PR gold/13249
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1025
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1030
1031 // A reloc against a local symbol or local section symbol.
1032
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol,
1037 bool use_plt_offset);
1038
1039 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1040 unsigned int local_sym_index, unsigned int type,
1041 unsigned int shndx, Address address, bool is_relative,
1042 bool is_symbolless, bool is_section_symbol,
1043 bool use_plt_offset);
1044
1045 // A reloc against the STT_SECTION symbol of an output section.
1046
1047 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1048 Address address);
1049
1050 Output_reloc(Output_section* os, unsigned int type,
1051 Sized_relobj<size, big_endian>* relobj,
1052 unsigned int shndx, Address address);
1053
1054 // An absolute relocation with no symbol.
1055
1056 Output_reloc(unsigned int type, Output_data* od, Address address);
1057
1058 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1059 unsigned int shndx, Address address);
1060
1061 // A target specific relocation. The target will be called to get
1062 // the symbol index, passing ARG. The type and offset will be set
1063 // as for other relocation types.
1064
1065 Output_reloc(unsigned int type, void* arg, Output_data* od,
1066 Address address);
1067
1068 Output_reloc(unsigned int type, void* arg,
1069 Sized_relobj<size, big_endian>* relobj,
1070 unsigned int shndx, Address address);
1071
1072 // Return the reloc type.
1073 unsigned int
1074 type() const
1075 { return this->type_; }
1076
1077 // Return whether this is a RELATIVE relocation.
1078 bool
1079 is_relative() const
1080 { return this->is_relative_; }
1081
1082 // Return whether this is a relocation which should not use
1083 // a symbol, but which obtains its addend from a symbol.
1084 bool
1085 is_symbolless() const
1086 { return this->is_symbolless_; }
1087
1088 // Return whether this is against a local section symbol.
1089 bool
1090 is_local_section_symbol() const
1091 {
1092 return (this->local_sym_index_ != GSYM_CODE
1093 && this->local_sym_index_ != SECTION_CODE
1094 && this->local_sym_index_ != INVALID_CODE
1095 && this->local_sym_index_ != TARGET_CODE
1096 && this->is_section_symbol_);
1097 }
1098
1099 // Return whether this is a target specific relocation.
1100 bool
1101 is_target_specific() const
1102 { return this->local_sym_index_ == TARGET_CODE; }
1103
1104 // Return the argument to pass to the target for a target specific
1105 // relocation.
1106 void*
1107 target_arg() const
1108 {
1109 gold_assert(this->local_sym_index_ == TARGET_CODE);
1110 return this->u1_.arg;
1111 }
1112
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1116 Address
1117 local_section_offset(Addend addend) const;
1118
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1121 Address
1122 symbol_value(Addend addend) const;
1123
1124 // If this relocation is against an input section, return the
1125 // relocatable object containing the input section.
1126 Sized_relobj<size, big_endian>*
1127 get_relobj() const
1128 {
1129 if (this->shndx_ == INVALID_CODE)
1130 return NULL;
1131 return this->u2_.relobj;
1132 }
1133
1134 // Write the reloc entry to an output view.
1135 void
1136 write(unsigned char* pov) const;
1137
1138 // Write the offset and info fields to Write_rel.
1139 template<typename Write_rel>
1140 void write_rel(Write_rel*) const;
1141
1142 // This is used when sorting dynamic relocs. Return -1 to sort this
1143 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1144 int
1145 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1146 const;
1147
1148 // Return whether this reloc should be sorted before the argument
1149 // when sorting dynamic relocs.
1150 bool
1151 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1152 r2) const
1153 { return this->compare(r2) < 0; }
1154
1155 private:
1156 // Record that we need a dynamic symbol index.
1157 void
1158 set_needs_dynsym_index();
1159
1160 // Return the symbol index.
1161 unsigned int
1162 get_symbol_index() const;
1163
1164 // Return the output address.
1165 Address
1166 get_address() const;
1167
1168 // Codes for local_sym_index_.
1169 enum
1170 {
1171 // Global symbol.
1172 GSYM_CODE = -1U,
1173 // Output section.
1174 SECTION_CODE = -2U,
1175 // Target specific.
1176 TARGET_CODE = -3U,
1177 // Invalid uninitialized entry.
1178 INVALID_CODE = -4U
1179 };
1180
1181 union
1182 {
1183 // For a local symbol or local section symbol
1184 // (this->local_sym_index_ >= 0), the object. We will never
1185 // generate a relocation against a local symbol in a dynamic
1186 // object; that doesn't make sense. And our callers will always
1187 // be templatized, so we use Sized_relobj here.
1188 Sized_relobj<size, big_endian>* relobj;
1189 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1190 // symbol. If this is NULL, it indicates a relocation against the
1191 // undefined 0 symbol.
1192 Symbol* gsym;
1193 // For a relocation against an output section
1194 // (this->local_sym_index_ == SECTION_CODE), the output section.
1195 Output_section* os;
1196 // For a target specific relocation, an argument to pass to the
1197 // target.
1198 void* arg;
1199 } u1_;
1200 union
1201 {
1202 // If this->shndx_ is not INVALID CODE, the object which holds the
1203 // input section being used to specify the reloc address.
1204 Sized_relobj<size, big_endian>* relobj;
1205 // If this->shndx_ is INVALID_CODE, the output data being used to
1206 // specify the reloc address. This may be NULL if the reloc
1207 // address is absolute.
1208 Output_data* od;
1209 } u2_;
1210 // The address offset within the input section or the Output_data.
1211 Address address_;
1212 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1213 // relocation against an output section, or TARGET_CODE for a target
1214 // specific relocation, or INVALID_CODE for an uninitialized value.
1215 // Otherwise, for a local symbol (this->is_section_symbol_ is
1216 // false), the local symbol index. For a local section symbol
1217 // (this->is_section_symbol_ is true), the section index in the
1218 // input file.
1219 unsigned int local_sym_index_;
1220 // The reloc type--a processor specific code.
1221 unsigned int type_ : 28;
1222 // True if the relocation is a RELATIVE relocation.
1223 bool is_relative_ : 1;
1224 // True if the relocation is one which should not use
1225 // a symbol, but which obtains its addend from a symbol.
1226 bool is_symbolless_ : 1;
1227 // True if the relocation is against a section symbol.
1228 bool is_section_symbol_ : 1;
1229 // True if the addend should be the PLT offset. This is used only
1230 // for RELATIVE relocations to local symbols.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1237 };
1238
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1252 { }
1253
1254 // A reloc against a global symbol.
1255
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1260 addend_(addend)
1261 { }
1262
1263 Output_reloc(Symbol* gsym, unsigned int type,
1264 Sized_relobj<size, big_endian>* relobj,
1265 unsigned int shndx, Address address, Addend addend,
1266 bool is_relative, bool is_symbolless)
1267 : rel_(gsym, type, relobj, shndx, address, is_relative,
1268 is_symbolless), addend_(addend)
1269 { }
1270
1271 // A reloc against a local symbol.
1272
1273 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1274 unsigned int local_sym_index, unsigned int type,
1275 Output_data* od, Address address,
1276 Addend addend, bool is_relative,
1277 bool is_symbolless, bool is_section_symbol,
1278 bool use_plt_offset)
1279 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1280 is_symbolless, is_section_symbol, use_plt_offset),
1281 addend_(addend)
1282 { }
1283
1284 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1285 unsigned int local_sym_index, unsigned int type,
1286 unsigned int shndx, Address address,
1287 Addend addend, bool is_relative,
1288 bool is_symbolless, bool is_section_symbol,
1289 bool use_plt_offset)
1290 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1291 is_symbolless, is_section_symbol, use_plt_offset),
1292 addend_(addend)
1293 { }
1294
1295 // A reloc against the STT_SECTION symbol of an output section.
1296
1297 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1298 Address address, Addend addend)
1299 : rel_(os, type, od, address), addend_(addend)
1300 { }
1301
1302 Output_reloc(Output_section* os, unsigned int type,
1303 Sized_relobj<size, big_endian>* relobj,
1304 unsigned int shndx, Address address, Addend addend)
1305 : rel_(os, type, relobj, shndx, address), addend_(addend)
1306 { }
1307
1308 // An absolute relocation with no symbol.
1309
1310 Output_reloc(unsigned int type, Output_data* od, Address address,
1311 Addend addend)
1312 : rel_(type, od, address), addend_(addend)
1313 { }
1314
1315 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1316 unsigned int shndx, Address address, Addend addend)
1317 : rel_(type, relobj, shndx, address), addend_(addend)
1318 { }
1319
1320 // A target specific relocation. The target will be called to get
1321 // the symbol index and the addend, passing ARG. The type and
1322 // offset will be set as for other relocation types.
1323
1324 Output_reloc(unsigned int type, void* arg, Output_data* od,
1325 Address address, Addend addend)
1326 : rel_(type, arg, od, address), addend_(addend)
1327 { }
1328
1329 Output_reloc(unsigned int type, void* arg,
1330 Sized_relobj<size, big_endian>* relobj,
1331 unsigned int shndx, Address address, Addend addend)
1332 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1333 { }
1334
1335 // Return whether this is a RELATIVE relocation.
1336 bool
1337 is_relative() const
1338 { return this->rel_.is_relative(); }
1339
1340 // Return whether this is a relocation which should not use
1341 // a symbol, but which obtains its addend from a symbol.
1342 bool
1343 is_symbolless() const
1344 { return this->rel_.is_symbolless(); }
1345
1346 // If this relocation is against an input section, return the
1347 // relocatable object containing the input section.
1348 Sized_relobj<size, big_endian>*
1349 get_relobj() const
1350 { return this->rel_.get_relobj(); }
1351
1352 // Write the reloc entry to an output view.
1353 void
1354 write(unsigned char* pov) const;
1355
1356 // Return whether this reloc should be sorted before the argument
1357 // when sorting dynamic relocs.
1358 bool
1359 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1360 r2) const
1361 {
1362 int i = this->rel_.compare(r2.rel_);
1363 if (i < 0)
1364 return true;
1365 else if (i > 0)
1366 return false;
1367 else
1368 return this->addend_ < r2.addend_;
1369 }
1370
1371 private:
1372 // The basic reloc.
1373 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1374 // The addend.
1375 Addend addend_;
1376 };
1377
1378 // Output_data_reloc_generic is a non-template base class for
1379 // Output_data_reloc_base. This gives the generic code a way to hold
1380 // a pointer to a reloc section.
1381
1382 class Output_data_reloc_generic : public Output_section_data_build
1383 {
1384 public:
1385 Output_data_reloc_generic(int size, bool sort_relocs)
1386 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1387 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1388 { }
1389
1390 // Return the number of relative relocs in this section.
1391 size_t
1392 relative_reloc_count() const
1393 { return this->relative_reloc_count_; }
1394
1395 // Whether we should sort the relocs.
1396 bool
1397 sort_relocs() const
1398 { return this->sort_relocs_; }
1399
1400 protected:
1401 // Note that we've added another relative reloc.
1402 void
1403 bump_relative_reloc_count()
1404 { ++this->relative_reloc_count_; }
1405
1406 private:
1407 // The number of relative relocs added to this section. This is to
1408 // support DT_RELCOUNT.
1409 size_t relative_reloc_count_;
1410 // Whether to sort the relocations when writing them out, to make
1411 // the dynamic linker more efficient.
1412 bool sort_relocs_;
1413 };
1414
1415 // Output_data_reloc is used to manage a section containing relocs.
1416 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1417 // indicates whether this is a dynamic relocation or a normal
1418 // relocation. Output_data_reloc_base is a base class.
1419 // Output_data_reloc is the real class, which we specialize based on
1420 // the reloc type.
1421
1422 template<int sh_type, bool dynamic, int size, bool big_endian>
1423 class Output_data_reloc_base : public Output_data_reloc_generic
1424 {
1425 public:
1426 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1427 typedef typename Output_reloc_type::Address Address;
1428 static const int reloc_size =
1429 Reloc_types<sh_type, size, big_endian>::reloc_size;
1430
1431 // Construct the section.
1432 Output_data_reloc_base(bool sort_relocs)
1433 : Output_data_reloc_generic(size, sort_relocs)
1434 { }
1435
1436 protected:
1437 // Write out the data.
1438 void
1439 do_write(Output_file*);
1440
1441 // Set the entry size and the link.
1442 void
1443 do_adjust_output_section(Output_section* os);
1444
1445 // Write to a map file.
1446 void
1447 do_print_to_mapfile(Mapfile* mapfile) const
1448 {
1449 mapfile->print_output_data(this,
1450 (dynamic
1451 ? _("** dynamic relocs")
1452 : _("** relocs")));
1453 }
1454
1455 // Add a relocation entry.
1456 void
1457 add(Output_data* od, const Output_reloc_type& reloc)
1458 {
1459 this->relocs_.push_back(reloc);
1460 this->set_current_data_size(this->relocs_.size() * reloc_size);
1461 od->add_dynamic_reloc();
1462 if (reloc.is_relative())
1463 this->bump_relative_reloc_count();
1464 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1465 if (relobj != NULL)
1466 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1467 }
1468
1469 private:
1470 typedef std::vector<Output_reloc_type> Relocs;
1471
1472 // The class used to sort the relocations.
