If a range is missing, assume the input address is mapped.
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 #ifdef HAVE_POSIX_FALLOCATE
131 if (parameters->options().posix_fallocate())
132 return ::posix_fallocate(o, offset, len);
133 #endif // defined(HAVE_POSIX_FALLOCATE)
134 #ifdef HAVE_FALLOCATE
135 if (::fallocate(o, 0, offset, len) == 0)
136 return 0;
137 #endif // defined(HAVE_FALLOCATE)
138 if (::ftruncate(o, offset + len) < 0)
139 return errno;
140 return 0;
141 }
142
143 // Output_data variables.
144
145 bool Output_data::allocated_sizes_are_fixed;
146
147 // Output_data methods.
148
149 Output_data::~Output_data()
150 {
151 }
152
153 // Return the default alignment for the target size.
154
155 uint64_t
156 Output_data::default_alignment()
157 {
158 return Output_data::default_alignment_for_size(
159 parameters->target().get_size());
160 }
161
162 // Return the default alignment for a size--32 or 64.
163
164 uint64_t
165 Output_data::default_alignment_for_size(int size)
166 {
167 if (size == 32)
168 return 4;
169 else if (size == 64)
170 return 8;
171 else
172 gold_unreachable();
173 }
174
175 // Output_section_header methods. This currently assumes that the
176 // segment and section lists are complete at construction time.
177
178 Output_section_headers::Output_section_headers(
179 const Layout* layout,
180 const Layout::Segment_list* segment_list,
181 const Layout::Section_list* section_list,
182 const Layout::Section_list* unattached_section_list,
183 const Stringpool* secnamepool,
184 const Output_section* shstrtab_section)
185 : layout_(layout),
186 segment_list_(segment_list),
187 section_list_(section_list),
188 unattached_section_list_(unattached_section_list),
189 secnamepool_(secnamepool),
190 shstrtab_section_(shstrtab_section)
191 {
192 }
193
194 // Compute the current data size.
195
196 off_t
197 Output_section_headers::do_size() const
198 {
199 // Count all the sections. Start with 1 for the null section.
200 off_t count = 1;
201 if (!parameters->options().relocatable())
202 {
203 for (Layout::Segment_list::const_iterator p =
204 this->segment_list_->begin();
205 p != this->segment_list_->end();
206 ++p)
207 if ((*p)->type() == elfcpp::PT_LOAD)
208 count += (*p)->output_section_count();
209 }
210 else
211 {
212 for (Layout::Section_list::const_iterator p =
213 this->section_list_->begin();
214 p != this->section_list_->end();
215 ++p)
216 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
217 ++count;
218 }
219 count += this->unattached_section_list_->size();
220
221 const int size = parameters->target().get_size();
222 int shdr_size;
223 if (size == 32)
224 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
225 else if (size == 64)
226 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
227 else
228 gold_unreachable();
229
230 return count * shdr_size;
231 }
232
233 // Write out the section headers.
234
235 void
236 Output_section_headers::do_write(Output_file* of)
237 {
238 switch (parameters->size_and_endianness())
239 {
240 #ifdef HAVE_TARGET_32_LITTLE
241 case Parameters::TARGET_32_LITTLE:
242 this->do_sized_write<32, false>(of);
243 break;
244 #endif
245 #ifdef HAVE_TARGET_32_BIG
246 case Parameters::TARGET_32_BIG:
247 this->do_sized_write<32, true>(of);
248 break;
249 #endif
250 #ifdef HAVE_TARGET_64_LITTLE
251 case Parameters::TARGET_64_LITTLE:
252 this->do_sized_write<64, false>(of);
253 break;
254 #endif
255 #ifdef HAVE_TARGET_64_BIG
256 case Parameters::TARGET_64_BIG:
257 this->do_sized_write<64, true>(of);
258 break;
259 #endif
260 default:
261 gold_unreachable();
262 }
263 }
264
265 template<int size, bool big_endian>
266 void
267 Output_section_headers::do_sized_write(Output_file* of)
268 {
269 off_t all_shdrs_size = this->data_size();
270 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
271
272 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
273 unsigned char* v = view;
274
275 {
276 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
277 oshdr.put_sh_name(0);
278 oshdr.put_sh_type(elfcpp::SHT_NULL);
279 oshdr.put_sh_flags(0);
280 oshdr.put_sh_addr(0);
281 oshdr.put_sh_offset(0);
282
283 size_t section_count = (this->data_size()
284 / elfcpp::Elf_sizes<size>::shdr_size);
285 if (section_count < elfcpp::SHN_LORESERVE)
286 oshdr.put_sh_size(0);
287 else
288 oshdr.put_sh_size(section_count);
289
290 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
291 if (shstrndx < elfcpp::SHN_LORESERVE)
292 oshdr.put_sh_link(0);
293 else
294 oshdr.put_sh_link(shstrndx);
295
296 size_t segment_count = this->segment_list_->size();
297 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
298
299 oshdr.put_sh_addralign(0);
300 oshdr.put_sh_entsize(0);
301 }
302
303 v += shdr_size;
304
305 unsigned int shndx = 1;
306 if (!parameters->options().relocatable())
307 {
308 for (Layout::Segment_list::const_iterator p =
309 this->segment_list_->begin();
310 p != this->segment_list_->end();
311 ++p)
312 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
313 this->secnamepool_,
314 v,
315 &shndx);
316 }
317 else
318 {
319 for (Layout::Section_list::const_iterator p =
320 this->section_list_->begin();
321 p != this->section_list_->end();
322 ++p)
323 {
324 // We do unallocated sections below, except that group
325 // sections have to come first.
326 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
327 && (*p)->type() != elfcpp::SHT_GROUP)
328 continue;
329 gold_assert(shndx == (*p)->out_shndx());
330 elfcpp::Shdr_write<size, big_endian> oshdr(v);
331 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
332 v += shdr_size;
333 ++shndx;
334 }
335 }
336
337 for (Layout::Section_list::const_iterator p =
338 this->unattached_section_list_->begin();
339 p != this->unattached_section_list_->end();
340 ++p)
341 {
342 // For a relocatable link, we did unallocated group sections
343 // above, since they have to come first.
344 if ((*p)->type() == elfcpp::SHT_GROUP
345 && parameters->options().relocatable())
346 continue;
347 gold_assert(shndx == (*p)->out_shndx());
348 elfcpp::Shdr_write<size, big_endian> oshdr(v);
349 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
350 v += shdr_size;
351 ++shndx;
352 }
353
354 of->write_output_view(this->offset(), all_shdrs_size, view);
355 }
356
357 // Output_segment_header methods.
358
359 Output_segment_headers::Output_segment_headers(
360 const Layout::Segment_list& segment_list)
361 : segment_list_(segment_list)
362 {
363 this->set_current_data_size_for_child(this->do_size());
364 }
365
366 void
367 Output_segment_headers::do_write(Output_file* of)
368 {
369 switch (parameters->size_and_endianness())
370 {
371 #ifdef HAVE_TARGET_32_LITTLE
372 case Parameters::TARGET_32_LITTLE:
373 this->do_sized_write<32, false>(of);
374 break;
375 #endif
376 #ifdef HAVE_TARGET_32_BIG
377 case Parameters::TARGET_32_BIG:
378 this->do_sized_write<32, true>(of);
379 break;
380 #endif
381 #ifdef HAVE_TARGET_64_LITTLE
382 case Parameters::TARGET_64_LITTLE:
383 this->do_sized_write<64, false>(of);
384 break;
385 #endif
386 #ifdef HAVE_TARGET_64_BIG
387 case Parameters::TARGET_64_BIG:
388 this->do_sized_write<64, true>(of);
389 break;
390 #endif
391 default:
392 gold_unreachable();
393 }
394 }
395
396 template<int size, bool big_endian>
397 void
398 Output_segment_headers::do_sized_write(Output_file* of)
399 {
400 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
401 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
402 gold_assert(all_phdrs_size == this->data_size());
403 unsigned char* view = of->get_output_view(this->offset(),
404 all_phdrs_size);
405 unsigned char* v = view;
406 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
407 p != this->segment_list_.end();
408 ++p)
409 {
410 elfcpp::Phdr_write<size, big_endian> ophdr(v);
411 (*p)->write_header(&ophdr);
412 v += phdr_size;
413 }
414
415 gold_assert(v - view == all_phdrs_size);
416
417 of->write_output_view(this->offset(), all_phdrs_size, view);
418 }
419
420 off_t
421 Output_segment_headers::do_size() const
422 {
423 const int size = parameters->target().get_size();
424 int phdr_size;
425 if (size == 32)
426 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
427 else if (size == 64)
428 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
429 else
430 gold_unreachable();
431
432 return this->segment_list_.size() * phdr_size;
433 }
434
435 // Output_file_header methods.
436
437 Output_file_header::Output_file_header(Target* target,
438 const Symbol_table* symtab,
439 const Output_segment_headers* osh)
440 : target_(target),
441 symtab_(symtab),
442 segment_header_(osh),
443 section_header_(NULL),
444 shstrtab_(NULL)
445 {
446 this->set_data_size(this->do_size());
447 }
448
449 // Set the section table information for a file header.
450
451 void
452 Output_file_header::set_section_info(const Output_section_headers* shdrs,
453 const Output_section* shstrtab)
454 {
455 this->section_header_ = shdrs;
456 this->shstrtab_ = shstrtab;
457 }
458
459 // Write out the file header.
460
461 void
462 Output_file_header::do_write(Output_file* of)
463 {
464 gold_assert(this->offset() == 0);
465
466 switch (parameters->size_and_endianness())
467 {
468 #ifdef HAVE_TARGET_32_LITTLE
469 case Parameters::TARGET_32_LITTLE:
470 this->do_sized_write<32, false>(of);
471 break;
472 #endif
473 #ifdef HAVE_TARGET_32_BIG
474 case Parameters::TARGET_32_BIG:
475 this->do_sized_write<32, true>(of);
476 break;
477 #endif
478 #ifdef HAVE_TARGET_64_LITTLE
479 case Parameters::TARGET_64_LITTLE:
480 this->do_sized_write<64, false>(of);
481 break;
482 #endif
483 #ifdef HAVE_TARGET_64_BIG
484 case Parameters::TARGET_64_BIG:
485 this->do_sized_write<64, true>(of);
486 break;
487 #endif
488 default:
489 gold_unreachable();
490 }
491 }
492
493 // Write out the file header with appropriate size and endianness.
494
495 template<int size, bool big_endian>
496 void
497 Output_file_header::do_sized_write(Output_file* of)
498 {
499 gold_assert(this->offset() == 0);
500
501 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
502 unsigned char* view = of->get_output_view(0, ehdr_size);
503 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
504
505 unsigned char e_ident[elfcpp::EI_NIDENT];
506 memset(e_ident, 0, elfcpp::EI_NIDENT);
507 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
508 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
509 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
510 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
511 if (size == 32)
512 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
513 else if (size == 64)
514 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
515 else
516 gold_unreachable();
517 e_ident[elfcpp::EI_DATA] = (big_endian
518 ? elfcpp::ELFDATA2MSB
519 : elfcpp::ELFDATA2LSB);
520 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
521 oehdr.put_e_ident(e_ident);
522
523 elfcpp::ET e_type;
524 if (parameters->options().relocatable())
525 e_type = elfcpp::ET_REL;
526 else if (parameters->options().output_is_position_independent())
527 e_type = elfcpp::ET_DYN;
528 else
529 e_type = elfcpp::ET_EXEC;
530 oehdr.put_e_type(e_type);
531
532 oehdr.put_e_machine(this->target_->machine_code());
533 oehdr.put_e_version(elfcpp::EV_CURRENT);
534
535 oehdr.put_e_entry(this->entry<size>());
536
537 if (this->segment_header_ == NULL)
538 oehdr.put_e_phoff(0);
539 else
540 oehdr.put_e_phoff(this->segment_header_->offset());
541
542 oehdr.put_e_shoff(this->section_header_->offset());
543 oehdr.put_e_flags(this->target_->processor_specific_flags());
544 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
545
546 if (this->segment_header_ == NULL)
547 {
548 oehdr.put_e_phentsize(0);
549 oehdr.put_e_phnum(0);
550 }
551 else
552 {
553 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
554 size_t phnum = (this->segment_header_->data_size()
555 / elfcpp::Elf_sizes<size>::phdr_size);
556 if (phnum > elfcpp::PN_XNUM)
557 phnum = elfcpp::PN_XNUM;
558 oehdr.put_e_phnum(phnum);
559 }
560
561 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
562 size_t section_count = (this->section_header_->data_size()
563 / elfcpp::Elf_sizes<size>::shdr_size);
564
565 if (section_count < elfcpp::SHN_LORESERVE)
566 oehdr.put_e_shnum(this->section_header_->data_size()
567 / elfcpp::Elf_sizes<size>::shdr_size);
568 else
569 oehdr.put_e_shnum(0);
570
571 unsigned int shstrndx = this->shstrtab_->out_shndx();
572 if (shstrndx < elfcpp::SHN_LORESERVE)
573 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
574 else
575 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
576
577 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
578 // the e_ident field.
579 this->target_->adjust_elf_header(view, ehdr_size);
580
581 of->write_output_view(0, ehdr_size, view);
582 }
583
584 // Return the value to use for the entry address.
585
586 template<int size>
587 typename elfcpp::Elf_types<size>::Elf_Addr
588 Output_file_header::entry()
589 {
590 const bool should_issue_warning = (parameters->options().entry() != NULL
591 && !parameters->options().relocatable()
592 && !parameters->options().shared());
593 const char* entry = parameters->entry();
594 Symbol* sym = this->symtab_->lookup(entry);
595
596 typename Sized_symbol<size>::Value_type v;
597 if (sym != NULL)
598 {
599 Sized_symbol<size>* ssym;
600 ssym = this->symtab_->get_sized_symbol<size>(sym);
601 if (!ssym->is_defined() && should_issue_warning)
602 gold_warning("entry symbol '%s' exists but is not defined", entry);
603 v = ssym->value();
604 }
605 else
606 {
607 // We couldn't find the entry symbol. See if we can parse it as
608 // a number. This supports, e.g., -e 0x1000.
609 char* endptr;
610 v = strtoull(entry, &endptr, 0);
611 if (*endptr != '\0')
612 {
613 if (should_issue_warning)
614 gold_warning("cannot find entry symbol '%s'", entry);
615 v = 0;
616 }
617 }
618
619 return v;
620 }
621
622 // Compute the current data size.
623
624 off_t
625 Output_file_header::do_size() const
626 {
627 const int size = parameters->target().get_size();
628 if (size == 32)
629 return elfcpp::Elf_sizes<32>::ehdr_size;
630 else if (size == 64)
631 return elfcpp::Elf_sizes<64>::ehdr_size;
632 else
633 gold_unreachable();
634 }
635
636 // Output_data_const methods.
637
638 void
639 Output_data_const::do_write(Output_file* of)
640 {
641 of->write(this->offset(), this->data_.data(), this->data_.size());
642 }
643
644 // Output_data_const_buffer methods.
645
646 void
647 Output_data_const_buffer::do_write(Output_file* of)
648 {
649 of->write(this->offset(), this->p_, this->data_size());
650 }
651
652 // Output_section_data methods.
653
654 // Record the output section, and set the entry size and such.
655
656 void
657 Output_section_data::set_output_section(Output_section* os)
658 {
659 gold_assert(this->output_section_ == NULL);
660 this->output_section_ = os;
661 this->do_adjust_output_section(os);
662 }
663
664 // Return the section index of the output section.
665
666 unsigned int
667 Output_section_data::do_out_shndx() const
668 {
669 gold_assert(this->output_section_ != NULL);
670 return this->output_section_->out_shndx();
671 }
672
673 // Set the alignment, which means we may need to update the alignment
674 // of the output section.
675
676 void
677 Output_section_data::set_addralign(uint64_t addralign)
678 {
679 this->addralign_ = addralign;
680 if (this->output_section_ != NULL
681 && this->output_section_->addralign() < addralign)
682 this->output_section_->set_addralign(addralign);
683 }
684
685 // Output_data_strtab methods.
686
687 // Set the final data size.
688
689 void
690 Output_data_strtab::set_final_data_size()
691 {
692 this->strtab_->set_string_offsets();
693 this->set_data_size(this->strtab_->get_strtab_size());
694 }
695
696 // Write out a string table.
697
698 void
699 Output_data_strtab::do_write(Output_file* of)
700 {
701 this->strtab_->write(of, this->offset());
702 }
703
704 // Output_reloc methods.
705
706 // A reloc against a global symbol.
707
708 template<bool dynamic, int size, bool big_endian>
709 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
710 Symbol* gsym,
711 unsigned int type,
712 Output_data* od,
713 Address address,
714 bool is_relative,
715 bool is_symbolless,
716 bool use_plt_offset)
717 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
718 is_relative_(is_relative), is_symbolless_(is_symbolless),
719 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
720 {
721 // this->type_ is a bitfield; make sure TYPE fits.
722 gold_assert(this->type_ == type);
723 this->u1_.gsym = gsym;
724 this->u2_.od = od;
725 if (dynamic)
726 this->set_needs_dynsym_index();
727 }
728
729 template<bool dynamic, int size, bool big_endian>
730 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
731 Symbol* gsym,
732 unsigned int type,
733 Sized_relobj<size, big_endian>* relobj,
734 unsigned int shndx,
735 Address address,
736 bool is_relative,
737 bool is_symbolless,
738 bool use_plt_offset)
739 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
740 is_relative_(is_relative), is_symbolless_(is_symbolless),
741 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
742 {
743 gold_assert(shndx != INVALID_CODE);
744 // this->type_ is a bitfield; make sure TYPE fits.
745 gold_assert(this->type_ == type);
746 this->u1_.gsym = gsym;
747 this->u2_.relobj = relobj;
748 if (dynamic)
749 this->set_needs_dynsym_index();
750 }
751
752 // A reloc against a local symbol.
753
754 template<bool dynamic, int size, bool big_endian>
755 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
756 Sized_relobj<size, big_endian>* relobj,
757 unsigned int local_sym_index,
758 unsigned int type,
759 Output_data* od,
760 Address address,
761 bool is_relative,
762 bool is_symbolless,
763 bool is_section_symbol,
764 bool use_plt_offset)
765 : address_(address), local_sym_index_(local_sym_index), type_(type),
766 is_relative_(is_relative), is_symbolless_(is_symbolless),
767 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
768 shndx_(INVALID_CODE)
769 {
770 gold_assert(local_sym_index != GSYM_CODE
771 && local_sym_index != INVALID_CODE);
772 // this->type_ is a bitfield; make sure TYPE fits.
773 gold_assert(this->type_ == type);
774 this->u1_.relobj = relobj;
775 this->u2_.od = od;
776 if (dynamic)
777 this->set_needs_dynsym_index();
778 }
779
780 template<bool dynamic, int size, bool big_endian>
781 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
782 Sized_relobj<size, big_endian>* relobj,
783 unsigned int local_sym_index,
784 unsigned int type,
785 unsigned int shndx,
786 Address address,
787 bool is_relative,
788 bool is_symbolless,
789 bool is_section_symbol,
790 bool use_plt_offset)
791 : address_(address), local_sym_index_(local_sym_index), type_(type),
792 is_relative_(is_relative), is_symbolless_(is_symbolless),
793 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
794 shndx_(shndx)
795 {
796 gold_assert(local_sym_index != GSYM_CODE
797 && local_sym_index != INVALID_CODE);
798 gold_assert(shndx != INVALID_CODE);
799 // this->type_ is a bitfield; make sure TYPE fits.
800 gold_assert(this->type_ == type);
801 this->u1_.relobj = relobj;
802 this->u2_.relobj = relobj;
803 if (dynamic)
804 this->set_needs_dynsym_index();
805 }
806
807 // A reloc against the STT_SECTION symbol of an output section.
808
809 template<bool dynamic, int size, bool big_endian>
810 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
811 Output_section* os,
812 unsigned int type,
813 Output_data* od,
814 Address address,
815 bool is_relative)
816 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
817 is_relative_(is_relative), is_symbolless_(is_relative),
818 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
819 {
820 // this->type_ is a bitfield; make sure TYPE fits.
