ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address, file offset and data size. This essentially
107 // disables the sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // As above, but just for data size.
119 void
120 reset_data_size()
121 {
122 if (!this->is_data_size_fixed_)
123 this->is_data_size_valid_ = false;
124 }
125
126 // Return true if address and file offset already have reset values. In
127 // other words, calling reset_address_and_file_offset will not change them.
128 bool
129 address_and_file_offset_have_reset_values() const
130 { return this->do_address_and_file_offset_have_reset_values(); }
131
132 // Return the required alignment.
133 uint64_t
134 addralign() const
135 { return this->do_addralign(); }
136
137 // Return whether this has a load address.
138 bool
139 has_load_address() const
140 { return this->do_has_load_address(); }
141
142 // Return the load address.
143 uint64_t
144 load_address() const
145 { return this->do_load_address(); }
146
147 // Return whether this is an Output_section.
148 bool
149 is_section() const
150 { return this->do_is_section(); }
151
152 // Return whether this is an Output_section of the specified type.
153 bool
154 is_section_type(elfcpp::Elf_Word stt) const
155 { return this->do_is_section_type(stt); }
156
157 // Return whether this is an Output_section with the specified flag
158 // set.
159 bool
160 is_section_flag_set(elfcpp::Elf_Xword shf) const
161 { return this->do_is_section_flag_set(shf); }
162
163 // Return the output section that this goes in, if there is one.
164 Output_section*
165 output_section()
166 { return this->do_output_section(); }
167
168 const Output_section*
169 output_section() const
170 { return this->do_output_section(); }
171
172 // Return the output section index, if there is an output section.
173 unsigned int
174 out_shndx() const
175 { return this->do_out_shndx(); }
176
177 // Set the output section index, if this is an output section.
178 void
179 set_out_shndx(unsigned int shndx)
180 { this->do_set_out_shndx(shndx); }
181
182 // Set the address and file offset of this data, and finalize the
183 // size of the data. This is called during Layout::finalize for
184 // allocated sections.
185 void
186 set_address_and_file_offset(uint64_t addr, off_t off)
187 {
188 this->set_address(addr);
189 this->set_file_offset(off);
190 this->finalize_data_size();
191 }
192
193 // Set the address.
194 void
195 set_address(uint64_t addr)
196 {
197 gold_assert(!this->is_address_valid_);
198 this->address_ = addr;
199 this->is_address_valid_ = true;
200 }
201
202 // Set the file offset.
203 void
204 set_file_offset(off_t off)
205 {
206 gold_assert(!this->is_offset_valid_);
207 this->offset_ = off;
208 this->is_offset_valid_ = true;
209 }
210
211 // Update the data size without finalizing it.
212 void
213 pre_finalize_data_size()
214 {
215 if (!this->is_data_size_valid_)
216 {
217 // Tell the child class to update the data size.
218 this->update_data_size();
219 }
220 }
221
222 // Finalize the data size.
223 void
224 finalize_data_size()
225 {
226 if (!this->is_data_size_valid_)
227 {
228 // Tell the child class to set the data size.
229 this->set_final_data_size();
230 gold_assert(this->is_data_size_valid_);
231 }
232 }
233
234 // Set the TLS offset. Called only for SHT_TLS sections.
235 void
236 set_tls_offset(uint64_t tls_base)
237 { this->do_set_tls_offset(tls_base); }
238
239 // Return the TLS offset, relative to the base of the TLS segment.
240 // Valid only for SHT_TLS sections.
241 uint64_t
242 tls_offset() const
243 { return this->do_tls_offset(); }
244
245 // Write the data to the output file. This is called after
246 // Layout::finalize is complete.
247 void
248 write(Output_file* file)
249 { this->do_write(file); }
250
251 // This is called by Layout::finalize to note that the sizes of
252 // allocated sections must now be fixed.
253 static void
254 layout_complete()
255 { Output_data::allocated_sizes_are_fixed = true; }
256
257 // Used to check that layout has been done.
258 static bool
259 is_layout_complete()
260 { return Output_data::allocated_sizes_are_fixed; }
261
262 // Note that a dynamic reloc has been applied to this data.
263 void
264 add_dynamic_reloc()
265 { this->has_dynamic_reloc_ = true; }
266
267 // Return whether a dynamic reloc has been applied.
268 bool
269 has_dynamic_reloc() const
270 { return this->has_dynamic_reloc_; }
271
272 // Whether the address is valid.
273 bool
274 is_address_valid() const
275 { return this->is_address_valid_; }
276
277 // Whether the file offset is valid.
278 bool
279 is_offset_valid() const
280 { return this->is_offset_valid_; }
281
282 // Whether the data size is valid.
283 bool
284 is_data_size_valid() const
285 { return this->is_data_size_valid_; }
286
287 // Print information to the map file.
288 void
289 print_to_mapfile(Mapfile* mapfile) const
290 { return this->do_print_to_mapfile(mapfile); }
291
292 protected:
293 // Functions that child classes may or in some cases must implement.
294
295 // Write the data to the output file.
296 virtual void
297 do_write(Output_file*) = 0;
298
299 // Return the required alignment.
300 virtual uint64_t
301 do_addralign() const = 0;
302
303 // Return whether this has a load address.
304 virtual bool
305 do_has_load_address() const
306 { return false; }
307
308 // Return the load address.
309 virtual uint64_t
310 do_load_address() const
311 { gold_unreachable(); }
312
313 // Return whether this is an Output_section.
314 virtual bool
315 do_is_section() const
316 { return false; }
317
318 // Return whether this is an Output_section of the specified type.
319 // This only needs to be implement by Output_section.
320 virtual bool
321 do_is_section_type(elfcpp::Elf_Word) const
322 { return false; }
323
324 // Return whether this is an Output_section with the specific flag
325 // set. This only needs to be implemented by Output_section.
326 virtual bool
327 do_is_section_flag_set(elfcpp::Elf_Xword) const
328 { return false; }
329
330 // Return the output section, if there is one.
331 virtual Output_section*
332 do_output_section()
333 { return NULL; }
334
335 virtual const Output_section*
336 do_output_section() const
337 { return NULL; }
338
339 // Return the output section index, if there is an output section.
340 virtual unsigned int
341 do_out_shndx() const
342 { gold_unreachable(); }
343
344 // Set the output section index, if this is an output section.
345 virtual void
346 do_set_out_shndx(unsigned int)
347 { gold_unreachable(); }
348
349 // This is a hook for derived classes to set the preliminary data size.
350 // This is called by pre_finalize_data_size, normally called during
351 // Layout::finalize, before the section address is set, and is used
352 // during an incremental update, when we need to know the size of a
353 // section before allocating space in the output file. For classes
354 // where the current data size is up to date, this default version of
355 // the method can be inherited.
356 virtual void
357 update_data_size()
358 { }
359
360 // This is a hook for derived classes to set the data size. This is
361 // called by finalize_data_size, normally called during
362 // Layout::finalize, when the section address is set.
363 virtual void
364 set_final_data_size()
365 { gold_unreachable(); }
366
367 // A hook for resetting the address and file offset.
368 virtual void
369 do_reset_address_and_file_offset()
370 { }
371
372 // Return true if address and file offset already have reset values. In
373 // other words, calling reset_address_and_file_offset will not change them.
374 // A child class overriding do_reset_address_and_file_offset may need to
375 // also override this.
376 virtual bool
377 do_address_and_file_offset_have_reset_values() const
378 { return !this->is_address_valid_ && !this->is_offset_valid_; }
379
380 // Set the TLS offset. Called only for SHT_TLS sections.
381 virtual void
382 do_set_tls_offset(uint64_t)
383 { gold_unreachable(); }
384
385 // Return the TLS offset, relative to the base of the TLS segment.
386 // Valid only for SHT_TLS sections.
387 virtual uint64_t
388 do_tls_offset() const
389 { gold_unreachable(); }
390
391 // Print to the map file. This only needs to be implemented by
392 // classes which may appear in a PT_LOAD segment.
393 virtual void
394 do_print_to_mapfile(Mapfile*) const
395 { gold_unreachable(); }
396
397 // Functions that child classes may call.
398
399 // Reset the address. The Output_section class needs this when an
400 // SHF_ALLOC input section is added to an output section which was
401 // formerly not SHF_ALLOC.
402 void
403 mark_address_invalid()
404 { this->is_address_valid_ = false; }
405
406 // Set the size of the data.
407 void
408 set_data_size(off_t data_size)
409 {
410 gold_assert(!this->is_data_size_valid_
411 && !this->is_data_size_fixed_);
412 this->data_size_ = data_size;
413 this->is_data_size_valid_ = true;
414 }
415
416 // Fix the data size. Once it is fixed, it cannot be changed
417 // and the data size remains always valid.
418 void
419 fix_data_size()
420 {
421 gold_assert(this->is_data_size_valid_);
422 this->is_data_size_fixed_ = true;
423 }
424
425 // Get the current data size--this is for the convenience of
426 // sections which build up their size over time.
427 off_t
428 current_data_size_for_child() const
429 { return this->data_size_; }
430
431 // Set the current data size--this is for the convenience of
432 // sections which build up their size over time.
433 void
434 set_current_data_size_for_child(off_t data_size)
435 {
436 gold_assert(!this->is_data_size_valid_);
437 this->data_size_ = data_size;
438 }
439
440 // Return default alignment for the target size.
441 static uint64_t
442 default_alignment();
443
444 // Return default alignment for a specified size--32 or 64.
445 static uint64_t
446 default_alignment_for_size(int size);
447
448 private:
449 Output_data(const Output_data&);
450 Output_data& operator=(const Output_data&);
451
452 // This is used for verification, to make sure that we don't try to
453 // change any sizes of allocated sections after we set the section
454 // addresses.
455 static bool allocated_sizes_are_fixed;
456
457 // Memory address in output file.
458 uint64_t address_;
459 // Size of data in output file.
460 off_t data_size_;
461 // File offset of contents in output file.
462 off_t offset_;
463 // Whether address_ is valid.
464 bool is_address_valid_ : 1;
465 // Whether data_size_ is valid.
466 bool is_data_size_valid_ : 1;
467 // Whether offset_ is valid.
468 bool is_offset_valid_ : 1;
469 // Whether data size is fixed.
470 bool is_data_size_fixed_ : 1;
471 // Whether any dynamic relocs have been applied to this section.
472 bool has_dynamic_reloc_ : 1;
473 };
474
475 // Output the section headers.
476
477 class Output_section_headers : public Output_data
478 {
479 public:
480 Output_section_headers(const Layout*,
481 const Layout::Segment_list*,
482 const Layout::Section_list*,
483 const Layout::Section_list*,
484 const Stringpool*,
485 const Output_section*);
486
487 protected:
488 // Write the data to the file.
489 void
490 do_write(Output_file*);
491
492 // Return the required alignment.
493 uint64_t
494 do_addralign() const
495 { return Output_data::default_alignment(); }
496
497 // Write to a map file.
498 void
499 do_print_to_mapfile(Mapfile* mapfile) const
500 { mapfile->print_output_data(this, _("** section headers")); }
501
502 // Update the data size.
503 void
504 update_data_size()
505 { this->set_data_size(this->do_size()); }
506
507 // Set final data size.
508 void
509 set_final_data_size()
510 { this->set_data_size(this->do_size()); }
511
512 private:
513 // Write the data to the file with the right size and endianness.
514 template<int size, bool big_endian>
515 void
516 do_sized_write(Output_file*);
517
518 // Compute data size.
519 off_t
520 do_size() const;
521
522 const Layout* layout_;
523 const Layout::Segment_list* segment_list_;
524 const Layout::Section_list* section_list_;
525 const Layout::Section_list* unattached_section_list_;
526 const Stringpool* secnamepool_;
527 const Output_section* shstrtab_section_;
528 };
529
530 // Output the segment headers.
531
532 class Output_segment_headers : public Output_data
533 {
534 public:
535 Output_segment_headers(const Layout::Segment_list& segment_list);
536
537 protected:
538 // Write the data to the file.
539 void
540 do_write(Output_file*);
541
542 // Return the required alignment.
543 uint64_t
544 do_addralign() const
545 { return Output_data::default_alignment(); }
546
547 // Write to a map file.
548 void
549 do_print_to_mapfile(Mapfile* mapfile) const
550 { mapfile->print_output_data(this, _("** segment headers")); }
551
552 // Set final data size.
553 void
554 set_final_data_size()
555 { this->set_data_size(this->do_size()); }
556
557 private:
558 // Write the data to the file with the right size and endianness.
559 template<int size, bool big_endian>
560 void
561 do_sized_write(Output_file*);
562
563 // Compute the current size.
564 off_t
565 do_size() const;
566
567 const Layout::Segment_list& segment_list_;
568 };
569
570 // Output the ELF file header.
571
572 class Output_file_header : public Output_data
573 {
574 public:
575 Output_file_header(Target*,
576 const Symbol_table*,
577 const Output_segment_headers*);
578
579 // Add information about the section headers. We lay out the ELF
580 // file header before we create the section headers.
581 void set_section_info(const Output_section_headers*,
582 const Output_section* shstrtab);
583
584 protected:
585 // Write the data to the file.
586 void
587 do_write(Output_file*);
588
589 // Return the required alignment.
590 uint64_t
591 do_addralign() const
592 { return Output_data::default_alignment(); }
593
594 // Write to a map file.
595 void
596 do_print_to_mapfile(Mapfile* mapfile) const
597 { mapfile->print_output_data(this, _("** file header")); }
598
599 // Set final data size.
600 void
601 set_final_data_size(void)
602 { this->set_data_size(this->do_size()); }
603
604 private:
605 // Write the data to the file with the right size and endianness.
606 template<int size, bool big_endian>
607 void
608 do_sized_write(Output_file*);
609
610 // Return the value to use for the entry address.
611 template<int size>
612 typename elfcpp::Elf_types<size>::Elf_Addr
613 entry();
614
615 // Compute the current data size.
616 off_t
617 do_size() const;
618
619 Target* target_;
620 const Symbol_table* symtab_;
621 const Output_segment_headers* segment_header_;
622 const Output_section_headers* section_header_;
623 const Output_section* shstrtab_;
624 };
625
626 // Output sections are mainly comprised of input sections. However,
627 // there are cases where we have data to write out which is not in an
628 // input section. Output_section_data is used in such cases. This is
629 // an abstract base class.
630
631 class Output_section_data : public Output_data
632 {
633 public:
634 Output_section_data(off_t data_size, uint64_t addralign,
635 bool is_data_size_fixed)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 {
638 this->set_data_size(data_size);
639 if (is_data_size_fixed)
640 this->fix_data_size();
641 }
642
643 Output_section_data(uint64_t addralign)
644 : Output_data(), output_section_(NULL), addralign_(addralign)
645 { }
646
647 // Return the output section.
648 Output_section*
649 output_section()
650 { return this->output_section_; }
651
652 const Output_section*
653 output_section() const
654 { return this->output_section_; }
655
656 // Record the output section.
657 void
658 set_output_section(Output_section* os);
659
660 // Add an input section, for SHF_MERGE sections. This returns true
661 // if the section was handled.
662 bool
663 add_input_section(Relobj* object, unsigned int shndx)
664 { return this->do_add_input_section(object, shndx); }
665
666 // Given an input OBJECT, an input section index SHNDX within that
667 // object, and an OFFSET relative to the start of that input
668 // section, return whether or not the corresponding offset within
669 // the output section is known. If this function returns true, it
670 // sets *POUTPUT to the output offset. The value -1 indicates that
671 // this input offset is being discarded.
672 bool
673 output_offset(const Relobj* object, unsigned int shndx,
674 section_offset_type offset,
675 section_offset_type* poutput) const
676 { return this->do_output_offset(object, shndx, offset, poutput); }
677
678 // Return whether this is the merge section for the input section
679 // SHNDX in OBJECT. This should return true when output_offset
680 // would return true for some values of OFFSET.
681 bool
682 is_merge_section_for(const Relobj* object, unsigned int shndx) const
683 { return this->do_is_merge_section_for(object, shndx); }
684
685 // Write the contents to a buffer. This is used for sections which
686 // require postprocessing, such as compression.
687 void
688 write_to_buffer(unsigned char* buffer)
689 { this->do_write_to_buffer(buffer); }
690
691 // Print merge stats to stderr. This should only be called for
692 // SHF_MERGE sections.
693 void
694 print_merge_stats(const char* section_name)
695 { this->do_print_merge_stats(section_name); }
696
697 protected:
698 // The child class must implement do_write.
699
700 // The child class may implement specific adjustments to the output
701 // section.
702 virtual void
703 do_adjust_output_section(Output_section*)
704 { }
705
706 // May be implemented by child class. Return true if the section
707 // was handled.
708 virtual bool
709 do_add_input_section(Relobj*, unsigned int)
710 { gold_unreachable(); }
711
712 // The child class may implement output_offset.
713 virtual bool
714 do_output_offset(const Relobj*, unsigned int, section_offset_type,
715 section_offset_type*) const
716 { return false; }
717
718 // The child class may implement is_merge_section_for.
719 virtual bool
720 do_is_merge_section_for(const Relobj*, unsigned int) const
721 { return false; }
722
723 // The child class may implement write_to_buffer. Most child
724 // classes can not appear in a compressed section, and they do not
725 // implement this.
726 virtual void
727 do_write_to_buffer(unsigned char*)
728 { gold_unreachable(); }
729
730 // Print merge statistics.
731 virtual void
732 do_print_merge_stats(const char*)
733 { gold_unreachable(); }
734
735 // Return the required alignment.
736 uint64_t
737 do_addralign() const
738 { return this->addralign_; }
739
740 // Return the output section.
741 Output_section*
742 do_output_section()
743 { return this->output_section_; }
744
745 const Output_section*
746 do_output_section() const
747 { return this->output_section_; }
748
749 // Return the section index of the output section.
