_layout())
2347 {
2348 // For incremental updates, finalize the address and offset now.
2349 uint64_t addr = this->address();
2350 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2351 aligned_offset_in_section,
2352 this->offset());
2353 }
2354 this->input_sections_.push_back(isecn);
2355 }
2356
2357 return aligned_offset_in_section;
2358 }
2359
2360 // Add arbitrary data to an output section.
2361
2362 void
2363 Output_section::add_output_section_data(Output_section_data* posd)
2364 {
2365 Input_section inp(posd);
2366 this->add_output_section_data(&inp);
2367
2368 if (posd->is_data_size_valid())
2369 {
2370 off_t offset_in_section;
2371 if (this->has_fixed_layout())
2372 {
2373 // For incremental updates, find a chunk of unused space.
2374 offset_in_section = this->free_list_.allocate(posd->data_size(),
2375 posd->addralign(), 0);
2376 if (offset_in_section == -1)
2377 gold_fatal(_("out of patch space; relink with --incremental-full"));
2378 // Finalize the address and offset now.
2379 uint64_t addr = this->address();
2380 off_t offset = this->offset();
2381 posd->set_address_and_file_offset(addr + offset_in_section,
2382 offset + offset_in_section);
2383 }
2384 else
2385 {
2386 offset_in_section = this->current_data_size_for_child();
2387 off_t aligned_offset_in_section = align_address(offset_in_section,
2388 posd->addralign());
2389 this->set_current_data_size_for_child(aligned_offset_in_section
2390 + posd->data_size());
2391 }
2392 }
2393 else if (this->has_fixed_layout())
2394 {
2395 // For incremental updates, arrange for the data to have a fixed layout.
2396 // This will mean that additions to the data must be allocated from
2397 // free space within the containing output section.
2398 uint64_t addr = this->address();
2399 posd->set_address(addr);
2400 posd->set_file_offset(0);
2401 // FIXME: This should eventually be unreachable.
2402 // gold_unreachable();
2403 }
2404 }
2405
2406 // Add a relaxed input section.
2407
2408 void
2409 Output_section::add_relaxed_input_section(Layout* layout,
2410 Output_relaxed_input_section* poris,
2411 const std::string& name)
2412 {
2413 Input_section inp(poris);
2414
2415 // If the --section-ordering-file option is used to specify the order of
2416 // sections, we need to keep track of sections.
2417 if (parameters->options().section_ordering_file())
2418 {
2419 unsigned int section_order_index =
2420 layout->find_section_order_index(name);
2421 if (section_order_index != 0)
2422 {
2423 inp.set_section_order_index(section_order_index);
2424 this->set_input_section_order_specified();
2425 }
2426 }
2427
2428 this->add_output_section_data(&inp);
2429 if (this->lookup_maps_->is_valid())
2430 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2431 poris->shndx(), poris);
2432
2433 // For a relaxed section, we use the current data size. Linker scripts
2434 // get all the input sections, including relaxed one from an output
2435 // section and add them back to them same output section to compute the
2436 // output section size. If we do not account for sizes of relaxed input
2437 // sections, an output section would be incorrectly sized.
2438 off_t offset_in_section = this->current_data_size_for_child();
2439 off_t aligned_offset_in_section = align_address(offset_in_section,
2440 poris->addralign());
2441 this->set_current_data_size_for_child(aligned_offset_in_section
2442 + poris->current_data_size());
2443 }
2444
2445 // Add arbitrary data to an output section by Input_section.
2446
2447 void
2448 Output_section::add_output_section_data(Input_section* inp)
2449 {
2450 if (this->input_sections_.empty())
2451 this->first_input_offset_ = this->current_data_size_for_child();
2452
2453 this->input_sections_.push_back(*inp);
2454
2455 uint64_t addralign = inp->addralign();
2456 if (addralign > this->addralign_)
2457 this->addralign_ = addralign;
2458
2459 inp->set_output_section(this);
2460 }
2461
2462 // Add a merge section to an output section.
2463
2464 void
2465 Output_section::add_output_merge_section(Output_section_data* posd,
2466 bool is_string, uint64_t entsize)
2467 {
2468 Input_section inp(posd, is_string, entsize);
2469 this->add_output_section_data(&inp);
2470 }
2471
2472 // Add an input section to a SHF_MERGE section.
2473
2474 bool
2475 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2476 uint64_t flags, uint64_t entsize,
2477 uint64_t addralign,
2478 bool keeps_input_sections)
2479 {
2480 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2481
2482 // We only merge strings if the alignment is not more than the
2483 // character size. This could be handled, but it's unusual.
2484 if (is_string && addralign > entsize)
2485 return false;
2486
2487 // We cannot restore merged input section states.
2488 gold_assert(this->checkpoint_ == NULL);
2489
2490 // Look up merge sections by required properties.
2491 // Currently, we only invalidate the lookup maps in script processing
2492 // and relaxation. We should not have done either when we reach here.
2493 // So we assume that the lookup maps are valid to simply code.
2494 gold_assert(this->lookup_maps_->is_valid());
2495 Merge_section_properties msp(is_string, entsize, addralign);
2496 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2497 bool is_new = false;
2498 if (pomb != NULL)
2499 {
2500 gold_assert(pomb->is_string() == is_string
2501 && pomb->entsize() == entsize
2502 && pomb->addralign() == addralign);
2503 }
2504 else
2505 {
2506 // Create a new Output_merge_data or Output_merge_string_data.
2507 if (!is_string)
2508 pomb = new Output_merge_data(entsize, addralign);
2509 else
2510 {
2511 switch (entsize)
2512 {
2513 case 1:
2514 pomb = new Output_merge_string<char>(addralign);
2515 break;
2516 case 2:
2517 pomb = new Output_merge_string<uint16_t>(addralign);
2518 break;
2519 case 4:
2520 pomb = new Output_merge_string<uint32_t>(addralign);
2521 break;
2522 default:
2523 return false;
2524 }
2525 }
2526 // If we need to do script processing or relaxation, we need to keep
2527 // the original input sections to rebuild the fast lookup maps.
2528 if (keeps_input_sections)
2529 pomb->set_keeps_input_sections();
2530 is_new = true;
2531 }
2532
2533 if (pomb->add_input_section(object, shndx))
2534 {
2535 // Add new merge section to this output section and link merge
2536 // section properties to new merge section in map.
2537 if (is_new)
2538 {
2539 this->add_output_merge_section(pomb, is_string, entsize);
2540 this->lookup_maps_->add_merge_section(msp, pomb);
2541 }
2542
2543 // Add input section to new merge section and link input section to new
2544 // merge section in map.
2545 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2546 return true;
2547 }
2548 else
2549 {
2550 // If add_input_section failed, delete new merge section to avoid
2551 // exporting empty merge sections in Output_section::get_input_section.
2552 if (is_new)
2553 delete pomb;
2554 return false;
2555 }
2556 }
2557
2558 // Build a relaxation map to speed up relaxation of existing input sections.
2559 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2560
2561 void
2562 Output_section::build_relaxation_map(
2563 const Input_section_list& input_sections,
2564 size_t limit,
2565 Relaxation_map* relaxation_map) const
2566 {
2567 for (size_t i = 0; i < limit; ++i)
2568 {
2569 const Input_section& is(input_sections[i]);
2570 if (is.is_input_section() || is.is_relaxed_input_section())
2571 {
2572 Section_id sid(is.relobj(), is.shndx());
2573 (*relaxation_map)[sid] = i;
2574 }
2575 }
2576 }
2577
2578 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2579 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2580 // indices of INPUT_SECTIONS.
2581
2582 void
2583 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2584 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2585 const Relaxation_map& map,
2586 Input_section_list* input_sections)
2587 {
2588 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2589 {
2590 Output_relaxed_input_section* poris = relaxed_sections[i];
2591 Section_id sid(poris->relobj(), poris->shndx());
2592 Relaxation_map::const_iterator p = map.find(sid);
2593 gold_assert(p != map.end());
2594 gold_assert((*input_sections)[p->second].is_input_section());
2595
2596 // Remember section order index of original input section
2597 // if it is set. Copy it to the relaxed input section.
2598 unsigned int soi =
2599 (*input_sections)[p->second].section_order_index();
2600 (*input_sections)[p->second] = Input_section(poris);
2601 (*input_sections)[p->second].set_section_order_index(soi);
2602 }
2603 }
2604
2605 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2606 // is a vector of pointers to Output_relaxed_input_section or its derived
2607 // classes. The relaxed sections must correspond to existing input sections.
2608
2609 void
2610 Output_section::convert_input_sections_to_relaxed_sections(
2611 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2612 {
2613 gold_assert(parameters->target().may_relax());
2614
2615 // We want to make sure that restore_states does not undo the effect of
2616 // this. If there is no checkpoint active, just search the current
2617 // input section list and replace the sections there. If there is
2618 // a checkpoint, also replace the sections there.
2619
2620 // By default, we look at the whole list.
2621 size_t limit = this->input_sections_.size();
2622
2623 if (this->checkpoint_ != NULL)
2624 {
2625 // Replace input sections with relaxed input section in the saved
2626 // copy of the input section list.
2627 if (this->checkpoint_->input_sections_saved())
2628 {
2629 Relaxation_map map;
2630 this->build_relaxation_map(
2631 *(this->checkpoint_->input_sections()),
2632 this->checkpoint_->input_sections()->size(),
2633 &map);
2634 this->convert_input_sections_in_list_to_relaxed_sections(
2635 relaxed_sections,
2636 map,
2637 this->checkpoint_->input_sections());
2638 }
2639 else
2640 {
2641 // We have not copied the input section list yet. Instead, just
2642 // look at the portion that would be saved.
2643 limit = this->checkpoint_->input_sections_size();
2644 }
2645 }
2646
2647 // Convert input sections in input_section_list.
2648 Relaxation_map map;
2649 this->build_relaxation_map(this->input_sections_, limit, &map);
2650 this->convert_input_sections_in_list_to_relaxed_sections(
2651 relaxed_sections,
2652 map,
2653 &this->input_sections_);
2654
2655 // Update fast look-up map.
2656 if (this->lookup_maps_->is_valid())
2657 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2658 {
2659 Output_relaxed_input_section* poris = relaxed_sections[i];
2660 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2661 poris->shndx(), poris);
2662 }
2663 }
2664
2665 // Update the output section flags based on input section flags.
2666
2667 void
2668 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2669 {
2670 // If we created the section with SHF_ALLOC clear, we set the
2671 // address. If we are now setting the SHF_ALLOC flag, we need to
2672 // undo that.