821 gold_assert(this->type_ == type);
822 this->u1_.os = os;
823 this->u2_.od = od;
824 if (dynamic)
825 this->set_needs_dynsym_index();
826 else
827 os->set_needs_symtab_index();
828 }
829
830 template<bool dynamic, int size, bool big_endian>
831 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
832 Output_section* os,
833 unsigned int type,
834 Sized_relobj<size, big_endian>* relobj,
835 unsigned int shndx,
836 Address address,
837 bool is_relative)
838 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
839 is_relative_(is_relative), is_symbolless_(is_relative),
840 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
841 {
842 gold_assert(shndx != INVALID_CODE);
843 // this->type_ is a bitfield; make sure TYPE fits.
844 gold_assert(this->type_ == type);
845 this->u1_.os = os;
846 this->u2_.relobj = relobj;
847 if (dynamic)
848 this->set_needs_dynsym_index();
849 else
850 os->set_needs_symtab_index();
851 }
852
853 // An absolute or relative relocation.
854
855 template<bool dynamic, int size, bool big_endian>
856 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
857 unsigned int type,
858 Output_data* od,
859 Address address,
860 bool is_relative)
861 : address_(address), local_sym_index_(0), type_(type),
862 is_relative_(is_relative), is_symbolless_(false),
863 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
864 {
865 // this->type_ is a bitfield; make sure TYPE fits.
866 gold_assert(this->type_ == type);
867 this->u1_.relobj = NULL;
868 this->u2_.od = od;
869 }
870
871 template<bool dynamic, int size, bool big_endian>
872 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
873 unsigned int type,
874 Sized_relobj<size, big_endian>* relobj,
875 unsigned int shndx,
876 Address address,
877 bool is_relative)
878 : address_(address), local_sym_index_(0), type_(type),
879 is_relative_(is_relative), is_symbolless_(false),
880 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
881 {
882 gold_assert(shndx != INVALID_CODE);
883 // this->type_ is a bitfield; make sure TYPE fits.
884 gold_assert(this->type_ == type);
885 this->u1_.relobj = NULL;
886 this->u2_.relobj = relobj;
887 }
888
889 // A target specific relocation.
890
891 template<bool dynamic, int size, bool big_endian>
892 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
893 unsigned int type,
894 void* arg,
895 Output_data* od,
896 Address address)
897 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
898 is_relative_(false), is_symbolless_(false),
899 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
900 {
901 // this->type_ is a bitfield; make sure TYPE fits.
902 gold_assert(this->type_ == type);
903 this->u1_.arg = arg;
904 this->u2_.od = od;
905 }
906
907 template<bool dynamic, int size, bool big_endian>
908 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
909 unsigned int type,
910 void* arg,
911 Sized_relobj<size, big_endian>* relobj,
912 unsigned int shndx,
913 Address address)
914 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
915 is_relative_(false), is_symbolless_(false),
916 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
917 {
918 gold_assert(shndx != INVALID_CODE);
919 // this->type_ is a bitfield; make sure TYPE fits.
920 gold_assert(this->type_ == type);
921 this->u1_.arg = arg;
922 this->u2_.relobj = relobj;
923 }
924
925 // Record that we need a dynamic symbol index for this relocation.
926
927 template<bool dynamic, int size, bool big_endian>
928 void
929 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
930 set_needs_dynsym_index()
931 {
932 if (this->is_symbolless_)
933 return;
934 switch (this->local_sym_index_)
935 {
936 case INVALID_CODE:
937 gold_unreachable();
938
939 case GSYM_CODE:
940 this->u1_.gsym->set_needs_dynsym_entry();
941 break;
942
943 case SECTION_CODE:
944 this->u1_.os->set_needs_dynsym_index();
945 break;
946
947 case TARGET_CODE:
948 // The target must take care of this if necessary.
949 break;
950
951 case 0:
952 break;
953
954 default:
955 {
956 const unsigned int lsi = this->local_sym_index_;
957 Sized_relobj_file<size, big_endian>* relobj =
958 this->u1_.relobj->sized_relobj();
959 gold_assert(relobj != NULL);
960 if (!this->is_section_symbol_)
961 relobj->set_needs_output_dynsym_entry(lsi);
962 else
963 relobj->output_section(lsi)->set_needs_dynsym_index();
964 }
965 break;
966 }
967 }
968
969 // Get the symbol index of a relocation.
970
971 template<bool dynamic, int size, bool big_endian>
972 unsigned int
973 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
974 const
975 {
976 unsigned int index;
977 if (this->is_symbolless_)
978 return 0;
979 switch (this->local_sym_index_)
980 {
981 case INVALID_CODE:
982 gold_unreachable();
983
984 case GSYM_CODE:
985 if (this->u1_.gsym == NULL)
986 index = 0;
987 else if (dynamic)
988 index = this->u1_.gsym->dynsym_index();
989 else
990 index = this->u1_.gsym->symtab_index();
991 break;
992
993 case SECTION_CODE:
994 if (dynamic)
995 index = this->u1_.os->dynsym_index();
996 else
997 index = this->u1_.os->symtab_index();
998 break;
999
1000 case TARGET_CODE:
1001 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1002 this->type_);
1003 break;
1004
1005 case 0:
1006 // Relocations without symbols use a symbol index of 0.
1007 index = 0;
1008 break;
1009
1010 default:
1011 {
1012 const unsigned int lsi = this->local_sym_index_;
1013 Sized_relobj_file<size, big_endian>* relobj =
1014 this->u1_.relobj->sized_relobj();
1015 gold_assert(relobj != NULL);
1016 if (!this->is_section_symbol_)
1017 {
1018 if (dynamic)
1019 index = relobj->dynsym_index(lsi);
1020 else
1021 index = relobj->symtab_index(lsi);
1022 }
1023 else
1024 {
1025 Output_section* os = relobj->output_section(lsi);
1026 gold_assert(os != NULL);
1027 if (dynamic)
1028 index = os->dynsym_index();
1029 else
1030 index = os->symtab_index();
1031 }
1032 }
1033 break;
1034 }
1035 gold_assert(index != -1U);
1036 return index;
1037 }
1038
1039 // For a local section symbol, get the address of the offset ADDEND
1040 // within the input section.
1041
1042 template<bool dynamic, int size, bool big_endian>
1043 typename elfcpp::Elf_types<size>::Elf_Addr
1044 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1045 local_section_offset(Addend addend) const
1046 {
1047 gold_assert(this->local_sym_index_ != GSYM_CODE
1048 && this->local_sym_index_ != SECTION_CODE
1049 && this->local_sym_index_ != TARGET_CODE
1050 && this->local_sym_index_ != INVALID_CODE
1051 && this->local_sym_index_ != 0
1052 && this->is_section_symbol_);
1053 const unsigned int lsi = this->local_sym_index_;
1054 Output_section* os = this->u1_.relobj->output_section(lsi);
1055 gold_assert(os != NULL);
1056 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1057 if (offset != invalid_address)
1058 return offset + addend;
1059 // This is a merge section.
1060 Sized_relobj_file<size, big_endian>* relobj =
1061 this->u1_.relobj->sized_relobj();
1062 gold_assert(relobj != NULL);
1063 offset = os->output_address(relobj, lsi, addend);
1064 gold_assert(offset != invalid_address);
1065 return offset;
1066 }
1067
1068 // Get the output address of a relocation.
1069
1070 template<bool dynamic, int size, bool big_endian>
1071 typename elfcpp::Elf_types<size>::Elf_Addr
1072 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1073 {
1074 Address address = this->address_;
1075 if (this->shndx_ != INVALID_CODE)
1076 {
1077 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1078 gold_assert(os != NULL);
1079 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1080 if (off != invalid_address)
1081 address += os->address() + off;
1082 else
1083 {
1084 Sized_relobj_file<size, big_endian>* relobj =
1085 this->u2_.relobj->sized_relobj();
1086 gold_assert(relobj != NULL);
1087 address = os->output_address(relobj, this->shndx_, address);
1088 gold_assert(address != invalid_address);
1089 }
1090 }
1091 else if (this->u2_.od != NULL)
1092 address += this->u2_.od->address();
1093 return address;
1094 }
1095
1096 // Write out the offset and info fields of a Rel or Rela relocation
1097 // entry.
1098
1099 template<bool dynamic, int size, bool big_endian>
1100 template<typename Write_rel>
1101 void
1102 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1103 Write_rel* wr) const
1104 {
1105 wr->put_r_offset(this->get_address());
1106 unsigned int sym_index = this->get_symbol_index();
1107 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1108 }
1109
1110 // Write out a Rel relocation.
1111
1112 template<bool dynamic, int size, bool big_endian>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1115 unsigned char* pov) const
1116 {
1117 elfcpp::Rel_write<size, big_endian> orel(pov);
1118 this->write_rel(&orel);
1119 }
1120
1121 // Get the value of the symbol referred to by a Rel relocation.
1122
1123 template<bool dynamic, int size, bool big_endian>
1124 typename elfcpp::Elf_types<size>::Elf_Addr
1125 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1126 Addend addend) const
1127 {
1128 if (this->local_sym_index_ == GSYM_CODE)
1129 {
1130 const Sized_symbol<size>* sym;
1131 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1132 if (this->use_plt_offset_ && sym->has_plt_offset())
1133 return parameters->target().plt_address_for_global(sym);
1134 else
1135 return sym->value() + addend;
1136 }
1137 if (this->local_sym_index_ == SECTION_CODE)
1138 {
1139 gold_assert(!this->use_plt_offset_);
1140 return this->u1_.os->address() + addend;
1141 }
1142 gold_assert(this->local_sym_index_ != TARGET_CODE
1143 && this->local_sym_index_ != INVALID_CODE
1144 && this->local_sym_index_ != 0
1145 && !this->is_section_symbol_);
1146 const unsigned int lsi = this->local_sym_index_;
1147 Sized_relobj_file<size, big_endian>* relobj =
1148 this->u1_.relobj->sized_relobj();
1149 gold_assert(relobj != NULL);
1150 if (this->use_plt_offset_)
1151 return parameters->target().plt_address_for_local(relobj, lsi);
1152 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1153 return symval->value(relobj, addend);
1154 }
1155
1156 // Reloc comparison. This function sorts the dynamic relocs for the
1157 // benefit of the dynamic linker. First we sort all relative relocs
1158 // to the front. Among relative relocs, we sort by output address.
1159 // Among non-relative relocs, we sort by symbol index, then by output
1160 // address.
1161
1162 template<bool dynamic, int size, bool big_endian>
1163 int
1164 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1165 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1166 const
1167 {
1168 if (this->is_relative_)
1169 {
1170 if (!r2.is_relative_)
1171 return -1;
1172 // Otherwise sort by reloc address below.
1173 }
1174 else if (r2.is_relative_)
1175 return 1;
1176 else
1177 {
1178 unsigned int sym1 = this->get_symbol_index();
1179 unsigned int sym2 = r2.get_symbol_index();
1180 if (sym1 < sym2)
1181 return -1;
1182 else if (sym1 > sym2)
1183 return 1;
1184 // Otherwise sort by reloc address.
1185 }
1186
1187 section_offset_type addr1 = this->get_address();
1188 section_offset_type addr2 = r2.get_address();
1189 if (addr1 < addr2)
1190 return -1;
1191 else if (addr1 > addr2)
1192 return 1;
1193
1194 // Final tie breaker, in order to generate the same output on any
1195 // host: reloc type.
1196 unsigned int type1 = this->type_;
1197 unsigned int type2 = r2.type_;
1198 if (type1 < type2)
1199 return -1;
1200 else if (type1 > type2)
1201 return 1;
1202
1203 // These relocs appear to be exactly the same.
1204 return 0;
1205 }
1206
1207 // Write out a Rela relocation.
1208
1209 template<bool dynamic, int size, bool big_endian>
1210 void
1211 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1212 unsigned char* pov) const
1213 {
1214 elfcpp::Rela_write<size, big_endian> orel(pov);
1215 this->rel_.write_rel(&orel);
1216 Addend addend = this->addend_;
1217 if (this->rel_.is_target_specific())
1218 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1219 this->rel_.type(), addend);
1220 else if (this->rel_.is_symbolless())
1221 addend = this->rel_.symbol_value(addend);
1222 else if (this->rel_.is_local_section_symbol())
1223 addend = this->rel_.local_section_offset(addend);
1224 orel.put_r_addend(addend);
1225 }
1226
1227 // Output_data_reloc_base methods.
1228
1229 // Adjust the output section.
1230
1231 template<int sh_type, bool dynamic, int size, bool big_endian>
1232 void
1233 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1234 ::do_adjust_output_section(Output_section* os)
1235 {
1236 if (sh_type == elfcpp::SHT_REL)
1237 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1238 else if (sh_type == elfcpp::SHT_RELA)
1239 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1240 else
1241 gold_unreachable();
1242
1243 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1244 // static link. The backends will generate a dynamic reloc section
1245 // to hold this. In that case we don't want to link to the dynsym
1246 // section, because there isn't one.
1247 if (!dynamic)
1248 os->set_should_link_to_symtab();
1249 else if (parameters->doing_static_link())
1250 ;
1251 else
1252 os->set_should_link_to_dynsym();
1253 }
1254
1255 // Write out relocation data.
1256
1257 template<int sh_type, bool dynamic, int size, bool big_endian>
1258 void
1259 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1260 Output_file* of)
1261 {
1262 const off_t off = this->offset();
1263 const off_t oview_size = this->data_size();
1264 unsigned char* const oview = of->get_output_view(off, oview_size);
1265
1266 if (this->sort_relocs())
1267 {
1268 gold_assert(dynamic);
1269 std::sort(this->relocs_.begin(), this->relocs_.end(),
1270 Sort_relocs_comparison());
1271 }
1272
1273 unsigned char* pov = oview;
1274 for (typename Relocs::const_iterator p = this->relocs_.begin();
1275 p != this->relocs_.end();
1276 ++p)
1277 {
1278 p->write(pov);
1279 pov += reloc_size;
1280 }
1281
1282 gold_assert(pov - oview == oview_size);
1283
1284 of->write_output_view(off, oview_size, oview);
1285
1286 // We no longer need the relocation entries.
1287 this->relocs_.clear();
1288 }
1289
1290 // Class Output_relocatable_relocs.
1291
1292 template<int sh_type, int size, bool big_endian>
1293 void
1294 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1295 {
1296 this->set_data_size(this->rr_->output_reloc_count()
1297 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1298 }
1299
1300 // class Output_data_group.
1301
1302 template<int size, bool big_endian>
1303 Output_data_group<size, big_endian>::Output_data_group(
1304 Sized_relobj_file<size, big_endian>* relobj,
1305 section_size_type entry_count,
1306 elfcpp::Elf_Word flags,
1307 std::vector<unsigned int>* input_shndxes)
1308 : Output_section_data(entry_count * 4, 4, false),
1309 relobj_(relobj),
1310 flags_(flags)
1311 {
1312 this->input_shndxes_.swap(*input_shndxes);
1313 }
1314
1315 // Write out the section group, which means translating the section
1316 // indexes to apply to the output file.
1317
1318 template<int size, bool big_endian>
1319 void
1320 Output_data_group<size, big_endian>::do_write(Output_file* of)
1321 {
1322 const off_t off = this->offset();
1323 const section_size_type oview_size =
1324 convert_to_section_size_type(this->data_size());
1325 unsigned char* const oview = of->get_output_view(off, oview_size);
1326
1327 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1328 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1329 ++contents;
1330
1331 for (std::vector<unsigned int>::const_iterator p =
1332 this->input_shndxes_.begin();
1333 p != this->input_shndxes_.end();
1334 ++p, ++contents)
1335 {
1336 Output_section* os = this->relobj_->output_section(*p);
1337
1338 unsigned int output_shndx;
1339 if (os != NULL)
1340 output_shndx = os->out_shndx();
1341 else
1342 {
1343 this->relobj_->error(_("section group retained but "
1344 "group element discarded"));
1345 output_shndx = 0;
1346 }
1347
1348 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1349 }
1350
1351 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1352 gold_assert(wrote == oview_size);
1353
1354 of->write_output_view(off, oview_size, oview);
1355
1356 // We no longer need this information.
1357 this->input_shndxes_.clear();
1358 }
1359
1360 // Output_data_got::Got_entry methods.
1361
1362 // Write out the entry.
1363
1364 template<int got_size, bool big_endian>
1365 void
1366 Output_data_got<got_size, big_endian>::Got_entry::write(
1367 unsigned int got_indx,
1368 unsigned char* pov) const
1369 {
1370 Valtype val = 0;
1371
1372 switch (this->local_sym_index_)
1373 {
1374 case GSYM_CODE:
1375 {
1376 // If the symbol is resolved locally, we need to write out the
1377 // link-time value, which will be relocated dynamically by a
1378 // RELATIVE relocation.
1379 Symbol* gsym = this->u_.gsym;
1380 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1381 val = parameters->target().plt_address_for_global(gsym);
1382 else
1383 {
1384 switch (parameters->size_and_endianness())
1385 {
1386 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1387 case Parameters::TARGET_32_LITTLE:
1388 case Parameters::TARGET_32_BIG:
1389 {
1390 // This cast is ugly. We don't want to put a
1391 // virtual method in Symbol, because we want Symbol
1392 // to be as small as possible.
1393 Sized_symbol<32>::Value_type v;
1394 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1395 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1396 }
1397 break;
1398 #endif
1399 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1400 case Parameters::TARGET_64_LITTLE:
1401 case Parameters::TARGET_64_BIG:
1402 {
1403 Sized_symbol<64>::Value_type v;
1404 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1405 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1406 }
1407 break;
1408 #endif
1409 default:
1410 gold_unreachable();
1411 }
1412 if (this->use_plt_or_tls_offset_
1413 && gsym->type() == elfcpp::STT_TLS)
1414 val += parameters->target().tls_offset_for_global(gsym,
1415 got_indx);
1416 }
1417 }
1418 break;
1419
1420 case CONSTANT_CODE:
1421 val = this->u_.constant;
1422 break;
1423
1424 case RESERVED_CODE:
1425 // If we're doing an incremental update, don't touch this GOT entry.
1426 if (parameters->incremental_update())
1427 return;
1428 val = this->u_.constant;
1429 break;
1430
1431 default:
1432 {
1433 const Relobj* object = this->u_.object;
1434 const unsigned int lsi = this->local_sym_index_;
1435 bool is_tls = object->local_is_tls(lsi);
1436 if (this->use_plt_or_tls_offset_ && !is_tls)
1437 val = parameters->target().plt_address_for_local(object, lsi);
1438 else
1439 {
1440 uint64_t lval = object->local_symbol_value(lsi, 0);
1441 val = convert_types<Valtype, uint64_t>(lval);
1442 if (this->use_plt_or_tls_offset_ && is_tls)
1443 val += parameters->target().tls_offset_for_local(object, lsi,
1444 got_indx);
1445 }
1446 }
1447 break;
1448 }
1449
1450 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1451 }
1452
1453 // Output_data_got methods.
1454
1455 // Add an entry for a global symbol to the GOT. This returns true if
1456 // this is a new GOT entry, false if the symbol already had a GOT
1457 // entry.
1458
1459 template<int got_size, bool big_endian>
1460 bool
1461 Output_data_got<got_size, big_endian>::add_global(
1462 Symbol* gsym,
1463 unsigned int got_type)
1464 {
1465 if (gsym->has_got_offset(got_type))
1466 return false;
1467
1468 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1469 gsym->set_got_offset(got_type, got_offset);
1470 return true;
1471 }
1472
1473 // Like add_global, but use the PLT offset.
1474
1475 template<int got_size, bool big_endian>
1476 bool
1477 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1478 unsigned int got_type)
1479 {
1480 if (gsym->has_got_offset(got_type))
1481 return false;
1482
1483 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1484 gsym->set_got_offset(got_type, got_offset);
1485 return true;
1486 }
1487
1488 // Add an entry for a global symbol to the GOT, and add a dynamic
1489 // relocation of type R_TYPE for the GOT entry.
1490
1491 template<int got_size, bool big_endian>
1492 void
1493 Output_data_got<got_size, big_endian>::add_global_with_rel(
1494 Symbol* gsym,
1495 unsigned int got_type,
1496 Output_data_reloc_generic* rel_dyn,
1497 unsigned int r_type)
1498 {
1499 if (gsym->has_got_offset(got_type))
1500 return;
1501
1502 unsigned int got_offset = this->add_got_entry(Got_entry());
1503 gsym->set_got_offset(got_type, got_offset);
1504 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1505 }
1506
1507 // Add a pair of entries for a global symbol to the GOT, and add
1508 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1509 // If R_TYPE_2 == 0, add the second entry with no relocation.
