* layout.cc (Layout::Layout): Initialize increase_relro_.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49
50 // This class specifies an input section. It is used as a key type
51 // for maps.
52
53 class Input_section_specifier
54 {
55 public:
56 Input_section_specifier(const Relobj* relobj, unsigned int shndx)
57 : relobj_(relobj), shndx_(shndx)
58 { }
59
60 // Return Relobj of this.
61 const Relobj*
62 relobj() const
63 { return this->relobj_; }
64
65 // Return section index of this.
66 unsigned int
67 shndx() const
68 { return this->shndx_; }
69
70 // Whether this equals to another specifier ISS.
71 bool
72 eq(const Input_section_specifier& iss) const
73 { return this->relobj_ == iss.relobj_ && this->shndx_ == iss.shndx_; }
74
75 // Compute a hash value of this.
76 size_t
77 hash_value() const
78 {
79 return (gold::string_hash<char>(this->relobj_->name().c_str())
80 ^ this->shndx_);
81 }
82
83 // Functors for containers.
84 struct equal_to
85 {
86 bool
87 operator()(const Input_section_specifier& iss1,
88 const Input_section_specifier& iss2) const
89 { return iss1.eq(iss2); }
90 };
91
92 struct hash
93 {
94 size_t
95 operator()(const Input_section_specifier& iss) const
96 { return iss.hash_value(); }
97 };
98
99 private:
100 // An object.
101 const Relobj* relobj_;
102 // A section index.
103 unsigned int shndx_;
104 };
105
106 // An abtract class for data which has to go into the output file.
107
108 class Output_data
109 {
110 public:
111 explicit Output_data()
112 : address_(0), data_size_(0), offset_(-1),
113 is_address_valid_(false), is_data_size_valid_(false),
114 is_offset_valid_(false), is_data_size_fixed_(false),
115 dynamic_reloc_count_(0)
116 { }
117
118 virtual
119 ~Output_data();
120
121 // Return the address. For allocated sections, this is only valid
122 // after Layout::finalize is finished.
123 uint64_t
124 address() const
125 {
126 gold_assert(this->is_address_valid_);
127 return this->address_;
128 }
129
130 // Return the size of the data. For allocated sections, this must
131 // be valid after Layout::finalize calls set_address, but need not
132 // be valid before then.
133 off_t
134 data_size() const
135 {
136 gold_assert(this->is_data_size_valid_);
137 return this->data_size_;
138 }
139
140 // Return true if data size is fixed.
141 bool
142 is_data_size_fixed() const
143 { return this->is_data_size_fixed_; }
144
145 // Return the file offset. This is only valid after
146 // Layout::finalize is finished. For some non-allocated sections,
147 // it may not be valid until near the end of the link.
148 off_t
149 offset() const
150 {
151 gold_assert(this->is_offset_valid_);
152 return this->offset_;
153 }
154
155 // Reset the address and file offset. This essentially disables the
156 // sanity testing about duplicate and unknown settings.
157 void
158 reset_address_and_file_offset()
159 {
160 this->is_address_valid_ = false;
161 this->is_offset_valid_ = false;
162 if (!this->is_data_size_fixed_)
163 this->is_data_size_valid_ = false;
164 this->do_reset_address_and_file_offset();
165 }
166
167 // Return true if address and file offset already have reset values. In
168 // other words, calling reset_address_and_file_offset will not change them.
169 bool
170 address_and_file_offset_have_reset_values() const
171 { return this->do_address_and_file_offset_have_reset_values(); }
172
173 // Return the required alignment.
174 uint64_t
175 addralign() const
176 { return this->do_addralign(); }
177
178 // Return whether this has a load address.
179 bool
180 has_load_address() const
181 { return this->do_has_load_address(); }
182
183 // Return the load address.
184 uint64_t
185 load_address() const
186 { return this->do_load_address(); }
187
188 // Return whether this is an Output_section.
189 bool
190 is_section() const
191 { return this->do_is_section(); }
192
193 // Return whether this is an Output_section of the specified type.
194 bool
195 is_section_type(elfcpp::Elf_Word stt) const
196 { return this->do_is_section_type(stt); }
197
198 // Return whether this is an Output_section with the specified flag
199 // set.
200 bool
201 is_section_flag_set(elfcpp::Elf_Xword shf) const
202 { return this->do_is_section_flag_set(shf); }
203
204 // Return the output section that this goes in, if there is one.
205 Output_section*
206 output_section()
207 { return this->do_output_section(); }
208
209 // Return the output section index, if there is an output section.
210 unsigned int
211 out_shndx() const
212 { return this->do_out_shndx(); }
213
214 // Set the output section index, if this is an output section.
215 void
216 set_out_shndx(unsigned int shndx)
217 { this->do_set_out_shndx(shndx); }
218
219 // Set the address and file offset of this data, and finalize the
220 // size of the data. This is called during Layout::finalize for
221 // allocated sections.
222 void
223 set_address_and_file_offset(uint64_t addr, off_t off)
224 {
225 this->set_address(addr);
226 this->set_file_offset(off);
227 this->finalize_data_size();
228 }
229
230 // Set the address.
231 void
232 set_address(uint64_t addr)
233 {
234 gold_assert(!this->is_address_valid_);
235 this->address_ = addr;
236 this->is_address_valid_ = true;
237 }
238
239 // Set the file offset.
240 void
241 set_file_offset(off_t off)
242 {
243 gold_assert(!this->is_offset_valid_);
244 this->offset_ = off;
245 this->is_offset_valid_ = true;
246 }
247
248 // Finalize the data size.
249 void
250 finalize_data_size()
251 {
252 if (!this->is_data_size_valid_)
253 {
254 // Tell the child class to set the data size.
255 this->set_final_data_size();
256 gold_assert(this->is_data_size_valid_);
257 }
258 }
259
260 // Set the TLS offset. Called only for SHT_TLS sections.
261 void
262 set_tls_offset(uint64_t tls_base)
263 { this->do_set_tls_offset(tls_base); }
264
265 // Return the TLS offset, relative to the base of the TLS segment.
266 // Valid only for SHT_TLS sections.
267 uint64_t
268 tls_offset() const
269 { return this->do_tls_offset(); }
270
271 // Write the data to the output file. This is called after
272 // Layout::finalize is complete.
273 void
274 write(Output_file* file)
275 { this->do_write(file); }
276
277 // This is called by Layout::finalize to note that the sizes of
278 // allocated sections must now be fixed.
279 static void
280 layout_complete()
281 { Output_data::allocated_sizes_are_fixed = true; }
282
283 // Used to check that layout has been done.
284 static bool
285 is_layout_complete()
286 { return Output_data::allocated_sizes_are_fixed; }
287
288 // Count the number of dynamic relocations applied to this section.
289 void
290 add_dynamic_reloc()
291 { ++this->dynamic_reloc_count_; }
292
293 // Return the number of dynamic relocations applied to this section.
294 unsigned int
295 dynamic_reloc_count() const
296 { return this->dynamic_reloc_count_; }
297
298 // Whether the address is valid.
299 bool
300 is_address_valid() const
301 { return this->is_address_valid_; }
302
303 // Whether the file offset is valid.
304 bool
305 is_offset_valid() const
306 { return this->is_offset_valid_; }
307
308 // Whether the data size is valid.
309 bool
310 is_data_size_valid() const
311 { return this->is_data_size_valid_; }
312
313 // Print information to the map file.
314 void
315 print_to_mapfile(Mapfile* mapfile) const
316 { return this->do_print_to_mapfile(mapfile); }
317
318 protected:
319 // Functions that child classes may or in some cases must implement.
320
321 // Write the data to the output file.
322 virtual void
323 do_write(Output_file*) = 0;
324
325 // Return the required alignment.
326 virtual uint64_t
327 do_addralign() const = 0;
328
329 // Return whether this has a load address.
330 virtual bool
331 do_has_load_address() const
332 { return false; }
333
334 // Return the load address.
335 virtual uint64_t
336 do_load_address() const
337 { gold_unreachable(); }
338
339 // Return whether this is an Output_section.
340 virtual bool
341 do_is_section() const
342 { return false; }
343
344 // Return whether this is an Output_section of the specified type.
345 // This only needs to be implement by Output_section.
346 virtual bool
347 do_is_section_type(elfcpp::Elf_Word) const
348 { return false; }
349
350 // Return whether this is an Output_section with the specific flag
351 // set. This only needs to be implemented by Output_section.
352 virtual bool
353 do_is_section_flag_set(elfcpp::Elf_Xword) const
354 { return false; }
355
356 // Return the output section, if there is one.
357 virtual Output_section*
358 do_output_section()
359 { return NULL; }
360
361 // Return the output section index, if there is an output section.
362 virtual unsigned int
363 do_out_shndx() const
364 { gold_unreachable(); }
365
366 // Set the output section index, if this is an output section.
367 virtual void
368 do_set_out_shndx(unsigned int)
369 { gold_unreachable(); }
370
371 // This is a hook for derived classes to set the data size. This is
372 // called by finalize_data_size, normally called during
373 // Layout::finalize, when the section address is set.
374 virtual void
375 set_final_data_size()
376 { gold_unreachable(); }
377
378 // A hook for resetting the address and file offset.
379 virtual void
380 do_reset_address_and_file_offset()
381 { }
382
383 // Return true if address and file offset already have reset values. In
384 // other words, calling reset_address_and_file_offset will not change them.
385 // A child class overriding do_reset_address_and_file_offset may need to
386 // also override this.
387 virtual bool
388 do_address_and_file_offset_have_reset_values() const
389 { return !this->is_address_valid_ && !this->is_offset_valid_; }
390
391 // Set the TLS offset. Called only for SHT_TLS sections.
392 virtual void
393 do_set_tls_offset(uint64_t)
394 { gold_unreachable(); }
395
396 // Return the TLS offset, relative to the base of the TLS segment.
397 // Valid only for SHT_TLS sections.
398 virtual uint64_t
399 do_tls_offset() const
400 { gold_unreachable(); }
401
402 // Print to the map file. This only needs to be implemented by
403 // classes which may appear in a PT_LOAD segment.
404 virtual void
405 do_print_to_mapfile(Mapfile*) const
406 { gold_unreachable(); }
407
408 // Functions that child classes may call.
409
410 // Reset the address. The Output_section class needs this when an
411 // SHF_ALLOC input section is added to an output section which was
412 // formerly not SHF_ALLOC.
413 void
414 mark_address_invalid()
415 { this->is_address_valid_ = false; }
416
417 // Set the size of the data.
418 void
419 set_data_size(off_t data_size)
420 {
421 gold_assert(!this->is_data_size_valid_
422 && !this->is_data_size_fixed_);
423 this->data_size_ = data_size;
424 this->is_data_size_valid_ = true;
425 }
426
427 // Fix the data size. Once it is fixed, it cannot be changed
428 // and the data size remains always valid.
429 void
430 fix_data_size()
431 {
432 gold_assert(this->is_data_size_valid_);
433 this->is_data_size_fixed_ = true;
434 }
435
436 // Get the current data size--this is for the convenience of
437 // sections which build up their size over time.
438 off_t
439 current_data_size_for_child() const
440 { return this->data_size_; }
441
442 // Set the current data size--this is for the convenience of
443 // sections which build up their size over time.
444 void
445 set_current_data_size_for_child(off_t data_size)
446 {
447 gold_assert(!this->is_data_size_valid_);
448 this->data_size_ = data_size;
449 }
450
451 // Return default alignment for the target size.
452 static uint64_t
453 default_alignment();
454
455 // Return default alignment for a specified size--32 or 64.
456 static uint64_t
457 default_alignment_for_size(int size);
458
459 private:
460 Output_data(const Output_data&);
461 Output_data& operator=(const Output_data&);
462
463 // This is used for verification, to make sure that we don't try to
464 // change any sizes of allocated sections after we set the section
465 // addresses.
466 static bool allocated_sizes_are_fixed;
467
468 // Memory address in output file.
469 uint64_t address_;
470 // Size of data in output file.
471 off_t data_size_;
472 // File offset of contents in output file.
473 off_t offset_;
474 // Whether address_ is valid.
475 bool is_address_valid_;
476 // Whether data_size_ is valid.
477 bool is_data_size_valid_;
478 // Whether offset_ is valid.
479 bool is_offset_valid_;
480 // Whether data size is fixed.
481 bool is_data_size_fixed_;
482 // Count of dynamic relocations applied to this section.
483 unsigned int dynamic_reloc_count_;
484 };
485
486 // Output the section headers.
487
488 class Output_section_headers : public Output_data
489 {
490 public:
491 Output_section_headers(const Layout*,
492 const Layout::Segment_list*,
493 const Layout::Section_list*,
494 const Layout::Section_list*,
495 const Stringpool*,
496 const Output_section*);
497
498 protected:
499 // Write the data to the file.
500 void
501 do_write(Output_file*);
502
503 // Return the required alignment.
504 uint64_t
505 do_addralign() const
506 { return Output_data::default_alignment(); }
507
508 // Write to a map file.
509 void
510 do_print_to_mapfile(Mapfile* mapfile) const
511 { mapfile->print_output_data(this, _("** section headers")); }
512
513 // Set final data size.
514 void
515 set_final_data_size()
516 { this->set_data_size(this->do_size()); }
517
518 private:
519 // Write the data to the file with the right size and endianness.
520 template<int size, bool big_endian>
521 void
522 do_sized_write(Output_file*);
523
524 // Compute data size.
525 off_t
526 do_size() const;
527
528 const Layout* layout_;
529 const Layout::Segment_list* segment_list_;
530 const Layout::Section_list* section_list_;
531 const Layout::Section_list* unattached_section_list_;
532 const Stringpool* secnamepool_;
533 const Output_section* shstrtab_section_;
534 };
535
536 // Output the segment headers.
537
538 class Output_segment_headers : public Output_data
539 {
540 public:
541 Output_segment_headers(const Layout::Segment_list& segment_list);
542
543 protected:
544 // Write the data to the file.
545 void
546 do_write(Output_file*);
547
548 // Return the required alignment.
549 uint64_t
550 do_addralign() const
551 { return Output_data::default_alignment(); }
552
553 // Write to a map file.