2673 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2674 && (flags & elfcpp::SHF_ALLOC) != 0)
2675 this->mark_address_invalid();
2676
2677 this->flags_ |= (flags
2678 & (elfcpp::SHF_WRITE
2679 | elfcpp::SHF_ALLOC
2680 | elfcpp::SHF_EXECINSTR));
2681
2682 if ((flags & elfcpp::SHF_MERGE) == 0)
2683 this->flags_ &=~ elfcpp::SHF_MERGE;
2684 else
2685 {
2686 if (this->current_data_size_for_child() == 0)
2687 this->flags_ |= elfcpp::SHF_MERGE;
2688 }
2689
2690 if ((flags & elfcpp::SHF_STRINGS) == 0)
2691 this->flags_ &=~ elfcpp::SHF_STRINGS;
2692 else
2693 {
2694 if (this->current_data_size_for_child() == 0)
2695 this->flags_ |= elfcpp::SHF_STRINGS;
2696 }
2697 }
2698
2699 // Find the merge section into which an input section with index SHNDX in
2700 // OBJECT has been added. Return NULL if none found.
2701
2702 Output_section_data*
2703 Output_section::find_merge_section(const Relobj* object,
2704 unsigned int shndx) const
2705 {
2706 if (!this->lookup_maps_->is_valid())
2707 this->build_lookup_maps();
2708 return this->lookup_maps_->find_merge_section(object, shndx);
2709 }
2710
2711 // Build the lookup maps for merge and relaxed sections. This is needs
2712 // to be declared as a const methods so that it is callable with a const
2713 // Output_section pointer. The method only updates states of the maps.
2714
2715 void
2716 Output_section::build_lookup_maps() const
2717 {
2718 this->lookup_maps_->clear();
2719 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2720 p != this->input_sections_.end();
2721 ++p)
2722 {
2723 if (p->is_merge_section())
2724 {
2725 Output_merge_base* pomb = p->output_merge_base();
2726 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2727 pomb->addralign());
2728 this->lookup_maps_->add_merge_section(msp, pomb);
2729 for (Output_merge_base::Input_sections::const_iterator is =
2730 pomb->input_sections_begin();
2731 is != pomb->input_sections_end();
2732 ++is)
2733 {
2734 const Const_section_id& csid = *is;
2735 this->lookup_maps_->add_merge_input_section(csid.first,
2736 csid.second, pomb);
2737 }
2738
2739 }
2740 else if (p->is_relaxed_input_section())
2741 {
2742 Output_relaxed_input_section* poris = p->relaxed_input_section();
2743 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2744 poris->shndx(), poris);
2745 }
2746 }
2747 }
2748
2749 // Find an relaxed input section corresponding to an input section
2750 // in OBJECT with index SHNDX.
2751
2752 const Output_relaxed_input_section*
2753 Output_section::find_relaxed_input_section(const Relobj* object,
2754 unsigned int shndx) const
2755 {
2756 if (!this->lookup_maps_->is_valid())
2757 this->build_lookup_maps();
2758 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2759 }
2760
2761 // Given an address OFFSET relative to the start of input section
2762 // SHNDX in OBJECT, return whether this address is being included in
2763 // the final link. This should only be called if SHNDX in OBJECT has
2764 // a special mapping.
2765
2766 bool
2767 Output_section::is_input_address_mapped(const Relobj* object,
2768 unsigned int shndx,
2769 off_t offset) const
2770 {
2771 // Look at the Output_section_data_maps first.
2772 const Output_section_data* posd = this->find_merge_section(object, shndx);
2773 if (posd == NULL)
2774 posd = this->find_relaxed_input_section(object, shndx);
2775
2776 if (posd != NULL)
2777 {
2778 section_offset_type output_offset;
2779 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2780 gold_assert(found);
2781 return output_offset != -1;
2782 }
2783
2784 // Fall back to the slow look-up.
2785 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2786 p != this->input_sections_.end();
2787 ++p)
2788 {
2789 section_offset_type output_offset;
2790 if (p->output_offset(object, shndx, offset, &output_offset))
2791 return output_offset != -1;
2792 }
2793
2794 // By default we assume that the address is mapped. This should
2795 // only be called after we have passed all sections to Layout. At
2796 // that point we should know what we are discarding.
2797 return true;
2798 }
2799
2800 // Given an address OFFSET relative to the start of input section
2801 // SHNDX in object OBJECT, return the output offset relative to the
2802 // start of the input section in the output section. This should only
2803 // be called if SHNDX in OBJECT has a special mapping.
2804
2805 section_offset_type
2806 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2807 section_offset_type offset) const
2808 {
2809 // This can only be called meaningfully when we know the data size
2810 // of this.
2811 gold_assert(this->is_data_size_valid());
2812
2813 // Look at the Output_section_data_maps first.
2814 const Output_section_data* posd = this->find_merge_section(object, shndx);
2815 if (posd == NULL)
2816 posd = this->find_relaxed_input_section(object, shndx);
2817 if (posd != NULL)
2818 {
2819 section_offset_type output_offset;
2820 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2821 gold_assert(found);
2822 return output_offset;
2823 }
2824
2825 // Fall back to the slow look-up.
2826 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2827 p != this->input_sections_.end();
2828 ++p)
2829 {
2830 section_offset_type output_offset;
2831 if (p->output_offset(object, shndx, offset, &output_offset))
2832 return output_offset;
2833 }
2834 gold_unreachable();
2835 }
2836
2837 // Return the output virtual address of OFFSET relative to the start
2838 // of input section SHNDX in object OBJECT.
2839
2840 uint64_t
2841 Output_section::output_address(const Relobj* object, unsigned int shndx,
2842 off_t offset) const
2843 {
2844 uint64_t addr = this->address() + this->first_input_offset_;
2845
2846 // Look at the Output_section_data_maps first.
2847 const Output_section_data* posd = this->find_merge_section(object, shndx);
2848 if (posd == NULL)
2849 posd = this->find_relaxed_input_section(object, shndx);
2850 if (posd != NULL && posd->is_address_valid())
2851 {
2852 section_offset_type output_offset;
2853 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2854 gold_assert(found);
2855 return posd->address() + output_offset;
2856 }
2857
2858 // Fall back to the slow look-up.
2859 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2860 p != this->input_sections_.end();
2861 ++p)
2862 {
2863 addr = align_address(addr, p->addralign());
2864 section_offset_type output_offset;
2865 if (p->output_offset(object, shndx, offset, &output_offset))
2866 {
2867 if (output_offset == -1)
2868 return -1ULL;
2869 return addr + output_offset;
2870 }
2871 addr += p->data_size();
2872 }
2873
2874 // If we get here, it means that we don't know the mapping for this
2875 // input section. This might happen in principle if
2876 // add_input_section were called before add_output_section_data.
2877 // But it should never actually happen.
2878
2879 gold_unreachable();
2880 }
2881
2882 // Find the output address of the start of the merged section for
2883 // input section SHNDX in object OBJECT.
2884
2885 bool
2886 Output_section::find_starting_output_address(const Relobj* object,
2887 unsigned int shndx,
2888 uint64_t* paddr) const
2889 {
2890 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
2891 // Looking up the merge section map does not always work as we sometimes
2892 // find a merge section without its address set.
2893 uint64_t addr = this->address() + this->first_input_offset_;
2894 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2895 p != this->input_sections_.end();
2896 ++p)
2897 {
2898 addr = align_address(addr, p->addralign());
2899
2900 // It would be nice if we could use the existing output_offset
2901 // method to get the output offset of input offset 0.
2902 // Unfortunately we don't know for sure that input offset 0 is
2903 // mapped at all.
2904 if (p->is_merge_section_for(object, shndx))
2905 {
2906 *paddr = addr;
2907 return true;
2908 }
2909
2910 addr += p->data_size();
2911 }
2912
2913 // We couldn't find a merge output section for this input section.
2914 return false;
2915 }
2916
2917 // Update the data size of an Output_section.
2918
2919 void
2920 Output_section::update_data_size()
2921 {
2922 if (this->input_sections_.empty())
2923 return;
2924
2925 if (this->must_sort_attached_input_sections()
2926 || this->input_section_order_specified())
2927 this->sort_attached_input_sections();
2928
2929 off_t off = this->first_input_offset_;
2930 for (Input_section_list::iterator p = this->input_sections_.begin();
2931 p != this->input_sections_.end();
2932 ++p)
2933 {
2934 off = align_address(off, p->addralign());
2935 off += p->current_data_size();
2936 }
2937
2938 this->set_current_data_size_for_child(off);
2939 }
2940
2941 // Set the data size of an Output_section. This is where we handle
2942 // setting the addresses of any Output_section_data objects.
2943
2944 void
2945 Output_section::set_final_data_size()
2946 {
2947 if (this->input_sections_.empty())
2948 {
2949 this->set_data_size(this->current_data_size_for_child());
2950 return;
2951 }
2952
2953 if (this->must_sort_attached_input_sections()
2954 || this->input_section_order_specified())
2955 this->sort_attached_input_sections();
2956
2957 uint64_t address = this->address();
2958 off_t startoff = this->offset();
2959 off_t off = startoff + this->first_input_offset_;
2960 for (Input_section_list::iterator p = this->input_sections_.begin();
2961 p != this->input_sections_.end();
2962 ++p)
2963 {
2964 off = align_address(off, p->addralign());
2965 p->set_address_and_file_offset(address + (off - startoff), off,
2966 startoff);
2967 off += p->data_size();
2968 }
2969
2970 this->set_data_size(off - startoff);
2971 }
2972
2973 // Reset the address and file offset.
2974
2975 void
2976 Output_section::do_reset_address_and_file_offset()
2977 {
2978 // An unallocated section has no address. Forcing this means that
2979 // we don't need special treatment for symbols defined in debug
2980 // sections. We do the same in the constructor. This does not
2981 // apply to NOLOAD sections though.
2982 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
2983 this->set_address(0);
2984
2985 for (Input_section_list::iterator p = this->input_sections_.begin();
2986 p != this->input_sections_.end();
2987 ++p)
2988 p->reset_address_and_file_offset();
2989 }
2990
2991 // Return true if address and file offset have the values after reset.
2992
2993 bool
2994 Output_section::do_address_and_file_offset_have_reset_values() const
2995 {
2996 if (this->is_offset_valid())
2997 return false;
2998
2999 // An unallocated section has address 0 after its construction or a reset.
3000 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3001 return this->is_address_valid() && this->address() == 0;
3002 else
3003 return !this->is_address_valid();
3004 }
3005
3006 // Set the TLS offset. Called only for SHT_TLS sections.
3007
3008 void
3009 Output_section::do_set_tls_offset(uint64_t tls_base)
3010 {
3011 this->tls_offset_ = this->address() - tls_base;
3012 }
3013
3014 // In a few cases we need to sort the input sections attached to an
3015 // output section. This is used to implement the type of constructor
3016 // priority ordering implemented by the GNU linker, in which the
3017 // priority becomes part of the section name and the sections are
3018 // sorted by name. We only do this for an output section if we see an
3019 // attached input section matching ".ctor.*", ".dtor.*",
3020 // ".init_array.*" or ".fini_array.*".