1510 template<int got_size, bool big_endian>
1511 void
1512 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1513 Symbol* gsym,
1514 unsigned int got_type,
1515 Output_data_reloc_generic* rel_dyn,
1516 unsigned int r_type_1,
1517 unsigned int r_type_2)
1518 {
1519 if (gsym->has_got_offset(got_type))
1520 return;
1521
1522 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1523 gsym->set_got_offset(got_type, got_offset);
1524 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1525
1526 if (r_type_2 != 0)
1527 rel_dyn->add_global_generic(gsym, r_type_2, this,
1528 got_offset + got_size / 8, 0);
1529 }
1530
1531 // Add an entry for a local symbol to the GOT. This returns true if
1532 // this is a new GOT entry, false if the symbol already has a GOT
1533 // entry.
1534
1535 template<int got_size, bool big_endian>
1536 bool
1537 Output_data_got<got_size, big_endian>::add_local(
1538 Relobj* object,
1539 unsigned int symndx,
1540 unsigned int got_type)
1541 {
1542 if (object->local_has_got_offset(symndx, got_type))
1543 return false;
1544
1545 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1546 false));
1547 object->set_local_got_offset(symndx, got_type, got_offset);
1548 return true;
1549 }
1550
1551 // Like add_local, but use the PLT offset.
1552
1553 template<int got_size, bool big_endian>
1554 bool
1555 Output_data_got<got_size, big_endian>::add_local_plt(
1556 Relobj* object,
1557 unsigned int symndx,
1558 unsigned int got_type)
1559 {
1560 if (object->local_has_got_offset(symndx, got_type))
1561 return false;
1562
1563 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1564 true));
1565 object->set_local_got_offset(symndx, got_type, got_offset);
1566 return true;
1567 }
1568
1569 // Add an entry for a local symbol to the GOT, and add a dynamic
1570 // relocation of type R_TYPE for the GOT entry.
1571
1572 template<int got_size, bool big_endian>
1573 void
1574 Output_data_got<got_size, big_endian>::add_local_with_rel(
1575 Relobj* object,
1576 unsigned int symndx,
1577 unsigned int got_type,
1578 Output_data_reloc_generic* rel_dyn,
1579 unsigned int r_type)
1580 {
1581 if (object->local_has_got_offset(symndx, got_type))
1582 return;
1583
1584 unsigned int got_offset = this->add_got_entry(Got_entry());
1585 object->set_local_got_offset(symndx, got_type, got_offset);
1586 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1587 }
1588
1589 // Add a pair of entries for a local symbol to the GOT, and add
1590 // a dynamic relocation of type R_TYPE using the section symbol of
1591 // the output section to which input section SHNDX maps, on the first.
1592 // The first got entry will have a value of zero, the second the
1593 // value of the local symbol.
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int shndx,
1600 unsigned int got_type,
1601 Output_data_reloc_generic* rel_dyn,
1602 unsigned int r_type)
1603 {
1604 if (object->local_has_got_offset(symndx, got_type))
1605 return;
1606
1607 unsigned int got_offset =
1608 this->add_got_entry_pair(Got_entry(),
1609 Got_entry(object, symndx, false));
1610 object->set_local_got_offset(symndx, got_type, got_offset);
1611 Output_section* os = object->output_section(shndx);
1612 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1613 }
1614
1615 // Add a pair of entries for a local symbol to the GOT, and add
1616 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1617 // The first got entry will have a value of zero, the second the
1618 // value of the local symbol offset by Target::tls_offset_for_local.
1619 template<int got_size, bool big_endian>
1620 void
1621 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1622 Relobj* object,
1623 unsigned int symndx,
1624 unsigned int got_type,
1625 Output_data_reloc_generic* rel_dyn,
1626 unsigned int r_type)
1627 {
1628 if (object->local_has_got_offset(symndx, got_type))
1629 return;
1630
1631 unsigned int got_offset
1632 = this->add_got_entry_pair(Got_entry(),
1633 Got_entry(object, symndx, true));
1634 object->set_local_got_offset(symndx, got_type, got_offset);
1635 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1636 }
1637
1638 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1639
1640 template<int got_size, bool big_endian>
1641 void
1642 Output_data_got<got_size, big_endian>::reserve_local(
1643 unsigned int i,
1644 Relobj* object,
1645 unsigned int sym_index,
1646 unsigned int got_type)
1647 {
1648 this->do_reserve_slot(i);
1649 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1650 }
1651
1652 // Reserve a slot in the GOT for a global symbol.
1653
1654 template<int got_size, bool big_endian>
1655 void
1656 Output_data_got<got_size, big_endian>::reserve_global(
1657 unsigned int i,
1658 Symbol* gsym,
1659 unsigned int got_type)
1660 {
1661 this->do_reserve_slot(i);
1662 gsym->set_got_offset(got_type, this->got_offset(i));
1663 }
1664
1665 // Write out the GOT.
1666
1667 template<int got_size, bool big_endian>
1668 void
1669 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1670 {
1671 const int add = got_size / 8;
1672
1673 const off_t off = this->offset();
1674 const off_t oview_size = this->data_size();
1675 unsigned char* const oview = of->get_output_view(off, oview_size);
1676
1677 unsigned char* pov = oview;
1678 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1679 {
1680 this->entries_[i].write(i, pov);
1681 pov += add;
1682 }
1683
1684 gold_assert(pov - oview == oview_size);
1685
1686 of->write_output_view(off, oview_size, oview);
1687
1688 // We no longer need the GOT entries.
1689 this->entries_.clear();
1690 }
1691
1692 // Create a new GOT entry and return its offset.
1693
1694 template<int got_size, bool big_endian>
1695 unsigned int
1696 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1697 {
1698 if (!this->is_data_size_valid())
1699 {
1700 this->entries_.push_back(got_entry);
1701 this->set_got_size();
1702 return this->last_got_offset();
1703 }
1704 else
1705 {
1706 // For an incremental update, find an available slot.
1707 off_t got_offset = this->free_list_.allocate(got_size / 8,
1708 got_size / 8, 0);
1709 if (got_offset == -1)
1710 gold_fallback(_("out of patch space (GOT);"
1711 " relink with --incremental-full"));
1712 unsigned int got_index = got_offset / (got_size / 8);
1713 gold_assert(got_index < this->entries_.size());
1714 this->entries_[got_index] = got_entry;
1715 return static_cast<unsigned int>(got_offset);
1716 }
1717 }
1718
1719 // Create a pair of new GOT entries and return the offset of the first.
1720
1721 template<int got_size, bool big_endian>
1722 unsigned int
1723 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1724 Got_entry got_entry_1,
1725 Got_entry got_entry_2)
1726 {
1727 if (!this->is_data_size_valid())
1728 {
1729 unsigned int got_offset;
1730 this->entries_.push_back(got_entry_1);
1731 got_offset = this->last_got_offset();
1732 this->entries_.push_back(got_entry_2);
1733 this->set_got_size();
1734 return got_offset;
1735 }
1736 else
1737 {
1738 // For an incremental update, find an available pair of slots.
1739 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1740 got_size / 8, 0);
1741 if (got_offset == -1)
1742 gold_fallback(_("out of patch space (GOT);"
1743 " relink with --incremental-full"));
1744 unsigned int got_index = got_offset / (got_size / 8);
1745 gold_assert(got_index < this->entries_.size());
1746 this->entries_[got_index] = got_entry_1;
1747 this->entries_[got_index + 1] = got_entry_2;
1748 return static_cast<unsigned int>(got_offset);
1749 }
1750 }
1751
1752 // Replace GOT entry I with a new value.
1753
1754 template<int got_size, bool big_endian>
1755 void
1756 Output_data_got<got_size, big_endian>::replace_got_entry(
1757 unsigned int i,
1758 Got_entry got_entry)
1759 {
1760 gold_assert(i < this->entries_.size());
1761 this->entries_[i] = got_entry;
1762 }
1763
1764 // Output_data_dynamic::Dynamic_entry methods.
1765
1766 // Write out the entry.
1767
1768 template<int size, bool big_endian>
1769 void
1770 Output_data_dynamic::Dynamic_entry::write(
1771 unsigned char* pov,
1772 const Stringpool* pool) const
1773 {
1774 typename elfcpp::Elf_types<size>::Elf_WXword val;
1775 switch (this->offset_)
1776 {
1777 case DYNAMIC_NUMBER:
1778 val = this->u_.val;
1779 break;
1780
1781 case DYNAMIC_SECTION_SIZE:
1782 val = this->u_.od->data_size();
1783 if (this->od2 != NULL)
1784 val += this->od2->data_size();
1785 break;
1786
1787 case DYNAMIC_SYMBOL:
1788 {
1789 const Sized_symbol<size>* s =
1790 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1791 val = s->value();
1792 }
1793 break;
1794
1795 case DYNAMIC_STRING:
1796 val = pool->get_offset(this->u_.str);
1797 break;
1798
1799 case DYNAMIC_CUSTOM:
1800 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1801 break;
1802
1803 default:
1804 val = this->u_.od->address() + this->offset_;
1805 break;
1806 }
1807
1808 elfcpp::Dyn_write<size, big_endian> dw(pov);
1809 dw.put_d_tag(this->tag_);
1810 dw.put_d_val(val);
1811 }
1812
1813 // Output_data_dynamic methods.
1814
1815 // Adjust the output section to set the entry size.
1816
1817 void
1818 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1819 {
1820 if (parameters->target().get_size() == 32)
1821 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1822 else if (parameters->target().get_size() == 64)
1823 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1824 else
1825 gold_unreachable();
1826 }
1827
1828 // Set the final data size.
1829
1830 void
1831 Output_data_dynamic::set_final_data_size()
1832 {
1833 // Add the terminating entry if it hasn't been added.
1834 // Because of relaxation, we can run this multiple times.
1835 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1836 {
1837 int extra = parameters->options().spare_dynamic_tags();
1838 for (int i = 0; i < extra; ++i)
1839 this->add_constant(elfcpp::DT_NULL, 0);
1840 this->add_constant(elfcpp::DT_NULL, 0);
1841 }
1842
1843 int dyn_size;
1844 if (parameters->target().get_size() == 32)
1845 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1846 else if (parameters->target().get_size() == 64)
1847 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1848 else
1849 gold_unreachable();
1850 this->set_data_size(this->entries_.size() * dyn_size);
1851 }
1852
1853 // Write out the dynamic entries.
1854
1855 void
1856 Output_data_dynamic::do_write(Output_file* of)
1857 {
1858 switch (parameters->size_and_endianness())
1859 {
1860 #ifdef HAVE_TARGET_32_LITTLE
1861 case Parameters::TARGET_32_LITTLE:
1862 this->sized_write<32, false>(of);
1863 break;
1864 #endif
1865 #ifdef HAVE_TARGET_32_BIG
1866 case Parameters::TARGET_32_BIG:
1867 this->sized_write<32, true>(of);
1868 break;
1869 #endif
1870 #ifdef HAVE_TARGET_64_LITTLE
1871 case Parameters::TARGET_64_LITTLE:
1872 this->sized_write<64, false>(of);
1873 break;
1874 #endif
1875 #ifdef HAVE_TARGET_64_BIG
1876 case Parameters::TARGET_64_BIG:
1877 this->sized_write<64, true>(of);
1878 break;
1879 #endif
1880 default:
1881 gold_unreachable();
1882 }
1883 }
1884
1885 template<int size, bool big_endian>
1886 void
1887 Output_data_dynamic::sized_write(Output_file* of)
1888 {
1889 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1890
1891 const off_t offset = this->offset();
1892 const off_t oview_size = this->data_size();
1893 unsigned char* const oview = of->get_output_view(offset, oview_size);
1894
1895 unsigned char* pov = oview;
1896 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1897 p != this->entries_.end();
1898 ++p)
1899 {
1900 p->write<size, big_endian>(pov, this->pool_);
1901 pov += dyn_size;
1902 }
1903
1904 gold_assert(pov - oview == oview_size);
1905
1906 of->write_output_view(offset, oview_size, oview);
1907
1908 // We no longer need the dynamic entries.
1909 this->entries_.clear();
1910 }
1911
1912 // Class Output_symtab_xindex.
1913
1914 void
1915 Output_symtab_xindex::do_write(Output_file* of)
1916 {
1917 const off_t offset = this->offset();
1918 const off_t oview_size = this->data_size();
1919 unsigned char* const oview = of->get_output_view(offset, oview_size);
1920
1921 memset(oview, 0, oview_size);
1922
1923 if (parameters->target().is_big_endian())
1924 this->endian_do_write<true>(oview);
1925 else
1926 this->endian_do_write<false>(oview);
1927
1928 of->write_output_view(offset, oview_size, oview);
1929
1930 // We no longer need the data.
1931 this->entries_.clear();
1932 }
1933
1934 template<bool big_endian>
1935 void
1936 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
1937 {
1938 for (Xindex_entries::const_iterator p = this->entries_.begin();
1939 p != this->entries_.end();
1940 ++p)
1941 {
1942 unsigned int symndx = p->first;
1943 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
1944 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
1945 }
1946 }
1947
1948 // Output_fill_debug_info methods.
1949
1950 // Return the minimum size needed for a dummy compilation unit header.
1951
1952 size_t
1953 Output_fill_debug_info::do_minimum_hole_size() const
1954 {
1955 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
1956 // address_size.
1957 const size_t len = 4 + 2 + 4 + 1;
1958 // For type units, add type_signature, type_offset.
1959 if (this->is_debug_types_)
1960 return len + 8 + 4;
1961 return len;
1962 }
1963
1964 // Write a dummy compilation unit header to fill a hole in the
1965 // .debug_info or .debug_types section.
1966
1967 void
1968 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
1969 {
1970 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
1971 static_cast<long>(off), static_cast<long>(len));
1972
1973 gold_assert(len >= this->do_minimum_hole_size());
1974
1975 unsigned char* const oview = of->get_output_view(off, len);
1976 unsigned char* pov = oview;
1977
1978 // Write header fields: unit_length, version, debug_abbrev_offset,
1979 // address_size.
1980 if (this->is_big_endian())
1981 {
1982 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
1983 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
1984 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
1985 }
1986 else
1987 {
1988 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
1989 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
1990 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
1991 }
1992 pov += 4 + 2 + 4;
1993 *pov++ = 4;
1994
1995 // For type units, the additional header fields -- type_signature,
1996 // type_offset -- can be filled with zeroes.
1997
1998 // Fill the remainder of the free space with zeroes. The first
1999 // zero should tell the consumer there are no DIEs to read in this
2000 // compilation unit.
2001 if (pov < oview + len)
2002 memset(pov, 0, oview + len - pov);
2003
2004 of->write_output_view(off, len, oview);
2005 }
2006
2007 // Output_fill_debug_line methods.
2008
2009 // Return the minimum size needed for a dummy line number program header.
2010
2011 size_t
2012 Output_fill_debug_line::do_minimum_hole_size() const
2013 {
2014 // Line number program header fields: unit_length, version, header_length,
2015 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2016 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2017 const size_t len = 4 + 2 + 4 + this->header_length;
2018 return len;
2019 }
2020
2021 // Write a dummy line number program header to fill a hole in the
2022 // .debug_line section.
2023
2024 void
2025 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2026 {
2027 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2028 static_cast<long>(off), static_cast<long>(len));
2029
2030 gold_assert(len >= this->do_minimum_hole_size());
2031
2032 unsigned char* const oview = of->get_output_view(off, len);
2033 unsigned char* pov = oview;
2034
2035 // Write header fields: unit_length, version, header_length,
2036 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2037 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2038 // We set the header_length field to cover the entire hole, so the
2039 // line number program is empty.
2040 if (this->is_big_endian())
2041 {
2042 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2043 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2044 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2045 }
2046 else
2047 {
2048 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2049 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2050 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2051 }
2052 pov += 4 + 2 + 4;
2053 *pov++ = 1; // minimum_instruction_length
2054 *pov++ = 0; // default_is_stmt
2055 *pov++ = 0; // line_base
2056 *pov++ = 5; // line_range
2057 *pov++ = 13; // opcode_base
2058 *pov++ = 0; // standard_opcode_lengths[1]
2059 *pov++ = 1; // standard_opcode_lengths[2]
2060 *pov++ = 1; // standard_opcode_lengths[3]
2061 *pov++ = 1; // standard_opcode_lengths[4]
2062 *pov++ = 1; // standard_opcode_lengths[5]
2063 *pov++ = 0; // standard_opcode_lengths[6]
2064 *pov++ = 0; // standard_opcode_lengths[7]
2065 *pov++ = 0; // standard_opcode_lengths[8]
2066 *pov++ = 1; // standard_opcode_lengths[9]
2067 *pov++ = 0; // standard_opcode_lengths[10]
2068 *pov++ = 0; // standard_opcode_lengths[11]
2069 *pov++ = 1; // standard_opcode_lengths[12]
2070 *pov++ = 0; // include_directories (empty)
2071 *pov++ = 0; // filenames (empty)
2072
2073 // Some consumers don't check the header_length field, and simply
2074 // start reading the line number program immediately following the
2075 // header. For those consumers, we fill the remainder of the free
2076 // space with DW_LNS_set_basic_block opcodes. These are effectively
2077 // no-ops: the resulting line table program will not create any rows.
2078 if (pov < oview + len)
2079 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2080
2081 of->write_output_view(off, len, oview);
2082 }
2083
2084 // Output_section::Input_section methods.
2085
2086 // Return the current data size. For an input section we store the size here.
2087 // For an Output_section_data, we have to ask it for the size.
2088
2089 off_t
2090 Output_section::Input_section::current_data_size() const
2091 {
2092 if (this->is_input_section())
2093 return this->u1_.data_size;
2094 else
2095 {
2096 this->u2_.posd->pre_finalize_data_size();
2097 return this->u2_.posd->current_data_size();
2098 }
2099 }
2100
2101 // Return the data size. For an input section we store the size here.
2102 // For an Output_section_data, we have to ask it for the size.
2103
2104 off_t
2105 Output_section::Input_section::data_size() const
2106 {
2107 if (this->is_input_section())
2108 return this->u1_.data_size;
2109 else
2110 return this->u2_.posd->data_size();
2111 }
2112
2113 // Return the object for an input section.
2114
2115 Relobj*
2116 Output_section::Input_section::relobj() const
2117 {
2118 if (this->is_input_section())
2119 return this->u2_.object;
2120 else if (this->is_merge_section())
2121 {
2122 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2123 return this->u2_.pomb->first_relobj();
2124 }
2125 else if (this->is_relaxed_input_section())
2126 return this->u2_.poris->relobj();
2127 else
2128 gold_unreachable();
2129 }
2130
2131 // Return the input section index for an input section.
2132
2133 unsigned int
2134 Output_section::Input_section::shndx() const
2135 {
2136 if (this->is_input_section())
2137 return this->shndx_;
2138 else if (this->is_merge_section())
2139 {
2140 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2141 return this->u2_.pomb->first_shndx();
2142 }
2143 else if (this->is_relaxed_input_section())
2144 return this->u2_.poris->shndx();
2145 else
2146 gold_unreachable();
2147 }
2148
2149 // Set the address and file offset.
2150
2151 void
2152 Output_section::Input_section::set_address_and_file_offset(
2153 uint64_t address,
2154 off_t file_offset,
2155 off_t section_file_offset)
2156 {
2157 if (this->is_input_section())
2158 this->u2_.object->set_section_offset(this->shndx_,
2159 file_offset - section_file_offset);
2160 else
2161 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2162 }
2163
2164 // Reset the address and file offset.
2165
2166 void
2167 Output_section::Input_section::reset_address_and_file_offset()
2168 {
2169 if (!this->is_input_section())
2170 this->u2_.posd->reset_address_and_file_offset();
2171 }
2172
2173 // Finalize the data size.
2174
2175 void
2176 Output_section::Input_section::finalize_data_size()
2177 {
2178 if (!this->is_input_section())
2179 this->u2_.posd->finalize_data_size();
2180 }
2181
2182 // Try to turn an input offset into an output offset. We want to
2183 // return the output offset relative to the start of this
2184 // Input_section in the output section.
2185
2186 inline bool
2187 Output_section::Input_section::output_offset(
2188 const Relobj* object,
2189 unsigned int shndx,
2190 section_offset_type offset,
2191 section_offset_type* poutput) const
2192 {
2193 if (!this->is_input_section())
2194 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2195 else
2196 {
2197 if (this->shndx_ != shndx || this->u2_.object != object)
2198 return false;
2199 *poutput = offset;
2200 return true;
2201 }
2202 }
2203
2204 // Write out the data. We don't have to do anything for an input
2205 // section--they are handled via Object::relocate--but this is where
2206 // we write out the data for an Output_section_data.