554 void
555 do_print_to_mapfile(Mapfile* mapfile) const
556 { mapfile->print_output_data(this, _("** segment headers")); }
557
558 // Set final data size.
559 void
560 set_final_data_size()
561 { this->set_data_size(this->do_size()); }
562
563 private:
564 // Write the data to the file with the right size and endianness.
565 template<int size, bool big_endian>
566 void
567 do_sized_write(Output_file*);
568
569 // Compute the current size.
570 off_t
571 do_size() const;
572
573 const Layout::Segment_list& segment_list_;
574 };
575
576 // Output the ELF file header.
577
578 class Output_file_header : public Output_data
579 {
580 public:
581 Output_file_header(const Target*,
582 const Symbol_table*,
583 const Output_segment_headers*,
584 const char* entry);
585
586 // Add information about the section headers. We lay out the ELF
587 // file header before we create the section headers.
588 void set_section_info(const Output_section_headers*,
589 const Output_section* shstrtab);
590
591 protected:
592 // Write the data to the file.
593 void
594 do_write(Output_file*);
595
596 // Return the required alignment.
597 uint64_t
598 do_addralign() const
599 { return Output_data::default_alignment(); }
600
601 // Write to a map file.
602 void
603 do_print_to_mapfile(Mapfile* mapfile) const
604 { mapfile->print_output_data(this, _("** file header")); }
605
606 // Set final data size.
607 void
608 set_final_data_size(void)
609 { this->set_data_size(this->do_size()); }
610
611 private:
612 // Write the data to the file with the right size and endianness.
613 template<int size, bool big_endian>
614 void
615 do_sized_write(Output_file*);
616
617 // Return the value to use for the entry address.
618 template<int size>
619 typename elfcpp::Elf_types<size>::Elf_Addr
620 entry();
621
622 // Compute the current data size.
623 off_t
624 do_size() const;
625
626 const Target* target_;
627 const Symbol_table* symtab_;
628 const Output_segment_headers* segment_header_;
629 const Output_section_headers* section_header_;
630 const Output_section* shstrtab_;
631 const char* entry_;
632 };
633
634 // Output sections are mainly comprised of input sections. However,
635 // there are cases where we have data to write out which is not in an
636 // input section. Output_section_data is used in such cases. This is
637 // an abstract base class.
638
639 class Output_section_data : public Output_data
640 {
641 public:
642 Output_section_data(off_t data_size, uint64_t addralign,
643 bool is_data_size_fixed)
644 : Output_data(), output_section_(NULL), addralign_(addralign)
645 {
646 this->set_data_size(data_size);
647 if (is_data_size_fixed)
648 this->fix_data_size();
649 }
650
651 Output_section_data(uint64_t addralign)
652 : Output_data(), output_section_(NULL), addralign_(addralign)
653 { }
654
655 // Return the output section.
656 const Output_section*
657 output_section() const
658 { return this->output_section_; }
659
660 // Record the output section.
661 void
662 set_output_section(Output_section* os);
663
664 // Add an input section, for SHF_MERGE sections. This returns true
665 // if the section was handled.
666 bool
667 add_input_section(Relobj* object, unsigned int shndx)
668 { return this->do_add_input_section(object, shndx); }
669
670 // Given an input OBJECT, an input section index SHNDX within that
671 // object, and an OFFSET relative to the start of that input
672 // section, return whether or not the corresponding offset within
673 // the output section is known. If this function returns true, it
674 // sets *POUTPUT to the output offset. The value -1 indicates that
675 // this input offset is being discarded.
676 bool
677 output_offset(const Relobj* object, unsigned int shndx,
678 section_offset_type offset,
679 section_offset_type *poutput) const
680 { return this->do_output_offset(object, shndx, offset, poutput); }
681
682 // Return whether this is the merge section for the input section
683 // SHNDX in OBJECT. This should return true when output_offset
684 // would return true for some values of OFFSET.
685 bool
686 is_merge_section_for(const Relobj* object, unsigned int shndx) const
687 { return this->do_is_merge_section_for(object, shndx); }
688
689 // Write the contents to a buffer. This is used for sections which
690 // require postprocessing, such as compression.
691 void
692 write_to_buffer(unsigned char* buffer)
693 { this->do_write_to_buffer(buffer); }
694
695 // Print merge stats to stderr. This should only be called for
696 // SHF_MERGE sections.
697 void
698 print_merge_stats(const char* section_name)
699 { this->do_print_merge_stats(section_name); }
700
701 protected:
702 // The child class must implement do_write.
703
704 // The child class may implement specific adjustments to the output
705 // section.
706 virtual void
707 do_adjust_output_section(Output_section*)
708 { }
709
710 // May be implemented by child class. Return true if the section
711 // was handled.
712 virtual bool
713 do_add_input_section(Relobj*, unsigned int)
714 { gold_unreachable(); }
715
716 // The child class may implement output_offset.
717 virtual bool
718 do_output_offset(const Relobj*, unsigned int, section_offset_type,
719 section_offset_type*) const
720 { return false; }
721
722 // The child class may implement is_merge_section_for.
723 virtual bool
724 do_is_merge_section_for(const Relobj*, unsigned int) const
725 { return false; }
726
727 // The child class may implement write_to_buffer. Most child
728 // classes can not appear in a compressed section, and they do not
729 // implement this.
730 virtual void
731 do_write_to_buffer(unsigned char*)
732 { gold_unreachable(); }
733
734 // Print merge statistics.
735 virtual void
736 do_print_merge_stats(const char*)
737 { gold_unreachable(); }
738
739 // Return the required alignment.
740 uint64_t
741 do_addralign() const
742 { return this->addralign_; }
743
744 // Return the output section.
745 Output_section*
746 do_output_section()
747 { return this->output_section_; }
748
749 // Return the section index of the output section.
750 unsigned int
751 do_out_shndx() const;
752
753 // Set the alignment.
754 void
755 set_addralign(uint64_t addralign);
756
757 private:
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
761 uint64_t addralign_;
762 };
763
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
766 // them.
767
768 class Output_section_data_build : public Output_section_data
769 {
770 public:
771 Output_section_data_build(uint64_t addralign)
772 : Output_section_data(addralign)
773 { }
774
775 // Get the current data size.
776 off_t
777 current_data_size() const
778 { return this->current_data_size_for_child(); }
779
780 // Set the current data size.
781 void
782 set_current_data_size(off_t data_size)
783 { this->set_current_data_size_for_child(data_size); }
784
785 protected:
786 // Set the final data size.
787 virtual void
788 set_final_data_size()
789 { this->set_data_size(this->current_data_size_for_child()); }
790 };
791
792 // A simple case of Output_data in which we have constant data to
793 // output.
794
795 class Output_data_const : public Output_section_data
796 {
797 public:
798 Output_data_const(const std::string& data, uint64_t addralign)
799 : Output_section_data(data.size(), addralign, true), data_(data)
800 { }
801
802 Output_data_const(const char* p, off_t len, uint64_t addralign)
803 : Output_section_data(len, addralign, true), data_(p, len)
804 { }
805
806 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
807 : Output_section_data(len, addralign, true),
808 data_(reinterpret_cast<const char*>(p), len)
809 { }
810
811 protected:
812 // Write the data to the output file.
813 void
814 do_write(Output_file*);
815
816 // Write the data to a buffer.
817 void
818 do_write_to_buffer(unsigned char* buffer)
819 { memcpy(buffer, this->data_.data(), this->data_.size()); }
820
821 // Write to a map file.
822 void
823 do_print_to_mapfile(Mapfile* mapfile) const
824 { mapfile->print_output_data(this, _("** fill")); }
825
826 private:
827 std::string data_;
828 };
829
830 // Another version of Output_data with constant data, in which the
831 // buffer is allocated by the caller.
832
833 class Output_data_const_buffer : public Output_section_data
834 {
835 public:
836 Output_data_const_buffer(const unsigned char* p, off_t len,
837 uint64_t addralign, const char* map_name)
838 : Output_section_data(len, addralign, true),
839 p_(p), map_name_(map_name)
840 { }
841
842 protected:
843 // Write the data the output file.
844 void
845 do_write(Output_file*);
846
847 // Write the data to a buffer.
848 void
849 do_write_to_buffer(unsigned char* buffer)
850 { memcpy(buffer, this->p_, this->data_size()); }
851
852 // Write to a map file.
853 void
854 do_print_to_mapfile(Mapfile* mapfile) const
855 { mapfile->print_output_data(this, _(this->map_name_)); }
856
857 private:
858 // The data to output.
859 const unsigned char* p_;
860 // Name to use in a map file. Maps are a rarely used feature, but
861 // the space usage is minor as aren't very many of these objects.
862 const char* map_name_;
863 };
864
865 // A place holder for a fixed amount of data written out via some
866 // other mechanism.
867
868 class Output_data_fixed_space : public Output_section_data
869 {
870 public:
871 Output_data_fixed_space(off_t data_size, uint64_t addralign,
872 const char* map_name)
873 : Output_section_data(data_size, addralign, true),
874 map_name_(map_name)
875 { }
876
877 protected:
878 // Write out the data--the actual data must be written out
879 // elsewhere.
880 void
881 do_write(Output_file*)
882 { }
883
884 // Write to a map file.
885 void
886 do_print_to_mapfile(Mapfile* mapfile) const
887 { mapfile->print_output_data(this, _(this->map_name_)); }
888
889 private:
890 // Name to use in a map file. Maps are a rarely used feature, but
891 // the space usage is minor as aren't very many of these objects.
892 const char* map_name_;
893 };
894
895 // A place holder for variable sized data written out via some other
896 // mechanism.
897
898 class Output_data_space : public Output_section_data_build
899 {
900 public:
901 explicit Output_data_space(uint64_t addralign, const char* map_name)
902 : Output_section_data_build(addralign),
903 map_name_(map_name)
904 { }
905
906 // Set the alignment.
907 void
908 set_space_alignment(uint64_t align)
909 { this->set_addralign(align); }
910
911 protected:
912 // Write out the data--the actual data must be written out
913 // elsewhere.
914 void
915 do_write(Output_file*)
916 { }
917
918 // Write to a map file.
919 void
920 do_print_to_mapfile(Mapfile* mapfile) const
921 { mapfile->print_output_data(this, _(this->map_name_)); }
922
923 private:
924 // Name to use in a map file. Maps are a rarely used feature, but
925 // the space usage is minor as aren't very many of these objects.
926 const char* map_name_;
927 };
928
929 // Fill fixed space with zeroes. This is just like
930 // Output_data_fixed_space, except that the map name is known.
931
932 class Output_data_zero_fill : public Output_section_data
933 {
934 public:
935 Output_data_zero_fill(off_t data_size, uint64_t addralign)
936 : Output_section_data(data_size, addralign, true)
937 { }
938
939 protected:
940 // There is no data to write out.
941 void
942 do_write(Output_file*)
943 { }
944
945 // Write to a map file.
946 void
947 do_print_to_mapfile(Mapfile* mapfile) const
948 { mapfile->print_output_data(this, "** zero fill"); }
949 };
950
951 // A string table which goes into an output section.
952
953 class Output_data_strtab : public Output_section_data
954 {
955 public:
956 Output_data_strtab(Stringpool* strtab)
957 : Output_section_data(1), strtab_(strtab)
958 { }
959
960 protected:
961 // This is called to set the address and file offset. Here we make
962 // sure that the Stringpool is finalized.
963 void
964 set_final_data_size();
965
966 // Write out the data.
967 void
968 do_write(Output_file*);
969
970 // Write the data to a buffer.
971 void
972 do_write_to_buffer(unsigned char* buffer)
973 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
974
975 // Write to a map file.
976 void
977 do_print_to_mapfile(Mapfile* mapfile) const
978 { mapfile->print_output_data(this, _("** string table")); }
979
980 private:
981 Stringpool* strtab_;
982 };
983
984 // This POD class is used to represent a single reloc in the output
985 // file. This could be a private class within Output_data_reloc, but
986 // the templatization is complex enough that I broke it out into a
987 // separate class. The class is templatized on either elfcpp::SHT_REL
988 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
989 // relocation or an ordinary relocation.
990
991 // A relocation can be against a global symbol, a local symbol, a
992 // local section symbol, an output section, or the undefined symbol at
993 // index 0. We represent the latter by using a NULL global symbol.
994
995 template<int sh_type, bool dynamic, int size, bool big_endian>
996 class Output_reloc;
997
998 template<bool dynamic, int size, bool big_endian>
999 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1000 {
1001 public:
1002 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1003 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1004
1005 static const Address invalid_address = static_cast<Address>(0) - 1;
1006
1007 // An uninitialized entry. We need this because we want to put
1008 // instances of this class into an STL container.
1009 Output_reloc()
1010 : local_sym_index_(INVALID_CODE)
1011 { }
1012
1013 // We have a bunch of different constructors. They come in pairs
1014 // depending on how the address of the relocation is specified. It
1015 // can either be an offset in an Output_data or an offset in an
1016 // input section.
1017
1018 // A reloc against a global symbol.
1019
1020 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1021 Address address, bool is_relative);
1022
1023 Output_reloc(Symbol* gsym, unsigned int type,
1024 Sized_relobj<size, big_endian>* relobj,
1025 unsigned int shndx, Address address, bool is_relative);
1026
1027 // A reloc against a local symbol or local section symbol.
1028
1029 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1030 unsigned int local_sym_index, unsigned int type,
1031 Output_data* od, Address address, bool is_relative,
1032 bool is_section_symbol);
1033
1034 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 unsigned int local_sym_index, unsigned int type,
1036 unsigned int shndx, Address address, bool is_relative,
1037 bool is_section_symbol);
1038
1039 // A reloc against the STT_SECTION symbol of an output section.
1040
1041 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1042 Address address);
1043
1044 Output_reloc(Output_section* os, unsigned int type,
1045 Sized_relobj<size, big_endian>* relobj,
1046 unsigned int shndx, Address address);
1047
1048 // Return TRUE if this is a RELATIVE relocation.
1049 bool
1050 is_relative() const
1051 { return this->is_relative_; }
1052
1053 // Return whether this is against a local section symbol.
