* object.h (Sized_relobj_file::find_shdr): New function.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(const Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 parameters->target().adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address)
815 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
816 is_relative_(false), is_symbolless_(false),
817 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
818 {
819 // this->type_ is a bitfield; make sure TYPE fits.
820 gold_assert(this->type_ == type);
821 this->u1_.os = os;
822 this->u2_.od = od;
823 if (dynamic)
824 this->set_needs_dynsym_index();
825 else
826 os->set_needs_symtab_index();
827 }
828
829 template<bool dynamic, int size, bool big_endian>
830 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
831 Output_section* os,
832 unsigned int type,
833 Sized_relobj<size, big_endian>* relobj,
834 unsigned int shndx,
835 Address address)
836 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
837 is_relative_(false), is_symbolless_(false),
838 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
839 {
840 gold_assert(shndx != INVALID_CODE);
841 // this->type_ is a bitfield; make sure TYPE fits.
842 gold_assert(this->type_ == type);
843 this->u1_.os = os;
844 this->u2_.relobj = relobj;
845 if (dynamic)
846 this->set_needs_dynsym_index();
847 else
848 os->set_needs_symtab_index();
849 }
850
851 // An absolute relocation.
852
853 template<bool dynamic, int size, bool big_endian>
854 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
855 unsigned int type,
856 Output_data* od,
857 Address address)
858 : address_(address), local_sym_index_(0), type_(type),
859 is_relative_(false), is_symbolless_(false),
860 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
861 {
862 // this->type_ is a bitfield; make sure TYPE fits.
863 gold_assert(this->type_ == type);
864 this->u1_.relobj = NULL;
865 this->u2_.od = od;
866 }
867
868 template<bool dynamic, int size, bool big_endian>
869 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
870 unsigned int type,
871 Sized_relobj<size, big_endian>* relobj,
872 unsigned int shndx,
873 Address address)
874 : address_(address), local_sym_index_(0), type_(type),
875 is_relative_(false), is_symbolless_(false),
876 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
877 {
878 gold_assert(shndx != INVALID_CODE);
879 // this->type_ is a bitfield; make sure TYPE fits.
880 gold_assert(this->type_ == type);
881 this->u1_.relobj = NULL;
882 this->u2_.relobj = relobj;
883 }
884
885 // A target specific relocation.
886
887 template<bool dynamic, int size, bool big_endian>
888 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
889 unsigned int type,
890 void* arg,
891 Output_data* od,
892 Address address)
893 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
894 is_relative_(false), is_symbolless_(false),
895 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
896 {
897 // this->type_ is a bitfield; make sure TYPE fits.
898 gold_assert(this->type_ == type);
899 this->u1_.arg = arg;
900 this->u2_.od = od;
901 }
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Sized_relobj<size, big_endian>* relobj,
908 unsigned int shndx,
909 Address address)
910 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
911 is_relative_(false), is_symbolless_(false),
912 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
913 {
914 gold_assert(shndx != INVALID_CODE);
915 // this->type_ is a bitfield; make sure TYPE fits.
916 gold_assert(this->type_ == type);
917 this->u1_.arg = arg;
918 this->u2_.relobj = relobj;
919 }
920
921 // Record that we need a dynamic symbol index for this relocation.
922
923 template<bool dynamic, int size, bool big_endian>
924 void
925 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
926 set_needs_dynsym_index()
927 {
928 if (this->is_symbolless_)
929 return;
930 switch (this->local_sym_index_)
931 {
932 case INVALID_CODE:
933 gold_unreachable();
934
935 case GSYM_CODE:
936 this->u1_.gsym->set_needs_dynsym_entry();
937 break;
938
939 case SECTION_CODE:
940 this->u1_.os->set_needs_dynsym_index();
941 break;
942
943 case TARGET_CODE:
944 // The target must take care of this if necessary.
945 break;
946
947 case 0:
948 break;
949
950 default:
951 {
952 const unsigned int lsi = this->local_sym_index_;
953 Sized_relobj_file<size, big_endian>* relobj =
954 this->u1_.relobj->sized_relobj();
955 gold_assert(relobj != NULL);
956 if (!this->is_section_symbol_)
957 relobj->set_needs_output_dynsym_entry(lsi);
958 else
959 relobj->output_section(lsi)->set_needs_dynsym_index();
960 }
961 break;
962 }
963 }
964
965 // Get the symbol index of a relocation.
966
967 template<bool dynamic, int size, bool big_endian>
968 unsigned int
969 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
970 const
971 {
972 unsigned int index;
973 if (this->is_symbolless_)
974 return 0;
975 switch (this->local_sym_index_)
976 {
977 case INVALID_CODE:
978 gold_unreachable();
979
980 case GSYM_CODE:
981 if (this->u1_.gsym == NULL)
982 index = 0;
983 else if (dynamic)
984 index = this->u1_.gsym->dynsym_index();
985 else
986 index = this->u1_.gsym->symtab_index();
987 break;
988
989 case SECTION_CODE:
990 if (dynamic)
991 index = this->u1_.os->dynsym_index();
992 else
993 index = this->u1_.os->symtab_index();
994 break;
995
996 case TARGET_CODE:
997 index = parameters->target().reloc_symbol_index(this->u1_.arg,
998 this->type_);
999 break;
1000
1001 case 0:
1002 // Relocations without symbols use a symbol index of 0.
1003 index = 0;
1004 break;
1005
1006 default:
1007 {
1008 const unsigned int lsi = this->local_sym_index_;
1009 Sized_relobj_file<size, big_endian>* relobj =
1010 this->u1_.relobj->sized_relobj();
1011 gold_assert(relobj != NULL);
1012 if (!this->is_section_symbol_)
1013 {
1014 if (dynamic)
1015 index = relobj->dynsym_index(lsi);
1016 else
1017 index = relobj->symtab_index(lsi);
1018 }
1019 else
1020 {
1021 Output_section* os = relobj->output_section(lsi);
1022 gold_assert(os != NULL);
1023 if (dynamic)
1024 index = os->dynsym_index();
1025 else
1026 index = os->symtab_index();
1027 }
1028 }
1029 break;
1030 }
1031 gold_assert(index != -1U);
1032 return index;
1033 }
1034
1035 // For a local section symbol, get the address of the offset ADDEND
1036 // within the input section.
1037
1038 template<bool dynamic, int size, bool big_endian>
1039 typename elfcpp::Elf_types<size>::Elf_Addr
1040 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1041 local_section_offset(Addend addend) const
1042 {
1043 gold_assert(this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
1045 && this->local_sym_index_ != TARGET_CODE
1046 && this->local_sym_index_ != INVALID_CODE
1047 && this->local_sym_index_ != 0
1048 && this->is_section_symbol_);
1049 const unsigned int lsi = this->local_sym_index_;
1050 Output_section* os = this->u1_.relobj->output_section(lsi);
1051 gold_assert(os != NULL);
1052 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1053 if (offset != invalid_address)
1054 return offset + addend;
1055 // This is a merge section.
1056 Sized_relobj_file<size, big_endian>* relobj =
1057 this->u1_.relobj->sized_relobj();
1058 gold_assert(relobj != NULL);
1059 offset = os->output_address(relobj, lsi, addend);
1060 gold_assert(offset != invalid_address);
1061 return offset;
1062 }
1063
1064 // Get the output address of a relocation.
1065
1066 template<bool dynamic, int size, bool big_endian>
1067 typename elfcpp::Elf_types<size>::Elf_Addr
1068 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1069 {
1070 Address address = this->address_;
1071 if (this->shndx_ != INVALID_CODE)
1072 {
1073 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1074 gold_assert(os != NULL);
1075 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1076 if (off != invalid_address)
1077 address += os->address() + off;
1078 else
1079 {
1080 Sized_relobj_file<size, big_endian>* relobj =
1081 this->u2_.relobj->sized_relobj();
1082 gold_assert(relobj != NULL);
1083 address = os->output_address(relobj, this->shndx_, address);
1084 gold_assert(address != invalid_address);
1085 }
1086 }
1087 else if (this->u2_.od != NULL)
1088 address += this->u2_.od->address();
1089 return address;
1090 }
1091
1092 // Write out the offset and info fields of a Rel or Rela relocation
1093 // entry.
1094
1095 template<bool dynamic, int size, bool big_endian>
1096 template<typename Write_rel>
1097 void
1098 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1099 Write_rel* wr) const
1100 {
1101 wr->put_r_offset(this->get_address());
1102 unsigned int sym_index = this->get_symbol_index();
1103 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1104 }
1105
1106 // Write out a Rel relocation.
1107
1108 template<bool dynamic, int size, bool big_endian>
1109 void
1110 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1111 unsigned char* pov) const
1112 {
1113 elfcpp::Rel_write<size, big_endian> orel(pov);
1114 this->write_rel(&orel);
1115 }
1116
1117 // Get the value of the symbol referred to by a Rel relocation.
1118
1119 template<bool dynamic, int size, bool big_endian>
1120 typename elfcpp::Elf_types<size>::Elf_Addr
1121 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1122 Addend addend) const
1123 {
1124 if (this->local_sym_index_ == GSYM_CODE)
1125 {
1126 const Sized_symbol<size>* sym;
1127 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1128 if (this->use_plt_offset_ && sym->has_plt_offset())
1129 {
1130 uint64_t plt_address =
1131 parameters->target().plt_address_for_global(sym);
1132 return plt_address + sym->plt_offset();
1133 }
1134 else
1135 return sym->value() + addend;
1136 }
1137 gold_assert(this->local_sym_index_ != SECTION_CODE
1138 && this->local_sym_index_ != TARGET_CODE
1139 && this->local_sym_index_ != INVALID_CODE
1140 && this->local_sym_index_ != 0
1141 && !this->is_section_symbol_);
1142 const unsigned int lsi = this->local_sym_index_;
1143 Sized_relobj_file<size, big_endian>* relobj =
1144 this->u1_.relobj->sized_relobj();
1145 gold_assert(relobj != NULL);
1146 if (this->use_plt_offset_)
1147 {
1148 uint64_t plt_address =
1149 parameters->target().plt_address_for_local(relobj, lsi);
1150 return plt_address + relobj->local_plt_offset(lsi);
1151 }
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int size, bool big_endian>
1365 void
1366 Output_data_got<size, big_endian>::Got_entry::write(unsigned char* pov) const
1367 {
1368 Valtype val = 0;
1369
1370 switch (this->local_sym_index_)
1371 {
1372 case GSYM_CODE:
1373 {
1374 // If the symbol is resolved locally, we need to write out the
1375 // link-time value, which will be relocated dynamically by a
1376 // RELATIVE relocation.
1377 Symbol* gsym = this->u_.gsym;
1378 if (this->use_plt_offset_ && gsym->has_plt_offset())
1379 val = (parameters->target().plt_address_for_global(gsym)
1380 + gsym->plt_offset());
1381 else
1382 {
1383 Sized_symbol<size>* sgsym;
1384 // This cast is a bit ugly. We don't want to put a
1385 // virtual method in Symbol, because we want Symbol to be
1386 // as small as possible.
1387 sgsym = static_cast<Sized_symbol<size>*>(gsym);
1388 val = sgsym->value();
1389 }
1390 }
1391 break;
1392
1393 case CONSTANT_CODE:
1394 val = this->u_.constant;
1395 break;
1396
1397 case RESERVED_CODE:
1398 // If we're doing an incremental update, don't touch this GOT entry.
1399 if (parameters->incremental_update())
1400 return;
1401 val = this->u_.constant;
1402 break;
1403
1404 default:
1405 {
1406 const Relobj* object = this->u_.object;
1407 const unsigned int lsi = this->local_sym_index_;
1408 if (!this->use_plt_offset_)
1409 {
1410 uint64_t lval = object->local_symbol_value(lsi, 0);
1411 val = convert_types<Valtype, uint64_t>(lval);
1412 }
1413 else
1414 {
1415 uint64_t plt_address =
1416 parameters->target().plt_address_for_local(object, lsi);
1417 val = plt_address + object->local_plt_offset(lsi);
1418 }
1419 }
1420 break;
1421 }
1422
1423 elfcpp::Swap<size, big_endian>::writeval(pov, val);
1424 }
1425
1426 // Output_data_got methods.
1427
1428 // Add an entry for a global symbol to the GOT. This returns true if
1429 // this is a new GOT entry, false if the symbol already had a GOT
1430 // entry.
1431
1432 template<int size, bool big_endian>
1433 bool
1434 Output_data_got<size, big_endian>::add_global(
1435 Symbol* gsym,
1436 unsigned int got_type)
1437 {
1438 if (gsym->has_got_offset(got_type))
1439 return false;
1440
1441 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1442 gsym->set_got_offset(got_type, got_offset);
1443 return true;
1444 }
1445
1446 // Like add_global, but use the PLT offset.
1447
1448 template<int size, bool big_endian>
1449 bool
1450 Output_data_got<size, big_endian>::add_global_plt(Symbol* gsym,
1451 unsigned int got_type)
1452 {
1453 if (gsym->has_got_offset(got_type))
1454 return false;
1455
1456 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1457 gsym->set_got_offset(got_type, got_offset);
1458 return true;
1459 }
1460
1461 // Add an entry for a global symbol to the GOT, and add a dynamic
1462 // relocation of type R_TYPE for the GOT entry.
1463
1464 template<int size, bool big_endian>
1465 void
1466 Output_data_got<size, big_endian>::add_global_with_rel(
1467 Symbol* gsym,
1468 unsigned int got_type,
1469 Output_data_reloc_generic* rel_dyn,
1470 unsigned int r_type)
1471 {
1472 if (gsym->has_got_offset(got_type))
1473 return;
1474
1475 unsigned int got_offset = this->add_got_entry(Got_entry());
1476 gsym->set_got_offset(got_type, got_offset);
1477 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1478 }
1479
1480 // Add a pair of entries for a global symbol to the GOT, and add
1481 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1482 // If R_TYPE_2 == 0, add the second entry with no relocation.
1483 template<int size, bool big_endian>
1484 void
1485 Output_data_got<size, big_endian>::add_global_pair_with_rel(
1486 Symbol* gsym,
1487 unsigned int got_type,
1488 Output_data_reloc_generic* rel_dyn,
1489 unsigned int r_type_1,
1490 unsigned int r_type_2)
1491 {
1492 if (gsym->has_got_offset(got_type))
1493 return;
1494
1495 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1496 gsym->set_got_offset(got_type, got_offset);
1497 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1498
1499 if (r_type_2 != 0)
1500 rel_dyn->add_global_generic(gsym, r_type_2, this,
1501 got_offset + size / 8, 0);
1502 }
1503
1504 // Add an entry for a local symbol to the GOT. This returns true if
1505 // this is a new GOT entry, false if the symbol already has a GOT
1506 // entry.
1507
1508 template<int size, bool big_endian>
1509 bool
1510 Output_data_got<size, big_endian>::add_local(
1511 Relobj* object,
1512 unsigned int symndx,
1513 unsigned int got_type)
1514 {
1515 if (object->local_has_got_offset(symndx, got_type))
1516 return false;
1517
1518 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1519 false));
1520 object->set_local_got_offset(symndx, got_type, got_offset);
1521 return true;
1522 }
1523
1524 // Like add_local, but use the PLT offset.
1525
1526 template<int size, bool big_endian>
1527 bool
1528 Output_data_got<size, big_endian>::add_local_plt(
1529 Relobj* object,
1530 unsigned int symndx,
1531 unsigned int got_type)
1532 {
1533 if (object->local_has_got_offset(symndx, got_type))
1534 return false;
1535
1536 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1537 true));
1538 object->set_local_got_offset(symndx, got_type, got_offset);
1539 return true;
1540 }
1541
1542 // Add an entry for a local symbol to the GOT, and add a dynamic
1543 // relocation of type R_TYPE for the GOT entry.
1544
1545 template<int size, bool big_endian>
1546 void
1547 Output_data_got<size, big_endian>::add_local_with_rel(
1548 Relobj* object,
1549 unsigned int symndx,
1550 unsigned int got_type,
1551 Output_data_reloc_generic* rel_dyn,
1552 unsigned int r_type)
1553 {
1554 if (object->local_has_got_offset(symndx, got_type))
1555 return;
1556
1557 unsigned int got_offset = this->add_got_entry(Got_entry());
1558 object->set_local_got_offset(symndx, got_type, got_offset);
1559 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1560 }
1561
1562 // Add a pair of entries for a local symbol to the GOT, and add
1563 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1564 // If R_TYPE_2 == 0, add the second entry with no relocation.