1473 struct Sort_relocs_comparison
1474 {
1475 bool
1476 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1477 { return r1.sort_before(r2); }
1478 };
1479
1480 // The relocations in this section.
1481 Relocs relocs_;
1482 };
1483
1484 // The class which callers actually create.
1485
1486 template<int sh_type, bool dynamic, int size, bool big_endian>
1487 class Output_data_reloc;
1488
1489 // The SHT_REL version of Output_data_reloc.
1490
1491 template<bool dynamic, int size, bool big_endian>
1492 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1493 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1494 {
1495 private:
1496 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1497 big_endian> Base;
1498
1499 public:
1500 typedef typename Base::Output_reloc_type Output_reloc_type;
1501 typedef typename Output_reloc_type::Address Address;
1502
1503 Output_data_reloc(bool sr)
1504 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1505 { }
1506
1507 // Add a reloc against a global symbol.
1508
1509 void
1510 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1511 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1512
1513 void
1514 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1515 Sized_relobj<size, big_endian>* relobj,
1516 unsigned int shndx, Address address)
1517 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1518 false, false)); }
1519
1520 // These are to simplify the Copy_relocs class.
1521
1522 void
1523 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1524 Address addend)
1525 {
1526 gold_assert(addend == 0);
1527 this->add_global(gsym, type, od, address);
1528 }
1529
1530 void
1531 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1532 Sized_relobj<size, big_endian>* relobj,
1533 unsigned int shndx, Address address, Address addend)
1534 {
1535 gold_assert(addend == 0);
1536 this->add_global(gsym, type, od, relobj, shndx, address);
1537 }
1538
1539 // Add a RELATIVE reloc against a global symbol. The final relocation
1540 // will not reference the symbol.
1541
1542 void
1543 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1544 Address address)
1545 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1546
1547 void
1548 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1549 Sized_relobj<size, big_endian>* relobj,
1550 unsigned int shndx, Address address)
1551 {
1552 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1553 true, true));
1554 }
1555
1556 // Add a global relocation which does not use a symbol for the relocation,
1557 // but which gets its addend from a symbol.
1558
1559 void
1560 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1561 Output_data* od, Address address)
1562 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1563
1564 void
1565 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1566 Output_data* od,
1567 Sized_relobj<size, big_endian>* relobj,
1568 unsigned int shndx, Address address)
1569 {
1570 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1571 false, true));
1572 }
1573
1574 // Add a reloc against a local symbol.
1575
1576 void
1577 add_local(Sized_relobj<size, big_endian>* relobj,
1578 unsigned int local_sym_index, unsigned int type,
1579 Output_data* od, Address address)
1580 {
1581 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1582 address, false, false, false, false));
1583 }
1584
1585 void
1586 add_local(Sized_relobj<size, big_endian>* relobj,
1587 unsigned int local_sym_index, unsigned int type,
1588 Output_data* od, unsigned int shndx, Address address)
1589 {
1590 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1591 address, false, false, false, false));
1592 }
1593
1594 // Add a RELATIVE reloc against a local symbol.
1595
1596 void
1597 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1598 unsigned int local_sym_index, unsigned int type,
1599 Output_data* od, Address address)
1600 {
1601 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1602 address, true, true, false, false));
1603 }
1604
1605 void
1606 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1607 unsigned int local_sym_index, unsigned int type,
1608 Output_data* od, unsigned int shndx, Address address)
1609 {
1610 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1611 address, true, true, false, false));
1612 }
1613
1614 // Add a local relocation which does not use a symbol for the relocation,
1615 // but which gets its addend from a symbol.
1616
1617 void
1618 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1619 unsigned int local_sym_index, unsigned int type,
1620 Output_data* od, Address address)
1621 {
1622 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1623 address, false, true, false, false));
1624 }
1625
1626 void
1627 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1628 unsigned int local_sym_index, unsigned int type,
1629 Output_data* od, unsigned int shndx,
1630 Address address)
1631 {
1632 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1633 address, false, true, false, false));
1634 }
1635
1636 // Add a reloc against a local section symbol. This will be
1637 // converted into a reloc against the STT_SECTION symbol of the
1638 // output section.
1639
1640 void
1641 add_local_section(Sized_relobj<size, big_endian>* relobj,
1642 unsigned int input_shndx, unsigned int type,
1643 Output_data* od, Address address)
1644 {
1645 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1646 address, false, false, true, false));
1647 }
1648
1649 void
1650 add_local_section(Sized_relobj<size, big_endian>* relobj,
1651 unsigned int input_shndx, unsigned int type,
1652 Output_data* od, unsigned int shndx, Address address)
1653 {
1654 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1655 address, false, false, true, false));
1656 }
1657
1658 // A reloc against the STT_SECTION symbol of an output section.
1659 // OS is the Output_section that the relocation refers to; OD is
1660 // the Output_data object being relocated.
1661
1662 void
1663 add_output_section(Output_section* os, unsigned int type,
1664 Output_data* od, Address address)
1665 { this->add(od, Output_reloc_type(os, type, od, address)); }
1666
1667 void
1668 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1669 Sized_relobj<size, big_endian>* relobj,
1670 unsigned int shndx, Address address)
1671 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1672
1673 // Add an absolute relocation.
1674
1675 void
1676 add_absolute(unsigned int type, Output_data* od, Address address)
1677 { this->add(od, Output_reloc_type(type, od, address)); }
1678
1679 void
1680 add_absolute(unsigned int type, Output_data* od,
1681 Sized_relobj<size, big_endian>* relobj,
1682 unsigned int shndx, Address address)
1683 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1684
1685 // Add a target specific relocation. A target which calls this must
1686 // define the reloc_symbol_index and reloc_addend virtual functions.
1687
1688 void
1689 add_target_specific(unsigned int type, void* arg, Output_data* od,
1690 Address address)
1691 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1692
1693 void
1694 add_target_specific(unsigned int type, void* arg, Output_data* od,
1695 Sized_relobj<size, big_endian>* relobj,
1696 unsigned int shndx, Address address)
1697 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1698 };
1699
1700 // The SHT_RELA version of Output_data_reloc.
1701
1702 template<bool dynamic, int size, bool big_endian>
1703 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1704 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1705 {
1706 private:
1707 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1708 big_endian> Base;
1709
1710 public:
1711 typedef typename Base::Output_reloc_type Output_reloc_type;
1712 typedef typename Output_reloc_type::Address Address;
1713 typedef typename Output_reloc_type::Addend Addend;
1714
1715 Output_data_reloc(bool sr)
1716 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1717 { }
1718
1719 // Add a reloc against a global symbol.
1720
1721 void
1722 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1723 Address address, Addend addend)
1724 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1725 false, false)); }
1726
1727 void
1728 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1729 Sized_relobj<size, big_endian>* relobj,
1730 unsigned int shndx, Address address,
1731 Addend addend)
1732 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1733 addend, false, false)); }
1734
1735 // Add a RELATIVE reloc against a global symbol. The final output
1736 // relocation will not reference the symbol, but we must keep the symbol
1737 // information long enough to set the addend of the relocation correctly
1738 // when it is written.
1739
1740 void
1741 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1742 Address address, Addend addend)
1743 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1744 true)); }
1745
1746 void
1747 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1748 Sized_relobj<size, big_endian>* relobj,
1749 unsigned int shndx, Address address, Addend addend)
1750 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1751 addend, true, true)); }
1752
1753 // Add a global relocation which does not use a symbol for the relocation,
1754 // but which gets its addend from a symbol.
1755
1756 void
1757 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1758 Address address, Addend addend)
1759 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1760 false, true)); }
1761
1762 void
1763 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1764 Output_data* od,
1765 Sized_relobj<size, big_endian>* relobj,
1766 unsigned int shndx, Address address, Addend addend)
1767 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1768 addend, false, true)); }
1769
1770 // Add a reloc against a local symbol.
1771
1772 void
1773 add_local(Sized_relobj<size, big_endian>* relobj,
1774 unsigned int local_sym_index, unsigned int type,
1775 Output_data* od, Address address, Addend addend)
1776 {
1777 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1778 addend, false, false, false, false));
1779 }
1780
1781 void
1782 add_local(Sized_relobj<size, big_endian>* relobj,
1783 unsigned int local_sym_index, unsigned int type,
1784 Output_data* od, unsigned int shndx, Address address,
1785 Addend addend)
1786 {
1787 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1788 address, addend, false, false, false,
1789 false));
1790 }
1791
1792 // Add a RELATIVE reloc against a local symbol.
1793
1794 void
1795 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1796 unsigned int local_sym_index, unsigned int type,
1797 Output_data* od, Address address, Addend addend,
1798 bool use_plt_offset)
1799 {
1800 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1801 addend, true, true, false,
1802 use_plt_offset));
1803 }
1804
1805 void
1806 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1807 unsigned int local_sym_index, unsigned int type,
1808 Output_data* od, unsigned int shndx, Address address,
1809 Addend addend, bool use_plt_offset)
1810 {
1811 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1812 address, addend, true, true, false,
1813 use_plt_offset));
1814 }
1815
1816 // Add a local relocation which does not use a symbol for the relocation,
1817 // but which gets it's addend from a symbol.
1818
1819 void
1820 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1821 unsigned int local_sym_index, unsigned int type,
1822 Output_data* od, Address address, Addend addend)
1823 {
1824 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1825 addend, false, true, false, false));
1826 }
1827
1828 void
1829 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1830 unsigned int local_sym_index, unsigned int type,
1831 Output_data* od, unsigned int shndx,
1832 Address address, Addend addend)
1833 {
1834 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1835 address, addend, false, true, false,
1836 false));
1837 }
1838
1839 // Add a reloc against a local section symbol. This will be
1840 // converted into a reloc against the STT_SECTION symbol of the
1841 // output section.
1842
1843 void
1844 add_local_section(Sized_relobj<size, big_endian>* relobj,
1845 unsigned int input_shndx, unsigned int type,
1846 Output_data* od, Address address, Addend addend)
1847 {
1848 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1849 addend, false, false, true, false));
1850 }
1851
1852 void
1853 add_local_section(Sized_relobj<size, big_endian>* relobj,
1854 unsigned int input_shndx, unsigned int type,
1855 Output_data* od, unsigned int shndx, Address address,
1856 Addend addend)
1857 {
1858 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1859 address, addend, false, false, true,
1860 false));
1861 }
1862
1863 // A reloc against the STT_SECTION symbol of an output section.
1864
1865 void
1866 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1867 Address address, Addend addend)
1868 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1869
1870 void
1871 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1872 Sized_relobj<size, big_endian>* relobj,
1873 unsigned int shndx, Address address, Addend addend)
1874 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1875 addend)); }
1876
1877 // Add an absolute relocation.
1878
1879 void
1880 add_absolute(unsigned int type, Output_data* od, Address address,
1881 Addend addend)
1882 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1883
1884 void
1885 add_absolute(unsigned int type, Output_data* od,
1886 Sized_relobj<size, big_endian>* relobj,
1887 unsigned int shndx, Address address, Addend addend)
1888 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1889
1890 // Add a target specific relocation. A target which calls this must
1891 // define the reloc_symbol_index and reloc_addend virtual functions.
1892
1893 void
1894 add_target_specific(unsigned int type, void* arg, Output_data* od,
1895 Address address, Addend addend)
1896 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1897
1898 void
1899 add_target_specific(unsigned int type, void* arg, Output_data* od,
1900 Sized_relobj<size, big_endian>* relobj,
1901 unsigned int shndx, Address address, Addend addend)
1902 {
1903 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1904 addend));
1905 }
1906 };
1907
1908 // Output_relocatable_relocs represents a relocation section in a
1909 // relocatable link. The actual data is written out in the target
1910 // hook relocate_for_relocatable. This just saves space for it.
1911
1912 template<int sh_type, int size, bool big_endian>
1913 class Output_relocatable_relocs : public Output_section_data
1914 {
1915 public:
1916 Output_relocatable_relocs(Relocatable_relocs* rr)
1917 : Output_section_data(Output_data::default_alignment_for_size(size)),
1918 rr_(rr)
1919 { }
1920
1921 void
1922 set_final_data_size();
1923
1924 // Write out the data. There is nothing to do here.
1925 void
1926 do_write(Output_file*)
1927 { }
1928
1929 // Write to a map file.
1930 void
1931 do_print_to_mapfile(Mapfile* mapfile) const
1932 { mapfile->print_output_data(this, _("** relocs")); }
1933
1934 private:
1935 // The relocs associated with this input section.
1936 Relocatable_relocs* rr_;
1937 };
1938
1939 // Handle a GROUP section.
1940
1941 template<int size, bool big_endian>
1942 class Output_data_group : public Output_section_data
1943 {
1944 public:
1945 // The constructor clears *INPUT_SHNDXES.
1946 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
1947 section_size_type entry_count,
1948 elfcpp::Elf_Word flags,
1949 std::vector<unsigned int>* input_shndxes);
1950
1951 void
1952 do_write(Output_file*);
1953
1954 // Write to a map file.