750 unsigned int
751 do_out_shndx() const;
752
753 // Set the alignment.
754 void
755 set_addralign(uint64_t addralign);
756
757 private:
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
761 uint64_t addralign_;
762 };
763
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
766 // them.
767
768 class Output_section_data_build : public Output_section_data
769 {
770 public:
771 Output_section_data_build(uint64_t addralign)
772 : Output_section_data(addralign)
773 { }
774
775 Output_section_data_build(off_t data_size, uint64_t addralign)
776 : Output_section_data(data_size, addralign, false)
777 { }
778
779 // Set the current data size.
780 void
781 set_current_data_size(off_t data_size)
782 { this->set_current_data_size_for_child(data_size); }
783
784 protected:
785 // Set the final data size.
786 virtual void
787 set_final_data_size()
788 { this->set_data_size(this->current_data_size_for_child()); }
789 };
790
791 // A simple case of Output_data in which we have constant data to
792 // output.
793
794 class Output_data_const : public Output_section_data
795 {
796 public:
797 Output_data_const(const std::string& data, uint64_t addralign)
798 : Output_section_data(data.size(), addralign, true), data_(data)
799 { }
800
801 Output_data_const(const char* p, off_t len, uint64_t addralign)
802 : Output_section_data(len, addralign, true), data_(p, len)
803 { }
804
805 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
806 : Output_section_data(len, addralign, true),
807 data_(reinterpret_cast<const char*>(p), len)
808 { }
809
810 protected:
811 // Write the data to the output file.
812 void
813 do_write(Output_file*);
814
815 // Write the data to a buffer.
816 void
817 do_write_to_buffer(unsigned char* buffer)
818 { memcpy(buffer, this->data_.data(), this->data_.size()); }
819
820 // Write to a map file.
821 void
822 do_print_to_mapfile(Mapfile* mapfile) const
823 { mapfile->print_output_data(this, _("** fill")); }
824
825 private:
826 std::string data_;
827 };
828
829 // Another version of Output_data with constant data, in which the
830 // buffer is allocated by the caller.
831
832 class Output_data_const_buffer : public Output_section_data
833 {
834 public:
835 Output_data_const_buffer(const unsigned char* p, off_t len,
836 uint64_t addralign, const char* map_name)
837 : Output_section_data(len, addralign, true),
838 p_(p), map_name_(map_name)
839 { }
840
841 protected:
842 // Write the data the output file.
843 void
844 do_write(Output_file*);
845
846 // Write the data to a buffer.
847 void
848 do_write_to_buffer(unsigned char* buffer)
849 { memcpy(buffer, this->p_, this->data_size()); }
850
851 // Write to a map file.
852 void
853 do_print_to_mapfile(Mapfile* mapfile) const
854 { mapfile->print_output_data(this, _(this->map_name_)); }
855
856 private:
857 // The data to output.
858 const unsigned char* p_;
859 // Name to use in a map file. Maps are a rarely used feature, but
860 // the space usage is minor as aren't very many of these objects.
861 const char* map_name_;
862 };
863
864 // A place holder for a fixed amount of data written out via some
865 // other mechanism.
866
867 class Output_data_fixed_space : public Output_section_data
868 {
869 public:
870 Output_data_fixed_space(off_t data_size, uint64_t addralign,
871 const char* map_name)
872 : Output_section_data(data_size, addralign, true),
873 map_name_(map_name)
874 { }
875
876 protected:
877 // Write out the data--the actual data must be written out
878 // elsewhere.
879 void
880 do_write(Output_file*)
881 { }
882
883 // Write to a map file.
884 void
885 do_print_to_mapfile(Mapfile* mapfile) const
886 { mapfile->print_output_data(this, _(this->map_name_)); }
887
888 private:
889 // Name to use in a map file. Maps are a rarely used feature, but
890 // the space usage is minor as aren't very many of these objects.
891 const char* map_name_;
892 };
893
894 // A place holder for variable sized data written out via some other
895 // mechanism.
896
897 class Output_data_space : public Output_section_data_build
898 {
899 public:
900 explicit Output_data_space(uint64_t addralign, const char* map_name)
901 : Output_section_data_build(addralign),
902 map_name_(map_name)
903 { }
904
905 explicit Output_data_space(off_t data_size, uint64_t addralign,
906 const char* map_name)
907 : Output_section_data_build(data_size, addralign),
908 map_name_(map_name)
909 { }
910
911 // Set the alignment.
912 void
913 set_space_alignment(uint64_t align)
914 { this->set_addralign(align); }
915
916 protected:
917 // Write out the data--the actual data must be written out
918 // elsewhere.
919 void
920 do_write(Output_file*)
921 { }
922
923 // Write to a map file.
924 void
925 do_print_to_mapfile(Mapfile* mapfile) const
926 { mapfile->print_output_data(this, _(this->map_name_)); }
927
928 private:
929 // Name to use in a map file. Maps are a rarely used feature, but
930 // the space usage is minor as aren't very many of these objects.
931 const char* map_name_;
932 };
933
934 // Fill fixed space with zeroes. This is just like
935 // Output_data_fixed_space, except that the map name is known.
936
937 class Output_data_zero_fill : public Output_section_data
938 {
939 public:
940 Output_data_zero_fill(off_t data_size, uint64_t addralign)
941 : Output_section_data(data_size, addralign, true)
942 { }
943
944 protected:
945 // There is no data to write out.
946 void
947 do_write(Output_file*)
948 { }
949
950 // Write to a map file.
951 void
952 do_print_to_mapfile(Mapfile* mapfile) const
953 { mapfile->print_output_data(this, "** zero fill"); }
954 };
955
956 // A string table which goes into an output section.
957
958 class Output_data_strtab : public Output_section_data
959 {
960 public:
961 Output_data_strtab(Stringpool* strtab)
962 : Output_section_data(1), strtab_(strtab)
963 { }
964
965 protected:
966 // This is called to update the section size prior to assigning
967 // the address and file offset.
968 void
969 update_data_size()
970 { this->set_final_data_size(); }
971
972 // This is called to set the address and file offset. Here we make
973 // sure that the Stringpool is finalized.
974 void
975 set_final_data_size();
976
977 // Write out the data.
978 void
979 do_write(Output_file*);
980
981 // Write the data to a buffer.
982 void
983 do_write_to_buffer(unsigned char* buffer)
984 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
985
986 // Write to a map file.
987 void
988 do_print_to_mapfile(Mapfile* mapfile) const
989 { mapfile->print_output_data(this, _("** string table")); }
990
991 private:
992 Stringpool* strtab_;
993 };
994
995 // This POD class is used to represent a single reloc in the output
996 // file. This could be a private class within Output_data_reloc, but
997 // the templatization is complex enough that I broke it out into a
998 // separate class. The class is templatized on either elfcpp::SHT_REL
999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1000 // relocation or an ordinary relocation.
1001
1002 // A relocation can be against a global symbol, a local symbol, a
1003 // local section symbol, an output section, or the undefined symbol at
1004 // index 0. We represent the latter by using a NULL global symbol.
1005
1006 template<int sh_type, bool dynamic, int size, bool big_endian>
1007 class Output_reloc;
1008
1009 template<bool dynamic, int size, bool big_endian>
1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1011 {
1012 public:
1013 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1015
1016 static const Address invalid_address = static_cast<Address>(0) - 1;
1017
1018 // An uninitialized entry. We need this because we want to put
1019 // instances of this class into an STL container.
1020 Output_reloc()
1021 : local_sym_index_(INVALID_CODE)
1022 { }
1023
1024 // We have a bunch of different constructors. They come in pairs
1025 // depending on how the address of the relocation is specified. It
1026 // can either be an offset in an Output_data or an offset in an
1027 // input section.
1028
1029 // A reloc against a global symbol.
1030
1031 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1032 Address address, bool is_relative, bool is_symbolless,
1033 bool use_plt_offset);
1034
1035 Output_reloc(Symbol* gsym, unsigned int type,
1036 Sized_relobj<size, big_endian>* relobj,
1037 unsigned int shndx, Address address, bool is_relative,
1038 bool is_symbolless, bool use_plt_offset);
1039
1040 // A reloc against a local symbol or local section symbol.
1041
1042 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1043 unsigned int local_sym_index, unsigned int type,
1044 Output_data* od, Address address, bool is_relative,
1045 bool is_symbolless, bool is_section_symbol,
1046 bool use_plt_offset);
1047
1048 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1049 unsigned int local_sym_index, unsigned int type,
1050 unsigned int shndx, Address address, bool is_relative,
1051 bool is_symbolless, bool is_section_symbol,
1052 bool use_plt_offset);
1053
1054 // A reloc against the STT_SECTION symbol of an output section.
1055
1056 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1057 Address address, bool is_relative);
1058
1059 Output_reloc(Output_section* os, unsigned int type,
1060 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1061 Address address, bool is_relative);
1062
1063 // An absolute or relative relocation with no symbol.
1064
1065 Output_reloc(unsigned int type, Output_data* od, Address address,
1066 bool is_relative);
1067
1068 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1069 unsigned int shndx, Address address, bool is_relative);
1070
1071 // A target specific relocation. The target will be called to get
1072 // the symbol index, passing ARG. The type and offset will be set
1073 // as for other relocation types.
1074
1075 Output_reloc(unsigned int type, void* arg, Output_data* od,
1076 Address address);
1077
1078 Output_reloc(unsigned int type, void* arg,
1079 Sized_relobj<size, big_endian>* relobj,
1080 unsigned int shndx, Address address);
1081
1082 // Return the reloc type.
1083 unsigned int
1084 type() const
1085 { return this->type_; }
1086
1087 // Return whether this is a RELATIVE relocation.
1088 bool
1089 is_relative() const
1090 { return this->is_relative_; }
1091
1092 // Return whether this is a relocation which should not use
1093 // a symbol, but which obtains its addend from a symbol.
1094 bool
1095 is_symbolless() const
1096 { return this->is_symbolless_; }
1097
1098 // Return whether this is against a local section symbol.
1099 bool
1100 is_local_section_symbol() const
1101 {
1102 return (this->local_sym_index_ != GSYM_CODE
1103 && this->local_sym_index_ != SECTION_CODE
1104 && this->local_sym_index_ != INVALID_CODE
1105 && this->local_sym_index_ != TARGET_CODE
1106 && this->is_section_symbol_);
1107 }
1108
1109 // Return whether this is a target specific relocation.
1110 bool
1111 is_target_specific() const
1112 { return this->local_sym_index_ == TARGET_CODE; }
1113
1114 // Return the argument to pass to the target for a target specific
1115 // relocation.
1116 void*
1117 target_arg() const
1118 {
1119 gold_assert(this->local_sym_index_ == TARGET_CODE);
1120 return this->u1_.arg;
1121 }
1122
1123 // For a local section symbol, return the offset of the input
1124 // section within the output section. ADDEND is the addend being
1125 // applied to the input section.
1126 Address
1127 local_section_offset(Addend addend) const;
1128
1129 // Get the value of the symbol referred to by a Rel relocation when
1130 // we are adding the given ADDEND.
1131 Address
1132 symbol_value(Addend addend) const;
1133
1134 // If this relocation is against an input section, return the
1135 // relocatable object containing the input section.
1136 Sized_relobj<size, big_endian>*
1137 get_relobj() const
1138 {
1139 if (this->shndx_ == INVALID_CODE)
1140 return NULL;
1141 return this->u2_.relobj;
1142 }
1143
1144 // Write the reloc entry to an output view.
1145 void
1146 write(unsigned char* pov) const;
1147
1148 // Write the offset and info fields to Write_rel.
1149 template<typename Write_rel>
1150 void write_rel(Write_rel*) const;
1151
1152 // This is used when sorting dynamic relocs. Return -1 to sort this
1153 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1154 int
1155 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1156 const;
1157
1158 // Return whether this reloc should be sorted before the argument
1159 // when sorting dynamic relocs.
1160 bool
1161 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1162 r2) const
1163 { return this->compare(r2) < 0; }
1164
1165 private:
1166 // Record that we need a dynamic symbol index.
1167 void
1168 set_needs_dynsym_index();
1169
1170 // Return the symbol index.
1171 unsigned int
1172 get_symbol_index() const;
1173
1174 // Return the output address.
1175 Address
1176 get_address() const;
1177
1178 // Codes for local_sym_index_.
1179 enum
1180 {
1181 // Global symbol.
1182 GSYM_CODE = -1U,
1183 // Output section.
1184 SECTION_CODE = -2U,
1185 // Target specific.
1186 TARGET_CODE = -3U,
1187 // Invalid uninitialized entry.
1188 INVALID_CODE = -4U
1189 };
1190
1191 union
1192 {
1193 // For a local symbol or local section symbol
1194 // (this->local_sym_index_ >= 0), the object. We will never
1195 // generate a relocation against a local symbol in a dynamic
1196 // object; that doesn't make sense. And our callers will always
1197 // be templatized, so we use Sized_relobj here.
1198 Sized_relobj<size, big_endian>* relobj;
1199 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1200 // symbol. If this is NULL, it indicates a relocation against the
1201 // undefined 0 symbol.
1202 Symbol* gsym;
1203 // For a relocation against an output section
1204 // (this->local_sym_index_ == SECTION_CODE), the output section.
1205 Output_section* os;
1206 // For a target specific relocation, an argument to pass to the
1207 // target.
1208 void* arg;
1209 } u1_;
1210 union
1211 {
1212 // If this->shndx_ is not INVALID CODE, the object which holds the
1213 // input section being used to specify the reloc address.
1214 Sized_relobj<size, big_endian>* relobj;
1215 // If this->shndx_ is INVALID_CODE, the output data being used to
1216 // specify the reloc address. This may be NULL if the reloc
1217 // address is absolute.
1218 Output_data* od;
1219 } u2_;
1220 // The address offset within the input section or the Output_data.
1221 Address address_;
1222 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1223 // relocation against an output section, or TARGET_CODE for a target
1224 // specific relocation, or INVALID_CODE for an uninitialized value.
1225 // Otherwise, for a local symbol (this->is_section_symbol_ is
1226 // false), the local symbol index. For a local section symbol
1227 // (this->is_section_symbol_ is true), the section index in the
1228 // input file.
1229 unsigned int local_sym_index_;
1230 // The reloc type--a processor specific code.
1231 unsigned int type_ : 28;
1232 // True if the relocation is a RELATIVE relocation.
1233 bool is_relative_ : 1;
1234 // True if the relocation is one which should not use
1235 // a symbol, but which obtains its addend from a symbol.
1236 bool is_symbolless_ : 1;
1237 // True if the relocation is against a section symbol.
1238 bool is_section_symbol_ : 1;
1239 // True if the addend should be the PLT offset.
1240 // (Used only for RELA, but stored here for space.)
1241 bool use_plt_offset_ : 1;
1242 // If the reloc address is an input section in an object, the
1243 // section index. This is INVALID_CODE if the reloc address is
1244 // specified in some other way.
1245 unsigned int shndx_;
1246 };
1247
1248 // The SHT_RELA version of Output_reloc<>. This is just derived from
1249 // the SHT_REL version of Output_reloc, but it adds an addend.
1250
1251 template<bool dynamic, int size, bool big_endian>
1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1253 {
1254 public:
1255 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1256 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1257
1258 // An uninitialized entry.
1259 Output_reloc()
1260 : rel_()
1261 { }
1262
1263 // A reloc against a global symbol.
1264
1265 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1266 Address address, Addend addend, bool is_relative,
1267 bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1269 use_plt_offset),
1270 addend_(addend)
1271 { }
1272
1273 Output_reloc(Symbol* gsym, unsigned int type,
1274 Sized_relobj<size, big_endian>* relobj,
1275 unsigned int shndx, Address address, Addend addend,
1276 bool is_relative, bool is_symbolless, bool use_plt_offset)
1277 : rel_(gsym, type, relobj, shndx, address, is_relative,
1278 is_symbolless, use_plt_offset), addend_(addend)
1279 { }
1280
1281 // A reloc against a local symbol.
1282
1283 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1284 unsigned int local_sym_index, unsigned int type,
1285 Output_data* od, Address address,
1286 Addend addend, bool is_relative,
1287 bool is_symbolless, bool is_section_symbol,
1288 bool use_plt_offset)
1289 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1290 is_symbolless, is_section_symbol, use_plt_offset),
1291 addend_(addend)
1292 { }
1293
1294 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1295 unsigned int local_sym_index, unsigned int type,
1296 unsigned int shndx, Address address,
1297 Addend addend, bool is_relative,
1298 bool is_symbolless, bool is_section_symbol,
1299 bool use_plt_offset)
1300 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1301 is_symbolless, is_section_symbol, use_plt_offset),
1302 addend_(addend)
1303 { }
1304
1305 // A reloc against the STT_SECTION symbol of an output section.
1306
1307 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1308 Address address, Addend addend, bool is_relative)
1309 : rel_(os, type, od, address, is_relative), addend_(addend)
1310 { }
1311
1312 Output_reloc(Output_section* os, unsigned int type,
1313 Sized_relobj<size, big_endian>* relobj,
1314 unsigned int shndx, Address address, Addend addend,
1315 bool is_relative)
1316 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1317 { }
1318
1319 // An absolute or relative relocation with no symbol.
1320
1321 Output_reloc(unsigned int type, Output_data* od, Address address,
1322 Addend addend, bool is_relative)
1323 : rel_(type, od, address, is_relative), addend_(addend)
1324 { }
1325
1326 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1327 unsigned int shndx, Address address, Addend addend,
1328 bool is_relative)
1329 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1330 { }
1331
1332 // A target specific relocation. The target will be called to get
1333 // the symbol index and the addend, passing ARG. The type and
1334 // offset will be set as for other relocation types.