1565 template<int size, bool big_endian>
1566 void
1567 Output_data_got<size, big_endian>::add_local_pair_with_rel(
1568 Relobj* object,
1569 unsigned int symndx,
1570 unsigned int shndx,
1571 unsigned int got_type,
1572 Output_data_reloc_generic* rel_dyn,
1573 unsigned int r_type_1,
1574 unsigned int r_type_2)
1575 {
1576 if (object->local_has_got_offset(symndx, got_type))
1577 return;
1578
1579 unsigned int got_offset =
1580 this->add_got_entry_pair(Got_entry(),
1581 Got_entry(object, symndx, false));
1582 object->set_local_got_offset(symndx, got_type, got_offset);
1583 Output_section* os = object->output_section(shndx);
1584 rel_dyn->add_output_section_generic(os, r_type_1, this, got_offset, 0);
1585
1586 if (r_type_2 != 0)
1587 rel_dyn->add_output_section_generic(os, r_type_2, this,
1588 got_offset + size / 8, 0);
1589 }
1590
1591 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1592
1593 template<int size, bool big_endian>
1594 void
1595 Output_data_got<size, big_endian>::reserve_local(
1596 unsigned int i,
1597 Relobj* object,
1598 unsigned int sym_index,
1599 unsigned int got_type)
1600 {
1601 this->do_reserve_slot(i);
1602 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1603 }
1604
1605 // Reserve a slot in the GOT for a global symbol.
1606
1607 template<int size, bool big_endian>
1608 void
1609 Output_data_got<size, big_endian>::reserve_global(
1610 unsigned int i,
1611 Symbol* gsym,
1612 unsigned int got_type)
1613 {
1614 this->do_reserve_slot(i);
1615 gsym->set_got_offset(got_type, this->got_offset(i));
1616 }
1617
1618 // Write out the GOT.
1619
1620 template<int size, bool big_endian>
1621 void
1622 Output_data_got<size, big_endian>::do_write(Output_file* of)
1623 {
1624 const int add = size / 8;
1625
1626 const off_t off = this->offset();
1627 const off_t oview_size = this->data_size();
1628 unsigned char* const oview = of->get_output_view(off, oview_size);
1629
1630 unsigned char* pov = oview;
1631 for (typename Got_entries::const_iterator p = this->entries_.begin();
1632 p != this->entries_.end();
1633 ++p)
1634 {
1635 p->write(pov);
1636 pov += add;
1637 }
1638
1639 gold_assert(pov - oview == oview_size);
1640
1641 of->write_output_view(off, oview_size, oview);
1642
1643 // We no longer need the GOT entries.
1644 this->entries_.clear();
1645 }
1646
1647 // Create a new GOT entry and return its offset.
1648
1649 template<int size, bool big_endian>
1650 unsigned int
1651 Output_data_got<size, big_endian>::add_got_entry(Got_entry got_entry)
1652 {
1653 if (!this->is_data_size_valid())
1654 {
1655 this->entries_.push_back(got_entry);
1656 this->set_got_size();
1657 return this->last_got_offset();
1658 }
1659 else
1660 {
1661 // For an incremental update, find an available slot.
1662 off_t got_offset = this->free_list_.allocate(size / 8, size / 8, 0);
1663 if (got_offset == -1)
1664 gold_fallback(_("out of patch space (GOT);"
1665 " relink with --incremental-full"));
1666 unsigned int got_index = got_offset / (size / 8);
1667 gold_assert(got_index < this->entries_.size());
1668 this->entries_[got_index] = got_entry;
1669 return static_cast<unsigned int>(got_offset);
1670 }
1671 }
1672
1673 // Create a pair of new GOT entries and return the offset of the first.
1674
1675 template<int size, bool big_endian>
1676 unsigned int
1677 Output_data_got<size, big_endian>::add_got_entry_pair(Got_entry got_entry_1,
1678 Got_entry got_entry_2)
1679 {
1680 if (!this->is_data_size_valid())
1681 {
1682 unsigned int got_offset;
1683 this->entries_.push_back(got_entry_1);
1684 got_offset = this->last_got_offset();
1685 this->entries_.push_back(got_entry_2);
1686 this->set_got_size();
1687 return got_offset;
1688 }
1689 else
1690 {
1691 // For an incremental update, find an available pair of slots.
1692 off_t got_offset = this->free_list_.allocate(2 * size / 8, size / 8, 0);
1693 if (got_offset == -1)
1694 gold_fallback(_("out of patch space (GOT);"
1695 " relink with --incremental-full"));
1696 unsigned int got_index = got_offset / (size / 8);
1697 gold_assert(got_index < this->entries_.size());
1698 this->entries_[got_index] = got_entry_1;
1699 this->entries_[got_index + 1] = got_entry_2;
1700 return static_cast<unsigned int>(got_offset);
1701 }
1702 }
1703
1704 // Replace GOT entry I with a new value.
1705
1706 template<int size, bool big_endian>
1707 void
1708 Output_data_got<size, big_endian>::replace_got_entry(
1709 unsigned int i,
1710 Got_entry got_entry)
1711 {
1712 gold_assert(i < this->entries_.size());
1713 this->entries_[i] = got_entry;
1714 }
1715
1716 // Output_data_dynamic::Dynamic_entry methods.
1717
1718 // Write out the entry.
1719
1720 template<int size, bool big_endian>
1721 void
1722 Output_data_dynamic::Dynamic_entry::write(
1723 unsigned char* pov,
1724 const Stringpool* pool) const
1725 {
1726 typename elfcpp::Elf_types<size>::Elf_WXword val;
1727 switch (this->offset_)
1728 {
1729 case DYNAMIC_NUMBER:
1730 val = this->u_.val;
1731 break;
1732
1733 case DYNAMIC_SECTION_SIZE:
1734 val = this->u_.od->data_size();
1735 if (this->od2 != NULL)
1736 val += this->od2->data_size();
1737 break;
1738
1739 case DYNAMIC_SYMBOL:
1740 {
1741 const Sized_symbol<size>* s =
1742 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1743 val = s->value();
1744 }
1745 break;
1746
1747 case DYNAMIC_STRING:
1748 val = pool->get_offset(this->u_.str);
1749 break;
1750
1751 default:
1752 val = this->u_.od->address() + this->offset_;
1753 break;
1754 }
1755
1756 elfcpp::Dyn_write<size, big_endian> dw(pov);
1757 dw.put_d_tag(this->tag_);
1758 dw.put_d_val(val);
1759 }
1760
1761 // Output_data_dynamic methods.
1762
1763 // Adjust the output section to set the entry size.
1764
1765 void
1766 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1767 {
1768 if (parameters->target().get_size() == 32)
1769 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1770 else if (parameters->target().get_size() == 64)
1771 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1772 else
1773 gold_unreachable();
1774 }
1775
1776 // Set the final data size.
1777
1778 void
1779 Output_data_dynamic::set_final_data_size()
1780 {
1781 // Add the terminating entry if it hasn't been added.
1782 // Because of relaxation, we can run this multiple times.
1783 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1784 {
1785 int extra = parameters->options().spare_dynamic_tags();
1786 for (int i = 0; i < extra; ++i)
1787 this->add_constant(elfcpp::DT_NULL, 0);
1788 this->add_constant(elfcpp::DT_NULL, 0);
1789 }
1790
1791 int dyn_size;
1792 if (parameters->target().get_size() == 32)
1793 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1794 else if (parameters->target().get_size() == 64)
1795 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1796 else
1797 gold_unreachable();
1798 this->set_data_size(this->entries_.size() * dyn_size);
1799 }
1800
1801 // Write out the dynamic entries.
1802
1803 void
1804 Output_data_dynamic::do_write(Output_file* of)
1805 {
1806 switch (parameters->size_and_endianness())
1807 {
1808 #ifdef HAVE_TARGET_32_LITTLE
1809 case Parameters::TARGET_32_LITTLE:
1810 this->sized_write<32, false>(of);
1811 break;
1812 #endif
1813 #ifdef HAVE_TARGET_32_BIG
1814 case Parameters::TARGET_32_BIG:
1815 this->sized_write<32, true>(of);
1816 break;
1817 #endif
1818 #ifdef HAVE_TARGET_64_LITTLE
1819 case Parameters::TARGET_64_LITTLE:
1820 this->sized_write<64, false>(of);
1821 break;
1822 #endif
1823 #ifdef HAVE_TARGET_64_BIG
1824 case Parameters::TARGET_64_BIG:
1825 this->sized_write<64, true>(of);
1826 break;
1827 #endif
1828 default:
1829 gold_unreachable();
1830 }
1831 }
1832
1833 template<int size, bool big_endian>
1834 void
1835 Output_data_dynamic::sized_write(Output_file* of)
1836 {
1837 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1838
1839 const off_t offset = this->offset();
1840 const off_t oview_size = this->data_size();
1841 unsigned char* const oview = of->get_output_view(offset, oview_size);
1842
1843 unsigned char* pov = oview;
1844 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1845 p != this->entries_.end();
1846 ++p)
1847 {
1848 p->write<size, big_endian>(pov, this->pool_);
1849 pov += dyn_size;
1850 }
1851
1852 gold_assert(pov - oview == oview_size);
1853
1854 of->write_output_view(offset, oview_size, oview);
1855
1856 // We no longer need the dynamic entries.
1857 this->entries_.clear();
1858 }
1859
1860 // Class Output_symtab_xindex.
1861
1862 void
1863 Output_symtab_xindex::do_write(Output_file* of)
1864 {
1865 const off_t offset = this->offset();
1866 const off_t oview_size = this->data_size();
1867 unsigned char* const oview = of->get_output_view(offset, oview_size);
1868
1869 memset(oview, 0, oview_size);
1870
1871 if (parameters->target().is_big_endian())
1872 this->endian_do_write<true>(oview);
1873 else
1874 this->endian_do_write<false>(oview);
1875
1876 of->write_output_view(offset, oview_size, oview);
1877
1878 // We no longer need the data.
1879 this->entries_.clear();
1880 }
1881
1882 template<bool big_endian>
1883 void
1884 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1885 {
1886 for (Xindex_entries::const_iterator p = this->entries_.begin();
1887 p != this->entries_.end();
1888 ++p)
1889 {
1890 unsigned int symndx = p->first;
1891 gold_assert(symndx * 4 < this->data_size());
1892 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1893 }
1894 }
1895
1896 // Output_fill_debug_info methods.
1897
1898 // Return the minimum size needed for a dummy compilation unit header.
1899
1900 size_t
1901 Output_fill_debug_info::do_minimum_hole_size() const
1902 {
1903 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1904 // address_size.
1905 const size_t len = 4 + 2 + 4 + 1;
1906 // For type units, add type_signature, type_offset.
1907 if (this->is_debug_types_)
1908 return len + 8 + 4;
1909 return len;
1910 }
1911
1912 // Write a dummy compilation unit header to fill a hole in the
1913 // .debug_info or .debug_types section.
1914
1915 void
1916 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1917 {
1918 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1919 static_cast<long>(off), static_cast<long>(len));
1920
1921 gold_assert(len >= this->do_minimum_hole_size());
1922
1923 unsigned char* const oview = of->get_output_view(off, len);
1924 unsigned char* pov = oview;
1925
1926 // Write header fields: unit_length, version, debug_abbrev_offset,
1927 // address_size.
1928 if (this->is_big_endian())
1929 {
1930 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1931 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1932 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1933 }
1934 else
1935 {
1936 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1937 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1938 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1939 }
1940 pov += 4 + 2 + 4;
1941 *pov++ = 4;
1942
1943 // For type units, the additional header fields -- type_signature,
1944 // type_offset -- can be filled with zeroes.
1945
1946 // Fill the remainder of the free space with zeroes. The first
1947 // zero should tell the consumer there are no DIEs to read in this
1948 // compilation unit.
1949 if (pov < oview + len)
1950 memset(pov, 0, oview + len - pov);
1951
1952 of->write_output_view(off, len, oview);
1953 }
1954
1955 // Output_fill_debug_line methods.
1956
1957 // Return the minimum size needed for a dummy line number program header.
1958
1959 size_t
1960 Output_fill_debug_line::do_minimum_hole_size() const
1961 {
1962 // Line number program header fields: unit_length, version, header_length,
1963 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1964 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1965 const size_t len = 4 + 2 + 4 + this->header_length;
1966 return len;
1967 }
1968
1969 // Write a dummy line number program header to fill a hole in the
1970 // .debug_line section.
1971
1972 void
1973 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
1974 {
1975 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
1976 static_cast<long>(off), static_cast<long>(len));
1977
1978 gold_assert(len >= this->do_minimum_hole_size());
1979
1980 unsigned char* const oview = of->get_output_view(off, len);
1981 unsigned char* pov = oview;
1982
1983 // Write header fields: unit_length, version, header_length,
1984 // minimum_instruction_length, default_is_stmt, line_base, line_range,
1985 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
1986 // We set the header_length field to cover the entire hole, so the
1987 // line number program is empty.
1988 if (this->is_big_endian())
1989 {
1990 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1991 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1992 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
1993 }
1994 else
1995 {
1996 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1997 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1998 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
1999 }
2000 pov += 4 + 2 + 4;
2001 *pov++ = 1; // minimum_instruction_length
2002 *pov++ = 0; // default_is_stmt
2003 *pov++ = 0; // line_base
2004 *pov++ = 5; // line_range
2005 *pov++ = 13; // opcode_base
2006 *pov++ = 0; // standard_opcode_lengths[1]
2007 *pov++ = 1; // standard_opcode_lengths[2]
2008 *pov++ = 1; // standard_opcode_lengths[3]
2009 *pov++ = 1; // standard_opcode_lengths[4]
2010 *pov++ = 1; // standard_opcode_lengths[5]
2011 *pov++ = 0; // standard_opcode_lengths[6]
2012 *pov++ = 0; // standard_opcode_lengths[7]
2013 *pov++ = 0; // standard_opcode_lengths[8]
2014 *pov++ = 1; // standard_opcode_lengths[9]
2015 *pov++ = 0; // standard_opcode_lengths[10]
2016 *pov++ = 0; // standard_opcode_lengths[11]
2017 *pov++ = 1; // standard_opcode_lengths[12]
2018 *pov++ = 0; // include_directories (empty)
2019 *pov++ = 0; // filenames (empty)
2020
2021 // Some consumers don't check the header_length field, and simply
2022 // start reading the line number program immediately following the
2023 // header. For those consumers, we fill the remainder of the free
2024 // space with DW_LNS_set_basic_block opcodes. These are effectively
2025 // no-ops: the resulting line table program will not create any rows.
2026 if (pov < oview + len)
2027 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2028
2029 of->write_output_view(off, len, oview);
2030 }
2031
2032 // Output_section::Input_section methods.
2033
2034 // Return the current data size. For an input section we store the size here.
2035 // For an Output_section_data, we have to ask it for the size.
2036
2037 off_t
2038 Output_section::Input_section::current_data_size() const
2039 {
2040 if (this->is_input_section())
2041 return this->u1_.data_size;
2042 else
2043 {
2044 this->u2_.posd->pre_finalize_data_size();
2045 return this->u2_.posd->current_data_size();
2046 }
2047 }
2048
2049 // Return the data size. For an input section we store the size here.
2050 // For an Output_section_data, we have to ask it for the size.
2051
2052 off_t
2053 Output_section::Input_section::data_size() const
2054 {
2055 if (this->is_input_section())
2056 return this->u1_.data_size;
2057 else
2058 return this->u2_.posd->data_size();
2059 }
2060
2061 // Return the object for an input section.
2062
2063 Relobj*
2064 Output_section::Input_section::relobj() const
2065 {
2066 if (this->is_input_section())
2067 return this->u2_.object;
2068 else if (this->is_merge_section())
2069 {
2070 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2071 return this->u2_.pomb->first_relobj();
2072 }
2073 else if (this->is_relaxed_input_section())
2074 return this->u2_.poris->relobj();
2075 else
2076 gold_unreachable();
2077 }
2078
2079 // Return the input section index for an input section.
2080
2081 unsigned int
2082 Output_section::Input_section::shndx() const
2083 {
2084 if (this->is_input_section())
2085 return this->shndx_;
2086 else if (this->is_merge_section())
2087 {
2088 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2089 return this->u2_.pomb->first_shndx();
2090 }
2091 else if (this->is_relaxed_input_section())
2092 return this->u2_.poris->shndx();
2093 else
2094 gold_unreachable();
2095 }
2096
2097 // Set the address and file offset.
2098
2099 void
2100 Output_section::Input_section::set_address_and_file_offset(
2101 uint64_t address,
2102 off_t file_offset,
2103 off_t section_file_offset)
2104 {
2105 if (this->is_input_section())
2106 this->u2_.object->set_section_offset(this->shndx_,
2107 file_offset - section_file_offset);
2108 else
2109 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2110 }
2111
2112 // Reset the address and file offset.
2113
2114 void
2115 Output_section::Input_section::reset_address_and_file_offset()
2116 {
2117 if (!this->is_input_section())
2118 this->u2_.posd->reset_address_and_file_offset();
2119 }
2120
2121 // Finalize the data size.
2122
2123 void
2124 Output_section::Input_section::finalize_data_size()
2125 {
2126 if (!this->is_input_section())
2127 this->u2_.posd->finalize_data_size();
2128 }
2129
2130 // Try to turn an input offset into an output offset. We want to
2131 // return the output offset relative to the start of this
2132 // Input_section in the output section.