1054 bool
1055 is_local_section_symbol() const
1056 {
1057 return (this->local_sym_index_ != GSYM_CODE
1058 && this->local_sym_index_ != SECTION_CODE
1059 && this->local_sym_index_ != INVALID_CODE
1060 && this->is_section_symbol_);
1061 }
1062
1063 // For a local section symbol, return the offset of the input
1064 // section within the output section. ADDEND is the addend being
1065 // applied to the input section.
1066 Address
1067 local_section_offset(Addend addend) const;
1068
1069 // Get the value of the symbol referred to by a Rel relocation when
1070 // we are adding the given ADDEND.
1071 Address
1072 symbol_value(Addend addend) const;
1073
1074 // Write the reloc entry to an output view.
1075 void
1076 write(unsigned char* pov) const;
1077
1078 // Write the offset and info fields to Write_rel.
1079 template<typename Write_rel>
1080 void write_rel(Write_rel*) const;
1081
1082 // This is used when sorting dynamic relocs. Return -1 to sort this
1083 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1084 int
1085 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1086 const;
1087
1088 // Return whether this reloc should be sorted before the argument
1089 // when sorting dynamic relocs.
1090 bool
1091 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1092 r2) const
1093 { return this->compare(r2) < 0; }
1094
1095 private:
1096 // Record that we need a dynamic symbol index.
1097 void
1098 set_needs_dynsym_index();
1099
1100 // Return the symbol index.
1101 unsigned int
1102 get_symbol_index() const;
1103
1104 // Return the output address.
1105 Address
1106 get_address() const;
1107
1108 // Codes for local_sym_index_.
1109 enum
1110 {
1111 // Global symbol.
1112 GSYM_CODE = -1U,
1113 // Output section.
1114 SECTION_CODE = -2U,
1115 // Invalid uninitialized entry.
1116 INVALID_CODE = -3U
1117 };
1118
1119 union
1120 {
1121 // For a local symbol or local section symbol
1122 // (this->local_sym_index_ >= 0), the object. We will never
1123 // generate a relocation against a local symbol in a dynamic
1124 // object; that doesn't make sense. And our callers will always
1125 // be templatized, so we use Sized_relobj here.
1126 Sized_relobj<size, big_endian>* relobj;
1127 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1128 // symbol. If this is NULL, it indicates a relocation against the
1129 // undefined 0 symbol.
1130 Symbol* gsym;
1131 // For a relocation against an output section
1132 // (this->local_sym_index_ == SECTION_CODE), the output section.
1133 Output_section* os;
1134 } u1_;
1135 union
1136 {
1137 // If this->shndx_ is not INVALID CODE, the object which holds the
1138 // input section being used to specify the reloc address.
1139 Sized_relobj<size, big_endian>* relobj;
1140 // If this->shndx_ is INVALID_CODE, the output data being used to
1141 // specify the reloc address. This may be NULL if the reloc
1142 // address is absolute.
1143 Output_data* od;
1144 } u2_;
1145 // The address offset within the input section or the Output_data.
1146 Address address_;
1147 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1148 // relocation against an output section, or INVALID_CODE for an
1149 // uninitialized value. Otherwise, for a local symbol
1150 // (this->is_section_symbol_ is false), the local symbol index. For
1151 // a local section symbol (this->is_section_symbol_ is true), the
1152 // section index in the input file.
1153 unsigned int local_sym_index_;
1154 // The reloc type--a processor specific code.
1155 unsigned int type_ : 30;
1156 // True if the relocation is a RELATIVE relocation.
1157 bool is_relative_ : 1;
1158 // True if the relocation is against a section symbol.
1159 bool is_section_symbol_ : 1;
1160 // If the reloc address is an input section in an object, the
1161 // section index. This is INVALID_CODE if the reloc address is
1162 // specified in some other way.
1163 unsigned int shndx_;
1164 };
1165
1166 // The SHT_RELA version of Output_reloc<>. This is just derived from
1167 // the SHT_REL version of Output_reloc, but it adds an addend.
1168
1169 template<bool dynamic, int size, bool big_endian>
1170 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1171 {
1172 public:
1173 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1174 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1175
1176 // An uninitialized entry.
1177 Output_reloc()
1178 : rel_()
1179 { }
1180
1181 // A reloc against a global symbol.
1182
1183 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1184 Address address, Addend addend, bool is_relative)
1185 : rel_(gsym, type, od, address, is_relative), addend_(addend)
1186 { }
1187
1188 Output_reloc(Symbol* gsym, unsigned int type,
1189 Sized_relobj<size, big_endian>* relobj,
1190 unsigned int shndx, Address address, Addend addend,
1191 bool is_relative)
1192 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
1193 { }
1194
1195 // A reloc against a local symbol.
1196
1197 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1198 unsigned int local_sym_index, unsigned int type,
1199 Output_data* od, Address address,
1200 Addend addend, bool is_relative, bool is_section_symbol)
1201 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1202 is_section_symbol),
1203 addend_(addend)
1204 { }
1205
1206 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1207 unsigned int local_sym_index, unsigned int type,
1208 unsigned int shndx, Address address,
1209 Addend addend, bool is_relative, bool is_section_symbol)
1210 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1211 is_section_symbol),
1212 addend_(addend)
1213 { }
1214
1215 // A reloc against the STT_SECTION symbol of an output section.
1216
1217 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1218 Address address, Addend addend)
1219 : rel_(os, type, od, address), addend_(addend)
1220 { }
1221
1222 Output_reloc(Output_section* os, unsigned int type,
1223 Sized_relobj<size, big_endian>* relobj,
1224 unsigned int shndx, Address address, Addend addend)
1225 : rel_(os, type, relobj, shndx, address), addend_(addend)
1226 { }
1227
1228 // Write the reloc entry to an output view.
1229 void
1230 write(unsigned char* pov) const;
1231
1232 // Return whether this reloc should be sorted before the argument
1233 // when sorting dynamic relocs.
1234 bool
1235 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1236 r2) const
1237 {
1238 int i = this->rel_.compare(r2.rel_);
1239 if (i < 0)
1240 return true;
1241 else if (i > 0)
1242 return false;
1243 else
1244 return this->addend_ < r2.addend_;
1245 }
1246
1247 private:
1248 // The basic reloc.
1249 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1250 // The addend.
1251 Addend addend_;
1252 };
1253
1254 // Output_data_reloc is used to manage a section containing relocs.
1255 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1256 // indicates whether this is a dynamic relocation or a normal
1257 // relocation. Output_data_reloc_base is a base class.
1258 // Output_data_reloc is the real class, which we specialize based on
1259 // the reloc type.
1260
1261 template<int sh_type, bool dynamic, int size, bool big_endian>
1262 class Output_data_reloc_base : public Output_section_data_build
1263 {
1264 public:
1265 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1266 typedef typename Output_reloc_type::Address Address;
1267 static const int reloc_size =
1268 Reloc_types<sh_type, size, big_endian>::reloc_size;
1269
1270 // Construct the section.
1271 Output_data_reloc_base(bool sort_relocs)
1272 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1273 sort_relocs_(sort_relocs)
1274 { }
1275
1276 protected:
1277 // Write out the data.
1278 void
1279 do_write(Output_file*);
1280
1281 // Set the entry size and the link.
1282 void
1283 do_adjust_output_section(Output_section *os);
1284
1285 // Write to a map file.
1286 void
1287 do_print_to_mapfile(Mapfile* mapfile) const
1288 {
1289 mapfile->print_output_data(this,
1290 (dynamic
1291 ? _("** dynamic relocs")
1292 : _("** relocs")));
1293 }
1294
1295 // Add a relocation entry.
1296 void
1297 add(Output_data *od, const Output_reloc_type& reloc)
1298 {
1299 this->relocs_.push_back(reloc);
1300 this->set_current_data_size(this->relocs_.size() * reloc_size);
1301 od->add_dynamic_reloc();
1302 }
1303
1304 private:
1305 typedef std::vector<Output_reloc_type> Relocs;
1306
1307 // The class used to sort the relocations.
1308 struct Sort_relocs_comparison
1309 {
1310 bool
1311 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1312 { return r1.sort_before(r2); }
1313 };
1314
1315 // The relocations in this section.
1316 Relocs relocs_;
1317 // Whether to sort the relocations when writing them out, to make
1318 // the dynamic linker more efficient.
1319 bool sort_relocs_;
1320 };
1321
1322 // The class which callers actually create.
1323
1324 template<int sh_type, bool dynamic, int size, bool big_endian>
1325 class Output_data_reloc;
1326
1327 // The SHT_REL version of Output_data_reloc.
1328
1329 template<bool dynamic, int size, bool big_endian>
1330 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1331 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1332 {
1333 private:
1334 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1335 big_endian> Base;
1336
1337 public:
1338 typedef typename Base::Output_reloc_type Output_reloc_type;
1339 typedef typename Output_reloc_type::Address Address;
1340
1341 Output_data_reloc(bool sr)
1342 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1343 { }
1344
1345 // Add a reloc against a global symbol.
1346
1347 void
1348 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1349 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
1350
1351 void
1352 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1353 Sized_relobj<size, big_endian>* relobj,
1354 unsigned int shndx, Address address)
1355 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1356 false)); }
1357
1358 // These are to simplify the Copy_relocs class.
1359
1360 void
1361 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1362 Address addend)
1363 {
1364 gold_assert(addend == 0);
1365 this->add_global(gsym, type, od, address);
1366 }
1367
1368 void
1369 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1370 Sized_relobj<size, big_endian>* relobj,
1371 unsigned int shndx, Address address, Address addend)
1372 {
1373 gold_assert(addend == 0);
1374 this->add_global(gsym, type, od, relobj, shndx, address);
1375 }
1376
1377 // Add a RELATIVE reloc against a global symbol. The final relocation
1378 // will not reference the symbol.
1379
1380 void
1381 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1382 Address address)
1383 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
1384
1385 void
1386 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1387 Sized_relobj<size, big_endian>* relobj,
1388 unsigned int shndx, Address address)
1389 {
1390 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1391 true));
1392 }
1393
1394 // Add a reloc against a local symbol.
1395
1396 void
1397 add_local(Sized_relobj<size, big_endian>* relobj,
1398 unsigned int local_sym_index, unsigned int type,
1399 Output_data* od, Address address)
1400 {
1401 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1402 address, false, false));
1403 }
1404
1405 void
1406 add_local(Sized_relobj<size, big_endian>* relobj,
1407 unsigned int local_sym_index, unsigned int type,
1408 Output_data* od, unsigned int shndx, Address address)
1409 {
1410 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1411 address, false, false));
1412 }
1413
1414 // Add a RELATIVE reloc against a local symbol.
1415
1416 void
1417 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1418 unsigned int local_sym_index, unsigned int type,
1419 Output_data* od, Address address)
1420 {
1421 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1422 address, true, false));
1423 }
1424
1425 void
1426 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1427 unsigned int local_sym_index, unsigned int type,
1428 Output_data* od, unsigned int shndx, Address address)
1429 {
1430 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1431 address, true, false));
1432 }
1433
1434 // Add a reloc against a local section symbol. This will be
1435 // converted into a reloc against the STT_SECTION symbol of the
1436 // output section.
1437
1438 void
1439 add_local_section(Sized_relobj<size, big_endian>* relobj,
1440 unsigned int input_shndx, unsigned int type,
1441 Output_data* od, Address address)
1442 {
1443 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1444 address, false, true));
1445 }
1446
1447 void
1448 add_local_section(Sized_relobj<size, big_endian>* relobj,
1449 unsigned int input_shndx, unsigned int type,
1450 Output_data* od, unsigned int shndx, Address address)
1451 {
1452 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1453 address, false, true));
1454 }
1455
1456 // A reloc against the STT_SECTION symbol of an output section.
1457 // OS is the Output_section that the relocation refers to; OD is
1458 // the Output_data object being relocated.
1459
1460 void
1461 add_output_section(Output_section* os, unsigned int type,
1462 Output_data* od, Address address)
1463 { this->add(od, Output_reloc_type(os, type, od, address)); }
1464
1465 void
1466 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1467 Sized_relobj<size, big_endian>* relobj,
1468 unsigned int shndx, Address address)
1469 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1470 };
1471
1472 // The SHT_RELA version of Output_data_reloc.
1473
1474 template<bool dynamic, int size, bool big_endian>
1475 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1476 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1477 {
1478 private:
1479 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1480 big_endian> Base;
1481
1482 public:
1483 typedef typename Base::Output_reloc_type Output_reloc_type;
1484 typedef typename Output_reloc_type::Address Address;
1485 typedef typename Output_reloc_type::Addend Addend;
1486
1487 Output_data_reloc(bool sr)
1488 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1489 { }
1490
1491 // Add a reloc against a global symbol.
1492
1493 void
1494 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1495 Address address, Addend addend)
1496 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1497 false)); }
1498
1499 void
1500 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1501 Sized_relobj<size, big_endian>* relobj,
1502 unsigned int shndx, Address address,
1503 Addend addend)
1504 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1505 addend, false)); }
1506
1507 // Add a RELATIVE reloc against a global symbol. The final output
1508 // relocation will not reference the symbol, but we must keep the symbol
1509 // information long enough to set the addend of the relocation correctly
1510 // when it is written.
1511
1512 void
1513 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1514 Address address, Addend addend)
1515 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1516
1517 void
1518 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1519 Sized_relobj<size, big_endian>* relobj,
1520 unsigned int shndx, Address address, Addend addend)
1521 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1522 addend, true)); }
1523
1524 // Add a reloc against a local symbol.
1525
1526 void
1527 add_local(Sized_relobj<size, big_endian>* relobj,
1528 unsigned int local_sym_index, unsigned int type,
1529 Output_data* od, Address address, Addend addend)
1530 {
1531 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1532 addend, false, false));
1533 }
1534
1535 void
1536 add_local(Sized_relobj<size, big_endian>* relobj,
1537 unsigned int local_sym_index, unsigned int type,
1538 Output_data* od, unsigned int shndx, Address address,
1539 Addend addend)
1540 {
1541 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1542 address, addend, false, false));
1543 }
1544
1545 // Add a RELATIVE reloc against a local symbol.