1335
1336 Output_reloc(unsigned int type, void* arg, Output_data* od,
1337 Address address, Addend addend)
1338 : rel_(type, arg, od, address), addend_(addend)
1339 { }
1340
1341 Output_reloc(unsigned int type, void* arg,
1342 Sized_relobj<size, big_endian>* relobj,
1343 unsigned int shndx, Address address, Addend addend)
1344 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1345 { }
1346
1347 // Return whether this is a RELATIVE relocation.
1348 bool
1349 is_relative() const
1350 { return this->rel_.is_relative(); }
1351
1352 // Return whether this is a relocation which should not use
1353 // a symbol, but which obtains its addend from a symbol.
1354 bool
1355 is_symbolless() const
1356 { return this->rel_.is_symbolless(); }
1357
1358 // If this relocation is against an input section, return the
1359 // relocatable object containing the input section.
1360 Sized_relobj<size, big_endian>*
1361 get_relobj() const
1362 { return this->rel_.get_relobj(); }
1363
1364 // Write the reloc entry to an output view.
1365 void
1366 write(unsigned char* pov) const;
1367
1368 // Return whether this reloc should be sorted before the argument
1369 // when sorting dynamic relocs.
1370 bool
1371 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1372 r2) const
1373 {
1374 int i = this->rel_.compare(r2.rel_);
1375 if (i < 0)
1376 return true;
1377 else if (i > 0)
1378 return false;
1379 else
1380 return this->addend_ < r2.addend_;
1381 }
1382
1383 private:
1384 // The basic reloc.
1385 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1386 // The addend.
1387 Addend addend_;
1388 };
1389
1390 // Output_data_reloc_generic is a non-template base class for
1391 // Output_data_reloc_base. This gives the generic code a way to hold
1392 // a pointer to a reloc section.
1393
1394 class Output_data_reloc_generic : public Output_section_data_build
1395 {
1396 public:
1397 Output_data_reloc_generic(int size, bool sort_relocs)
1398 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1399 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1400 { }
1401
1402 // Return the number of relative relocs in this section.
1403 size_t
1404 relative_reloc_count() const
1405 { return this->relative_reloc_count_; }
1406
1407 // Whether we should sort the relocs.
1408 bool
1409 sort_relocs() const
1410 { return this->sort_relocs_; }
1411
1412 // Add a reloc of type TYPE against the global symbol GSYM. The
1413 // relocation applies to the data at offset ADDRESS within OD.
1414 virtual void
1415 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1416 uint64_t address, uint64_t addend) = 0;
1417
1418 // Add a reloc of type TYPE against the global symbol GSYM. The
1419 // relocation applies to data at offset ADDRESS within section SHNDX
1420 // of object file RELOBJ. OD is the associated output section.
1421 virtual void
1422 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1423 Relobj* relobj, unsigned int shndx, uint64_t address,
1424 uint64_t addend) = 0;
1425
1426 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1427 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1428 // within OD.
1429 virtual void
1430 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1431 unsigned int type, Output_data* od, uint64_t address,
1432 uint64_t addend) = 0;
1433
1434 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1435 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1436 // within section SHNDX of RELOBJ. OD is the associated output
1437 // section.
1438 virtual void
1439 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1440 unsigned int type, Output_data* od, unsigned int shndx,
1441 uint64_t address, uint64_t addend) = 0;
1442
1443 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1444 // output section OS. The relocation applies to the data at offset
1445 // ADDRESS within OD.
1446 virtual void
1447 add_output_section_generic(Output_section *os, unsigned int type,
1448 Output_data* od, uint64_t address,
1449 uint64_t addend) = 0;
1450
1451 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1452 // output section OS. The relocation applies to the data at offset
1453 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1454 // output section.
1455 virtual void
1456 add_output_section_generic(Output_section* os, unsigned int type,
1457 Output_data* od, Relobj* relobj,
1458 unsigned int shndx, uint64_t address,
1459 uint64_t addend) = 0;
1460
1461 protected:
1462 // Note that we've added another relative reloc.
1463 void
1464 bump_relative_reloc_count()
1465 { ++this->relative_reloc_count_; }
1466
1467 private:
1468 // The number of relative relocs added to this section. This is to
1469 // support DT_RELCOUNT.
1470 size_t relative_reloc_count_;
1471 // Whether to sort the relocations when writing them out, to make
1472 // the dynamic linker more efficient.
1473 bool sort_relocs_;
1474 };
1475
1476 // Output_data_reloc is used to manage a section containing relocs.
1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1478 // indicates whether this is a dynamic relocation or a normal
1479 // relocation. Output_data_reloc_base is a base class.
1480 // Output_data_reloc is the real class, which we specialize based on
1481 // the reloc type.
1482
1483 template<int sh_type, bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc_base : public Output_data_reloc_generic
1485 {
1486 public:
1487 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1488 typedef typename Output_reloc_type::Address Address;
1489 static const int reloc_size =
1490 Reloc_types<sh_type, size, big_endian>::reloc_size;
1491
1492 // Construct the section.
1493 Output_data_reloc_base(bool sort_relocs)
1494 : Output_data_reloc_generic(size, sort_relocs)
1495 { }
1496
1497 protected:
1498 // Write out the data.
1499 void
1500 do_write(Output_file*);
1501
1502 // Set the entry size and the link.
1503 void
1504 do_adjust_output_section(Output_section* os);
1505
1506 // Write to a map file.
1507 void
1508 do_print_to_mapfile(Mapfile* mapfile) const
1509 {
1510 mapfile->print_output_data(this,
1511 (dynamic
1512 ? _("** dynamic relocs")
1513 : _("** relocs")));
1514 }
1515
1516 // Add a relocation entry.
1517 void
1518 add(Output_data* od, const Output_reloc_type& reloc)
1519 {
1520 this->relocs_.push_back(reloc);
1521 this->set_current_data_size(this->relocs_.size() * reloc_size);
1522 if (dynamic)
1523 od->add_dynamic_reloc();
1524 if (reloc.is_relative())
1525 this->bump_relative_reloc_count();
1526 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1527 if (relobj != NULL)
1528 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1529 }
1530
1531 private:
1532 typedef std::vector<Output_reloc_type> Relocs;
1533
1534 // The class used to sort the relocations.
1535 struct Sort_relocs_comparison
1536 {
1537 bool
1538 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1539 { return r1.sort_before(r2); }
1540 };
1541
1542 // The relocations in this section.
1543 Relocs relocs_;
1544 };
1545
1546 // The class which callers actually create.
1547
1548 template<int sh_type, bool dynamic, int size, bool big_endian>
1549 class Output_data_reloc;
1550
1551 // The SHT_REL version of Output_data_reloc.
1552
1553 template<bool dynamic, int size, bool big_endian>
1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1555 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1556 {
1557 private:
1558 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1559 big_endian> Base;
1560
1561 public:
1562 typedef typename Base::Output_reloc_type Output_reloc_type;
1563 typedef typename Output_reloc_type::Address Address;
1564
1565 Output_data_reloc(bool sr)
1566 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1567 { }
1568
1569 // Add a reloc against a global symbol.
1570
1571 void
1572 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1573 {
1574 this->add(od, Output_reloc_type(gsym, type, od, address,
1575 false, false, false));
1576 }
1577
1578 void
1579 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1580 Sized_relobj<size, big_endian>* relobj,
1581 unsigned int shndx, Address address)
1582 {
1583 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1584 false, false, false));
1585 }
1586
1587 void
1588 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1589 uint64_t address, uint64_t addend)
1590 {
1591 gold_assert(addend == 0);
1592 this->add(od, Output_reloc_type(gsym, type, od,
1593 convert_types<Address, uint64_t>(address),
1594 false, false, false));
1595 }
1596
1597 void
1598 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1599 Relobj* relobj, unsigned int shndx, uint64_t address,
1600 uint64_t addend)
1601 {
1602 gold_assert(addend == 0);
1603 Sized_relobj<size, big_endian>* sized_relobj =
1604 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1605 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1606 convert_types<Address, uint64_t>(address),
1607 false, false, false));
1608 }
1609
1610 // Add a RELATIVE reloc against a global symbol. The final relocation
1611 // will not reference the symbol.
1612
1613 void
1614 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1615 Address address)
1616 {
1617 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1618 false));
1619 }
1620
1621 void
1622 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1623 Sized_relobj<size, big_endian>* relobj,
1624 unsigned int shndx, Address address)
1625 {
1626 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1627 true, true, false));
1628 }
1629
1630 // Add a global relocation which does not use a symbol for the relocation,
1631 // but which gets its addend from a symbol.
1632
1633 void
1634 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1635 Output_data* od, Address address)
1636 {
1637 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1638 false));
1639 }
1640
1641 void
1642 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1643 Output_data* od,
1644 Sized_relobj<size, big_endian>* relobj,
1645 unsigned int shndx, Address address)
1646 {
1647 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1648 false, true, false));
1649 }
1650
1651 // Add a reloc against a local symbol.
1652
1653 void
1654 add_local(Sized_relobj<size, big_endian>* relobj,
1655 unsigned int local_sym_index, unsigned int type,
1656 Output_data* od, Address address)
1657 {
1658 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1659 address, false, false, false, false));
1660 }
1661
1662 void
1663 add_local(Sized_relobj<size, big_endian>* relobj,
1664 unsigned int local_sym_index, unsigned int type,
1665 Output_data* od, unsigned int shndx, Address address)
1666 {
1667 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1668 address, false, false, false, false));
1669 }
1670
1671 void
1672 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1673 unsigned int type, Output_data* od, uint64_t address,
1674 uint64_t addend)
1675 {
1676 gold_assert(addend == 0);
1677 Sized_relobj<size, big_endian>* sized_relobj =
1678 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1679 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1680 convert_types<Address, uint64_t>(address),
1681 false, false, false, false));
1682 }
1683
1684 void
1685 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1686 unsigned int type, Output_data* od, unsigned int shndx,
1687 uint64_t address, uint64_t addend)
1688 {
1689 gold_assert(addend == 0);
1690 Sized_relobj<size, big_endian>* sized_relobj =
1691 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1692 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1693 convert_types<Address, uint64_t>(address),
1694 false, false, false, false));
1695 }
1696
1697 // Add a RELATIVE reloc against a local symbol.
1698
1699 void
1700 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1701 unsigned int local_sym_index, unsigned int type,
1702 Output_data* od, Address address)
1703 {
1704 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1705 address, true, true, false, false));
1706 }
1707
1708 void
1709 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1710 unsigned int local_sym_index, unsigned int type,
1711 Output_data* od, unsigned int shndx, Address address)
1712 {
1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 address, true, true, false, false));
1715 }
1716
1717 // Add a local relocation which does not use a symbol for the relocation,
1718 // but which gets its addend from a symbol.
1719
1720 void
1721 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1722 unsigned int local_sym_index, unsigned int type,
1723 Output_data* od, Address address)
1724 {
1725 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1726 address, false, true, false, false));
1727 }
1728
1729 void
1730 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1731 unsigned int local_sym_index, unsigned int type,
1732 Output_data* od, unsigned int shndx,
1733 Address address)
1734 {
1735 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1736 address, false, true, false, false));
1737 }
1738
1739 // Add a reloc against a local section symbol. This will be
1740 // converted into a reloc against the STT_SECTION symbol of the
1741 // output section.
1742
1743 void
1744 add_local_section(Sized_relobj<size, big_endian>* relobj,
1745 unsigned int input_shndx, unsigned int type,
1746 Output_data* od, Address address)
1747 {
1748 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1749 address, false, false, true, false));
1750 }
1751
1752 void
1753 add_local_section(Sized_relobj<size, big_endian>* relobj,
1754 unsigned int input_shndx, unsigned int type,
1755 Output_data* od, unsigned int shndx, Address address)
1756 {
1757 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1758 address, false, false, true, false));
1759 }
1760
1761 // A reloc against the STT_SECTION symbol of an output section.
1762 // OS is the Output_section that the relocation refers to; OD is
1763 // the Output_data object being relocated.
1764
1765 void
1766 add_output_section(Output_section* os, unsigned int type,
1767 Output_data* od, Address address)
1768 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1769
1770 void
1771 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1772 Sized_relobj<size, big_endian>* relobj,
1773 unsigned int shndx, Address address)
1774 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1775
1776 void
1777 add_output_section_generic(Output_section* os, unsigned int type,
1778 Output_data* od, uint64_t address,
1779 uint64_t addend)
1780 {
1781 gold_assert(addend == 0);
1782 this->add(od, Output_reloc_type(os, type, od,
1783 convert_types<Address, uint64_t>(address),
1784 false));
1785 }
1786
1787 void
1788 add_output_section_generic(Output_section* os, unsigned int type,
1789 Output_data* od, Relobj* relobj,
1790 unsigned int shndx, uint64_t address,
1791 uint64_t addend)
1792 {
1793 gold_assert(addend == 0);
1794 Sized_relobj<size, big_endian>* sized_relobj =
1795 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1796 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1797 convert_types<Address, uint64_t>(address),
1798 false));
1799 }
1800
1801 // As above, but the reloc TYPE is relative
1802
1803 void
1804 add_output_section_relative(Output_section* os, unsigned int type,
1805 Output_data* od, Address address)
1806 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1807
1808 void
1809 add_output_section_relative(Output_section* os, unsigned int type,
1810 Output_data* od,
1811 Sized_relobj<size, big_endian>* relobj,
1812 unsigned int shndx, Address address)
1813 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1814
1815 // Add an absolute relocation.
1816
1817 void
1818 add_absolute(unsigned int type, Output_data* od, Address address)
1819 { this->add(od, Output_reloc_type(type, od, address, false)); }
1820
1821 void
1822 add_absolute(unsigned int type, Output_data* od,
1823 Sized_relobj<size, big_endian>* relobj,
1824 unsigned int shndx, Address address)
1825 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1826
1827 // Add a relative relocation
1828
1829 void
1830 add_relative(unsigned int type, Output_data* od, Address address)
1831 { this->add(od, Output_reloc_type(type, od, address, true)); }
1832
1833 void
1834 add_relative(unsigned int type, Output_data* od,
1835 Sized_relobj<size, big_endian>* relobj,
1836 unsigned int shndx, Address address)
1837 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1838
1839 // Add a target specific relocation. A target which calls this must
1840 // define the reloc_symbol_index and reloc_addend virtual functions.
1841
1842 void
1843 add_target_specific(unsigned int type, void* arg, Output_data* od,
1844 Address address)
1845 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1846
1847 void
1848 add_target_specific(unsigned int type, void* arg, Output_data* od,
1849 Sized_relobj<size, big_endian>* relobj,
1850 unsigned int shndx, Address address)
1851 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1852 };
1853
1854 // The SHT_RELA version of Output_data_reloc.
1855
1856 template<bool dynamic, int size, bool big_endian>
1857 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1858 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1859 {
1860 private:
1861 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1862 big_endian> Base;
1863
1864 public:
1865 typedef typename Base::Output_reloc_type Output_reloc_type;
1866 typedef typename Output_reloc_type::Address Address;
1867 typedef typename Output_reloc_type::Addend Addend;
1868
1869 Output_data_reloc(bool sr)
1870 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1871 { }
1872
1873 // Add a reloc against a global symbol.
1874
1875 void
1876 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1877 Address address, Addend addend)
1878 {
1879 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1880 false, false, false));
1881 }
1882
1883 void
1884 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1885 Sized_relobj<size, big_endian>* relobj,
1886 unsigned int shndx, Address address,
1887 Addend addend)
1888 {
1889 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1890 addend, false, false, false));
1891 }
1892
1893 void
1894 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1895 uint64_t address, uint64_t addend)
1896 {
1897 this->add(od, Output_reloc_type(gsym, type, od,
1898 convert_types<Address, uint64_t>(address),
1899 convert_types<Addend, uint64_t>(addend),
1900 false, false, false));
1901 }
1902
1903 void
1904 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1905 Relobj* relobj, unsigned int shndx, uint64_t address,
1906 uint64_t addend)
1907 {
1908 Sized_relobj<size, big_endian>* sized_relobj =
1909 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1910 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1911 convert_types<Address, uint64_t>(address),
1912 convert_types<Addend, uint64_t>(addend),
1913 false, false, false));
1914 }
1915
1916 // Add a RELATIVE reloc against a global symbol. The final output
1917 // relocation will not reference the symbol, but we must keep the symbol
1918 // information long enough to set the addend of the relocation correctly
1919 // when it is written.
1920
1921 void
1922 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1923 Address address, Addend addend, bool use_plt_offset)
1924 {
1925 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1926 true, use_plt_offset));
1927 }
1928
1929 void
1930 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1931 Sized_relobj<size, big_endian>* relobj,
1932 unsigned int shndx, Address address, Addend addend,
1933 bool use_plt_offset)
1934 {
1935 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1936 addend, true, true, use_plt_offset));
1937 }
1938
1939 // Add a global relocation which does not use a symbol for the relocation,
1940 // but which gets its addend from a symbol.
1941
1942 void
1943 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1944 Address address, Addend addend)
1945 {
1946 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1947 false, true, false));
1948 }
1949
1950 void
1951 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1952 Output_data* od,
1953 Sized_relobj<size, big_endian>* relobj,
1954 unsigned int shndx, Address address,
1955 Addend addend)
1956 {
1957 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1958 addend, false, true, false));
1959 }
1960
1961 // Add a reloc against a local symbol.
1962
1963 void
1964 add_local(Sized_relobj<size, big_endian>* relobj,
1965 unsigned int local_sym_index, unsigned int type,
1966 Output_data* od, Address address, Addend addend)
1967 {
1968 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1969 addend, false, false, false, false));
1970 }
1971
1972 void
1973 add_local(Sized_relobj<size, big_endian>* relobj,
1974 unsigned int local_sym_index, unsigned int type,
1975 Output_data* od, unsigned int shndx, Address address,
1976 Addend addend)
1977 {
1978 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1979 address, addend, false, false, false,
1980 false));
1981 }
1982
1983 void
1984 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1985 unsigned int type, Output_data* od, uint64_t address,
1986 uint64_t addend)
1987 {
1988 Sized_relobj<size, big_endian>* sized_relobj =
1989 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1990 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1991 convert_types<Address, uint64_t>(address),
1992 convert_types<Addend, uint64_t>(addend),
1993 false, false, false, false));
1994 }
1995
1996 void
1997 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1998 unsigned int type, Output_data* od, unsigned int shndx,
1999 uint64_t address, uint64_t addend)
2000 {
2001 Sized_relobj<size, big_endian>* sized_relobj =
2002 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2003 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2004 convert_types<Address, uint64_t>(address),
2005 convert_types<Addend, uint64_t>(addend),
2006 false, false, false, false));
2007 }
2008
2009 // Add a RELATIVE reloc against a local symbol.