2207
2208 void
2209 Output_section::Input_section::write(Output_file* of)
2210 {
2211 if (!this->is_input_section())
2212 this->u2_.posd->write(of);
2213 }
2214
2215 // Write the data to a buffer. As for write(), we don't have to do
2216 // anything for an input section.
2217
2218 void
2219 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2220 {
2221 if (!this->is_input_section())
2222 this->u2_.posd->write_to_buffer(buffer);
2223 }
2224
2225 // Print to a map file.
2226
2227 void
2228 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2229 {
2230 switch (this->shndx_)
2231 {
2232 case OUTPUT_SECTION_CODE:
2233 case MERGE_DATA_SECTION_CODE:
2234 case MERGE_STRING_SECTION_CODE:
2235 this->u2_.posd->print_to_mapfile(mapfile);
2236 break;
2237
2238 case RELAXED_INPUT_SECTION_CODE:
2239 {
2240 Output_relaxed_input_section* relaxed_section =
2241 this->relaxed_input_section();
2242 mapfile->print_input_section(relaxed_section->relobj(),
2243 relaxed_section->shndx());
2244 }
2245 break;
2246 default:
2247 mapfile->print_input_section(this->u2_.object, this->shndx_);
2248 break;
2249 }
2250 }
2251
2252 // Output_section methods.
2253
2254 // Construct an Output_section. NAME will point into a Stringpool.
2255
2256 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2257 elfcpp::Elf_Xword flags)
2258 : name_(name),
2259 addralign_(0),
2260 entsize_(0),
2261 load_address_(0),
2262 link_section_(NULL),
2263 link_(0),
2264 info_section_(NULL),
2265 info_symndx_(NULL),
2266 info_(0),
2267 type_(type),
2268 flags_(flags),
2269 order_(ORDER_INVALID),
2270 out_shndx_(-1U),
2271 symtab_index_(0),
2272 dynsym_index_(0),
2273 input_sections_(),
2274 first_input_offset_(0),
2275 fills_(),
2276 postprocessing_buffer_(NULL),
2277 needs_symtab_index_(false),
2278 needs_dynsym_index_(false),
2279 should_link_to_symtab_(false),
2280 should_link_to_dynsym_(false),
2281 after_input_sections_(false),
2282 requires_postprocessing_(false),
2283 found_in_sections_clause_(false),
2284 has_load_address_(false),
2285 info_uses_section_index_(false),
2286 input_section_order_specified_(false),
2287 may_sort_attached_input_sections_(false),
2288 must_sort_attached_input_sections_(false),
2289 attached_input_sections_are_sorted_(false),
2290 is_relro_(false),
2291 is_small_section_(false),
2292 is_large_section_(false),
2293 generate_code_fills_at_write_(false),
2294 is_entsize_zero_(false),
2295 section_offsets_need_adjustment_(false),
2296 is_noload_(false),
2297 always_keeps_input_sections_(false),
2298 has_fixed_layout_(false),
2299 is_patch_space_allowed_(false),
2300 is_unique_segment_(false),
2301 tls_offset_(0),
2302 extra_segment_flags_(0),
2303 segment_alignment_(0),
2304 checkpoint_(NULL),
2305 lookup_maps_(new Output_section_lookup_maps),
2306 free_list_(),
2307 free_space_fill_(NULL),
2308 patch_space_(0)
2309 {
2310 // An unallocated section has no address. Forcing this means that
2311 // we don't need special treatment for symbols defined in debug
2312 // sections.
2313 if ((flags & elfcpp::SHF_ALLOC) == 0)
2314 this->set_address(0);
2315 }
2316
2317 Output_section::~Output_section()
2318 {
2319 delete this->checkpoint_;
2320 }
2321
2322 // Set the entry size.
2323
2324 void
2325 Output_section::set_entsize(uint64_t v)
2326 {
2327 if (this->is_entsize_zero_)
2328 ;
2329 else if (this->entsize_ == 0)
2330 this->entsize_ = v;
2331 else if (this->entsize_ != v)
2332 {
2333 this->entsize_ = 0;
2334 this->is_entsize_zero_ = 1;
2335 }
2336 }
2337
2338 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2339 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2340 // relocation section which applies to this section, or 0 if none, or
2341 // -1U if more than one. Return the offset of the input section
2342 // within the output section. Return -1 if the input section will
2343 // receive special handling. In the normal case we don't always keep
2344 // track of input sections for an Output_section. Instead, each
2345 // Object keeps track of the Output_section for each of its input
2346 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2347 // track of input sections here; this is used when SECTIONS appears in
2348 // a linker script.
2349
2350 template<int size, bool big_endian>
2351 off_t
2352 Output_section::add_input_section(Layout* layout,
2353 Sized_relobj_file<size, big_endian>* object,
2354 unsigned int shndx,
2355 const char* secname,
2356 const elfcpp::Shdr<size, big_endian>& shdr,
2357 unsigned int reloc_shndx,
2358 bool have_sections_script)
2359 {
2360 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2361 if ((addralign & (addralign - 1)) != 0)
2362 {
2363 object->error(_("invalid alignment %lu for section \"%s\""),
2364 static_cast<unsigned long>(addralign), secname);
2365 addralign = 1;
2366 }
2367
2368 if (addralign > this->addralign_)
2369 this->addralign_ = addralign;
2370
2371 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2372 uint64_t entsize = shdr.get_sh_entsize();
2373
2374 // .debug_str is a mergeable string section, but is not always so
2375 // marked by compilers. Mark manually here so we can optimize.
2376 if (strcmp(secname, ".debug_str") == 0)
2377 {
2378 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2379 entsize = 1;
2380 }
2381
2382 this->update_flags_for_input_section(sh_flags);
2383 this->set_entsize(entsize);
2384
2385 // If this is a SHF_MERGE section, we pass all the input sections to
2386 // a Output_data_merge. We don't try to handle relocations for such
2387 // a section. We don't try to handle empty merge sections--they
2388 // mess up the mappings, and are useless anyhow.
2389 // FIXME: Need to handle merge sections during incremental update.
2390 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2391 && reloc_shndx == 0
2392 && shdr.get_sh_size() > 0
2393 && !parameters->incremental())
2394 {
2395 // Keep information about merged input sections for rebuilding fast
2396 // lookup maps if we have sections-script or we do relaxation.
2397 bool keeps_input_sections = (this->always_keeps_input_sections_
2398 || have_sections_script
2399 || parameters->target().may_relax());
2400
2401 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2402 addralign, keeps_input_sections))
2403 {
2404 // Tell the relocation routines that they need to call the
2405 // output_offset method to determine the final address.
2406 return -1;
2407 }
2408 }
2409
2410 section_size_type input_section_size = shdr.get_sh_size();
2411 section_size_type uncompressed_size;
2412 if (object->section_is_compressed(shndx, &uncompressed_size))
2413 input_section_size = uncompressed_size;
2414
2415 off_t offset_in_section;
2416
2417 if (this->has_fixed_layout())
2418 {
2419 // For incremental updates, find a chunk of unused space in the section.
2420 offset_in_section = this->free_list_.allocate(input_section_size,
2421 addralign, 0);
2422 if (offset_in_section == -1)
2423 gold_fallback(_("out of patch space in section %s; "
2424 "relink with --incremental-full"),
2425 this->name());
2426 return offset_in_section;
2427 }
2428
2429 offset_in_section = this->current_data_size_for_child();
2430 off_t aligned_offset_in_section = align_address(offset_in_section,
2431 addralign);
2432 this->set_current_data_size_for_child(aligned_offset_in_section
2433 + input_section_size);
2434
2435 // Determine if we want to delay code-fill generation until the output
2436 // section is written. When the target is relaxing, we want to delay fill
2437 // generating to avoid adjusting them during relaxation. Also, if we are
2438 // sorting input sections we must delay fill generation.
2439 if (!this->generate_code_fills_at_write_
2440 && !have_sections_script
2441 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2442 && parameters->target().has_code_fill()
2443 && (parameters->target().may_relax()
2444 || layout->is_section_ordering_specified()))
2445 {
2446 gold_assert(this->fills_.empty());
2447 this->generate_code_fills_at_write_ = true;
2448 }
2449
2450 if (aligned_offset_in_section > offset_in_section
2451 && !this->generate_code_fills_at_write_
2452 && !have_sections_script
2453 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2454 && parameters->target().has_code_fill())
2455 {
2456 // We need to add some fill data. Using fill_list_ when
2457 // possible is an optimization, since we will often have fill
2458 // sections without input sections.
2459 off_t fill_len = aligned_offset_in_section - offset_in_section;
2460 if (this->input_sections_.empty())
2461 this->fills_.push_back(Fill(offset_in_section, fill_len));
2462 else
2463 {
2464 std::string fill_data(parameters->target().code_fill(fill_len));
2465 Output_data_const* odc = new Output_data_const(fill_data, 1);
2466 this->input_sections_.push_back(Input_section(odc));
2467 }
2468 }
2469
2470 // We need to keep track of this section if we are already keeping
2471 // track of sections, or if we are relaxing. Also, if this is a
2472 // section which requires sorting, or which may require sorting in
2473 // the future, we keep track of the sections. If the
2474 // --section-ordering-file option is used to specify the order of
2475 // sections, we need to keep track of sections.
2476 if (this->always_keeps_input_sections_
2477 || have_sections_script
2478 || !this->input_sections_.empty()
2479 || this->may_sort_attached_input_sections()
2480 || this->must_sort_attached_input_sections()
2481 || parameters->options().user_set_Map()
2482 || parameters->target().may_relax()
2483 || layout->is_section_ordering_specified())
2484 {
2485 Input_section isecn(object, shndx, input_section_size, addralign);
2486 /* If section ordering is requested by specifying a ordering file,
2487 using --section-ordering-file, match the section name with
2488 a pattern. */
2489 if (parameters->options().section_ordering_file())
2490 {
2491 unsigned int section_order_index =
2492 layout->find_section_order_index(std::string(secname));
2493 if (section_order_index != 0)
2494 {
2495 isecn.set_section_order_index(section_order_index);
2496 this->set_input_section_order_specified();
2497 }
2498 }
2499 this->input_sections_.push_back(isecn);
2500 }
2501
2502 return aligned_offset_in_section;
2503 }
2504
2505 // Add arbitrary data to an output section.
2506
2507 void
2508 Output_section::add_output_section_data(Output_section_data* posd)
2509 {
2510 Input_section inp(posd);
2511 this->add_output_section_data(&inp);
2512
2513 if (posd->is_data_size_valid())
2514 {
2515 off_t offset_in_section;
2516 if (this->has_fixed_layout())
2517 {
2518 // For incremental updates, find a chunk of unused space.
2519 offset_in_section = this->free_list_.allocate(posd->data_size(),
2520 posd->addralign(), 0);
2521 if (offset_in_section == -1)
2522 gold_fallback(_("out of patch space in section %s; "
2523 "relink with --incremental-full"),
2524 this->name());
2525 // Finalize the address and offset now.
2526 uint64_t addr = this->address();
2527 off_t offset = this->offset();
2528 posd->set_address_and_file_offset(addr + offset_in_section,
2529 offset + offset_in_section);
2530 }
2531 else
2532 {
2533 offset_in_section = this->current_data_size_for_child();
2534 off_t aligned_offset_in_section = align_address(offset_in_section,
2535 posd->addralign());
2536 this->set_current_data_size_for_child(aligned_offset_in_section
2537 + posd->data_size());
2538 }
2539 }
2540 else if (this->has_fixed_layout())
2541 {
2542 // For incremental updates, arrange for the data to have a fixed layout.
2543 // This will mean that additions to the data must be allocated from
2544 // free space within the containing output section.
2545 uint64_t addr = this->address();
2546 posd->set_address(addr);
2547 posd->set_file_offset(0);
2548 // FIXME: This should eventually be unreachable.
2549 // gold_unreachable();
2550 }
2551 }
2552
2553 // Add a relaxed input section.
2554
2555 void
2556 Output_section::add_relaxed_input_section(Layout* layout,
2557 Output_relaxed_input_section* poris,
2558 const std::string& name)
2559 {
2560 Input_section inp(poris);
2561
2562 // If the --section-ordering-file option is used to specify the order of
2563 // sections, we need to keep track of sections.
2564 if (layout->is_section_ordering_specified())
2565 {
2566 unsigned int section_order_index =
2567 layout->find_section_order_index(name);
2568 if (section_order_index != 0)
2569 {
2570 inp.set_section_order_index(section_order_index);
2571 this->set_input_section_order_specified();
2572 }
2573 }
2574
2575 this->add_output_section_data(&inp);
2576 if (this->lookup_maps_->is_valid())
2577 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2578 poris->shndx(), poris);
2579
2580 // For a relaxed section, we use the current data size. Linker scripts
2581 // get all the input sections, including relaxed one from an output
2582 // section and add them back to the same output section to compute the
2583 // output section size. If we do not account for sizes of relaxed input
2584 // sections, an output section would be incorrectly sized.
2585 off_t offset_in_section = this->current_data_size_for_child();
2586 off_t aligned_offset_in_section = align_address(offset_in_section,
2587 poris->addralign());
2588 this->set_current_data_size_for_child(aligned_offset_in_section
2589 + poris->current_data_size());
2590 }
2591
2592 // Add arbitrary data to an output section by Input_section.
2593
2594 void
2595 Output_section::add_output_section_data(Input_section* inp)
2596 {
2597 if (this->input_sections_.empty())
2598 this->first_input_offset_ = this->current_data_size_for_child();
2599
2600 this->input_sections_.push_back(*inp);
2601
2602 uint64_t addralign = inp->addralign();
2603 if (addralign > this->addralign_)
2604 this->addralign_ = addralign;
2605
2606 inp->set_output_section(this);
2607 }
2608
2609 // Add a merge section to an output section.
2610
2611 void
2612 Output_section::add_output_merge_section(Output_section_data* posd,
2613 bool is_string, uint64_t entsize)
2614 {
2615 Input_section inp(posd, is_string, entsize);
2616 this->add_output_section_data(&inp);
2617 }
2618
2619 // Add an input section to a SHF_MERGE section.
2620
2621 bool
2622 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2623 uint64_t flags, uint64_t entsize,
2624 uint64_t addralign,
2625 bool keeps_input_sections)
2626 {
2627 // We cannot merge sections with entsize == 0.
2628 if (entsize == 0)
2629 return false;
2630
2631 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2632
2633 // We cannot restore merged input section states.
2634 gold_assert(this->checkpoint_ == NULL);
2635
2636 // Look up merge sections by required properties.
2637 // Currently, we only invalidate the lookup maps in script processing
2638 // and relaxation. We should not have done either when we reach here.
2639 // So we assume that the lookup maps are valid to simply code.
2640 gold_assert(this->lookup_maps_->is_valid());
2641 Merge_section_properties msp(is_string, entsize, addralign);
2642 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2643 bool is_new = false;
2644 if (pomb != NULL)
2645 {
2646 gold_assert(pomb->is_string() == is_string
2647 && pomb->entsize() == entsize
2648 && pomb->addralign() == addralign);
2649 }
2650 else
2651 {
2652 // Create a new Output_merge_data or Output_merge_string_data.
2653 if (!is_string)
2654 pomb = new Output_merge_data(entsize, addralign);
2655 else
2656 {
2657 switch (entsize)
2658 {
2659 case 1:
2660 pomb = new Output_merge_string<char>(addralign);
2661 break;
2662 case 2:
2663 pomb = new Output_merge_string<uint16_t>(addralign);
2664 break;
2665 case 4:
2666 pomb = new Output_merge_string<uint32_t>(addralign);
2667 break;
2668 default:
2669 return false;
2670 }
2671 }
2672 // If we need to do script processing or relaxation, we need to keep
2673 // the original input sections to rebuild the fast lookup maps.
2674 if (keeps_input_sections)
2675 pomb->set_keeps_input_sections();
2676 is_new = true;
2677 }
2678
2679 if (pomb->add_input_section(object, shndx))
2680 {
2681 // Add new merge section to this output section and link merge
2682 // section properties to new merge section in map.
2683 if (is_new)
2684 {
2685 this->add_output_merge_section(pomb, is_string, entsize);
2686 this->lookup_maps_->add_merge_section(msp, pomb);
2687 }
2688
2689 return true;
2690 }
2691 else
2692 {
2693 // If add_input_section failed, delete new merge section to avoid
2694 // exporting empty merge sections in Output_section::get_input_section.
2695 if (is_new)
2696 delete pomb;
2697 return false;
2698 }
2699 }
2700
2701 // Build a relaxation map to speed up relaxation of existing input sections.
2702 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2703
2704 void
2705 Output_section::build_relaxation_map(
2706 const Input_section_list& input_sections,
2707 size_t limit,
2708 Relaxation_map* relaxation_map) const
2709 {
2710 for (size_t i = 0; i < limit; ++i)
2711 {
2712 const Input_section& is(input_sections[i]);
2713 if (is.is_input_section() || is.is_relaxed_input_section())
2714 {
2715 Section_id sid(is.relobj(), is.shndx());
2716 (*relaxation_map)[sid] = i;
2717 }
2718 }
2719 }
2720
2721 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2722 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2723 // indices of INPUT_SECTIONS.
2724
2725 void
2726 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2727 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2728 const Relaxation_map& map,
2729 Input_section_list* input_sections)
2730 {
2731 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2732 {
2733 Output_relaxed_input_section* poris = relaxed_sections[i];
2734 Section_id sid(poris->relobj(), poris->shndx());
2735 Relaxation_map::const_iterator p = map.find(sid);
2736 gold_assert(p != map.end());
2737 gold_assert((*input_sections)[p->second].is_input_section());
2738
2739 // Remember section order index of original input section
2740 // if it is set. Copy it to the relaxed input section.
2741 unsigned int soi =
2742 (*input_sections)[p->second].section_order_index();
2743 (*input_sections)[p->second] = Input_section(poris);
2744 (*input_sections)[p->second].set_section_order_index(soi);
2745 }
2746 }
2747
2748 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2749 // is a vector of pointers to Output_relaxed_input_section or its derived
2750 // classes. The relaxed sections must correspond to existing input sections.
2751
2752 void
2753 Output_section::convert_input_sections_to_relaxed_sections(
2754 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2755 {
2756 gold_assert(parameters->target().may_relax());
2757
2758 // We want to make sure that restore_states does not undo the effect of
2759 // this. If there is no checkpoint active, just search the current
2760 // input section list and replace the sections there. If there is
2761 // a checkpoint, also replace the sections there.
2762
2763 // By default, we look at the whole list.
2764 size_t limit = this->input_sections_.size();
2765
2766 if (this->checkpoint_ != NULL)
2767 {
2768 // Replace input sections with relaxed input section in the saved
2769 // copy of the input section list.
2770 if (this->checkpoint_->input_sections_saved())
2771 {
2772 Relaxation_map map;
2773 this->build_relaxation_map(
2774 *(this->checkpoint_->input_sections()),
2775 this->checkpoint_->input_sections()->size(),
2776 &map);
2777 this->convert_input_sections_in_list_to_relaxed_sections(
2778 relaxed_sections,
2779 map,
2780 this->checkpoint_->input_sections());
2781 }
2782 else
2783 {
2784 // We have not copied the input section list yet. Instead, just
2785 // look at the portion that would be saved.
2786 limit = this->checkpoint_->input_sections_size();
2787 }
2788 }
2789
2790 // Convert input sections in input_section_list.
2791 Relaxation_map map;
2792 this->build_relaxation_map(this->input_sections_, limit, &map);
2793 this->convert_input_sections_in_list_to_relaxed_sections(
2794 relaxed_sections,
2795 map,
2796 &this->input_sections_);
2797
2798 // Update fast look-up map.
2799 if (this->lookup_maps_->is_valid())
2800 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2801 {
2802 Output_relaxed_input_section* poris = relaxed_sections[i];
2803 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2804 poris->shndx(), poris);
2805 }
2806 }
2807
2808 // Update the output section flags based on input section flags.
2809
2810 void
2811 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2812 {
2813 // If we created the section with SHF_ALLOC clear, we set the
2814 // address. If we are now setting the SHF_ALLOC flag, we need to
2815 // undo that.