3021
3022 class Output_section::Input_section_sort_entry
3023 {
3024 public:
3025 Input_section_sort_entry()
3026 : input_section_(), index_(-1U), section_has_name_(false),
3027 section_name_()
3028 { }
3029
3030 Input_section_sort_entry(const Input_section& input_section,
3031 unsigned int index,
3032 bool must_sort_attached_input_sections)
3033 : input_section_(input_section), index_(index),
3034 section_has_name_(input_section.is_input_section()
3035 || input_section.is_relaxed_input_section())
3036 {
3037 if (this->section_has_name_
3038 && must_sort_attached_input_sections)
3039 {
3040 // This is only called single-threaded from Layout::finalize,
3041 // so it is OK to lock. Unfortunately we have no way to pass
3042 // in a Task token.
3043 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3044 Object* obj = (input_section.is_input_section()
3045 ? input_section.relobj()
3046 : input_section.relaxed_input_section()->relobj());
3047 Task_lock_obj<Object> tl(dummy_task, obj);
3048
3049 // This is a slow operation, which should be cached in
3050 // Layout::layout if this becomes a speed problem.
3051 this->section_name_ = obj->section_name(input_section.shndx());
3052 }
3053 }
3054
3055 // Return the Input_section.
3056 const Input_section&
3057 input_section() const
3058 {
3059 gold_assert(this->index_ != -1U);
3060 return this->input_section_;
3061 }
3062
3063 // The index of this entry in the original list. This is used to
3064 // make the sort stable.
3065 unsigned int
3066 index() const
3067 {
3068 gold_assert(this->index_ != -1U);
3069 return this->index_;
3070 }
3071
3072 // Whether there is a section name.
3073 bool
3074 section_has_name() const
3075 { return this->section_has_name_; }
3076
3077 // The section name.
3078 const std::string&
3079 section_name() const
3080 {
3081 gold_assert(this->section_has_name_);
3082 return this->section_name_;
3083 }
3084
3085 // Return true if the section name has a priority. This is assumed
3086 // to be true if it has a dot after the initial dot.
3087 bool
3088 has_priority() const
3089 {
3090 gold_assert(this->section_has_name_);
3091 return this->section_name_.find('.', 1) != std::string::npos;
3092 }
3093
3094 // Return true if this an input file whose base name matches
3095 // FILE_NAME. The base name must have an extension of ".o", and
3096 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3097 // This is to match crtbegin.o as well as crtbeginS.o without
3098 // getting confused by other possibilities. Overall matching the
3099 // file name this way is a dreadful hack, but the GNU linker does it
3100 // in order to better support gcc, and we need to be compatible.
3101 bool
3102 match_file_name(const char* match_file_name) const
3103 {
3104 const std::string& file_name(this->input_section_.relobj()->name());
3105 const char* base_name = lbasename(file_name.c_str());
3106 size_t match_len = strlen(match_file_name);
3107 if (strncmp(base_name, match_file_name, match_len) != 0)
3108 return false;
3109 size_t base_len = strlen(base_name);
3110 if (base_len != match_len + 2 && base_len != match_len + 3)
3111 return false;
3112 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
3113 }
3114
3115 // Returns 1 if THIS should appear before S in section order, -1 if S
3116 // appears before THIS and 0 if they are not comparable.
3117 int
3118 compare_section_ordering(const Input_section_sort_entry& s) const
3119 {
3120 unsigned int this_secn_index = this->input_section_.section_order_index();
3121 unsigned int s_secn_index = s.input_section().section_order_index();
3122 if (this_secn_index > 0 && s_secn_index > 0)
3123 {
3124 if (this_secn_index < s_secn_index)
3125 return 1;
3126 else if (this_secn_index > s_secn_index)
3127 return -1;
3128 }
3129 return 0;
3130 }
3131
3132 private:
3133 // The Input_section we are sorting.
3134 Input_section input_section_;
3135 // The index of this Input_section in the original list.
3136 unsigned int index_;
3137 // Whether this Input_section has a section name--it won't if this
3138 // is some random Output_section_data.
3139 bool section_has_name_;
3140 // The section name if there is one.
3141 std::string section_name_;
3142 };
3143
3144 // Return true if S1 should come before S2 in the output section.
3145
3146 bool
3147 Output_section::Input_section_sort_compare::operator()(
3148 const Output_section::Input_section_sort_entry& s1,
3149 const Output_section::Input_section_sort_entry& s2) const
3150 {
3151 // crtbegin.o must come first.
3152 bool s1_begin = s1.match_file_name("crtbegin");
3153 bool s2_begin = s2.match_file_name("crtbegin");
3154 if (s1_begin || s2_begin)
3155 {
3156 if (!s1_begin)
3157 return false;
3158 if (!s2_begin)
3159 return true;
3160 return s1.index() < s2.index();
3161 }
3162
3163 // crtend.o must come last.
3164 bool s1_end = s1.match_file_name("crtend");
3165 bool s2_end = s2.match_file_name("crtend");
3166 if (s1_end || s2_end)
3167 {
3168 if (!s1_end)
3169 return true;
3170 if (!s2_end)
3171 return false;
3172 return s1.index() < s2.index();
3173 }
3174
3175 // We sort all the sections with no names to the end.
3176 if (!s1.section_has_name() || !s2.section_has_name())
3177 {
3178 if (s1.section_has_name())
3179 return true;
3180 if (s2.section_has_name())
3181 return false;
3182 return s1.index() < s2.index();
3183 }
3184
3185 // A section with a priority follows a section without a priority.
3186 bool s1_has_priority = s1.has_priority();
3187 bool s2_has_priority = s2.has_priority();
3188 if (s1_has_priority && !s2_has_priority)
3189 return false;
3190 if (!s1_has_priority && s2_has_priority)
3191 return true;
3192
3193 // Check if a section order exists for these sections through a section
3194 // ordering file. If sequence_num is 0, an order does not exist.
3195 int sequence_num = s1.compare_section_ordering(s2);
3196 if (sequence_num != 0)
3197 return sequence_num == 1;
3198
3199 // Otherwise we sort by name.
3200 int compare = s1.section_name().compare(s2.section_name());
3201 if (compare != 0)
3202 return compare < 0;
3203
3204 // Otherwise we keep the input order.
3205 return s1.index() < s2.index();
3206 }
3207
3208 // Return true if S1 should come before S2 in an .init_array or .fini_array
3209 // output section.
3210
3211 bool
3212 Output_section::Input_section_sort_init_fini_compare::operator()(
3213 const Output_section::Input_section_sort_entry& s1,
3214 const Output_section::Input_section_sort_entry& s2) const
3215 {
3216 // We sort all the sections with no names to the end.
3217 if (!s1.section_has_name() || !s2.section_has_name())
3218 {
3219 if (s1.section_has_name())
3220 return true;
3221 if (s2.section_has_name())
3222 return false;
3223 return s1.index() < s2.index();
3224 }
3225
3226 // A section without a priority follows a section with a priority.
3227 // This is the reverse of .ctors and .dtors sections.
3228 bool s1_has_priority = s1.has_priority();
3229 bool s2_has_priority = s2.has_priority();
3230 if (s1_has_priority && !s2_has_priority)
3231 return true;
3232 if (!s1_has_priority && s2_has_priority)
3233 return false;
3234
3235 // Check if a section order exists for these sections through a section
3236 // ordering file. If sequence_num is 0, an order does not exist.
3237 int sequence_num = s1.compare_section_ordering(s2);
3238 if (sequence_num != 0)
3239 return sequence_num == 1;
3240
3241 // Otherwise we sort by name.
3242 int compare = s1.section_name().compare(s2.section_name());
3243 if (compare != 0)
3244 return compare < 0;
3245
3246 // Otherwise we keep the input order.
3247 return s1.index() < s2.index();
3248 }
3249
3250 // Return true if S1 should come before S2. Sections that do not match
3251 // any pattern in the section ordering file are placed ahead of the sections
3252 // that match some pattern.
3253
3254 bool
3255 Output_section::Input_section_sort_section_order_index_compare::operator()(
3256 const Output_section::Input_section_sort_entry& s1,
3257 const Output_section::Input_section_sort_entry& s2) const
3258 {
3259 unsigned int s1_secn_index = s1.input_section().section_order_index();
3260 unsigned int s2_secn_index = s2.input_section().section_order_index();
3261
3262 // Keep input order if section ordering cannot determine order.
3263 if (s1_secn_index == s2_secn_index)
3264 return s1.index() < s2.index();
3265
3266 return s1_secn_index < s2_secn_index;
3267 }
3268
3269 // Sort the input sections attached to an output section.
3270
3271 void
3272 Output_section::sort_attached_input_sections()
3273 {
3274 if (this->attached_input_sections_are_sorted_)
3275 return;
3276
3277 if (this->checkpoint_ != NULL
3278 && !this->checkpoint_->input_sections_saved())
3279 this->checkpoint_->save_input_sections();
3280
3281 // The only thing we know about an input section is the object and
3282 // the section index. We need the section name. Recomputing this
3283 // is slow but this is an unusual case. If this becomes a speed
3284 // problem we can cache the names as required in Layout::layout.
3285
3286 // We start by building a larger vector holding a copy of each
3287 // Input_section, plus its current index in the list and its name.
3288 std::vector<Input_section_sort_entry> sort_list;
3289
3290 unsigned int i = 0;
3291 for (Input_section_list::iterator p = this->input_sections_.begin();
3292 p != this->input_sections_.end();
3293 ++p, ++i)
3294 sort_list.push_back(Input_section_sort_entry(*p, i,
3295 this->must_sort_attached_input_sections()));
3296
3297 // Sort the input sections.
3298 if (this->must_sort_attached_input_sections())
3299 {
3300 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3301 || this->type() == elfcpp::SHT_INIT_ARRAY
3302 || this->type() == elfcpp::SHT_FINI_ARRAY)
3303 std::sort(sort_list.begin(), sort_list.end(),
3304 Input_section_sort_init_fini_compare());
3305 else
3306 std::sort(sort_list.begin(), sort_list.end(),
3307 Input_section_sort_compare());
3308 }
3309 else
3310 {
3311 gold_assert(parameters->options().section_ordering_file());
3312 std::sort(sort_list.begin(), sort_list.end(),
3313 Input_section_sort_section_order_index_compare());
3314 }
3315
3316 // Copy the sorted input sections back to our list.
3317 this->input_sections_.clear();
3318 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3319 p != sort_list.end();
3320 ++p)
3321 this->input_sections_.push_back(p->input_section());
3322 sort_list.clear();
3323
3324 // Remember that we sorted the input sections, since we might get
3325 // called again.
3326 this->attached_input_sections_are_sorted_ = true;
3327 }
3328
3329 // Write the section header to *OSHDR.