2010
2011 void
2012 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2013 unsigned int local_sym_index, unsigned int type,
2014 Output_data* od, Address address, Addend addend,
2015 bool use_plt_offset)
2016 {
2017 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2018 addend, true, true, false,
2019 use_plt_offset));
2020 }
2021
2022 void
2023 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2024 unsigned int local_sym_index, unsigned int type,
2025 Output_data* od, unsigned int shndx, Address address,
2026 Addend addend, bool use_plt_offset)
2027 {
2028 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2029 address, addend, true, true, false,
2030 use_plt_offset));
2031 }
2032
2033 // Add a local relocation which does not use a symbol for the relocation,
2034 // but which gets it's addend from a symbol.
2035
2036 void
2037 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2038 unsigned int local_sym_index, unsigned int type,
2039 Output_data* od, Address address, Addend addend)
2040 {
2041 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2042 addend, false, true, false, false));
2043 }
2044
2045 void
2046 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2047 unsigned int local_sym_index, unsigned int type,
2048 Output_data* od, unsigned int shndx,
2049 Address address, Addend addend)
2050 {
2051 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2052 address, addend, false, true, false,
2053 false));
2054 }
2055
2056 // Add a reloc against a local section symbol. This will be
2057 // converted into a reloc against the STT_SECTION symbol of the
2058 // output section.
2059
2060 void
2061 add_local_section(Sized_relobj<size, big_endian>* relobj,
2062 unsigned int input_shndx, unsigned int type,
2063 Output_data* od, Address address, Addend addend)
2064 {
2065 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2066 addend, false, false, true, false));
2067 }
2068
2069 void
2070 add_local_section(Sized_relobj<size, big_endian>* relobj,
2071 unsigned int input_shndx, unsigned int type,
2072 Output_data* od, unsigned int shndx, Address address,
2073 Addend addend)
2074 {
2075 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2076 address, addend, false, false, true,
2077 false));
2078 }
2079
2080 // A reloc against the STT_SECTION symbol of an output section.
2081
2082 void
2083 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2084 Address address, Addend addend)
2085 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2086
2087 void
2088 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2089 Sized_relobj<size, big_endian>* relobj,
2090 unsigned int shndx, Address address, Addend addend)
2091 {
2092 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2093 addend, false));
2094 }
2095
2096 void
2097 add_output_section_generic(Output_section* os, unsigned int type,
2098 Output_data* od, uint64_t address,
2099 uint64_t addend)
2100 {
2101 this->add(od, Output_reloc_type(os, type, od,
2102 convert_types<Address, uint64_t>(address),
2103 convert_types<Addend, uint64_t>(addend),
2104 false));
2105 }
2106
2107 void
2108 add_output_section_generic(Output_section* os, unsigned int type,
2109 Output_data* od, Relobj* relobj,
2110 unsigned int shndx, uint64_t address,
2111 uint64_t addend)
2112 {
2113 Sized_relobj<size, big_endian>* sized_relobj =
2114 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2115 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2116 convert_types<Address, uint64_t>(address),
2117 convert_types<Addend, uint64_t>(addend),
2118 false));
2119 }
2120
2121 // As above, but the reloc TYPE is relative
2122
2123 void
2124 add_output_section_relative(Output_section* os, unsigned int type,
2125 Output_data* od, Address address, Addend addend)
2126 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2127
2128 void
2129 add_output_section_relative(Output_section* os, unsigned int type,
2130 Output_data* od,
2131 Sized_relobj<size, big_endian>* relobj,
2132 unsigned int shndx, Address address,
2133 Addend addend)
2134 {
2135 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2136 address, addend, true));
2137 }
2138
2139 // Add an absolute relocation.
2140
2141 void
2142 add_absolute(unsigned int type, Output_data* od, Address address,
2143 Addend addend)
2144 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2145
2146 void
2147 add_absolute(unsigned int type, Output_data* od,
2148 Sized_relobj<size, big_endian>* relobj,
2149 unsigned int shndx, Address address, Addend addend)
2150 {
2151 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2152 false));
2153 }
2154
2155 // Add a relative relocation
2156
2157 void
2158 add_relative(unsigned int type, Output_data* od, Address address,
2159 Addend addend)
2160 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2161
2162 void
2163 add_relative(unsigned int type, Output_data* od,
2164 Sized_relobj<size, big_endian>* relobj,
2165 unsigned int shndx, Address address, Addend addend)
2166 {
2167 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2168 true));
2169 }
2170
2171 // Add a target specific relocation. A target which calls this must
2172 // define the reloc_symbol_index and reloc_addend virtual functions.
2173
2174 void
2175 add_target_specific(unsigned int type, void* arg, Output_data* od,
2176 Address address, Addend addend)
2177 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2178
2179 void
2180 add_target_specific(unsigned int type, void* arg, Output_data* od,
2181 Sized_relobj<size, big_endian>* relobj,
2182 unsigned int shndx, Address address, Addend addend)
2183 {
2184 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2185 addend));
2186 }
2187 };
2188
2189 // Output_relocatable_relocs represents a relocation section in a
2190 // relocatable link. The actual data is written out in the target
2191 // hook relocate_relocs. This just saves space for it.
2192
2193 template<int sh_type, int size, bool big_endian>
2194 class Output_relocatable_relocs : public Output_section_data
2195 {
2196 public:
2197 Output_relocatable_relocs(Relocatable_relocs* rr)
2198 : Output_section_data(Output_data::default_alignment_for_size(size)),
2199 rr_(rr)
2200 { }
2201
2202 void
2203 set_final_data_size();
2204
2205 // Write out the data. There is nothing to do here.
2206 void
2207 do_write(Output_file*)
2208 { }
2209
2210 // Write to a map file.
2211 void
2212 do_print_to_mapfile(Mapfile* mapfile) const
2213 { mapfile->print_output_data(this, _("** relocs")); }
2214
2215 private:
2216 // The relocs associated with this input section.
2217 Relocatable_relocs* rr_;
2218 };
2219
2220 // Handle a GROUP section.
2221
2222 template<int size, bool big_endian>
2223 class Output_data_group : public Output_section_data
2224 {
2225 public:
2226 // The constructor clears *INPUT_SHNDXES.
2227 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2228 section_size_type entry_count,
2229 elfcpp::Elf_Word flags,
2230 std::vector<unsigned int>* input_shndxes);
2231
2232 void
2233 do_write(Output_file*);
2234
2235 // Write to a map file.
2236 void
2237 do_print_to_mapfile(Mapfile* mapfile) const
2238 { mapfile->print_output_data(this, _("** group")); }
2239
2240 // Set final data size.
2241 void
2242 set_final_data_size()
2243 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2244
2245 private:
2246 // The input object.
2247 Sized_relobj_file<size, big_endian>* relobj_;
2248 // The group flag word.
2249 elfcpp::Elf_Word flags_;
2250 // The section indexes of the input sections in this group.
2251 std::vector<unsigned int> input_shndxes_;
2252 };
2253
2254 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2255 // for one symbol--either a global symbol or a local symbol in an
2256 // object. The target specific code adds entries to the GOT as
2257 // needed. The GOT_SIZE template parameter is the size in bits of a
2258 // GOT entry, typically 32 or 64.
2259
2260 class Output_data_got_base : public Output_section_data_build
2261 {
2262 public:
2263 Output_data_got_base(uint64_t align)
2264 : Output_section_data_build(align)
2265 { }
2266
2267 Output_data_got_base(off_t data_size, uint64_t align)
2268 : Output_section_data_build(data_size, align)
2269 { }
2270
2271 // Reserve the slot at index I in the GOT.
2272 void
2273 reserve_slot(unsigned int i)
2274 { this->do_reserve_slot(i); }
2275
2276 protected:
2277 // Reserve the slot at index I in the GOT.
2278 virtual void
2279 do_reserve_slot(unsigned int i) = 0;
2280 };
2281
2282 template<int got_size, bool big_endian>
2283 class Output_data_got : public Output_data_got_base
2284 {
2285 public:
2286 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2287
2288 Output_data_got()
2289 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2290 entries_(), free_list_()
2291 { }
2292
2293 Output_data_got(off_t data_size)
2294 : Output_data_got_base(data_size,
2295 Output_data::default_alignment_for_size(got_size)),
2296 entries_(), free_list_()
2297 {
2298 // For an incremental update, we have an existing GOT section.
2299 // Initialize the list of entries and the free list.
2300 this->entries_.resize(data_size / (got_size / 8));
2301 this->free_list_.init(data_size, false);
2302 }
2303
2304 // Add an entry for a global symbol to the GOT. Return true if this
2305 // is a new GOT entry, false if the symbol was already in the GOT.
2306 bool
2307 add_global(Symbol* gsym, unsigned int got_type);
2308
2309 // Like add_global, but use the PLT offset of the global symbol if
2310 // it has one.
2311 bool
2312 add_global_plt(Symbol* gsym, unsigned int got_type);
2313
2314 // Like add_global, but for a TLS symbol where the value will be
2315 // offset using Target::tls_offset_for_global.
2316 bool
2317 add_global_tls(Symbol* gsym, unsigned int got_type)
2318 { return add_global_plt(gsym, got_type); }
2319
2320 // Add an entry for a global symbol to the GOT, and add a dynamic
2321 // relocation of type R_TYPE for the GOT entry.
2322 void
2323 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2324 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2325
2326 // Add a pair of entries for a global symbol to the GOT, and add
2327 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2328 void
2329 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2330 Output_data_reloc_generic* rel_dyn,
2331 unsigned int r_type_1, unsigned int r_type_2);
2332
2333 // Add an entry for a local symbol to the GOT. This returns true if
2334 // this is a new GOT entry, false if the symbol already has a GOT
2335 // entry.
2336 bool
2337 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2338
2339 // Like add_local, but use the PLT offset of the local symbol if it
2340 // has one.
2341 bool
2342 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2343
2344 // Like add_local, but for a TLS symbol where the value will be
2345 // offset using Target::tls_offset_for_local.
2346 bool
2347 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2348 { return add_local_plt(object, sym_index, got_type); }
2349
2350 // Add an entry for a local symbol to the GOT, and add a dynamic
2351 // relocation of type R_TYPE for the GOT entry.
2352 void
2353 add_local_with_rel(Relobj* object, unsigned int sym_index,
2354 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2355 unsigned int r_type);
2356
2357 // Add a pair of entries for a local symbol to the GOT, and add
2358 // a dynamic relocation of type R_TYPE using the section symbol of
2359 // the output section to which input section SHNDX maps, on the first.
2360 // The first got entry will have a value of zero, the second the
2361 // value of the local symbol.
2362 void
2363 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2364 unsigned int shndx, unsigned int got_type,
2365 Output_data_reloc_generic* rel_dyn,
2366 unsigned int r_type);
2367
2368 // Add a pair of entries for a local symbol to the GOT, and add
2369 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2370 // The first got entry will have a value of zero, the second the
2371 // value of the local symbol offset by Target::tls_offset_for_local.
2372 void
2373 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2374 unsigned int got_type,
2375 Output_data_reloc_generic* rel_dyn,
2376 unsigned int r_type);
2377
2378 // Add a constant to the GOT. This returns the offset of the new
2379 // entry from the start of the GOT.
2380 unsigned int
2381 add_constant(Valtype constant)
2382 { return this->add_got_entry(Got_entry(constant)); }
2383
2384 // Add a pair of constants to the GOT. This returns the offset of
2385 // the new entry from the start of the GOT.
2386 unsigned int
2387 add_constant_pair(Valtype c1, Valtype c2)
2388 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2389
2390 // Replace GOT entry I with a new constant.
2391 void
2392 replace_constant(unsigned int i, Valtype constant)
2393 {
2394 this->replace_got_entry(i, Got_entry(constant));
2395 }
2396
2397 // Reserve a slot in the GOT for a local symbol.
2398 void
2399 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2400 unsigned int got_type);
2401
2402 // Reserve a slot in the GOT for a global symbol.
2403 void
2404 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2405
2406 protected:
2407 // Write out the GOT table.
2408 void
2409 do_write(Output_file*);
2410
2411 // Write to a map file.
2412 void
2413 do_print_to_mapfile(Mapfile* mapfile) const
2414 { mapfile->print_output_data(this, _("** GOT")); }
2415
2416 // Reserve the slot at index I in the GOT.
2417 virtual void
2418 do_reserve_slot(unsigned int i)
2419 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2420
2421 // Return the number of words in the GOT.
2422 unsigned int
2423 num_entries () const
2424 { return this->entries_.size(); }
2425
2426 // Return the offset into the GOT of GOT entry I.
2427 unsigned int
2428 got_offset(unsigned int i) const
2429 { return i * (got_size / 8); }
2430
2431 private:
2432 // This POD class holds a single GOT entry.
2433 class Got_entry
2434 {
2435 public:
2436 // Create a zero entry.
2437 Got_entry()
2438 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2439 { this->u_.constant = 0; }
2440
2441 // Create a global symbol entry.
2442 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2443 : local_sym_index_(GSYM_CODE),
2444 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2445 { this->u_.gsym = gsym; }
2446
2447 // Create a local symbol entry.
2448 Got_entry(Relobj* object, unsigned int local_sym_index,
2449 bool use_plt_or_tls_offset)
2450 : local_sym_index_(local_sym_index),
2451 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2452 {
2453 gold_assert(local_sym_index != GSYM_CODE
2454 && local_sym_index != CONSTANT_CODE
2455 && local_sym_index != RESERVED_CODE
2456 && local_sym_index == this->local_sym_index_);
2457 this->u_.object = object;
2458 }
2459
2460 // Create a constant entry. The constant is a host value--it will
2461 // be swapped, if necessary, when it is written out.
2462 explicit Got_entry(Valtype constant)
2463 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2464 { this->u_.constant = constant; }
2465
2466 // Write the GOT entry to an output view.
2467 void
2468 write(unsigned int got_indx, unsigned char* pov) const;
2469
2470 private:
2471 enum
2472 {
2473 GSYM_CODE = 0x7fffffff,
2474 CONSTANT_CODE = 0x7ffffffe,
2475 RESERVED_CODE = 0x7ffffffd
2476 };
2477
2478 union
2479 {
2480 // For a local symbol, the object.
2481 Relobj* object;
2482 // For a global symbol, the symbol.
2483 Symbol* gsym;
2484 // For a constant, the constant.
2485 Valtype constant;
2486 } u_;
2487 // For a local symbol, the local symbol index. This is GSYM_CODE
2488 // for a global symbol, or CONSTANT_CODE for a constant.
2489 unsigned int local_sym_index_ : 31;
2490 // Whether to use the PLT offset of the symbol if it has one.
2491 // For TLS symbols, whether to offset the symbol value.
2492 bool use_plt_or_tls_offset_ : 1;
2493 };
2494
2495 typedef std::vector<Got_entry> Got_entries;
2496
2497 // Create a new GOT entry and return its offset.
2498 unsigned int
2499 add_got_entry(Got_entry got_entry);
2500
2501 // Create a pair of new GOT entries and return the offset of the first.
2502 unsigned int
2503 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2504
2505 // Replace GOT entry I with a new value.
2506 void
2507 replace_got_entry(unsigned int i, Got_entry got_entry);
2508
2509 // Return the offset into the GOT of the last entry added.
2510 unsigned int
2511 last_got_offset() const
2512 { return this->got_offset(this->num_entries() - 1); }
2513
2514 // Set the size of the section.
2515 void
2516 set_got_size()
2517 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2518
2519 // The list of GOT entries.
2520 Got_entries entries_;
2521
2522 // List of available regions within the section, for incremental
2523 // update links.
2524 Free_list free_list_;
2525 };
2526
2527 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2528 // section.
2529
2530 class Output_data_dynamic : public Output_section_data
2531 {
2532 public:
2533 Output_data_dynamic(Stringpool* pool)
2534 : Output_section_data(Output_data::default_alignment()),
2535 entries_(), pool_(pool)
2536 { }
2537
2538 // Add a new dynamic entry with a fixed numeric value.
2539 void
2540 add_constant(elfcpp::DT tag, unsigned int val)
2541 { this->add_entry(Dynamic_entry(tag, val)); }
2542
2543 // Add a new dynamic entry with the address of output data.
2544 void
2545 add_section_address(elfcpp::DT tag, const Output_data* od)
2546 { this->add_entry(Dynamic_entry(tag, od, false)); }
2547
2548 // Add a new dynamic entry with the address of output data
2549 // plus a constant offset.
2550 void
2551 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2552 unsigned int offset)
2553 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2554
2555 // Add a new dynamic entry with the size of output data.
2556 void
2557 add_section_size(elfcpp::DT tag, const Output_data* od)
2558 { this->add_entry(Dynamic_entry(tag, od, true)); }
2559
2560 // Add a new dynamic entry with the total size of two output datas.
2561 void
2562 add_section_size(elfcpp::DT tag, const Output_data* od,
2563 const Output_data* od2)
2564 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2565
2566 // Add a new dynamic entry with the address of a symbol.
2567 void
2568 add_symbol(elfcpp::DT tag, const Symbol* sym)
2569 { this->add_entry(Dynamic_entry(tag, sym)); }
2570
2571 // Add a new dynamic entry with a string.