2133
2134 inline bool
2135 Output_section::Input_section::output_offset(
2136 const Relobj* object,
2137 unsigned int shndx,
2138 section_offset_type offset,
2139 section_offset_type* poutput) const
2140 {
2141 if (!this->is_input_section())
2142 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2143 else
2144 {
2145 if (this->shndx_ != shndx || this->u2_.object != object)
2146 return false;
2147 *poutput = offset;
2148 return true;
2149 }
2150 }
2151
2152 // Return whether this is the merge section for the input section
2153 // SHNDX in OBJECT.
2154
2155 inline bool
2156 Output_section::Input_section::is_merge_section_for(const Relobj* object,
2157 unsigned int shndx) const
2158 {
2159 if (this->is_input_section())
2160 return false;
2161 return this->u2_.posd->is_merge_section_for(object, shndx);
2162 }
2163
2164 // Write out the data. We don't have to do anything for an input
2165 // section--they are handled via Object::relocate--but this is where
2166 // we write out the data for an Output_section_data.
2167
2168 void
2169 Output_section::Input_section::write(Output_file* of)
2170 {
2171 if (!this->is_input_section())
2172 this->u2_.posd->write(of);
2173 }
2174
2175 // Write the data to a buffer. As for write(), we don't have to do
2176 // anything for an input section.
2177
2178 void
2179 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2180 {
2181 if (!this->is_input_section())
2182 this->u2_.posd->write_to_buffer(buffer);
2183 }
2184
2185 // Print to a map file.
2186
2187 void
2188 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2189 {
2190 switch (this->shndx_)
2191 {
2192 case OUTPUT_SECTION_CODE:
2193 case MERGE_DATA_SECTION_CODE:
2194 case MERGE_STRING_SECTION_CODE:
2195 this->u2_.posd->print_to_mapfile(mapfile);
2196 break;
2197
2198 case RELAXED_INPUT_SECTION_CODE:
2199 {
2200 Output_relaxed_input_section* relaxed_section =
2201 this->relaxed_input_section();
2202 mapfile->print_input_section(relaxed_section->relobj(),
2203 relaxed_section->shndx());
2204 }
2205 break;
2206 default:
2207 mapfile->print_input_section(this->u2_.object, this->shndx_);
2208 break;
2209 }
2210 }
2211
2212 // Output_section methods.
2213
2214 // Construct an Output_section. NAME will point into a Stringpool.
2215
2216 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2217 elfcpp::Elf_Xword flags)
2218 : name_(name),
2219 addralign_(0),
2220 entsize_(0),
2221 load_address_(0),
2222 link_section_(NULL),
2223 link_(0),
2224 info_section_(NULL),
2225 info_symndx_(NULL),
2226 info_(0),
2227 type_(type),
2228 flags_(flags),
2229 order_(ORDER_INVALID),
2230 out_shndx_(-1U),
2231 symtab_index_(0),
2232 dynsym_index_(0),
2233 input_sections_(),
2234 first_input_offset_(0),
2235 fills_(),
2236 postprocessing_buffer_(NULL),
2237 needs_symtab_index_(false),
2238 needs_dynsym_index_(false),
2239 should_link_to_symtab_(false),
2240 should_link_to_dynsym_(false),
2241 after_input_sections_(false),
2242 requires_postprocessing_(false),
2243 found_in_sections_clause_(false),
2244 has_load_address_(false),
2245 info_uses_section_index_(false),
2246 input_section_order_specified_(false),
2247 may_sort_attached_input_sections_(false),
2248 must_sort_attached_input_sections_(false),
2249 attached_input_sections_are_sorted_(false),
2250 is_relro_(false),
2251 is_small_section_(false),
2252 is_large_section_(false),
2253 generate_code_fills_at_write_(false),
2254 is_entsize_zero_(false),
2255 section_offsets_need_adjustment_(false),
2256 is_noload_(false),
2257 always_keeps_input_sections_(false),
2258 has_fixed_layout_(false),
2259 is_patch_space_allowed_(false),
2260 tls_offset_(0),
2261 checkpoint_(NULL),
2262 lookup_maps_(new Output_section_lookup_maps),
2263 free_list_(),
2264 free_space_fill_(NULL),
2265 patch_space_(0)
2266 {
2267 // An unallocated section has no address. Forcing this means that
2268 // we don't need special treatment for symbols defined in debug
2269 // sections.
2270 if ((flags & elfcpp::SHF_ALLOC) == 0)
2271 this->set_address(0);
2272 }
2273
2274 Output_section::~Output_section()
2275 {
2276 delete this->checkpoint_;
2277 }
2278
2279 // Set the entry size.
2280
2281 void
2282 Output_section::set_entsize(uint64_t v)
2283 {
2284 if (this->is_entsize_zero_)
2285 ;
2286 else if (this->entsize_ == 0)
2287 this->entsize_ = v;
2288 else if (this->entsize_ != v)
2289 {
2290 this->entsize_ = 0;
2291 this->is_entsize_zero_ = 1;
2292 }
2293 }
2294
2295 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2296 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2297 // relocation section which applies to this section, or 0 if none, or
2298 // -1U if more than one. Return the offset of the input section
2299 // within the output section. Return -1 if the input section will
2300 // receive special handling. In the normal case we don't always keep
2301 // track of input sections for an Output_section. Instead, each
2302 // Object keeps track of the Output_section for each of its input
2303 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2304 // track of input sections here; this is used when SECTIONS appears in
2305 // a linker script.
2306
2307 template<int size, bool big_endian>
2308 off_t
2309 Output_section::add_input_section(Layout* layout,
2310 Sized_relobj_file<size, big_endian>* object,
2311 unsigned int shndx,
2312 const char* secname,
2313 const elfcpp::Shdr<size, big_endian>& shdr,
2314 unsigned int reloc_shndx,
2315 bool have_sections_script)
2316 {
2317 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2318 if ((addralign & (addralign - 1)) != 0)
2319 {
2320 object->error(_("invalid alignment %lu for section \"%s\""),
2321 static_cast<unsigned long>(addralign), secname);
2322 addralign = 1;
2323 }
2324
2325 if (addralign > this->addralign_)
2326 this->addralign_ = addralign;
2327
2328 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2329 uint64_t entsize = shdr.get_sh_entsize();
2330
2331 // .debug_str is a mergeable string section, but is not always so
2332 // marked by compilers. Mark manually here so we can optimize.
2333 if (strcmp(secname, ".debug_str") == 0)
2334 {
2335 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2336 entsize = 1;
2337 }
2338
2339 this->update_flags_for_input_section(sh_flags);
2340 this->set_entsize(entsize);
2341
2342 // If this is a SHF_MERGE section, we pass all the input sections to
2343 // a Output_data_merge. We don't try to handle relocations for such
2344 // a section. We don't try to handle empty merge sections--they
2345 // mess up the mappings, and are useless anyhow.
2346 // FIXME: Need to handle merge sections during incremental update.
2347 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2348 && reloc_shndx == 0
2349 && shdr.get_sh_size() > 0
2350 && !parameters->incremental())
2351 {
2352 // Keep information about merged input sections for rebuilding fast
2353 // lookup maps if we have sections-script or we do relaxation.
2354 bool keeps_input_sections = (this->always_keeps_input_sections_
2355 || have_sections_script
2356 || parameters->target().may_relax());
2357
2358 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2359 addralign, keeps_input_sections))
2360 {
2361 // Tell the relocation routines that they need to call the
2362 // output_offset method to determine the final address.
2363 return -1;
2364 }
2365 }
2366
2367 section_size_type input_section_size = shdr.get_sh_size();
2368 section_size_type uncompressed_size;
2369 if (object->section_is_compressed(shndx, &uncompressed_size))
2370 input_section_size = uncompressed_size;
2371
2372 off_t offset_in_section;
2373 off_t aligned_offset_in_section;
2374 if (this->has_fixed_layout())
2375 {
2376 // For incremental updates, find a chunk of unused space in the section.
2377 offset_in_section = this->free_list_.allocate(input_section_size,
2378 addralign, 0);
2379 if (offset_in_section == -1)
2380 gold_fallback(_("out of patch space in section %s; "
2381 "relink with --incremental-full"),
2382 this->name());
2383 aligned_offset_in_section = offset_in_section;
2384 }
2385 else
2386 {
2387 offset_in_section = this->current_data_size_for_child();
2388 aligned_offset_in_section = align_address(offset_in_section,
2389 addralign);
2390 this->set_current_data_size_for_child(aligned_offset_in_section
2391 + input_section_size);
2392 }
2393
2394 // Determine if we want to delay code-fill generation until the output
2395 // section is written. When the target is relaxing, we want to delay fill
2396 // generating to avoid adjusting them during relaxation. Also, if we are
2397 // sorting input sections we must delay fill generation.
2398 if (!this->generate_code_fills_at_write_
2399 && !have_sections_script
2400 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2401 && parameters->target().has_code_fill()
2402 && (parameters->target().may_relax()
2403 || layout->is_section_ordering_specified()))
2404 {
2405 gold_assert(this->fills_.empty());
2406 this->generate_code_fills_at_write_ = true;
2407 }
2408
2409 if (aligned_offset_in_section > offset_in_section
2410 && !this->generate_code_fills_at_write_
2411 && !have_sections_script
2412 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2413 && parameters->target().has_code_fill())
2414 {
2415 // We need to add some fill data. Using fill_list_ when
2416 // possible is an optimization, since we will often have fill
2417 // sections without input sections.
2418 off_t fill_len = aligned_offset_in_section - offset_in_section;
2419 if (this->input_sections_.empty())
2420 this->fills_.push_back(Fill(offset_in_section, fill_len));
2421 else
2422 {
2423 std::string fill_data(parameters->target().code_fill(fill_len));
2424 Output_data_const* odc = new Output_data_const(fill_data, 1);
2425 this->input_sections_.push_back(Input_section(odc));
2426 }
2427 }
2428
2429 // We need to keep track of this section if we are already keeping
2430 // track of sections, or if we are relaxing. Also, if this is a
2431 // section which requires sorting, or which may require sorting in
2432 // the future, we keep track of the sections. If the
2433 // --section-ordering-file option is used to specify the order of
2434 // sections, we need to keep track of sections.
2435 if (this->always_keeps_input_sections_
2436 || have_sections_script
2437 || !this->input_sections_.empty()
2438 || this->may_sort_attached_input_sections()
2439 || this->must_sort_attached_input_sections()
2440 || parameters->options().user_set_Map()
2441 || parameters->target().may_relax()
2442 || layout->is_section_ordering_specified())
2443 {
2444 Input_section isecn(object, shndx, input_section_size, addralign);
2445 /* If section ordering is requested by specifying a ordering file,
2446 using --section-ordering-file, match the section name with
2447 a pattern. */
2448 if (parameters->options().section_ordering_file())
2449 {
2450 unsigned int section_order_index =
2451 layout->find_section_order_index(std::string(secname));
2452 if (section_order_index != 0)
2453 {
2454 isecn.set_section_order_index(section_order_index);
2455 this->set_input_section_order_specified();
2456 }
2457 }
2458 if (this->has_fixed_layout())
2459 {
2460 // For incremental updates, finalize the address and offset now.
2461 uint64_t addr = this->address();
2462 isecn.set_address_and_file_offset(addr + aligned_offset_in_section,
2463 aligned_offset_in_section,
2464 this->offset());
2465 }
2466 this->input_sections_.push_back(isecn);
2467 }
2468
2469 return aligned_offset_in_section;
2470 }
2471
2472 // Add arbitrary data to an output section.
2473
2474 void
2475 Output_section::add_output_section_data(Output_section_data* posd)
2476 {
2477 Input_section inp(posd);
2478 this->add_output_section_data(&inp);
2479
2480 if (posd->is_data_size_valid())
2481 {
2482 off_t offset_in_section;
2483 if (this->has_fixed_layout())
2484 {
2485 // For incremental updates, find a chunk of unused space.
2486 offset_in_section = this->free_list_.allocate(posd->data_size(),
2487 posd->addralign(), 0);
2488 if (offset_in_section == -1)
2489 gold_fallback(_("out of patch space in section %s; "
2490 "relink with --incremental-full"),
2491 this->name());
2492 // Finalize the address and offset now.
2493 uint64_t addr = this->address();
2494 off_t offset = this->offset();
2495 posd->set_address_and_file_offset(addr + offset_in_section,
2496 offset + offset_in_section);
2497 }
2498 else
2499 {
2500 offset_in_section = this->current_data_size_for_child();
2501 off_t aligned_offset_in_section = align_address(offset_in_section,
2502 posd->addralign());
2503 this->set_current_data_size_for_child(aligned_offset_in_section
2504 + posd->data_size());
2505 }
2506 }
2507 else if (this->has_fixed_layout())
2508 {
2509 // For incremental updates, arrange for the data to have a fixed layout.
2510 // This will mean that additions to the data must be allocated from
2511 // free space within the containing output section.
2512 uint64_t addr = this->address();
2513 posd->set_address(addr);
2514 posd->set_file_offset(0);
2515 // FIXME: This should eventually be unreachable.
2516 // gold_unreachable();
2517 }
2518 }
2519
2520 // Add a relaxed input section.
2521
2522 void
2523 Output_section::add_relaxed_input_section(Layout* layout,
2524 Output_relaxed_input_section* poris,
2525 const std::string& name)
2526 {
2527 Input_section inp(poris);
2528
2529 // If the --section-ordering-file option is used to specify the order of
2530 // sections, we need to keep track of sections.
2531 if (layout->is_section_ordering_specified())
2532 {
2533 unsigned int section_order_index =
2534 layout->find_section_order_index(name);
2535 if (section_order_index != 0)
2536 {
2537 inp.set_section_order_index(section_order_index);
2538 this->set_input_section_order_specified();
2539 }
2540 }
2541
2542 this->add_output_section_data(&inp);
2543 if (this->lookup_maps_->is_valid())
2544 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2545 poris->shndx(), poris);
2546
2547 // For a relaxed section, we use the current data size. Linker scripts
2548 // get all the input sections, including relaxed one from an output
2549 // section and add them back to them same output section to compute the
2550 // output section size. If we do not account for sizes of relaxed input
2551 // sections, an output section would be incorrectly sized.
2552 off_t offset_in_section = this->current_data_size_for_child();
2553 off_t aligned_offset_in_section = align_address(offset_in_section,
2554 poris->addralign());
2555 this->set_current_data_size_for_child(aligned_offset_in_section
2556 + poris->current_data_size());
2557 }
2558
2559 // Add arbitrary data to an output section by Input_section.
2560
2561 void
2562 Output_section::add_output_section_data(Input_section* inp)
2563 {
2564 if (this->input_sections_.empty())
2565 this->first_input_offset_ = this->current_data_size_for_child();
2566
2567 this->input_sections_.push_back(*inp);
2568
2569 uint64_t addralign = inp->addralign();
2570 if (addralign > this->addralign_)
2571 this->addralign_ = addralign;
2572
2573 inp->set_output_section(this);
2574 }
2575
2576 // Add a merge section to an output section.
2577
2578 void
2579 Output_section::add_output_merge_section(Output_section_data* posd,
2580 bool is_string, uint64_t entsize)
2581 {
2582 Input_section inp(posd, is_string, entsize);
2583 this->add_output_section_data(&inp);
2584 }
2585
2586 // Add an input section to a SHF_MERGE section.
2587
2588 bool
2589 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2590 uint64_t flags, uint64_t entsize,
2591 uint64_t addralign,
2592 bool keeps_input_sections)
2593 {
2594 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2595
2596 // We only merge strings if the alignment is not more than the
2597 // character size. This could be handled, but it's unusual.
2598 if (is_string && addralign > entsize)
2599 return false;
2600
2601 // We cannot restore merged input section states.
2602 gold_assert(this->checkpoint_ == NULL);
2603
2604 // Look up merge sections by required properties.
2605 // Currently, we only invalidate the lookup maps in script processing
2606 // and relaxation. We should not have done either when we reach here.
2607 // So we assume that the lookup maps are valid to simply code.
2608 gold_assert(this->lookup_maps_->is_valid());
2609 Merge_section_properties msp(is_string, entsize, addralign);
2610 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2611 bool is_new = false;
2612 if (pomb != NULL)
2613 {
2614 gold_assert(pomb->is_string() == is_string
2615 && pomb->entsize() == entsize
2616 && pomb->addralign() == addralign);
2617 }
2618 else
2619 {
2620 // Create a new Output_merge_data or Output_merge_string_data.
2621 if (!is_string)
2622 pomb = new Output_merge_data(entsize, addralign);
2623 else
2624 {
2625 switch (entsize)
2626 {
2627 case 1:
2628 pomb = new Output_merge_string<char>(addralign);
2629 break;
2630 case 2:
2631 pomb = new Output_merge_string<uint16_t>(addralign);
2632 break;
2633 case 4:
2634 pomb = new Output_merge_string<uint32_t>(addralign);
2635 break;
2636 default:
2637 return false;
2638 }
2639 }
2640 // If we need to do script processing or relaxation, we need to keep
2641 // the original input sections to rebuild the fast lookup maps.
2642 if (keeps_input_sections)
2643 pomb->set_keeps_input_sections();
2644 is_new = true;
2645 }
2646
2647 if (pomb->add_input_section(object, shndx))
2648 {
2649 // Add new merge section to this output section and link merge
2650 // section properties to new merge section in map.