3330
3331 template<int size, bool big_endian>
3332 void
3333 Output_section::write_header(const Layout* layout,
3334 const Stringpool* secnamepool,
3335 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3336 {
3337 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3338 oshdr->put_sh_type(this->type_);
3339
3340 elfcpp::Elf_Xword flags = this->flags_;
3341 if (this->info_section_ != NULL && this->info_uses_section_index_)
3342 flags |= elfcpp::SHF_INFO_LINK;
3343 oshdr->put_sh_flags(flags);
3344
3345 oshdr->put_sh_addr(this->address());
3346 oshdr->put_sh_offset(this->offset());
3347 oshdr->put_sh_size(this->data_size());
3348 if (this->link_section_ != NULL)
3349 oshdr->put_sh_link(this->link_section_->out_shndx());
3350 else if (this->should_link_to_symtab_)
3351 oshdr->put_sh_link(layout->symtab_section()->out_shndx());
3352 else if (this->should_link_to_dynsym_)
3353 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3354 else
3355 oshdr->put_sh_link(this->link_);
3356
3357 elfcpp::Elf_Word info;
3358 if (this->info_section_ != NULL)
3359 {
3360 if (this->info_uses_section_index_)
3361 info = this->info_section_->out_shndx();
3362 else
3363 info = this->info_section_->symtab_index();
3364 }
3365 else if (this->info_symndx_ != NULL)
3366 info = this->info_symndx_->symtab_index();
3367 else
3368 info = this->info_;
3369 oshdr->put_sh_info(info);
3370
3371 oshdr->put_sh_addralign(this->addralign_);
3372 oshdr->put_sh_entsize(this->entsize_);
3373 }
3374
3375 // Write out the data. For input sections the data is written out by
3376 // Object::relocate, but we have to handle Output_section_data objects
3377 // here.
3378
3379 void
3380 Output_section::do_write(Output_file* of)
3381 {
3382 gold_assert(!this->requires_postprocessing());
3383
3384 // If the target performs relaxation, we delay filler generation until now.
3385 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3386
3387 off_t output_section_file_offset = this->offset();
3388 for (Fill_list::iterator p = this->fills_.begin();
3389 p != this->fills_.end();
3390 ++p)
3391 {
3392 std::string fill_data(parameters->target().code_fill(p->length()));
3393 of->write(output_section_file_offset + p->section_offset(),
3394 fill_data.data(), fill_data.size());
3395 }
3396
3397 off_t off = this->offset() + this->first_input_offset_;
3398 for (Input_section_list::iterator p = this->input_sections_.begin();
3399 p != this->input_sections_.end();
3400 ++p)
3401 {
3402 off_t aligned_off = align_address(off, p->addralign());
3403 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3404 {
3405 size_t fill_len = aligned_off - off;
3406 std::string fill_data(parameters->target().code_fill(fill_len));
3407 of->write(off, fill_data.data(), fill_data.size());
3408 }
3409
3410 p->write(of);
3411 off = aligned_off + p->data_size();
3412 }
3413 }
3414
3415 // If a section requires postprocessing, create the buffer to use.
3416
3417 void
3418 Output_section::create_postprocessing_buffer()
3419 {
3420 gold_assert(this->requires_postprocessing());
3421
3422 if (this->postprocessing_buffer_ != NULL)
3423 return;
3424
3425 if (!this->input_sections_.empty())
3426 {
3427 off_t off = this->first_input_offset_;
3428 for (Input_section_list::iterator p = this->input_sections_.begin();
3429 p != this->input_sections_.end();
3430 ++p)
3431 {
3432 off = align_address(off, p->addralign());
3433 p->finalize_data_size();
3434 off += p->data_size();
3435 }
3436 this->set_current_data_size_for_child(off);
3437 }
3438
3439 off_t buffer_size = this->current_data_size_for_child();
3440 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3441 }
3442
3443 // Write all the data of an Output_section into the postprocessing
3444 // buffer. This is used for sections which require postprocessing,
3445 // such as compression. Input sections are handled by
3446 // Object::Relocate.
3447
3448 void
3449 Output_section::write_to_postprocessing_buffer()
3450 {
3451 gold_assert(this->requires_postprocessing());
3452
3453 // If the target performs relaxation, we delay filler generation until now.
3454 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3455
3456 unsigned char* buffer = this->postprocessing_buffer();
3457 for (Fill_list::iterator p = this->fills_.begin();
3458 p != this->fills_.end();
3459 ++p)
3460 {
3461 std::string fill_data(parameters->target().code_fill(p->length()));
3462 memcpy(buffer + p->section_offset(), fill_data.data(),
3463 fill_data.size());
3464 }
3465
3466 off_t off = this->first_input_offset_;
3467 for (Input_section_list::iterator p = this->input_sections_.begin();
3468 p != this->input_sections_.end();
3469 ++p)
3470 {
3471 off_t aligned_off = align_address(off, p->addralign());
3472 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3473 {
3474 size_t fill_len = aligned_off - off;
3475 std::string fill_data(parameters->target().code_fill(fill_len));
3476 memcpy(buffer + off, fill_data.data(), fill_data.size());
3477 }
3478
3479 p->write_to_buffer(buffer + aligned_off);
3480 off = aligned_off + p->data_size();
3481 }
3482 }
3483
3484 // Get the input sections for linker script processing. We leave
3485 // behind the Output_section_data entries. Note that this may be
3486 // slightly incorrect for merge sections. We will leave them behind,
3487 // but it is possible that the script says that they should follow
3488 // some other input sections, as in:
3489 // .rodata { *(.rodata) *(.rodata.cst*) }
3490 // For that matter, we don't handle this correctly:
3491 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3492 // With luck this will never matter.
3493
3494 uint64_t
3495 Output_section::get_input_sections(
3496 uint64_t address,
3497 const std::string& fill,
3498 std::list<Input_section>* input_sections)
3499 {
3500 if (this->checkpoint_ != NULL
3501 && !this->checkpoint_->input_sections_saved())
3502 this->checkpoint_->save_input_sections();
3503
3504 // Invalidate fast look-up maps.
3505 this->lookup_maps_->invalidate();
3506
3507 uint64_t orig_address = address;
3508
3509 address = align_address(address, this->addralign());
3510
3511 Input_section_list remaining;
3512 for (Input_section_list::iterator p = this->input_sections_.begin();
3513 p != this->input_sections_.end();
3514 ++p)
3515 {
3516 if (p->is_input_section()
3517 || p->is_relaxed_input_section()
3518 || p->is_merge_section())
3519 input_sections->push_back(*p);
3520 else
3521 {
3522 uint64_t aligned_address = align_address(address, p->addralign());
3523 if (aligned_address != address && !fill.empty())
3524 {
3525 section_size_type length =
3526 convert_to_section_size_type(aligned_address - address);
3527 std::string this_fill;
3528 this_fill.reserve(length);
3529 while (this_fill.length() + fill.length() <= length)
3530 this_fill += fill;
3531 if (this_fill.length() < length)
3532 this_fill.append(fill, 0, length - this_fill.length());
3533
3534 Output_section_data* posd = new Output_data_const(this_fill, 0);
3535 remaining.push_back(Input_section(posd));
3536 }
3537 address = aligned_address;
3538
3539 remaining.push_back(*p);
3540
3541 p->finalize_data_size();
3542 address += p->data_size();
3543 }
3544 }
3545
3546 this->input_sections_.swap(remaining);
3547 this->first_input_offset_ = 0;
3548
3549 uint64_t data_size = address - orig_address;
3550 this->set_current_data_size_for_child(data_size);
3551 return data_size;
3552 }
3553
3554 // Add a script input section. SIS is an Output_section::Input_section,
3555 // which can be either a plain input section or a special input section like
3556 // a relaxed input section. For a special input section, its size must be
3557 // finalized.
3558
3559 void
3560 Output_section::add_script_input_section(const Input_section& sis)
3561 {
3562 uint64_t data_size = sis.data_size();
3563 uint64_t addralign = sis.addralign();
3564 if (addralign > this->addralign_)
3565 this->addralign_ = addralign;
3566
3567 off_t offset_in_section = this->current_data_size_for_child();
3568 off_t aligned_offset_in_section = align_address(offset_in_section,
3569 addralign);
3570
3571 this->set_current_data_size_for_child(aligned_offset_in_section
3572 + data_size);
3573
3574 this->input_sections_.push_back(sis);
3575
3576 // Update fast lookup maps if necessary.
3577 if (this->lookup_maps_->is_valid())
3578 {
3579 if (sis.is_merge_section())
3580 {
3581 Output_merge_base* pomb = sis.output_merge_base();
3582 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3583 pomb->addralign());
3584 this->lookup_maps_->add_merge_section(msp, pomb);
3585 for (Output_merge_base::Input_sections::const_iterator p =
3586 pomb->input_sections_begin();
3587 p != pomb->input_sections_end();
3588 ++p)
3589 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3590 pomb);
3591 }
3592 else if (sis.is_relaxed_input_section())
3593 {
3594 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3595 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3596 poris->shndx(), poris);
3597 }
3598 }
3599 }
3600
3601 // Save states for relaxation.
3602
3603 void
3604 Output_section::save_states()
3605 {
3606 gold_assert(this->checkpoint_ == NULL);
3607 Checkpoint_output_section* checkpoint =
3608 new Checkpoint_output_section(this->addralign_, this->flags_,
3609 this->input_sections_,
3610 this->first_input_offset_,
3611 this->attached_input_sections_are_sorted_);
3612 this->checkpoint_ = checkpoint;
3613 gold_assert(this->fills_.empty());
3614 }
3615
3616 void
3617 Output_section::discard_states()
3618 {
3619 gold_assert(this->checkpoint_ != NULL);
3620 delete this->checkpoint_;
3621 this->checkpoint_ = NULL;
3622 gold_assert(this->fills_.empty());
3623
3624 // Simply invalidate the fast lookup maps since we do not keep
3625 // track of them.
3626 this->lookup_maps_->invalidate();
3627 }
3628
3629 void
3630 Output_section::restore_states()
3631 {
3632 gold_assert(this->checkpoint_ != NULL);
3633 Checkpoint_output_section* checkpoint = this->checkpoint_;
3634
3635 this->addralign_ = checkpoint->addralign();
3636 this->flags_ = checkpoint->flags();
3637 this->first_input_offset_ = checkpoint->first_input_offset();
3638
3639 if (!checkpoint->input_sections_saved())
3640 {
3641 // If we have not copied the input sections, just resize it.
3642 size_t old_size = checkpoint->input_sections_size();
3643 gold_assert(this->input_sections_.size() >= old_size);
3644 this->input_sections_.resize(old_size);
3645 }
3646 else
3647 {
3648 // We need to copy the whole list. This is not efficient for
3649 // extremely large output with hundreads of thousands of input
3650 // objects. We may need to re-think how we should pass sections
3651 // to scripts.
3652 this->input_sections_ = *checkpoint->input_sections();
3653 }
3654
3655 this->attached_input_sections_are_sorted_ =
3656 checkpoint->attached_input_sections_are_sorted();
3657
3658 // Simply invalidate the fast lookup maps since we do not keep
3659 // track of them.
3660 this->lookup_maps_->invalidate();
3661 }
3662
3663 // Update the section offsets of input sections in this. This is required if
3664 // relaxation causes some input sections to change sizes.