1955 void
1956 do_print_to_mapfile(Mapfile* mapfile) const
1957 { mapfile->print_output_data(this, _("** group")); }
1958
1959 // Set final data size.
1960 void
1961 set_final_data_size()
1962 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1963
1964 private:
1965 // The input object.
1966 Sized_relobj_file<size, big_endian>* relobj_;
1967 // The group flag word.
1968 elfcpp::Elf_Word flags_;
1969 // The section indexes of the input sections in this group.
1970 std::vector<unsigned int> input_shndxes_;
1971 };
1972
1973 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1974 // for one symbol--either a global symbol or a local symbol in an
1975 // object. The target specific code adds entries to the GOT as
1976 // needed.
1977
1978 template<int size, bool big_endian>
1979 class Output_data_got : public Output_section_data_build
1980 {
1981 public:
1982 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1983 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1984 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1985
1986 Output_data_got()
1987 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1988 entries_(), free_list_()
1989 { }
1990
1991 Output_data_got(off_t data_size)
1992 : Output_section_data_build(data_size,
1993 Output_data::default_alignment_for_size(size)),
1994 entries_(), free_list_()
1995 {
1996 // For an incremental update, we have an existing GOT section.
1997 // Initialize the list of entries and the free list.
1998 this->entries_.resize(data_size / (size / 8));
1999 this->free_list_.init(data_size, false);
2000 }
2001
2002 // Add an entry for a global symbol to the GOT. Return true if this
2003 // is a new GOT entry, false if the symbol was already in the GOT.
2004 bool
2005 add_global(Symbol* gsym, unsigned int got_type);
2006
2007 // Like add_global, but use the PLT offset of the global symbol if
2008 // it has one.
2009 bool
2010 add_global_plt(Symbol* gsym, unsigned int got_type);
2011
2012 // Add an entry for a global symbol to the GOT, and add a dynamic
2013 // relocation of type R_TYPE for the GOT entry.
2014 void
2015 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2016 Rel_dyn* rel_dyn, unsigned int r_type);
2017
2018 void
2019 add_global_with_rela(Symbol* gsym, unsigned int got_type,
2020 Rela_dyn* rela_dyn, unsigned int r_type);
2021
2022 // Add a pair of entries for a global symbol to the GOT, and add
2023 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2024 void
2025 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2026 Rel_dyn* rel_dyn, unsigned int r_type_1,
2027 unsigned int r_type_2);
2028
2029 void
2030 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
2031 Rela_dyn* rela_dyn, unsigned int r_type_1,
2032 unsigned int r_type_2);
2033
2034 // Add an entry for a local symbol to the GOT. This returns true if
2035 // this is a new GOT entry, false if the symbol already has a GOT
2036 // entry.
2037 bool
2038 add_local(Sized_relobj_file<size, big_endian>* object, unsigned int sym_index,
2039 unsigned int got_type);
2040
2041 // Like add_local, but use the PLT offset of the local symbol if it
2042 // has one.
2043 bool
2044 add_local_plt(Sized_relobj_file<size, big_endian>* object,
2045 unsigned int sym_index,
2046 unsigned int got_type);
2047
2048 // Add an entry for a local symbol to the GOT, and add a dynamic
2049 // relocation of type R_TYPE for the GOT entry.
2050 void
2051 add_local_with_rel(Sized_relobj_file<size, big_endian>* object,
2052 unsigned int sym_index, unsigned int got_type,
2053 Rel_dyn* rel_dyn, unsigned int r_type);
2054
2055 void
2056 add_local_with_rela(Sized_relobj_file<size, big_endian>* object,
2057 unsigned int sym_index, unsigned int got_type,
2058 Rela_dyn* rela_dyn, unsigned int r_type);
2059
2060 // Add a pair of entries for a local symbol to the GOT, and add
2061 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2062 void
2063 add_local_pair_with_rel(Sized_relobj_file<size, big_endian>* object,
2064 unsigned int sym_index, unsigned int shndx,
2065 unsigned int got_type, Rel_dyn* rel_dyn,
2066 unsigned int r_type_1, unsigned int r_type_2);
2067
2068 void
2069 add_local_pair_with_rela(Sized_relobj_file<size, big_endian>* object,
2070 unsigned int sym_index, unsigned int shndx,
2071 unsigned int got_type, Rela_dyn* rela_dyn,
2072 unsigned int r_type_1, unsigned int r_type_2);
2073
2074 // Add a constant to the GOT. This returns the offset of the new
2075 // entry from the start of the GOT.
2076 unsigned int
2077 add_constant(Valtype constant)
2078 {
2079 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2080 return got_offset;
2081 }
2082
2083 // Reserve a slot in the GOT.
2084 void
2085 reserve_slot(unsigned int i)
2086 { this->free_list_.remove(i * size / 8, (i + 1) * size / 8); }
2087
2088 // Reserve a slot in the GOT for a local symbol.
2089 void
2090 reserve_local(unsigned int i, Sized_relobj<size, big_endian>* object,
2091 unsigned int sym_index, unsigned int got_type);
2092
2093 // Reserve a slot in the GOT for a global symbol.
2094 void
2095 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2096
2097 protected:
2098 // Write out the GOT table.
2099 void
2100 do_write(Output_file*);
2101
2102 // Write to a map file.
2103 void
2104 do_print_to_mapfile(Mapfile* mapfile) const
2105 { mapfile->print_output_data(this, _("** GOT")); }
2106
2107 private:
2108 // This POD class holds a single GOT entry.
2109 class Got_entry
2110 {
2111 public:
2112 // Create a zero entry.
2113 Got_entry()
2114 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2115 { this->u_.constant = 0; }
2116
2117 // Create a global symbol entry.
2118 Got_entry(Symbol* gsym, bool use_plt_offset)
2119 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2120 { this->u_.gsym = gsym; }
2121
2122 // Create a local symbol entry.
2123 Got_entry(Sized_relobj_file<size, big_endian>* object,
2124 unsigned int local_sym_index, bool use_plt_offset)
2125 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2126 {
2127 gold_assert(local_sym_index != GSYM_CODE
2128 && local_sym_index != CONSTANT_CODE
2129 && local_sym_index != RESERVED_CODE
2130 && local_sym_index == this->local_sym_index_);
2131 this->u_.object = object;
2132 }
2133
2134 // Create a constant entry. The constant is a host value--it will
2135 // be swapped, if necessary, when it is written out.
2136 explicit Got_entry(Valtype constant)
2137 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2138 { this->u_.constant = constant; }
2139
2140 // Write the GOT entry to an output view.
2141 void
2142 write(unsigned char* pov) const;
2143
2144 private:
2145 enum
2146 {
2147 GSYM_CODE = 0x7fffffff,
2148 CONSTANT_CODE = 0x7ffffffe,
2149 RESERVED_CODE = 0x7ffffffd
2150 };
2151
2152 union
2153 {
2154 // For a local symbol, the object.
2155 Sized_relobj_file<size, big_endian>* object;
2156 // For a global symbol, the symbol.
2157 Symbol* gsym;
2158 // For a constant, the constant.
2159 Valtype constant;
2160 } u_;
2161 // For a local symbol, the local symbol index. This is GSYM_CODE
2162 // for a global symbol, or CONSTANT_CODE for a constant.
2163 unsigned int local_sym_index_ : 31;
2164 // Whether to use the PLT offset of the symbol if it has one.
2165 bool use_plt_offset_ : 1;
2166 };
2167
2168 typedef std::vector<Got_entry> Got_entries;
2169
2170 // Create a new GOT entry and return its offset.
2171 unsigned int
2172 add_got_entry(Got_entry got_entry);
2173
2174 // Create a pair of new GOT entries and return the offset of the first.
2175 unsigned int
2176 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2177
2178 // Return the offset into the GOT of GOT entry I.
2179 unsigned int
2180 got_offset(unsigned int i) const
2181 { return i * (size / 8); }
2182
2183 // Return the offset into the GOT of the last entry added.
2184 unsigned int
2185 last_got_offset() const
2186 { return this->got_offset(this->entries_.size() - 1); }
2187
2188 // Set the size of the section.
2189 void
2190 set_got_size()
2191 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2192
2193 // The list of GOT entries.
2194 Got_entries entries_;
2195
2196 // List of available regions within the section, for incremental
2197 // update links.
2198 Free_list free_list_;
2199 };
2200
2201 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2202 // section.
2203
2204 class Output_data_dynamic : public Output_section_data
2205 {
2206 public:
2207 Output_data_dynamic(Stringpool* pool)
2208 : Output_section_data(Output_data::default_alignment()),
2209 entries_(), pool_(pool)
2210 { }
2211
2212 // Add a new dynamic entry with a fixed numeric value.
2213 void
2214 add_constant(elfcpp::DT tag, unsigned int val)
2215 { this->add_entry(Dynamic_entry(tag, val)); }
2216
2217 // Add a new dynamic entry with the address of output data.
2218 void
2219 add_section_address(elfcpp::DT tag, const Output_data* od)
2220 { this->add_entry(Dynamic_entry(tag, od, false)); }
2221
2222 // Add a new dynamic entry with the address of output data
2223 // plus a constant offset.
2224 void
2225 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2226 unsigned int offset)
2227 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2228
2229 // Add a new dynamic entry with the size of output data.
2230 void
2231 add_section_size(elfcpp::DT tag, const Output_data* od)
2232 { this->add_entry(Dynamic_entry(tag, od, true)); }
2233
2234 // Add a new dynamic entry with the total size of two output datas.
2235 void
2236 add_section_size(elfcpp::DT tag, const Output_data* od,
2237 const Output_data* od2)
2238 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2239
2240 // Add a new dynamic entry with the address of a symbol.
2241 void
2242 add_symbol(elfcpp::DT tag, const Symbol* sym)
2243 { this->add_entry(Dynamic_entry(tag, sym)); }
2244
2245 // Add a new dynamic entry with a string.
2246 void
2247 add_string(elfcpp::DT tag, const char* str)
2248 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2249
2250 void
2251 add_string(elfcpp::DT tag, const std::string& str)
2252 { this->add_string(tag, str.c_str()); }
2253
2254 protected:
2255 // Adjust the output section to set the entry size.
2256 void
2257 do_adjust_output_section(Output_section*);
2258
2259 // Set the final data size.
2260 void
2261 set_final_data_size();
2262
2263 // Write out the dynamic entries.
2264 void
2265 do_write(Output_file*);
2266
2267 // Write to a map file.
2268 void
2269 do_print_to_mapfile(Mapfile* mapfile) const
2270 { mapfile->print_output_data(this, _("** dynamic")); }
2271
2272 private:
2273 // This POD class holds a single dynamic entry.
2274 class Dynamic_entry
2275 {
2276 public:
2277 // Create an entry with a fixed numeric value.
2278 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2279 : tag_(tag), offset_(DYNAMIC_NUMBER)
2280 { this->u_.val = val; }
2281
2282 // Create an entry with the size or address of a section.
2283 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2284 : tag_(tag),
2285 offset_(section_size
2286 ? DYNAMIC_SECTION_SIZE
2287 : DYNAMIC_SECTION_ADDRESS)
2288 {
2289 this->u_.od = od;
2290 this->od2 = NULL;
2291 }
2292
2293 // Create an entry with the size of two sections.
2294 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2295 : tag_(tag),
2296 offset_(DYNAMIC_SECTION_SIZE)
2297 {
2298 this->u_.od = od;
2299 this->od2 = od2;
2300 }
2301
2302 // Create an entry with the address of a section plus a constant offset.
2303 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2304 : tag_(tag),
2305 offset_(offset)
2306 { this->u_.od = od; }
2307
2308 // Create an entry with the address of a symbol.
2309 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2310 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2311 { this->u_.sym = sym; }
2312
2313 // Create an entry with a string.
2314 Dynamic_entry(elfcpp::DT tag, const char* str)
2315 : tag_(tag), offset_(DYNAMIC_STRING)
2316 { this->u_.str = str; }
2317
2318 // Return the tag of this entry.
2319 elfcpp::DT
2320 tag() const
2321 { return this->tag_; }
2322
2323 // Write the dynamic entry to an output view.
2324 template<int size, bool big_endian>
2325 void
2326 write(unsigned char* pov, const Stringpool*) const;
2327
2328 private:
2329 // Classification is encoded in the OFFSET field.
2330 enum Classification
2331 {
2332 // Section address.
2333 DYNAMIC_SECTION_ADDRESS = 0,
2334 // Number.
2335 DYNAMIC_NUMBER = -1U,
2336 // Section size.
2337 DYNAMIC_SECTION_SIZE = -2U,
2338 // Symbol adress.
2339 DYNAMIC_SYMBOL = -3U,
2340 // String.
2341 DYNAMIC_STRING = -4U
2342 // Any other value indicates a section address plus OFFSET.
2343 };
2344
2345 union
2346 {
2347 // For DYNAMIC_NUMBER.
2348 unsigned int val;
2349 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2350 const Output_data* od;
2351 // For DYNAMIC_SYMBOL.