2651 if (is_new)
2652 {
2653 this->add_output_merge_section(pomb, is_string, entsize);
2654 this->lookup_maps_->add_merge_section(msp, pomb);
2655 }
2656
2657 // Add input section to new merge section and link input section to new
2658 // merge section in map.
2659 this->lookup_maps_->add_merge_input_section(object, shndx, pomb);
2660 return true;
2661 }
2662 else
2663 {
2664 // If add_input_section failed, delete new merge section to avoid
2665 // exporting empty merge sections in Output_section::get_input_section.
2666 if (is_new)
2667 delete pomb;
2668 return false;
2669 }
2670 }
2671
2672 // Build a relaxation map to speed up relaxation of existing input sections.
2673 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2674
2675 void
2676 Output_section::build_relaxation_map(
2677 const Input_section_list& input_sections,
2678 size_t limit,
2679 Relaxation_map* relaxation_map) const
2680 {
2681 for (size_t i = 0; i < limit; ++i)
2682 {
2683 const Input_section& is(input_sections[i]);
2684 if (is.is_input_section() || is.is_relaxed_input_section())
2685 {
2686 Section_id sid(is.relobj(), is.shndx());
2687 (*relaxation_map)[sid] = i;
2688 }
2689 }
2690 }
2691
2692 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2693 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2694 // indices of INPUT_SECTIONS.
2695
2696 void
2697 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2698 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2699 const Relaxation_map& map,
2700 Input_section_list* input_sections)
2701 {
2702 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2703 {
2704 Output_relaxed_input_section* poris = relaxed_sections[i];
2705 Section_id sid(poris->relobj(), poris->shndx());
2706 Relaxation_map::const_iterator p = map.find(sid);
2707 gold_assert(p != map.end());
2708 gold_assert((*input_sections)[p->second].is_input_section());
2709
2710 // Remember section order index of original input section
2711 // if it is set. Copy it to the relaxed input section.
2712 unsigned int soi =
2713 (*input_sections)[p->second].section_order_index();
2714 (*input_sections)[p->second] = Input_section(poris);
2715 (*input_sections)[p->second].set_section_order_index(soi);
2716 }
2717 }
2718
2719 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2720 // is a vector of pointers to Output_relaxed_input_section or its derived
2721 // classes. The relaxed sections must correspond to existing input sections.
2722
2723 void
2724 Output_section::convert_input_sections_to_relaxed_sections(
2725 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2726 {
2727 gold_assert(parameters->target().may_relax());
2728
2729 // We want to make sure that restore_states does not undo the effect of
2730 // this. If there is no checkpoint active, just search the current
2731 // input section list and replace the sections there. If there is
2732 // a checkpoint, also replace the sections there.
2733
2734 // By default, we look at the whole list.
2735 size_t limit = this->input_sections_.size();
2736
2737 if (this->checkpoint_ != NULL)
2738 {
2739 // Replace input sections with relaxed input section in the saved
2740 // copy of the input section list.
2741 if (this->checkpoint_->input_sections_saved())
2742 {
2743 Relaxation_map map;
2744 this->build_relaxation_map(
2745 *(this->checkpoint_->input_sections()),
2746 this->checkpoint_->input_sections()->size(),
2747 &map);
2748 this->convert_input_sections_in_list_to_relaxed_sections(
2749 relaxed_sections,
2750 map,
2751 this->checkpoint_->input_sections());
2752 }
2753 else
2754 {
2755 // We have not copied the input section list yet. Instead, just
2756 // look at the portion that would be saved.
2757 limit = this->checkpoint_->input_sections_size();
2758 }
2759 }
2760
2761 // Convert input sections in input_section_list.
2762 Relaxation_map map;
2763 this->build_relaxation_map(this->input_sections_, limit, &map);
2764 this->convert_input_sections_in_list_to_relaxed_sections(
2765 relaxed_sections,
2766 map,
2767 &this->input_sections_);
2768
2769 // Update fast look-up map.
2770 if (this->lookup_maps_->is_valid())
2771 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2772 {
2773 Output_relaxed_input_section* poris = relaxed_sections[i];
2774 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2775 poris->shndx(), poris);
2776 }
2777 }
2778
2779 // Update the output section flags based on input section flags.
2780
2781 void
2782 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2783 {
2784 // If we created the section with SHF_ALLOC clear, we set the
2785 // address. If we are now setting the SHF_ALLOC flag, we need to
2786 // undo that.
2787 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2788 && (flags & elfcpp::SHF_ALLOC) != 0)
2789 this->mark_address_invalid();
2790
2791 this->flags_ |= (flags
2792 & (elfcpp::SHF_WRITE
2793 | elfcpp::SHF_ALLOC
2794 | elfcpp::SHF_EXECINSTR));
2795
2796 if ((flags & elfcpp::SHF_MERGE) == 0)
2797 this->flags_ &=~ elfcpp::SHF_MERGE;
2798 else
2799 {
2800 if (this->current_data_size_for_child() == 0)
2801 this->flags_ |= elfcpp::SHF_MERGE;
2802 }
2803
2804 if ((flags & elfcpp::SHF_STRINGS) == 0)
2805 this->flags_ &=~ elfcpp::SHF_STRINGS;
2806 else
2807 {
2808 if (this->current_data_size_for_child() == 0)
2809 this->flags_ |= elfcpp::SHF_STRINGS;
2810 }
2811 }
2812
2813 // Find the merge section into which an input section with index SHNDX in
2814 // OBJECT has been added. Return NULL if none found.
2815
2816 Output_section_data*
2817 Output_section::find_merge_section(const Relobj* object,
2818 unsigned int shndx) const
2819 {
2820 if (!this->lookup_maps_->is_valid())
2821 this->build_lookup_maps();
2822 return this->lookup_maps_->find_merge_section(object, shndx);
2823 }
2824
2825 // Build the lookup maps for merge and relaxed sections. This is needs
2826 // to be declared as a const methods so that it is callable with a const
2827 // Output_section pointer. The method only updates states of the maps.
2828
2829 void
2830 Output_section::build_lookup_maps() const
2831 {
2832 this->lookup_maps_->clear();
2833 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2834 p != this->input_sections_.end();
2835 ++p)
2836 {
2837 if (p->is_merge_section())
2838 {
2839 Output_merge_base* pomb = p->output_merge_base();
2840 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
2841 pomb->addralign());
2842 this->lookup_maps_->add_merge_section(msp, pomb);
2843 for (Output_merge_base::Input_sections::const_iterator is =
2844 pomb->input_sections_begin();
2845 is != pomb->input_sections_end();
2846 ++is)
2847 {
2848 const Const_section_id& csid = *is;
2849 this->lookup_maps_->add_merge_input_section(csid.first,
2850 csid.second, pomb);
2851 }
2852
2853 }
2854 else if (p->is_relaxed_input_section())
2855 {
2856 Output_relaxed_input_section* poris = p->relaxed_input_section();
2857 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2858 poris->shndx(), poris);
2859 }
2860 }
2861 }
2862
2863 // Find an relaxed input section corresponding to an input section
2864 // in OBJECT with index SHNDX.
2865
2866 const Output_relaxed_input_section*
2867 Output_section::find_relaxed_input_section(const Relobj* object,
2868 unsigned int shndx) const
2869 {
2870 if (!this->lookup_maps_->is_valid())
2871 this->build_lookup_maps();
2872 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2873 }
2874
2875 // Given an address OFFSET relative to the start of input section
2876 // SHNDX in OBJECT, return whether this address is being included in
2877 // the final link. This should only be called if SHNDX in OBJECT has
2878 // a special mapping.
2879
2880 bool
2881 Output_section::is_input_address_mapped(const Relobj* object,
2882 unsigned int shndx,
2883 off_t offset) const
2884 {
2885 // Look at the Output_section_data_maps first.
2886 const Output_section_data* posd = this->find_merge_section(object, shndx);
2887 if (posd == NULL)
2888 posd = this->find_relaxed_input_section(object, shndx);
2889
2890 if (posd != NULL)
2891 {
2892 section_offset_type output_offset;
2893 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2894 gold_assert(found);
2895 return output_offset != -1;
2896 }
2897
2898 // Fall back to the slow look-up.
2899 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2900 p != this->input_sections_.end();
2901 ++p)
2902 {
2903 section_offset_type output_offset;
2904 if (p->output_offset(object, shndx, offset, &output_offset))
2905 return output_offset != -1;
2906 }
2907
2908 // By default we assume that the address is mapped. This should
2909 // only be called after we have passed all sections to Layout. At
2910 // that point we should know what we are discarding.
2911 return true;
2912 }
2913
2914 // Given an address OFFSET relative to the start of input section
2915 // SHNDX in object OBJECT, return the output offset relative to the
2916 // start of the input section in the output section. This should only
2917 // be called if SHNDX in OBJECT has a special mapping.
2918
2919 section_offset_type
2920 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2921 section_offset_type offset) const
2922 {
2923 // This can only be called meaningfully when we know the data size
2924 // of this.
2925 gold_assert(this->is_data_size_valid());
2926
2927 // Look at the Output_section_data_maps first.
2928 const Output_section_data* posd = this->find_merge_section(object, shndx);
2929 if (posd == NULL)
2930 posd = this->find_relaxed_input_section(object, shndx);
2931 if (posd != NULL)
2932 {
2933 section_offset_type output_offset;
2934 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2935 gold_assert(found);
2936 return output_offset;
2937 }
2938
2939 // Fall back to the slow look-up.
2940 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2941 p != this->input_sections_.end();
2942 ++p)
2943 {
2944 section_offset_type output_offset;
2945 if (p->output_offset(object, shndx, offset, &output_offset))
2946 return output_offset;
2947 }
2948 gold_unreachable();
2949 }
2950
2951 // Return the output virtual address of OFFSET relative to the start
2952 // of input section SHNDX in object OBJECT.
2953
2954 uint64_t
2955 Output_section::output_address(const Relobj* object, unsigned int shndx,
2956 off_t offset) const
2957 {
2958 uint64_t addr = this->address() + this->first_input_offset_;
2959
2960 // Look at the Output_section_data_maps first.
2961 const Output_section_data* posd = this->find_merge_section(object, shndx);
2962 if (posd == NULL)
2963 posd = this->find_relaxed_input_section(object, shndx);
2964 if (posd != NULL && posd->is_address_valid())
2965 {
2966 section_offset_type output_offset;
2967 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2968 gold_assert(found);
2969 return posd->address() + output_offset;
2970 }
2971
2972 // Fall back to the slow look-up.
2973 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2974 p != this->input_sections_.end();
2975 ++p)
2976 {
2977 addr = align_address(addr, p->addralign());
2978 section_offset_type output_offset;
2979 if (p->output_offset(object, shndx, offset, &output_offset))
2980 {
2981 if (output_offset == -1)
2982 return -1ULL;
2983 return addr + output_offset;
2984 }
2985 addr += p->data_size();
2986 }
2987
2988 // If we get here, it means that we don't know the mapping for this
2989 // input section. This might happen in principle if
2990 // add_input_section were called before add_output_section_data.
2991 // But it should never actually happen.
2992
2993 gold_unreachable();
2994 }
2995
2996 // Find the output address of the start of the merged section for
2997 // input section SHNDX in object OBJECT.
2998
2999 bool
3000 Output_section::find_starting_output_address(const Relobj* object,
3001 unsigned int shndx,
3002 uint64_t* paddr) const
3003 {
3004 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3005 // Looking up the merge section map does not always work as we sometimes
3006 // find a merge section without its address set.
3007 uint64_t addr = this->address() + this->first_input_offset_;
3008 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3009 p != this->input_sections_.end();
3010 ++p)
3011 {
3012 addr = align_address(addr, p->addralign());
3013
3014 // It would be nice if we could use the existing output_offset
3015 // method to get the output offset of input offset 0.
3016 // Unfortunately we don't know for sure that input offset 0 is
3017 // mapped at all.
3018 if (p->is_merge_section_for(object, shndx))
3019 {
3020 *paddr = addr;
3021 return true;
3022 }
3023
3024 addr += p->data_size();
3025 }
3026
3027 // We couldn't find a merge output section for this input section.
3028 return false;
3029 }
3030
3031 // Update the data size of an Output_section.
3032
3033 void
3034 Output_section::update_data_size()
3035 {
3036 if (this->input_sections_.empty())
3037 return;
3038
3039 if (this->must_sort_attached_input_sections()
3040 || this->input_section_order_specified())
3041 this->sort_attached_input_sections();
3042
3043 off_t off = this->first_input_offset_;
3044 for (Input_section_list::iterator p = this->input_sections_.begin();
3045 p != this->input_sections_.end();
3046 ++p)
3047 {
3048 off = align_address(off, p->addralign());
3049 off += p->current_data_size();
3050 }
3051
3052 this->set_current_data_size_for_child(off);
3053 }
3054
3055 // Set the data size of an Output_section. This is where we handle
3056 // setting the addresses of any Output_section_data objects.
3057
3058 void
3059 Output_section::set_final_data_size()
3060 {
3061 off_t data_size;
3062
3063 if (this->input_sections_.empty())
3064 data_size = this->current_data_size_for_child();
3065 else
3066 {
3067 if (this->must_sort_attached_input_sections()
3068 || this->input_section_order_specified())
3069 this->sort_attached_input_sections();
3070
3071 uint64_t address = this->address();
3072 off_t startoff = this->offset();
3073 off_t off = startoff + this->first_input_offset_;
3074 for (Input_section_list::iterator p = this->input_sections_.begin();
3075 p != this->input_sections_.end();
3076 ++p)
3077 {
3078 off = align_address(off, p->addralign());
3079 p->set_address_and_file_offset(address + (off - startoff), off,
3080 startoff);
3081 off += p->data_size();
3082 }
3083 data_size = off - startoff;
3084 }
3085
3086 // For full incremental links, we want to allocate some patch space
3087 // in most sections for subsequent incremental updates.
3088 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3089 {
3090 double pct = parameters->options().incremental_patch();
3091 size_t extra = static_cast<size_t>(data_size * pct);
3092 if (this->free_space_fill_ != NULL
3093 && this->free_space_fill_->minimum_hole_size() > extra)
3094 extra = this->free_space_fill_->minimum_hole_size();
3095 off_t new_size = align_address(data_size + extra, this->addralign());
3096 this->patch_space_ = new_size - data_size;
3097 gold_debug(DEBUG_INCREMENTAL,
3098 "set_final_data_size: %08lx + %08lx: section %s",
3099 static_cast<long>(data_size),
3100 static_cast<long>(this->patch_space_),
3101 this->name());
3102 data_size = new_size;
3103 }
3104
3105 this->set_data_size(data_size);
3106 }
3107
3108 // Reset the address and file offset.
3109
3110 void
3111 Output_section::do_reset_address_and_file_offset()
3112 {
3113 // An unallocated section has no address. Forcing this means that
3114 // we don't need special treatment for symbols defined in debug
3115 // sections. We do the same in the constructor. This does not
3116 // apply to NOLOAD sections though.
3117 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3118 this->set_address(0);
3119
3120 for (Input_section_list::iterator p = this->input_sections_.begin();
3121 p != this->input_sections_.end();
3122 ++p)
3123 p->reset_address_and_file_offset();
3124
3125 // Remove any patch space that was added in set_final_data_size.
3126 if (this->patch_space_ > 0)
3127 {
3128 this->set_current_data_size_for_child(this->current_data_size_for_child()
3129 - this->patch_space_);
3130 this->patch_space_ = 0;
3131 }
3132 }
3133
3134 // Return true if address and file offset have the values after reset.
3135
3136 bool
3137 Output_section::do_address_and_file_offset_have_reset_values() const
3138 {
3139 if (this->is_offset_valid())
3140 return false;
3141
3142 // An unallocated section has address 0 after its construction or a reset.
3143 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3144 return this->is_address_valid() && this->address() == 0;
3145 else
3146 return !this->is_address_valid();
3147 }
3148
3149 // Set the TLS offset. Called only for SHT_TLS sections.
3150
3151 void
3152 Output_section::do_set_tls_offset(uint64_t tls_base)
3153 {
3154 this->tls_offset_ = this->address() - tls_base;
3155 }
3156
3157 // In a few cases we need to sort the input sections attached to an
3158 // output section. This is used to implement the type of constructor
3159 // priority ordering implemented by the GNU linker, in which the
3160 // priority becomes part of the section name and the sections are
3161 // sorted by name. We only do this for an output section if we see an
3162 // attached input section matching ".ctors.*", ".dtors.*",
3163 // ".init_array.*" or ".fini_array.*".
3164
3165 class Output_section::Input_section_sort_entry
3166 {
3167 public:
3168 Input_section_sort_entry()
3169 : input_section_(), index_(-1U), section_has_name_(false),
3170 section_name_()
3171 { }
3172
3173 Input_section_sort_entry(const Input_section& input_section,
3174 unsigned int index,
3175 bool must_sort_attached_input_sections)
3176 : input_section_(input_section), index_(index),
3177 section_has_name_(input_section.is_input_section()
3178 || input_section.is_relaxed_input_section())
3179 {
3180 if (this->section_has_name_
3181 && must_sort_attached_input_sections)
3182 {
3183 // This is only called single-threaded from Layout::finalize,
3184 // so it is OK to lock. Unfortunately we have no way to pass
3185 // in a Task token.