2572 void
2573 add_string(elfcpp::DT tag, const char* str)
2574 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2575
2576 void
2577 add_string(elfcpp::DT tag, const std::string& str)
2578 { this->add_string(tag, str.c_str()); }
2579
2580 // Add a new dynamic entry with custom value.
2581 void
2582 add_custom(elfcpp::DT tag)
2583 { this->add_entry(Dynamic_entry(tag)); }
2584
2585 protected:
2586 // Adjust the output section to set the entry size.
2587 void
2588 do_adjust_output_section(Output_section*);
2589
2590 // Set the final data size.
2591 void
2592 set_final_data_size();
2593
2594 // Write out the dynamic entries.
2595 void
2596 do_write(Output_file*);
2597
2598 // Write to a map file.
2599 void
2600 do_print_to_mapfile(Mapfile* mapfile) const
2601 { mapfile->print_output_data(this, _("** dynamic")); }
2602
2603 private:
2604 // This POD class holds a single dynamic entry.
2605 class Dynamic_entry
2606 {
2607 public:
2608 // Create an entry with a fixed numeric value.
2609 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2610 : tag_(tag), offset_(DYNAMIC_NUMBER)
2611 { this->u_.val = val; }
2612
2613 // Create an entry with the size or address of a section.
2614 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2615 : tag_(tag),
2616 offset_(section_size
2617 ? DYNAMIC_SECTION_SIZE
2618 : DYNAMIC_SECTION_ADDRESS)
2619 {
2620 this->u_.od = od;
2621 this->od2 = NULL;
2622 }
2623
2624 // Create an entry with the size of two sections.
2625 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2626 : tag_(tag),
2627 offset_(DYNAMIC_SECTION_SIZE)
2628 {
2629 this->u_.od = od;
2630 this->od2 = od2;
2631 }
2632
2633 // Create an entry with the address of a section plus a constant offset.
2634 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2635 : tag_(tag),
2636 offset_(offset)
2637 { this->u_.od = od; }
2638
2639 // Create an entry with the address of a symbol.
2640 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2641 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2642 { this->u_.sym = sym; }
2643
2644 // Create an entry with a string.
2645 Dynamic_entry(elfcpp::DT tag, const char* str)
2646 : tag_(tag), offset_(DYNAMIC_STRING)
2647 { this->u_.str = str; }
2648
2649 // Create an entry with a custom value.
2650 Dynamic_entry(elfcpp::DT tag)
2651 : tag_(tag), offset_(DYNAMIC_CUSTOM)
2652 { }
2653
2654 // Return the tag of this entry.
2655 elfcpp::DT
2656 tag() const
2657 { return this->tag_; }
2658
2659 // Write the dynamic entry to an output view.
2660 template<int size, bool big_endian>
2661 void
2662 write(unsigned char* pov, const Stringpool*) const;
2663
2664 private:
2665 // Classification is encoded in the OFFSET field.
2666 enum Classification
2667 {
2668 // Section address.
2669 DYNAMIC_SECTION_ADDRESS = 0,
2670 // Number.
2671 DYNAMIC_NUMBER = -1U,
2672 // Section size.
2673 DYNAMIC_SECTION_SIZE = -2U,
2674 // Symbol adress.
2675 DYNAMIC_SYMBOL = -3U,
2676 // String.
2677 DYNAMIC_STRING = -4U,
2678 // Custom value.
2679 DYNAMIC_CUSTOM = -5U
2680 // Any other value indicates a section address plus OFFSET.
2681 };
2682
2683 union
2684 {
2685 // For DYNAMIC_NUMBER.
2686 unsigned int val;
2687 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2688 const Output_data* od;
2689 // For DYNAMIC_SYMBOL.
2690 const Symbol* sym;
2691 // For DYNAMIC_STRING.
2692 const char* str;
2693 } u_;
2694 // For DYNAMIC_SYMBOL with two sections.
2695 const Output_data* od2;
2696 // The dynamic tag.
2697 elfcpp::DT tag_;
2698 // The type of entry (Classification) or offset within a section.
2699 unsigned int offset_;
2700 };
2701
2702 // Add an entry to the list.
2703 void
2704 add_entry(const Dynamic_entry& entry)
2705 { this->entries_.push_back(entry); }
2706
2707 // Sized version of write function.
2708 template<int size, bool big_endian>
2709 void
2710 sized_write(Output_file* of);
2711
2712 // The type of the list of entries.
2713 typedef std::vector<Dynamic_entry> Dynamic_entries;
2714
2715 // The entries.
2716 Dynamic_entries entries_;
2717 // The pool used for strings.
2718 Stringpool* pool_;
2719 };
2720
2721 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2722 // which may be required if the object file has more than
2723 // SHN_LORESERVE sections.
2724
2725 class Output_symtab_xindex : public Output_section_data
2726 {
2727 public:
2728 Output_symtab_xindex(size_t symcount)
2729 : Output_section_data(symcount * 4, 4, true),
2730 entries_()
2731 { }
2732
2733 // Add an entry: symbol number SYMNDX has section SHNDX.
2734 void
2735 add(unsigned int symndx, unsigned int shndx)
2736 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2737
2738 protected:
2739 void
2740 do_write(Output_file*);
2741
2742 // Write to a map file.
2743 void
2744 do_print_to_mapfile(Mapfile* mapfile) const
2745 { mapfile->print_output_data(this, _("** symtab xindex")); }
2746
2747 private:
2748 template<bool big_endian>
2749 void
2750 endian_do_write(unsigned char*);
2751
2752 // It is likely that most symbols will not require entries. Rather
2753 // than keep a vector for all symbols, we keep pairs of symbol index
2754 // and section index.
2755 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2756
2757 // The entries we need.
2758 Xindex_entries entries_;
2759 };
2760
2761 // A relaxed input section.
2762 class Output_relaxed_input_section : public Output_section_data_build
2763 {
2764 public:
2765 // We would like to call relobj->section_addralign(shndx) to get the
2766 // alignment but we do not want the constructor to fail. So callers
2767 // are repsonsible for ensuring that.
2768 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2769 uint64_t addralign)
2770 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2771 { }
2772
2773 // Return the Relobj of this relaxed input section.
2774 Relobj*
2775 relobj() const
2776 { return this->relobj_; }
2777
2778 // Return the section index of this relaxed input section.
2779 unsigned int
2780 shndx() const
2781 { return this->shndx_; }
2782
2783 protected:
2784 void
2785 set_relobj(Relobj* relobj)
2786 { this->relobj_ = relobj; }
2787
2788 void
2789 set_shndx(unsigned int shndx)
2790 { this->shndx_ = shndx; }
2791
2792 private:
2793 Relobj* relobj_;
2794 unsigned int shndx_;
2795 };
2796
2797 // This class describes properties of merge data sections. It is used
2798 // as a key type for maps.
2799 class Merge_section_properties
2800 {
2801 public:
2802 Merge_section_properties(bool is_string, uint64_t entsize,
2803 uint64_t addralign)
2804 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2805 { }
2806
2807 // Whether this equals to another Merge_section_properties MSP.
2808 bool
2809 eq(const Merge_section_properties& msp) const
2810 {
2811 return ((this->is_string_ == msp.is_string_)
2812 && (this->entsize_ == msp.entsize_)
2813 && (this->addralign_ == msp.addralign_));
2814 }
2815
2816 // Compute a hash value for this using 64-bit FNV-1a hash.
2817 size_t
2818 hash_value() const
2819 {
2820 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2821 uint64_t prime = 1099511628211ULL;
2822 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2823 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2824 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2825 return h;
2826 }
2827
2828 // Functors for associative containers.
2829 struct equal_to
2830 {
2831 bool
2832 operator()(const Merge_section_properties& msp1,
2833 const Merge_section_properties& msp2) const
2834 { return msp1.eq(msp2); }
2835 };
2836
2837 struct hash
2838 {
2839 size_t
2840 operator()(const Merge_section_properties& msp) const
2841 { return msp.hash_value(); }
2842 };
2843
2844 private:
2845 // Whether this merge data section is for strings.
2846 bool is_string_;
2847 // Entsize of this merge data section.
2848 uint64_t entsize_;
2849 // Address alignment.
2850 uint64_t addralign_;
2851 };
2852
2853 // This class is used to speed up look up of special input sections in an
2854 // Output_section.
2855
2856 class Output_section_lookup_maps
2857 {
2858 public:
2859 Output_section_lookup_maps()
2860 : is_valid_(true), merge_sections_by_properties_(),
2861 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2862 { }
2863
2864 // Whether the maps are valid.
2865 bool
2866 is_valid() const
2867 { return this->is_valid_; }
2868
2869 // Invalidate the maps.
2870 void
2871 invalidate()
2872 { this->is_valid_ = false; }
2873
2874 // Clear the maps.
2875 void
2876 clear()
2877 {
2878 this->merge_sections_by_properties_.clear();
2879 this->merge_sections_by_id_.clear();
2880 this->relaxed_input_sections_by_id_.clear();
2881 // A cleared map is valid.
2882 this->is_valid_ = true;
2883 }
2884
2885 // Find a merge section by merge section properties. Return NULL if none
2886 // is found.
2887 Output_merge_base*
2888 find_merge_section(const Merge_section_properties& msp) const
2889 {
2890 gold_assert(this->is_valid_);
2891 Merge_sections_by_properties::const_iterator p =
2892 this->merge_sections_by_properties_.find(msp);
2893 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2894 }
2895
2896 // Find a merge section by section ID of a merge input section. Return NULL
2897 // if none is found.
2898 Output_merge_base*
2899 find_merge_section(const Object* object, unsigned int shndx) const
2900 {
2901 gold_assert(this->is_valid_);
2902 Merge_sections_by_id::const_iterator p =
2903 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2904 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2905 }
2906
2907 // Add a merge section pointed by POMB with properties MSP.
2908 void
2909 add_merge_section(const Merge_section_properties& msp,
2910 Output_merge_base* pomb)
2911 {
2912 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2913 std::pair<Merge_sections_by_properties::iterator, bool> result =
2914 this->merge_sections_by_properties_.insert(value);
2915 gold_assert(result.second);
2916 }
2917
2918 // Add a mapping from a merged input section in OBJECT with index SHNDX
2919 // to a merge output section pointed by POMB.
2920 void
2921 add_merge_input_section(const Object* object, unsigned int shndx,
2922 Output_merge_base* pomb)
2923 {
2924 Const_section_id csid(object, shndx);
2925 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2926 std::pair<Merge_sections_by_id::iterator, bool> result =
2927 this->merge_sections_by_id_.insert(value);
2928 gold_assert(result.second);
2929 }
2930
2931 // Find a relaxed input section of OBJECT with index SHNDX.
2932 Output_relaxed_input_section*
2933 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2934 {
2935 gold_assert(this->is_valid_);
2936 Relaxed_input_sections_by_id::const_iterator p =
2937 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2938 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2939 }
2940
2941 // Add a relaxed input section pointed by POMB and whose original input
2942 // section is in OBJECT with index SHNDX.
2943 void
2944 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2945 Output_relaxed_input_section* poris)
2946 {
2947 Const_section_id csid(relobj, shndx);
2948 std::pair<Const_section_id, Output_relaxed_input_section*>
2949 value(csid, poris);
2950 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2951 this->relaxed_input_sections_by_id_.insert(value);
2952 gold_assert(result.second);
2953 }
2954
2955 private:
2956 typedef Unordered_map<Const_section_id, Output_merge_base*,
2957 Const_section_id_hash>
2958 Merge_sections_by_id;
2959
2960 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2961 Merge_section_properties::hash,
2962 Merge_section_properties::equal_to>
2963 Merge_sections_by_properties;
2964
2965 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2966 Const_section_id_hash>
2967 Relaxed_input_sections_by_id;
2968
2969 // Whether this is valid
2970 bool is_valid_;
2971 // Merge sections by merge section properties.
2972 Merge_sections_by_properties merge_sections_by_properties_;
2973 // Merge sections by section IDs.
2974 Merge_sections_by_id merge_sections_by_id_;
2975 // Relaxed sections by section IDs.
2976 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2977 };
2978
2979 // This abstract base class defines the interface for the
2980 // types of methods used to fill free space left in an output
2981 // section during an incremental link. These methods are used
2982 // to insert dummy compilation units into debug info so that
2983 // debug info consumers can scan the debug info serially.
2984
2985 class Output_fill
2986 {
2987 public:
2988 Output_fill()
2989 : is_big_endian_(parameters->target().is_big_endian())
2990 { }
2991
2992 virtual
2993 ~Output_fill()
2994 { }
2995
2996 // Return the smallest size chunk of free space that can be
2997 // filled with a dummy compilation unit.
2998 size_t
2999 minimum_hole_size() const
3000 { return this->do_minimum_hole_size(); }
3001
3002 // Write a fill pattern of length LEN at offset OFF in the file.
3003 void
3004 write(Output_file* of, off_t off, size_t len) const
3005 { this->do_write(of, off, len); }
3006
3007 protected:
3008 virtual size_t
3009 do_minimum_hole_size() const = 0;
3010
3011 virtual void
3012 do_write(Output_file* of, off_t off, size_t len) const = 0;
3013
3014 bool
3015 is_big_endian() const
3016 { return this->is_big_endian_; }
3017
3018 private:
3019 bool is_big_endian_;
3020 };
3021
3022 // Fill method that introduces a dummy compilation unit in
3023 // a .debug_info or .debug_types section.
3024
3025 class Output_fill_debug_info : public Output_fill
3026 {
3027 public:
3028 Output_fill_debug_info(bool is_debug_types)
3029 : is_debug_types_(is_debug_types)
3030 { }
3031
3032 protected:
3033 virtual size_t
3034 do_minimum_hole_size() const;
3035
3036 virtual void
3037 do_write(Output_file* of, off_t off, size_t len) const;
3038
3039 private:
3040 // Version of the header.
3041 static const int version = 4;
3042 // True if this is a .debug_types section.
3043 bool is_debug_types_;
3044 };
3045
3046 // Fill method that introduces a dummy compilation unit in
3047 // a .debug_line section.
3048
3049 class Output_fill_debug_line : public Output_fill
3050 {
3051 public:
3052 Output_fill_debug_line()
3053 { }
3054
3055 protected:
3056 virtual size_t
3057 do_minimum_hole_size() const;
3058
3059 virtual void
3060 do_write(Output_file* of, off_t off, size_t len) const;
3061
3062 private:
3063 // Version of the header. We write a DWARF-3 header because it's smaller
3064 // and many tools have not yet been updated to understand the DWARF-4 header.
3065 static const int version = 3;
3066 // Length of the portion of the header that follows the header_length
3067 // field. This includes the following fields:
3068 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3069 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3070 // The standard_opcode_lengths array is 12 bytes long, and the
3071 // include_directories and filenames fields each contain only a single
3072 // null byte.
3073 static const size_t header_length = 19;
3074 };
3075
3076 // An output section. We don't expect to have too many output
3077 // sections, so we don't bother to do a template on the size.
3078
3079 class Output_section : public Output_data
3080 {
3081 public:
3082 // Create an output section, giving the name, type, and flags.
3083 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3084 virtual ~Output_section();
3085
3086 // Add a new input section SHNDX, named NAME, with header SHDR, from
3087 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3088 // which applies to this section, or 0 if none, or -1 if more than
3089 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3090 // in a linker script; in that case we need to keep track of input
3091 // sections associated with an output section. Return the offset
3092 // within the output section.
3093 template<int size, bool big_endian>
3094 off_t
3095 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3096 unsigned int shndx, const char* name,
3097 const elfcpp::Shdr<size, big_endian>& shdr,
3098 unsigned int reloc_shndx, bool have_sections_script);
3099
3100 // Add generated data POSD to this output section.
3101 void
3102 add_output_section_data(Output_section_data* posd);
3103
3104 // Add a relaxed input section PORIS called NAME to this output section
3105 // with LAYOUT.
3106 void
3107 add_relaxed_input_section(Layout* layout,
3108 Output_relaxed_input_section* poris,
3109 const std::string& name);
3110
3111 // Return the section name.
3112 const char*
3113 name() const
3114 { return this->name_; }
3115
3116 // Return the section type.
3117 elfcpp::Elf_Word
3118 type() const
3119 { return this->type_; }
3120
3121 // Return the section flags.
3122 elfcpp::Elf_Xword
3123 flags() const
3124 { return this->flags_; }
3125
3126 typedef std::map<Section_id, unsigned int> Section_layout_order;
3127
3128 void
3129 update_section_layout(const Section_layout_order* order_map);
3130
3131 // Update the output section flags based on input section flags.
3132 void
3133 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3134
3135 // Return the entsize field.
3136 uint64_t
3137 entsize() const
3138 { return this->entsize_; }
3139
3140 // Set the entsize field.
3141 void
3142 set_entsize(uint64_t v);
3143
3144 // Set the load address.
3145 void
3146 set_load_address(uint64_t load_address)
3147 {
3148 this->load_address_ = load_address;
3149 this->has_load_address_ = true;
3150 }
3151
3152 // Set the link field to the output section index of a section.
3153 void
3154 set_link_section(const Output_data* od)
3155 {
3156 gold_assert(this->link_ == 0
3157 && !this->should_link_to_symtab_
3158 && !this->should_link_to_dynsym_);
3159 this->link_section_ = od;
3160 }
3161
3162 // Set the link field to a constant.
3163 void
3164 set_link(unsigned int v)
3165 {
3166 gold_assert(this->link_section_ == NULL
3167 && !this->should_link_to_symtab_
3168 && !this->should_link_to_dynsym_);
3169 this->link_ = v;
3170 }
3171
3172 // Record that this section should link to the normal symbol table.
3173 void
3174 set_should_link_to_symtab()
3175 {
3176 gold_assert(this->link_section_ == NULL
3177 && this->link_ == 0
3178 && !this->should_link_to_dynsym_);
3179 this->should_link_to_symtab_ = true;
3180 }
3181
3182 // Record that this section should link to the dynamic symbol table.