2352 const Symbol* sym;
2353 // For DYNAMIC_STRING.
2354 const char* str;
2355 } u_;
2356 // For DYNAMIC_SYMBOL with two sections.
2357 const Output_data* od2;
2358 // The dynamic tag.
2359 elfcpp::DT tag_;
2360 // The type of entry (Classification) or offset within a section.
2361 unsigned int offset_;
2362 };
2363
2364 // Add an entry to the list.
2365 void
2366 add_entry(const Dynamic_entry& entry)
2367 { this->entries_.push_back(entry); }
2368
2369 // Sized version of write function.
2370 template<int size, bool big_endian>
2371 void
2372 sized_write(Output_file* of);
2373
2374 // The type of the list of entries.
2375 typedef std::vector<Dynamic_entry> Dynamic_entries;
2376
2377 // The entries.
2378 Dynamic_entries entries_;
2379 // The pool used for strings.
2380 Stringpool* pool_;
2381 };
2382
2383 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2384 // which may be required if the object file has more than
2385 // SHN_LORESERVE sections.
2386
2387 class Output_symtab_xindex : public Output_section_data
2388 {
2389 public:
2390 Output_symtab_xindex(size_t symcount)
2391 : Output_section_data(symcount * 4, 4, true),
2392 entries_()
2393 { }
2394
2395 // Add an entry: symbol number SYMNDX has section SHNDX.
2396 void
2397 add(unsigned int symndx, unsigned int shndx)
2398 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2399
2400 protected:
2401 void
2402 do_write(Output_file*);
2403
2404 // Write to a map file.
2405 void
2406 do_print_to_mapfile(Mapfile* mapfile) const
2407 { mapfile->print_output_data(this, _("** symtab xindex")); }
2408
2409 private:
2410 template<bool big_endian>
2411 void
2412 endian_do_write(unsigned char*);
2413
2414 // It is likely that most symbols will not require entries. Rather
2415 // than keep a vector for all symbols, we keep pairs of symbol index
2416 // and section index.
2417 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2418
2419 // The entries we need.
2420 Xindex_entries entries_;
2421 };
2422
2423 // A relaxed input section.
2424 class Output_relaxed_input_section : public Output_section_data_build
2425 {
2426 public:
2427 // We would like to call relobj->section_addralign(shndx) to get the
2428 // alignment but we do not want the constructor to fail. So callers
2429 // are repsonsible for ensuring that.
2430 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2431 uint64_t addralign)
2432 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2433 { }
2434
2435 // Return the Relobj of this relaxed input section.
2436 Relobj*
2437 relobj() const
2438 { return this->relobj_; }
2439
2440 // Return the section index of this relaxed input section.
2441 unsigned int
2442 shndx() const
2443 { return this->shndx_; }
2444
2445 private:
2446 Relobj* relobj_;
2447 unsigned int shndx_;
2448 };
2449
2450 // This class describes properties of merge data sections. It is used
2451 // as a key type for maps.
2452 class Merge_section_properties
2453 {
2454 public:
2455 Merge_section_properties(bool is_string, uint64_t entsize,
2456 uint64_t addralign)
2457 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2458 { }
2459
2460 // Whether this equals to another Merge_section_properties MSP.
2461 bool
2462 eq(const Merge_section_properties& msp) const
2463 {
2464 return ((this->is_string_ == msp.is_string_)
2465 && (this->entsize_ == msp.entsize_)
2466 && (this->addralign_ == msp.addralign_));
2467 }
2468
2469 // Compute a hash value for this using 64-bit FNV-1a hash.
2470 size_t
2471 hash_value() const
2472 {
2473 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2474 uint64_t prime = 1099511628211ULL;
2475 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2476 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2477 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2478 return h;
2479 }
2480
2481 // Functors for associative containers.
2482 struct equal_to
2483 {
2484 bool
2485 operator()(const Merge_section_properties& msp1,
2486 const Merge_section_properties& msp2) const
2487 { return msp1.eq(msp2); }
2488 };
2489
2490 struct hash
2491 {
2492 size_t
2493 operator()(const Merge_section_properties& msp) const
2494 { return msp.hash_value(); }
2495 };
2496
2497 private:
2498 // Whether this merge data section is for strings.
2499 bool is_string_;
2500 // Entsize of this merge data section.
2501 uint64_t entsize_;
2502 // Address alignment.
2503 uint64_t addralign_;
2504 };
2505
2506 // This class is used to speed up look up of special input sections in an
2507 // Output_section.
2508
2509 class Output_section_lookup_maps
2510 {
2511 public:
2512 Output_section_lookup_maps()
2513 : is_valid_(true), merge_sections_by_properties_(),
2514 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2515 { }
2516
2517 // Whether the maps are valid.
2518 bool
2519 is_valid() const
2520 { return this->is_valid_; }
2521
2522 // Invalidate the maps.
2523 void
2524 invalidate()
2525 { this->is_valid_ = false; }
2526
2527 // Clear the maps.
2528 void
2529 clear()
2530 {
2531 this->merge_sections_by_properties_.clear();
2532 this->merge_sections_by_id_.clear();
2533 this->relaxed_input_sections_by_id_.clear();
2534 // A cleared map is valid.
2535 this->is_valid_ = true;
2536 }
2537
2538 // Find a merge section by merge section properties. Return NULL if none
2539 // is found.
2540 Output_merge_base*
2541 find_merge_section(const Merge_section_properties& msp) const
2542 {
2543 gold_assert(this->is_valid_);
2544 Merge_sections_by_properties::const_iterator p =
2545 this->merge_sections_by_properties_.find(msp);
2546 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2547 }
2548
2549 // Find a merge section by section ID of a merge input section. Return NULL
2550 // if none is found.
2551 Output_merge_base*
2552 find_merge_section(const Object* object, unsigned int shndx) const
2553 {
2554 gold_assert(this->is_valid_);
2555 Merge_sections_by_id::const_iterator p =
2556 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2557 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2558 }
2559
2560 // Add a merge section pointed by POMB with properties MSP.
2561 void
2562 add_merge_section(const Merge_section_properties& msp,
2563 Output_merge_base* pomb)
2564 {
2565 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2566 std::pair<Merge_sections_by_properties::iterator, bool> result =
2567 this->merge_sections_by_properties_.insert(value);
2568 gold_assert(result.second);
2569 }
2570
2571 // Add a mapping from a merged input section in OBJECT with index SHNDX
2572 // to a merge output section pointed by POMB.
2573 void
2574 add_merge_input_section(const Object* object, unsigned int shndx,
2575 Output_merge_base* pomb)
2576 {
2577 Const_section_id csid(object, shndx);
2578 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2579 std::pair<Merge_sections_by_id::iterator, bool> result =
2580 this->merge_sections_by_id_.insert(value);
2581 gold_assert(result.second);
2582 }
2583
2584 // Find a relaxed input section of OBJECT with index SHNDX.
2585 Output_relaxed_input_section*
2586 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2587 {
2588 gold_assert(this->is_valid_);
2589 Relaxed_input_sections_by_id::const_iterator p =
2590 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2591 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2592 }
2593
2594 // Add a relaxed input section pointed by POMB and whose original input
2595 // section is in OBJECT with index SHNDX.
2596 void
2597 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2598 Output_relaxed_input_section* poris)
2599 {
2600 Const_section_id csid(relobj, shndx);
2601 std::pair<Const_section_id, Output_relaxed_input_section*>
2602 value(csid, poris);
2603 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2604 this->relaxed_input_sections_by_id_.insert(value);
2605 gold_assert(result.second);
2606 }
2607
2608 private:
2609 typedef Unordered_map<Const_section_id, Output_merge_base*,
2610 Const_section_id_hash>
2611 Merge_sections_by_id;
2612
2613 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2614 Merge_section_properties::hash,
2615 Merge_section_properties::equal_to>
2616 Merge_sections_by_properties;
2617
2618 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2619 Const_section_id_hash>
2620 Relaxed_input_sections_by_id;
2621
2622 // Whether this is valid
2623 bool is_valid_;
2624 // Merge sections by merge section properties.
2625 Merge_sections_by_properties merge_sections_by_properties_;
2626 // Merge sections by section IDs.
2627 Merge_sections_by_id merge_sections_by_id_;
2628 // Relaxed sections by section IDs.
2629 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2630 };
2631
2632 // This abstract base class defines the interface for the
2633 // types of methods used to fill free space left in an output
2634 // section during an incremental link. These methods are used
2635 // to insert dummy compilation units into debug info so that
2636 // debug info consumers can scan the debug info serially.
2637
2638 class Output_fill
2639 {
2640 public:
2641 Output_fill()
2642 : is_big_endian_(parameters->target().is_big_endian())
2643 { }
2644
2645 // Return the smallest size chunk of free space that can be
2646 // filled with a dummy compilation unit.
2647 size_t
2648 minimum_hole_size() const
2649 { return this->do_minimum_hole_size(); }
2650
2651 // Write a fill pattern of length LEN at offset OFF in the file.
2652 void
2653 write(Output_file* of, off_t off, size_t len) const
2654 { this->do_write(of, off, len); }
2655
2656 protected:
2657 virtual size_t
2658 do_minimum_hole_size() const = 0;
2659
2660 virtual void
2661 do_write(Output_file* of, off_t off, size_t len) const = 0;
2662
2663 bool
2664 is_big_endian() const
2665 { return this->is_big_endian_; }
2666
2667 private:
2668 bool is_big_endian_;
2669 };
2670
2671 // Fill method that introduces a dummy compilation unit in
2672 // a .debug_info or .debug_types section.
2673
2674 class Output_fill_debug_info : public Output_fill
2675 {
2676 public:
2677 Output_fill_debug_info(bool is_debug_types)
2678 : is_debug_types_(is_debug_types)
2679 { }
2680
2681 protected:
2682 virtual size_t
2683 do_minimum_hole_size() const;
2684
2685 virtual void
2686 do_write(Output_file* of, off_t off, size_t len) const;
2687
2688 private:
2689 // Version of the header.
2690 static const int version = 4;
2691 // True if this is a .debug_types section.
2692 bool is_debug_types_;
2693 };
2694
2695 // Fill method that introduces a dummy compilation unit in
2696 // a .debug_line section.
2697
2698 class Output_fill_debug_line : public Output_fill
2699 {
2700 public:
2701 Output_fill_debug_line()
2702 { }
2703
2704 protected:
2705 virtual size_t
2706 do_minimum_hole_size() const;
2707
2708 virtual void
2709 do_write(Output_file* of, off_t off, size_t len) const;
2710
2711 private:
2712 // Version of the header. We write a DWARF-3 header because it's smaller
2713 // and many tools have not yet been updated to understand the DWARF-4 header.
2714 static const int version = 3;
2715 // Length of the portion of the header that follows the header_length
2716 // field. This includes the following fields:
2717 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2718 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2719 // The standard_opcode_lengths array is 12 bytes long, and the
2720 // include_directories and filenames fields each contain only a single
2721 // null byte.
2722 static const size_t header_length = 19;
2723 };
2724
2725 // An output section. We don't expect to have too many output
2726 // sections, so we don't bother to do a template on the size.
2727
2728 class Output_section : public Output_data
2729 {
2730 public:
2731 // Create an output section, giving the name, type, and flags.
2732 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2733 virtual ~Output_section();
2734
2735 // Add a new input section SHNDX, named NAME, with header SHDR, from
2736 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2737 // which applies to this section, or 0 if none, or -1 if more than
2738 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2739 // in a linker script; in that case we need to keep track of input
2740 // sections associated with an output section. Return the offset
2741 // within the output section.
2742 template<int size, bool big_endian>
2743 off_t
2744 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2745 unsigned int shndx, const char* name,
2746 const elfcpp::Shdr<size, big_endian>& shdr,
2747 unsigned int reloc_shndx, bool have_sections_script);
2748
2749 // Add generated data POSD to this output section.
2750 void
2751 add_output_section_data(Output_section_data* posd);
2752
2753 // Add a relaxed input section PORIS called NAME to this output section
2754 // with LAYOUT.
2755 void
2756 add_relaxed_input_section(Layout* layout,
2757 Output_relaxed_input_section* poris,
2758 const std::string& name);
2759
2760 // Return the section name.
2761 const char*
2762 name() const
2763 { return this->name_; }
2764
2765 // Return the section type.
2766 elfcpp::Elf_Word
2767 type() const
2768 { return this->type_; }
2769
2770 // Return the section flags.
2771 elfcpp::Elf_Xword
2772 flags() const
2773 { return this->flags_; }
2774
2775 typedef std::map<Section_id, unsigned int> Section_layout_order;
2776
2777 void
2778 update_section_layout(const Section_layout_order* order_map);
2779
2780 // Update the output section flags based on input section flags.
2781 void
2782 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2783
2784 // Return the entsize field.
2785 uint64_t
2786 entsize() const
2787 { return this->entsize_; }
2788
2789 // Set the entsize field.
2790 void
2791 set_entsize(uint64_t v);
2792
2793 // Set the load address.