1546
1547 void
1548 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1549 unsigned int local_sym_index, unsigned int type,
1550 Output_data* od, Address address, Addend addend)
1551 {
1552 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1553 addend, true, false));
1554 }
1555
1556 void
1557 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1558 unsigned int local_sym_index, unsigned int type,
1559 Output_data* od, unsigned int shndx, Address address,
1560 Addend addend)
1561 {
1562 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1563 address, addend, true, false));
1564 }
1565
1566 // Add a reloc against a local section symbol. This will be
1567 // converted into a reloc against the STT_SECTION symbol of the
1568 // output section.
1569
1570 void
1571 add_local_section(Sized_relobj<size, big_endian>* relobj,
1572 unsigned int input_shndx, unsigned int type,
1573 Output_data* od, Address address, Addend addend)
1574 {
1575 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1576 addend, false, true));
1577 }
1578
1579 void
1580 add_local_section(Sized_relobj<size, big_endian>* relobj,
1581 unsigned int input_shndx, unsigned int type,
1582 Output_data* od, unsigned int shndx, Address address,
1583 Addend addend)
1584 {
1585 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1586 address, addend, false, true));
1587 }
1588
1589 // A reloc against the STT_SECTION symbol of an output section.
1590
1591 void
1592 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1593 Address address, Addend addend)
1594 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1595
1596 void
1597 add_output_section(Output_section* os, unsigned int type,
1598 Sized_relobj<size, big_endian>* relobj,
1599 unsigned int shndx, Address address, Addend addend)
1600 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1601 addend)); }
1602 };
1603
1604 // Output_relocatable_relocs represents a relocation section in a
1605 // relocatable link. The actual data is written out in the target
1606 // hook relocate_for_relocatable. This just saves space for it.
1607
1608 template<int sh_type, int size, bool big_endian>
1609 class Output_relocatable_relocs : public Output_section_data
1610 {
1611 public:
1612 Output_relocatable_relocs(Relocatable_relocs* rr)
1613 : Output_section_data(Output_data::default_alignment_for_size(size)),
1614 rr_(rr)
1615 { }
1616
1617 void
1618 set_final_data_size();
1619
1620 // Write out the data. There is nothing to do here.
1621 void
1622 do_write(Output_file*)
1623 { }
1624
1625 // Write to a map file.
1626 void
1627 do_print_to_mapfile(Mapfile* mapfile) const
1628 { mapfile->print_output_data(this, _("** relocs")); }
1629
1630 private:
1631 // The relocs associated with this input section.
1632 Relocatable_relocs* rr_;
1633 };
1634
1635 // Handle a GROUP section.
1636
1637 template<int size, bool big_endian>
1638 class Output_data_group : public Output_section_data
1639 {
1640 public:
1641 // The constructor clears *INPUT_SHNDXES.
1642 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1643 section_size_type entry_count,
1644 elfcpp::Elf_Word flags,
1645 std::vector<unsigned int>* input_shndxes);
1646
1647 void
1648 do_write(Output_file*);
1649
1650 // Write to a map file.
1651 void
1652 do_print_to_mapfile(Mapfile* mapfile) const
1653 { mapfile->print_output_data(this, _("** group")); }
1654
1655 // Set final data size.
1656 void
1657 set_final_data_size()
1658 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1659
1660 private:
1661 // The input object.
1662 Sized_relobj<size, big_endian>* relobj_;
1663 // The group flag word.
1664 elfcpp::Elf_Word flags_;
1665 // The section indexes of the input sections in this group.
1666 std::vector<unsigned int> input_shndxes_;
1667 };
1668
1669 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1670 // for one symbol--either a global symbol or a local symbol in an
1671 // object. The target specific code adds entries to the GOT as
1672 // needed.
1673
1674 template<int size, bool big_endian>
1675 class Output_data_got : public Output_section_data_build
1676 {
1677 public:
1678 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1679 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1680 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1681
1682 Output_data_got()
1683 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1684 entries_()
1685 { }
1686
1687 // Add an entry for a global symbol to the GOT. Return true if this
1688 // is a new GOT entry, false if the symbol was already in the GOT.
1689 bool
1690 add_global(Symbol* gsym, unsigned int got_type);
1691
1692 // Add an entry for a global symbol to the GOT, and add a dynamic
1693 // relocation of type R_TYPE for the GOT entry.
1694 void
1695 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1696 Rel_dyn* rel_dyn, unsigned int r_type);
1697
1698 void
1699 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1700 Rela_dyn* rela_dyn, unsigned int r_type);
1701
1702 // Add a pair of entries for a global symbol to the GOT, and add
1703 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1704 void
1705 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1706 Rel_dyn* rel_dyn, unsigned int r_type_1,
1707 unsigned int r_type_2);
1708
1709 void
1710 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1711 Rela_dyn* rela_dyn, unsigned int r_type_1,
1712 unsigned int r_type_2);
1713
1714 // Add an entry for a local symbol to the GOT. This returns true if
1715 // this is a new GOT entry, false if the symbol already has a GOT
1716 // entry.
1717 bool
1718 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1719 unsigned int got_type);
1720
1721 // Add an entry for a local symbol to the GOT, and add a dynamic
1722 // relocation of type R_TYPE for the GOT entry.
1723 void
1724 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1725 unsigned int sym_index, unsigned int got_type,
1726 Rel_dyn* rel_dyn, unsigned int r_type);
1727
1728 void
1729 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1730 unsigned int sym_index, unsigned int got_type,
1731 Rela_dyn* rela_dyn, unsigned int r_type);
1732
1733 // Add a pair of entries for a local symbol to the GOT, and add
1734 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1735 void
1736 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1737 unsigned int sym_index, unsigned int shndx,
1738 unsigned int got_type, Rel_dyn* rel_dyn,
1739 unsigned int r_type_1, unsigned int r_type_2);
1740
1741 void
1742 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1743 unsigned int sym_index, unsigned int shndx,
1744 unsigned int got_type, Rela_dyn* rela_dyn,
1745 unsigned int r_type_1, unsigned int r_type_2);
1746
1747 // Add a constant to the GOT. This returns the offset of the new
1748 // entry from the start of the GOT.
1749 unsigned int
1750 add_constant(Valtype constant)
1751 {
1752 this->entries_.push_back(Got_entry(constant));
1753 this->set_got_size();
1754 return this->last_got_offset();
1755 }
1756
1757 protected:
1758 // Write out the GOT table.
1759 void
1760 do_write(Output_file*);
1761
1762 // Write to a map file.
1763 void
1764 do_print_to_mapfile(Mapfile* mapfile) const
1765 { mapfile->print_output_data(this, _("** GOT")); }
1766
1767 private:
1768 // This POD class holds a single GOT entry.
1769 class Got_entry
1770 {
1771 public:
1772 // Create a zero entry.
1773 Got_entry()
1774 : local_sym_index_(CONSTANT_CODE)
1775 { this->u_.constant = 0; }
1776
1777 // Create a global symbol entry.
1778 explicit Got_entry(Symbol* gsym)
1779 : local_sym_index_(GSYM_CODE)
1780 { this->u_.gsym = gsym; }
1781
1782 // Create a local symbol entry.
1783 Got_entry(Sized_relobj<size, big_endian>* object,
1784 unsigned int local_sym_index)
1785 : local_sym_index_(local_sym_index)
1786 {
1787 gold_assert(local_sym_index != GSYM_CODE
1788 && local_sym_index != CONSTANT_CODE);
1789 this->u_.object = object;
1790 }
1791
1792 // Create a constant entry. The constant is a host value--it will
1793 // be swapped, if necessary, when it is written out.
1794 explicit Got_entry(Valtype constant)
1795 : local_sym_index_(CONSTANT_CODE)
1796 { this->u_.constant = constant; }
1797
1798 // Write the GOT entry to an output view.
1799 void
1800 write(unsigned char* pov) const;
1801
1802 private:
1803 enum
1804 {
1805 GSYM_CODE = -1U,
1806 CONSTANT_CODE = -2U
1807 };
1808
1809 union
1810 {
1811 // For a local symbol, the object.
1812 Sized_relobj<size, big_endian>* object;
1813 // For a global symbol, the symbol.
1814 Symbol* gsym;
1815 // For a constant, the constant.
1816 Valtype constant;
1817 } u_;
1818 // For a local symbol, the local symbol index. This is GSYM_CODE
1819 // for a global symbol, or CONSTANT_CODE for a constant.
1820 unsigned int local_sym_index_;
1821 };
1822
1823 typedef std::vector<Got_entry> Got_entries;
1824
1825 // Return the offset into the GOT of GOT entry I.
1826 unsigned int
1827 got_offset(unsigned int i) const
1828 { return i * (size / 8); }
1829
1830 // Return the offset into the GOT of the last entry added.
1831 unsigned int
1832 last_got_offset() const
1833 { return this->got_offset(this->entries_.size() - 1); }
1834
1835 // Set the size of the section.
1836 void
1837 set_got_size()
1838 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1839
1840 // The list of GOT entries.
1841 Got_entries entries_;
1842 };
1843
1844 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1845 // section.
1846
1847 class Output_data_dynamic : public Output_section_data
1848 {
1849 public:
1850 Output_data_dynamic(Stringpool* pool)
1851 : Output_section_data(Output_data::default_alignment()),
1852 entries_(), pool_(pool)
1853 { }
1854
1855 // Add a new dynamic entry with a fixed numeric value.
1856 void
1857 add_constant(elfcpp::DT tag, unsigned int val)
1858 { this->add_entry(Dynamic_entry(tag, val)); }
1859
1860 // Add a new dynamic entry with the address of output data.
1861 void
1862 add_section_address(elfcpp::DT tag, const Output_data* od)
1863 { this->add_entry(Dynamic_entry(tag, od, false)); }
1864
1865 // Add a new dynamic entry with the address of output data
1866 // plus a constant offset.
1867 void
1868 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1869 unsigned int offset)
1870 { this->add_entry(Dynamic_entry(tag, od, offset)); }
1871
1872 // Add a new dynamic entry with the size of output data.
1873 void
1874 add_section_size(elfcpp::DT tag, const Output_data* od)
1875 { this->add_entry(Dynamic_entry(tag, od, true)); }
1876
1877 // Add a new dynamic entry with the address of a symbol.
1878 void
1879 add_symbol(elfcpp::DT tag, const Symbol* sym)
1880 { this->add_entry(Dynamic_entry(tag, sym)); }
1881
1882 // Add a new dynamic entry with a string.
1883 void
1884 add_string(elfcpp::DT tag, const char* str)
1885 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1886
1887 void
1888 add_string(elfcpp::DT tag, const std::string& str)
1889 { this->add_string(tag, str.c_str()); }
1890
1891 protected:
1892 // Adjust the output section to set the entry size.
1893 void
1894 do_adjust_output_section(Output_section*);
1895
1896 // Set the final data size.
1897 void
1898 set_final_data_size();
1899
1900 // Write out the dynamic entries.
1901 void
1902 do_write(Output_file*);
1903
1904 // Write to a map file.
1905 void
1906 do_print_to_mapfile(Mapfile* mapfile) const
1907 { mapfile->print_output_data(this, _("** dynamic")); }
1908
1909 private:
1910 // This POD class holds a single dynamic entry.
1911 class Dynamic_entry
1912 {
1913 public:
1914 // Create an entry with a fixed numeric value.
1915 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1916 : tag_(tag), offset_(DYNAMIC_NUMBER)
1917 { this->u_.val = val; }
1918
1919 // Create an entry with the size or address of a section.
1920 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1921 : tag_(tag),
1922 offset_(section_size
1923 ? DYNAMIC_SECTION_SIZE
1924 : DYNAMIC_SECTION_ADDRESS)
1925 { this->u_.od = od; }
1926
1927 // Create an entry with the address of a section plus a constant offset.
1928 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
1929 : tag_(tag),
1930 offset_(offset)
1931 { this->u_.od = od; }
1932
1933 // Create an entry with the address of a symbol.
1934 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1935 : tag_(tag), offset_(DYNAMIC_SYMBOL)
1936 { this->u_.sym = sym; }
1937
1938 // Create an entry with a string.
1939 Dynamic_entry(elfcpp::DT tag, const char* str)
1940 : tag_(tag), offset_(DYNAMIC_STRING)
1941 { this->u_.str = str; }
1942
1943 // Return the tag of this entry.
1944 elfcpp::DT
1945 tag() const
1946 { return this->tag_; }
1947
1948 // Write the dynamic entry to an output view.
1949 template<int size, bool big_endian>
1950 void
1951 write(unsigned char* pov, const Stringpool*) const;
1952
1953 private:
1954 // Classification is encoded in the OFFSET field.
1955 enum Classification
1956 {
1957 // Section address.
1958 DYNAMIC_SECTION_ADDRESS = 0,
1959 // Number.
1960 DYNAMIC_NUMBER = -1U,
1961 // Section size.
1962 DYNAMIC_SECTION_SIZE = -2U,
1963 // Symbol adress.
1964 DYNAMIC_SYMBOL = -3U,
1965 // String.
1966 DYNAMIC_STRING = -4U
1967 // Any other value indicates a section address plus OFFSET.
1968 };
1969
1970 union
1971 {
1972 // For DYNAMIC_NUMBER.
1973 unsigned int val;
1974 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
1975 const Output_data* od;
1976 // For DYNAMIC_SYMBOL.
1977 const Symbol* sym;
1978 // For DYNAMIC_STRING.
1979 const char* str;
1980 } u_;
1981 // The dynamic tag.
1982 elfcpp::DT tag_;
1983 // The type of entry (Classification) or offset within a section.
1984 unsigned int offset_;
1985 };
1986
1987 // Add an entry to the list.
1988 void
1989 add_entry(const Dynamic_entry& entry)
1990 { this->entries_.push_back(entry); }
1991
1992 // Sized version of write function.
1993 template<int size, bool big_endian>
1994 void
1995 sized_write(Output_file* of);
1996
1997 // The type of the list of entries.
1998 typedef std::vector<Dynamic_entry> Dynamic_entries;
1999
2000 // The entries.
2001 Dynamic_entries entries_;
2002 // The pool used for strings.