3665
3666 void
3667 Output_section::adjust_section_offsets()
3668 {
3669 if (!this->section_offsets_need_adjustment_)
3670 return;
3671
3672 off_t off = 0;
3673 for (Input_section_list::iterator p = this->input_sections_.begin();
3674 p != this->input_sections_.end();
3675 ++p)
3676 {
3677 off = align_address(off, p->addralign());
3678 if (p->is_input_section())
3679 p->relobj()->set_section_offset(p->shndx(), off);
3680 off += p->data_size();
3681 }
3682
3683 this->section_offsets_need_adjustment_ = false;
3684 }
3685
3686 // Print to the map file.
3687
3688 void
3689 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3690 {
3691 mapfile->print_output_section(this);
3692
3693 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3694 p != this->input_sections_.end();
3695 ++p)
3696 p->print_to_mapfile(mapfile);
3697 }
3698
3699 // Print stats for merge sections to stderr.
3700
3701 void
3702 Output_section::print_merge_stats()
3703 {
3704 Input_section_list::iterator p;
3705 for (p = this->input_sections_.begin();
3706 p != this->input_sections_.end();
3707 ++p)
3708 p->print_merge_stats(this->name_);
3709 }
3710
3711 // Set a fixed layout for the section. Used for incremental update links.
3712
3713 void
3714 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3715 off_t sh_size, uint64_t sh_addralign)
3716 {
3717 this->addralign_ = sh_addralign;
3718 this->set_current_data_size(sh_size);
3719 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3720 this->set_address(sh_addr);
3721 this->set_file_offset(sh_offset);
3722 this->finalize_data_size();
3723 this->free_list_.init(sh_size, false);
3724 this->has_fixed_layout_ = true;
3725 }
3726
3727 // Reserve space within the fixed layout for the section. Used for
3728 // incremental update links.
3729 void
3730 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3731 {
3732 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3733 }
3734
3735 // Output segment methods.
3736
3737 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3738 : vaddr_(0),
3739 paddr_(0),
3740 memsz_(0),
3741 max_align_(0),
3742 min_p_align_(0),
3743 offset_(0),
3744 filesz_(0),
3745 type_(type),
3746 flags_(flags),
3747 is_max_align_known_(false),
3748 are_addresses_set_(false),
3749 is_large_data_segment_(false)
3750 {
3751 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3752 // the flags.
3753 if (type == elfcpp::PT_TLS)
3754 this->flags_ = elfcpp::PF_R;
3755 }
3756
3757 // Add an Output_section to a PT_LOAD Output_segment.
3758
3759 void
3760 Output_segment::add_output_section_to_load(Layout* layout,
3761 Output_section* os,
3762 elfcpp::Elf_Word seg_flags)
3763 {
3764 gold_assert(this->type() == elfcpp::PT_LOAD);
3765 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3766 gold_assert(!this->is_max_align_known_);
3767 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
3768
3769 this->update_flags_for_output_section(seg_flags);
3770
3771 // We don't want to change the ordering if we have a linker script
3772 // with a SECTIONS clause.
3773 Output_section_order order = os->order();
3774 if (layout->script_options()->saw_sections_clause())
3775 order = static_cast<Output_section_order>(0);
3776 else
3777 gold_assert(order != ORDER_INVALID);
3778
3779 this->output_lists_[order].push_back(os);
3780 }
3781
3782 // Add an Output_section to a non-PT_LOAD Output_segment.
3783
3784 void
3785 Output_segment::add_output_section_to_nonload(Output_section* os,
3786 elfcpp::Elf_Word seg_flags)
3787 {
3788 gold_assert(this->type() != elfcpp::PT_LOAD);
3789 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
3790 gold_assert(!this->is_max_align_known_);
3791
3792 this->update_flags_for_output_section(seg_flags);
3793
3794 this->output_lists_[0].push_back(os);
3795 }
3796
3797 // Remove an Output_section from this segment. It is an error if it
3798 // is not present.
3799
3800 void
3801 Output_segment::remove_output_section(Output_section* os)
3802 {
3803 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3804 {
3805 Output_data_list* pdl = &this->output_lists_[i];
3806 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
3807 {
3808 if (*p == os)
3809 {
3810 pdl->erase(p);
3811 return;
3812 }
3813 }
3814 }
3815 gold_unreachable();
3816 }
3817
3818 // Add an Output_data (which need not be an Output_section) to the
3819 // start of a segment.
3820
3821 void
3822 Output_segment::add_initial_output_data(Output_data* od)
3823 {
3824 gold_assert(!this->is_max_align_known_);
3825 Output_data_list::iterator p = this->output_lists_[0].begin();
3826 this->output_lists_[0].insert(p, od);
3827 }
3828
3829 // Return true if this segment has any sections which hold actual
3830 // data, rather than being a BSS section.
3831
3832 bool
3833 Output_segment::has_any_data_sections() const
3834 {
3835 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3836 {
3837 const Output_data_list* pdl = &this->output_lists_[i];
3838 for (Output_data_list::const_iterator p = pdl->begin();
3839 p != pdl->end();
3840 ++p)
3841 {
3842 if (!(*p)->is_section())
3843 return true;
3844 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
3845 return true;
3846 }
3847 }
3848 return false;
3849 }
3850
3851 // Return whether the first data section (not counting TLS sections)
3852 // is a relro section.
3853
3854 bool
3855 Output_segment::is_first_section_relro() const
3856 {
3857 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3858 {
3859 if (i == static_cast<int>(ORDER_TLS_DATA)
3860 || i == static_cast<int>(ORDER_TLS_BSS))
3861 continue;
3862 const Output_data_list* pdl = &this->output_lists_[i];
3863 if (!pdl->empty())
3864 {
3865 Output_data* p = pdl->front();
3866 return p->is_section() && p->output_section()->is_relro();
3867 }
3868 }
3869 return false;
3870 }
3871
3872 // Return the maximum alignment of the Output_data in Output_segment.
3873
3874 uint64_t
3875 Output_segment::maximum_alignment()
3876 {
3877 if (!this->is_max_align_known_)
3878 {
3879 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3880 {
3881 const Output_data_list* pdl = &this->output_lists_[i];
3882 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
3883 if (addralign > this->max_align_)
3884 this->max_align_ = addralign;
3885 }
3886 this->is_max_align_known_ = true;
3887 }
3888
3889 return this->max_align_;
3890 }
3891
3892 // Return the maximum alignment of a list of Output_data.
3893
3894 uint64_t
3895 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
3896 {
3897 uint64_t ret = 0;
3898 for (Output_data_list::const_iterator p = pdl->begin();
3899 p != pdl->end();
3900 ++p)
3901 {
3902 uint64_t addralign = (*p)->addralign();
3903 if (addralign > ret)
3904 ret = addralign;
3905 }
3906 return ret;
3907 }
3908
3909 // Return whether this segment has any dynamic relocs.
3910
3911 bool
3912 Output_segment::has_dynamic_reloc() const
3913 {
3914 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
3915 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
3916 return true;
3917 return false;
3918 }
3919
3920 // Return whether this Output_data_list has any dynamic relocs.
3921
3922 bool
3923 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
3924 {
3925 for (Output_data_list::const_iterator p = pdl->begin();
3926 p != pdl->end();
3927 ++p)
3928 if ((*p)->has_dynamic_reloc())
3929 return true;
3930 return false;
3931 }
3932
3933 // Set the section addresses for an Output_segment. If RESET is true,
3934 // reset the addresses first. ADDR is the address and *POFF is the
3935 // file offset. Set the section indexes starting with *PSHNDX.
3936 // INCREASE_RELRO is the size of the portion of the first non-relro
3937 // section that should be included in the PT_GNU_RELRO segment.
3938 // If this segment has relro sections, and has been aligned for
3939 // that purpose, set *HAS_RELRO to TRUE. Return the address of
3940 // the immediately following segment. Update *HAS_RELRO, *POFF,
3941 // and *PSHNDX.
3942
3943 uint64_t
3944 Output_segment::set_section_addresses(Layout* layout, bool reset,
3945 uint64_t addr,
3946 unsigned int* increase_relro,
3947 bool* has_relro,
3948 off_t* poff,
3949 unsigned int* pshndx)
3950 {
3951 gold_assert(this->type_ == elfcpp::PT_LOAD);
3952
3953 uint64_t last_relro_pad = 0;
3954 off_t orig_off = *poff;
3955
3956 bool in_tls = false;
3957
3958 // If we have relro sections, we need to pad forward now so that the
3959 // relro sections plus INCREASE_RELRO end on a common page boundary.
3960 if (parameters->options().relro()
3961 && this->is_first_section_relro()
3962 && (!this->are_addresses_set_ || reset))
3963 {
3964 uint64_t relro_size = 0;
3965 off_t off = *poff;
3966 uint64_t max_align = 0;
3967 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
3968 {
3969 Output_data_list* pdl = &this->output_lists_[i];
3970 Output_data_list::iterator p;
3971 for (p = pdl->begin(); p != pdl->end(); ++p)
3972 {
3973 if (!(*p)->is_section())
3974 break;
3975 uint64_t align = (*p)->addralign();
3976 if (align > max_align)
3977 max_align = align;
3978 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
3979 in_tls = true;
3980 else if (in_tls)
3981 {
3982 // Align the first non-TLS section to the alignment
3983 // of the TLS segment.
3984 align = max_align;
3985 in_tls = false;
3986 }
3987 relro_size = align_address(relro_size, align);
3988 // Ignore the size of the .tbss section.
3989 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
3990 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
3991 continue;
3992 if ((*p)->is_address_valid())
3993 relro_size += (*p)->data_size();
3994 else
3995 {
3996 // FIXME: This could be faster.
3997 (*p)->set_address_and_file_offset(addr + relro_size,
3998 off + relro_size);
3999 relro_size += (*p)->data_size();
4000 (*p)->reset_address_and_file_offset();
4001 }
4002 }
4003 if (p != pdl->end())
4004 break;
4005 }
4006 relro_size += *increase_relro;
4007 // Pad the total relro size to a multiple of the maximum
4008 // section alignment seen.
4009 uint64_t aligned_size = align_address(relro_size, max_align);
4010 // Note the amount of padding added after the last relro section.
4011 last_relro_pad = aligned_size - relro_size;
4012 *has_relro = true;
4013
4014 uint64_t page_align = parameters->target().common_pagesize();
4015
4016 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4017 uint64_t desired_align = page_align - (aligned_size % page_align);
4018 if (desired_align < *poff % page_align)
4019 *poff += page_align - *poff % page_align;
4020 *poff += desired_align - *poff % page_align;
4021 addr += *poff - orig_off;
4022 orig_off = *poff;
4023 }
4024
4025 if (!reset && this->are_addresses_set_)
4026 {
4027 gold_assert(this->paddr_ == addr);
4028 addr = this->vaddr_;
4029 }
4030 else
4031 {
4032 this->vaddr_ = addr;
4033 this->paddr_ = addr;
4034 this->are_addresses_set_ = true;
4035 }
4036
4037 in_tls = false;
4038
4039 this->offset_ = orig_off;
4040
4041 off_t off = 0;
4042 uint64_t ret;
4043 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4044 {
4045 if (i == static_cast<int>(ORDER_RELRO_LAST))
4046 {
4047 *poff += last_relro_pad;
4048 addr += last_relro_pad;
4049 if (this->output_lists_[i].empty())
4050 {
4051 // If there is nothing in the ORDER_RELRO_LAST list,
4052 // the padding will occur at the end of the relro
4053 // segment, and we need to add it to *INCREASE_RELRO.