2794 void
2795 set_load_address(uint64_t load_address)
2796 {
2797 this->load_address_ = load_address;
2798 this->has_load_address_ = true;
2799 }
2800
2801 // Set the link field to the output section index of a section.
2802 void
2803 set_link_section(const Output_data* od)
2804 {
2805 gold_assert(this->link_ == 0
2806 && !this->should_link_to_symtab_
2807 && !this->should_link_to_dynsym_);
2808 this->link_section_ = od;
2809 }
2810
2811 // Set the link field to a constant.
2812 void
2813 set_link(unsigned int v)
2814 {
2815 gold_assert(this->link_section_ == NULL
2816 && !this->should_link_to_symtab_
2817 && !this->should_link_to_dynsym_);
2818 this->link_ = v;
2819 }
2820
2821 // Record that this section should link to the normal symbol table.
2822 void
2823 set_should_link_to_symtab()
2824 {
2825 gold_assert(this->link_section_ == NULL
2826 && this->link_ == 0
2827 && !this->should_link_to_dynsym_);
2828 this->should_link_to_symtab_ = true;
2829 }
2830
2831 // Record that this section should link to the dynamic symbol table.
2832 void
2833 set_should_link_to_dynsym()
2834 {
2835 gold_assert(this->link_section_ == NULL
2836 && this->link_ == 0
2837 && !this->should_link_to_symtab_);
2838 this->should_link_to_dynsym_ = true;
2839 }
2840
2841 // Return the info field.
2842 unsigned int
2843 info() const
2844 {
2845 gold_assert(this->info_section_ == NULL
2846 && this->info_symndx_ == NULL);
2847 return this->info_;
2848 }
2849
2850 // Set the info field to the output section index of a section.
2851 void
2852 set_info_section(const Output_section* os)
2853 {
2854 gold_assert((this->info_section_ == NULL
2855 || (this->info_section_ == os
2856 && this->info_uses_section_index_))
2857 && this->info_symndx_ == NULL
2858 && this->info_ == 0);
2859 this->info_section_ = os;
2860 this->info_uses_section_index_= true;
2861 }
2862
2863 // Set the info field to the symbol table index of a symbol.
2864 void
2865 set_info_symndx(const Symbol* sym)
2866 {
2867 gold_assert(this->info_section_ == NULL
2868 && (this->info_symndx_ == NULL
2869 || this->info_symndx_ == sym)
2870 && this->info_ == 0);
2871 this->info_symndx_ = sym;
2872 }
2873
2874 // Set the info field to the symbol table index of a section symbol.
2875 void
2876 set_info_section_symndx(const Output_section* os)
2877 {
2878 gold_assert((this->info_section_ == NULL
2879 || (this->info_section_ == os
2880 && !this->info_uses_section_index_))
2881 && this->info_symndx_ == NULL
2882 && this->info_ == 0);
2883 this->info_section_ = os;
2884 this->info_uses_section_index_ = false;
2885 }
2886
2887 // Set the info field to a constant.
2888 void
2889 set_info(unsigned int v)
2890 {
2891 gold_assert(this->info_section_ == NULL
2892 && this->info_symndx_ == NULL
2893 && (this->info_ == 0
2894 || this->info_ == v));
2895 this->info_ = v;
2896 }
2897
2898 // Set the addralign field.
2899 void
2900 set_addralign(uint64_t v)
2901 { this->addralign_ = v; }
2902
2903 // Whether the output section index has been set.
2904 bool
2905 has_out_shndx() const
2906 { return this->out_shndx_ != -1U; }
2907
2908 // Indicate that we need a symtab index.
2909 void
2910 set_needs_symtab_index()
2911 { this->needs_symtab_index_ = true; }
2912
2913 // Return whether we need a symtab index.
2914 bool
2915 needs_symtab_index() const
2916 { return this->needs_symtab_index_; }
2917
2918 // Get the symtab index.
2919 unsigned int
2920 symtab_index() const
2921 {
2922 gold_assert(this->symtab_index_ != 0);
2923 return this->symtab_index_;
2924 }
2925
2926 // Set the symtab index.
2927 void
2928 set_symtab_index(unsigned int index)
2929 {
2930 gold_assert(index != 0);
2931 this->symtab_index_ = index;
2932 }
2933
2934 // Indicate that we need a dynsym index.
2935 void
2936 set_needs_dynsym_index()
2937 { this->needs_dynsym_index_ = true; }
2938
2939 // Return whether we need a dynsym index.
2940 bool
2941 needs_dynsym_index() const
2942 { return this->needs_dynsym_index_; }
2943
2944 // Get the dynsym index.
2945 unsigned int
2946 dynsym_index() const
2947 {
2948 gold_assert(this->dynsym_index_ != 0);
2949 return this->dynsym_index_;
2950 }
2951
2952 // Set the dynsym index.
2953 void
2954 set_dynsym_index(unsigned int index)
2955 {
2956 gold_assert(index != 0);
2957 this->dynsym_index_ = index;
2958 }
2959
2960 // Return whether the input sections sections attachd to this output
2961 // section may require sorting. This is used to handle constructor
2962 // priorities compatibly with GNU ld.
2963 bool
2964 may_sort_attached_input_sections() const
2965 { return this->may_sort_attached_input_sections_; }
2966
2967 // Record that the input sections attached to this output section
2968 // may require sorting.
2969 void
2970 set_may_sort_attached_input_sections()
2971 { this->may_sort_attached_input_sections_ = true; }
2972
2973 // Returns true if input sections must be sorted according to the
2974 // order in which their name appear in the --section-ordering-file.
2975 bool
2976 input_section_order_specified()
2977 { return this->input_section_order_specified_; }
2978
2979 // Record that input sections must be sorted as some of their names
2980 // match the patterns specified through --section-ordering-file.
2981 void
2982 set_input_section_order_specified()
2983 { this->input_section_order_specified_ = true; }
2984
2985 // Return whether the input sections attached to this output section
2986 // require sorting. This is used to handle constructor priorities
2987 // compatibly with GNU ld.
2988 bool
2989 must_sort_attached_input_sections() const
2990 { return this->must_sort_attached_input_sections_; }
2991
2992 // Record that the input sections attached to this output section
2993 // require sorting.
2994 void
2995 set_must_sort_attached_input_sections()
2996 { this->must_sort_attached_input_sections_ = true; }
2997
2998 // Get the order in which this section appears in the PT_LOAD output
2999 // segment.
3000 Output_section_order
3001 order() const
3002 { return this->order_; }
3003
3004 // Set the order for this section.
3005 void
3006 set_order(Output_section_order order)
3007 { this->order_ = order; }
3008
3009 // Return whether this section holds relro data--data which has
3010 // dynamic relocations but which may be marked read-only after the
3011 // dynamic relocations have been completed.
3012 bool
3013 is_relro() const
3014 { return this->is_relro_; }
3015
3016 // Record that this section holds relro data.
3017 void
3018 set_is_relro()
3019 { this->is_relro_ = true; }
3020
3021 // Record that this section does not hold relro data.
3022 void
3023 clear_is_relro()
3024 { this->is_relro_ = false; }
3025
3026 // True if this is a small section: a section which holds small
3027 // variables.
3028 bool
3029 is_small_section() const
3030 { return this->is_small_section_; }
3031
3032 // Record that this is a small section.
3033 void
3034 set_is_small_section()
3035 { this->is_small_section_ = true; }
3036
3037 // True if this is a large section: a section which holds large
3038 // variables.
3039 bool
3040 is_large_section() const
3041 { return this->is_large_section_; }
3042
3043 // Record that this is a large section.
3044 void
3045 set_is_large_section()
3046 { this->is_large_section_ = true; }
3047
3048 // True if this is a large data (not BSS) section.
3049 bool
3050 is_large_data_section()
3051 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3052
3053 // Return whether this section should be written after all the input
3054 // sections are complete.
3055 bool
3056 after_input_sections() const
3057 { return this->after_input_sections_; }
3058
3059 // Record that this section should be written after all the input
3060 // sections are complete.
3061 void
3062 set_after_input_sections()
3063 { this->after_input_sections_ = true; }
3064
3065 // Return whether this section requires postprocessing after all
3066 // relocations have been applied.
3067 bool
3068 requires_postprocessing() const
3069 { return this->requires_postprocessing_; }
3070
3071 // If a section requires postprocessing, return the buffer to use.
3072 unsigned char*
3073 postprocessing_buffer() const
3074 {
3075 gold_assert(this->postprocessing_buffer_ != NULL);
3076 return this->postprocessing_buffer_;
3077 }
3078
3079 // If a section requires postprocessing, create the buffer to use.
3080 void
3081 create_postprocessing_buffer();
3082
3083 // If a section requires postprocessing, this is the size of the
3084 // buffer to which relocations should be applied.
3085 off_t
3086 postprocessing_buffer_size() const
3087 { return this->current_data_size_for_child(); }
3088
3089 // Modify the section name. This is only permitted for an
3090 // unallocated section, and only before the size has been finalized.
3091 // Otherwise the name will not get into Layout::namepool_.
3092 void
3093 set_name(const char* newname)
3094 {
3095 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3096 gold_assert(!this->is_data_size_valid());
3097 this->name_ = newname;
3098 }
3099
3100 // Return whether the offset OFFSET in the input section SHNDX in
3101 // object OBJECT is being included in the link.
3102 bool
3103 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3104 off_t offset) const;
3105
3106 // Return the offset within the output section of OFFSET relative to
3107 // the start of input section SHNDX in object OBJECT.
3108 section_offset_type
3109 output_offset(const Relobj* object, unsigned int shndx,
3110 section_offset_type offset) const;
3111
3112 // Return the output virtual address of OFFSET relative to the start
3113 // of input section SHNDX in object OBJECT.
3114 uint64_t
3115 output_address(const Relobj* object, unsigned int shndx,
3116 off_t offset) const;
3117
3118 // Look for the merged section for input section SHNDX in object
3119 // OBJECT. If found, return true, and set *ADDR to the address of
3120 // the start of the merged section. This is not necessary the
3121 // output offset corresponding to input offset 0 in the section,
3122 // since the section may be mapped arbitrarily.
3123 bool
3124 find_starting_output_address(const Relobj* object, unsigned int shndx,
3125 uint64_t* addr) const;
3126
3127 // Record that this output section was found in the SECTIONS clause
3128 // of a linker script.
3129 void
3130 set_found_in_sections_clause()
3131 { this->found_in_sections_clause_ = true; }
3132
3133 // Return whether this output section was found in the SECTIONS
3134 // clause of a linker script.
3135 bool
3136 found_in_sections_clause() const
3137 { return this->found_in_sections_clause_; }
3138
3139 // Write the section header into *OPHDR.
3140 template<int size, bool big_endian>
3141 void
3142 write_header(const Layout*, const Stringpool*,
3143 elfcpp::Shdr_write<size, big_endian>*) const;
3144
3145 // The next few calls are for linker script support.
3146
3147 // In some cases we need to keep a list of the input sections
3148 // associated with this output section. We only need the list if we
3149 // might have to change the offsets of the input section within the
3150 // output section after we add the input section. The ordinary
3151 // input sections will be written out when we process the object
3152 // file, and as such we don't need to track them here. We do need
3153 // to track Output_section_data objects here. We store instances of
3154 // this structure in a std::vector, so it must be a POD. There can
3155 // be many instances of this structure, so we use a union to save
3156 // some space.
3157 class Input_section
3158 {
3159 public:
3160 Input_section()
3161 : shndx_(0), p2align_(0)
3162 {
3163 this->u1_.data_size = 0;
3164 this->u2_.object = NULL;
3165 }
3166
3167 // For an ordinary input section.
3168 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3169 uint64_t addralign)
3170 : shndx_(shndx),
3171 p2align_(ffsll(static_cast<long long>(addralign))),
3172 section_order_index_(0)
3173 {
3174 gold_assert(shndx != OUTPUT_SECTION_CODE
3175 && shndx != MERGE_DATA_SECTION_CODE
3176 && shndx != MERGE_STRING_SECTION_CODE
3177 && shndx != RELAXED_INPUT_SECTION_CODE);
3178 this->u1_.data_size = data_size;
3179 this->u2_.object = object;
3180 }
3181
3182 // For a non-merge output section.
3183 Input_section(Output_section_data* posd)
3184 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3185 section_order_index_(0)
3186 {
3187 this->u1_.data_size = 0;
3188 this->u2_.posd = posd;
3189 }
3190
3191 // For a merge section.
3192 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3193 : shndx_(is_string
3194 ? MERGE_STRING_SECTION_CODE
3195 : MERGE_DATA_SECTION_CODE),
3196 p2align_(0),
3197 section_order_index_(0)
3198 {
3199 this->u1_.entsize = entsize;
3200 this->u2_.posd = posd;
3201 }
3202
3203 // For a relaxed input section.
3204 Input_section(Output_relaxed_input_section* psection)
3205 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3206 section_order_index_(0)
3207 {
3208 this->u1_.data_size = 0;
3209 this->u2_.poris = psection;
3210 }
3211
3212 unsigned int
3213 section_order_index() const
3214 {
3215 return this->section_order_index_;
3216 }
3217
3218 void
3219 set_section_order_index(unsigned int number)
3220 {
3221 this->section_order_index_ = number;
3222 }
3223
3224 // The required alignment.