2003 Stringpool* pool_;
2004 };
2005
2006 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2007 // which may be required if the object file has more than
2008 // SHN_LORESERVE sections.
2009
2010 class Output_symtab_xindex : public Output_section_data
2011 {
2012 public:
2013 Output_symtab_xindex(size_t symcount)
2014 : Output_section_data(symcount * 4, 4, true),
2015 entries_()
2016 { }
2017
2018 // Add an entry: symbol number SYMNDX has section SHNDX.
2019 void
2020 add(unsigned int symndx, unsigned int shndx)
2021 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2022
2023 protected:
2024 void
2025 do_write(Output_file*);
2026
2027 // Write to a map file.
2028 void
2029 do_print_to_mapfile(Mapfile* mapfile) const
2030 { mapfile->print_output_data(this, _("** symtab xindex")); }
2031
2032 private:
2033 template<bool big_endian>
2034 void
2035 endian_do_write(unsigned char*);
2036
2037 // It is likely that most symbols will not require entries. Rather
2038 // than keep a vector for all symbols, we keep pairs of symbol index
2039 // and section index.
2040 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2041
2042 // The entries we need.
2043 Xindex_entries entries_;
2044 };
2045
2046 // A relaxed input section.
2047 class Output_relaxed_input_section : public Output_section_data_build
2048 {
2049 public:
2050 // We would like to call relobj->section_addralign(shndx) to get the
2051 // alignment but we do not want the constructor to fail. So callers
2052 // are repsonsible for ensuring that.
2053 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2054 uint64_t addralign)
2055 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2056 { }
2057
2058 // Return the Relobj of this relaxed input section.
2059 Relobj*
2060 relobj() const
2061 { return this->relobj_; }
2062
2063 // Return the section index of this relaxed input section.
2064 unsigned int
2065 shndx() const
2066 { return this->shndx_; }
2067
2068 private:
2069 Relobj* relobj_;
2070 unsigned int shndx_;
2071 };
2072
2073 // An output section. We don't expect to have too many output
2074 // sections, so we don't bother to do a template on the size.
2075
2076 class Output_section : public Output_data
2077 {
2078 public:
2079 // Create an output section, giving the name, type, and flags.
2080 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2081 virtual ~Output_section();
2082
2083 // Add a new input section SHNDX, named NAME, with header SHDR, from
2084 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2085 // which applies to this section, or 0 if none, or -1 if more than
2086 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2087 // in a linker script; in that case we need to keep track of input
2088 // sections associated with an output section. Return the offset
2089 // within the output section.
2090 template<int size, bool big_endian>
2091 off_t
2092 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
2093 const char *name,
2094 const elfcpp::Shdr<size, big_endian>& shdr,
2095 unsigned int reloc_shndx, bool have_sections_script);
2096
2097 // Add generated data POSD to this output section.
2098 void
2099 add_output_section_data(Output_section_data* posd);
2100
2101 // Add a relaxed input section PORIS to this output section.
2102 void
2103 add_relaxed_input_section(Output_relaxed_input_section* poris);
2104
2105 // Return the section name.
2106 const char*
2107 name() const
2108 { return this->name_; }
2109
2110 // Return the section type.
2111 elfcpp::Elf_Word
2112 type() const
2113 { return this->type_; }
2114
2115 // Return the section flags.
2116 elfcpp::Elf_Xword
2117 flags() const
2118 { return this->flags_; }
2119
2120 // Update the output section flags based on input section flags.
2121 void
2122 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2123
2124 // Return the entsize field.
2125 uint64_t
2126 entsize() const
2127 { return this->entsize_; }
2128
2129 // Set the entsize field.
2130 void
2131 set_entsize(uint64_t v);
2132
2133 // Set the load address.
2134 void
2135 set_load_address(uint64_t load_address)
2136 {
2137 this->load_address_ = load_address;
2138 this->has_load_address_ = true;
2139 }
2140
2141 // Set the link field to the output section index of a section.
2142 void
2143 set_link_section(const Output_data* od)
2144 {
2145 gold_assert(this->link_ == 0
2146 && !this->should_link_to_symtab_
2147 && !this->should_link_to_dynsym_);
2148 this->link_section_ = od;
2149 }
2150
2151 // Set the link field to a constant.
2152 void
2153 set_link(unsigned int v)
2154 {
2155 gold_assert(this->link_section_ == NULL
2156 && !this->should_link_to_symtab_
2157 && !this->should_link_to_dynsym_);
2158 this->link_ = v;
2159 }
2160
2161 // Record that this section should link to the normal symbol table.
2162 void
2163 set_should_link_to_symtab()
2164 {
2165 gold_assert(this->link_section_ == NULL
2166 && this->link_ == 0
2167 && !this->should_link_to_dynsym_);
2168 this->should_link_to_symtab_ = true;
2169 }
2170
2171 // Record that this section should link to the dynamic symbol table.
2172 void
2173 set_should_link_to_dynsym()
2174 {
2175 gold_assert(this->link_section_ == NULL
2176 && this->link_ == 0
2177 && !this->should_link_to_symtab_);
2178 this->should_link_to_dynsym_ = true;
2179 }
2180
2181 // Return the info field.
2182 unsigned int
2183 info() const
2184 {
2185 gold_assert(this->info_section_ == NULL
2186 && this->info_symndx_ == NULL);
2187 return this->info_;
2188 }
2189
2190 // Set the info field to the output section index of a section.
2191 void
2192 set_info_section(const Output_section* os)
2193 {
2194 gold_assert((this->info_section_ == NULL
2195 || (this->info_section_ == os
2196 && this->info_uses_section_index_))
2197 && this->info_symndx_ == NULL
2198 && this->info_ == 0);
2199 this->info_section_ = os;
2200 this->info_uses_section_index_= true;
2201 }
2202
2203 // Set the info field to the symbol table index of a symbol.
2204 void
2205 set_info_symndx(const Symbol* sym)
2206 {
2207 gold_assert(this->info_section_ == NULL
2208 && (this->info_symndx_ == NULL
2209 || this->info_symndx_ == sym)
2210 && this->info_ == 0);
2211 this->info_symndx_ = sym;
2212 }
2213
2214 // Set the info field to the symbol table index of a section symbol.
2215 void
2216 set_info_section_symndx(const Output_section* os)
2217 {
2218 gold_assert((this->info_section_ == NULL
2219 || (this->info_section_ == os
2220 && !this->info_uses_section_index_))
2221 && this->info_symndx_ == NULL
2222 && this->info_ == 0);
2223 this->info_section_ = os;
2224 this->info_uses_section_index_ = false;
2225 }
2226
2227 // Set the info field to a constant.
2228 void
2229 set_info(unsigned int v)
2230 {
2231 gold_assert(this->info_section_ == NULL
2232 && this->info_symndx_ == NULL
2233 && (this->info_ == 0
2234 || this->info_ == v));
2235 this->info_ = v;
2236 }
2237
2238 // Set the addralign field.
2239 void
2240 set_addralign(uint64_t v)
2241 { this->addralign_ = v; }
2242
2243 // Whether the output section index has been set.
2244 bool
2245 has_out_shndx() const
2246 { return this->out_shndx_ != -1U; }
2247
2248 // Indicate that we need a symtab index.
2249 void
2250 set_needs_symtab_index()
2251 { this->needs_symtab_index_ = true; }
2252
2253 // Return whether we need a symtab index.
2254 bool
2255 needs_symtab_index() const
2256 { return this->needs_symtab_index_; }
2257
2258 // Get the symtab index.
2259 unsigned int
2260 symtab_index() const
2261 {
2262 gold_assert(this->symtab_index_ != 0);
2263 return this->symtab_index_;
2264 }
2265
2266 // Set the symtab index.
2267 void
2268 set_symtab_index(unsigned int index)
2269 {
2270 gold_assert(index != 0);
2271 this->symtab_index_ = index;
2272 }
2273
2274 // Indicate that we need a dynsym index.
2275 void
2276 set_needs_dynsym_index()
2277 { this->needs_dynsym_index_ = true; }
2278
2279 // Return whether we need a dynsym index.
2280 bool
2281 needs_dynsym_index() const
2282 { return this->needs_dynsym_index_; }
2283
2284 // Get the dynsym index.
2285 unsigned int
2286 dynsym_index() const
2287 {
2288 gold_assert(this->dynsym_index_ != 0);
2289 return this->dynsym_index_;
2290 }
2291
2292 // Set the dynsym index.
2293 void
2294 set_dynsym_index(unsigned int index)
2295 {
2296 gold_assert(index != 0);
2297 this->dynsym_index_ = index;
2298 }
2299
2300 // Return whether the input sections sections attachd to this output
2301 // section may require sorting. This is used to handle constructor
2302 // priorities compatibly with GNU ld.
2303 bool
2304 may_sort_attached_input_sections() const
2305 { return this->may_sort_attached_input_sections_; }
2306
2307 // Record that the input sections attached to this output section
2308 // may require sorting.
2309 void
2310 set_may_sort_attached_input_sections()
2311 { this->may_sort_attached_input_sections_ = true; }
2312
2313 // Return whether the input sections attached to this output section
2314 // require sorting. This is used to handle constructor priorities
2315 // compatibly with GNU ld.
2316 bool
2317 must_sort_attached_input_sections() const
2318 { return this->must_sort_attached_input_sections_; }
2319
2320 // Record that the input sections attached to this output section
2321 // require sorting.
2322 void
2323 set_must_sort_attached_input_sections()
2324 { this->must_sort_attached_input_sections_ = true; }
2325
2326 // Return whether this section holds relro data--data which has
2327 // dynamic relocations but which may be marked read-only after the
2328 // dynamic relocations have been completed.
2329 bool
2330 is_relro() const
2331 { return this->is_relro_; }
2332
2333 // Record that this section holds relro data.
2334 void
2335 set_is_relro()
2336 { this->is_relro_ = true; }
2337
2338 // Record that this section does not hold relro data.
2339 void
2340 clear_is_relro()
2341 { this->is_relro_ = false; }
2342
2343 // True if this section holds relro local data--relro data for which
2344 // the dynamic relocations are all RELATIVE relocations.
2345 bool
2346 is_relro_local() const
2347 { return this->is_relro_local_; }
2348
2349 // Record that this section holds relro local data.
2350 void
2351 set_is_relro_local()
2352 { this->is_relro_local_ = true; }
2353
2354 // True if this must be the last relro section.
2355 bool
2356 is_last_relro() const
2357 { return this->is_last_relro_; }
2358
2359 // Record that this must be the last relro section.
2360 void
2361 set_is_last_relro()
2362 {
2363 gold_assert(this->is_relro_);
2364 this->is_last_relro_ = true;
2365 }
2366
2367 // True if this must be the first section following the relro sections.
2368 bool
2369 is_first_non_relro() const
2370 {
2371 gold_assert(!this->is_relro_);
2372 return this->is_first_non_relro_;
2373 }
2374
2375 // Record that this must be the first non-relro section.
2376 void
2377 set_is_first_non_relro()
2378 {
2379 gold_assert(!this->is_relro_);
2380 this->is_first_non_relro_ = true;
2381 }
2382
2383 // True if this is a small section: a section which holds small
2384 // variables.
2385 bool
2386 is_small_section() const
2387 { return this->is_small_section_; }
2388
2389 // Record that this is a small section.
2390 void
2391 set_is_small_section()
2392 { this->is_small_section_ = true; }
2393
2394 // True if this is a large section: a section which holds large
2395 // variables.
2396 bool
2397 is_large_section() const
2398 { return this->is_large_section_; }
2399
2400 // Record that this is a large section.
2401 void
2402 set_is_large_section()
2403 { this->is_large_section_ = true; }
2404
2405 // True if this is a large data (not BSS) section.
2406 bool
2407 is_large_data_section()
2408 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2409
2410 // True if this is the .interp section which goes into the PT_INTERP
2411 // segment.
2412 bool
2413 is_interp() const
2414 { return this->is_interp_; }
2415
2416 // Record that this is the interp section.
2417 void
2418 set_is_interp()
2419 { this->is_interp_ = true; }
2420
2421 // True if this is a section used by the dynamic linker.
2422 bool
2423 is_dynamic_linker_section() const
2424 { return this->is_dynamic_linker_section_; }
2425
2426 // Record that this is a section used by the dynamic linker.
2427 void
2428 set_is_dynamic_linker_section()
2429 { this->is_dynamic_linker_section_ = true; }
2430
2431 // Return whether this section should be written after all the input
2432 // sections are complete.
2433 bool
2434 after_input_sections() const
2435 { return this->after_input_sections_; }
2436
2437 // Record that this section should be written after all the input
2438 // sections are complete.
2439 void
2440 set_after_input_sections()
2441 { this->after_input_sections_ = true; }
2442
2443 // Return whether this section requires postprocessing after all
2444 // relocations have been applied.
2445 bool
2446 requires_postprocessing() const
2447 { return this->requires_postprocessing_; }
2448
2449 // If a section requires postprocessing, return the buffer to use.
2450 unsigned char*
2451 postprocessing_buffer() const
2452 {
2453 gold_assert(this->postprocessing_buffer_ != NULL);
2454 return this->postprocessing_buffer_;
2455 }
2456
2457 // If a section requires postprocessing, create the buffer to use.
2458 void
2459 create_postprocessing_buffer();
2460
2461 // If a section requires postprocessing, this is the size of the
2462 // buffer to which relocations should be applied.
2463 off_t
2464 postprocessing_buffer_size() const
2465 { return this->current_data_size_for_child(); }
2466
2467 // Modify the section name. This is only permitted for an
2468 // unallocated section, and only before the size has been finalized.
2469 // Otherwise the name will not get into Layout::namepool_.
2470 void
2471 set_name(const char* newname)
2472 {
2473 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2474 gold_assert(!this->is_data_size_valid());
2475 this->name_ = newname;
2476 }
2477
2478 // Return whether the offset OFFSET in the input section SHNDX in
2479 // object OBJECT is being included in the link.
2480 bool
2481 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2482 off_t offset) const;
2483
2484 // Return the offset within the output section of OFFSET relative to
2485 // the start of input section SHNDX in object OBJECT.