3186 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3187 Object* obj = (input_section.is_input_section()
3188 ? input_section.relobj()
3189 : input_section.relaxed_input_section()->relobj());
3190 Task_lock_obj<Object> tl(dummy_task, obj);
3191
3192 // This is a slow operation, which should be cached in
3193 // Layout::layout if this becomes a speed problem.
3194 this->section_name_ = obj->section_name(input_section.shndx());
3195 }
3196 }
3197
3198 // Return the Input_section.
3199 const Input_section&
3200 input_section() const
3201 {
3202 gold_assert(this->index_ != -1U);
3203 return this->input_section_;
3204 }
3205
3206 // The index of this entry in the original list. This is used to
3207 // make the sort stable.
3208 unsigned int
3209 index() const
3210 {
3211 gold_assert(this->index_ != -1U);
3212 return this->index_;
3213 }
3214
3215 // Whether there is a section name.
3216 bool
3217 section_has_name() const
3218 { return this->section_has_name_; }
3219
3220 // The section name.
3221 const std::string&
3222 section_name() const
3223 {
3224 gold_assert(this->section_has_name_);
3225 return this->section_name_;
3226 }
3227
3228 // Return true if the section name has a priority. This is assumed
3229 // to be true if it has a dot after the initial dot.
3230 bool
3231 has_priority() const
3232 {
3233 gold_assert(this->section_has_name_);
3234 return this->section_name_.find('.', 1) != std::string::npos;
3235 }
3236
3237 // Return the priority. Believe it or not, gcc encodes the priority
3238 // differently for .ctors/.dtors and .init_array/.fini_array
3239 // sections.
3240 unsigned int
3241 get_priority() const
3242 {
3243 gold_assert(this->section_has_name_);
3244 bool is_ctors;
3245 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3246 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3247 is_ctors = true;
3248 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3249 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3250 is_ctors = false;
3251 else
3252 return 0;
3253 char* end;
3254 unsigned long prio = strtoul((this->section_name_.c_str()
3255 + (is_ctors ? 7 : 12)),
3256 &end, 10);
3257 if (*end != '\0')
3258 return 0;
3259 else if (is_ctors)
3260 return 65535 - prio;
3261 else
3262 return prio;
3263 }
3264
3265 // Return true if this an input file whose base name matches
3266 // FILE_NAME. The base name must have an extension of ".o", and
3267 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3268 // This is to match crtbegin.o as well as crtbeginS.o without
3269 // getting confused by other possibilities. Overall matching the
3270 // file name this way is a dreadful hack, but the GNU linker does it
3271 // in order to better support gcc, and we need to be compatible.
3272 bool
3273 match_file_name(const char* file_name) const
3274 { return Layout::match_file_name(this->input_section_.relobj(), file_name); }
3275
3276 // Returns 1 if THIS should appear before S in section order, -1 if S
3277 // appears before THIS and 0 if they are not comparable.
3278 int
3279 compare_section_ordering(const Input_section_sort_entry& s) const
3280 {
3281 unsigned int this_secn_index = this->input_section_.section_order_index();
3282 unsigned int s_secn_index = s.input_section().section_order_index();
3283 if (this_secn_index > 0 && s_secn_index > 0)
3284 {
3285 if (this_secn_index < s_secn_index)
3286 return 1;
3287 else if (this_secn_index > s_secn_index)
3288 return -1;
3289 }
3290 return 0;
3291 }
3292
3293 private:
3294 // The Input_section we are sorting.
3295 Input_section input_section_;
3296 // The index of this Input_section in the original list.
3297 unsigned int index_;
3298 // Whether this Input_section has a section name--it won't if this
3299 // is some random Output_section_data.
3300 bool section_has_name_;
3301 // The section name if there is one.
3302 std::string section_name_;
3303 };
3304
3305 // Return true if S1 should come before S2 in the output section.
3306
3307 bool
3308 Output_section::Input_section_sort_compare::operator()(
3309 const Output_section::Input_section_sort_entry& s1,
3310 const Output_section::Input_section_sort_entry& s2) const
3311 {
3312 // crtbegin.o must come first.
3313 bool s1_begin = s1.match_file_name("crtbegin");
3314 bool s2_begin = s2.match_file_name("crtbegin");
3315 if (s1_begin || s2_begin)
3316 {
3317 if (!s1_begin)
3318 return false;
3319 if (!s2_begin)
3320 return true;
3321 return s1.index() < s2.index();
3322 }
3323
3324 // crtend.o must come last.
3325 bool s1_end = s1.match_file_name("crtend");
3326 bool s2_end = s2.match_file_name("crtend");
3327 if (s1_end || s2_end)
3328 {
3329 if (!s1_end)
3330 return true;
3331 if (!s2_end)
3332 return false;
3333 return s1.index() < s2.index();
3334 }
3335
3336 // We sort all the sections with no names to the end.
3337 if (!s1.section_has_name() || !s2.section_has_name())
3338 {
3339 if (s1.section_has_name())
3340 return true;
3341 if (s2.section_has_name())
3342 return false;
3343 return s1.index() < s2.index();
3344 }
3345
3346 // A section with a priority follows a section without a priority.
3347 bool s1_has_priority = s1.has_priority();
3348 bool s2_has_priority = s2.has_priority();
3349 if (s1_has_priority && !s2_has_priority)
3350 return false;
3351 if (!s1_has_priority && s2_has_priority)
3352 return true;
3353
3354 // Check if a section order exists for these sections through a section
3355 // ordering file. If sequence_num is 0, an order does not exist.
3356 int sequence_num = s1.compare_section_ordering(s2);
3357 if (sequence_num != 0)
3358 return sequence_num == 1;
3359
3360 // Otherwise we sort by name.
3361 int compare = s1.section_name().compare(s2.section_name());
3362 if (compare != 0)
3363 return compare < 0;
3364
3365 // Otherwise we keep the input order.
3366 return s1.index() < s2.index();
3367 }
3368
3369 // Return true if S1 should come before S2 in an .init_array or .fini_array
3370 // output section.
3371
3372 bool
3373 Output_section::Input_section_sort_init_fini_compare::operator()(
3374 const Output_section::Input_section_sort_entry& s1,
3375 const Output_section::Input_section_sort_entry& s2) const
3376 {
3377 // We sort all the sections with no names to the end.
3378 if (!s1.section_has_name() || !s2.section_has_name())
3379 {
3380 if (s1.section_has_name())
3381 return true;
3382 if (s2.section_has_name())
3383 return false;
3384 return s1.index() < s2.index();
3385 }
3386
3387 // A section without a priority follows a section with a priority.
3388 // This is the reverse of .ctors and .dtors sections.
3389 bool s1_has_priority = s1.has_priority();
3390 bool s2_has_priority = s2.has_priority();
3391 if (s1_has_priority && !s2_has_priority)
3392 return true;
3393 if (!s1_has_priority && s2_has_priority)
3394 return false;
3395
3396 // .ctors and .dtors sections without priority come after
3397 // .init_array and .fini_array sections without priority.
3398 if (!s1_has_priority
3399 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3400 && s1.section_name() != s2.section_name())
3401 return false;
3402 if (!s2_has_priority
3403 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3404 && s2.section_name() != s1.section_name())
3405 return true;
3406
3407 // Sort by priority if we can.
3408 if (s1_has_priority)
3409 {
3410 unsigned int s1_prio = s1.get_priority();
3411 unsigned int s2_prio = s2.get_priority();
3412 if (s1_prio < s2_prio)
3413 return true;
3414 else if (s1_prio > s2_prio)
3415 return false;
3416 }
3417
3418 // Check if a section order exists for these sections through a section
3419 // ordering file. If sequence_num is 0, an order does not exist.
3420 int sequence_num = s1.compare_section_ordering(s2);
3421 if (sequence_num != 0)
3422 return sequence_num == 1;
3423
3424 // Otherwise we sort by name.
3425 int compare = s1.section_name().compare(s2.section_name());
3426 if (compare != 0)
3427 return compare < 0;
3428
3429 // Otherwise we keep the input order.
3430 return s1.index() < s2.index();
3431 }
3432
3433 // Return true if S1 should come before S2. Sections that do not match
3434 // any pattern in the section ordering file are placed ahead of the sections
3435 // that match some pattern.
3436
3437 bool
3438 Output_section::Input_section_sort_section_order_index_compare::operator()(
3439 const Output_section::Input_section_sort_entry& s1,
3440 const Output_section::Input_section_sort_entry& s2) const
3441 {
3442 unsigned int s1_secn_index = s1.input_section().section_order_index();
3443 unsigned int s2_secn_index = s2.input_section().section_order_index();
3444
3445 // Keep input order if section ordering cannot determine order.
3446 if (s1_secn_index == s2_secn_index)
3447 return s1.index() < s2.index();
3448
3449 return s1_secn_index < s2_secn_index;
3450 }
3451
3452 // This updates the section order index of input sections according to the
3453 // the order specified in the mapping from Section id to order index.
3454
3455 void
3456 Output_section::update_section_layout(
3457 const Section_layout_order* order_map)
3458 {
3459 for (Input_section_list::iterator p = this->input_sections_.begin();
3460 p != this->input_sections_.end();
3461 ++p)
3462 {
3463 if (p->is_input_section()
3464 || p->is_relaxed_input_section())
3465 {
3466 Object* obj = (p->is_input_section()
3467 ? p->relobj()
3468 : p->relaxed_input_section()->relobj());
3469 unsigned int shndx = p->shndx();
3470 Section_layout_order::const_iterator it
3471 = order_map->find(Section_id(obj, shndx));
3472 if (it == order_map->end())
3473 continue;
3474 unsigned int section_order_index = it->second;
3475 if (section_order_index != 0)
3476 {
3477 p->set_section_order_index(section_order_index);
3478 this->set_input_section_order_specified();
3479 }
3480 }
3481 }
3482 }
3483
3484 // Sort the input sections attached to an output section.
3485
3486 void
3487 Output_section::sort_attached_input_sections()
3488 {
3489 if (this->attached_input_sections_are_sorted_)
3490 return;
3491
3492 if (this->checkpoint_ != NULL
3493 && !this->checkpoint_->input_sections_saved())
3494 this->checkpoint_->save_input_sections();
3495
3496 // The only thing we know about an input section is the object and
3497 // the section index. We need the section name. Recomputing this
3498 // is slow but this is an unusual case. If this becomes a speed
3499 // problem we can cache the names as required in Layout::layout.
3500
3501 // We start by building a larger vector holding a copy of each
3502 // Input_section, plus its current index in the list and its name.
3503 std::vector<Input_section_sort_entry> sort_list;
3504
3505 unsigned int i = 0;
3506 for (Input_section_list::iterator p = this->input_sections_.begin();
3507 p != this->input_sections_.end();
3508 ++p, ++i)
3509 sort_list.push_back(Input_section_sort_entry(*p, i,
3510 this->must_sort_attached_input_sections()));
3511
3512 // Sort the input sections.
3513 if (this->must_sort_attached_input_sections())
3514 {
3515 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3516 || this->type() == elfcpp::SHT_INIT_ARRAY
3517 || this->type() == elfcpp::SHT_FINI_ARRAY)
3518 std::sort(sort_list.begin(), sort_list.end(),
3519 Input_section_sort_init_fini_compare());
3520 else
3521 std::sort(sort_list.begin(), sort_list.end(),
3522 Input_section_sort_compare());
3523 }
3524 else
3525 {
3526 gold_assert(this->input_section_order_specified());
3527 std::sort(sort_list.begin(), sort_list.end(),
3528 Input_section_sort_section_order_index_compare());
3529 }
3530
3531 // Copy the sorted input sections back to our list.
3532 this->input_sections_.clear();
3533 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3534 p != sort_list.end();
3535 ++p)
3536 this->input_sections_.push_back(p->input_section());
3537 sort_list.clear();
3538
3539 // Remember that we sorted the input sections, since we might get
3540 // called again.
3541 this->attached_input_sections_are_sorted_ = true;
3542 }
3543
3544 // Write the section header to *OSHDR.
3545
3546 template<int size, bool big_endian>
3547 void
3548 Output_section::write_header(const Layout* layout,
3549 const Stringpool* secnamepool,
3550 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3551 {
3552 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3553 oshdr->put_sh_type(this->type_);
3554
3555 elfcpp::Elf_Xword flags = this->flags_;
3556 if (this->info_section_ != NULL && this->info_uses_section_index_)
3557 flags |= elfcpp::SHF_INFO_LINK;
3558 oshdr->put_sh_flags(flags);
3559
3560 oshdr->put_sh_addr(this->address());
3561 oshdr->put_sh_offset(this->offset());
3562 oshdr->put_sh_size(this->data_size());
3563 if (this->link_section_ != NULL)
3564 oshdr->put_sh_link(this->link_section_->out_shndx());
3565 else if (this->should_link_to_symtab_)
3566 oshdr->put_sh_link(layout->symtab_section_shndx());
3567 else if (this->should_link_to_dynsym_)
3568 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3569 else
3570 oshdr->put_sh_link(this->link_);
3571
3572 elfcpp::Elf_Word info;
3573 if (this->info_section_ != NULL)
3574 {
3575 if (this->info_uses_section_index_)
3576 info = this->info_section_->out_shndx();
3577 else
3578 info = this->info_section_->symtab_index();
3579 }
3580 else if (this->info_symndx_ != NULL)
3581 info = this->info_symndx_->symtab_index();
3582 else
3583 info = this->info_;
3584 oshdr->put_sh_info(info);
3585
3586 oshdr->put_sh_addralign(this->addralign_);
3587 oshdr->put_sh_entsize(this->entsize_);
3588 }
3589
3590 // Write out the data. For input sections the data is written out by
3591 // Object::relocate, but we have to handle Output_section_data objects
3592 // here.
3593
3594 void
3595 Output_section::do_write(Output_file* of)
3596 {
3597 gold_assert(!this->requires_postprocessing());
3598
3599 // If the target performs relaxation, we delay filler generation until now.
3600 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3601
3602 off_t output_section_file_offset = this->offset();
3603 for (Fill_list::iterator p = this->fills_.begin();
3604 p != this->fills_.end();
3605 ++p)
3606 {
3607 std::string fill_data(parameters->target().code_fill(p->length()));
3608 of->write(output_section_file_offset + p->section_offset(),
3609 fill_data.data(), fill_data.size());
3610 }
3611
3612 off_t off = this->offset() + this->first_input_offset_;
3613 for (Input_section_list::iterator p = this->input_sections_.begin();
3614 p != this->input_sections_.end();
3615 ++p)
3616 {
3617 off_t aligned_off = align_address(off, p->addralign());
3618 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3619 {
3620 size_t fill_len = aligned_off - off;
3621 std::string fill_data(parameters->target().code_fill(fill_len));
3622 of->write(off, fill_data.data(), fill_data.size());
3623 }
3624
3625 p->write(of);
3626 off = aligned_off + p->data_size();
3627 }
3628
3629 // For incremental links, fill in unused chunks in debug sections
3630 // with dummy compilation unit headers.
3631 if (this->free_space_fill_ != NULL)
3632 {
3633 for (Free_list::Const_iterator p = this->free_list_.begin();
3634 p != this->free_list_.end();
3635 ++p)
3636 {
3637 off_t off = p->start_;
3638 size_t len = p->end_ - off;
3639 this->free_space_fill_->write(of, this->offset() + off, len);
3640 }
3641 if (this->patch_space_ > 0)
3642 {
3643 off_t off = this->current_data_size_for_child() - this->patch_space_;
3644 this->free_space_fill_->write(of, this->offset() + off,
3645 this->patch_space_);
3646 }
3647 }
3648 }
3649
3650 // If a section requires postprocessing, create the buffer to use.
3651
3652 void
3653 Output_section::create_postprocessing_buffer()
3654 {
3655 gold_assert(this->requires_postprocessing());
3656
3657 if (this->postprocessing_buffer_ != NULL)
3658 return;
3659
3660 if (!this->input_sections_.empty())
3661 {
3662 off_t off = this->first_input_offset_;
3663 for (Input_section_list::iterator p = this->input_sections_.begin();
3664 p != this->input_sections_.end();
3665 ++p)
3666 {
3667 off = align_address(off, p->addralign());
3668 p->finalize_data_size();
3669 off += p->data_size();
3670 }
3671 this->set_current_data_size_for_child(off);
3672 }
3673
3674 off_t buffer_size = this->current_data_size_for_child();
3675 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3676 }
3677
3678 // Write all the data of an Output_section into the postprocessing
3679 // buffer. This is used for sections which require postprocessing,
3680 // such as compression. Input sections are handled by
3681 // Object::Relocate.
3682
3683 void
3684 Output_section::write_to_postprocessing_buffer()
3685 {
3686 gold_assert(this->requires_postprocessing());
3687
3688 // If the target performs relaxation, we delay filler generation until now.