4054 *increase_relro += last_relro_pad;
4055 }
4056 }
4057 addr = this->set_section_list_addresses(layout, reset,
4058 &this->output_lists_[i],
4059 addr, poff, pshndx, &in_tls);
4060 if (i < static_cast<int>(ORDER_SMALL_BSS))
4061 {
4062 this->filesz_ = *poff - orig_off;
4063 off = *poff;
4064 }
4065
4066 ret = addr;
4067 }
4068
4069 // If the last section was a TLS section, align upward to the
4070 // alignment of the TLS segment, so that the overall size of the TLS
4071 // segment is aligned.
4072 if (in_tls)
4073 {
4074 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4075 *poff = align_address(*poff, segment_align);
4076 }
4077
4078 this->memsz_ = *poff - orig_off;
4079
4080 // Ignore the file offset adjustments made by the BSS Output_data
4081 // objects.
4082 *poff = off;
4083
4084 return ret;
4085 }
4086
4087 // Set the addresses and file offsets in a list of Output_data
4088 // structures.
4089
4090 uint64_t
4091 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4092 Output_data_list* pdl,
4093 uint64_t addr, off_t* poff,
4094 unsigned int* pshndx,
4095 bool* in_tls)
4096 {
4097 off_t startoff = *poff;
4098 // For incremental updates, we may allocate non-fixed sections from
4099 // free space in the file. This keeps track of the high-water mark.
4100 off_t maxoff = startoff;
4101
4102 off_t off = startoff;
4103 for (Output_data_list::iterator p = pdl->begin();
4104 p != pdl->end();
4105 ++p)
4106 {
4107 if (reset)
4108 (*p)->reset_address_and_file_offset();
4109
4110 // When doing an incremental update or when using a linker script,
4111 // the section will most likely already have an address.
4112 if (!(*p)->is_address_valid())
4113 {
4114 uint64_t align = (*p)->addralign();
4115
4116 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4117 {
4118 // Give the first TLS section the alignment of the
4119 // entire TLS segment. Otherwise the TLS segment as a
4120 // whole may be misaligned.
4121 if (!*in_tls)
4122 {
4123 Output_segment* tls_segment = layout->tls_segment();
4124 gold_assert(tls_segment != NULL);
4125 uint64_t segment_align = tls_segment->maximum_alignment();
4126 gold_assert(segment_align >= align);
4127 align = segment_align;
4128
4129 *in_tls = true;
4130 }
4131 }
4132 else
4133 {
4134 // If this is the first section after the TLS segment,
4135 // align it to at least the alignment of the TLS
4136 // segment, so that the size of the overall TLS segment
4137 // is aligned.
4138 if (*in_tls)
4139 {
4140 uint64_t segment_align =
4141 layout->tls_segment()->maximum_alignment();
4142 if (segment_align > align)
4143 align = segment_align;
4144
4145 *in_tls = false;
4146 }
4147 }
4148
4149 // FIXME: Need to handle TLS and .bss with incremental update.
4150 if (!parameters->incremental_update()
4151 || (*p)->is_section_flag_set(elfcpp::SHF_TLS)
4152 || (*p)->is_section_type(elfcpp::SHT_NOBITS))
4153 {
4154 off = align_address(off, align);
4155 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4156 }
4157 else
4158 {
4159 // Incremental update: allocate file space from free list.
4160 (*p)->pre_finalize_data_size();
4161 off_t current_size = (*p)->current_data_size();
4162 off = layout->allocate(current_size, align, startoff);
4163 if (off == -1)
4164 {
4165 gold_assert((*p)->output_section() != NULL);
4166 gold_fatal(_("out of patch space for section %s; "
4167 "relink with --incremental-full"),
4168 (*p)->output_section()->name());
4169 }
4170 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4171 if ((*p)->data_size() > current_size)
4172 {
4173 gold_assert((*p)->output_section() != NULL);
4174 gold_fatal(_("%s: section changed size; "
4175 "relink with --incremental-full"),
4176 (*p)->output_section()->name());
4177 }
4178 }
4179 }
4180 else if (parameters->incremental_update())
4181 {
4182 // For incremental updates, use the fixed offset for the
4183 // high-water mark computation.
4184 off = (*p)->offset();
4185 }
4186 else
4187 {
4188 // The script may have inserted a skip forward, but it
4189 // better not have moved backward.
4190 if ((*p)->address() >= addr + (off - startoff))
4191 off += (*p)->address() - (addr + (off - startoff));
4192 else
4193 {
4194 if (!layout->script_options()->saw_sections_clause())
4195 gold_unreachable();
4196 else
4197 {
4198 Output_section* os = (*p)->output_section();
4199
4200 // Cast to unsigned long long to avoid format warnings.
4201 unsigned long long previous_dot =
4202 static_cast<unsigned long long>(addr + (off - startoff));
4203 unsigned long long dot =
4204 static_cast<unsigned long long>((*p)->address());
4205
4206 if (os == NULL)
4207 gold_error(_("dot moves backward in linker script "
4208 "from 0x%llx to 0x%llx"), previous_dot, dot);
4209 else
4210 gold_error(_("address of section '%s' moves backward "
4211 "from 0x%llx to 0x%llx"),
4212 os->name(), previous_dot, dot);
4213 }
4214 }
4215 (*p)->set_file_offset(off);
4216 (*p)->finalize_data_size();
4217 }
4218
4219 gold_debug(DEBUG_INCREMENTAL,
4220 "set_section_list_addresses: %08lx %08lx %s",
4221 static_cast<long>(off),
4222 static_cast<long>((*p)->data_size()),
4223 ((*p)->output_section() != NULL
4224 ? (*p)->output_section()->name() : "(special)"));
4225
4226 // We want to ignore the size of a SHF_TLS or SHT_NOBITS
4227 // section. Such a section does not affect the size of a
4228 // PT_LOAD segment.
4229 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4230 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4231 off += (*p)->data_size();
4232
4233 if (off > maxoff)
4234 maxoff = off;
4235
4236 if ((*p)->is_section())
4237 {
4238 (*p)->set_out_shndx(*pshndx);
4239 ++*pshndx;
4240 }
4241 }
4242
4243 *poff = maxoff;
4244 return addr + (maxoff - startoff);
4245 }
4246
4247 // For a non-PT_LOAD segment, set the offset from the sections, if
4248 // any. Add INCREASE to the file size and the memory size.
4249
4250 void
4251 Output_segment::set_offset(unsigned int increase)
4252 {
4253 gold_assert(this->type_ != elfcpp::PT_LOAD);
4254
4255 gold_assert(!this->are_addresses_set_);
4256
4257 // A non-load section only uses output_lists_[0].
4258
4259 Output_data_list* pdl = &this->output_lists_[0];
4260
4261 if (pdl->empty())
4262 {
4263 gold_assert(increase == 0);
4264 this->vaddr_ = 0;
4265 this->paddr_ = 0;
4266 this->are_addresses_set_ = true;
4267 this->memsz_ = 0;
4268 this->min_p_align_ = 0;
4269 this->offset_ = 0;
4270 this->filesz_ = 0;
4271 return;
4272 }
4273
4274 // Find the first and last section by address.
4275 const Output_data* first = NULL;
4276 const Output_data* last_data = NULL;
4277 const Output_data* last_bss = NULL;
4278 for (Output_data_list::const_iterator p = pdl->begin();
4279 p != pdl->end();
4280 ++p)
4281 {
4282 if (first == NULL
4283 || (*p)->address() < first->address()
4284 || ((*p)->address() == first->address()
4285 && (*p)->data_size() < first->data_size()))
4286 first = *p;
4287 const Output_data** plast;
4288 if ((*p)->is_section()
4289 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4290 plast = &last_bss;
4291 else
4292 plast = &last_data;
4293 if (*plast == NULL
4294 || (*p)->address() > (*plast)->address()
4295 || ((*p)->address() == (*plast)->address()
4296 && (*p)->data_size() > (*plast)->data_size()))
4297 *plast = *p;
4298 }
4299
4300 this->vaddr_ = first->address();
4301 this->paddr_ = (first->has_load_address()
4302 ? first->load_address()
4303 : this->vaddr_);
4304 this->are_addresses_set_ = true;
4305 this->offset_ = first->offset();
4306
4307 if (last_data == NULL)
4308 this->filesz_ = 0;
4309 else
4310 this->filesz_ = (last_data->address()
4311 + last_data->data_size()
4312 - this->vaddr_);
4313
4314 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4315 this->memsz_ = (last->address()
4316 + last->data_size()
4317 - this->vaddr_);
4318
4319 this->filesz_ += increase;
4320 this->memsz_ += increase;
4321
4322 // If this is a RELRO segment, verify that the segment ends at a
4323 // page boundary.
4324 if (this->type_ == elfcpp::PT_GNU_RELRO)
4325 {
4326 uint64_t page_align = parameters->target().common_pagesize();
4327 uint64_t segment_end = this->vaddr_ + this->memsz_;
4328 if (parameters->incremental_update())
4329 {
4330 // The INCREASE_RELRO calculation is bypassed for an incremental
4331 // update, so we need to adjust the segment size manually here.
4332 segment_end = align_address(segment_end, page_align);
4333 this->memsz_ = segment_end - this->vaddr_;
4334 }
4335 else
4336 gold_assert(segment_end == align_address(segment_end, page_align));
4337 }
4338
4339 // If this is a TLS segment, align the memory size. The code in
4340 // set_section_list ensures that the section after the TLS segment
4341 // is aligned to give us room.
4342 if (this->type_ == elfcpp::PT_TLS)
4343 {
4344 uint64_t segment_align = this->maximum_alignment();
4345 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4346 this->memsz_ = align_address(this->memsz_, segment_align);
4347 }
4348 }
4349
4350 // Set the TLS offsets of the sections in the PT_TLS segment.
4351
4352 void
4353 Output_segment::set_tls_offsets()
4354 {
4355 gold_assert(this->type_ == elfcpp::PT_TLS);
4356
4357 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4358 p != this->output_lists_[0].end();
4359 ++p)
4360 (*p)->set_tls_offset(this->vaddr_);
4361 }
4362
4363 // Return the load address of the first section.
4364
4365 uint64_t
4366 Output_segment::first_section_load_address() const
4367 {
4368 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4369 {
4370 const Output_data_list* pdl = &this->output_lists_[i];
4371 for (Output_data_list::const_iterator p = pdl->begin();
4372 p != pdl->end();
4373 ++p)
4374 {
4375 if ((*p)->is_section())
4376 return ((*p)->has_load_address()
4377 ? (*p)->load_address()
4378 : (*p)->address());
4379 }
4380 }
4381 gold_unreachable();
4382 }
4383
4384 // Return the number of Output_sections in an Output_segment.