3225 uint64_t
3226 addralign() const
3227 {
3228 if (this->p2align_ != 0)
3229 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3230 else if (!this->is_input_section())
3231 return this->u2_.posd->addralign();
3232 else
3233 return 0;
3234 }
3235
3236 // Set the required alignment, which must be either 0 or a power of 2.
3237 // For input sections that are sub-classes of Output_section_data, a
3238 // alignment of zero means asking the underlying object for alignment.
3239 void
3240 set_addralign(uint64_t addralign)
3241 {
3242 if (addralign == 0)
3243 this->p2align_ = 0;
3244 else
3245 {
3246 gold_assert((addralign & (addralign - 1)) == 0);
3247 this->p2align_ = ffsll(static_cast<long long>(addralign));
3248 }
3249 }
3250
3251 // Return the current required size, without finalization.
3252 off_t
3253 current_data_size() const;
3254
3255 // Return the required size.
3256 off_t
3257 data_size() const;
3258
3259 // Whether this is an input section.
3260 bool
3261 is_input_section() const
3262 {
3263 return (this->shndx_ != OUTPUT_SECTION_CODE
3264 && this->shndx_ != MERGE_DATA_SECTION_CODE
3265 && this->shndx_ != MERGE_STRING_SECTION_CODE
3266 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3267 }
3268
3269 // Return whether this is a merge section which matches the
3270 // parameters.
3271 bool
3272 is_merge_section(bool is_string, uint64_t entsize,
3273 uint64_t addralign) const
3274 {
3275 return (this->shndx_ == (is_string
3276 ? MERGE_STRING_SECTION_CODE
3277 : MERGE_DATA_SECTION_CODE)
3278 && this->u1_.entsize == entsize
3279 && this->addralign() == addralign);
3280 }
3281
3282 // Return whether this is a merge section for some input section.
3283 bool
3284 is_merge_section() const
3285 {
3286 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3287 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3288 }
3289
3290 // Return whether this is a relaxed input section.
3291 bool
3292 is_relaxed_input_section() const
3293 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3294
3295 // Return whether this is a generic Output_section_data.
3296 bool
3297 is_output_section_data() const
3298 {
3299 return this->shndx_ == OUTPUT_SECTION_CODE;
3300 }
3301
3302 // Return the object for an input section.
3303 Relobj*
3304 relobj() const;
3305
3306 // Return the input section index for an input section.
3307 unsigned int
3308 shndx() const;
3309
3310 // For non-input-sections, return the associated Output_section_data
3311 // object.
3312 Output_section_data*
3313 output_section_data() const
3314 {
3315 gold_assert(!this->is_input_section());
3316 return this->u2_.posd;
3317 }
3318
3319 // For a merge section, return the Output_merge_base pointer.
3320 Output_merge_base*
3321 output_merge_base() const
3322 {
3323 gold_assert(this->is_merge_section());
3324 return this->u2_.pomb;
3325 }
3326
3327 // Return the Output_relaxed_input_section object.
3328 Output_relaxed_input_section*
3329 relaxed_input_section() const
3330 {
3331 gold_assert(this->is_relaxed_input_section());
3332 return this->u2_.poris;
3333 }
3334
3335 // Set the output section.
3336 void
3337 set_output_section(Output_section* os)
3338 {
3339 gold_assert(!this->is_input_section());
3340 Output_section_data* posd =
3341 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3342 posd->set_output_section(os);
3343 }
3344
3345 // Set the address and file offset. This is called during
3346 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3347 // the enclosing section.
3348 void
3349 set_address_and_file_offset(uint64_t address, off_t file_offset,
3350 off_t section_file_offset);
3351
3352 // Reset the address and file offset.
3353 void
3354 reset_address_and_file_offset();
3355
3356 // Finalize the data size.
3357 void
3358 finalize_data_size();
3359
3360 // Add an input section, for SHF_MERGE sections.
3361 bool
3362 add_input_section(Relobj* object, unsigned int shndx)
3363 {
3364 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3365 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3366 return this->u2_.posd->add_input_section(object, shndx);
3367 }
3368
3369 // Given an input OBJECT, an input section index SHNDX within that
3370 // object, and an OFFSET relative to the start of that input
3371 // section, return whether or not the output offset is known. If
3372 // this function returns true, it sets *POUTPUT to the offset in
3373 // the output section, relative to the start of the input section
3374 // in the output section. *POUTPUT may be different from OFFSET
3375 // for a merged section.
3376 bool
3377 output_offset(const Relobj* object, unsigned int shndx,
3378 section_offset_type offset,
3379 section_offset_type* poutput) const;
3380
3381 // Return whether this is the merge section for the input section
3382 // SHNDX in OBJECT.
3383 bool
3384 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3385
3386 // Write out the data. This does nothing for an input section.
3387 void
3388 write(Output_file*);
3389
3390 // Write the data to a buffer. This does nothing for an input
3391 // section.
3392 void
3393 write_to_buffer(unsigned char*);
3394
3395 // Print to a map file.
3396 void
3397 print_to_mapfile(Mapfile*) const;
3398
3399 // Print statistics about merge sections to stderr.
3400 void
3401 print_merge_stats(const char* section_name)
3402 {
3403 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3404 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3405 this->u2_.posd->print_merge_stats(section_name);
3406 }
3407
3408 private:
3409 // Code values which appear in shndx_. If the value is not one of
3410 // these codes, it is the input section index in the object file.
3411 enum
3412 {
3413 // An Output_section_data.
3414 OUTPUT_SECTION_CODE = -1U,
3415 // An Output_section_data for an SHF_MERGE section with
3416 // SHF_STRINGS not set.
3417 MERGE_DATA_SECTION_CODE = -2U,
3418 // An Output_section_data for an SHF_MERGE section with
3419 // SHF_STRINGS set.
3420 MERGE_STRING_SECTION_CODE = -3U,
3421 // An Output_section_data for a relaxed input section.
3422 RELAXED_INPUT_SECTION_CODE = -4U
3423 };
3424
3425 // For an ordinary input section, this is the section index in the
3426 // input file. For an Output_section_data, this is
3427 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3428 // MERGE_STRING_SECTION_CODE.
3429 unsigned int shndx_;
3430 // The required alignment, stored as a power of 2.
3431 unsigned int p2align_;
3432 union
3433 {
3434 // For an ordinary input section, the section size.
3435 off_t data_size;
3436 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3437 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3438 // entity size.
3439 uint64_t entsize;
3440 } u1_;
3441 union
3442 {
3443 // For an ordinary input section, the object which holds the
3444 // input section.
3445 Relobj* object;
3446 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3447 // MERGE_STRING_SECTION_CODE, the data.
3448 Output_section_data* posd;
3449 Output_merge_base* pomb;
3450 // For RELAXED_INPUT_SECTION_CODE, the data.
3451 Output_relaxed_input_section* poris;
3452 } u2_;
3453 // The line number of the pattern it matches in the --section-ordering-file
3454 // file. It is 0 if does not match any pattern.
3455 unsigned int section_order_index_;
3456 };
3457
3458 // Store the list of input sections for this Output_section into the
3459 // list passed in. This removes the input sections, leaving only
3460 // any Output_section_data elements. This returns the size of those
3461 // Output_section_data elements. ADDRESS is the address of this
3462 // output section. FILL is the fill value to use, in case there are
3463 // any spaces between the remaining Output_section_data elements.
3464 uint64_t
3465 get_input_sections(uint64_t address, const std::string& fill,
3466 std::list<Input_section>*);
3467
3468 // Add a script input section. A script input section can either be
3469 // a plain input section or a sub-class of Output_section_data.
3470 void
3471 add_script_input_section(const Input_section& input_section);
3472
3473 // Set the current size of the output section.
3474 void
3475 set_current_data_size(off_t size)
3476 { this->set_current_data_size_for_child(size); }
3477
3478 // End of linker script support.
3479
3480 // Save states before doing section layout.
3481 // This is used for relaxation.
3482 void
3483 save_states();
3484
3485 // Restore states prior to section layout.
3486 void
3487 restore_states();
3488
3489 // Discard states.
3490 void
3491 discard_states();
3492
3493 // Convert existing input sections to relaxed input sections.
3494 void
3495 convert_input_sections_to_relaxed_sections(
3496 const std::vector<Output_relaxed_input_section*>& sections);
3497
3498 // Find a relaxed input section to an input section in OBJECT
3499 // with index SHNDX. Return NULL if none is found.
3500 const Output_relaxed_input_section*
3501 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3502
3503 // Whether section offsets need adjustment due to relaxation.
3504 bool
3505 section_offsets_need_adjustment() const
3506 { return this->section_offsets_need_adjustment_; }
3507
3508 // Set section_offsets_need_adjustment to be true.
3509 void
3510 set_section_offsets_need_adjustment()
3511 { this->section_offsets_need_adjustment_ = true; }
3512
3513 // Adjust section offsets of input sections in this. This is
3514 // requires if relaxation caused some input sections to change sizes.
3515 void
3516 adjust_section_offsets();
3517
3518 // Whether this is a NOLOAD section.
3519 bool
3520 is_noload() const
3521 { return this->is_noload_; }
3522
3523 // Set NOLOAD flag.
3524 void
3525 set_is_noload()
3526 { this->is_noload_ = true; }
3527
3528 // Print merge statistics to stderr.
3529 void
3530 print_merge_stats();
3531
3532 // Set a fixed layout for the section. Used for incremental update links.
3533 void
3534 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3535 uint64_t sh_addralign);
3536
3537 // Return TRUE if the section has a fixed layout.
3538 bool
3539 has_fixed_layout() const
3540 { return this->has_fixed_layout_; }
3541
3542 // Set flag to allow patch space for this section. Used for full
3543 // incremental links.
3544 void
3545 set_is_patch_space_allowed()
3546 { this->is_patch_space_allowed_ = true; }
3547
3548 // Set a fill method to use for free space left in the output section
3549 // during incremental links.
3550 void
3551 set_free_space_fill(Output_fill* free_space_fill)
3552 {
3553 this->free_space_fill_ = free_space_fill;
3554 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3555 }
3556
3557 // Reserve space within the fixed layout for the section. Used for
3558 // incremental update links.
3559 void
3560 reserve(uint64_t sh_offset, uint64_t sh_size);
3561
3562 // Allocate space from the free list for the section. Used for
3563 // incremental update links.
3564 off_t
3565 allocate(off_t len, uint64_t addralign);
3566
3567 protected:
3568 // Return the output section--i.e., the object itself.
3569 Output_section*
3570 do_output_section()
3571 { return this; }
3572
3573 const Output_section*
3574 do_output_section() const
3575 { return this; }
3576
3577 // Return the section index in the output file.
3578 unsigned int
3579 do_out_shndx() const
3580 {
3581 gold_assert(this->out_shndx_ != -1U);
3582 return this->out_shndx_;
3583 }
3584
3585 // Set the output section index.
3586 void
3587 do_set_out_shndx(unsigned int shndx)
3588 {
3589 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3590 this->out_shndx_ = shndx;
3591 }
3592
3593 // Update the data size of the Output_section. For a typical
3594 // Output_section, there is nothing to do, but if there are any
3595 // Output_section_data objects we need to do a trial layout
3596 // here.
3597 virtual void
3598 update_data_size();
3599
3600 // Set the final data size of the Output_section. For a typical
3601 // Output_section, there is nothing to do, but if there are any
3602 // Output_section_data objects we need to set their final addresses
3603 // here.
3604 virtual void
3605 set_final_data_size();
3606
3607 // Reset the address and file offset.
3608 void
3609 do_reset_address_and_file_offset();
3610
3611 // Return true if address and file offset already have reset values. In
3612 // other words, calling reset_address_and_file_offset will not change them.
3613 bool
3614 do_address_and_file_offset_have_reset_values() const;
3615
3616 // Write the data to the file. For a typical Output_section, this
3617 // does nothing: the data is written out by calling Object::Relocate
3618 // on each input object. But if there are any Output_section_data
3619 // objects we do need to write them out here.
3620 virtual void
3621 do_write(Output_file*);
3622
3623 // Return the address alignment--function required by parent class.
3624 uint64_t
3625 do_addralign() const
3626 { return this->addralign_; }
3627
3628 // Return whether there is a load address.
3629 bool
3630 do_has_load_address() const
3631 { return this->has_load_address_; }
3632
3633 // Return the load address.
3634 uint64_t
3635 do_load_address() const
3636 {
3637 gold_assert(this->has_load_address_);
3638 return this->load_address_;
3639 }
3640
3641 // Return whether this is an Output_section.
3642 bool
3643 do_is_section() const
3644 { return true; }
3645
3646 // Return whether this is a section of the specified type.
3647 bool
3648 do_is_section_type(elfcpp::Elf_Word type) const
3649 { return this->type_ == type; }
3650
3651 // Return whether the specified section flag is set.