3689 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3690
3691 unsigned char* buffer = this->postprocessing_buffer();
3692 for (Fill_list::iterator p = this->fills_.begin();
3693 p != this->fills_.end();
3694 ++p)
3695 {
3696 std::string fill_data(parameters->target().code_fill(p->length()));
3697 memcpy(buffer + p->section_offset(), fill_data.data(),
3698 fill_data.size());
3699 }
3700
3701 off_t off = this->first_input_offset_;
3702 for (Input_section_list::iterator p = this->input_sections_.begin();
3703 p != this->input_sections_.end();
3704 ++p)
3705 {
3706 off_t aligned_off = align_address(off, p->addralign());
3707 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3708 {
3709 size_t fill_len = aligned_off - off;
3710 std::string fill_data(parameters->target().code_fill(fill_len));
3711 memcpy(buffer + off, fill_data.data(), fill_data.size());
3712 }
3713
3714 p->write_to_buffer(buffer + aligned_off);
3715 off = aligned_off + p->data_size();
3716 }
3717 }
3718
3719 // Get the input sections for linker script processing. We leave
3720 // behind the Output_section_data entries. Note that this may be
3721 // slightly incorrect for merge sections. We will leave them behind,
3722 // but it is possible that the script says that they should follow
3723 // some other input sections, as in:
3724 // .rodata { *(.rodata) *(.rodata.cst*) }
3725 // For that matter, we don't handle this correctly:
3726 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3727 // With luck this will never matter.
3728
3729 uint64_t
3730 Output_section::get_input_sections(
3731 uint64_t address,
3732 const std::string& fill,
3733 std::list<Input_section>* input_sections)
3734 {
3735 if (this->checkpoint_ != NULL
3736 && !this->checkpoint_->input_sections_saved())
3737 this->checkpoint_->save_input_sections();
3738
3739 // Invalidate fast look-up maps.
3740 this->lookup_maps_->invalidate();
3741
3742 uint64_t orig_address = address;
3743
3744 address = align_address(address, this->addralign());
3745
3746 Input_section_list remaining;
3747 for (Input_section_list::iterator p = this->input_sections_.begin();
3748 p != this->input_sections_.end();
3749 ++p)
3750 {
3751 if (p->is_input_section()
3752 || p->is_relaxed_input_section()
3753 || p->is_merge_section())
3754 input_sections->push_back(*p);
3755 else
3756 {
3757 uint64_t aligned_address = align_address(address, p->addralign());
3758 if (aligned_address != address && !fill.empty())
3759 {
3760 section_size_type length =
3761 convert_to_section_size_type(aligned_address - address);
3762 std::string this_fill;
3763 this_fill.reserve(length);
3764 while (this_fill.length() + fill.length() <= length)
3765 this_fill += fill;
3766 if (this_fill.length() < length)
3767 this_fill.append(fill, 0, length - this_fill.length());
3768
3769 Output_section_data* posd = new Output_data_const(this_fill, 0);
3770 remaining.push_back(Input_section(posd));
3771 }
3772 address = aligned_address;
3773
3774 remaining.push_back(*p);
3775
3776 p->finalize_data_size();
3777 address += p->data_size();
3778 }
3779 }
3780
3781 this->input_sections_.swap(remaining);
3782 this->first_input_offset_ = 0;
3783
3784 uint64_t data_size = address - orig_address;
3785 this->set_current_data_size_for_child(data_size);
3786 return data_size;
3787 }
3788
3789 // Add a script input section. SIS is an Output_section::Input_section,
3790 // which can be either a plain input section or a special input section like
3791 // a relaxed input section. For a special input section, its size must be
3792 // finalized.
3793
3794 void
3795 Output_section::add_script_input_section(const Input_section& sis)
3796 {
3797 uint64_t data_size = sis.data_size();
3798 uint64_t addralign = sis.addralign();
3799 if (addralign > this->addralign_)
3800 this->addralign_ = addralign;
3801
3802 off_t offset_in_section = this->current_data_size_for_child();
3803 off_t aligned_offset_in_section = align_address(offset_in_section,
3804 addralign);
3805
3806 this->set_current_data_size_for_child(aligned_offset_in_section
3807 + data_size);
3808
3809 this->input_sections_.push_back(sis);
3810
3811 // Update fast lookup maps if necessary.
3812 if (this->lookup_maps_->is_valid())
3813 {
3814 if (sis.is_merge_section())
3815 {
3816 Output_merge_base* pomb = sis.output_merge_base();
3817 Merge_section_properties msp(pomb->is_string(), pomb->entsize(),
3818 pomb->addralign());
3819 this->lookup_maps_->add_merge_section(msp, pomb);
3820 for (Output_merge_base::Input_sections::const_iterator p =
3821 pomb->input_sections_begin();
3822 p != pomb->input_sections_end();
3823 ++p)
3824 this->lookup_maps_->add_merge_input_section(p->first, p->second,
3825 pomb);
3826 }
3827 else if (sis.is_relaxed_input_section())
3828 {
3829 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3830 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3831 poris->shndx(), poris);
3832 }
3833 }
3834 }
3835
3836 // Save states for relaxation.
3837
3838 void
3839 Output_section::save_states()
3840 {
3841 gold_assert(this->checkpoint_ == NULL);
3842 Checkpoint_output_section* checkpoint =
3843 new Checkpoint_output_section(this->addralign_, this->flags_,
3844 this->input_sections_,
3845 this->first_input_offset_,
3846 this->attached_input_sections_are_sorted_);
3847 this->checkpoint_ = checkpoint;
3848 gold_assert(this->fills_.empty());
3849 }
3850
3851 void
3852 Output_section::discard_states()
3853 {
3854 gold_assert(this->checkpoint_ != NULL);
3855 delete this->checkpoint_;
3856 this->checkpoint_ = NULL;
3857 gold_assert(this->fills_.empty());
3858
3859 // Simply invalidate the fast lookup maps since we do not keep
3860 // track of them.
3861 this->lookup_maps_->invalidate();
3862 }
3863
3864 void
3865 Output_section::restore_states()
3866 {
3867 gold_assert(this->checkpoint_ != NULL);
3868 Checkpoint_output_section* checkpoint = this->checkpoint_;
3869
3870 this->addralign_ = checkpoint->addralign();
3871 this->flags_ = checkpoint->flags();
3872 this->first_input_offset_ = checkpoint->first_input_offset();
3873
3874 if (!checkpoint->input_sections_saved())
3875 {
3876 // If we have not copied the input sections, just resize it.
3877 size_t old_size = checkpoint->input_sections_size();
3878 gold_assert(this->input_sections_.size() >= old_size);
3879 this->input_sections_.resize(old_size);
3880 }
3881 else
3882 {
3883 // We need to copy the whole list. This is not efficient for
3884 // extremely large output with hundreads of thousands of input
3885 // objects. We may need to re-think how we should pass sections
3886 // to scripts.
3887 this->input_sections_ = *checkpoint->input_sections();
3888 }
3889
3890 this->attached_input_sections_are_sorted_ =
3891 checkpoint->attached_input_sections_are_sorted();
3892
3893 // Simply invalidate the fast lookup maps since we do not keep
3894 // track of them.
3895 this->lookup_maps_->invalidate();
3896 }
3897
3898 // Update the section offsets of input sections in this. This is required if
3899 // relaxation causes some input sections to change sizes.
3900
3901 void
3902 Output_section::adjust_section_offsets()
3903 {
3904 if (!this->section_offsets_need_adjustment_)
3905 return;
3906
3907 off_t off = 0;
3908 for (Input_section_list::iterator p = this->input_sections_.begin();
3909 p != this->input_sections_.end();
3910 ++p)
3911 {
3912 off = align_address(off, p->addralign());
3913 if (p->is_input_section())
3914 p->relobj()->set_section_offset(p->shndx(), off);
3915 off += p->data_size();
3916 }
3917
3918 this->section_offsets_need_adjustment_ = false;
3919 }
3920
3921 // Print to the map file.
3922
3923 void
3924 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3925 {
3926 mapfile->print_output_section(this);
3927
3928 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3929 p != this->input_sections_.end();
3930 ++p)
3931 p->print_to_mapfile(mapfile);
3932 }
3933
3934 // Print stats for merge sections to stderr.
3935
3936 void
3937 Output_section::print_merge_stats()
3938 {
3939 Input_section_list::iterator p;
3940 for (p = this->input_sections_.begin();
3941 p != this->input_sections_.end();
3942 ++p)
3943 p->print_merge_stats(this->name_);
3944 }
3945
3946 // Set a fixed layout for the section. Used for incremental update links.
3947
3948 void
3949 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3950 off_t sh_size, uint64_t sh_addralign)
3951 {
3952 this->addralign_ = sh_addralign;
3953 this->set_current_data_size(sh_size);
3954 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3955 this->set_address(sh_addr);
3956 this->set_file_offset(sh_offset);
3957 this->finalize_data_size();
3958 this->free_list_.init(sh_size, false);
3959 this->has_fixed_layout_ = true;
3960 }
3961
3962 // Reserve space within the fixed layout for the section. Used for
3963 // incremental update links.
3964
3965 void
3966 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
3967 {
3968 this->free_list_.remove(sh_offset, sh_offset + sh_size);
3969 }
3970
3971 // Allocate space from the free list for the section. Used for
3972 // incremental update links.
3973
3974 off_t
3975 Output_section::allocate(off_t len, uint64_t addralign)
3976 {
3977 return this->free_list_.allocate(len, addralign, 0);
3978 }
3979
3980 // Output segment methods.
3981
3982 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
3983 : vaddr_(0),
3984 paddr_(0),
3985 memsz_(0),
3986 max_align_(0),
3987 min_p_align_(0),
3988 offset_(0),
3989 filesz_(0),
3990 type_(type),
3991 flags_(flags),
3992 is_max_align_known_(false),
3993 are_addresses_set_(false),
3994 is_large_data_segment_(false)
3995 {
3996 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
3997 // the flags.
3998 if (type == elfcpp::PT_TLS)
3999 this->flags_ = elfcpp::PF_R;
4000 }
4001
4002 // Add an Output_section to a PT_LOAD Output_segment.
4003
4004 void
4005 Output_segment::add_output_section_to_load(Layout* layout,
4006 Output_section* os,
4007 elfcpp::Elf_Word seg_flags)
4008 {
4009 gold_assert(this->type() == elfcpp::PT_LOAD);
4010 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4011 gold_assert(!this->is_max_align_known_);
4012 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4013
4014 this->update_flags_for_output_section(seg_flags);
4015
4016 // We don't want to change the ordering if we have a linker script
4017 // with a SECTIONS clause.
4018 Output_section_order order = os->order();
4019 if (layout->script_options()->saw_sections_clause())
4020 order = static_cast<Output_section_order>(0);
4021 else
4022 gold_assert(order != ORDER_INVALID);
4023
4024 this->output_lists_[order].push_back(os);
4025 }
4026
4027 // Add an Output_section to a non-PT_LOAD Output_segment.
4028
4029 void
4030 Output_segment::add_output_section_to_nonload(Output_section* os,
4031 elfcpp::Elf_Word seg_flags)
4032 {
4033 gold_assert(this->type() != elfcpp::PT_LOAD);
4034 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4035 gold_assert(!this->is_max_align_known_);
4036
4037 this->update_flags_for_output_section(seg_flags);
4038
4039 this->output_lists_[0].push_back(os);
4040 }
4041
4042 // Remove an Output_section from this segment. It is an error if it
4043 // is not present.
4044
4045 void
4046 Output_segment::remove_output_section(Output_section* os)
4047 {
4048 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4049 {
4050 Output_data_list* pdl = &this->output_lists_[i];
4051 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4052 {
4053 if (*p == os)
4054 {
4055 pdl->erase(p);
4056 return;
4057 }
4058 }
4059 }
4060 gold_unreachable();
4061 }
4062
4063 // Add an Output_data (which need not be an Output_section) to the
4064 // start of a segment.
4065
4066 void
4067 Output_segment::add_initial_output_data(Output_data* od)
4068 {
4069 gold_assert(!this->is_max_align_known_);
4070 Output_data_list::iterator p = this->output_lists_[0].begin();
4071 this->output_lists_[0].insert(p, od);
4072 }
4073
4074 // Return true if this segment has any sections which hold actual
4075 // data, rather than being a BSS section.
4076
4077 bool
4078 Output_segment::has_any_data_sections() const
4079 {
4080 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4081 {
4082 const Output_data_list* pdl = &this->output_lists_[i];
4083 for (Output_data_list::const_iterator p = pdl->begin();
4084 p != pdl->end();
4085 ++p)
4086 {
4087 if (!(*p)->is_section())
4088 return true;
4089 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4090 return true;
4091 }
4092 }
4093 return false;
4094 }
4095
4096 // Return whether the first data section (not counting TLS sections)
4097 // is a relro section.
4098
4099 bool
4100 Output_segment::is_first_section_relro() const
4101 {
4102 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4103 {
4104 if (i == static_cast<int>(ORDER_TLS_DATA)
4105 || i == static_cast<int>(ORDER_TLS_BSS))
4106 continue;
4107 const Output_data_list* pdl = &this->output_lists_[i];
4108 if (!pdl->empty())
4109 {
4110 Output_data* p = pdl->front();
4111 return p->is_section() && p->output_section()->is_relro();
4112 }
4113 }
4114 return false;
4115 }
4116
4117 // Return the maximum alignment of the Output_data in Output_segment.
4118
4119 uint64_t
4120 Output_segment::maximum_alignment()
4121 {
4122 if (!this->is_max_align_known_)
4123 {
4124 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4125 {
4126 const Output_data_list* pdl = &this->output_lists_[i];
4127 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4128 if (addralign > this->max_align_)
4129 this->max_align_ = addralign;
4130 }
4131 this->is_max_align_known_ = true;
4132 }
4133
4134 return this->max_align_;
4135 }
4136
4137 // Return the maximum alignment of a list of Output_data.
4138
4139 uint64_t
4140 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4141 {
4142 uint64_t ret = 0;
4143 for (Output_data_list::const_iterator p = pdl->begin();
4144 p != pdl->end();
4145 ++p)
4146 {
4147 uint64_t addralign = (*p)->addralign();
4148 if (addralign > ret)
4149 ret = addralign;
4150 }
4151 return ret;
4152 }
4153
4154 // Return whether this segment has any dynamic relocs.
4155
4156 bool
4157 Output_segment::has_dynamic_reloc() const
4158 {
4159 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4160 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4161 return true;
4162 return false;
4163 }
4164
4165 // Return whether this Output_data_list has any dynamic relocs.
4166
4167 bool
4168 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4169 {
4170 for (Output_data_list::const_iterator p = pdl->begin();
4171 p != pdl->end();
4172 ++p)
4173 if ((*p)->has_dynamic_reloc())
4174 return true;
4175 return false;
4176 }
4177
4178 // Set the section addresses for an Output_segment. If RESET is true,
4179 // reset the addresses first. ADDR is the address and *POFF is the
4180 // file offset. Set the section indexes starting with *PSHNDX.
4181 // INCREASE_RELRO is the size of the portion of the first non-relro
4182 // section that should be included in the PT_GNU_RELRO segment.
4183 // If this segment has relro sections, and has been aligned for
4184 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4185 // the immediately following segment. Update *HAS_RELRO, *POFF,
4186 // and *PSHNDX.
4187
4188 uint64_t
4189 Output_segment::set_section_addresses(Layout* layout, bool reset,
4190 uint64_t addr,
4191 unsigned int* increase_relro,
4192 bool* has_relro,
4193 off_t* poff,
4194 unsigned int* pshndx)
4195 {
4196 gold_assert(this->type_ == elfcpp::PT_LOAD);
4197
4198 uint64_t last_relro_pad = 0;
4199 off_t orig_off = *poff;
4200
4201 bool in_tls = false;
4202
4203 // If we have relro sections, we need to pad forward now so that the
4204 // relro sections plus INCREASE_RELRO end on a common page boundary.
4205 if (parameters->options().relro()
4206 && this->is_first_section_relro()
4207 && (!this->are_addresses_set_ || reset))
4208 {
4209 uint64_t relro_size = 0;
4210 off_t off = *poff;
4211 uint64_t max_align = 0;
4212 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4213 {
4214 Output_data_list* pdl = &this->output_lists_[i];
4215 Output_data_list::iterator p;
4216 for (p = pdl->begin(); p != pdl->end(); ++p)
4217 {
4218 if (!(*p)->is_section())
4219 break;
4220 uint64_t align = (*p)->addralign();
4221 if (align > max_align)
4222 max_align = align;
4223 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4224 in_tls = true;
4225 else if (in_tls)
4226 {
4227 // Align the first non-TLS section to the alignment
4228 // of the TLS segment.
4229 align = max_align;
4230 in_tls = false;
4231 }
4232 relro_size = align_address(relro_size, align);
4233 // Ignore the size of the .tbss section.
4234 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4235 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4236 continue;
4237 if ((*p)->is_address_valid())
4238 relro_size += (*p)->data_size();
4239 else
4240 {
4241 // FIXME: This could be faster.