4385
4386 unsigned int
4387 Output_segment::output_section_count() const
4388 {
4389 unsigned int ret = 0;
4390 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4391 ret += this->output_section_count_list(&this->output_lists_[i]);
4392 return ret;
4393 }
4394
4395 // Return the number of Output_sections in an Output_data_list.
4396
4397 unsigned int
4398 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4399 {
4400 unsigned int count = 0;
4401 for (Output_data_list::const_iterator p = pdl->begin();
4402 p != pdl->end();
4403 ++p)
4404 {
4405 if ((*p)->is_section())
4406 ++count;
4407 }
4408 return count;
4409 }
4410
4411 // Return the section attached to the list segment with the lowest
4412 // load address. This is used when handling a PHDRS clause in a
4413 // linker script.
4414
4415 Output_section*
4416 Output_segment::section_with_lowest_load_address() const
4417 {
4418 Output_section* found = NULL;
4419 uint64_t found_lma = 0;
4420 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4421 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4422 &found_lma);
4423 return found;
4424 }
4425
4426 // Look through a list for a section with a lower load address.
4427
4428 void
4429 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4430 Output_section** found,
4431 uint64_t* found_lma) const
4432 {
4433 for (Output_data_list::const_iterator p = pdl->begin();
4434 p != pdl->end();
4435 ++p)
4436 {
4437 if (!(*p)->is_section())
4438 continue;
4439 Output_section* os = static_cast<Output_section*>(*p);
4440 uint64_t lma = (os->has_load_address()
4441 ? os->load_address()
4442 : os->address());
4443 if (*found == NULL || lma < *found_lma)
4444 {
4445 *found = os;
4446 *found_lma = lma;
4447 }
4448 }
4449 }
4450
4451 // Write the segment data into *OPHDR.
4452
4453 template<int size, bool big_endian>
4454 void
4455 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4456 {
4457 ophdr->put_p_type(this->type_);
4458 ophdr->put_p_offset(this->offset_);
4459 ophdr->put_p_vaddr(this->vaddr_);
4460 ophdr->put_p_paddr(this->paddr_);
4461 ophdr->put_p_filesz(this->filesz_);
4462 ophdr->put_p_memsz(this->memsz_);
4463 ophdr->put_p_flags(this->flags_);
4464 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4465 }
4466
4467 // Write the section headers into V.
4468
4469 template<int size, bool big_endian>
4470 unsigned char*
4471 Output_segment::write_section_headers(const Layout* layout,
4472 const Stringpool* secnamepool,
4473 unsigned char* v,
4474 unsigned int* pshndx) const
4475 {
4476 // Every section that is attached to a segment must be attached to a
4477 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4478 // segments.
4479 if (this->type_ != elfcpp::PT_LOAD)
4480 return v;
4481
4482 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4483 {
4484 const Output_data_list* pdl = &this->output_lists_[i];
4485 v = this->write_section_headers_list<size, big_endian>(layout,
4486 secnamepool,
4487 pdl,
4488 v, pshndx);
4489 }
4490
4491 return v;
4492 }
4493
4494 template<int size, bool big_endian>
4495 unsigned char*
4496 Output_segment::write_section_headers_list(const Layout* layout,
4497 const Stringpool* secnamepool,
4498 const Output_data_list* pdl,
4499 unsigned char* v,
4500 unsigned int* pshndx) const
4501 {
4502 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4503 for (Output_data_list::const_iterator p = pdl->begin();
4504 p != pdl->end();
4505 ++p)
4506 {
4507 if ((*p)->is_section())
4508 {
4509 const Output_section* ps = static_cast<const Output_section*>(*p);
4510 gold_assert(*pshndx == ps->out_shndx());
4511 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4512 ps->write_header(layout, secnamepool, &oshdr);
4513 v += shdr_size;
4514 ++*pshndx;
4515 }
4516 }
4517 return v;
4518 }
4519
4520 // Print the output sections to the map file.
4521
4522 void
4523 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4524 {
4525 if (this->type() != elfcpp::PT_LOAD)
4526 return;
4527 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4528 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4529 }
4530
4531 // Print an output section list to the map file.
4532
4533 void
4534 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4535 const Output_data_list* pdl) const
4536 {
4537 for (Output_data_list::const_iterator p = pdl->begin();
4538 p != pdl->end();
4539 ++p)
4540 (*p)->print_to_mapfile(mapfile);
4541 }
4542
4543 // Output_file methods.
4544
4545 Output_file::Output_file(const char* name)
4546 : name_(name),
4547 o_(-1),
4548 file_size_(0),
4549 base_(NULL),
4550 map_is_anonymous_(false),
4551 map_is_allocated_(false),
4552 is_temporary_(false)
4553 {
4554 }
4555
4556 // Try to open an existing file. Returns false if the file doesn't
4557 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4558 // NULL, open that file as the base for incremental linking, and
4559 // copy its contents to the new output file. This routine can
4560 // be called for incremental updates, in which case WRITABLE should
4561 // be true, or by the incremental-dump utility, in which case
4562 // WRITABLE should be false.
4563
4564 bool
4565 Output_file::open_base_file(const char* base_name, bool writable)
4566 {
4567 // The name "-" means "stdout".
4568 if (strcmp(this->name_, "-") == 0)
4569 return false;
4570
4571 bool use_base_file = base_name != NULL;
4572 if (!use_base_file)
4573 base_name = this->name_;
4574 else if (strcmp(base_name, this->name_) == 0)
4575 gold_fatal(_("%s: incremental base and output file name are the same"),
4576 base_name);
4577
4578 // Don't bother opening files with a size of zero.
4579 struct stat s;
4580 if (::stat(base_name, &s) != 0)
4581 {
4582 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4583 return false;
4584 }
4585 if (s.st_size == 0)
4586 {
4587 gold_info(_("%s: incremental base file is empty"), base_name);
4588 return false;
4589 }
4590
4591 // If we're using a base file, we want to open it read-only.
4592 if (use_base_file)
4593 writable = false;
4594
4595 int oflags = writable ? O_RDWR : O_RDONLY;
4596 int o = open_descriptor(-1, base_name, oflags, 0);
4597 if (o < 0)
4598 {
4599 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4600 return false;
4601 }
4602
4603 // If the base file and the output file are different, open a
4604 // new output file and read the contents from the base file into
4605 // the newly-mapped region.
4606 if (use_base_file)
4607 {
4608 this->open(s.st_size);
4609 ssize_t len = ::read(o, this->base_, s.st_size);
4610 if (len < 0)
4611 {
4612 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4613 return false;
4614 }
4615 if (len < s.st_size)
4616 {
4617 gold_info(_("%s: file too short"), base_name);
4618 return false;
4619 }
4620 ::close(o);
4621 return true;
4622 }
4623
4624 this->o_ = o;
4625 this->file_size_ = s.st_size;
4626
4627 if (!this->map_no_anonymous(writable))
4628 {
4629 release_descriptor(o, true);
4630 this->o_ = -1;
4631 this->file_size_ = 0;
4632 return false;
4633 }
4634
4635 return true;
4636 }
4637
4638 // Open the output file.
4639
4640 void
4641 Output_file::open(off_t file_size)
4642 {
4643 this->file_size_ = file_size;
4644
4645 // Unlink the file first; otherwise the open() may fail if the file
4646 // is busy (e.g. it's an executable that's currently being executed).
4647 //
4648 // However, the linker may be part of a system where a zero-length
4649 // file is created for it to write to, with tight permissions (gcc
4650 // 2.95 did something like this). Unlinking the file would work
4651 // around those permission controls, so we only unlink if the file
4652 // has a non-zero size. We also unlink only regular files to avoid
4653 // trouble with directories/etc.
4654 //
4655 // If we fail, continue; this command is merely a best-effort attempt
4656 // to improve the odds for open().
4657
4658 // We let the name "-" mean "stdout"
4659 if (!this->is_temporary_)
4660 {
4661 if (strcmp(this->name_, "-") == 0)
4662 this->o_ = STDOUT_FILENO;
4663 else
4664 {
4665 struct stat s;
4666 if (::stat(this->name_, &s) == 0
4667 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4668 {
4669 if (s.st_size != 0)
4670 ::unlink(this->name_);
4671 else if (!parameters->options().relocatable())
4672 {
4673 // If we don't unlink the existing file, add execute
4674 // permission where read permissions already exist
4675 // and where the umask permits.
4676 int mask = ::umask(0);
4677 ::umask(mask);
4678 s.st_mode |= (s.st_mode & 0444) >> 2;
4679 ::chmod(this->name_, s.st_mode & ~mask);
4680 }
4681 }
4682
4683 int mode = parameters->options().relocatable() ? 0666 : 0777;
4684 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4685 mode);
4686 if (o < 0)
4687 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4688 this->o_ = o;
4689 }
4690 }
4691
4692 this->map();
4693 }
4694
4695 // Resize the output file.
4696
4697 void
4698 Output_file::resize(off_t file_size)
4699 {
4700 // If the mmap is mapping an anonymous memory buffer, this is easy:
4701 // just mremap to the new size. If it's mapping to a file, we want
4702 // to unmap to flush to the file, then remap after growing the file.
4703 if (this->map_is_anonymous_)
4704 {
4705 void* base;
4706 if (!this->map_is_allocated_)
4707 {
4708 base = ::mremap(this->base_, this->file_size_, file_size,
4709 MREMAP_MAYMOVE);
4710 if (base == MAP_FAILED)
4711 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4712 }
4713 else
4714 {
4715 base = realloc(this->base_, file_size);
4716 if (base == NULL)
4717 gold_nomem();
4718 if (file_size > this->file_size_)
4719 memset(static_cast<char*>(base) + this->file_size_, 0,
4720 file_size - this->file_size_);
4721 }
4722 this->base_ = static_cast<unsigned char*>(base);
4723 this->file_size_ = file_size;
4724 }
4725 else
4726 {
4727 this->unmap();
4728 this->file_size_ = file_size;
4729 if (!this->map_no_anonymous(true))
4730 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4731 }
4732 }
4733
4734 // Map an anonymous block of memory which will later be written to the
4735 // file. Return whether the map succeeded.
4736
4737 bool
4738 Output_file::map_anonymous()
4739 {
4740 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4741 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4742 if (base == MAP_FAILED)
4743 {
4744 base = malloc(this->file_size_);
4745 if (base == NULL)
4746 return false;
4747 memset(base, 0, this->file_size_);
4748 this->map_is_allocated_ = true;
4749 }
4750 this->base_ = static_cast<unsigned char*>(base);
4751 this->map_is_anonymous_ = true;
4752 return true;
4753 }
4754
4755 // Map the file into memory. Return whether the mapping succeeded.
4756 // If WRITABLE is true, map with write access.
4757
4758 bool
4759 Output_file::map_no_anonymous(bool writable)
4760 {
4761 const int o = this->o_;
4762
4763 // If the output file is not a regular file, don't try to mmap it;
4764 // instead, we'll mmap a block of memory (an anonymous buffer), and
4765 // then later write the buffer to the file.