2486 section_offset_type
2487 output_offset(const Relobj* object, unsigned int shndx,
2488 section_offset_type offset) const;
2489
2490 // Return the output virtual address of OFFSET relative to the start
2491 // of input section SHNDX in object OBJECT.
2492 uint64_t
2493 output_address(const Relobj* object, unsigned int shndx,
2494 off_t offset) const;
2495
2496 // Look for the merged section for input section SHNDX in object
2497 // OBJECT. If found, return true, and set *ADDR to the address of
2498 // the start of the merged section. This is not necessary the
2499 // output offset corresponding to input offset 0 in the section,
2500 // since the section may be mapped arbitrarily.
2501 bool
2502 find_starting_output_address(const Relobj* object, unsigned int shndx,
2503 uint64_t* addr) const;
2504
2505 // Record that this output section was found in the SECTIONS clause
2506 // of a linker script.
2507 void
2508 set_found_in_sections_clause()
2509 { this->found_in_sections_clause_ = true; }
2510
2511 // Return whether this output section was found in the SECTIONS
2512 // clause of a linker script.
2513 bool
2514 found_in_sections_clause() const
2515 { return this->found_in_sections_clause_; }
2516
2517 // Write the section header into *OPHDR.
2518 template<int size, bool big_endian>
2519 void
2520 write_header(const Layout*, const Stringpool*,
2521 elfcpp::Shdr_write<size, big_endian>*) const;
2522
2523 // The next few calls are for linker script support.
2524
2525 // We need to export the input sections to linker scripts. Previously
2526 // we export a pair of Relobj pointer and section index. We now need to
2527 // handle relaxed input sections as well. So we use this class.
2528 class Simple_input_section
2529 {
2530 private:
2531 static const unsigned int invalid_shndx = static_cast<unsigned int>(-1);
2532
2533 public:
2534 Simple_input_section(Relobj *relobj, unsigned int shndx)
2535 : shndx_(shndx)
2536 {
2537 gold_assert(shndx != invalid_shndx);
2538 this->u_.relobj = relobj;
2539 }
2540
2541 Simple_input_section(Output_relaxed_input_section* section)
2542 : shndx_(invalid_shndx)
2543 { this->u_.relaxed_input_section = section; }
2544
2545 // Whether this is a relaxed section.
2546 bool
2547 is_relaxed_input_section() const
2548 { return this->shndx_ == invalid_shndx; }
2549
2550 // Return object of an input section.
2551 Relobj*
2552 relobj() const
2553 {
2554 return ((this->shndx_ != invalid_shndx)
2555 ? this->u_.relobj
2556 : this->u_.relaxed_input_section->relobj());
2557 }
2558
2559 // Return index of an input section.
2560 unsigned int
2561 shndx() const
2562 {
2563 return ((this->shndx_ != invalid_shndx)
2564 ? this->shndx_
2565 : this->u_.relaxed_input_section->shndx());
2566 }
2567
2568 // Return the Output_relaxed_input_section object of a relaxed section.
2569 Output_relaxed_input_section*
2570 relaxed_input_section() const
2571 {
2572 gold_assert(this->shndx_ == invalid_shndx);
2573 return this->u_.relaxed_input_section;
2574 }
2575
2576 private:
2577 // Pointer to either an Relobj or an Output_relaxed_input_section.
2578 union
2579 {
2580 Relobj* relobj;
2581 Output_relaxed_input_section* relaxed_input_section;
2582 } u_;
2583 // Section index for an non-relaxed section or invalid_shndx for
2584 // a relaxed section.
2585 unsigned int shndx_;
2586 };
2587
2588 // Store the list of input sections for this Output_section into the
2589 // list passed in. This removes the input sections, leaving only
2590 // any Output_section_data elements. This returns the size of those
2591 // Output_section_data elements. ADDRESS is the address of this
2592 // output section. FILL is the fill value to use, in case there are
2593 // any spaces between the remaining Output_section_data elements.
2594 uint64_t
2595 get_input_sections(uint64_t address, const std::string& fill,
2596 std::list<Simple_input_section>*);
2597
2598 // Add an input section from a script.
2599 void
2600 add_input_section_for_script(const Simple_input_section& input_section,
2601 off_t data_size, uint64_t addralign);
2602
2603 // Set the current size of the output section.
2604 void
2605 set_current_data_size(off_t size)
2606 { this->set_current_data_size_for_child(size); }
2607
2608 // Get the current size of the output section.
2609 off_t
2610 current_data_size() const
2611 { return this->current_data_size_for_child(); }
2612
2613 // End of linker script support.
2614
2615 // Save states before doing section layout.
2616 // This is used for relaxation.
2617 void
2618 save_states();
2619
2620 // Restore states prior to section layout.
2621 void
2622 restore_states();
2623
2624 // Convert existing input sections to relaxed input sections.
2625 void
2626 convert_input_sections_to_relaxed_sections(
2627 const std::vector<Output_relaxed_input_section*>& sections);
2628
2629 // Find a relaxed input section to an input section in OBJECT
2630 // with index SHNDX. Return NULL if none is found.
2631 const Output_relaxed_input_section*
2632 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
2633
2634 // Print merge statistics to stderr.
2635 void
2636 print_merge_stats();
2637
2638 protected:
2639 // Return the output section--i.e., the object itself.
2640 Output_section*
2641 do_output_section()
2642 { return this; }
2643
2644 // Return the section index in the output file.
2645 unsigned int
2646 do_out_shndx() const
2647 {
2648 gold_assert(this->out_shndx_ != -1U);
2649 return this->out_shndx_;
2650 }
2651
2652 // Set the output section index.
2653 void
2654 do_set_out_shndx(unsigned int shndx)
2655 {
2656 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2657 this->out_shndx_ = shndx;
2658 }
2659
2660 // Set the final data size of the Output_section. For a typical
2661 // Output_section, there is nothing to do, but if there are any
2662 // Output_section_data objects we need to set their final addresses
2663 // here.
2664 virtual void
2665 set_final_data_size();
2666
2667 // Reset the address and file offset.
2668 void
2669 do_reset_address_and_file_offset();
2670
2671 // Return true if address and file offset already have reset values. In
2672 // other words, calling reset_address_and_file_offset will not change them.
2673 bool
2674 do_address_and_file_offset_have_reset_values() const;
2675
2676 // Write the data to the file. For a typical Output_section, this
2677 // does nothing: the data is written out by calling Object::Relocate
2678 // on each input object. But if there are any Output_section_data
2679 // objects we do need to write them out here.
2680 virtual void
2681 do_write(Output_file*);
2682
2683 // Return the address alignment--function required by parent class.
2684 uint64_t
2685 do_addralign() const
2686 { return this->addralign_; }
2687
2688 // Return whether there is a load address.
2689 bool
2690 do_has_load_address() const
2691 { return this->has_load_address_; }
2692
2693 // Return the load address.
2694 uint64_t
2695 do_load_address() const
2696 {
2697 gold_assert(this->has_load_address_);
2698 return this->load_address_;
2699 }
2700
2701 // Return whether this is an Output_section.
2702 bool
2703 do_is_section() const
2704 { return true; }
2705
2706 // Return whether this is a section of the specified type.
2707 bool
2708 do_is_section_type(elfcpp::Elf_Word type) const
2709 { return this->type_ == type; }
2710
2711 // Return whether the specified section flag is set.
2712 bool
2713 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2714 { return (this->flags_ & flag) != 0; }
2715
2716 // Set the TLS offset. Called only for SHT_TLS sections.
2717 void
2718 do_set_tls_offset(uint64_t tls_base);
2719
2720 // Return the TLS offset, relative to the base of the TLS segment.
2721 // Valid only for SHT_TLS sections.
2722 uint64_t
2723 do_tls_offset() const
2724 { return this->tls_offset_; }
2725
2726 // This may be implemented by a child class.
2727 virtual void
2728 do_finalize_name(Layout*)
2729 { }
2730
2731 // Print to the map file.
2732 virtual void
2733 do_print_to_mapfile(Mapfile*) const;
2734
2735 // Record that this section requires postprocessing after all
2736 // relocations have been applied. This is called by a child class.
2737 void
2738 set_requires_postprocessing()
2739 {
2740 this->requires_postprocessing_ = true;
2741 this->after_input_sections_ = true;
2742 }
2743
2744 // Write all the data of an Output_section into the postprocessing
2745 // buffer.
2746 void
2747 write_to_postprocessing_buffer();
2748
2749 // In some cases we need to keep a list of the input sections
2750 // associated with this output section. We only need the list if we
2751 // might have to change the offsets of the input section within the
2752 // output section after we add the input section. The ordinary
2753 // input sections will be written out when we process the object
2754 // file, and as such we don't need to track them here. We do need
2755 // to track Output_section_data objects here. We store instances of
2756 // this structure in a std::vector, so it must be a POD. There can
2757 // be many instances of this structure, so we use a union to save
2758 // some space.
2759 class Input_section
2760 {
2761 public:
2762 Input_section()
2763 : shndx_(0), p2align_(0)
2764 {
2765 this->u1_.data_size = 0;
2766 this->u2_.object = NULL;
2767 }
2768
2769 // For an ordinary input section.
2770 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2771 uint64_t addralign)
2772 : shndx_(shndx),
2773 p2align_(ffsll(static_cast<long long>(addralign)))
2774 {
2775 gold_assert(shndx != OUTPUT_SECTION_CODE
2776 && shndx != MERGE_DATA_SECTION_CODE
2777 && shndx != MERGE_STRING_SECTION_CODE
2778 && shndx != RELAXED_INPUT_SECTION_CODE);
2779 this->u1_.data_size = data_size;
2780 this->u2_.object = object;
2781 }
2782
2783 // For a non-merge output section.
2784 Input_section(Output_section_data* posd)
2785 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
2786 {
2787 this->u1_.data_size = 0;
2788 this->u2_.posd = posd;
2789 }
2790
2791 // For a merge section.
2792 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2793 : shndx_(is_string
2794 ? MERGE_STRING_SECTION_CODE
2795 : MERGE_DATA_SECTION_CODE),
2796 p2align_(0)
2797 {
2798 this->u1_.entsize = entsize;
2799 this->u2_.posd = posd;
2800 }
2801
2802 // For a relaxed input section.
2803 Input_section(Output_relaxed_input_section *psection)
2804 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0)
2805 {
2806 this->u1_.data_size = 0;
2807 this->u2_.poris = psection;
2808 }
2809
2810 // The required alignment.
2811 uint64_t
2812 addralign() const
2813 {
2814 if (!this->is_input_section())
2815 return this->u2_.posd->addralign();
2816 return (this->p2align_ == 0
2817 ? 0
2818 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2819 }
2820
2821 // Return the required size.
2822 off_t
2823 data_size() const;
2824
2825 // Whether this is an input section.
2826 bool
2827 is_input_section() const
2828 {
2829 return (this->shndx_ != OUTPUT_SECTION_CODE
2830 && this->shndx_ != MERGE_DATA_SECTION_CODE
2831 && this->shndx_ != MERGE_STRING_SECTION_CODE
2832 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
2833 }
2834
2835 // Return whether this is a merge section which matches the
2836 // parameters.
2837 bool
2838 is_merge_section(bool is_string, uint64_t entsize,
2839 uint64_t addralign) const
2840 {
2841 return (this->shndx_ == (is_string
2842 ? MERGE_STRING_SECTION_CODE
2843 : MERGE_DATA_SECTION_CODE)
2844 && this->u1_.entsize == entsize
2845 && this->addralign() == addralign);
2846 }
2847
2848 // Return whether this is a relaxed input section.
2849 bool
2850 is_relaxed_input_section() const
2851 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
2852
2853 // Return whether this is a generic Output_section_data.
2854 bool
2855 is_output_section_data() const
2856 {
2857 return this->shndx_ == OUTPUT_SECTION_CODE;
2858 }
2859
2860 // Return the object for an input section.
2861 Relobj*
2862 relobj() const
2863 {
2864 if (this->is_input_section())
2865 return this->u2_.object;
2866 else if (this->is_relaxed_input_section())
2867 return this->u2_.poris->relobj();
2868 else
2869 gold_unreachable();
2870 }
2871
2872 // Return the input section index for an input section.
2873 unsigned int
2874 shndx() const
2875 {
2876 if (this->is_input_section())
2877 return this->shndx_;
2878 else if (this->is_relaxed_input_section())
2879 return this->u2_.poris->shndx();
2880 else
2881 gold_unreachable();
2882 }
2883
2884 // For non-input-sections, return the associated Output_section_data
2885 // object.
2886 Output_section_data*
2887 output_section_data() const
2888 {
2889 gold_assert(!this->is_input_section());
2890 return this->u2_.posd;
2891 }
2892
2893 // Return the Output_relaxed_input_section object.
2894 Output_relaxed_input_section*
2895 relaxed_input_section() const
2896 {
2897 gold_assert(this->is_relaxed_input_section());
2898 return this->u2_.poris;
2899 }
2900
2901 // Set the output section.
2902 void
2903 set_output_section(Output_section* os)
2904 {
2905 gold_assert(!this->is_input_section());
2906 Output_section_data *posd =
2907 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
2908 posd->set_output_section(os);
2909 }
2910
2911 // Set the address and file offset. This is called during
2912 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2913 // the enclosing section.
2914 void
2915 set_address_and_file_offset(uint64_t address, off_t file_offset,
2916 off_t section_file_offset);
2917
2918 // Reset the address and file offset.
2919 void
2920 reset_address_and_file_offset();
2921
2922 // Finalize the data size.
2923 void
2924 finalize_data_size();
2925
2926 // Add an input section, for SHF_MERGE sections.
2927 bool
2928 add_input_section(Relobj* object, unsigned int shndx)
2929 {
2930 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2931 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2932 return this->u2_.posd->add_input_section(object, shndx);
2933 }
2934
2935 // Given an input OBJECT, an input section index SHNDX within that
2936 // object, and an OFFSET relative to the start of that input
2937 // section, return whether or not the output offset is known. If
2938 // this function returns true, it sets *POUTPUT to the offset in
2939 // the output section, relative to the start of the input section
2940 // in the output section. *POUTPUT may be different from OFFSET
2941 // for a merged section.