2816 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2817 && (flags & elfcpp::SHF_ALLOC) != 0)
2818 this->mark_address_invalid();
2819
2820 this->flags_ |= (flags
2821 & (elfcpp::SHF_WRITE
2822 | elfcpp::SHF_ALLOC
2823 | elfcpp::SHF_EXECINSTR));
2824
2825 if ((flags & elfcpp::SHF_MERGE) == 0)
2826 this->flags_ &=~ elfcpp::SHF_MERGE;
2827 else
2828 {
2829 if (this->current_data_size_for_child() == 0)
2830 this->flags_ |= elfcpp::SHF_MERGE;
2831 }
2832
2833 if ((flags & elfcpp::SHF_STRINGS) == 0)
2834 this->flags_ &=~ elfcpp::SHF_STRINGS;
2835 else
2836 {
2837 if (this->current_data_size_for_child() == 0)
2838 this->flags_ |= elfcpp::SHF_STRINGS;
2839 }
2840 }
2841
2842 // Find the merge section into which an input section with index SHNDX in
2843 // OBJECT has been added. Return NULL if none found.
2844
2845 const Output_section_data*
2846 Output_section::find_merge_section(const Relobj* object,
2847 unsigned int shndx) const
2848 {
2849 return object->find_merge_section(shndx);
2850 }
2851
2852 // Build the lookup maps for relaxed sections. This needs
2853 // to be declared as a const method so that it is callable with a const
2854 // Output_section pointer. The method only updates states of the maps.
2855
2856 void
2857 Output_section::build_lookup_maps() const
2858 {
2859 this->lookup_maps_->clear();
2860 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2861 p != this->input_sections_.end();
2862 ++p)
2863 {
2864 if (p->is_relaxed_input_section())
2865 {
2866 Output_relaxed_input_section* poris = p->relaxed_input_section();
2867 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2868 poris->shndx(), poris);
2869 }
2870 }
2871 }
2872
2873 // Find an relaxed input section corresponding to an input section
2874 // in OBJECT with index SHNDX.
2875
2876 const Output_relaxed_input_section*
2877 Output_section::find_relaxed_input_section(const Relobj* object,
2878 unsigned int shndx) const
2879 {
2880 if (!this->lookup_maps_->is_valid())
2881 this->build_lookup_maps();
2882 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2883 }
2884
2885 // Given an address OFFSET relative to the start of input section
2886 // SHNDX in OBJECT, return whether this address is being included in
2887 // the final link. This should only be called if SHNDX in OBJECT has
2888 // a special mapping.
2889
2890 bool
2891 Output_section::is_input_address_mapped(const Relobj* object,
2892 unsigned int shndx,
2893 off_t offset) const
2894 {
2895 // Look at the Output_section_data_maps first.
2896 const Output_section_data* posd = this->find_merge_section(object, shndx);
2897 if (posd == NULL)
2898 posd = this->find_relaxed_input_section(object, shndx);
2899
2900 if (posd != NULL)
2901 {
2902 section_offset_type output_offset;
2903 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2904 // By default we assume that the address is mapped. See comment at the
2905 // end.
2906 if (!found)
2907 return true;
2908 return output_offset != -1;
2909 }
2910
2911 // Fall back to the slow look-up.
2912 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2913 p != this->input_sections_.end();
2914 ++p)
2915 {
2916 section_offset_type output_offset;
2917 if (p->output_offset(object, shndx, offset, &output_offset))
2918 return output_offset != -1;
2919 }
2920
2921 // By default we assume that the address is mapped. This should
2922 // only be called after we have passed all sections to Layout. At
2923 // that point we should know what we are discarding.
2924 return true;
2925 }
2926
2927 // Given an address OFFSET relative to the start of input section
2928 // SHNDX in object OBJECT, return the output offset relative to the
2929 // start of the input section in the output section. This should only
2930 // be called if SHNDX in OBJECT has a special mapping.
2931
2932 section_offset_type
2933 Output_section::output_offset(const Relobj* object, unsigned int shndx,
2934 section_offset_type offset) const
2935 {
2936 // This can only be called meaningfully when we know the data size
2937 // of this.
2938 gold_assert(this->is_data_size_valid());
2939
2940 // Look at the Output_section_data_maps first.
2941 const Output_section_data* posd = this->find_merge_section(object, shndx);
2942 if (posd == NULL)
2943 posd = this->find_relaxed_input_section(object, shndx);
2944 if (posd != NULL)
2945 {
2946 section_offset_type output_offset;
2947 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2948 gold_assert(found);
2949 return output_offset;
2950 }
2951
2952 // Fall back to the slow look-up.
2953 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2954 p != this->input_sections_.end();
2955 ++p)
2956 {
2957 section_offset_type output_offset;
2958 if (p->output_offset(object, shndx, offset, &output_offset))
2959 return output_offset;
2960 }
2961 gold_unreachable();
2962 }
2963
2964 // Return the output virtual address of OFFSET relative to the start
2965 // of input section SHNDX in object OBJECT.
2966
2967 uint64_t
2968 Output_section::output_address(const Relobj* object, unsigned int shndx,
2969 off_t offset) const
2970 {
2971 uint64_t addr = this->address() + this->first_input_offset_;
2972
2973 // Look at the Output_section_data_maps first.
2974 const Output_section_data* posd = this->find_merge_section(object, shndx);
2975 if (posd == NULL)
2976 posd = this->find_relaxed_input_section(object, shndx);
2977 if (posd != NULL && posd->is_address_valid())
2978 {
2979 section_offset_type output_offset;
2980 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2981 gold_assert(found);
2982 return posd->address() + output_offset;
2983 }
2984
2985 // Fall back to the slow look-up.
2986 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2987 p != this->input_sections_.end();
2988 ++p)
2989 {
2990 addr = align_address(addr, p->addralign());
2991 section_offset_type output_offset;
2992 if (p->output_offset(object, shndx, offset, &output_offset))
2993 {
2994 if (output_offset == -1)
2995 return -1ULL;
2996 return addr + output_offset;
2997 }
2998 addr += p->data_size();
2999 }
3000
3001 // If we get here, it means that we don't know the mapping for this
3002 // input section. This might happen in principle if
3003 // add_input_section were called before add_output_section_data.
3004 // But it should never actually happen.
3005
3006 gold_unreachable();
3007 }
3008
3009 // Find the output address of the start of the merged section for
3010 // input section SHNDX in object OBJECT.
3011
3012 bool
3013 Output_section::find_starting_output_address(const Relobj* object,
3014 unsigned int shndx,
3015 uint64_t* paddr) const
3016 {
3017 const Output_section_data* data = this->find_merge_section(object, shndx);
3018 if (data == NULL)
3019 return false;
3020
3021 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3022 // Looking up the merge section map does not always work as we sometimes
3023 // find a merge section without its address set.
3024 uint64_t addr = this->address() + this->first_input_offset_;
3025 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3026 p != this->input_sections_.end();
3027 ++p)
3028 {
3029 addr = align_address(addr, p->addralign());
3030
3031 // It would be nice if we could use the existing output_offset
3032 // method to get the output offset of input offset 0.
3033 // Unfortunately we don't know for sure that input offset 0 is
3034 // mapped at all.
3035 if (!p->is_input_section() && p->output_section_data() == data)
3036 {
3037 *paddr = addr;
3038 return true;
3039 }
3040
3041 addr += p->data_size();
3042 }
3043
3044 // We couldn't find a merge output section for this input section.
3045 return false;
3046 }
3047
3048 // Update the data size of an Output_section.
3049
3050 void
3051 Output_section::update_data_size()
3052 {
3053 if (this->input_sections_.empty())
3054 return;
3055
3056 if (this->must_sort_attached_input_sections()
3057 || this->input_section_order_specified())
3058 this->sort_attached_input_sections();
3059
3060 off_t off = this->first_input_offset_;
3061 for (Input_section_list::iterator p = this->input_sections_.begin();
3062 p != this->input_sections_.end();
3063 ++p)
3064 {
3065 off = align_address(off, p->addralign());
3066 off += p->current_data_size();
3067 }
3068
3069 this->set_current_data_size_for_child(off);
3070 }
3071
3072 // Set the data size of an Output_section. This is where we handle
3073 // setting the addresses of any Output_section_data objects.
3074
3075 void
3076 Output_section::set_final_data_size()
3077 {
3078 off_t data_size;
3079
3080 if (this->input_sections_.empty())
3081 data_size = this->current_data_size_for_child();
3082 else
3083 {
3084 if (this->must_sort_attached_input_sections()
3085 || this->input_section_order_specified())
3086 this->sort_attached_input_sections();
3087
3088 uint64_t address = this->address();
3089 off_t startoff = this->offset();
3090 off_t off = startoff + this->first_input_offset_;
3091 for (Input_section_list::iterator p = this->input_sections_.begin();
3092 p != this->input_sections_.end();
3093 ++p)
3094 {
3095 off = align_address(off, p->addralign());
3096 p->set_address_and_file_offset(address + (off - startoff), off,
3097 startoff);
3098 off += p->data_size();
3099 }
3100 data_size = off - startoff;
3101 }
3102
3103 // For full incremental links, we want to allocate some patch space
3104 // in most sections for subsequent incremental updates.
3105 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3106 {
3107 double pct = parameters->options().incremental_patch();
3108 size_t extra = static_cast<size_t>(data_size * pct);
3109 if (this->free_space_fill_ != NULL
3110 && this->free_space_fill_->minimum_hole_size() > extra)
3111 extra = this->free_space_fill_->minimum_hole_size();
3112 off_t new_size = align_address(data_size + extra, this->addralign());
3113 this->patch_space_ = new_size - data_size;
3114 gold_debug(DEBUG_INCREMENTAL,
3115 "set_final_data_size: %08lx + %08lx: section %s",
3116 static_cast<long>(data_size),
3117 static_cast<long>(this->patch_space_),
3118 this->name());
3119 data_size = new_size;
3120 }
3121
3122 this->set_data_size(data_size);
3123 }
3124
3125 // Reset the address and file offset.
3126
3127 void
3128 Output_section::do_reset_address_and_file_offset()
3129 {
3130 // An unallocated section has no address. Forcing this means that
3131 // we don't need special treatment for symbols defined in debug
3132 // sections. We do the same in the constructor. This does not
3133 // apply to NOLOAD sections though.
3134 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3135 this->set_address(0);
3136
3137 for (Input_section_list::iterator p = this->input_sections_.begin();
3138 p != this->input_sections_.end();
3139 ++p)
3140 p->reset_address_and_file_offset();
3141
3142 // Remove any patch space that was added in set_final_data_size.
3143 if (this->patch_space_ > 0)
3144 {
3145 this->set_current_data_size_for_child(this->current_data_size_for_child()
3146 - this->patch_space_);
3147 this->patch_space_ = 0;
3148 }
3149 }
3150
3151 // Return true if address and file offset have the values after reset.
3152
3153 bool
3154 Output_section::do_address_and_file_offset_have_reset_values() const
3155 {
3156 if (this->is_offset_valid())
3157 return false;
3158
3159 // An unallocated section has address 0 after its construction or a reset.
3160 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3161 return this->is_address_valid() && this->address() == 0;
3162 else
3163 return !this->is_address_valid();
3164 }
3165
3166 // Set the TLS offset. Called only for SHT_TLS sections.
3167
3168 void
3169 Output_section::do_set_tls_offset(uint64_t tls_base)
3170 {
3171 this->tls_offset_ = this->address() - tls_base;
3172 }
3173
3174 // In a few cases we need to sort the input sections attached to an
3175 // output section. This is used to implement the type of constructor
3176 // priority ordering implemented by the GNU linker, in which the
3177 // priority becomes part of the section name and the sections are
3178 // sorted by name. We only do this for an output section if we see an
3179 // attached input section matching ".ctors.*", ".dtors.*",
3180 // ".init_array.*" or ".fini_array.*".
3181
3182 class Output_section::Input_section_sort_entry
3183 {
3184 public:
3185 Input_section_sort_entry()
3186 : input_section_(), index_(-1U), section_name_()
3187 { }
3188
3189 Input_section_sort_entry(const Input_section& input_section,
3190 unsigned int index,
3191 bool must_sort_attached_input_sections,
3192 const char* output_section_name)
3193 : input_section_(input_section), index_(index), section_name_()
3194 {
3195 if ((input_section.is_input_section()
3196 || input_section.is_relaxed_input_section())
3197 && must_sort_attached_input_sections)
3198 {
3199 // This is only called single-threaded from Layout::finalize,
3200 // so it is OK to lock. Unfortunately we have no way to pass
3201 // in a Task token.
3202 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3203 Object* obj = (input_section.is_input_section()
3204 ? input_section.relobj()
3205 : input_section.relaxed_input_section()->relobj());
3206 Task_lock_obj<Object> tl(dummy_task, obj);
3207
3208 // This is a slow operation, which should be cached in
3209 // Layout::layout if this becomes a speed problem.
3210 this->section_name_ = obj->section_name(input_section.shndx());
3211 }
3212 else if (input_section.is_output_section_data()
3213 && must_sort_attached_input_sections)
3214 {
3215 // For linker-generated sections, use the output section name.
3216 this->section_name_.assign(output_section_name);
3217 }
3218 }
3219
3220 // Return the Input_section.
3221 const Input_section&
3222 input_section() const
3223 {
3224 gold_assert(this->index_ != -1U);
3225 return this->input_section_;
3226 }
3227
3228 // The index of this entry in the original list. This is used to
3229 // make the sort stable.
3230 unsigned int
3231 index() const
3232 {
3233 gold_assert(this->index_ != -1U);
3234 return this->index_;
3235 }
3236
3237 // The section name.
3238 const std::string&
3239 section_name() const
3240 {
3241 return this->section_name_;
3242 }
3243
3244 // Return true if the section name has a priority. This is assumed
3245 // to be true if it has a dot after the initial dot.
3246 bool
3247 has_priority() const
3248 {
3249 return this->section_name_.find('.', 1) != std::string::npos;
3250 }
3251
3252 // Return the priority. Believe it or not, gcc encodes the priority
3253 // differently for .ctors/.dtors and .init_array/.fini_array
3254 // sections.
3255 unsigned int
3256 get_priority() const
3257 {
3258 bool is_ctors;
3259 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3260 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3261 is_ctors = true;
3262 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3263 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3264 is_ctors = false;
3265 else
3266 return 0;
3267 char* end;
3268 unsigned long prio = strtoul((this->section_name_.c_str()
3269 + (is_ctors ? 7 : 12)),
3270 &end, 10);
3271 if (*end != '\0')
3272 return 0;
3273 else if (is_ctors)
3274 return 65535 - prio;
3275 else
3276 return prio;
3277 }
3278
3279 // Return true if this an input file whose base name matches
3280 // FILE_NAME. The base name must have an extension of ".o", and
3281 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3282 // This is to match crtbegin.o as well as crtbeginS.o without
3283 // getting confused by other possibilities. Overall matching the
3284 // file name this way is a dreadful hack, but the GNU linker does it
3285 // in order to better support gcc, and we need to be compatible.
3286 bool
3287 match_file_name(const char* file_name) const
3288 {
3289 if (this->input_section_.is_output_section_data())
3290 return false;
3291 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3292 }
3293
3294 // Returns 1 if THIS should appear before S in section order, -1 if S
3295 // appears before THIS and 0 if they are not comparable.
3296 int
3297 compare_section_ordering(const Input_section_sort_entry& s) const
3298 {
3299 unsigned int this_secn_index = this->input_section_.section_order_index();
3300 unsigned int s_secn_index = s.input_section().section_order_index();
3301 if (this_secn_index > 0 && s_secn_index > 0)
3302 {
3303 if (this_secn_index < s_secn_index)
3304 return 1;
3305 else if (this_secn_index > s_secn_index)
3306 return -1;
3307 }
3308 return 0;
3309 }
3310
3311 private:
3312 // The Input_section we are sorting.
3313 Input_section input_section_;
3314 // The index of this Input_section in the original list.
3315 unsigned int index_;
3316 // The section name if there is one.
3317 std::string section_name_;
3318 };
3319
3320 // Return true if S1 should come before S2 in the output section.
3321
3322 bool
3323 Output_section::Input_section_sort_compare::operator()(
3324 const Output_section::Input_section_sort_entry& s1,
3325 const Output_section::Input_section_sort_entry& s2) const
3326 {
3327 // crtbegin.o must come first.
3328 bool s1_begin = s1.match_file_name("crtbegin");
3329 bool s2_begin = s2.match_file_name("crtbegin");
3330 if (s1_begin || s2_begin)
3331 {
3332 if (!s1_begin)
3333 return false;
3334 if (!s2_begin)
3335 return true;
3336 return s1.index() < s2.index();
3337 }
3338
3339 // crtend.o must come last.
3340 bool s1_end = s1.match_file_name("crtend");
3341 bool s2_end = s2.match_file_name("crtend");
3342 if (s1_end || s2_end)
3343 {
3344 if (!s1_end)
3345 return true;
3346 if (!s2_end)
3347 return false;
3348 return s1.index() < s2.index();
3349 }
3350
3351 // A section with a priority follows a section without a priority.
3352 bool s1_has_priority = s1.has_priority();
3353 bool s2_has_priority = s2.has_priority();
3354 if (s1_has_priority && !s2_has_priority)
3355 return false;
3356 if (!s1_has_priority && s2_has_priority)
3357 return true;
3358
3359 // Check if a section order exists for these sections through a section
3360 // ordering file. If sequence_num is 0, an order does not exist.
3361 int sequence_num = s1.compare_section_ordering(s2);
3362 if (sequence_num != 0)
3363 return sequence_num == 1;
3364
3365 // Otherwise we sort by name.
3366 int compare = s1.section_name().compare(s2.section_name());
3367 if (compare != 0)
3368 return compare < 0;
3369
3370 // Otherwise we keep the input order.
3371 return s1.index() < s2.index();
3372 }
3373
3374 // Return true if S1 should come before S2 in an .init_array or .fini_array
3375 // output section.
3376
3377 bool
3378 Output_section::Input_section_sort_init_fini_compare::operator()(
3379 const Output_section::Input_section_sort_entry& s1,
3380 const Output_section::Input_section_sort_entry& s2) const
3381 {
3382 // A section without a priority follows a section with a priority.
3383 // This is the reverse of .ctors and .dtors sections.
3384 bool s1_has_priority = s1.has_priority();
3385 bool s2_has_priority = s2.has_priority();
3386 if (s1_has_priority && !s2_has_priority)
3387 return true;
3388 if (!s1_has_priority && s2_has_priority)
3389 return false;
3390
3391 // .ctors and .dtors sections without priority come after
3392 // .init_array and .fini_array sections without priority.
3393 if (!s1_has_priority
3394 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3395 && s1.section_name() != s2.section_name())
3396 return false;
3397 if (!s2_has_priority
3398 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3399 && s2.section_name() != s1.section_name())
3400 return true;
3401
3402 // Sort by priority if we can.
3403 if (s1_has_priority)
3404 {
3405 unsigned int s1_prio = s1.get_priority();
3406 unsigned int s2_prio = s2.get_priority();
3407 if (s1_prio < s2_prio)
3408 return true;
3409 else if (s1_prio > s2_prio)
3410 return false;
3411 }
3412
3413 // Check if a section order exists for these sections through a section
3414 // ordering file. If sequence_num is 0, an order does not exist.
3415 int sequence_num = s1.compare_section_ordering(s2);
3416 if (sequence_num != 0)
3417 return sequence_num == 1;
3418
3419 // Otherwise we sort by name.
3420 int compare = s1.section_name().compare(s2.section_name());
3421 if (compare != 0)
3422 return compare < 0;
3423
3424 // Otherwise we keep the input order.
3425 return s1.index() < s2.index();
3426 }
3427
3428 // Return true if S1 should come before S2. Sections that do not match
3429 // any pattern in the section ordering file are placed ahead of the sections
3430 // that match some pattern.
3431
3432 bool
3433 Output_section::Input_section_sort_section_order_index_compare::operator()(
3434 const Output_section::Input_section_sort_entry& s1,
3435 const Output_section::Input_section_sort_entry& s2) const
3436 {
3437 unsigned int s1_secn_index = s1.input_section().section_order_index();
3438 unsigned int s2_secn_index = s2.input_section().section_order_index();
3439
3440 // Keep input order if section ordering cannot determine order.
3441 if (s1_secn_index == s2_secn_index)
3442 return s1.index() < s2.index();
3443
3444 return s1_secn_index < s2_secn_index;
3445 }
3446
3447 // Return true if S1 should come before S2. This is the sort comparison
3448 // function for .text to sort sections with prefixes
3449 // .text.{unlikely,exit,startup,hot} before other sections.