3183 void
3184 set_should_link_to_dynsym()
3185 {
3186 gold_assert(this->link_section_ == NULL
3187 && this->link_ == 0
3188 && !this->should_link_to_symtab_);
3189 this->should_link_to_dynsym_ = true;
3190 }
3191
3192 // Return the info field.
3193 unsigned int
3194 info() const
3195 {
3196 gold_assert(this->info_section_ == NULL
3197 && this->info_symndx_ == NULL);
3198 return this->info_;
3199 }
3200
3201 // Set the info field to the output section index of a section.
3202 void
3203 set_info_section(const Output_section* os)
3204 {
3205 gold_assert((this->info_section_ == NULL
3206 || (this->info_section_ == os
3207 && this->info_uses_section_index_))
3208 && this->info_symndx_ == NULL
3209 && this->info_ == 0);
3210 this->info_section_ = os;
3211 this->info_uses_section_index_= true;
3212 }
3213
3214 // Set the info field to the symbol table index of a symbol.
3215 void
3216 set_info_symndx(const Symbol* sym)
3217 {
3218 gold_assert(this->info_section_ == NULL
3219 && (this->info_symndx_ == NULL
3220 || this->info_symndx_ == sym)
3221 && this->info_ == 0);
3222 this->info_symndx_ = sym;
3223 }
3224
3225 // Set the info field to the symbol table index of a section symbol.
3226 void
3227 set_info_section_symndx(const Output_section* os)
3228 {
3229 gold_assert((this->info_section_ == NULL
3230 || (this->info_section_ == os
3231 && !this->info_uses_section_index_))
3232 && this->info_symndx_ == NULL
3233 && this->info_ == 0);
3234 this->info_section_ = os;
3235 this->info_uses_section_index_ = false;
3236 }
3237
3238 // Set the info field to a constant.
3239 void
3240 set_info(unsigned int v)
3241 {
3242 gold_assert(this->info_section_ == NULL
3243 && this->info_symndx_ == NULL
3244 && (this->info_ == 0
3245 || this->info_ == v));
3246 this->info_ = v;
3247 }
3248
3249 // Set the addralign field.
3250 void
3251 set_addralign(uint64_t v)
3252 { this->addralign_ = v; }
3253
3254 void
3255 checkpoint_set_addralign(uint64_t val)
3256 {
3257 if (this->checkpoint_ != NULL)
3258 this->checkpoint_->set_addralign(val);
3259 }
3260
3261 // Whether the output section index has been set.
3262 bool
3263 has_out_shndx() const
3264 { return this->out_shndx_ != -1U; }
3265
3266 // Indicate that we need a symtab index.
3267 void
3268 set_needs_symtab_index()
3269 { this->needs_symtab_index_ = true; }
3270
3271 // Return whether we need a symtab index.
3272 bool
3273 needs_symtab_index() const
3274 { return this->needs_symtab_index_; }
3275
3276 // Get the symtab index.
3277 unsigned int
3278 symtab_index() const
3279 {
3280 gold_assert(this->symtab_index_ != 0);
3281 return this->symtab_index_;
3282 }
3283
3284 // Set the symtab index.
3285 void
3286 set_symtab_index(unsigned int index)
3287 {
3288 gold_assert(index != 0);
3289 this->symtab_index_ = index;
3290 }
3291
3292 // Indicate that we need a dynsym index.
3293 void
3294 set_needs_dynsym_index()
3295 { this->needs_dynsym_index_ = true; }
3296
3297 // Return whether we need a dynsym index.
3298 bool
3299 needs_dynsym_index() const
3300 { return this->needs_dynsym_index_; }
3301
3302 // Get the dynsym index.
3303 unsigned int
3304 dynsym_index() const
3305 {
3306 gold_assert(this->dynsym_index_ != 0);
3307 return this->dynsym_index_;
3308 }
3309
3310 // Set the dynsym index.
3311 void
3312 set_dynsym_index(unsigned int index)
3313 {
3314 gold_assert(index != 0);
3315 this->dynsym_index_ = index;
3316 }
3317
3318 // Sort the attached input sections.
3319 void
3320 sort_attached_input_sections();
3321
3322 // Return whether the input sections sections attachd to this output
3323 // section may require sorting. This is used to handle constructor
3324 // priorities compatibly with GNU ld.
3325 bool
3326 may_sort_attached_input_sections() const
3327 { return this->may_sort_attached_input_sections_; }
3328
3329 // Record that the input sections attached to this output section
3330 // may require sorting.
3331 void
3332 set_may_sort_attached_input_sections()
3333 { this->may_sort_attached_input_sections_ = true; }
3334
3335 // Returns true if input sections must be sorted according to the
3336 // order in which their name appear in the --section-ordering-file.
3337 bool
3338 input_section_order_specified()
3339 { return this->input_section_order_specified_; }
3340
3341 // Record that input sections must be sorted as some of their names
3342 // match the patterns specified through --section-ordering-file.
3343 void
3344 set_input_section_order_specified()
3345 { this->input_section_order_specified_ = true; }
3346
3347 // Return whether the input sections attached to this output section
3348 // require sorting. This is used to handle constructor priorities
3349 // compatibly with GNU ld.
3350 bool
3351 must_sort_attached_input_sections() const
3352 { return this->must_sort_attached_input_sections_; }
3353
3354 // Record that the input sections attached to this output section
3355 // require sorting.
3356 void
3357 set_must_sort_attached_input_sections()
3358 { this->must_sort_attached_input_sections_ = true; }
3359
3360 // Get the order in which this section appears in the PT_LOAD output
3361 // segment.
3362 Output_section_order
3363 order() const
3364 { return this->order_; }
3365
3366 // Set the order for this section.
3367 void
3368 set_order(Output_section_order order)
3369 { this->order_ = order; }
3370
3371 // Return whether this section holds relro data--data which has
3372 // dynamic relocations but which may be marked read-only after the
3373 // dynamic relocations have been completed.
3374 bool
3375 is_relro() const
3376 { return this->is_relro_; }
3377
3378 // Record that this section holds relro data.
3379 void
3380 set_is_relro()
3381 { this->is_relro_ = true; }
3382
3383 // Record that this section does not hold relro data.
3384 void
3385 clear_is_relro()
3386 { this->is_relro_ = false; }
3387
3388 // True if this is a small section: a section which holds small
3389 // variables.
3390 bool
3391 is_small_section() const
3392 { return this->is_small_section_; }
3393
3394 // Record that this is a small section.
3395 void
3396 set_is_small_section()
3397 { this->is_small_section_ = true; }
3398
3399 // True if this is a large section: a section which holds large
3400 // variables.
3401 bool
3402 is_large_section() const
3403 { return this->is_large_section_; }
3404
3405 // Record that this is a large section.
3406 void
3407 set_is_large_section()
3408 { this->is_large_section_ = true; }
3409
3410 // True if this is a large data (not BSS) section.
3411 bool
3412 is_large_data_section()
3413 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3414
3415 // Return whether this section should be written after all the input
3416 // sections are complete.
3417 bool
3418 after_input_sections() const
3419 { return this->after_input_sections_; }
3420
3421 // Record that this section should be written after all the input
3422 // sections are complete.
3423 void
3424 set_after_input_sections()
3425 { this->after_input_sections_ = true; }
3426
3427 // Return whether this section requires postprocessing after all
3428 // relocations have been applied.
3429 bool
3430 requires_postprocessing() const
3431 { return this->requires_postprocessing_; }
3432
3433 bool
3434 is_unique_segment() const
3435 { return this->is_unique_segment_; }
3436
3437 void
3438 set_is_unique_segment()
3439 { this->is_unique_segment_ = true; }
3440
3441 uint64_t extra_segment_flags() const
3442 { return this->extra_segment_flags_; }
3443
3444 void
3445 set_extra_segment_flags(uint64_t flags)
3446 { this->extra_segment_flags_ = flags; }
3447
3448 uint64_t segment_alignment() const
3449 { return this->segment_alignment_; }
3450
3451 void
3452 set_segment_alignment(uint64_t align)
3453 { this->segment_alignment_ = align; }
3454
3455 // If a section requires postprocessing, return the buffer to use.
3456 unsigned char*
3457 postprocessing_buffer() const
3458 {
3459 gold_assert(this->postprocessing_buffer_ != NULL);
3460 return this->postprocessing_buffer_;
3461 }
3462
3463 // If a section requires postprocessing, create the buffer to use.
3464 void
3465 create_postprocessing_buffer();
3466
3467 // If a section requires postprocessing, this is the size of the
3468 // buffer to which relocations should be applied.
3469 off_t
3470 postprocessing_buffer_size() const
3471 { return this->current_data_size_for_child(); }
3472
3473 // Modify the section name. This is only permitted for an
3474 // unallocated section, and only before the size has been finalized.
3475 // Otherwise the name will not get into Layout::namepool_.
3476 void
3477 set_name(const char* newname)
3478 {
3479 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3480 gold_assert(!this->is_data_size_valid());
3481 this->name_ = newname;
3482 }
3483
3484 // Return whether the offset OFFSET in the input section SHNDX in
3485 // object OBJECT is being included in the link.
3486 bool
3487 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3488 off_t offset) const;
3489
3490 // Return the offset within the output section of OFFSET relative to
3491 // the start of input section SHNDX in object OBJECT.
3492 section_offset_type
3493 output_offset(const Relobj* object, unsigned int shndx,
3494 section_offset_type offset) const;
3495
3496 // Return the output virtual address of OFFSET relative to the start
3497 // of input section SHNDX in object OBJECT.
3498 uint64_t
3499 output_address(const Relobj* object, unsigned int shndx,
3500 off_t offset) const;
3501
3502 // Look for the merged section for input section SHNDX in object
3503 // OBJECT. If found, return true, and set *ADDR to the address of
3504 // the start of the merged section. This is not necessary the
3505 // output offset corresponding to input offset 0 in the section,
3506 // since the section may be mapped arbitrarily.
3507 bool
3508 find_starting_output_address(const Relobj* object, unsigned int shndx,
3509 uint64_t* addr) const;
3510
3511 // Record that this output section was found in the SECTIONS clause
3512 // of a linker script.
3513 void
3514 set_found_in_sections_clause()
3515 { this->found_in_sections_clause_ = true; }
3516
3517 // Return whether this output section was found in the SECTIONS
3518 // clause of a linker script.
3519 bool
3520 found_in_sections_clause() const
3521 { return this->found_in_sections_clause_; }
3522
3523 // Write the section header into *OPHDR.
3524 template<int size, bool big_endian>
3525 void
3526 write_header(const Layout*, const Stringpool*,
3527 elfcpp::Shdr_write<size, big_endian>*) const;
3528
3529 // The next few calls are for linker script support.
3530
3531 // In some cases we need to keep a list of the input sections
3532 // associated with this output section. We only need the list if we
3533 // might have to change the offsets of the input section within the
3534 // output section after we add the input section. The ordinary
3535 // input sections will be written out when we process the object
3536 // file, and as such we don't need to track them here. We do need
3537 // to track Output_section_data objects here. We store instances of
3538 // this structure in a std::vector, so it must be a POD. There can
3539 // be many instances of this structure, so we use a union to save
3540 // some space.
3541 class Input_section
3542 {
3543 public:
3544 Input_section()
3545 : shndx_(0), p2align_(0)
3546 {
3547 this->u1_.data_size = 0;
3548 this->u2_.object = NULL;
3549 }
3550
3551 // For an ordinary input section.
3552 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3553 uint64_t addralign)
3554 : shndx_(shndx),
3555 p2align_(ffsll(static_cast<long long>(addralign))),
3556 section_order_index_(0)
3557 {
3558 gold_assert(shndx != OUTPUT_SECTION_CODE
3559 && shndx != MERGE_DATA_SECTION_CODE
3560 && shndx != MERGE_STRING_SECTION_CODE
3561 && shndx != RELAXED_INPUT_SECTION_CODE);
3562 this->u1_.data_size = data_size;
3563 this->u2_.object = object;
3564 }
3565
3566 // For a non-merge output section.
3567 Input_section(Output_section_data* posd)
3568 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3569 section_order_index_(0)
3570 {
3571 this->u1_.data_size = 0;
3572 this->u2_.posd = posd;
3573 }
3574
3575 // For a merge section.
3576 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3577 : shndx_(is_string
3578 ? MERGE_STRING_SECTION_CODE
3579 : MERGE_DATA_SECTION_CODE),
3580 p2align_(0),
3581 section_order_index_(0)
3582 {
3583 this->u1_.entsize = entsize;
3584 this->u2_.posd = posd;
3585 }
3586
3587 // For a relaxed input section.
3588 Input_section(Output_relaxed_input_section* psection)
3589 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3590 section_order_index_(0)
3591 {
3592 this->u1_.data_size = 0;
3593 this->u2_.poris = psection;
3594 }
3595
3596 unsigned int
3597 section_order_index() const
3598 {
3599 return this->section_order_index_;
3600 }
3601
3602 void
3603 set_section_order_index(unsigned int number)
3604 {
3605 this->section_order_index_ = number;
3606 }
3607
3608 // The required alignment.
3609 uint64_t
3610 addralign() const
3611 {
3612 if (this->p2align_ != 0)
3613 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3614 else if (!this->is_input_section())
3615 return this->u2_.posd->addralign();
3616 else
3617 return 0;
3618 }
3619
3620 // Set the required alignment, which must be either 0 or a power of 2.
3621 // For input sections that are sub-classes of Output_section_data, a
3622 // alignment of zero means asking the underlying object for alignment.
3623 void
3624 set_addralign(uint64_t addralign)
3625 {
3626 if (addralign == 0)
3627 this->p2align_ = 0;
3628 else
3629 {
3630 gold_assert((addralign & (addralign - 1)) == 0);
3631 this->p2align_ = ffsll(static_cast<long long>(addralign));
3632 }
3633 }
3634
3635 // Return the current required size, without finalization.
3636 off_t
3637 current_data_size() const;
3638
3639 // Return the required size.
3640 off_t
3641 data_size() const;
3642
3643 // Whether this is an input section.
3644 bool
3645 is_input_section() const
3646 {
3647 return (this->shndx_ != OUTPUT_SECTION_CODE
3648 && this->shndx_ != MERGE_DATA_SECTION_CODE
3649 && this->shndx_ != MERGE_STRING_SECTION_CODE
3650 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3651 }
3652
3653 // Return whether this is a merge section which matches the
3654 // parameters.
3655 bool
3656 is_merge_section(bool is_string, uint64_t entsize,
3657 uint64_t addralign) const
3658 {
3659 return (this->shndx_ == (is_string
3660 ? MERGE_STRING_SECTION_CODE
3661 : MERGE_DATA_SECTION_CODE)
3662 && this->u1_.entsize == entsize
3663 && this->addralign() == addralign);
3664 }
3665
3666 // Return whether this is a merge section for some input section.
3667 bool
3668 is_merge_section() const
3669 {
3670 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3671 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3672 }
3673
3674 // Return whether this is a relaxed input section.
3675 bool
3676 is_relaxed_input_section() const
3677 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3678
3679 // Return whether this is a generic Output_section_data.
3680 bool
3681 is_output_section_data() const
3682 {
3683 return this->shndx_ == OUTPUT_SECTION_CODE;
3684 }
3685
3686 // Return the object for an input section.
3687 Relobj*
3688 relobj() const;
3689
3690 // Return the input section index for an input section.
3691 unsigned int
3692 shndx() const;
3693
3694 // For non-input-sections, return the associated Output_section_data
3695 // object.
3696 Output_section_data*
3697 output_section_data() const
3698 {
3699 gold_assert(!this->is_input_section());
3700 return this->u2_.posd;
3701 }
3702
3703 // For a merge section, return the Output_merge_base pointer.
3704 Output_merge_base*
3705 output_merge_base() const
3706 {
3707 gold_assert(this->is_merge_section());
3708 return this->u2_.pomb;
3709 }
3710
3711 // Return the Output_relaxed_input_section object.
3712 Output_relaxed_input_section*
3713 relaxed_input_section() const
3714 {
3715 gold_assert(this->is_relaxed_input_section());
3716 return this->u2_.poris;
3717 }
3718
3719 // Set the output section.
3720 void
3721 set_output_section(Output_section* os)
3722 {
3723 gold_assert(!this->is_input_section());
3724 Output_section_data* posd =
3725 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3726 posd->set_output_section(os);
3727 }
3728
3729 // Set the address and file offset. This is called during
3730 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3731 // the enclosing section.
3732 void
3733 set_address_and_file_offset(uint64_t address, off_t file_offset,
3734 off_t section_file_offset);
3735
3736 // Reset the address and file offset.
3737 void
3738 reset_address_and_file_offset();
3739
3740 // Finalize the data size.
3741 void
3742 finalize_data_size();
3743
3744 // Add an input section, for SHF_MERGE sections.
3745 bool
3746 add_input_section(Relobj* object, unsigned int shndx)
3747 {
3748 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3749 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3750 return this->u2_.posd->add_input_section(object, shndx);
3751 }
3752
3753 // Given an input OBJECT, an input section index SHNDX within that
3754 // object, and an OFFSET relative to the start of that input
3755 // section, return whether or not the output offset is known. If
3756 // this function returns true, it sets *POUTPUT to the offset in
3757 // the output section, relative to the start of the input section
3758 // in the output section. *POUTPUT may be different from OFFSET
3759 // for a merged section.
3760 bool
3761 output_offset(const Relobj* object, unsigned int shndx,
3762 section_offset_type offset,
3763 section_offset_type* poutput) const;
3764
3765 // Return whether this is the merge section for the input section
3766 // SHNDX in OBJECT.
3767 bool
3768 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3769
3770 // Write out the data. This does nothing for an input section.
3771 void
3772 write(Output_file*);
3773
3774 // Write the data to a buffer. This does nothing for an input
3775 // section.