3652 bool
3653 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3654 { return (this->flags_ & flag) != 0; }
3655
3656 // Set the TLS offset. Called only for SHT_TLS sections.
3657 void
3658 do_set_tls_offset(uint64_t tls_base);
3659
3660 // Return the TLS offset, relative to the base of the TLS segment.
3661 // Valid only for SHT_TLS sections.
3662 uint64_t
3663 do_tls_offset() const
3664 { return this->tls_offset_; }
3665
3666 // This may be implemented by a child class.
3667 virtual void
3668 do_finalize_name(Layout*)
3669 { }
3670
3671 // Print to the map file.
3672 virtual void
3673 do_print_to_mapfile(Mapfile*) const;
3674
3675 // Record that this section requires postprocessing after all
3676 // relocations have been applied. This is called by a child class.
3677 void
3678 set_requires_postprocessing()
3679 {
3680 this->requires_postprocessing_ = true;
3681 this->after_input_sections_ = true;
3682 }
3683
3684 // Write all the data of an Output_section into the postprocessing
3685 // buffer.
3686 void
3687 write_to_postprocessing_buffer();
3688
3689 typedef std::vector<Input_section> Input_section_list;
3690
3691 // Allow a child class to access the input sections.
3692 const Input_section_list&
3693 input_sections() const
3694 { return this->input_sections_; }
3695
3696 // Whether this always keeps an input section list
3697 bool
3698 always_keeps_input_sections() const
3699 { return this->always_keeps_input_sections_; }
3700
3701 // Always keep an input section list.
3702 void
3703 set_always_keeps_input_sections()
3704 {
3705 gold_assert(this->current_data_size_for_child() == 0);
3706 this->always_keeps_input_sections_ = true;
3707 }
3708
3709 private:
3710 // We only save enough information to undo the effects of section layout.
3711 class Checkpoint_output_section
3712 {
3713 public:
3714 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3715 const Input_section_list& input_sections,
3716 off_t first_input_offset,
3717 bool attached_input_sections_are_sorted)
3718 : addralign_(addralign), flags_(flags),
3719 input_sections_(input_sections),
3720 input_sections_size_(input_sections_.size()),
3721 input_sections_copy_(), first_input_offset_(first_input_offset),
3722 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3723 { }
3724
3725 virtual
3726 ~Checkpoint_output_section()
3727 { }
3728
3729 // Return the address alignment.
3730 uint64_t
3731 addralign() const
3732 { return this->addralign_; }
3733
3734 // Return the section flags.
3735 elfcpp::Elf_Xword
3736 flags() const
3737 { return this->flags_; }
3738
3739 // Return a reference to the input section list copy.
3740 Input_section_list*
3741 input_sections()
3742 { return &this->input_sections_copy_; }
3743
3744 // Return the size of input_sections at the time when checkpoint is
3745 // taken.
3746 size_t
3747 input_sections_size() const
3748 { return this->input_sections_size_; }
3749
3750 // Whether input sections are copied.
3751 bool
3752 input_sections_saved() const
3753 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3754
3755 off_t
3756 first_input_offset() const
3757 { return this->first_input_offset_; }
3758
3759 bool
3760 attached_input_sections_are_sorted() const
3761 { return this->attached_input_sections_are_sorted_; }
3762
3763 // Save input sections.
3764 void
3765 save_input_sections()
3766 {
3767 this->input_sections_copy_.reserve(this->input_sections_size_);
3768 this->input_sections_copy_.clear();
3769 Input_section_list::const_iterator p = this->input_sections_.begin();
3770 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3771 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3772 this->input_sections_copy_.push_back(*p);
3773 }
3774
3775 private:
3776 // The section alignment.
3777 uint64_t addralign_;
3778 // The section flags.
3779 elfcpp::Elf_Xword flags_;
3780 // Reference to the input sections to be checkpointed.
3781 const Input_section_list& input_sections_;
3782 // Size of the checkpointed portion of input_sections_;
3783 size_t input_sections_size_;
3784 // Copy of input sections.
3785 Input_section_list input_sections_copy_;
3786 // The offset of the first entry in input_sections_.
3787 off_t first_input_offset_;
3788 // True if the input sections attached to this output section have
3789 // already been sorted.
3790 bool attached_input_sections_are_sorted_;
3791 };
3792
3793 // This class is used to sort the input sections.
3794 class Input_section_sort_entry;
3795
3796 // This is the sort comparison function for ctors and dtors.
3797 struct Input_section_sort_compare
3798 {
3799 bool
3800 operator()(const Input_section_sort_entry&,
3801 const Input_section_sort_entry&) const;
3802 };
3803
3804 // This is the sort comparison function for .init_array and .fini_array.
3805 struct Input_section_sort_init_fini_compare
3806 {
3807 bool
3808 operator()(const Input_section_sort_entry&,
3809 const Input_section_sort_entry&) const;
3810 };
3811
3812 // This is the sort comparison function when a section order is specified
3813 // from an input file.
3814 struct Input_section_sort_section_order_index_compare
3815 {
3816 bool
3817 operator()(const Input_section_sort_entry&,
3818 const Input_section_sort_entry&) const;
3819 };
3820
3821 // Fill data. This is used to fill in data between input sections.
3822 // It is also used for data statements (BYTE, WORD, etc.) in linker
3823 // scripts. When we have to keep track of the input sections, we
3824 // can use an Output_data_const, but we don't want to have to keep
3825 // track of input sections just to implement fills.
3826 class Fill
3827 {
3828 public:
3829 Fill(off_t section_offset, off_t length)
3830 : section_offset_(section_offset),
3831 length_(convert_to_section_size_type(length))
3832 { }
3833
3834 // Return section offset.
3835 off_t
3836 section_offset() const
3837 { return this->section_offset_; }
3838
3839 // Return fill length.
3840 section_size_type
3841 length() const
3842 { return this->length_; }
3843
3844 private:
3845 // The offset within the output section.
3846 off_t section_offset_;
3847 // The length of the space to fill.
3848 section_size_type length_;
3849 };
3850
3851 typedef std::vector<Fill> Fill_list;
3852
3853 // Map used during relaxation of existing sections. This map
3854 // a section id an input section list index. We assume that
3855 // Input_section_list is a vector.
3856 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3857
3858 // Add a new output section by Input_section.
3859 void
3860 add_output_section_data(Input_section*);
3861
3862 // Add an SHF_MERGE input section. Returns true if the section was
3863 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3864 // stores information about the merged input sections.
3865 bool
3866 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3867 uint64_t entsize, uint64_t addralign,
3868 bool keeps_input_sections);
3869
3870 // Add an output SHF_MERGE section POSD to this output section.
3871 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3872 // ENTSIZE is the entity size. This returns the entry added to
3873 // input_sections_.
3874 void
3875 add_output_merge_section(Output_section_data* posd, bool is_string,
3876 uint64_t entsize);
3877
3878 // Sort the attached input sections.
3879 void
3880 sort_attached_input_sections();
3881
3882 // Find the merge section into which an input section with index SHNDX in
3883 // OBJECT has been added. Return NULL if none found.
3884 Output_section_data*
3885 find_merge_section(const Relobj* object, unsigned int shndx) const;
3886
3887 // Build a relaxation map.
3888 void
3889 build_relaxation_map(
3890 const Input_section_list& input_sections,
3891 size_t limit,
3892 Relaxation_map* map) const;
3893
3894 // Convert input sections in an input section list into relaxed sections.
3895 void
3896 convert_input_sections_in_list_to_relaxed_sections(
3897 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3898 const Relaxation_map& map,
3899 Input_section_list* input_sections);
3900
3901 // Build the lookup maps for merge and relaxed input sections.
3902 void
3903 build_lookup_maps() const;
3904
3905 // Most of these fields are only valid after layout.
3906
3907 // The name of the section. This will point into a Stringpool.
3908 const char* name_;
3909 // The section address is in the parent class.
3910 // The section alignment.
3911 uint64_t addralign_;
3912 // The section entry size.
3913 uint64_t entsize_;
3914 // The load address. This is only used when using a linker script
3915 // with a SECTIONS clause. The has_load_address_ field indicates
3916 // whether this field is valid.
3917 uint64_t load_address_;
3918 // The file offset is in the parent class.
3919 // Set the section link field to the index of this section.
3920 const Output_data* link_section_;
3921 // If link_section_ is NULL, this is the link field.
3922 unsigned int link_;
3923 // Set the section info field to the index of this section.
3924 const Output_section* info_section_;
3925 // If info_section_ is NULL, set the info field to the symbol table
3926 // index of this symbol.
3927 const Symbol* info_symndx_;
3928 // If info_section_ and info_symndx_ are NULL, this is the section
3929 // info field.
3930 unsigned int info_;
3931 // The section type.
3932 const elfcpp::Elf_Word type_;
3933 // The section flags.
3934 elfcpp::Elf_Xword flags_;
3935 // The order of this section in the output segment.
3936 Output_section_order order_;
3937 // The section index.
3938 unsigned int out_shndx_;
3939 // If there is a STT_SECTION for this output section in the normal
3940 // symbol table, this is the symbol index. This starts out as zero.
3941 // It is initialized in Layout::finalize() to be the index, or -1U
3942 // if there isn't one.
3943 unsigned int symtab_index_;
3944 // If there is a STT_SECTION for this output section in the dynamic
3945 // symbol table, this is the symbol index. This starts out as zero.
3946 // It is initialized in Layout::finalize() to be the index, or -1U
3947 // if there isn't one.
3948 unsigned int dynsym_index_;
3949 // The input sections. This will be empty in cases where we don't
3950 // need to keep track of them.
3951 Input_section_list input_sections_;
3952 // The offset of the first entry in input_sections_.
3953 off_t first_input_offset_;
3954 // The fill data. This is separate from input_sections_ because we
3955 // often will need fill sections without needing to keep track of
3956 // input sections.
3957 Fill_list fills_;
3958 // If the section requires postprocessing, this buffer holds the
3959 // section contents during relocation.
3960 unsigned char* postprocessing_buffer_;
3961 // Whether this output section needs a STT_SECTION symbol in the
3962 // normal symbol table. This will be true if there is a relocation
3963 // which needs it.
3964 bool needs_symtab_index_ : 1;
3965 // Whether this output section needs a STT_SECTION symbol in the
3966 // dynamic symbol table. This will be true if there is a dynamic
3967 // relocation which needs it.
3968 bool needs_dynsym_index_ : 1;
3969 // Whether the link field of this output section should point to the
3970 // normal symbol table.
3971 bool should_link_to_symtab_ : 1;
3972 // Whether the link field of this output section should point to the
3973 // dynamic symbol table.
3974 bool should_link_to_dynsym_ : 1;
3975 // Whether this section should be written after all the input
3976 // sections are complete.
3977 bool after_input_sections_ : 1;
3978 // Whether this section requires post processing after all
3979 // relocations have been applied.
3980 bool requires_postprocessing_ : 1;
3981 // Whether an input section was mapped to this output section
3982 // because of a SECTIONS clause in a linker script.
3983 bool found_in_sections_clause_ : 1;
3984 // Whether this section has an explicitly specified load address.
3985 bool has_load_address_ : 1;
3986 // True if the info_section_ field means the section index of the
3987 // section, false if it means the symbol index of the corresponding
3988 // section symbol.
3989 bool info_uses_section_index_ : 1;
3990 // True if input sections attached to this output section have to be
3991 // sorted according to a specified order.
3992 bool input_section_order_specified_ : 1;
3993 // True if the input sections attached to this output section may
3994 // need sorting.
3995 bool may_sort_attached_input_sections_ : 1;
3996 // True if the input sections attached to this output section must
3997 // be sorted.
3998 bool must_sort_attached_input_sections_ : 1;
3999 // True if the input sections attached to this output section have
4000 // already been sorted.
4001 bool attached_input_sections_are_sorted_ : 1;
4002 // True if this section holds relro data.
4003 bool is_relro_ : 1;
4004 // True if this is a small section.
4005 bool is_small_section_ : 1;
4006 // True if this is a large section.
4007 bool is_large_section_ : 1;
4008 // Whether code-fills are generated at write.
4009 bool generate_code_fills_at_write_ : 1;
4010 // Whether the entry size field should be zero.
4011 bool is_entsize_zero_ : 1;
4012 // Whether section offsets need adjustment due to relaxation.
4013 bool section_offsets_need_adjustment_ : 1;
4014 // Whether this is a NOLOAD section.
4015 bool is_noload_ : 1;
4016 // Whether this always keeps input section.
4017 bool always_keeps_input_sections_ : 1;
4018 // Whether this section has a fixed layout, for incremental update links.
4019 bool has_fixed_layout_ : 1;
4020 // True if we can add patch space to this section.
4021 bool is_patch_space_allowed_ : 1;
4022 // For SHT_TLS sections, the offset of this section relative to the base
4023 // of the TLS segment.
4024 uint64_t tls_offset_;
4025 // Saved checkpoint.
4026 Checkpoint_output_section* checkpoint_;
4027 // Fast lookup maps for merged and relaxed input sections.