3450
3451 bool
3452 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3453 ::operator()(
3454 const Output_section::Input_section_sort_entry& s1,
3455 const Output_section::Input_section_sort_entry& s2) const
3456 {
3457 // Some input section names have special ordering requirements.
3458 int o1 = Layout::special_ordering_of_input_section(s1.section_name().c_str());
3459 int o2 = Layout::special_ordering_of_input_section(s2.section_name().c_str());
3460 if (o1 != o2)
3461 {
3462 if (o1 < 0)
3463 return false;
3464 else if (o2 < 0)
3465 return true;
3466 else
3467 return o1 < o2;
3468 }
3469
3470 // Keep input order otherwise.
3471 return s1.index() < s2.index();
3472 }
3473
3474 // Return true if S1 should come before S2. This is the sort comparison
3475 // function for sections to sort them by name.
3476
3477 bool
3478 Output_section::Input_section_sort_section_name_compare
3479 ::operator()(
3480 const Output_section::Input_section_sort_entry& s1,
3481 const Output_section::Input_section_sort_entry& s2) const
3482 {
3483 // We sort by name.
3484 int compare = s1.section_name().compare(s2.section_name());
3485 if (compare != 0)
3486 return compare < 0;
3487
3488 // Keep input order otherwise.
3489 return s1.index() < s2.index();
3490 }
3491
3492 // This updates the section order index of input sections according to the
3493 // the order specified in the mapping from Section id to order index.
3494
3495 void
3496 Output_section::update_section_layout(
3497 const Section_layout_order* order_map)
3498 {
3499 for (Input_section_list::iterator p = this->input_sections_.begin();
3500 p != this->input_sections_.end();
3501 ++p)
3502 {
3503 if (p->is_input_section()
3504 || p->is_relaxed_input_section())
3505 {
3506 Object* obj = (p->is_input_section()
3507 ? p->relobj()
3508 : p->relaxed_input_section()->relobj());
3509 unsigned int shndx = p->shndx();
3510 Section_layout_order::const_iterator it
3511 = order_map->find(Section_id(obj, shndx));
3512 if (it == order_map->end())
3513 continue;
3514 unsigned int section_order_index = it->second;
3515 if (section_order_index != 0)
3516 {
3517 p->set_section_order_index(section_order_index);
3518 this->set_input_section_order_specified();
3519 }
3520 }
3521 }
3522 }
3523
3524 // Sort the input sections attached to an output section.
3525
3526 void
3527 Output_section::sort_attached_input_sections()
3528 {
3529 if (this->attached_input_sections_are_sorted_)
3530 return;
3531
3532 if (this->checkpoint_ != NULL
3533 && !this->checkpoint_->input_sections_saved())
3534 this->checkpoint_->save_input_sections();
3535
3536 // The only thing we know about an input section is the object and
3537 // the section index. We need the section name. Recomputing this
3538 // is slow but this is an unusual case. If this becomes a speed
3539 // problem we can cache the names as required in Layout::layout.
3540
3541 // We start by building a larger vector holding a copy of each
3542 // Input_section, plus its current index in the list and its name.
3543 std::vector<Input_section_sort_entry> sort_list;
3544
3545 unsigned int i = 0;
3546 for (Input_section_list::iterator p = this->input_sections_.begin();
3547 p != this->input_sections_.end();
3548 ++p, ++i)
3549 sort_list.push_back(Input_section_sort_entry(*p, i,
3550 this->must_sort_attached_input_sections(),
3551 this->name()));
3552
3553 // Sort the input sections.
3554 if (this->must_sort_attached_input_sections())
3555 {
3556 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3557 || this->type() == elfcpp::SHT_INIT_ARRAY
3558 || this->type() == elfcpp::SHT_FINI_ARRAY)
3559 std::sort(sort_list.begin(), sort_list.end(),
3560 Input_section_sort_init_fini_compare());
3561 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3562 std::sort(sort_list.begin(), sort_list.end(),
3563 Input_section_sort_section_name_compare());
3564 else if (strcmp(this->name(), ".text") == 0)
3565 std::sort(sort_list.begin(), sort_list.end(),
3566 Input_section_sort_section_prefix_special_ordering_compare());
3567 else
3568 std::sort(sort_list.begin(), sort_list.end(),
3569 Input_section_sort_compare());
3570 }
3571 else
3572 {
3573 gold_assert(this->input_section_order_specified());
3574 std::sort(sort_list.begin(), sort_list.end(),
3575 Input_section_sort_section_order_index_compare());
3576 }
3577
3578 // Copy the sorted input sections back to our list.
3579 this->input_sections_.clear();
3580 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3581 p != sort_list.end();
3582 ++p)
3583 this->input_sections_.push_back(p->input_section());
3584 sort_list.clear();
3585
3586 // Remember that we sorted the input sections, since we might get
3587 // called again.
3588 this->attached_input_sections_are_sorted_ = true;
3589 }
3590
3591 // Write the section header to *OSHDR.
3592
3593 template<int size, bool big_endian>
3594 void
3595 Output_section::write_header(const Layout* layout,
3596 const Stringpool* secnamepool,
3597 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3598 {
3599 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3600 oshdr->put_sh_type(this->type_);
3601
3602 elfcpp::Elf_Xword flags = this->flags_;
3603 if (this->info_section_ != NULL && this->info_uses_section_index_)
3604 flags |= elfcpp::SHF_INFO_LINK;
3605 oshdr->put_sh_flags(flags);
3606
3607 oshdr->put_sh_addr(this->address());
3608 oshdr->put_sh_offset(this->offset());
3609 oshdr->put_sh_size(this->data_size());
3610 if (this->link_section_ != NULL)
3611 oshdr->put_sh_link(this->link_section_->out_shndx());
3612 else if (this->should_link_to_symtab_)
3613 oshdr->put_sh_link(layout->symtab_section_shndx());
3614 else if (this->should_link_to_dynsym_)
3615 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3616 else
3617 oshdr->put_sh_link(this->link_);
3618
3619 elfcpp::Elf_Word info;
3620 if (this->info_section_ != NULL)
3621 {
3622 if (this->info_uses_section_index_)
3623 info = this->info_section_->out_shndx();
3624 else
3625 info = this->info_section_->symtab_index();
3626 }
3627 else if (this->info_symndx_ != NULL)
3628 info = this->info_symndx_->symtab_index();
3629 else
3630 info = this->info_;
3631 oshdr->put_sh_info(info);
3632
3633 oshdr->put_sh_addralign(this->addralign_);
3634 oshdr->put_sh_entsize(this->entsize_);
3635 }
3636
3637 // Write out the data. For input sections the data is written out by
3638 // Object::relocate, but we have to handle Output_section_data objects
3639 // here.
3640
3641 void
3642 Output_section::do_write(Output_file* of)
3643 {
3644 gold_assert(!this->requires_postprocessing());
3645
3646 // If the target performs relaxation, we delay filler generation until now.
3647 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3648
3649 off_t output_section_file_offset = this->offset();
3650 for (Fill_list::iterator p = this->fills_.begin();
3651 p != this->fills_.end();
3652 ++p)
3653 {
3654 std::string fill_data(parameters->target().code_fill(p->length()));
3655 of->write(output_section_file_offset + p->section_offset(),
3656 fill_data.data(), fill_data.size());
3657 }
3658
3659 off_t off = this->offset() + this->first_input_offset_;
3660 for (Input_section_list::iterator p = this->input_sections_.begin();
3661 p != this->input_sections_.end();
3662 ++p)
3663 {
3664 off_t aligned_off = align_address(off, p->addralign());
3665 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3666 {
3667 size_t fill_len = aligned_off - off;
3668 std::string fill_data(parameters->target().code_fill(fill_len));
3669 of->write(off, fill_data.data(), fill_data.size());
3670 }
3671
3672 p->write(of);
3673 off = aligned_off + p->data_size();
3674 }
3675
3676 // For incremental links, fill in unused chunks in debug sections
3677 // with dummy compilation unit headers.
3678 if (this->free_space_fill_ != NULL)
3679 {
3680 for (Free_list::Const_iterator p = this->free_list_.begin();
3681 p != this->free_list_.end();
3682 ++p)
3683 {
3684 off_t off = p->start_;
3685 size_t len = p->end_ - off;
3686 this->free_space_fill_->write(of, this->offset() + off, len);
3687 }
3688 if (this->patch_space_ > 0)
3689 {
3690 off_t off = this->current_data_size_for_child() - this->patch_space_;
3691 this->free_space_fill_->write(of, this->offset() + off,
3692 this->patch_space_);
3693 }
3694 }
3695 }
3696
3697 // If a section requires postprocessing, create the buffer to use.
3698
3699 void
3700 Output_section::create_postprocessing_buffer()
3701 {
3702 gold_assert(this->requires_postprocessing());
3703
3704 if (this->postprocessing_buffer_ != NULL)
3705 return;
3706
3707 if (!this->input_sections_.empty())
3708 {
3709 off_t off = this->first_input_offset_;
3710 for (Input_section_list::iterator p = this->input_sections_.begin();
3711 p != this->input_sections_.end();
3712 ++p)
3713 {
3714 off = align_address(off, p->addralign());
3715 p->finalize_data_size();
3716 off += p->data_size();
3717 }
3718 this->set_current_data_size_for_child(off);
3719 }
3720
3721 off_t buffer_size = this->current_data_size_for_child();
3722 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3723 }
3724
3725 // Write all the data of an Output_section into the postprocessing
3726 // buffer. This is used for sections which require postprocessing,
3727 // such as compression. Input sections are handled by
3728 // Object::Relocate.
3729
3730 void
3731 Output_section::write_to_postprocessing_buffer()
3732 {
3733 gold_assert(this->requires_postprocessing());
3734
3735 // If the target performs relaxation, we delay filler generation until now.
3736 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3737
3738 unsigned char* buffer = this->postprocessing_buffer();
3739 for (Fill_list::iterator p = this->fills_.begin();
3740 p != this->fills_.end();
3741 ++p)
3742 {
3743 std::string fill_data(parameters->target().code_fill(p->length()));
3744 memcpy(buffer + p->section_offset(), fill_data.data(),
3745 fill_data.size());
3746 }
3747
3748 off_t off = this->first_input_offset_;
3749 for (Input_section_list::iterator p = this->input_sections_.begin();
3750 p != this->input_sections_.end();
3751 ++p)
3752 {
3753 off_t aligned_off = align_address(off, p->addralign());
3754 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3755 {
3756 size_t fill_len = aligned_off - off;
3757 std::string fill_data(parameters->target().code_fill(fill_len));
3758 memcpy(buffer + off, fill_data.data(), fill_data.size());
3759 }
3760
3761 p->write_to_buffer(buffer + aligned_off);
3762 off = aligned_off + p->data_size();
3763 }
3764 }
3765
3766 // Get the input sections for linker script processing. We leave
3767 // behind the Output_section_data entries. Note that this may be
3768 // slightly incorrect for merge sections. We will leave them behind,
3769 // but it is possible that the script says that they should follow
3770 // some other input sections, as in:
3771 // .rodata { *(.rodata) *(.rodata.cst*) }
3772 // For that matter, we don't handle this correctly:
3773 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3774 // With luck this will never matter.
3775
3776 uint64_t
3777 Output_section::get_input_sections(
3778 uint64_t address,
3779 const std::string& fill,
3780 std::list<Input_section>* input_sections)
3781 {
3782 if (this->checkpoint_ != NULL
3783 && !this->checkpoint_->input_sections_saved())
3784 this->checkpoint_->save_input_sections();
3785
3786 // Invalidate fast look-up maps.
3787 this->lookup_maps_->invalidate();
3788
3789 uint64_t orig_address = address;
3790
3791 address = align_address(address, this->addralign());
3792
3793 Input_section_list remaining;
3794 for (Input_section_list::iterator p = this->input_sections_.begin();
3795 p != this->input_sections_.end();
3796 ++p)
3797 {
3798 if (p->is_input_section()
3799 || p->is_relaxed_input_section()
3800 || p->is_merge_section())
3801 input_sections->push_back(*p);
3802 else
3803 {
3804 uint64_t aligned_address = align_address(address, p->addralign());
3805 if (aligned_address != address && !fill.empty())
3806 {
3807 section_size_type length =
3808 convert_to_section_size_type(aligned_address - address);
3809 std::string this_fill;
3810 this_fill.reserve(length);
3811 while (this_fill.length() + fill.length() <= length)
3812 this_fill += fill;
3813 if (this_fill.length() < length)
3814 this_fill.append(fill, 0, length - this_fill.length());
3815
3816 Output_section_data* posd = new Output_data_const(this_fill, 0);
3817 remaining.push_back(Input_section(posd));
3818 }
3819 address = aligned_address;
3820
3821 remaining.push_back(*p);
3822
3823 p->finalize_data_size();
3824 address += p->data_size();
3825 }
3826 }
3827
3828 this->input_sections_.swap(remaining);
3829 this->first_input_offset_ = 0;
3830
3831 uint64_t data_size = address - orig_address;
3832 this->set_current_data_size_for_child(data_size);
3833 return data_size;
3834 }
3835
3836 // Add a script input section. SIS is an Output_section::Input_section,
3837 // which can be either a plain input section or a special input section like
3838 // a relaxed input section. For a special input section, its size must be
3839 // finalized.
3840
3841 void
3842 Output_section::add_script_input_section(const Input_section& sis)
3843 {
3844 uint64_t data_size = sis.data_size();
3845 uint64_t addralign = sis.addralign();
3846 if (addralign > this->addralign_)
3847 this->addralign_ = addralign;
3848
3849 off_t offset_in_section = this->current_data_size_for_child();
3850 off_t aligned_offset_in_section = align_address(offset_in_section,
3851 addralign);
3852
3853 this->set_current_data_size_for_child(aligned_offset_in_section
3854 + data_size);
3855
3856 this->input_sections_.push_back(sis);
3857
3858 // Update fast lookup maps if necessary.
3859 if (this->lookup_maps_->is_valid())
3860 {
3861 if (sis.is_relaxed_input_section())
3862 {
3863 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3864 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3865 poris->shndx(), poris);
3866 }
3867 }
3868 }
3869
3870 // Save states for relaxation.
3871
3872 void
3873 Output_section::save_states()
3874 {
3875 gold_assert(this->checkpoint_ == NULL);
3876 Checkpoint_output_section* checkpoint =
3877 new Checkpoint_output_section(this->addralign_, this->flags_,
3878 this->input_sections_,
3879 this->first_input_offset_,
3880 this->attached_input_sections_are_sorted_);
3881 this->checkpoint_ = checkpoint;
3882 gold_assert(this->fills_.empty());
3883 }
3884
3885 void
3886 Output_section::discard_states()
3887 {
3888 gold_assert(this->checkpoint_ != NULL);
3889 delete this->checkpoint_;
3890 this->checkpoint_ = NULL;
3891 gold_assert(this->fills_.empty());
3892
3893 // Simply invalidate the fast lookup maps since we do not keep
3894 // track of them.
3895 this->lookup_maps_->invalidate();
3896 }
3897
3898 void
3899 Output_section::restore_states()
3900 {
3901 gold_assert(this->checkpoint_ != NULL);
3902 Checkpoint_output_section* checkpoint = this->checkpoint_;
3903
3904 this->addralign_ = checkpoint->addralign();
3905 this->flags_ = checkpoint->flags();
3906 this->first_input_offset_ = checkpoint->first_input_offset();
3907
3908 if (!checkpoint->input_sections_saved())
3909 {
3910 // If we have not copied the input sections, just resize it.
3911 size_t old_size = checkpoint->input_sections_size();
3912 gold_assert(this->input_sections_.size() >= old_size);
3913 this->input_sections_.resize(old_size);
3914 }
3915 else
3916 {
3917 // We need to copy the whole list. This is not efficient for
3918 // extremely large output with hundreads of thousands of input
3919 // objects. We may need to re-think how we should pass sections
3920 // to scripts.
3921 this->input_sections_ = *checkpoint->input_sections();
3922 }
3923
3924 this->attached_input_sections_are_sorted_ =
3925 checkpoint->attached_input_sections_are_sorted();
3926
3927 // Simply invalidate the fast lookup maps since we do not keep
3928 // track of them.
3929 this->lookup_maps_->invalidate();
3930 }
3931
3932 // Update the section offsets of input sections in this. This is required if
3933 // relaxation causes some input sections to change sizes.
3934
3935 void
3936 Output_section::adjust_section_offsets()
3937 {
3938 if (!this->section_offsets_need_adjustment_)
3939 return;
3940
3941 off_t off = 0;
3942 for (Input_section_list::iterator p = this->input_sections_.begin();
3943 p != this->input_sections_.end();
3944 ++p)
3945 {
3946 off = align_address(off, p->addralign());
3947 if (p->is_input_section())
3948 p->relobj()->set_section_offset(p->shndx(), off);
3949 off += p->data_size();
3950 }
3951
3952 this->section_offsets_need_adjustment_ = false;
3953 }
3954
3955 // Print to the map file.
3956
3957 void
3958 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
3959 {
3960 mapfile->print_output_section(this);
3961
3962 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3963 p != this->input_sections_.end();
3964 ++p)
3965 p->print_to_mapfile(mapfile);
3966 }
3967
3968 // Print stats for merge sections to stderr.
3969
3970 void
3971 Output_section::print_merge_stats()
3972 {
3973 Input_section_list::iterator p;
3974 for (p = this->input_sections_.begin();
3975 p != this->input_sections_.end();
3976 ++p)
3977 p->print_merge_stats(this->name_);
3978 }
3979
3980 // Set a fixed layout for the section. Used for incremental update links.
3981
3982 void
3983 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
3984 off_t sh_size, uint64_t sh_addralign)
3985 {
3986 this->addralign_ = sh_addralign;
3987 this->set_current_data_size(sh_size);
3988 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
3989 this->set_address(sh_addr);
3990 this->set_file_offset(sh_offset);
3991 this->finalize_data_size();
3992 this->free_list_.init(sh_size, false);
3993 this->has_fixed_layout_ = true;
3994 }
3995
3996 // Reserve space within the fixed layout for the section. Used for
3997 // incremental update links.
3998
3999 void
4000 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4001 {
4002 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4003 }
4004
4005 // Allocate space from the free list for the section. Used for
4006 // incremental update links.
4007
4008 off_t
4009 Output_section::allocate(off_t len, uint64_t addralign)
4010 {
4011 return this->free_list_.allocate(len, addralign, 0);
4012 }
4013
4014 // Output segment methods.
4015
4016 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4017 : vaddr_(0),
4018 paddr_(0),
4019 memsz_(0),
4020 max_align_(0),
4021 min_p_align_(0),
4022 offset_(0),
4023 filesz_(0),
4024 type_(type),
4025 flags_(flags),
4026 is_max_align_known_(false),
4027 are_addresses_set_(false),
4028 is_large_data_segment_(false),
4029 is_unique_segment_(false)
4030 {
4031 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4032 // the flags.
4033 if (type == elfcpp::PT_TLS)
4034 this->flags_ = elfcpp::PF_R;
4035 }
4036
4037 // Add an Output_section to a PT_LOAD Output_segment.
4038
4039 void
4040 Output_segment::add_output_section_to_load(Layout* layout,
4041 Output_section* os,
4042 elfcpp::Elf_Word seg_flags)
4043 {
4044 gold_assert(this->type() == elfcpp::PT_LOAD);
4045 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4046 gold_assert(!this->is_max_align_known_);
4047 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4048
4049 this->update_flags_for_output_section(seg_flags);
4050
4051 // We don't want to change the ordering if we have a linker script
4052 // with a SECTIONS clause.
4053 Output_section_order order = os->order();
4054 if (layout->script_options()->saw_sections_clause())
4055 order = static_cast<Output_section_order>(0);
4056 else
4057 gold_assert(order != ORDER_INVALID);
4058
4059 this->output_lists_[order].push_back(os);
4060 }
4061
4062 // Add an Output_section to a non-PT_LOAD Output_segment.
4063
4064 void
4065 Output_segment::add_output_section_to_nonload(Output_section* os,
4066 elfcpp::Elf_Word seg_flags)
4067 {
4068 gold_assert(this->type() != elfcpp::PT_LOAD);
4069 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4070 gold_assert(!this->is_max_align_known_);
4071
4072 this->update_flags_for_output_section(seg_flags);
4073
4074 this->output_lists_[0].push_back(os);
4075 }
4076
4077 // Remove an Output_section from this segment. It is an error if it
4078 // is not present.