3776 void
3777 write_to_buffer(unsigned char*);
3778
3779 // Print to a map file.
3780 void
3781 print_to_mapfile(Mapfile*) const;
3782
3783 // Print statistics about merge sections to stderr.
3784 void
3785 print_merge_stats(const char* section_name)
3786 {
3787 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3788 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3789 this->u2_.posd->print_merge_stats(section_name);
3790 }
3791
3792 private:
3793 // Code values which appear in shndx_. If the value is not one of
3794 // these codes, it is the input section index in the object file.
3795 enum
3796 {
3797 // An Output_section_data.
3798 OUTPUT_SECTION_CODE = -1U,
3799 // An Output_section_data for an SHF_MERGE section with
3800 // SHF_STRINGS not set.
3801 MERGE_DATA_SECTION_CODE = -2U,
3802 // An Output_section_data for an SHF_MERGE section with
3803 // SHF_STRINGS set.
3804 MERGE_STRING_SECTION_CODE = -3U,
3805 // An Output_section_data for a relaxed input section.
3806 RELAXED_INPUT_SECTION_CODE = -4U
3807 };
3808
3809 // For an ordinary input section, this is the section index in the
3810 // input file. For an Output_section_data, this is
3811 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3812 // MERGE_STRING_SECTION_CODE.
3813 unsigned int shndx_;
3814 // The required alignment, stored as a power of 2.
3815 unsigned int p2align_;
3816 union
3817 {
3818 // For an ordinary input section, the section size.
3819 off_t data_size;
3820 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3821 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3822 // entity size.
3823 uint64_t entsize;
3824 } u1_;
3825 union
3826 {
3827 // For an ordinary input section, the object which holds the
3828 // input section.
3829 Relobj* object;
3830 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3831 // MERGE_STRING_SECTION_CODE, the data.
3832 Output_section_data* posd;
3833 Output_merge_base* pomb;
3834 // For RELAXED_INPUT_SECTION_CODE, the data.
3835 Output_relaxed_input_section* poris;
3836 } u2_;
3837 // The line number of the pattern it matches in the --section-ordering-file
3838 // file. It is 0 if does not match any pattern.
3839 unsigned int section_order_index_;
3840 };
3841
3842 // Store the list of input sections for this Output_section into the
3843 // list passed in. This removes the input sections, leaving only
3844 // any Output_section_data elements. This returns the size of those
3845 // Output_section_data elements. ADDRESS is the address of this
3846 // output section. FILL is the fill value to use, in case there are
3847 // any spaces between the remaining Output_section_data elements.
3848 uint64_t
3849 get_input_sections(uint64_t address, const std::string& fill,
3850 std::list<Input_section>*);
3851
3852 // Add a script input section. A script input section can either be
3853 // a plain input section or a sub-class of Output_section_data.
3854 void
3855 add_script_input_section(const Input_section& input_section);
3856
3857 // Set the current size of the output section.
3858 void
3859 set_current_data_size(off_t size)
3860 { this->set_current_data_size_for_child(size); }
3861
3862 // End of linker script support.
3863
3864 // Save states before doing section layout.
3865 // This is used for relaxation.
3866 void
3867 save_states();
3868
3869 // Restore states prior to section layout.
3870 void
3871 restore_states();
3872
3873 // Discard states.
3874 void
3875 discard_states();
3876
3877 // Convert existing input sections to relaxed input sections.
3878 void
3879 convert_input_sections_to_relaxed_sections(
3880 const std::vector<Output_relaxed_input_section*>& sections);
3881
3882 // Find a relaxed input section to an input section in OBJECT
3883 // with index SHNDX. Return NULL if none is found.
3884 const Output_relaxed_input_section*
3885 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3886
3887 // Whether section offsets need adjustment due to relaxation.
3888 bool
3889 section_offsets_need_adjustment() const
3890 { return this->section_offsets_need_adjustment_; }
3891
3892 // Set section_offsets_need_adjustment to be true.
3893 void
3894 set_section_offsets_need_adjustment()
3895 { this->section_offsets_need_adjustment_ = true; }
3896
3897 // Set section_offsets_need_adjustment to be false.
3898 void
3899 clear_section_offsets_need_adjustment()
3900 { this->section_offsets_need_adjustment_ = false; }
3901
3902 // Adjust section offsets of input sections in this. This is
3903 // requires if relaxation caused some input sections to change sizes.
3904 void
3905 adjust_section_offsets();
3906
3907 // Whether this is a NOLOAD section.
3908 bool
3909 is_noload() const
3910 { return this->is_noload_; }
3911
3912 // Set NOLOAD flag.
3913 void
3914 set_is_noload()
3915 { this->is_noload_ = true; }
3916
3917 // Print merge statistics to stderr.
3918 void
3919 print_merge_stats();
3920
3921 // Set a fixed layout for the section. Used for incremental update links.
3922 void
3923 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3924 uint64_t sh_addralign);
3925
3926 // Return TRUE if the section has a fixed layout.
3927 bool
3928 has_fixed_layout() const
3929 { return this->has_fixed_layout_; }
3930
3931 // Set flag to allow patch space for this section. Used for full
3932 // incremental links.
3933 void
3934 set_is_patch_space_allowed()
3935 { this->is_patch_space_allowed_ = true; }
3936
3937 // Set a fill method to use for free space left in the output section
3938 // during incremental links.
3939 void
3940 set_free_space_fill(Output_fill* free_space_fill)
3941 {
3942 this->free_space_fill_ = free_space_fill;
3943 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3944 }
3945
3946 // Reserve space within the fixed layout for the section. Used for
3947 // incremental update links.
3948 void
3949 reserve(uint64_t sh_offset, uint64_t sh_size);
3950
3951 // Allocate space from the free list for the section. Used for
3952 // incremental update links.
3953 off_t
3954 allocate(off_t len, uint64_t addralign);
3955
3956 typedef std::vector<Input_section> Input_section_list;
3957
3958 // Allow access to the input sections.
3959 const Input_section_list&
3960 input_sections() const
3961 { return this->input_sections_; }
3962
3963 Input_section_list&
3964 input_sections()
3965 { return this->input_sections_; }
3966
3967 protected:
3968 // Return the output section--i.e., the object itself.
3969 Output_section*
3970 do_output_section()
3971 { return this; }
3972
3973 const Output_section*
3974 do_output_section() const
3975 { return this; }
3976
3977 // Return the section index in the output file.
3978 unsigned int
3979 do_out_shndx() const
3980 {
3981 gold_assert(this->out_shndx_ != -1U);
3982 return this->out_shndx_;
3983 }
3984
3985 // Set the output section index.
3986 void
3987 do_set_out_shndx(unsigned int shndx)
3988 {
3989 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3990 this->out_shndx_ = shndx;
3991 }
3992
3993 // Update the data size of the Output_section. For a typical
3994 // Output_section, there is nothing to do, but if there are any
3995 // Output_section_data objects we need to do a trial layout
3996 // here.
3997 virtual void
3998 update_data_size();
3999
4000 // Set the final data size of the Output_section. For a typical
4001 // Output_section, there is nothing to do, but if there are any
4002 // Output_section_data objects we need to set their final addresses
4003 // here.
4004 virtual void
4005 set_final_data_size();
4006
4007 // Reset the address and file offset.
4008 void
4009 do_reset_address_and_file_offset();
4010
4011 // Return true if address and file offset already have reset values. In
4012 // other words, calling reset_address_and_file_offset will not change them.
4013 bool
4014 do_address_and_file_offset_have_reset_values() const;
4015
4016 // Write the data to the file. For a typical Output_section, this
4017 // does nothing: the data is written out by calling Object::Relocate
4018 // on each input object. But if there are any Output_section_data
4019 // objects we do need to write them out here.
4020 virtual void
4021 do_write(Output_file*);
4022
4023 // Return the address alignment--function required by parent class.
4024 uint64_t
4025 do_addralign() const
4026 { return this->addralign_; }
4027
4028 // Return whether there is a load address.
4029 bool
4030 do_has_load_address() const
4031 { return this->has_load_address_; }
4032
4033 // Return the load address.
4034 uint64_t
4035 do_load_address() const
4036 {
4037 gold_assert(this->has_load_address_);
4038 return this->load_address_;
4039 }
4040
4041 // Return whether this is an Output_section.
4042 bool
4043 do_is_section() const
4044 { return true; }
4045
4046 // Return whether this is a section of the specified type.
4047 bool
4048 do_is_section_type(elfcpp::Elf_Word type) const
4049 { return this->type_ == type; }
4050
4051 // Return whether the specified section flag is set.
4052 bool
4053 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4054 { return (this->flags_ & flag) != 0; }
4055
4056 // Set the TLS offset. Called only for SHT_TLS sections.
4057 void
4058 do_set_tls_offset(uint64_t tls_base);
4059
4060 // Return the TLS offset, relative to the base of the TLS segment.
4061 // Valid only for SHT_TLS sections.
4062 uint64_t
4063 do_tls_offset() const
4064 { return this->tls_offset_; }
4065
4066 // This may be implemented by a child class.
4067 virtual void
4068 do_finalize_name(Layout*)
4069 { }
4070
4071 // Print to the map file.
4072 virtual void
4073 do_print_to_mapfile(Mapfile*) const;
4074
4075 // Record that this section requires postprocessing after all
4076 // relocations have been applied. This is called by a child class.
4077 void
4078 set_requires_postprocessing()
4079 {
4080 this->requires_postprocessing_ = true;
4081 this->after_input_sections_ = true;
4082 }
4083
4084 // Write all the data of an Output_section into the postprocessing
4085 // buffer.
4086 void
4087 write_to_postprocessing_buffer();
4088
4089 // Whether this always keeps an input section list
4090 bool
4091 always_keeps_input_sections() const
4092 { return this->always_keeps_input_sections_; }
4093
4094 // Always keep an input section list.
4095 void
4096 set_always_keeps_input_sections()
4097 {
4098 gold_assert(this->current_data_size_for_child() == 0);
4099 this->always_keeps_input_sections_ = true;
4100 }
4101
4102 private:
4103 // We only save enough information to undo the effects of section layout.
4104 class Checkpoint_output_section
4105 {
4106 public:
4107 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4108 const Input_section_list& input_sections,
4109 off_t first_input_offset,
4110 bool attached_input_sections_are_sorted)
4111 : addralign_(addralign), flags_(flags),
4112 input_sections_(input_sections),
4113 input_sections_size_(input_sections_.size()),
4114 input_sections_copy_(), first_input_offset_(first_input_offset),
4115 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4116 { }
4117
4118 virtual
4119 ~Checkpoint_output_section()
4120 { }
4121
4122 // Return the address alignment.
4123 uint64_t
4124 addralign() const
4125 { return this->addralign_; }
4126
4127 void
4128 set_addralign(uint64_t val)
4129 { this->addralign_ = val; }
4130
4131 // Return the section flags.
4132 elfcpp::Elf_Xword
4133 flags() const
4134 { return this->flags_; }
4135
4136 // Return a reference to the input section list copy.
4137 Input_section_list*
4138 input_sections()
4139 { return &this->input_sections_copy_; }
4140
4141 // Return the size of input_sections at the time when checkpoint is
4142 // taken.
4143 size_t
4144 input_sections_size() const
4145 { return this->input_sections_size_; }
4146
4147 // Whether input sections are copied.
4148 bool
4149 input_sections_saved() const
4150 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4151
4152 off_t
4153 first_input_offset() const
4154 { return this->first_input_offset_; }
4155
4156 bool
4157 attached_input_sections_are_sorted() const
4158 { return this->attached_input_sections_are_sorted_; }
4159
4160 // Save input sections.
4161 void
4162 save_input_sections()
4163 {
4164 this->input_sections_copy_.reserve(this->input_sections_size_);
4165 this->input_sections_copy_.clear();
4166 Input_section_list::const_iterator p = this->input_sections_.begin();
4167 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4168 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4169 this->input_sections_copy_.push_back(*p);
4170 }
4171
4172 private:
4173 // The section alignment.
4174 uint64_t addralign_;
4175 // The section flags.
4176 elfcpp::Elf_Xword flags_;
4177 // Reference to the input sections to be checkpointed.
4178 const Input_section_list& input_sections_;
4179 // Size of the checkpointed portion of input_sections_;
4180 size_t input_sections_size_;
4181 // Copy of input sections.
4182 Input_section_list input_sections_copy_;
4183 // The offset of the first entry in input_sections_.
4184 off_t first_input_offset_;
4185 // True if the input sections attached to this output section have
4186 // already been sorted.
4187 bool attached_input_sections_are_sorted_;
4188 };
4189
4190 // This class is used to sort the input sections.
4191 class Input_section_sort_entry;
4192
4193 // This is the sort comparison function for ctors and dtors.
4194 struct Input_section_sort_compare
4195 {
4196 bool
4197 operator()(const Input_section_sort_entry&,
4198 const Input_section_sort_entry&) const;
4199 };
4200
4201 // This is the sort comparison function for .init_array and .fini_array.
4202 struct Input_section_sort_init_fini_compare
4203 {
4204 bool
4205 operator()(const Input_section_sort_entry&,
4206 const Input_section_sort_entry&) const;
4207 };
4208
4209 // This is the sort comparison function when a section order is specified
4210 // from an input file.
4211 struct Input_section_sort_section_order_index_compare
4212 {
4213 bool
4214 operator()(const Input_section_sort_entry&,
4215 const Input_section_sort_entry&) const;
4216 };
4217
4218 // This is the sort comparison function for .text to sort sections with
4219 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4220 struct Input_section_sort_section_prefix_special_ordering_compare
4221 {
4222 bool
4223 operator()(const Input_section_sort_entry&,
4224 const Input_section_sort_entry&) const;
4225 };
4226
4227 // This is the sort comparison function for sorting sections by name.
4228 struct Input_section_sort_section_name_compare
4229 {
4230 bool
4231 operator()(const Input_section_sort_entry&,
4232 const Input_section_sort_entry&) const;
4233 };
4234
4235 // Fill data. This is used to fill in data between input sections.
4236 // It is also used for data statements (BYTE, WORD, etc.) in linker
4237 // scripts. When we have to keep track of the input sections, we
4238 // can use an Output_data_const, but we don't want to have to keep
4239 // track of input sections just to implement fills.
4240 class Fill
4241 {
4242 public:
4243 Fill(off_t section_offset, off_t length)
4244 : section_offset_(section_offset),
4245 length_(convert_to_section_size_type(length))
4246 { }
4247
4248 // Return section offset.
4249 off_t
4250 section_offset() const
4251 { return this->section_offset_; }
4252
4253 // Return fill length.
4254 section_size_type
4255 length() const
4256 { return this->length_; }
4257
4258 private:
4259 // The offset within the output section.
4260 off_t section_offset_;
4261 // The length of the space to fill.
4262 section_size_type length_;
4263 };
4264
4265 typedef std::vector<Fill> Fill_list;
4266
4267 // Map used during relaxation of existing sections. This map
4268 // a section id an input section list index. We assume that
4269 // Input_section_list is a vector.
4270 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4271
4272 // Add a new output section by Input_section.
4273 void
4274 add_output_section_data(Input_section*);
4275
4276 // Add an SHF_MERGE input section. Returns true if the section was
4277 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4278 // stores information about the merged input sections.
4279 bool
4280 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4281 uint64_t entsize, uint64_t addralign,
4282 bool keeps_input_sections);
4283
4284 // Add an output SHF_MERGE section POSD to this output section.
4285 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4286 // ENTSIZE is the entity size. This returns the entry added to
4287 // input_sections_.
4288 void
4289 add_output_merge_section(Output_section_data* posd, bool is_string,
4290 uint64_t entsize);
4291
4292 // Find the merge section into which an input section with index SHNDX in
4293 // OBJECT has been added. Return NULL if none found.
4294 Output_section_data*
4295 find_merge_section(const Relobj* object, unsigned int shndx) const;
4296
4297 // Build a relaxation map.
4298 void
4299 build_relaxation_map(
4300 const Input_section_list& input_sections,
4301 size_t limit,
4302 Relaxation_map* map) const;
4303
4304 // Convert input sections in an input section list into relaxed sections.
4305 void
4306 convert_input_sections_in_list_to_relaxed_sections(
4307 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4308 const Relaxation_map& map,
4309 Input_section_list* input_sections);
4310
4311 // Build the lookup maps for merge and relaxed input sections.
4312 void
4313 build_lookup_maps() const;
4314
4315 // Most of these fields are only valid after layout.
4316
4317 // The name of the section. This will point into a Stringpool.
4318 const char* name_;
4319 // The section address is in the parent class.
4320 // The section alignment.
4321 uint64_t addralign_;
4322 // The section entry size.
4323 uint64_t entsize_;
4324 // The load address. This is only used when using a linker script
4325 // with a SECTIONS clause. The has_load_address_ field indicates
4326 // whether this field is valid.
4327 uint64_t load_address_;
4328 // The file offset is in the parent class.
4329 // Set the section link field to the index of this section.
4330 const Output_data* link_section_;
4331 // If link_section_ is NULL, this is the link field.
4332 unsigned int link_;
4333 // Set the section info field to the index of this section.
4334 const Output_section* info_section_;
4335 // If info_section_ is NULL, set the info field to the symbol table
4336 // index of this symbol.
4337 const Symbol* info_symndx_;
4338 // If info_section_ and info_symndx_ are NULL, this is the section
4339 // info field.
4340 unsigned int info_;
4341 // The section type.
4342 const elfcpp::Elf_Word type_;
4343 // The section flags.
4344 elfcpp::Elf_Xword flags_;
4345 // The order of this section in the output segment.
4346 Output_section_order order_;
4347 // The section index.
4348 unsigned int out_shndx_;
4349 // If there is a STT_SECTION for this output section in the normal
4350 // symbol table, this is the symbol index. This starts out as zero.
4351 // It is initialized in Layout::finalize() to be the index, or -1U
4352 // if there isn't one.