2942 bool
2943 output_offset(const Relobj* object, unsigned int shndx,
2944 section_offset_type offset,
2945 section_offset_type *poutput) const;
2946
2947 // Return whether this is the merge section for the input section
2948 // SHNDX in OBJECT.
2949 bool
2950 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
2951
2952 // Write out the data. This does nothing for an input section.
2953 void
2954 write(Output_file*);
2955
2956 // Write the data to a buffer. This does nothing for an input
2957 // section.
2958 void
2959 write_to_buffer(unsigned char*);
2960
2961 // Print to a map file.
2962 void
2963 print_to_mapfile(Mapfile*) const;
2964
2965 // Print statistics about merge sections to stderr.
2966 void
2967 print_merge_stats(const char* section_name)
2968 {
2969 if (this->shndx_ == MERGE_DATA_SECTION_CODE
2970 || this->shndx_ == MERGE_STRING_SECTION_CODE)
2971 this->u2_.posd->print_merge_stats(section_name);
2972 }
2973
2974 private:
2975 // Code values which appear in shndx_. If the value is not one of
2976 // these codes, it is the input section index in the object file.
2977 enum
2978 {
2979 // An Output_section_data.
2980 OUTPUT_SECTION_CODE = -1U,
2981 // An Output_section_data for an SHF_MERGE section with
2982 // SHF_STRINGS not set.
2983 MERGE_DATA_SECTION_CODE = -2U,
2984 // An Output_section_data for an SHF_MERGE section with
2985 // SHF_STRINGS set.
2986 MERGE_STRING_SECTION_CODE = -3U,
2987 // An Output_section_data for a relaxed input section.
2988 RELAXED_INPUT_SECTION_CODE = -4U
2989 };
2990
2991 // For an ordinary input section, this is the section index in the
2992 // input file. For an Output_section_data, this is
2993 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2994 // MERGE_STRING_SECTION_CODE.
2995 unsigned int shndx_;
2996 // The required alignment, stored as a power of 2.
2997 unsigned int p2align_;
2998 union
2999 {
3000 // For an ordinary input section, the section size.
3001 off_t data_size;
3002 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3003 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3004 // entity size.
3005 uint64_t entsize;
3006 } u1_;
3007 union
3008 {
3009 // For an ordinary input section, the object which holds the
3010 // input section.
3011 Relobj* object;
3012 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3013 // MERGE_STRING_SECTION_CODE, the data.
3014 Output_section_data* posd;
3015 // For RELAXED_INPUT_SECTION_CODE, the data.
3016 Output_relaxed_input_section* poris;
3017 } u2_;
3018 };
3019
3020 typedef std::vector<Input_section> Input_section_list;
3021
3022 // Allow a child class to access the input sections.
3023 const Input_section_list&
3024 input_sections() const
3025 { return this->input_sections_; }
3026
3027 private:
3028 // We only save enough information to undo the effects of section layout.
3029 class Checkpoint_output_section
3030 {
3031 public:
3032 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3033 const Input_section_list& input_sections,
3034 off_t first_input_offset,
3035 bool attached_input_sections_are_sorted)
3036 : addralign_(addralign), flags_(flags),
3037 input_sections_(input_sections),
3038 input_sections_size_(input_sections_.size()),
3039 input_sections_copy_(), first_input_offset_(first_input_offset),
3040 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3041 { }
3042
3043 virtual
3044 ~Checkpoint_output_section()
3045 { }
3046
3047 // Return the address alignment.
3048 uint64_t
3049 addralign() const
3050 { return this->addralign_; }
3051
3052 // Return the section flags.
3053 elfcpp::Elf_Xword
3054 flags() const
3055 { return this->flags_; }
3056
3057 // Return a reference to the input section list copy.
3058 Input_section_list*
3059 input_sections()
3060 { return &this->input_sections_copy_; }
3061
3062 // Return the size of input_sections at the time when checkpoint is
3063 // taken.
3064 size_t
3065 input_sections_size() const
3066 { return this->input_sections_size_; }
3067
3068 // Whether input sections are copied.
3069 bool
3070 input_sections_saved() const
3071 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3072
3073 off_t
3074 first_input_offset() const
3075 { return this->first_input_offset_; }
3076
3077 bool
3078 attached_input_sections_are_sorted() const
3079 { return this->attached_input_sections_are_sorted_; }
3080
3081 // Save input sections.
3082 void
3083 save_input_sections()
3084 {
3085 this->input_sections_copy_.reserve(this->input_sections_size_);
3086 this->input_sections_copy_.clear();
3087 Input_section_list::const_iterator p = this->input_sections_.begin();
3088 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3089 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3090 this->input_sections_copy_.push_back(*p);
3091 }
3092
3093 private:
3094 // The section alignment.
3095 uint64_t addralign_;
3096 // The section flags.
3097 elfcpp::Elf_Xword flags_;
3098 // Reference to the input sections to be checkpointed.
3099 const Input_section_list& input_sections_;
3100 // Size of the checkpointed portion of input_sections_;
3101 size_t input_sections_size_;
3102 // Copy of input sections.
3103 Input_section_list input_sections_copy_;
3104 // The offset of the first entry in input_sections_.
3105 off_t first_input_offset_;
3106 // True if the input sections attached to this output section have
3107 // already been sorted.
3108 bool attached_input_sections_are_sorted_;
3109 };
3110
3111 // This class is used to sort the input sections.
3112 class Input_section_sort_entry;
3113
3114 // This is the sort comparison function.
3115 struct Input_section_sort_compare
3116 {
3117 bool
3118 operator()(const Input_section_sort_entry&,
3119 const Input_section_sort_entry&) const;
3120 };
3121
3122 // Fill data. This is used to fill in data between input sections.
3123 // It is also used for data statements (BYTE, WORD, etc.) in linker
3124 // scripts. When we have to keep track of the input sections, we
3125 // can use an Output_data_const, but we don't want to have to keep
3126 // track of input sections just to implement fills.
3127 class Fill
3128 {
3129 public:
3130 Fill(off_t section_offset, off_t length)
3131 : section_offset_(section_offset),
3132 length_(convert_to_section_size_type(length))
3133 { }
3134
3135 // Return section offset.
3136 off_t
3137 section_offset() const
3138 { return this->section_offset_; }
3139
3140 // Return fill length.
3141 section_size_type
3142 length() const
3143 { return this->length_; }
3144
3145 private:
3146 // The offset within the output section.
3147 off_t section_offset_;
3148 // The length of the space to fill.
3149 section_size_type length_;
3150 };
3151
3152 typedef std::vector<Fill> Fill_list;
3153
3154 // This class describes properties of merge data sections. It is used
3155 // as a key type for maps.
3156 class Merge_section_properties
3157 {
3158 public:
3159 Merge_section_properties(bool is_string, uint64_t entsize,
3160 uint64_t addralign)
3161 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3162 { }
3163
3164 // Whether this equals to another Merge_section_properties MSP.
3165 bool
3166 eq(const Merge_section_properties& msp) const
3167 {
3168 return ((this->is_string_ == msp.is_string_)
3169 && (this->entsize_ == msp.entsize_)
3170 && (this->addralign_ == msp.addralign_));
3171 }
3172
3173 // Compute a hash value for this using 64-bit FNV-1a hash.
3174 size_t
3175 hash_value() const
3176 {
3177 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3178 uint64_t prime = 1099511628211ULL;
3179 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3180 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3181 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3182 return h;
3183 }
3184
3185 // Functors for associative containers.
3186 struct equal_to
3187 {
3188 bool
3189 operator()(const Merge_section_properties& msp1,
3190 const Merge_section_properties& msp2) const
3191 { return msp1.eq(msp2); }
3192 };
3193
3194 struct hash
3195 {
3196 size_t
3197 operator()(const Merge_section_properties& msp) const
3198 { return msp.hash_value(); }
3199 };
3200
3201 private:
3202 // Whether this merge data section is for strings.
3203 bool is_string_;
3204 // Entsize of this merge data section.
3205 uint64_t entsize_;
3206 // Address alignment.
3207 uint64_t addralign_;
3208 };
3209
3210 // Map that link Merge_section_properties to Output_merge_base.
3211 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3212 Merge_section_properties::hash,
3213 Merge_section_properties::equal_to>
3214 Merge_section_by_properties_map;
3215
3216 // Map that link Input_section_specifier to Output_section_data.
3217 typedef Unordered_map<Input_section_specifier, Output_section_data*,
3218 Input_section_specifier::hash,
3219 Input_section_specifier::equal_to>
3220 Output_section_data_by_input_section_map;
3221
3222 // Map that link Input_section_specifier to Output_relaxed_input_section.
3223 typedef Unordered_map<Input_section_specifier, Output_relaxed_input_section*,
3224 Input_section_specifier::hash,
3225 Input_section_specifier::equal_to>
3226 Output_relaxed_input_section_by_input_section_map;
3227
3228 // Map used during relaxation of existing sections. This map
3229 // an input section specifier to an input section list index.
3230 // We assume that Input_section_list is a vector.
3231 typedef Unordered_map<Input_section_specifier, size_t,
3232 Input_section_specifier::hash,
3233 Input_section_specifier::equal_to>
3234 Relaxation_map;
3235
3236 // Add a new output section by Input_section.
3237 void
3238 add_output_section_data(Input_section*);
3239
3240 // Add an SHF_MERGE input section. Returns true if the section was
3241 // handled.
3242 bool
3243 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3244 uint64_t entsize, uint64_t addralign);
3245
3246 // Add an output SHF_MERGE section POSD to this output section.
3247 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3248 // ENTSIZE is the entity size. This returns the entry added to
3249 // input_sections_.
3250 void
3251 add_output_merge_section(Output_section_data* posd, bool is_string,
3252 uint64_t entsize);
3253
3254 // Sort the attached input sections.
3255 void
3256 sort_attached_input_sections();
3257
3258 // Find the merge section into which an input section with index SHNDX in
3259 // OBJECT has been added. Return NULL if none found.
3260 Output_section_data*
3261 find_merge_section(const Relobj* object, unsigned int shndx) const;
3262
3263 // Build a relaxation map.
3264 void
3265 build_relaxation_map(
3266 const Input_section_list& input_sections,
3267 size_t limit,
3268 Relaxation_map* map) const;
3269
3270 // Convert input sections in an input section list into relaxed sections.
3271 void
3272 convert_input_sections_in_list_to_relaxed_sections(
3273 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3274 const Relaxation_map& map,
3275 Input_section_list* input_sections);
3276
3277 // Most of these fields are only valid after layout.
3278
3279 // The name of the section. This will point into a Stringpool.
3280 const char* name_;
3281 // The section address is in the parent class.
3282 // The section alignment.
3283 uint64_t addralign_;
3284 // The section entry size.
3285 uint64_t entsize_;
3286 // The load address. This is only used when using a linker script
3287 // with a SECTIONS clause. The has_load_address_ field indicates
3288 // whether this field is valid.
3289 uint64_t load_address_;
3290 // The file offset is in the parent class.
3291 // Set the section link field to the index of this section.
3292 const Output_data* link_section_;
3293 // If link_section_ is NULL, this is the link field.
3294 unsigned int link_;
3295 // Set the section info field to the index of this section.
3296 const Output_section* info_section_;
3297 // If info_section_ is NULL, set the info field to the symbol table
3298 // index of this symbol.
3299 const Symbol* info_symndx_;
3300 // If info_section_ and info_symndx_ are NULL, this is the section
3301 // info field.
3302 unsigned int info_;
3303 // The section type.
3304 const elfcpp::Elf_Word type_;
3305 // The section flags.
3306 elfcpp::Elf_Xword flags_;
3307 // The section index.
3308 unsigned int out_shndx_;
3309 // If there is a STT_SECTION for this output section in the normal
3310 // symbol table, this is the symbol index. This starts out as zero.
3311 // It is initialized in Layout::finalize() to be the index, or -1U
3312 // if there isn't one.
3313 unsigned int symtab_index_;
3314 // If there is a STT_SECTION for this output section in the dynamic
3315 // symbol table, this is the symbol index. This starts out as zero.
3316 // It is initialized in Layout::finalize() to be the index, or -1U
3317 // if there isn't one.
3318 unsigned int dynsym_index_;
3319 // The input sections. This will be empty in cases where we don't
3320 // need to keep track of them.
3321 Input_section_list input_sections_;
3322 // The offset of the first entry in input_sections_.
3323 off_t first_input_offset_;
3324 // The fill data. This is separate from input_sections_ because we
3325 // often will need fill sections without needing to keep track of
3326 // input sections.
3327 Fill_list fills_;
3328 // If the section requires postprocessing, this buffer holds the
3329 // section contents during relocation.
3330 unsigned char* postprocessing_buffer_;
3331 // Whether this output section needs a STT_SECTION symbol in the
3332 // normal symbol table. This will be true if there is a relocation
3333 // which needs it.
3334 bool needs_symtab_index_ : 1;
3335 // Whether this output section needs a STT_SECTION symbol in the
3336 // dynamic symbol table. This will be true if there is a dynamic
3337 // relocation which needs it.
3338 bool needs_dynsym_index_ : 1;
3339 // Whether the link field of this output section should point to the
3340 // normal symbol table.
3341 bool should_link_to_symtab_ : 1;
3342 // Whether the link field of this output section should point to the
3343 // dynamic symbol table.
3344 bool should_link_to_dynsym_ : 1;
3345 // Whether this section should be written after all the input
3346 // sections are complete.
3347 bool after_input_sections_ : 1;
3348 // Whether this section requires post processing after all
3349 // relocations have been applied.
3350 bool requires_postprocessing_ : 1;
3351 // Whether an input section was mapped to this output section
3352 // because of a SECTIONS clause in a linker script.
3353 bool found_in_sections_clause_ : 1;
3354 // Whether this section has an explicitly specified load address.
3355 bool has_load_address_ : 1;
3356 // True if the info_section_ field means the section index of the
3357 // section, false if it means the symbol index of the corresponding
3358 // section symbol.
3359 bool info_uses_section_index_ : 1;
3360 // True if the input sections attached to this output section may
3361 // need sorting.