4079
4080 void
4081 Output_segment::remove_output_section(Output_section* os)
4082 {
4083 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4084 {
4085 Output_data_list* pdl = &this->output_lists_[i];
4086 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4087 {
4088 if (*p == os)
4089 {
4090 pdl->erase(p);
4091 return;
4092 }
4093 }
4094 }
4095 gold_unreachable();
4096 }
4097
4098 // Add an Output_data (which need not be an Output_section) to the
4099 // start of a segment.
4100
4101 void
4102 Output_segment::add_initial_output_data(Output_data* od)
4103 {
4104 gold_assert(!this->is_max_align_known_);
4105 Output_data_list::iterator p = this->output_lists_[0].begin();
4106 this->output_lists_[0].insert(p, od);
4107 }
4108
4109 // Return true if this segment has any sections which hold actual
4110 // data, rather than being a BSS section.
4111
4112 bool
4113 Output_segment::has_any_data_sections() const
4114 {
4115 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4116 {
4117 const Output_data_list* pdl = &this->output_lists_[i];
4118 for (Output_data_list::const_iterator p = pdl->begin();
4119 p != pdl->end();
4120 ++p)
4121 {
4122 if (!(*p)->is_section())
4123 return true;
4124 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4125 return true;
4126 }
4127 }
4128 return false;
4129 }
4130
4131 // Return whether the first data section (not counting TLS sections)
4132 // is a relro section.
4133
4134 bool
4135 Output_segment::is_first_section_relro() const
4136 {
4137 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4138 {
4139 if (i == static_cast<int>(ORDER_TLS_BSS))
4140 continue;
4141 const Output_data_list* pdl = &this->output_lists_[i];
4142 if (!pdl->empty())
4143 {
4144 Output_data* p = pdl->front();
4145 return p->is_section() && p->output_section()->is_relro();
4146 }
4147 }
4148 return false;
4149 }
4150
4151 // Return the maximum alignment of the Output_data in Output_segment.
4152
4153 uint64_t
4154 Output_segment::maximum_alignment()
4155 {
4156 if (!this->is_max_align_known_)
4157 {
4158 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4159 {
4160 const Output_data_list* pdl = &this->output_lists_[i];
4161 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4162 if (addralign > this->max_align_)
4163 this->max_align_ = addralign;
4164 }
4165 this->is_max_align_known_ = true;
4166 }
4167
4168 return this->max_align_;
4169 }
4170
4171 // Return the maximum alignment of a list of Output_data.
4172
4173 uint64_t
4174 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4175 {
4176 uint64_t ret = 0;
4177 for (Output_data_list::const_iterator p = pdl->begin();
4178 p != pdl->end();
4179 ++p)
4180 {
4181 uint64_t addralign = (*p)->addralign();
4182 if (addralign > ret)
4183 ret = addralign;
4184 }
4185 return ret;
4186 }
4187
4188 // Return whether this segment has any dynamic relocs.
4189
4190 bool
4191 Output_segment::has_dynamic_reloc() const
4192 {
4193 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4194 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4195 return true;
4196 return false;
4197 }
4198
4199 // Return whether this Output_data_list has any dynamic relocs.
4200
4201 bool
4202 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4203 {
4204 for (Output_data_list::const_iterator p = pdl->begin();
4205 p != pdl->end();
4206 ++p)
4207 if ((*p)->has_dynamic_reloc())
4208 return true;
4209 return false;
4210 }
4211
4212 // Set the section addresses for an Output_segment. If RESET is true,
4213 // reset the addresses first. ADDR is the address and *POFF is the
4214 // file offset. Set the section indexes starting with *PSHNDX.
4215 // INCREASE_RELRO is the size of the portion of the first non-relro
4216 // section that should be included in the PT_GNU_RELRO segment.
4217 // If this segment has relro sections, and has been aligned for
4218 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4219 // the immediately following segment. Update *HAS_RELRO, *POFF,
4220 // and *PSHNDX.
4221
4222 uint64_t
4223 Output_segment::set_section_addresses(const Target* target,
4224 Layout* layout, bool reset,
4225 uint64_t addr,
4226 unsigned int* increase_relro,
4227 bool* has_relro,
4228 off_t* poff,
4229 unsigned int* pshndx)
4230 {
4231 gold_assert(this->type_ == elfcpp::PT_LOAD);
4232
4233 uint64_t last_relro_pad = 0;
4234 off_t orig_off = *poff;
4235
4236 bool in_tls = false;
4237
4238 // If we have relro sections, we need to pad forward now so that the
4239 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4240 if (parameters->options().relro()
4241 && this->is_first_section_relro()
4242 && (!this->are_addresses_set_ || reset))
4243 {
4244 uint64_t relro_size = 0;
4245 off_t off = *poff;
4246 uint64_t max_align = 0;
4247 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4248 {
4249 Output_data_list* pdl = &this->output_lists_[i];
4250 Output_data_list::iterator p;
4251 for (p = pdl->begin(); p != pdl->end(); ++p)
4252 {
4253 if (!(*p)->is_section())
4254 break;
4255 uint64_t align = (*p)->addralign();
4256 if (align > max_align)
4257 max_align = align;
4258 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4259 in_tls = true;
4260 else if (in_tls)
4261 {
4262 // Align the first non-TLS section to the alignment
4263 // of the TLS segment.
4264 align = max_align;
4265 in_tls = false;
4266 }
4267 // Ignore the size of the .tbss section.
4268 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4269 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4270 continue;
4271 relro_size = align_address(relro_size, align);
4272 if ((*p)->is_address_valid())
4273 relro_size += (*p)->data_size();
4274 else
4275 {
4276 // FIXME: This could be faster.
4277 (*p)->set_address_and_file_offset(relro_size,
4278 relro_size);
4279 relro_size += (*p)->data_size();
4280 (*p)->reset_address_and_file_offset();
4281 }
4282 }
4283 if (p != pdl->end())
4284 break;
4285 }
4286 relro_size += *increase_relro;
4287 // Pad the total relro size to a multiple of the maximum
4288 // section alignment seen.
4289 uint64_t aligned_size = align_address(relro_size, max_align);
4290 // Note the amount of padding added after the last relro section.
4291 last_relro_pad = aligned_size - relro_size;
4292 *has_relro = true;
4293
4294 uint64_t page_align = parameters->target().abi_pagesize();
4295
4296 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4297 uint64_t desired_align = page_align - (aligned_size % page_align);
4298 if (desired_align < off % page_align)
4299 off += page_align;
4300 off += desired_align - off % page_align;
4301 addr += off - orig_off;
4302 orig_off = off;
4303 *poff = off;
4304 }
4305
4306 if (!reset && this->are_addresses_set_)
4307 {
4308 gold_assert(this->paddr_ == addr);
4309 addr = this->vaddr_;
4310 }
4311 else
4312 {
4313 this->vaddr_ = addr;
4314 this->paddr_ = addr;
4315 this->are_addresses_set_ = true;
4316 }
4317
4318 in_tls = false;
4319
4320 this->offset_ = orig_off;
4321
4322 off_t off = 0;
4323 uint64_t ret;
4324 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4325 {
4326 if (i == static_cast<int>(ORDER_RELRO_LAST))
4327 {
4328 *poff += last_relro_pad;
4329 addr += last_relro_pad;
4330 if (this->output_lists_[i].empty())
4331 {
4332 // If there is nothing in the ORDER_RELRO_LAST list,
4333 // the padding will occur at the end of the relro
4334 // segment, and we need to add it to *INCREASE_RELRO.
4335 *increase_relro += last_relro_pad;
4336 }
4337 }
4338 addr = this->set_section_list_addresses(layout, reset,
4339 &this->output_lists_[i],
4340 addr, poff, pshndx, &in_tls);
4341 if (i < static_cast<int>(ORDER_SMALL_BSS))
4342 {
4343 this->filesz_ = *poff - orig_off;
4344 off = *poff;
4345 }
4346
4347 ret = addr;
4348 }
4349
4350 // If the last section was a TLS section, align upward to the
4351 // alignment of the TLS segment, so that the overall size of the TLS
4352 // segment is aligned.
4353 if (in_tls)
4354 {
4355 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4356 *poff = align_address(*poff, segment_align);
4357 }
4358
4359 this->memsz_ = *poff - orig_off;
4360
4361 // Ignore the file offset adjustments made by the BSS Output_data
4362 // objects.
4363 *poff = off;
4364
4365 // If code segments must contain only code, and this code segment is
4366 // page-aligned in the file, then fill it out to a whole page with
4367 // code fill (the tail of the segment will not be within any section).
4368 // Thus the entire code segment can be mapped from the file as whole
4369 // pages and that mapping will contain only valid instructions.
4370 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4371 {
4372 uint64_t abi_pagesize = target->abi_pagesize();
4373 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4374 {
4375 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4376
4377 std::string fill_data;
4378 if (target->has_code_fill())
4379 fill_data = target->code_fill(fill_size);
4380 else
4381 fill_data.resize(fill_size); // Zero fill.
4382
4383 Output_data_const* fill = new Output_data_const(fill_data, 0);
4384 fill->set_address(this->vaddr_ + this->memsz_);
4385 fill->set_file_offset(off);
4386 layout->add_relax_output(fill);
4387
4388 off += fill_size;
4389 gold_assert(off % abi_pagesize == 0);
4390 ret += fill_size;
4391 gold_assert(ret % abi_pagesize == 0);
4392
4393 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4394 this->memsz_ = this->filesz_ += fill_size;
4395
4396 *poff = off;
4397 }
4398 }
4399
4400 return ret;
4401 }
4402
4403 // Set the addresses and file offsets in a list of Output_data
4404 // structures.
4405
4406 uint64_t
4407 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4408 Output_data_list* pdl,
4409 uint64_t addr, off_t* poff,
4410 unsigned int* pshndx,
4411 bool* in_tls)
4412 {
4413 off_t startoff = *poff;
4414 // For incremental updates, we may allocate non-fixed sections from
4415 // free space in the file. This keeps track of the high-water mark.
4416 off_t maxoff = startoff;
4417
4418 off_t off = startoff;
4419 for (Output_data_list::iterator p = pdl->begin();
4420 p != pdl->end();
4421 ++p)
4422 {
4423 if (reset)
4424 (*p)->reset_address_and_file_offset();
4425
4426 // When doing an incremental update or when using a linker script,
4427 // the section will most likely already have an address.
4428 if (!(*p)->is_address_valid())
4429 {
4430 uint64_t align = (*p)->addralign();
4431
4432 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4433 {
4434 // Give the first TLS section the alignment of the
4435 // entire TLS segment. Otherwise the TLS segment as a
4436 // whole may be misaligned.
4437 if (!*in_tls)
4438 {
4439 Output_segment* tls_segment = layout->tls_segment();
4440 gold_assert(tls_segment != NULL);
4441 uint64_t segment_align = tls_segment->maximum_alignment();
4442 gold_assert(segment_align >= align);
4443 align = segment_align;
4444
4445 *in_tls = true;
4446 }
4447 }
4448 else
4449 {
4450 // If this is the first section after the TLS segment,
4451 // align it to at least the alignment of the TLS
4452 // segment, so that the size of the overall TLS segment
4453 // is aligned.
4454 if (*in_tls)
4455 {
4456 uint64_t segment_align =
4457 layout->tls_segment()->maximum_alignment();
4458 if (segment_align > align)
4459 align = segment_align;
4460
4461 *in_tls = false;
4462 }
4463 }
4464
4465 if (!parameters->incremental_update())
4466 {
4467 off = align_address(off, align);
4468 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4469 }
4470 else
4471 {
4472 // Incremental update: allocate file space from free list.
4473 (*p)->pre_finalize_data_size();
4474 off_t current_size = (*p)->current_data_size();
4475 off = layout->allocate(current_size, align, startoff);
4476 if (off == -1)
4477 {
4478 gold_assert((*p)->output_section() != NULL);
4479 gold_fallback(_("out of patch space for section %s; "
4480 "relink with --incremental-full"),
4481 (*p)->output_section()->name());
4482 }
4483 (*p)->set_address_and_file_offset(addr + (off - startoff), off);
4484 if ((*p)->data_size() > current_size)
4485 {
4486 gold_assert((*p)->output_section() != NULL);
4487 gold_fallback(_("%s: section changed size; "
4488 "relink with --incremental-full"),
4489 (*p)->output_section()->name());
4490 }
4491 }
4492 }
4493 else if (parameters->incremental_update())
4494 {
4495 // For incremental updates, use the fixed offset for the
4496 // high-water mark computation.
4497 off = (*p)->offset();
4498 }
4499 else
4500 {
4501 // The script may have inserted a skip forward, but it
4502 // better not have moved backward.
4503 if ((*p)->address() >= addr + (off - startoff))
4504 off += (*p)->address() - (addr + (off - startoff));
4505 else
4506 {
4507 if (!layout->script_options()->saw_sections_clause())
4508 gold_unreachable();
4509 else
4510 {
4511 Output_section* os = (*p)->output_section();
4512
4513 // Cast to unsigned long long to avoid format warnings.
4514 unsigned long long previous_dot =
4515 static_cast<unsigned long long>(addr + (off - startoff));
4516 unsigned long long dot =
4517 static_cast<unsigned long long>((*p)->address());
4518
4519 if (os == NULL)
4520 gold_error(_("dot moves backward in linker script "
4521 "from 0x%llx to 0x%llx"), previous_dot, dot);
4522 else
4523 gold_error(_("address of section '%s' moves backward "
4524 "from 0x%llx to 0x%llx"),
4525 os->name(), previous_dot, dot);
4526 }
4527 }
4528 (*p)->set_file_offset(off);
4529 (*p)->finalize_data_size();
4530 }
4531
4532 if (parameters->incremental_update())
4533 gold_debug(DEBUG_INCREMENTAL,
4534 "set_section_list_addresses: %08lx %08lx %s",
4535 static_cast<long>(off),
4536 static_cast<long>((*p)->data_size()),
4537 ((*p)->output_section() != NULL
4538 ? (*p)->output_section()->name() : "(special)"));
4539
4540 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4541 // section. Such a section does not affect the size of a
4542 // PT_LOAD segment.
4543 if (!(*p)->is_section_flag_set(elfcpp::SHF_TLS)
4544 || !(*p)->is_section_type(elfcpp::SHT_NOBITS))
4545 off += (*p)->data_size();
4546
4547 if (off > maxoff)
4548 maxoff = off;
4549
4550 if ((*p)->is_section())
4551 {
4552 (*p)->set_out_shndx(*pshndx);
4553 ++*pshndx;
4554 }
4555 }
4556
4557 *poff = maxoff;
4558 return addr + (maxoff - startoff);
4559 }
4560
4561 // For a non-PT_LOAD segment, set the offset from the sections, if
4562 // any. Add INCREASE to the file size and the memory size.
4563
4564 void
4565 Output_segment::set_offset(unsigned int increase)
4566 {
4567 gold_assert(this->type_ != elfcpp::PT_LOAD);
4568
4569 gold_assert(!this->are_addresses_set_);
4570
4571 // A non-load section only uses output_lists_[0].
4572
4573 Output_data_list* pdl = &this->output_lists_[0];
4574
4575 if (pdl->empty())
4576 {
4577 gold_assert(increase == 0);
4578 this->vaddr_ = 0;
4579 this->paddr_ = 0;
4580 this->are_addresses_set_ = true;
4581 this->memsz_ = 0;
4582 this->min_p_align_ = 0;
4583 this->offset_ = 0;
4584 this->filesz_ = 0;
4585 return;
4586 }
4587
4588 // Find the first and last section by address.
4589 const Output_data* first = NULL;
4590 const Output_data* last_data = NULL;
4591 const Output_data* last_bss = NULL;
4592 for (Output_data_list::const_iterator p = pdl->begin();
4593 p != pdl->end();
4594 ++p)
4595 {
4596 if (first == NULL
4597 || (*p)->address() < first->address()
4598 || ((*p)->address() == first->address()
4599 && (*p)->data_size() < first->data_size()))
4600 first = *p;
4601 const Output_data** plast;
4602 if ((*p)->is_section()
4603 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4604 plast = &last_bss;
4605 else
4606 plast = &last_data;
4607 if (*plast == NULL
4608 || (*p)->address() > (*plast)->address()
4609 || ((*p)->address() == (*plast)->address()
4610 && (*p)->data_size() > (*plast)->data_size()))
4611 *plast = *p;
4612 }
4613
4614 this->vaddr_ = first->address();
4615 this->paddr_ = (first->has_load_address()
4616 ? first->load_address()
4617 : this->vaddr_);
4618 this->are_addresses_set_ = true;
4619 this->offset_ = first->offset();
4620
4621 if (last_data == NULL)
4622 this->filesz_ = 0;
4623 else
4624 this->filesz_ = (last_data->address()
4625 + last_data->data_size()
4626 - this->vaddr_);
4627
4628 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4629 this->memsz_ = (last->address()
4630 + last->data_size()
4631 - this->vaddr_);
4632
4633 this->filesz_ += increase;
4634 this->memsz_ += increase;
4635
4636 // If this is a RELRO segment, verify that the segment ends at a
4637 // page boundary.
4638 if (this->type_ == elfcpp::PT_GNU_RELRO)
4639 {
4640 uint64_t page_align = parameters->target().abi_pagesize();
4641 uint64_t segment_end = this->vaddr_ + this->memsz_;
4642 if (parameters->incremental_update())
4643 {
4644 // The INCREASE_RELRO calculation is bypassed for an incremental
4645 // update, so we need to adjust the segment size manually here.
4646 segment_end = align_address(segment_end, page_align);
4647 this->memsz_ = segment_end - this->vaddr_;
4648 }
4649 else
4650 gold_assert(segment_end == align_address(segment_end, page_align));
4651 }
4652
4653 // If this is a TLS segment, align the memory size. The code in
4654 // set_section_list ensures that the section after the TLS segment
4655 // is aligned to give us room.
4656 if (this->type_ == elfcpp::PT_TLS)
4657 {
4658 uint64_t segment_align = this->maximum_alignment();
4659 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4660 this->memsz_ = align_address(this->memsz_, segment_align);
4661 }
4662 }
4663
4664 // Set the TLS offsets of the sections in the PT_TLS segment.
4665
4666 void
4667 Output_segment::set_tls_offsets()
4668 {
4669 gold_assert(this->type_ == elfcpp::PT_TLS);
4670
4671 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4672 p != this->output_lists_[0].end();
4673 ++p)
4674 (*p)->set_tls_offset(this->vaddr_);
4675 }
4676
4677 // Return the first section.
4678
4679 Output_section*
4680 Output_segment::first_section() const
4681 {
4682 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4683 {
4684 const Output_data_list* pdl = &this->output_lists_[i];
4685 for (Output_data_list::const_iterator p = pdl->begin();
4686 p != pdl->end();
4687 ++p)
4688 {
4689 if ((*p)->is_section())
4690 return (*p)->output_section();
4691 }
4692 }
4693 gold_unreachable();
4694 }
4695
4696 // Return the number of Output_sections in an Output_segment.
4697
4698 unsigned int
4699 Output_segment::output_section_count() const
4700 {
4701 unsigned int ret = 0;
4702 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4703 ret += this->output_section_count_list(&this->output_lists_[i]);
4704 return ret;
4705 }
4706
4707 // Return the number of Output_sections in an Output_data_list.
4708
4709 unsigned int
4710 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4711 {
4712 unsigned int count = 0;
4713 for (Output_data_list::const_iterator p = pdl->begin();
4714 p != pdl->end();
4715 ++p)
4716 {
4717 if ((*p)->is_section())
4718 ++count;
4719 }
4720 return count;
4721 }
4722
4723 // Return the section attached to the list segment with the lowest
4724 // load address. This is used when handling a PHDRS clause in a
4725 // linker script.
4726
4727 Output_section*
4728 Output_segment::section_with_lowest_load_address() const
4729 {
4730 Output_section* found = NULL;
4731 uint64_t found_lma = 0;
4732 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4733 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4734 &found_lma);
4735 return found;
4736 }
4737
4738 // Look through a list for a section with a lower load address.