4242 (*p)->set_address_and_file_offset(addr + relro_size,
4243 off + relro_size);
4244 relro_size += (*p)->data_size();
4245 (*p)->reset_address_and_file_offset();
4246 }
4247 }
4248 if (p != pdl->end())
4249 break;
4250 }
4251 relro_size += *increase_relro;
4252 // Pad the total relro size to a multiple of the maximum
4253 // section alignment seen.
4254 uint64_t aligned_size = align_address(relro_size, max_align);
4255 // Note the amount of padding added after the last relro section.
4256 last_relro_pad = aligned_size - relro_size;
4257 *has_relro = true;
4258
4259 uint64_t page_align = parameters->target().common_pagesize();
4260
4261 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4262 uint64_t desired_align = page_align - (aligned_size % page_align);
4263 if (desired_align < *poff % page_align)
4264 *poff += page_align - *poff % page_align;
4265 *poff += desired_align - *poff % page_align;
4266 addr += *poff - orig_off;
4267 orig_off = *poff;
4268 }
4269
4270 if (!reset && this->are_addresses_set_)
4271 {
4272 gold_assert(this->paddr_ == addr);
4273 addr = this->vaddr_;
4274 }
4275 else
4276 {
4277 this->vaddr_ = addr;
4278 this->paddr_ = addr;
4279 this->are_addresses_set_ = true;
4280 }
4281
4282 in_tls = false;
4283
4284 this->offset_ = orig_off;
4285
4286 off_t off = 0;
4287 uint64_t ret;
4288 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4289 {
4290 if (i == static_cast<int>(ORDER_RELRO_LAST))
4291 {
4292 *poff += last_relro_pad;
4293 addr += last_relro_pad;
4294 if (this->output_lists_[i].empty())
4295 {
4296 // If there is nothing in the ORDER_RELRO_LAST list,
4297 // the padding will occur at the end of the relro
4298 // segment, and we need to add it to *INCREASE_RELRO.
4299 *increase_relro += last_relro_pad;
4300 }
4301 }
4302 addr = this->set_section_list_addresses(layout, reset,
4303 &this->output_lists_[i],
4304 addr, poff, pshndx, &in_tls);
4305 if (i < static_cast<int>(ORDER_SMALL_BSS))
4306 {
4307 this->filesz_ = *poff - orig_off;
4308 off = *poff;
4309 }
4310
4311 ret = addr;
4312 }
4313
4314 // If the last section was a TLS section, align upward to the
4315 // alignment of the TLS segment, so that the overall size of the TLS
4316 // segment is aligned.
4317 if (in_tls)
4318 {
4319 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4320 *poff = align_address(*poff, segment_align);
4321 }
4322
4323 this->memsz_ = *poff - orig_off;
4324
4325 // Ignore the file offset adjustments made by the BSS Output_data
4326 // objects.
4327 *poff = off;
4328
4329 return ret;
4330 }
4331
4332 // Set the addresses and file offsets in a list of Output_data
4333 // structures.
4334
4335 uint64_t
4336 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4337 Output_data_list* pdl,
4338 uint64_t addr, off_t* poff,
4339 unsigned int* pshndx,
4340 bool* in_tls)
4341 {
4342 off_t startoff = *poff;
4343 // For incremental updates, we may allocate non-fixed sections from
4344 // free space in the file. This keeps track of the high-water mark.
4345 off_t maxoff = startoff;
4346
4347 off_t off = startoff;
4348 for (Output_data_list::iterator p = pdl->begin();
4349 p != pdl->end();
4350 ++p)
4351 {
4352 if (reset)
4353 (*p)->reset_address_and_file_offset();
4354
4355 // When doing an incremental update or when using a linker script,
4356 // the section will most likely already have an address.
4357 if (!(*p)->is_address_valid())
4358 {
4359 uint64_t align = (*p)->addralign();
4360
4361 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4362 {
4363 // Give the first TLS section the alignment of the
4364 // entire TLS segment. Otherwise the TLS segment as a
4365 // whole may be misaligned.
4366 if (!*in_tls)
4367 {
4368 Output_segment* tls_segment = layout->tls_segment();
4369 gold_assert(tls_segment != NULL);
4370 uint64_t segment_align = tls_segment->maximum_alignment();
4371 gold_assert(segment_align >= align);
4372 align = segment_align;
4373
4374 *in_tls = true;
4375 }
4376 }
4377 else
4378 {
4379 // If this is the first section after the TLS segment,
4380 // align it to at least the alignment of the TLS
4381 // segment, so that the size of the overall TLS segment
4382 // is aligned.
4383 if (*in_tls)
4384 {
4385 uint64_t segment_align =
4386 layout->tls_segment()->maximum_alignment();
4387 if (segment_align > align)
4388 align = segment_align;
4389
4390 *in_tls = false;
4391 }
4392 }
4393
4394 if (!parameters->incremental_update())
4395 {
4396 off = align_address(off, align);
4397 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4398 }
4399 else
4400 {
4401 // Incremental update: allocate file space from free list.
4402 (*p)->pre_finalize_data_size();
4403 off_t current_size = (*p)->current_data_size();
4404 off = layout->allocate(current_size, align, startoff);
4405 if (off == -1)
4406 {
4407 gold_assert((*p)->output_section() != NULL);
4408 gold_fallback(_("out of patch space for section %s; "
4409 "relink with --incremental-full"),
4410 (*p)->output_section()->name());
4411 }
4412 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4413 if ((*p)->data_size() > current_size)
4414 {
4415 gold_assert((*p)->output_section() != NULL);
4416 gold_fallback(_("%s: section changed size; "
4417 "relink with --incremental-full"),
4418 (*p)->output_section()->name());
4419 }
4420 }
4421 }
4422 else if (parameters->incremental_update())
4423 {
4424 // For incremental updates, use the fixed offset for the
4425 // high-water mark computation.
4426 off = (*p)->offset();
4427 }
4428 else
4429 {
4430 // The script may have inserted a skip forward, but it
4431 // better not have moved backward.
4432 if ((*p)->address() >= addr + (off - startoff))
4433 off += (*p)->address() - (addr + (off - startoff));
4434 else
4435 {
4436 if (!layout->script_options()->saw_sections_clause())
4437 gold_unreachable();
4438 else
4439 {
4440 Output_section* os = (*p)->output_section();
4441
4442 // Cast to unsigned long long to avoid format warnings.
4443 unsigned long long previous_dot =
4444 static_cast<unsigned long long>(addr + (off - startoff));
4445 unsigned long long dot =
4446 static_cast<unsigned long long>((*p)->address());
4447
4448 if (os == NULL)
4449 gold_error(_("dot moves backward in linker script "
4450 "from 0x%llx to 0x%llx"), previous_dot, dot);
4451 else
4452 gold_error(_("address of section '%s' moves backward "
4453 "from 0x%llx to 0x%llx"),
4454 os->name(), previous_dot, dot);
4455 }
4456 }
4457 (*p)->set_file_offset(off);
4458 (*p)->finalize_data_size();
4459 }
4460
4461 if (parameters->incremental_update())
4462 gold_debug(DEBUG_INCREMENTAL,
4463 "set_section_list_addresses: %08lx %08lx %s",
4464 static_cast<long>(off),
4465 static_cast<long>((*p)->data_size()),
4466 ((*p)->output_section() != NULL
4467 ? (*p)->output_section()->name() : "(special)"));
4468
4469 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4470 // section. Such a section does not affect the size of a
4471 // PT_LOAD segment.
4472 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4473 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4474 off += (*p)->data_size();
4475
4476 if (off > maxoff)
4477 maxoff = off;
4478
4479 if ((*p)->is_section())
4480 {
4481 (*p)->set_out_shndx(*pshndx);
4482 ++*pshndx;
4483 }
4484 }
4485
4486 *poff = maxoff;
4487 return addr + (maxoff - startoff);
4488 }
4489
4490 // For a non-PT_LOAD segment, set the offset from the sections, if
4491 // any. Add INCREASE to the file size and the memory size.
4492
4493 void
4494 Output_segment::set_offset(unsigned int increase)
4495 {
4496 gold_assert(this->type_ != elfcpp::PT_LOAD);
4497
4498 gold_assert(!this->are_addresses_set_);
4499
4500 // A non-load section only uses output_lists_[0].
4501
4502 Output_data_list* pdl = &this->output_lists_[0];
4503
4504 if (pdl->empty())
4505 {
4506 gold_assert(increase == 0);
4507 this->vaddr_ = 0;
4508 this->paddr_ = 0;
4509 this->are_addresses_set_ = true;
4510 this->memsz_ = 0;
4511 this->min_p_align_ = 0;
4512 this->offset_ = 0;
4513 this->filesz_ = 0;
4514 return;
4515 }
4516
4517 // Find the first and last section by address.
4518 const Output_data* first = NULL;
4519 const Output_data* last_data = NULL;
4520 const Output_data* last_bss = NULL;
4521 for (Output_data_list::const_iterator p = pdl->begin();
4522 p != pdl->end();
4523 ++p)
4524 {
4525 if (first == NULL
4526 || (*p)->address() < first->address()
4527 || ((*p)->address() == first->address()
4528 && (*p)->data_size() < first->data_size()))
4529 first = *p;
4530 const Output_data** plast;
4531 if ((*p)->is_section()
4532 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4533 plast = &last_bss;
4534 else
4535 plast = &last_data;
4536 if (*plast == NULL
4537 || (*p)->address() > (*plast)->address()
4538 || ((*p)->address() == (*plast)->address()
4539 && (*p)->data_size() > (*plast)->data_size()))
4540 *plast = *p;
4541 }
4542
4543 this->vaddr_ = first->address();
4544 this->paddr_ = (first->has_load_address()
4545 ? first->load_address()
4546 : this->vaddr_);
4547 this->are_addresses_set_ = true;
4548 this->offset_ = first->offset();
4549
4550 if (last_data == NULL)
4551 this->filesz_ = 0;
4552 else
4553 this->filesz_ = (last_data->address()
4554 + last_data->data_size()
4555 - this->vaddr_);
4556
4557 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4558 this->memsz_ = (last->address()
4559 + last->data_size()
4560 - this->vaddr_);
4561
4562 this->filesz_ += increase;
4563 this->memsz_ += increase;
4564
4565 // If this is a RELRO segment, verify that the segment ends at a
4566 // page boundary.
4567 if (this->type_ == elfcpp::PT_GNU_RELRO)
4568 {
4569 uint64_t page_align = parameters->target().common_pagesize();
4570 uint64_t segment_end = this->vaddr_ + this->memsz_;
4571 if (parameters->incremental_update())
4572 {
4573 // The INCREASE_RELRO calculation is bypassed for an incremental
4574 // update, so we need to adjust the segment size manually here.
4575 segment_end = align_address(segment_end, page_align);
4576 this->memsz_ = segment_end - this->vaddr_;
4577 }
4578 else
4579 gold_assert(segment_end == align_address(segment_end, page_align));
4580 }
4581
4582 // If this is a TLS segment, align the memory size. The code in
4583 // set_section_list ensures that the section after the TLS segment
4584 // is aligned to give us room.
4585 if (this->type_ == elfcpp::PT_TLS)
4586 {
4587 uint64_t segment_align = this->maximum_alignment();
4588 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4589 this->memsz_ = align_address(this->memsz_, segment_align);
4590 }
4591 }
4592
4593 // Set the TLS offsets of the sections in the PT_TLS segment.
4594
4595 void
4596 Output_segment::set_tls_offsets()
4597 {
4598 gold_assert(this->type_ == elfcpp::PT_TLS);
4599
4600 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4601 p != this->output_lists_[0].end();
4602 ++p)
4603 (*p)->set_tls_offset(this->vaddr_);
4604 }
4605
4606 // Return the load address of the first section.
4607
4608 uint64_t
4609 Output_segment::first_section_load_address() const
4610 {
4611 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4612 {
4613 const Output_data_list* pdl = &this->output_lists_[i];
4614 for (Output_data_list::const_iterator p = pdl->begin();
4615 p != pdl->end();
4616 ++p)
4617 {
4618 if ((*p)->is_section())
4619 return ((*p)->has_load_address()
4620 ? (*p)->load_address()
4621 : (*p)->address());
4622 }
4623 }
4624 gold_unreachable();
4625 }
4626
4627 // Return the number of Output_sections in an Output_segment.
4628
4629 unsigned int
4630 Output_segment::output_section_count() const
4631 {
4632 unsigned int ret = 0;
4633 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4634 ret += this->output_section_count_list(&this->output_lists_[i]);
4635 return ret;
4636 }
4637
4638 // Return the number of Output_sections in an Output_data_list.
4639
4640 unsigned int
4641 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4642 {
4643 unsigned int count = 0;
4644 for (Output_data_list::const_iterator p = pdl->begin();
4645 p != pdl->end();
4646 ++p)
4647 {
4648 if ((*p)->is_section())
4649 ++count;
4650 }
4651 return count;
4652 }
4653
4654 // Return the section attached to the list segment with the lowest
4655 // load address. This is used when handling a PHDRS clause in a
4656 // linker script.
4657
4658 Output_section*
4659 Output_segment::section_with_lowest_load_address() const
4660 {
4661 Output_section* found = NULL;
4662 uint64_t found_lma = 0;
4663 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4664 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4665 &found_lma);
4666 return found;
4667 }
4668
4669 // Look through a list for a section with a lower load address.
4670
4671 void
4672 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4673 Output_section** found,
4674 uint64_t* found_lma) const
4675 {
4676 for (Output_data_list::const_iterator p = pdl->begin();
4677 p != pdl->end();
4678 ++p)
4679 {
4680 if (!(*p)->is_section())
4681 continue;
4682 Output_section* os = static_cast<Output_section*>(*p);
4683 uint64_t lma = (os->has_load_address()
4684 ? os->load_address()
4685 : os->address());
4686 if (*found == NULL || lma < *found_lma)
4687 {
4688 *found = os;
4689 *found_lma = lma;
4690 }
4691 }
4692 }
4693
4694 // Write the segment data into *OPHDR.
4695
4696 template<int size, bool big_endian>
4697 void
4698 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4699 {
4700 ophdr->put_p_type(this->type_);
4701 ophdr->put_p_offset(this->offset_);
4702 ophdr->put_p_vaddr(this->vaddr_);
4703 ophdr->put_p_paddr(this->paddr_);
4704 ophdr->put_p_filesz(this->filesz_);
4705 ophdr->put_p_memsz(this->memsz_);
4706 ophdr->put_p_flags(this->flags_);
4707 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4708 }
4709
4710 // Write the section headers into V.
4711
4712 template<int size, bool big_endian>
4713 unsigned char*
4714 Output_segment::write_section_headers(const Layout* layout,
4715 const Stringpool* secnamepool,
4716 unsigned char* v,
4717 unsigned int* pshndx) const
4718 {
4719 // Every section that is attached to a segment must be attached to a
4720 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4721 // segments.
4722 if (this->type_ != elfcpp::PT_LOAD)
4723 return v;
4724
4725 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4726 {
4727 const Output_data_list* pdl = &this->output_lists_[i];
4728 v = this->write_section_headers_list<size, big_endian>(layout,
4729 secnamepool,
4730 pdl,
4731 v, pshndx);
4732 }
4733
4734 return v;
4735 }
4736
4737 template<int size, bool big_endian>
4738 unsigned char*
4739 Output_segment::write_section_headers_list(const Layout* layout,
4740 const Stringpool* secnamepool,
4741 const Output_data_list* pdl,
4742 unsigned char* v,
4743 unsigned int* pshndx) const
4744 {
4745 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4746 for (Output_data_list::const_iterator p = pdl->begin();
4747 p != pdl->end();
4748 ++p)
4749 {
4750 if ((*p)->is_section())
4751 {
4752 const Output_section* ps = static_cast<const Output_section*>(*p);
4753 gold_assert(*pshndx == ps->out_shndx());
4754 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4755 ps->write_header(layout, secnamepool, &oshdr);
4756 v += shdr_size;
4757 ++*pshndx;
4758 }
4759 }
4760 return v;
4761 }
4762
4763 // Print the output sections to the map file.
4764
4765 void
4766 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4767 {
4768 if (this->type() != elfcpp::PT_LOAD)
4769 return;
4770 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4771 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4772 }
4773
4774 // Print an output section list to the map file.
4775
4776 void
4777 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4778 const Output_data_list* pdl) const
4779 {
4780 for (Output_data_list::const_iterator p = pdl->begin();
4781 p != pdl->end();
4782 ++p)
4783 (*p)->print_to_mapfile(mapfile);
4784 }
4785
4786 // Output_file methods.
4787
4788 Output_file::Output_file(const char* name)
4789 : name_(name),
4790 o_(-1),
4791 file_size_(0),
4792 base_(NULL),
4793 map_is_anonymous_(false),
4794 map_is_allocated_(false),
4795 is_temporary_(false)
4796 {
4797 }
4798
4799 // Try to open an existing file. Returns false if the file doesn't
4800 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4801 // NULL, open that file as the base for incremental linking, and
4802 // copy its contents to the new output file. This routine can
4803 // be called for incremental updates, in which case WRITABLE should
4804 // be true, or by the incremental-dump utility, in which case
4805 // WRITABLE should be false.