4028 Output_section_lookup_maps* lookup_maps_;
4029 // List of available regions within the section, for incremental
4030 // update links.
4031 Free_list free_list_;
4032 // Method for filling chunks of free space.
4033 Output_fill* free_space_fill_;
4034 // Amount added as patch space for incremental linking.
4035 off_t patch_space_;
4036 };
4037
4038 // An output segment. PT_LOAD segments are built from collections of
4039 // output sections. Other segments typically point within PT_LOAD
4040 // segments, and are built directly as needed.
4041 //
4042 // NOTE: We want to use the copy constructor for this class. During
4043 // relaxation, we may try built the segments multiple times. We do
4044 // that by copying the original segment list before lay-out, doing
4045 // a trial lay-out and roll-back to the saved copied if we need to
4046 // to the lay-out again.
4047
4048 class Output_segment
4049 {
4050 public:
4051 // Create an output segment, specifying the type and flags.
4052 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4053
4054 // Return the virtual address.
4055 uint64_t
4056 vaddr() const
4057 { return this->vaddr_; }
4058
4059 // Return the physical address.
4060 uint64_t
4061 paddr() const
4062 { return this->paddr_; }
4063
4064 // Return the segment type.
4065 elfcpp::Elf_Word
4066 type() const
4067 { return this->type_; }
4068
4069 // Return the segment flags.
4070 elfcpp::Elf_Word
4071 flags() const
4072 { return this->flags_; }
4073
4074 // Return the memory size.
4075 uint64_t
4076 memsz() const
4077 { return this->memsz_; }
4078
4079 // Return the file size.
4080 off_t
4081 filesz() const
4082 { return this->filesz_; }
4083
4084 // Return the file offset.
4085 off_t
4086 offset() const
4087 { return this->offset_; }
4088
4089 // Whether this is a segment created to hold large data sections.
4090 bool
4091 is_large_data_segment() const
4092 { return this->is_large_data_segment_; }
4093
4094 // Record that this is a segment created to hold large data
4095 // sections.
4096 void
4097 set_is_large_data_segment()
4098 { this->is_large_data_segment_ = true; }
4099
4100 // Return the maximum alignment of the Output_data.
4101 uint64_t
4102 maximum_alignment();
4103
4104 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4105 // the segment flags to use.
4106 void
4107 add_output_section_to_load(Layout* layout, Output_section* os,
4108 elfcpp::Elf_Word seg_flags);
4109
4110 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4111 // is the segment flags to use.
4112 void
4113 add_output_section_to_nonload(Output_section* os,
4114 elfcpp::Elf_Word seg_flags);
4115
4116 // Remove an Output_section from this segment. It is an error if it
4117 // is not present.
4118 void
4119 remove_output_section(Output_section* os);
4120
4121 // Add an Output_data (which need not be an Output_section) to the
4122 // start of this segment.
4123 void
4124 add_initial_output_data(Output_data*);
4125
4126 // Return true if this segment has any sections which hold actual
4127 // data, rather than being a BSS section.
4128 bool
4129 has_any_data_sections() const;
4130
4131 // Whether this segment has a dynamic relocs.
4132 bool
4133 has_dynamic_reloc() const;
4134
4135 // Return the address of the first section.
4136 uint64_t
4137 first_section_load_address() const;
4138
4139 // Return whether the addresses have been set already.
4140 bool
4141 are_addresses_set() const
4142 { return this->are_addresses_set_; }
4143
4144 // Set the addresses.
4145 void
4146 set_addresses(uint64_t vaddr, uint64_t paddr)
4147 {
4148 this->vaddr_ = vaddr;
4149 this->paddr_ = paddr;
4150 this->are_addresses_set_ = true;
4151 }
4152
4153 // Update the flags for the flags of an output section added to this
4154 // segment.
4155 void
4156 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4157 {
4158 // The ELF ABI specifies that a PT_TLS segment should always have
4159 // PF_R as the flags.
4160 if (this->type() != elfcpp::PT_TLS)
4161 this->flags_ |= flags;
4162 }
4163
4164 // Set the segment flags. This is only used if we have a PHDRS
4165 // clause which explicitly specifies the flags.
4166 void
4167 set_flags(elfcpp::Elf_Word flags)
4168 { this->flags_ = flags; }
4169
4170 // Set the address of the segment to ADDR and the offset to *POFF
4171 // and set the addresses and offsets of all contained output
4172 // sections accordingly. Set the section indexes of all contained
4173 // output sections starting with *PSHNDX. If RESET is true, first
4174 // reset the addresses of the contained sections. Return the
4175 // address of the immediately following segment. Update *POFF and
4176 // *PSHNDX. This should only be called for a PT_LOAD segment.
4177 uint64_t
4178 set_section_addresses(Layout*, bool reset, uint64_t addr,
4179 unsigned int* increase_relro, bool* has_relro,
4180 off_t* poff, unsigned int* pshndx);
4181
4182 // Set the minimum alignment of this segment. This may be adjusted
4183 // upward based on the section alignments.
4184 void
4185 set_minimum_p_align(uint64_t align)
4186 {
4187 if (align > this->min_p_align_)
4188 this->min_p_align_ = align;
4189 }
4190
4191 // Set the offset of this segment based on the section. This should
4192 // only be called for a non-PT_LOAD segment.
4193 void
4194 set_offset(unsigned int increase);
4195
4196 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4197 void
4198 set_tls_offsets();
4199
4200 // Return the number of output sections.
4201 unsigned int
4202 output_section_count() const;
4203
4204 // Return the section attached to the list segment with the lowest
4205 // load address. This is used when handling a PHDRS clause in a
4206 // linker script.
4207 Output_section*
4208 section_with_lowest_load_address() const;
4209
4210 // Write the segment header into *OPHDR.
4211 template<int size, bool big_endian>
4212 void
4213 write_header(elfcpp::Phdr_write<size, big_endian>*);
4214
4215 // Write the section headers of associated sections into V.
4216 template<int size, bool big_endian>
4217 unsigned char*
4218 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4219 unsigned int* pshndx) const;
4220
4221 // Print the output sections in the map file.
4222 void
4223 print_sections_to_mapfile(Mapfile*) const;
4224
4225 private:
4226 typedef std::vector<Output_data*> Output_data_list;
4227
4228 // Find the maximum alignment in an Output_data_list.
4229 static uint64_t
4230 maximum_alignment_list(const Output_data_list*);
4231
4232 // Return whether the first data section is a relro section.
4233 bool
4234 is_first_section_relro() const;
4235
4236 // Set the section addresses in an Output_data_list.
4237 uint64_t
4238 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4239 uint64_t addr, off_t* poff, unsigned int* pshndx,
4240 bool* in_tls);
4241
4242 // Return the number of Output_sections in an Output_data_list.
4243 unsigned int
4244 output_section_count_list(const Output_data_list*) const;
4245
4246 // Return whether an Output_data_list has a dynamic reloc.
4247 bool
4248 has_dynamic_reloc_list(const Output_data_list*) const;
4249
4250 // Find the section with the lowest load address in an
4251 // Output_data_list.
4252 void
4253 lowest_load_address_in_list(const Output_data_list* pdl,
4254 Output_section** found,
4255 uint64_t* found_lma) const;
4256
4257 // Find the first and last entries by address.
4258 void
4259 find_first_and_last_list(const Output_data_list* pdl,
4260 const Output_data** pfirst,
4261 const Output_data** plast) const;
4262
4263 // Write the section headers in the list into V.
4264 template<int size, bool big_endian>
4265 unsigned char*
4266 write_section_headers_list(const Layout*, const Stringpool*,
4267 const Output_data_list*, unsigned char* v,
4268 unsigned int* pshdx) const;
4269
4270 // Print a section list to the mapfile.
4271 void
4272 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4273
4274 // NOTE: We want to use the copy constructor. Currently, shallow copy
4275 // works for us so we do not need to write our own copy constructor.
4276
4277 // The list of output data attached to this segment.
4278 Output_data_list output_lists_[ORDER_MAX];
4279 // The segment virtual address.
4280 uint64_t vaddr_;
4281 // The segment physical address.
4282 uint64_t paddr_;
4283 // The size of the segment in memory.
4284 uint64_t memsz_;
4285 // The maximum section alignment. The is_max_align_known_ field
4286 // indicates whether this has been finalized.
4287 uint64_t max_align_;
4288 // The required minimum value for the p_align field. This is used
4289 // for PT_LOAD segments. Note that this does not mean that
4290 // addresses should be aligned to this value; it means the p_paddr
4291 // and p_vaddr fields must be congruent modulo this value. For
4292 // non-PT_LOAD segments, the dynamic linker works more efficiently
4293 // if the p_align field has the more conventional value, although it
4294 // can align as needed.
4295 uint64_t min_p_align_;
4296 // The offset of the segment data within the file.
4297 off_t offset_;
4298 // The size of the segment data in the file.
4299 off_t filesz_;
4300 // The segment type;
4301 elfcpp::Elf_Word type_;
4302 // The segment flags.
4303 elfcpp::Elf_Word flags_;
4304 // Whether we have finalized max_align_.
4305 bool is_max_align_known_ : 1;
4306 // Whether vaddr and paddr were set by a linker script.
4307 bool are_addresses_set_ : 1;
4308 // Whether this segment holds large data sections.
4309 bool is_large_data_segment_ : 1;
4310 };
4311
4312 // This class represents the output file.
4313
4314 class Output_file
4315 {
4316 public:
4317 Output_file(const char* name);
4318
4319 // Indicate that this is a temporary file which should not be
4320 // output.
4321 void
4322 set_is_temporary()
4323 { this->is_temporary_ = true; }
4324
4325 // Try to open an existing file. Returns false if the file doesn't
4326 // exist, has a size of 0 or can't be mmaped. This method is
4327 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4328 // that file as the base for incremental linking.
4329 bool
4330 open_base_file(const char* base_name, bool writable);
4331
4332 // Open the output file. FILE_SIZE is the final size of the file.
4333 // If the file already exists, it is deleted/truncated. This method
4334 // is thread-unsafe.
4335 void
4336 open(off_t file_size);
4337
4338 // Resize the output file. This method is thread-unsafe.
4339 void
4340 resize(off_t file_size);
4341
4342 // Close the output file (flushing all buffered data) and make sure
4343 // there are no errors. This method is thread-unsafe.
4344 void
4345 close();
4346
4347 // Return the size of this file.
4348 off_t
4349 filesize()
4350 { return this->file_size_; }
4351
4352 // Return the name of this file.
4353 const char*
4354 filename()
4355 { return this->name_; }
4356
4357 // We currently always use mmap which makes the view handling quite
4358 // simple. In the future we may support other approaches.
4359
4360 // Write data to the output file.
4361 void
4362 write(off_t offset, const void* data, size_t len)
4363 { memcpy(this->base_ + offset, data, len); }
4364
4365 // Get a buffer to use to write to the file, given the offset into
4366 // the file and the size.
4367 unsigned char*
4368 get_output_view(off_t start, size_t size)
4369 {
4370 gold_assert(start >= 0
4371 && start + static_cast<off_t>(size) <= this->file_size_);
4372 return this->base_ + start;
4373 }
4374
4375 // VIEW must have been returned by get_output_view. Write the
4376 // buffer to the file, passing in the offset and the size.
4377 void
4378 write_output_view(off_t, size_t, unsigned char*)
4379 { }
4380
4381 // Get a read/write buffer. This is used when we want to write part
4382 // of the file, read it in, and write it again.
4383 unsigned char*
4384 get_input_output_view(off_t start, size_t size)
4385 { return this->get_output_view(start, size); }
4386
4387 // Write a read/write buffer back to the file.
4388 void
4389 write_input_output_view(off_t, size_t, unsigned char*)
4390 { }
4391
4392 // Get a read buffer. This is used when we just want to read part
4393 // of the file back it in.
4394 const unsigned char*
4395 get_input_view(off_t start, size_t size)
4396 { return this->get_output_view(start, size); }
4397
4398 // Release a read bfufer.
4399 void
4400 free_input_view(off_t, size_t, const unsigned char*)
4401 { }
4402
4403 private:
4404 // Map the file into memory or, if that fails, allocate anonymous
4405 // memory.
4406 void
4407 map();
4408
4409 // Allocate anonymous memory for the file.
4410 bool
4411 map_anonymous();
4412
4413 // Map the file into memory.
4414 bool
4415 map_no_anonymous(bool);
4416
4417 // Unmap the file from memory (and flush to disk buffers).
4418 void
4419 unmap();
4420
4421 // File name.
4422 const char* name_;
4423 // File descriptor.
4424 int o_;
4425 // File size.
4426 off_t file_size_;
4427 // Base of file mapped into memory.
4428 unsigned char* base_;
4429 // True iff base_ points to a memory buffer rather than an output file.
4430 bool map_is_anonymous_;
4431 // True if base_ was allocated using new rather than mmap.
4432 bool map_is_allocated_;
4433 // True if this is a temporary file which should not be output.
4434 bool is_temporary_;
4435 };
4436
4437 } // End namespace gold.
4438
4439 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.122585 seconds and 5 git commands to generate.