4739
4740 void
4741 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4742 Output_section** found,
4743 uint64_t* found_lma) const
4744 {
4745 for (Output_data_list::const_iterator p = pdl->begin();
4746 p != pdl->end();
4747 ++p)
4748 {
4749 if (!(*p)->is_section())
4750 continue;
4751 Output_section* os = static_cast<Output_section*>(*p);
4752 uint64_t lma = (os->has_load_address()
4753 ? os->load_address()
4754 : os->address());
4755 if (*found == NULL || lma < *found_lma)
4756 {
4757 *found = os;
4758 *found_lma = lma;
4759 }
4760 }
4761 }
4762
4763 // Write the segment data into *OPHDR.
4764
4765 template<int size, bool big_endian>
4766 void
4767 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4768 {
4769 ophdr->put_p_type(this->type_);
4770 ophdr->put_p_offset(this->offset_);
4771 ophdr->put_p_vaddr(this->vaddr_);
4772 ophdr->put_p_paddr(this->paddr_);
4773 ophdr->put_p_filesz(this->filesz_);
4774 ophdr->put_p_memsz(this->memsz_);
4775 ophdr->put_p_flags(this->flags_);
4776 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4777 }
4778
4779 // Write the section headers into V.
4780
4781 template<int size, bool big_endian>
4782 unsigned char*
4783 Output_segment::write_section_headers(const Layout* layout,
4784 const Stringpool* secnamepool,
4785 unsigned char* v,
4786 unsigned int* pshndx) const
4787 {
4788 // Every section that is attached to a segment must be attached to a
4789 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4790 // segments.
4791 if (this->type_ != elfcpp::PT_LOAD)
4792 return v;
4793
4794 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4795 {
4796 const Output_data_list* pdl = &this->output_lists_[i];
4797 v = this->write_section_headers_list<size, big_endian>(layout,
4798 secnamepool,
4799 pdl,
4800 v, pshndx);
4801 }
4802
4803 return v;
4804 }
4805
4806 template<int size, bool big_endian>
4807 unsigned char*
4808 Output_segment::write_section_headers_list(const Layout* layout,
4809 const Stringpool* secnamepool,
4810 const Output_data_list* pdl,
4811 unsigned char* v,
4812 unsigned int* pshndx) const
4813 {
4814 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4815 for (Output_data_list::const_iterator p = pdl->begin();
4816 p != pdl->end();
4817 ++p)
4818 {
4819 if ((*p)->is_section())
4820 {
4821 const Output_section* ps = static_cast<const Output_section*>(*p);
4822 gold_assert(*pshndx == ps->out_shndx());
4823 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4824 ps->write_header(layout, secnamepool, &oshdr);
4825 v += shdr_size;
4826 ++*pshndx;
4827 }
4828 }
4829 return v;
4830 }
4831
4832 // Print the output sections to the map file.
4833
4834 void
4835 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4836 {
4837 if (this->type() != elfcpp::PT_LOAD)
4838 return;
4839 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4840 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4841 }
4842
4843 // Print an output section list to the map file.
4844
4845 void
4846 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4847 const Output_data_list* pdl) const
4848 {
4849 for (Output_data_list::const_iterator p = pdl->begin();
4850 p != pdl->end();
4851 ++p)
4852 (*p)->print_to_mapfile(mapfile);
4853 }
4854
4855 // Output_file methods.
4856
4857 Output_file::Output_file(const char* name)
4858 : name_(name),
4859 o_(-1),
4860 file_size_(0),
4861 base_(NULL),
4862 map_is_anonymous_(false),
4863 map_is_allocated_(false),
4864 is_temporary_(false)
4865 {
4866 }
4867
4868 // Try to open an existing file. Returns false if the file doesn't
4869 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4870 // NULL, open that file as the base for incremental linking, and
4871 // copy its contents to the new output file. This routine can
4872 // be called for incremental updates, in which case WRITABLE should
4873 // be true, or by the incremental-dump utility, in which case
4874 // WRITABLE should be false.
4875
4876 bool
4877 Output_file::open_base_file(const char* base_name, bool writable)
4878 {
4879 // The name "-" means "stdout".
4880 if (strcmp(this->name_, "-") == 0)
4881 return false;
4882
4883 bool use_base_file = base_name != NULL;
4884 if (!use_base_file)
4885 base_name = this->name_;
4886 else if (strcmp(base_name, this->name_) == 0)
4887 gold_fatal(_("%s: incremental base and output file name are the same"),
4888 base_name);
4889
4890 // Don't bother opening files with a size of zero.
4891 struct stat s;
4892 if (::stat(base_name, &s) != 0)
4893 {
4894 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
4895 return false;
4896 }
4897 if (s.st_size == 0)
4898 {
4899 gold_info(_("%s: incremental base file is empty"), base_name);
4900 return false;
4901 }
4902
4903 // If we're using a base file, we want to open it read-only.
4904 if (use_base_file)
4905 writable = false;
4906
4907 int oflags = writable ? O_RDWR : O_RDONLY;
4908 int o = open_descriptor(-1, base_name, oflags, 0);
4909 if (o < 0)
4910 {
4911 gold_info(_("%s: open: %s"), base_name, strerror(errno));
4912 return false;
4913 }
4914
4915 // If the base file and the output file are different, open a
4916 // new output file and read the contents from the base file into
4917 // the newly-mapped region.
4918 if (use_base_file)
4919 {
4920 this->open(s.st_size);
4921 ssize_t bytes_to_read = s.st_size;
4922 unsigned char* p = this->base_;
4923 while (bytes_to_read > 0)
4924 {
4925 ssize_t len = ::read(o, p, bytes_to_read);
4926 if (len < 0)
4927 {
4928 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
4929 return false;
4930 }
4931 if (len == 0)
4932 {
4933 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
4934 base_name,
4935 static_cast<long long>(s.st_size - bytes_to_read),
4936 static_cast<long long>(s.st_size));
4937 return false;
4938 }
4939 p += len;
4940 bytes_to_read -= len;
4941 }
4942 ::close(o);
4943 return true;
4944 }
4945
4946 this->o_ = o;
4947 this->file_size_ = s.st_size;
4948
4949 if (!this->map_no_anonymous(writable))
4950 {
4951 release_descriptor(o, true);
4952 this->o_ = -1;
4953 this->file_size_ = 0;
4954 return false;
4955 }
4956
4957 return true;
4958 }
4959
4960 // Open the output file.
4961
4962 void
4963 Output_file::open(off_t file_size)
4964 {
4965 this->file_size_ = file_size;
4966
4967 // Unlink the file first; otherwise the open() may fail if the file
4968 // is busy (e.g. it's an executable that's currently being executed).
4969 //
4970 // However, the linker may be part of a system where a zero-length
4971 // file is created for it to write to, with tight permissions (gcc
4972 // 2.95 did something like this). Unlinking the file would work
4973 // around those permission controls, so we only unlink if the file
4974 // has a non-zero size. We also unlink only regular files to avoid
4975 // trouble with directories/etc.
4976 //
4977 // If we fail, continue; this command is merely a best-effort attempt
4978 // to improve the odds for open().
4979
4980 // We let the name "-" mean "stdout"
4981 if (!this->is_temporary_)
4982 {
4983 if (strcmp(this->name_, "-") == 0)
4984 this->o_ = STDOUT_FILENO;
4985 else
4986 {
4987 struct stat s;
4988 if (::stat(this->name_, &s) == 0
4989 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
4990 {
4991 if (s.st_size != 0)
4992 ::unlink(this->name_);
4993 else if (!parameters->options().relocatable())
4994 {
4995 // If we don't unlink the existing file, add execute
4996 // permission where read permissions already exist
4997 // and where the umask permits.
4998 int mask = ::umask(0);
4999 ::umask(mask);
5000 s.st_mode |= (s.st_mode & 0444) >> 2;
5001 ::chmod(this->name_, s.st_mode & ~mask);
5002 }
5003 }
5004
5005 int mode = parameters->options().relocatable() ? 0666 : 0777;
5006 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5007 mode);
5008 if (o < 0)
5009 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5010 this->o_ = o;
5011 }
5012 }
5013
5014 this->map();
5015 }
5016
5017 // Resize the output file.
5018
5019 void
5020 Output_file::resize(off_t file_size)
5021 {
5022 // If the mmap is mapping an anonymous memory buffer, this is easy:
5023 // just mremap to the new size. If it's mapping to a file, we want
5024 // to unmap to flush to the file, then remap after growing the file.
5025 if (this->map_is_anonymous_)
5026 {
5027 void* base;
5028 if (!this->map_is_allocated_)
5029 {
5030 base = ::mremap(this->base_, this->file_size_, file_size,
5031 MREMAP_MAYMOVE);
5032 if (base == MAP_FAILED)
5033 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5034 }
5035 else
5036 {
5037 base = realloc(this->base_, file_size);
5038 if (base == NULL)
5039 gold_nomem();
5040 if (file_size > this->file_size_)
5041 memset(static_cast<char*>(base) + this->file_size_, 0,
5042 file_size - this->file_size_);
5043 }
5044 this->base_ = static_cast<unsigned char*>(base);
5045 this->file_size_ = file_size;
5046 }
5047 else
5048 {
5049 this->unmap();
5050 this->file_size_ = file_size;
5051 if (!this->map_no_anonymous(true))
5052 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5053 }
5054 }
5055
5056 // Map an anonymous block of memory which will later be written to the
5057 // file. Return whether the map succeeded.
5058
5059 bool
5060 Output_file::map_anonymous()
5061 {
5062 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5063 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5064 if (base == MAP_FAILED)
5065 {
5066 base = malloc(this->file_size_);
5067 if (base == NULL)
5068 return false;
5069 memset(base, 0, this->file_size_);
5070 this->map_is_allocated_ = true;
5071 }
5072 this->base_ = static_cast<unsigned char*>(base);
5073 this->map_is_anonymous_ = true;
5074 return true;
5075 }
5076
5077 // Map the file into memory. Return whether the mapping succeeded.
5078 // If WRITABLE is true, map with write access.
5079
5080 bool
5081 Output_file::map_no_anonymous(bool writable)
5082 {
5083 const int o = this->o_;
5084
5085 // If the output file is not a regular file, don't try to mmap it;
5086 // instead, we'll mmap a block of memory (an anonymous buffer), and
5087 // then later write the buffer to the file.
5088 void* base;
5089 struct stat statbuf;
5090 if (o == STDOUT_FILENO || o == STDERR_FILENO
5091 || ::fstat(o, &statbuf) != 0
5092 || !S_ISREG(statbuf.st_mode)
5093 || this->is_temporary_)
5094 return false;
5095
5096 // Ensure that we have disk space available for the file. If we
5097 // don't do this, it is possible that we will call munmap, close,
5098 // and exit with dirty buffers still in the cache with no assigned
5099 // disk blocks. If the disk is out of space at that point, the
5100 // output file will wind up incomplete, but we will have already
5101 // exited. The alternative to fallocate would be to use fdatasync,
5102 // but that would be a more significant performance hit.
5103 if (writable)
5104 {
5105 int err = gold_fallocate(o, 0, this->file_size_);
5106 if (err != 0)
5107 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5108 }
5109
5110 // Map the file into memory.
5111 int prot = PROT_READ;
5112 if (writable)
5113 prot |= PROT_WRITE;
5114 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5115
5116 // The mmap call might fail because of file system issues: the file
5117 // system might not support mmap at all, or it might not support
5118 // mmap with PROT_WRITE.
5119 if (base == MAP_FAILED)
5120 return false;
5121
5122 this->map_is_anonymous_ = false;
5123 this->base_ = static_cast<unsigned char*>(base);
5124 return true;
5125 }
5126
5127 // Map the file into memory.
5128
5129 void
5130 Output_file::map()
5131 {
5132 if (parameters->options().mmap_output_file()
5133 && this->map_no_anonymous(true))
5134 return;
5135
5136 // The mmap call might fail because of file system issues: the file
5137 // system might not support mmap at all, or it might not support
5138 // mmap with PROT_WRITE. I'm not sure which errno values we will
5139 // see in all cases, so if the mmap fails for any reason and we
5140 // don't care about file contents, try for an anonymous map.
5141 if (this->map_anonymous())
5142 return;
5143
5144 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5145 this->name_, static_cast<unsigned long>(this->file_size_),
5146 strerror(errno));
5147 }
5148
5149 // Unmap the file from memory.
5150
5151 void
5152 Output_file::unmap()
5153 {
5154 if (this->map_is_anonymous_)
5155 {
5156 // We've already written out the data, so there is no reason to
5157 // waste time unmapping or freeing the memory.
5158 }
5159 else
5160 {
5161 if (::munmap(this->base_, this->file_size_) < 0)
5162 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5163 }
5164 this->base_ = NULL;
5165 }
5166
5167 // Close the output file.
5168
5169 void
5170 Output_file::close()
5171 {
5172 // If the map isn't file-backed, we need to write it now.
5173 if (this->map_is_anonymous_ && !this->is_temporary_)
5174 {
5175 size_t bytes_to_write = this->file_size_;
5176 size_t offset = 0;
5177 while (bytes_to_write > 0)
5178 {
5179 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5180 bytes_to_write);
5181 if (bytes_written == 0)
5182 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5183 else if (bytes_written < 0)
5184 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5185 else
5186 {
5187 bytes_to_write -= bytes_written;
5188 offset += bytes_written;
5189 }
5190 }
5191 }
5192 this->unmap();
5193
5194 // We don't close stdout or stderr
5195 if (this->o_ != STDOUT_FILENO
5196 && this->o_ != STDERR_FILENO
5197 && !this->is_temporary_)
5198 if (::close(this->o_) < 0)
5199 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5200 this->o_ = -1;
5201 }
5202
5203 // Instantiate the templates we need. We could use the configure
5204 // script to restrict this to only the ones for implemented targets.
5205
5206 #ifdef HAVE_TARGET_32_LITTLE
5207 template
5208 off_t
5209 Output_section::add_input_section<32, false>(
5210 Layout* layout,
5211 Sized_relobj_file<32, false>* object,
5212 unsigned int shndx,
5213 const char* secname,
5214 const elfcpp::Shdr<32, false>& shdr,
5215 unsigned int reloc_shndx,
5216 bool have_sections_script);
5217 #endif
5218
5219 #ifdef HAVE_TARGET_32_BIG
5220 template
5221 off_t
5222 Output_section::add_input_section<32, true>(
5223 Layout* layout,
5224 Sized_relobj_file<32, true>* object,
5225 unsigned int shndx,
5226 const char* secname,
5227 const elfcpp::Shdr<32, true>& shdr,
5228 unsigned int reloc_shndx,
5229 bool have_sections_script);
5230 #endif
5231
5232 #ifdef HAVE_TARGET_64_LITTLE
5233 template
5234 off_t
5235 Output_section::add_input_section<64, false>(
5236 Layout* layout,
5237 Sized_relobj_file<64, false>* object,
5238 unsigned int shndx,
5239 const char* secname,
5240 const elfcpp::Shdr<64, false>& shdr,
5241 unsigned int reloc_shndx,
5242 bool have_sections_script);
5243 #endif
5244
5245 #ifdef HAVE_TARGET_64_BIG
5246 template
5247 off_t
5248 Output_section::add_input_section<64, true>(
5249 Layout* layout,
5250 Sized_relobj_file<64, true>* object,
5251 unsigned int shndx,
5252 const char* secname,
5253 const elfcpp::Shdr<64, true>& shdr,
5254 unsigned int reloc_shndx,
5255 bool have_sections_script);
5256 #endif
5257
5258 #ifdef HAVE_TARGET_32_LITTLE
5259 template
5260 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5261 #endif
5262
5263 #ifdef HAVE_TARGET_32_BIG
5264 template
5265 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5266 #endif
5267
5268 #ifdef HAVE_TARGET_64_LITTLE
5269 template
5270 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5271 #endif
5272
5273 #ifdef HAVE_TARGET_64_BIG
5274 template
5275 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5276 #endif
5277
5278 #ifdef HAVE_TARGET_32_LITTLE
5279 template
5280 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5281 #endif
5282
5283 #ifdef HAVE_TARGET_32_BIG
5284 template
5285 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5286 #endif
5287
5288 #ifdef HAVE_TARGET_64_LITTLE
5289 template
5290 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5291 #endif
5292
5293 #ifdef HAVE_TARGET_64_BIG
5294 template
5295 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5296 #endif
5297
5298 #ifdef HAVE_TARGET_32_LITTLE
5299 template
5300 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5301 #endif
5302
5303 #ifdef HAVE_TARGET_32_BIG
5304 template
5305 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5306 #endif
5307
5308 #ifdef HAVE_TARGET_64_LITTLE
5309 template
5310 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5311 #endif
5312
5313 #ifdef HAVE_TARGET_64_BIG
5314 template
5315 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5316 #endif
5317
5318 #ifdef HAVE_TARGET_32_LITTLE
5319 template
5320 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5321 #endif
5322
5323 #ifdef HAVE_TARGET_32_BIG
5324 template
5325 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5326 #endif
5327
5328 #ifdef HAVE_TARGET_64_LITTLE
5329 template
5330 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5331 #endif
5332
5333 #ifdef HAVE_TARGET_64_BIG
5334 template
5335 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5336 #endif
5337
5338 #ifdef HAVE_TARGET_32_LITTLE
5339 template
5340 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5341 #endif
5342
5343 #ifdef HAVE_TARGET_32_BIG
5344 template
5345 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5346 #endif
5347
5348 #ifdef HAVE_TARGET_64_LITTLE
5349 template
5350 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5351 #endif
5352
5353 #ifdef HAVE_TARGET_64_BIG
5354 template
5355 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5356 #endif
5357
5358 #ifdef HAVE_TARGET_32_LITTLE
5359 template
5360 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5361 #endif
5362
5363 #ifdef HAVE_TARGET_32_BIG
5364 template
5365 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5366 #endif
5367
5368 #ifdef HAVE_TARGET_64_LITTLE
5369 template
5370 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5371 #endif
5372
5373 #ifdef HAVE_TARGET_64_BIG
5374 template
5375 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5376 #endif
5377
5378 #ifdef HAVE_TARGET_32_LITTLE
5379 template
5380 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5381 #endif
5382
5383 #ifdef HAVE_TARGET_32_BIG
5384 template
5385 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5386 #endif
5387
5388 #ifdef HAVE_TARGET_64_LITTLE
5389 template
5390 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5391 #endif
5392
5393 #ifdef HAVE_TARGET_64_BIG
5394 template
5395 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5396 #endif
5397
5398 #ifdef HAVE_TARGET_32_LITTLE
5399 template
5400 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5401 #endif
5402
5403 #ifdef HAVE_TARGET_32_BIG
5404 template
5405 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5406 #endif
5407
5408 #ifdef HAVE_TARGET_64_LITTLE
5409 template
5410 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5411 #endif
5412
5413 #ifdef HAVE_TARGET_64_BIG
5414 template
5415 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5416 #endif
5417
5418 #ifdef HAVE_TARGET_32_LITTLE
5419 template
5420 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5421 #endif
5422
5423 #ifdef HAVE_TARGET_32_BIG
5424 template
5425 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5426 #endif
5427
5428 #ifdef HAVE_TARGET_64_LITTLE
5429 template
5430 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5431 #endif
5432
5433 #ifdef HAVE_TARGET_64_BIG
5434 template
5435 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5436 #endif
5437
5438 #ifdef HAVE_TARGET_32_LITTLE
5439 template
5440 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5441 #endif
5442
5443 #ifdef HAVE_TARGET_32_BIG
5444 template
5445 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5446 #endif
5447
5448 #ifdef HAVE_TARGET_64_LITTLE
5449 template
5450 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5451 #endif
5452
5453 #ifdef HAVE_TARGET_64_BIG
5454 template
5455 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5456 #endif
5457
5458 #ifdef HAVE_TARGET_32_LITTLE
5459 template
5460 class Output_data_group<32, false>;
5461 #endif
5462
5463 #ifdef HAVE_TARGET_32_BIG
5464 template
5465 class Output_data_group<32, true>;
5466 #endif
5467
5468 #ifdef HAVE_TARGET_64_LITTLE
5469 template
5470 class Output_data_group<64, false>;
5471 #endif
5472
5473 #ifdef HAVE_TARGET_64_BIG
5474 template
5475 class Output_data_group<64, true>;
5476 #endif
5477
5478 template
5479 class Output_data_got<32, false>;
5480
5481 template
5482 class Output_data_got<32, true>;
5483
5484 template
5485 class Output_data_got<64, false>;
5486
5487 template
5488 class Output_data_got<64, true>;
5489
5490 } // End namespace gold.
This page took 0.13702 seconds and 5 git commands to generate.