4353 unsigned int symtab_index_;
4354 // If there is a STT_SECTION for this output section in the dynamic
4355 // symbol table, this is the symbol index. This starts out as zero.
4356 // It is initialized in Layout::finalize() to be the index, or -1U
4357 // if there isn't one.
4358 unsigned int dynsym_index_;
4359 // The input sections. This will be empty in cases where we don't
4360 // need to keep track of them.
4361 Input_section_list input_sections_;
4362 // The offset of the first entry in input_sections_.
4363 off_t first_input_offset_;
4364 // The fill data. This is separate from input_sections_ because we
4365 // often will need fill sections without needing to keep track of
4366 // input sections.
4367 Fill_list fills_;
4368 // If the section requires postprocessing, this buffer holds the
4369 // section contents during relocation.
4370 unsigned char* postprocessing_buffer_;
4371 // Whether this output section needs a STT_SECTION symbol in the
4372 // normal symbol table. This will be true if there is a relocation
4373 // which needs it.
4374 bool needs_symtab_index_ : 1;
4375 // Whether this output section needs a STT_SECTION symbol in the
4376 // dynamic symbol table. This will be true if there is a dynamic
4377 // relocation which needs it.
4378 bool needs_dynsym_index_ : 1;
4379 // Whether the link field of this output section should point to the
4380 // normal symbol table.
4381 bool should_link_to_symtab_ : 1;
4382 // Whether the link field of this output section should point to the
4383 // dynamic symbol table.
4384 bool should_link_to_dynsym_ : 1;
4385 // Whether this section should be written after all the input
4386 // sections are complete.
4387 bool after_input_sections_ : 1;
4388 // Whether this section requires post processing after all
4389 // relocations have been applied.
4390 bool requires_postprocessing_ : 1;
4391 // Whether an input section was mapped to this output section
4392 // because of a SECTIONS clause in a linker script.
4393 bool found_in_sections_clause_ : 1;
4394 // Whether this section has an explicitly specified load address.
4395 bool has_load_address_ : 1;
4396 // True if the info_section_ field means the section index of the
4397 // section, false if it means the symbol index of the corresponding
4398 // section symbol.
4399 bool info_uses_section_index_ : 1;
4400 // True if input sections attached to this output section have to be
4401 // sorted according to a specified order.
4402 bool input_section_order_specified_ : 1;
4403 // True if the input sections attached to this output section may
4404 // need sorting.
4405 bool may_sort_attached_input_sections_ : 1;
4406 // True if the input sections attached to this output section must
4407 // be sorted.
4408 bool must_sort_attached_input_sections_ : 1;
4409 // True if the input sections attached to this output section have
4410 // already been sorted.
4411 bool attached_input_sections_are_sorted_ : 1;
4412 // True if this section holds relro data.
4413 bool is_relro_ : 1;
4414 // True if this is a small section.
4415 bool is_small_section_ : 1;
4416 // True if this is a large section.
4417 bool is_large_section_ : 1;
4418 // Whether code-fills are generated at write.
4419 bool generate_code_fills_at_write_ : 1;
4420 // Whether the entry size field should be zero.
4421 bool is_entsize_zero_ : 1;
4422 // Whether section offsets need adjustment due to relaxation.
4423 bool section_offsets_need_adjustment_ : 1;
4424 // Whether this is a NOLOAD section.
4425 bool is_noload_ : 1;
4426 // Whether this always keeps input section.
4427 bool always_keeps_input_sections_ : 1;
4428 // Whether this section has a fixed layout, for incremental update links.
4429 bool has_fixed_layout_ : 1;
4430 // True if we can add patch space to this section.
4431 bool is_patch_space_allowed_ : 1;
4432 // True if this output section goes into a unique segment.
4433 bool is_unique_segment_ : 1;
4434 // For SHT_TLS sections, the offset of this section relative to the base
4435 // of the TLS segment.
4436 uint64_t tls_offset_;
4437 // Additional segment flags, specified via linker plugin, when mapping some
4438 // input sections to unique segments.
4439 uint64_t extra_segment_flags_;
4440 // Segment alignment specified via linker plugin, when mapping some
4441 // input sections to unique segments.
4442 uint64_t segment_alignment_;
4443 // Saved checkpoint.
4444 Checkpoint_output_section* checkpoint_;
4445 // Fast lookup maps for merged and relaxed input sections.
4446 Output_section_lookup_maps* lookup_maps_;
4447 // List of available regions within the section, for incremental
4448 // update links.
4449 Free_list free_list_;
4450 // Method for filling chunks of free space.
4451 Output_fill* free_space_fill_;
4452 // Amount added as patch space for incremental linking.
4453 off_t patch_space_;
4454 };
4455
4456 // An output segment. PT_LOAD segments are built from collections of
4457 // output sections. Other segments typically point within PT_LOAD
4458 // segments, and are built directly as needed.
4459 //
4460 // NOTE: We want to use the copy constructor for this class. During
4461 // relaxation, we may try built the segments multiple times. We do
4462 // that by copying the original segment list before lay-out, doing
4463 // a trial lay-out and roll-back to the saved copied if we need to
4464 // to the lay-out again.
4465
4466 class Output_segment
4467 {
4468 public:
4469 // Create an output segment, specifying the type and flags.
4470 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4471
4472 // Return the virtual address.
4473 uint64_t
4474 vaddr() const
4475 { return this->vaddr_; }
4476
4477 // Return the physical address.
4478 uint64_t
4479 paddr() const
4480 { return this->paddr_; }
4481
4482 // Return the segment type.
4483 elfcpp::Elf_Word
4484 type() const
4485 { return this->type_; }
4486
4487 // Return the segment flags.
4488 elfcpp::Elf_Word
4489 flags() const
4490 { return this->flags_; }
4491
4492 // Return the memory size.
4493 uint64_t
4494 memsz() const
4495 { return this->memsz_; }
4496
4497 // Return the file size.
4498 off_t
4499 filesz() const
4500 { return this->filesz_; }
4501
4502 // Return the file offset.
4503 off_t
4504 offset() const
4505 { return this->offset_; }
4506
4507 // Whether this is a segment created to hold large data sections.
4508 bool
4509 is_large_data_segment() const
4510 { return this->is_large_data_segment_; }
4511
4512 // Record that this is a segment created to hold large data
4513 // sections.
4514 void
4515 set_is_large_data_segment()
4516 { this->is_large_data_segment_ = true; }
4517
4518 bool
4519 is_unique_segment() const
4520 { return this->is_unique_segment_; }
4521
4522 // Mark segment as unique, happens when linker plugins request that
4523 // certain input sections be mapped to unique segments.
4524 void
4525 set_is_unique_segment()
4526 { this->is_unique_segment_ = true; }
4527
4528 // Return the maximum alignment of the Output_data.
4529 uint64_t
4530 maximum_alignment();
4531
4532 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4533 // the segment flags to use.
4534 void
4535 add_output_section_to_load(Layout* layout, Output_section* os,
4536 elfcpp::Elf_Word seg_flags);
4537
4538 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4539 // is the segment flags to use.
4540 void
4541 add_output_section_to_nonload(Output_section* os,
4542 elfcpp::Elf_Word seg_flags);
4543
4544 // Remove an Output_section from this segment. It is an error if it
4545 // is not present.
4546 void
4547 remove_output_section(Output_section* os);
4548
4549 // Add an Output_data (which need not be an Output_section) to the
4550 // start of this segment.
4551 void
4552 add_initial_output_data(Output_data*);
4553
4554 // Return true if this segment has any sections which hold actual
4555 // data, rather than being a BSS section.
4556 bool
4557 has_any_data_sections() const;
4558
4559 // Whether this segment has a dynamic relocs.
4560 bool
4561 has_dynamic_reloc() const;
4562
4563 // Return the first section.
4564 Output_section*
4565 first_section() const;
4566
4567 // Return the address of the first section.
4568 uint64_t
4569 first_section_load_address() const
4570 {
4571 const Output_section* os = this->first_section();
4572 return os->has_load_address() ? os->load_address() : os->address();
4573 }
4574
4575 // Return whether the addresses have been set already.
4576 bool
4577 are_addresses_set() const
4578 { return this->are_addresses_set_; }
4579
4580 // Set the addresses.
4581 void
4582 set_addresses(uint64_t vaddr, uint64_t paddr)
4583 {
4584 this->vaddr_ = vaddr;
4585 this->paddr_ = paddr;
4586 this->are_addresses_set_ = true;
4587 }
4588
4589 // Update the flags for the flags of an output section added to this
4590 // segment.
4591 void
4592 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4593 {
4594 // The ELF ABI specifies that a PT_TLS segment should always have
4595 // PF_R as the flags.
4596 if (this->type() != elfcpp::PT_TLS)
4597 this->flags_ |= flags;
4598 }
4599
4600 // Set the segment flags. This is only used if we have a PHDRS
4601 // clause which explicitly specifies the flags.
4602 void
4603 set_flags(elfcpp::Elf_Word flags)
4604 { this->flags_ = flags; }
4605
4606 // Set the address of the segment to ADDR and the offset to *POFF
4607 // and set the addresses and offsets of all contained output
4608 // sections accordingly. Set the section indexes of all contained
4609 // output sections starting with *PSHNDX. If RESET is true, first
4610 // reset the addresses of the contained sections. Return the
4611 // address of the immediately following segment. Update *POFF and
4612 // *PSHNDX. This should only be called for a PT_LOAD segment.
4613 uint64_t
4614 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4615 unsigned int* increase_relro, bool* has_relro,
4616 off_t* poff, unsigned int* pshndx);
4617
4618 // Set the minimum alignment of this segment. This may be adjusted
4619 // upward based on the section alignments.
4620 void
4621 set_minimum_p_align(uint64_t align)
4622 {
4623 if (align > this->min_p_align_)
4624 this->min_p_align_ = align;
4625 }
4626
4627 // Set the offset of this segment based on the section. This should
4628 // only be called for a non-PT_LOAD segment.
4629 void
4630 set_offset(unsigned int increase);
4631
4632 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4633 void
4634 set_tls_offsets();
4635
4636 // Return the number of output sections.
4637 unsigned int
4638 output_section_count() const;
4639
4640 // Return the section attached to the list segment with the lowest
4641 // load address. This is used when handling a PHDRS clause in a
4642 // linker script.
4643 Output_section*
4644 section_with_lowest_load_address() const;
4645
4646 // Write the segment header into *OPHDR.
4647 template<int size, bool big_endian>
4648 void
4649 write_header(elfcpp::Phdr_write<size, big_endian>*);
4650
4651 // Write the section headers of associated sections into V.
4652 template<int size, bool big_endian>
4653 unsigned char*
4654 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4655 unsigned int* pshndx) const;
4656
4657 // Print the output sections in the map file.
4658 void
4659 print_sections_to_mapfile(Mapfile*) const;
4660
4661 private:
4662 typedef std::vector<Output_data*> Output_data_list;
4663
4664 // Find the maximum alignment in an Output_data_list.
4665 static uint64_t
4666 maximum_alignment_list(const Output_data_list*);
4667
4668 // Return whether the first data section is a relro section.
4669 bool
4670 is_first_section_relro() const;
4671
4672 // Set the section addresses in an Output_data_list.
4673 uint64_t
4674 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4675 uint64_t addr, off_t* poff, unsigned int* pshndx,
4676 bool* in_tls);
4677
4678 // Return the number of Output_sections in an Output_data_list.
4679 unsigned int
4680 output_section_count_list(const Output_data_list*) const;
4681
4682 // Return whether an Output_data_list has a dynamic reloc.
4683 bool
4684 has_dynamic_reloc_list(const Output_data_list*) const;
4685
4686 // Find the section with the lowest load address in an
4687 // Output_data_list.
4688 void
4689 lowest_load_address_in_list(const Output_data_list* pdl,
4690 Output_section** found,
4691 uint64_t* found_lma) const;
4692
4693 // Find the first and last entries by address.
4694 void
4695 find_first_and_last_list(const Output_data_list* pdl,
4696 const Output_data** pfirst,
4697 const Output_data** plast) const;
4698
4699 // Write the section headers in the list into V.
4700 template<int size, bool big_endian>
4701 unsigned char*
4702 write_section_headers_list(const Layout*, const Stringpool*,
4703 const Output_data_list*, unsigned char* v,
4704 unsigned int* pshdx) const;
4705
4706 // Print a section list to the mapfile.
4707 void
4708 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4709
4710 // NOTE: We want to use the copy constructor. Currently, shallow copy
4711 // works for us so we do not need to write our own copy constructor.
4712
4713 // The list of output data attached to this segment.
4714 Output_data_list output_lists_[ORDER_MAX];
4715 // The segment virtual address.
4716 uint64_t vaddr_;
4717 // The segment physical address.
4718 uint64_t paddr_;
4719 // The size of the segment in memory.
4720 uint64_t memsz_;
4721 // The maximum section alignment. The is_max_align_known_ field
4722 // indicates whether this has been finalized.
4723 uint64_t max_align_;
4724 // The required minimum value for the p_align field. This is used
4725 // for PT_LOAD segments. Note that this does not mean that
4726 // addresses should be aligned to this value; it means the p_paddr
4727 // and p_vaddr fields must be congruent modulo this value. For
4728 // non-PT_LOAD segments, the dynamic linker works more efficiently
4729 // if the p_align field has the more conventional value, although it
4730 // can align as needed.
4731 uint64_t min_p_align_;
4732 // The offset of the segment data within the file.
4733 off_t offset_;
4734 // The size of the segment data in the file.
4735 off_t filesz_;
4736 // The segment type;
4737 elfcpp::Elf_Word type_;
4738 // The segment flags.
4739 elfcpp::Elf_Word flags_;
4740 // Whether we have finalized max_align_.
4741 bool is_max_align_known_ : 1;
4742 // Whether vaddr and paddr were set by a linker script.
4743 bool are_addresses_set_ : 1;
4744 // Whether this segment holds large data sections.
4745 bool is_large_data_segment_ : 1;
4746 // Whether this was marked as a unique segment via a linker plugin.
4747 bool is_unique_segment_ : 1;
4748 };
4749
4750 // This class represents the output file.
4751
4752 class Output_file
4753 {
4754 public:
4755 Output_file(const char* name);
4756
4757 // Indicate that this is a temporary file which should not be
4758 // output.
4759 void
4760 set_is_temporary()
4761 { this->is_temporary_ = true; }
4762
4763 // Try to open an existing file. Returns false if the file doesn't
4764 // exist, has a size of 0 or can't be mmaped. This method is
4765 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4766 // that file as the base for incremental linking.
4767 bool
4768 open_base_file(const char* base_name, bool writable);
4769
4770 // Open the output file. FILE_SIZE is the final size of the file.
4771 // If the file already exists, it is deleted/truncated. This method
4772 // is thread-unsafe.
4773 void
4774 open(off_t file_size);
4775
4776 // Resize the output file. This method is thread-unsafe.
4777 void
4778 resize(off_t file_size);
4779
4780 // Close the output file (flushing all buffered data) and make sure
4781 // there are no errors. This method is thread-unsafe.
4782 void
4783 close();
4784
4785 // Return the size of this file.
4786 off_t
4787 filesize()
4788 { return this->file_size_; }
4789
4790 // Return the name of this file.
4791 const char*
4792 filename()
4793 { return this->name_; }
4794
4795 // We currently always use mmap which makes the view handling quite
4796 // simple. In the future we may support other approaches.
4797
4798 // Write data to the output file.
4799 void
4800 write(off_t offset, const void* data, size_t len)
4801 { memcpy(this->base_ + offset, data, len); }
4802
4803 // Get a buffer to use to write to the file, given the offset into
4804 // the file and the size.
4805 unsigned char*
4806 get_output_view(off_t start, size_t size)
4807 {
4808 gold_assert(start >= 0
4809 && start + static_cast<off_t>(size) <= this->file_size_);
4810 return this->base_ + start;
4811 }
4812
4813 // VIEW must have been returned by get_output_view. Write the
4814 // buffer to the file, passing in the offset and the size.
4815 void
4816 write_output_view(off_t, size_t, unsigned char*)
4817 { }
4818
4819 // Get a read/write buffer. This is used when we want to write part
4820 // of the file, read it in, and write it again.
4821 unsigned char*
4822 get_input_output_view(off_t start, size_t size)
4823 { return this->get_output_view(start, size); }
4824
4825 // Write a read/write buffer back to the file.
4826 void
4827 write_input_output_view(off_t, size_t, unsigned char*)
4828 { }
4829
4830 // Get a read buffer. This is used when we just want to read part
4831 // of the file back it in.
4832 const unsigned char*
4833 get_input_view(off_t start, size_t size)
4834 { return this->get_output_view(start, size); }
4835
4836 // Release a read bfufer.
4837 void
4838 free_input_view(off_t, size_t, const unsigned char*)
4839 { }
4840
4841 private:
4842 // Map the file into memory or, if that fails, allocate anonymous
4843 // memory.
4844 void
4845 map();
4846
4847 // Allocate anonymous memory for the file.
4848 bool
4849 map_anonymous();
4850
4851 // Map the file into memory.
4852 bool
4853 map_no_anonymous(bool);
4854
4855 // Unmap the file from memory (and flush to disk buffers).
4856 void
4857 unmap();
4858
4859 // File name.
4860 const char* name_;
4861 // File descriptor.
4862 int o_;
4863 // File size.
4864 off_t file_size_;
4865 // Base of file mapped into memory.
4866 unsigned char* base_;
4867 // True iff base_ points to a memory buffer rather than an output file.
4868 bool map_is_anonymous_;
4869 // True if base_ was allocated using new rather than mmap.
4870 bool map_is_allocated_;
4871 // True if this is a temporary file which should not be output.
4872 bool is_temporary_;
4873 };
4874
4875 } // End namespace gold.
4876
4877 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.184348 seconds and 4 git commands to generate.