3362 bool may_sort_attached_input_sections_ : 1;
3363 // True if the input sections attached to this output section must
3364 // be sorted.
3365 bool must_sort_attached_input_sections_ : 1;
3366 // True if the input sections attached to this output section have
3367 // already been sorted.
3368 bool attached_input_sections_are_sorted_ : 1;
3369 // True if this section holds relro data.
3370 bool is_relro_ : 1;
3371 // True if this section holds relro local data.
3372 bool is_relro_local_ : 1;
3373 // True if this must be the last relro section.
3374 bool is_last_relro_ : 1;
3375 // True if this must be the first section after the relro sections.
3376 bool is_first_non_relro_ : 1;
3377 // True if this is a small section.
3378 bool is_small_section_ : 1;
3379 // True if this is a large section.
3380 bool is_large_section_ : 1;
3381 // True if this is the .interp section going into the PT_INTERP
3382 // segment.
3383 bool is_interp_ : 1;
3384 // True if this is section is read by the dynamic linker.
3385 bool is_dynamic_linker_section_ : 1;
3386 // Whether code-fills are generated at write.
3387 bool generate_code_fills_at_write_ : 1;
3388 // Whether the entry size field should be zero.
3389 bool is_entsize_zero_ : 1;
3390 // For SHT_TLS sections, the offset of this section relative to the base
3391 // of the TLS segment.
3392 uint64_t tls_offset_;
3393 // Saved checkpoint.
3394 Checkpoint_output_section* checkpoint_;
3395 // Map from input sections to merge sections.
3396 Output_section_data_by_input_section_map merge_section_map_;
3397 // Map from merge section properties to merge_sections;
3398 Merge_section_by_properties_map merge_section_by_properties_map_;
3399 // Map from input sections to relaxed input sections. This is mutable
3400 // because it is updated lazily. We may need to update it in a
3401 // const qualified method.
3402 mutable Output_relaxed_input_section_by_input_section_map
3403 relaxed_input_section_map_;
3404 // Whether relaxed_input_section_map_ is valid.
3405 mutable bool is_relaxed_input_section_map_valid_;
3406 };
3407
3408 // An output segment. PT_LOAD segments are built from collections of
3409 // output sections. Other segments typically point within PT_LOAD
3410 // segments, and are built directly as needed.
3411 //
3412 // NOTE: We want to use the copy constructor for this class. During
3413 // relaxation, we may try built the segments multiple times. We do
3414 // that by copying the original segment list before lay-out, doing
3415 // a trial lay-out and roll-back to the saved copied if we need to
3416 // to the lay-out again.
3417
3418 class Output_segment
3419 {
3420 public:
3421 // Create an output segment, specifying the type and flags.
3422 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3423
3424 // Return the virtual address.
3425 uint64_t
3426 vaddr() const
3427 { return this->vaddr_; }
3428
3429 // Return the physical address.
3430 uint64_t
3431 paddr() const
3432 { return this->paddr_; }
3433
3434 // Return the segment type.
3435 elfcpp::Elf_Word
3436 type() const
3437 { return this->type_; }
3438
3439 // Return the segment flags.
3440 elfcpp::Elf_Word
3441 flags() const
3442 { return this->flags_; }
3443
3444 // Return the memory size.
3445 uint64_t
3446 memsz() const
3447 { return this->memsz_; }
3448
3449 // Return the file size.
3450 off_t
3451 filesz() const
3452 { return this->filesz_; }
3453
3454 // Return the file offset.
3455 off_t
3456 offset() const
3457 { return this->offset_; }
3458
3459 // Whether this is a segment created to hold large data sections.
3460 bool
3461 is_large_data_segment() const
3462 { return this->is_large_data_segment_; }
3463
3464 // Record that this is a segment created to hold large data
3465 // sections.
3466 void
3467 set_is_large_data_segment()
3468 { this->is_large_data_segment_ = true; }
3469
3470 // Return the maximum alignment of the Output_data.
3471 uint64_t
3472 maximum_alignment();
3473
3474 // Add the Output_section OS to this segment. SEG_FLAGS is the
3475 // segment flags to use. DO_SORT is true if we should sort the
3476 // placement of the input section for more efficient generated code.
3477 void
3478 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags,
3479 bool do_sort);
3480
3481 // Remove an Output_section from this segment. It is an error if it
3482 // is not present.
3483 void
3484 remove_output_section(Output_section* os);
3485
3486 // Add an Output_data (which is not an Output_section) to the start
3487 // of this segment.
3488 void
3489 add_initial_output_data(Output_data*);
3490
3491 // Return true if this segment has any sections which hold actual
3492 // data, rather than being a BSS section.
3493 bool
3494 has_any_data_sections() const
3495 { return !this->output_data_.empty(); }
3496
3497 // Return the number of dynamic relocations applied to this segment.
3498 unsigned int
3499 dynamic_reloc_count() const;
3500
3501 // Return the address of the first section.
3502 uint64_t
3503 first_section_load_address() const;
3504
3505 // Return whether the addresses have been set already.
3506 bool
3507 are_addresses_set() const
3508 { return this->are_addresses_set_; }
3509
3510 // Set the addresses.
3511 void
3512 set_addresses(uint64_t vaddr, uint64_t paddr)
3513 {
3514 this->vaddr_ = vaddr;
3515 this->paddr_ = paddr;
3516 this->are_addresses_set_ = true;
3517 }
3518
3519 // Set the segment flags. This is only used if we have a PHDRS
3520 // clause which explicitly specifies the flags.
3521 void
3522 set_flags(elfcpp::Elf_Word flags)
3523 { this->flags_ = flags; }
3524
3525 // Set the address of the segment to ADDR and the offset to *POFF
3526 // and set the addresses and offsets of all contained output
3527 // sections accordingly. Set the section indexes of all contained
3528 // output sections starting with *PSHNDX. If RESET is true, first
3529 // reset the addresses of the contained sections. Return the
3530 // address of the immediately following segment. Update *POFF and
3531 // *PSHNDX. This should only be called for a PT_LOAD segment.
3532 uint64_t
3533 set_section_addresses(const Layout*, bool reset, uint64_t addr,
3534 unsigned int increase_relro, off_t* poff,
3535 unsigned int* pshndx);
3536
3537 // Set the minimum alignment of this segment. This may be adjusted
3538 // upward based on the section alignments.
3539 void
3540 set_minimum_p_align(uint64_t align)
3541 { this->min_p_align_ = align; }
3542
3543 // Set the offset of this segment based on the section. This should
3544 // only be called for a non-PT_LOAD segment.
3545 void
3546 set_offset(unsigned int increase);
3547
3548 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3549 void
3550 set_tls_offsets();
3551
3552 // Return the number of output sections.
3553 unsigned int
3554 output_section_count() const;
3555
3556 // Return the section attached to the list segment with the lowest
3557 // load address. This is used when handling a PHDRS clause in a
3558 // linker script.
3559 Output_section*
3560 section_with_lowest_load_address() const;
3561
3562 // Write the segment header into *OPHDR.
3563 template<int size, bool big_endian>
3564 void
3565 write_header(elfcpp::Phdr_write<size, big_endian>*);
3566
3567 // Write the section headers of associated sections into V.
3568 template<int size, bool big_endian>
3569 unsigned char*
3570 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3571 unsigned int* pshndx) const;
3572
3573 // Print the output sections in the map file.
3574 void
3575 print_sections_to_mapfile(Mapfile*) const;
3576
3577 private:
3578 typedef std::list<Output_data*> Output_data_list;
3579
3580 // Find the maximum alignment in an Output_data_list.
3581 static uint64_t
3582 maximum_alignment_list(const Output_data_list*);
3583
3584 // Return whether the first data section is a relro section.
3585 bool
3586 is_first_section_relro() const;
3587
3588 // Set the section addresses in an Output_data_list.
3589 uint64_t
3590 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3591 uint64_t addr, off_t* poff, unsigned int* pshndx,
3592 bool* in_tls);
3593
3594 // Return the number of Output_sections in an Output_data_list.
3595 unsigned int
3596 output_section_count_list(const Output_data_list*) const;
3597
3598 // Return the number of dynamic relocs in an Output_data_list.
3599 unsigned int
3600 dynamic_reloc_count_list(const Output_data_list*) const;
3601
3602 // Find the section with the lowest load address in an
3603 // Output_data_list.
3604 void
3605 lowest_load_address_in_list(const Output_data_list* pdl,
3606 Output_section** found,
3607 uint64_t* found_lma) const;
3608
3609 // Write the section headers in the list into V.
3610 template<int size, bool big_endian>
3611 unsigned char*
3612 write_section_headers_list(const Layout*, const Stringpool*,
3613 const Output_data_list*, unsigned char* v,
3614 unsigned int* pshdx) const;
3615
3616 // Print a section list to the mapfile.
3617 void
3618 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
3619
3620 // NOTE: We want to use the copy constructor. Currently, shallow copy
3621 // works for us so we do not need to write our own copy constructor.
3622
3623 // The list of output data with contents attached to this segment.
3624 Output_data_list output_data_;
3625 // The list of output data without contents attached to this segment.
3626 Output_data_list output_bss_;
3627 // The segment virtual address.
3628 uint64_t vaddr_;
3629 // The segment physical address.
3630 uint64_t paddr_;
3631 // The size of the segment in memory.
3632 uint64_t memsz_;
3633 // The maximum section alignment. The is_max_align_known_ field
3634 // indicates whether this has been finalized.
3635 uint64_t max_align_;
3636 // The required minimum value for the p_align field. This is used
3637 // for PT_LOAD segments. Note that this does not mean that
3638 // addresses should be aligned to this value; it means the p_paddr
3639 // and p_vaddr fields must be congruent modulo this value. For
3640 // non-PT_LOAD segments, the dynamic linker works more efficiently
3641 // if the p_align field has the more conventional value, although it
3642 // can align as needed.
3643 uint64_t min_p_align_;
3644 // The offset of the segment data within the file.
3645 off_t offset_;
3646 // The size of the segment data in the file.
3647 off_t filesz_;
3648 // The segment type;
3649 elfcpp::Elf_Word type_;
3650 // The segment flags.
3651 elfcpp::Elf_Word flags_;
3652 // Whether we have finalized max_align_.
3653 bool is_max_align_known_ : 1;
3654 // Whether vaddr and paddr were set by a linker script.
3655 bool are_addresses_set_ : 1;
3656 // Whether this segment holds large data sections.
3657 bool is_large_data_segment_ : 1;
3658 };
3659
3660 // This class represents the output file.
3661
3662 class Output_file
3663 {
3664 public:
3665 Output_file(const char* name);
3666
3667 // Indicate that this is a temporary file which should not be
3668 // output.
3669 void
3670 set_is_temporary()
3671 { this->is_temporary_ = true; }
3672
3673 // Try to open an existing file. Returns false if the file doesn't
3674 // exist, has a size of 0 or can't be mmaped. This method is
3675 // thread-unsafe.
3676 bool
3677 open_for_modification();
3678
3679 // Open the output file. FILE_SIZE is the final size of the file.
3680 // If the file already exists, it is deleted/truncated. This method
3681 // is thread-unsafe.
3682 void
3683 open(off_t file_size);
3684
3685 // Resize the output file. This method is thread-unsafe.
3686 void
3687 resize(off_t file_size);
3688
3689 // Close the output file (flushing all buffered data) and make sure
3690 // there are no errors. This method is thread-unsafe.
3691 void
3692 close();
3693
3694 // Return the size of this file.
3695 off_t
3696 filesize()
3697 { return this->file_size_; }
3698
3699 // Return the name of this file.
3700 const char*
3701 filename()
3702 { return this->name_; }
3703
3704 // We currently always use mmap which makes the view handling quite
3705 // simple. In the future we may support other approaches.
3706
3707 // Write data to the output file.
3708 void
3709 write(off_t offset, const void* data, size_t len)
3710 { memcpy(this->base_ + offset, data, len); }
3711
3712 // Get a buffer to use to write to the file, given the offset into
3713 // the file and the size.
3714 unsigned char*
3715 get_output_view(off_t start, size_t size)
3716 {
3717 gold_assert(start >= 0
3718 && start + static_cast<off_t>(size) <= this->file_size_);
3719 return this->base_ + start;
3720 }
3721
3722 // VIEW must have been returned by get_output_view. Write the
3723 // buffer to the file, passing in the offset and the size.
3724 void
3725 write_output_view(off_t, size_t, unsigned char*)
3726 { }
3727
3728 // Get a read/write buffer. This is used when we want to write part
3729 // of the file, read it in, and write it again.
3730 unsigned char*
3731 get_input_output_view(off_t start, size_t size)
3732 { return this->get_output_view(start, size); }
3733
3734 // Write a read/write buffer back to the file.
3735 void
3736 write_input_output_view(off_t, size_t, unsigned char*)
3737 { }
3738
3739 // Get a read buffer. This is used when we just want to read part
3740 // of the file back it in.
3741 const unsigned char*
3742 get_input_view(off_t start, size_t size)
3743 { return this->get_output_view(start, size); }
3744
3745 // Release a read bfufer.
3746 void
3747 free_input_view(off_t, size_t, const unsigned char*)
3748 { }
3749
3750 private:
3751 // Map the file into memory or, if that fails, allocate anonymous
3752 // memory.
3753 void
3754 map();
3755
3756 // Allocate anonymous memory for the file.
3757 bool
3758 map_anonymous();
3759
3760 // Map the file into memory.
3761 bool
3762 map_no_anonymous();
3763
3764 // Unmap the file from memory (and flush to disk buffers).
3765 void
3766 unmap();
3767
3768 // File name.
3769 const char* name_;
3770 // File descriptor.
3771 int o_;
3772 // File size.
3773 off_t file_size_;
3774 // Base of file mapped into memory.
3775 unsigned char* base_;
3776 // True iff base_ points to a memory buffer rather than an output file.
3777 bool map_is_anonymous_;
3778 // True if this is a temporary file which should not be output.
3779 bool is_temporary_;
3780 };
3781
3782 } // End namespace gold.
3783
3784 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.176581 seconds and 5 git commands to generate.