4766 void* base;
4767 struct stat statbuf;
4768 if (o == STDOUT_FILENO || o == STDERR_FILENO
4769 || ::fstat(o, &statbuf) != 0
4770 || !S_ISREG(statbuf.st_mode)
4771 || this->is_temporary_)
4772 return false;
4773
4774 // Ensure that we have disk space available for the file. If we
4775 // don't do this, it is possible that we will call munmap, close,
4776 // and exit with dirty buffers still in the cache with no assigned
4777 // disk blocks. If the disk is out of space at that point, the
4778 // output file will wind up incomplete, but we will have already
4779 // exited. The alternative to fallocate would be to use fdatasync,
4780 // but that would be a more significant performance hit.
4781 if (writable && ::posix_fallocate(o, 0, this->file_size_) < 0)
4782 gold_fatal(_("%s: %s"), this->name_, strerror(errno));
4783
4784 // Map the file into memory.
4785 int prot = PROT_READ;
4786 if (writable)
4787 prot |= PROT_WRITE;
4788 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
4789
4790 // The mmap call might fail because of file system issues: the file
4791 // system might not support mmap at all, or it might not support
4792 // mmap with PROT_WRITE.
4793 if (base == MAP_FAILED)
4794 return false;
4795
4796 this->map_is_anonymous_ = false;
4797 this->base_ = static_cast<unsigned char*>(base);
4798 return true;
4799 }
4800
4801 // Map the file into memory.
4802
4803 void
4804 Output_file::map()
4805 {
4806 if (this->map_no_anonymous(true))
4807 return;
4808
4809 // The mmap call might fail because of file system issues: the file
4810 // system might not support mmap at all, or it might not support
4811 // mmap with PROT_WRITE. I'm not sure which errno values we will
4812 // see in all cases, so if the mmap fails for any reason and we
4813 // don't care about file contents, try for an anonymous map.
4814 if (this->map_anonymous())
4815 return;
4816
4817 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
4818 this->name_, static_cast<unsigned long>(this->file_size_),
4819 strerror(errno));
4820 }
4821
4822 // Unmap the file from memory.
4823
4824 void
4825 Output_file::unmap()
4826 {
4827 if (this->map_is_anonymous_)
4828 {
4829 // We've already written out the data, so there is no reason to
4830 // waste time unmapping or freeing the memory.
4831 }
4832 else
4833 {
4834 if (::munmap(this->base_, this->file_size_) < 0)
4835 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
4836 }
4837 this->base_ = NULL;
4838 }
4839
4840 // Close the output file.
4841
4842 void
4843 Output_file::close()
4844 {
4845 // If the map isn't file-backed, we need to write it now.
4846 if (this->map_is_anonymous_ && !this->is_temporary_)
4847 {
4848 size_t bytes_to_write = this->file_size_;
4849 size_t offset = 0;
4850 while (bytes_to_write > 0)
4851 {
4852 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
4853 bytes_to_write);
4854 if (bytes_written == 0)
4855 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
4856 else if (bytes_written < 0)
4857 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
4858 else
4859 {
4860 bytes_to_write -= bytes_written;
4861 offset += bytes_written;
4862 }
4863 }
4864 }
4865 this->unmap();
4866
4867 // We don't close stdout or stderr
4868 if (this->o_ != STDOUT_FILENO
4869 && this->o_ != STDERR_FILENO
4870 && !this->is_temporary_)
4871 if (::close(this->o_) < 0)
4872 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
4873 this->o_ = -1;
4874 }
4875
4876 // Instantiate the templates we need. We could use the configure
4877 // script to restrict this to only the ones for implemented targets.
4878
4879 #ifdef HAVE_TARGET_32_LITTLE
4880 template
4881 off_t
4882 Output_section::add_input_section<32, false>(
4883 Layout* layout,
4884 Sized_relobj_file<32, false>* object,
4885 unsigned int shndx,
4886 const char* secname,
4887 const elfcpp::Shdr<32, false>& shdr,
4888 unsigned int reloc_shndx,
4889 bool have_sections_script);
4890 #endif
4891
4892 #ifdef HAVE_TARGET_32_BIG
4893 template
4894 off_t
4895 Output_section::add_input_section<32, true>(
4896 Layout* layout,
4897 Sized_relobj_file<32, true>* object,
4898 unsigned int shndx,
4899 const char* secname,
4900 const elfcpp::Shdr<32, true>& shdr,
4901 unsigned int reloc_shndx,
4902 bool have_sections_script);
4903 #endif
4904
4905 #ifdef HAVE_TARGET_64_LITTLE
4906 template
4907 off_t
4908 Output_section::add_input_section<64, false>(
4909 Layout* layout,
4910 Sized_relobj_file<64, false>* object,
4911 unsigned int shndx,
4912 const char* secname,
4913 const elfcpp::Shdr<64, false>& shdr,
4914 unsigned int reloc_shndx,
4915 bool have_sections_script);
4916 #endif
4917
4918 #ifdef HAVE_TARGET_64_BIG
4919 template
4920 off_t
4921 Output_section::add_input_section<64, true>(
4922 Layout* layout,
4923 Sized_relobj_file<64, true>* object,
4924 unsigned int shndx,
4925 const char* secname,
4926 const elfcpp::Shdr<64, true>& shdr,
4927 unsigned int reloc_shndx,
4928 bool have_sections_script);
4929 #endif
4930
4931 #ifdef HAVE_TARGET_32_LITTLE
4932 template
4933 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
4934 #endif
4935
4936 #ifdef HAVE_TARGET_32_BIG
4937 template
4938 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
4939 #endif
4940
4941 #ifdef HAVE_TARGET_64_LITTLE
4942 template
4943 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
4944 #endif
4945
4946 #ifdef HAVE_TARGET_64_BIG
4947 template
4948 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
4949 #endif
4950
4951 #ifdef HAVE_TARGET_32_LITTLE
4952 template
4953 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
4954 #endif
4955
4956 #ifdef HAVE_TARGET_32_BIG
4957 template
4958 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
4959 #endif
4960
4961 #ifdef HAVE_TARGET_64_LITTLE
4962 template
4963 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
4964 #endif
4965
4966 #ifdef HAVE_TARGET_64_BIG
4967 template
4968 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
4969 #endif
4970
4971 #ifdef HAVE_TARGET_32_LITTLE
4972 template
4973 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
4974 #endif
4975
4976 #ifdef HAVE_TARGET_32_BIG
4977 template
4978 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
4979 #endif
4980
4981 #ifdef HAVE_TARGET_64_LITTLE
4982 template
4983 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
4984 #endif
4985
4986 #ifdef HAVE_TARGET_64_BIG
4987 template
4988 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
4989 #endif
4990
4991 #ifdef HAVE_TARGET_32_LITTLE
4992 template
4993 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
4994 #endif
4995
4996 #ifdef HAVE_TARGET_32_BIG
4997 template
4998 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
4999 #endif
5000
5001 #ifdef HAVE_TARGET_64_LITTLE
5002 template
5003 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5004 #endif
5005
5006 #ifdef HAVE_TARGET_64_BIG
5007 template
5008 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5009 #endif
5010
5011 #ifdef HAVE_TARGET_32_LITTLE
5012 template
5013 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5014 #endif
5015
5016 #ifdef HAVE_TARGET_32_BIG
5017 template
5018 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5019 #endif
5020
5021 #ifdef HAVE_TARGET_64_LITTLE
5022 template
5023 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5024 #endif
5025
5026 #ifdef HAVE_TARGET_64_BIG
5027 template
5028 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5029 #endif
5030
5031 #ifdef HAVE_TARGET_32_LITTLE
5032 template
5033 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5034 #endif
5035
5036 #ifdef HAVE_TARGET_32_BIG
5037 template
5038 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5039 #endif
5040
5041 #ifdef HAVE_TARGET_64_LITTLE
5042 template
5043 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5044 #endif
5045
5046 #ifdef HAVE_TARGET_64_BIG
5047 template
5048 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5049 #endif
5050
5051 #ifdef HAVE_TARGET_32_LITTLE
5052 template
5053 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5054 #endif
5055
5056 #ifdef HAVE_TARGET_32_BIG
5057 template
5058 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5059 #endif
5060
5061 #ifdef HAVE_TARGET_64_LITTLE
5062 template
5063 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5064 #endif
5065
5066 #ifdef HAVE_TARGET_64_BIG
5067 template
5068 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5069 #endif
5070
5071 #ifdef HAVE_TARGET_32_LITTLE
5072 template
5073 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5074 #endif
5075
5076 #ifdef HAVE_TARGET_32_BIG
5077 template
5078 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5079 #endif
5080
5081 #ifdef HAVE_TARGET_64_LITTLE
5082 template
5083 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5084 #endif
5085
5086 #ifdef HAVE_TARGET_64_BIG
5087 template
5088 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5089 #endif
5090
5091 #ifdef HAVE_TARGET_32_LITTLE
5092 template
5093 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5094 #endif
5095
5096 #ifdef HAVE_TARGET_32_BIG
5097 template
5098 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5099 #endif
5100
5101 #ifdef HAVE_TARGET_64_LITTLE
5102 template
5103 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5104 #endif
5105
5106 #ifdef HAVE_TARGET_64_BIG
5107 template
5108 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5109 #endif
5110
5111 #ifdef HAVE_TARGET_32_LITTLE
5112 template
5113 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5114 #endif
5115
5116 #ifdef HAVE_TARGET_32_BIG
5117 template
5118 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5119 #endif
5120
5121 #ifdef HAVE_TARGET_64_LITTLE
5122 template
5123 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5124 #endif
5125
5126 #ifdef HAVE_TARGET_64_BIG
5127 template
5128 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5129 #endif
5130
5131 #ifdef HAVE_TARGET_32_LITTLE
5132 template
5133 class Output_data_group<32, false>;
5134 #endif
5135
5136 #ifdef HAVE_TARGET_32_BIG
5137 template
5138 class Output_data_group<32, true>;
5139 #endif
5140
5141 #ifdef HAVE_TARGET_64_LITTLE
5142 template
5143 class Output_data_group<64, false>;
5144 #endif
5145
5146 #ifdef HAVE_TARGET_64_BIG
5147 template
5148 class Output_data_group<64, true>;
5149 #endif
5150
5151 #ifdef HAVE_TARGET_32_LITTLE
5152 template
5153 class Output_data_got<32, false>;
5154 #endif
5155
5156 #ifdef HAVE_TARGET_32_BIG
5157 template
5158 class Output_data_got<32, true>;
5159 #endif
5160
5161 #ifdef HAVE_TARGET_64_LITTLE
5162 template
5163 class Output_data_got<64, false>;
5164 #endif
5165
5166 #ifdef HAVE_TARGET_64_BIG
5167 template
5168 class Output_data_got<64, true>;
5169 #endif
5170
5171 } // End namespace gold.
This page took 0.202463 seconds and 5 git commands to generate.