4806
4807 bool
4808 Output_file::open_base_file(const char* base_name, bool writable)
4809 {
4810 // The name "-" means "stdout".
4811 if (strcmp(this->name_, "-") == 0)
4812 return false;
4813
4814 bool use_base_file = base_name != NULL;
4815 if (!use_base_file)
4816 base_name = this->name_;
4817 else if (strcmp(base_name, this->name_) == 0)
4818 gold_fatal(_("%s: incremental base and output file name are the same"),
4819 base_name);
4820
4821 // Don't bother opening files with a size of zero.
4822 struct stat s;
4823 if (::stat(base_name, &s) != 0)
4824 {
4825 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4826 return false;
4827 }
4828 if (s.st_size == 0)
4829 {
4830 gold_info(_("%s: incremental base file is empty"), base_name);
4831 return false;
4832 }
4833
4834 // If we're using a base file, we want to open it read-only.
4835 if (use_base_file)
4836 writable = false;
4837
4838 int oflags = writable ? O_RDWR : O_RDONLY;
4839 int o = open_descriptor(-1, base_name, oflags, 0);
4840 if (o < 0)
4841 {
4842 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4843 return false;
4844 }
4845
4846 // If the base file and the output file are different, open a
4847 // new output file and read the contents from the base file into
4848 // the newly-mapped region.
4849 if (use_base_file)
4850 {
4851 this->open(s.st_size);
4852 ssize_t bytes_to_read = s.st_size;
4853 unsigned char* p = this->base_;
4854 while (bytes_to_read > 0)
4855 {
4856 ssize_t len = ::read(o, p, bytes_to_read);
4857 if (len < 0)
4858 {
4859 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4860 return false;
4861 }
4862 if (len == 0)
4863 {
4864 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4865 base_name,
4866 static_cast<long long>(s.st_size - bytes_to_read),
4867 static_cast<long long>(s.st_size));
4868 return false;
4869 }
4870 p += len;
4871 bytes_to_read -= len;
4872 }
4873 ::close(o);
4874 return true;
4875 }
4876
4877 this->o_ = o;
4878 this->file_size_ = s.st_size;
4879
4880 if (!this->map_no_anonymous(writable))
4881 {
4882 release_descriptor(o, true);
4883 this->o_ = -1;
4884 this->file_size_ = 0;
4885 return false;
4886 }
4887
4888 return true;
4889 }
4890
4891 // Open the output file.
4892
4893 void
4894 Output_file::open(off_t file_size)
4895 {
4896 this->file_size_ = file_size;
4897
4898 // Unlink the file first; otherwise the open() may fail if the file
4899 // is busy (e.g. it's an executable that's currently being executed).
4900 //
4901 // However, the linker may be part of a system where a zero-length
4902 // file is created for it to write to, with tight permissions (gcc
4903 // 2.95 did something like this). Unlinking the file would work
4904 // around those permission controls, so we only unlink if the file
4905 // has a non-zero size. We also unlink only regular files to avoid
4906 // trouble with directories/etc.
4907 //
4908 // If we fail, continue; this command is merely a best-effort attempt
4909 // to improve the odds for open().
4910
4911 // We let the name "-" mean "stdout"
4912 if (!this->is_temporary_)
4913 {
4914 if (strcmp(this->name_, "-") == 0)
4915 this->o_ = STDOUT_FILENO;
4916 else
4917 {
4918 struct stat s;
4919 if (::stat(this->name_, &s) == 0
4920 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4921 {
4922 if (s.st_size != 0)
4923 ::unlink(this->name_);
4924 else if (!parameters->options().relocatable())
4925 {
4926 // If we don't unlink the existing file, add execute
4927 // permission where read permissions already exist
4928 // and where the umask permits.
4929 int mask = ::umask(0);
4930 ::umask(mask);
4931 s.st_mode |= (s.st_mode & 0444) >> 2;
4932 ::chmod(this->name_, s.st_mode & ~mask);
4933 }
4934 }
4935
4936 int mode = parameters->options().relocatable() ? 0666 : 0777;
4937 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
4938 mode);
4939 if (o < 0)
4940 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
4941 this->o_ = o;
4942 }
4943 }
4944
4945 this->map();
4946 }
4947
4948 // Resize the output file.
4949
4950 void
4951 Output_file::resize(off_t file_size)
4952 {
4953 // If the mmap is mapping an anonymous memory buffer, this is easy:
4954 // just mremap to the new size. If it's mapping to a file, we want
4955 // to unmap to flush to the file, then remap after growing the file.
4956 if (this->map_is_anonymous_)
4957 {
4958 void* base;
4959 if (!this->map_is_allocated_)
4960 {
4961 base = ::mremap(this->base_, this->file_size_, file_size,
4962 MREMAP_MAYMOVE);
4963 if (base == MAP_FAILED)
4964 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
4965 }
4966 else
4967 {
4968 base = realloc(this->base_, file_size);
4969 if (base == NULL)
4970 gold_nomem();
4971 if (file_size > this->file_size_)
4972 memset(static_cast<char*>(base) + this->file_size_, 0,
4973 file_size - this->file_size_);
4974 }
4975 this->base_ = static_cast<unsigned char*>(base);
4976 this->file_size_ = file_size;
4977 }
4978 else
4979 {
4980 this->unmap();
4981 this->file_size_ = file_size;
4982 if (!this->map_no_anonymous(true))
4983 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
4984 }
4985 }
4986
4987 // Map an anonymous block of memory which will later be written to the
4988 // file. Return whether the map succeeded.
4989
4990 bool
4991 Output_file::map_anonymous()
4992 {
4993 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
4994 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
4995 if (base == MAP_FAILED)
4996 {
4997 base = malloc(this->file_size_);
4998 if (base == NULL)
4999 return false;
5000 memset(base, 0, this->file_size_);
5001 this->map_is_allocated_ = true;
5002 }
5003 this->base_ = static_cast<unsigned char*>(base);
5004 this->map_is_anonymous_ = true;
5005 return true;
5006 }
5007
5008 // Map the file into memory. Return whether the mapping succeeded.
5009 // If WRITABLE is true, map with write access.
5010
5011 bool
5012 Output_file::map_no_anonymous(bool writable)
5013 {
5014 const int o = this->o_;
5015
5016 // If the output file is not a regular file, don't try to mmap it;
5017 // instead, we'll mmap a block of memory (an anonymous buffer), and
5018 // then later write the buffer to the file.
5019 void* base;
5020 struct stat statbuf;
5021 if (o == STDOUT_FILENO || o == STDERR_FILENO
5022 || ::fstat(o, &statbuf) != 0
5023 || !S_ISREG(statbuf.st_mode)
5024 || this->is_temporary_)
5025 return false;
5026
5027 // Ensure that we have disk space available for the file. If we
5028 // don't do this, it is possible that we will call munmap, close,
5029 // and exit with dirty buffers still in the cache with no assigned
5030 // disk blocks. If the disk is out of space at that point, the
5031 // output file will wind up incomplete, but we will have already
5032 // exited. The alternative to fallocate would be to use fdatasync,
5033 // but that would be a more significant performance hit.
5034 if (writable)
5035 {
5036 int err = gold_fallocate(o, 0, this->file_size_);
5037 if (err != 0)
5038 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5039 }
5040
5041 // Map the file into memory.
5042 int prot = PROT_READ;
5043 if (writable)
5044 prot |= PROT_WRITE;
5045 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5046
5047 // The mmap call might fail because of file system issues: the file
5048 // system might not support mmap at all, or it might not support
5049 // mmap with PROT_WRITE.
5050 if (base == MAP_FAILED)
5051 return false;
5052
5053 this->map_is_anonymous_ = false;
5054 this->base_ = static_cast<unsigned char*>(base);
5055 return true;
5056 }
5057
5058 // Map the file into memory.
5059
5060 void
5061 Output_file::map()
5062 {
5063 if (parameters->options().mmap_output_file()
5064 && this->map_no_anonymous(true))
5065 return;
5066
5067 // The mmap call might fail because of file system issues: the file
5068 // system might not support mmap at all, or it might not support
5069 // mmap with PROT_WRITE. I'm not sure which errno values we will
5070 // see in all cases, so if the mmap fails for any reason and we
5071 // don't care about file contents, try for an anonymous map.
5072 if (this->map_anonymous())
5073 return;
5074
5075 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5076 this->name_, static_cast<unsigned long>(this->file_size_),
5077 strerror(errno));
5078 }
5079
5080 // Unmap the file from memory.
5081
5082 void
5083 Output_file::unmap()
5084 {
5085 if (this->map_is_anonymous_)
5086 {
5087 // We've already written out the data, so there is no reason to
5088 // waste time unmapping or freeing the memory.
5089 }
5090 else
5091 {
5092 if (::munmap(this->base_, this->file_size_) < 0)
5093 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5094 }
5095 this->base_ = NULL;
5096 }
5097
5098 // Close the output file.
5099
5100 void
5101 Output_file::close()
5102 {
5103 // If the map isn't file-backed, we need to write it now.
5104 if (this->map_is_anonymous_ && !this->is_temporary_)
5105 {
5106 size_t bytes_to_write = this->file_size_;
5107 size_t offset = 0;
5108 while (bytes_to_write > 0)
5109 {
5110 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5111 bytes_to_write);
5112 if (bytes_written == 0)
5113 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5114 else if (bytes_written < 0)
5115 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5116 else
5117 {
5118 bytes_to_write -= bytes_written;
5119 offset += bytes_written;
5120 }
5121 }
5122 }
5123 this->unmap();
5124
5125 // We don't close stdout or stderr
5126 if (this->o_ != STDOUT_FILENO
5127 && this->o_ != STDERR_FILENO
5128 && !this->is_temporary_)
5129 if (::close(this->o_) < 0)
5130 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5131 this->o_ = -1;
5132 }
5133
5134 // Instantiate the templates we need. We could use the configure
5135 // script to restrict this to only the ones for implemented targets.
5136
5137 #ifdef HAVE_TARGET_32_LITTLE
5138 template
5139 off_t
5140 Output_section::add_input_section<32, false>(
5141 Layout* layout,
5142 Sized_relobj_file<32, false>* object,
5143 unsigned int shndx,
5144 const char* secname,
5145 const elfcpp::Shdr<32, false>& shdr,
5146 unsigned int reloc_shndx,
5147 bool have_sections_script);
5148 #endif
5149
5150 #ifdef HAVE_TARGET_32_BIG
5151 template
5152 off_t
5153 Output_section::add_input_section<32, true>(
5154 Layout* layout,
5155 Sized_relobj_file<32, true>* object,
5156 unsigned int shndx,
5157 const char* secname,
5158 const elfcpp::Shdr<32, true>& shdr,
5159 unsigned int reloc_shndx,
5160 bool have_sections_script);
5161 #endif
5162
5163 #ifdef HAVE_TARGET_64_LITTLE
5164 template
5165 off_t
5166 Output_section::add_input_section<64, false>(
5167 Layout* layout,
5168 Sized_relobj_file<64, false>* object,
5169 unsigned int shndx,
5170 const char* secname,
5171 const elfcpp::Shdr<64, false>& shdr,
5172 unsigned int reloc_shndx,
5173 bool have_sections_script);
5174 #endif
5175
5176 #ifdef HAVE_TARGET_64_BIG
5177 template
5178 off_t
5179 Output_section::add_input_section<64, true>(
5180 Layout* layout,
5181 Sized_relobj_file<64, true>* object,
5182 unsigned int shndx,
5183 const char* secname,
5184 const elfcpp::Shdr<64, true>& shdr,
5185 unsigned int reloc_shndx,
5186 bool have_sections_script);
5187 #endif
5188
5189 #ifdef HAVE_TARGET_32_LITTLE
5190 template
5191 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5192 #endif
5193
5194 #ifdef HAVE_TARGET_32_BIG
5195 template
5196 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5197 #endif
5198
5199 #ifdef HAVE_TARGET_64_LITTLE
5200 template
5201 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5202 #endif
5203
5204 #ifdef HAVE_TARGET_64_BIG
5205 template
5206 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5207 #endif
5208
5209 #ifdef HAVE_TARGET_32_LITTLE
5210 template
5211 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5212 #endif
5213
5214 #ifdef HAVE_TARGET_32_BIG
5215 template
5216 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5217 #endif
5218
5219 #ifdef HAVE_TARGET_64_LITTLE
5220 template
5221 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5222 #endif
5223
5224 #ifdef HAVE_TARGET_64_BIG
5225 template
5226 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5227 #endif
5228
5229 #ifdef HAVE_TARGET_32_LITTLE
5230 template
5231 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5232 #endif
5233
5234 #ifdef HAVE_TARGET_32_BIG
5235 template
5236 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5237 #endif
5238
5239 #ifdef HAVE_TARGET_64_LITTLE
5240 template
5241 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5242 #endif
5243
5244 #ifdef HAVE_TARGET_64_BIG
5245 template
5246 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5247 #endif
5248
5249 #ifdef HAVE_TARGET_32_LITTLE
5250 template
5251 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5252 #endif
5253
5254 #ifdef HAVE_TARGET_32_BIG
5255 template
5256 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5257 #endif
5258
5259 #ifdef HAVE_TARGET_64_LITTLE
5260 template
5261 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5262 #endif
5263
5264 #ifdef HAVE_TARGET_64_BIG
5265 template
5266 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5267 #endif
5268
5269 #ifdef HAVE_TARGET_32_LITTLE
5270 template
5271 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5272 #endif
5273
5274 #ifdef HAVE_TARGET_32_BIG
5275 template
5276 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5277 #endif
5278
5279 #ifdef HAVE_TARGET_64_LITTLE
5280 template
5281 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5282 #endif
5283
5284 #ifdef HAVE_TARGET_64_BIG
5285 template
5286 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5287 #endif
5288
5289 #ifdef HAVE_TARGET_32_LITTLE
5290 template
5291 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5292 #endif
5293
5294 #ifdef HAVE_TARGET_32_BIG
5295 template
5296 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5297 #endif
5298
5299 #ifdef HAVE_TARGET_64_LITTLE
5300 template
5301 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5302 #endif
5303
5304 #ifdef HAVE_TARGET_64_BIG
5305 template
5306 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5307 #endif
5308
5309 #ifdef HAVE_TARGET_32_LITTLE
5310 template
5311 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5312 #endif
5313
5314 #ifdef HAVE_TARGET_32_BIG
5315 template
5316 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5317 #endif
5318
5319 #ifdef HAVE_TARGET_64_LITTLE
5320 template
5321 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5322 #endif
5323
5324 #ifdef HAVE_TARGET_64_BIG
5325 template
5326 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5327 #endif
5328
5329 #ifdef HAVE_TARGET_32_LITTLE
5330 template
5331 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5332 #endif
5333
5334 #ifdef HAVE_TARGET_32_BIG
5335 template
5336 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5337 #endif
5338
5339 #ifdef HAVE_TARGET_64_LITTLE
5340 template
5341 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5342 #endif
5343
5344 #ifdef HAVE_TARGET_64_BIG
5345 template
5346 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5347 #endif
5348
5349 #ifdef HAVE_TARGET_32_LITTLE
5350 template
5351 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5352 #endif
5353
5354 #ifdef HAVE_TARGET_32_BIG
5355 template
5356 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5357 #endif
5358
5359 #ifdef HAVE_TARGET_64_LITTLE
5360 template
5361 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5362 #endif
5363
5364 #ifdef HAVE_TARGET_64_BIG
5365 template
5366 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5367 #endif
5368
5369 #ifdef HAVE_TARGET_32_LITTLE
5370 template
5371 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5372 #endif
5373
5374 #ifdef HAVE_TARGET_32_BIG
5375 template
5376 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5377 #endif
5378
5379 #ifdef HAVE_TARGET_64_LITTLE
5380 template
5381 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5382 #endif
5383
5384 #ifdef HAVE_TARGET_64_BIG
5385 template
5386 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5387 #endif
5388
5389 #ifdef HAVE_TARGET_32_LITTLE
5390 template
5391 class Output_data_group<32, false>;
5392 #endif
5393
5394 #ifdef HAVE_TARGET_32_BIG
5395 template
5396 class Output_data_group<32, true>;
5397 #endif
5398
5399 #ifdef HAVE_TARGET_64_LITTLE
5400 template
5401 class Output_data_group<64, false>;
5402 #endif
5403
5404 #ifdef HAVE_TARGET_64_BIG
5405 template
5406 class Output_data_group<64, true>;
5407 #endif
5408
5409 #ifdef HAVE_TARGET_32_LITTLE
5410 template
5411 class Output_data_got<32, false>;
5412 #endif
5413
5414 #ifdef HAVE_TARGET_32_BIG
5415 template
5416 class Output_data_got<32, true>;
5417 #endif
5418
5419 #ifdef HAVE_TARGET_64_LITTLE
5420 template
5421 class Output_data_got<64, false>;
5422 #endif
5423
5424 #ifdef HAVE_TARGET_64_BIG
5425 template
5426 class Output_data_got<64, true>;
5427 #endif
5428
5429 } // End namespace gold.
This page took 0.152559 seconds and 5 git commands to generate.