PR 11061
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49
50 // This class specifies an input section. It is used as a key type
51 // for maps.
52
53 class Input_section_specifier
54 {
55 public:
56 Input_section_specifier(const Relobj* relobj, unsigned int shndx)
57 : relobj_(relobj), shndx_(shndx)
58 { }
59
60 // Return Relobj of this.
61 const Relobj*
62 relobj() const
63 { return this->relobj_; }
64
65 // Return section index of this.
66 unsigned int
67 shndx() const
68 { return this->shndx_; }
69
70 // Whether this equals to another specifier ISS.
71 bool
72 eq(const Input_section_specifier& iss) const
73 { return this->relobj_ == iss.relobj_ && this->shndx_ == iss.shndx_; }
74
75 // Compute a hash value of this.
76 size_t
77 hash_value() const
78 {
79 return (gold::string_hash<char>(this->relobj_->name().c_str())
80 ^ this->shndx_);
81 }
82
83 // Functors for containers.
84 struct equal_to
85 {
86 bool
87 operator()(const Input_section_specifier& iss1,
88 const Input_section_specifier& iss2) const
89 { return iss1.eq(iss2); }
90 };
91
92 struct hash
93 {
94 size_t
95 operator()(const Input_section_specifier& iss) const
96 { return iss.hash_value(); }
97 };
98
99 private:
100 // An object.
101 const Relobj* relobj_;
102 // A section index.
103 unsigned int shndx_;
104 };
105
106 // An abtract class for data which has to go into the output file.
107
108 class Output_data
109 {
110 public:
111 explicit Output_data()
112 : address_(0), data_size_(0), offset_(-1),
113 is_address_valid_(false), is_data_size_valid_(false),
114 is_offset_valid_(false), is_data_size_fixed_(false),
115 dynamic_reloc_count_(0)
116 { }
117
118 virtual
119 ~Output_data();
120
121 // Return the address. For allocated sections, this is only valid
122 // after Layout::finalize is finished.
123 uint64_t
124 address() const
125 {
126 gold_assert(this->is_address_valid_);
127 return this->address_;
128 }
129
130 // Return the size of the data. For allocated sections, this must
131 // be valid after Layout::finalize calls set_address, but need not
132 // be valid before then.
133 off_t
134 data_size() const
135 {
136 gold_assert(this->is_data_size_valid_);
137 return this->data_size_;
138 }
139
140 // Return true if data size is fixed.
141 bool
142 is_data_size_fixed() const
143 { return this->is_data_size_fixed_; }
144
145 // Return the file offset. This is only valid after
146 // Layout::finalize is finished. For some non-allocated sections,
147 // it may not be valid until near the end of the link.
148 off_t
149 offset() const
150 {
151 gold_assert(this->is_offset_valid_);
152 return this->offset_;
153 }
154
155 // Reset the address and file offset. This essentially disables the
156 // sanity testing about duplicate and unknown settings.
157 void
158 reset_address_and_file_offset()
159 {
160 this->is_address_valid_ = false;
161 this->is_offset_valid_ = false;
162 if (!this->is_data_size_fixed_)
163 this->is_data_size_valid_ = false;
164 this->do_reset_address_and_file_offset();
165 }
166
167 // Return true if address and file offset already have reset values. In
168 // other words, calling reset_address_and_file_offset will not change them.
169 bool
170 address_and_file_offset_have_reset_values() const
171 { return this->do_address_and_file_offset_have_reset_values(); }
172
173 // Return the required alignment.
174 uint64_t
175 addralign() const
176 { return this->do_addralign(); }
177
178 // Return whether this has a load address.
179 bool
180 has_load_address() const
181 { return this->do_has_load_address(); }
182
183 // Return the load address.
184 uint64_t
185 load_address() const
186 { return this->do_load_address(); }
187
188 // Return whether this is an Output_section.
189 bool
190 is_section() const
191 { return this->do_is_section(); }
192
193 // Return whether this is an Output_section of the specified type.
194 bool
195 is_section_type(elfcpp::Elf_Word stt) const
196 { return this->do_is_section_type(stt); }
197
198 // Return whether this is an Output_section with the specified flag
199 // set.
200 bool
201 is_section_flag_set(elfcpp::Elf_Xword shf) const
202 { return this->do_is_section_flag_set(shf); }
203
204 // Return the output section that this goes in, if there is one.
205 Output_section*
206 output_section()
207 { return this->do_output_section(); }
208
209 const Output_section*
210 output_section() const
211 { return this->do_output_section(); }
212
213 // Return the output section index, if there is an output section.
214 unsigned int
215 out_shndx() const
216 { return this->do_out_shndx(); }
217
218 // Set the output section index, if this is an output section.
219 void
220 set_out_shndx(unsigned int shndx)
221 { this->do_set_out_shndx(shndx); }
222
223 // Set the address and file offset of this data, and finalize the
224 // size of the data. This is called during Layout::finalize for
225 // allocated sections.
226 void
227 set_address_and_file_offset(uint64_t addr, off_t off)
228 {
229 this->set_address(addr);
230 this->set_file_offset(off);
231 this->finalize_data_size();
232 }
233
234 // Set the address.
235 void
236 set_address(uint64_t addr)
237 {
238 gold_assert(!this->is_address_valid_);
239 this->address_ = addr;
240 this->is_address_valid_ = true;
241 }
242
243 // Set the file offset.
244 void
245 set_file_offset(off_t off)
246 {
247 gold_assert(!this->is_offset_valid_);
248 this->offset_ = off;
249 this->is_offset_valid_ = true;
250 }
251
252 // Finalize the data size.
253 void
254 finalize_data_size()
255 {
256 if (!this->is_data_size_valid_)
257 {
258 // Tell the child class to set the data size.
259 this->set_final_data_size();
260 gold_assert(this->is_data_size_valid_);
261 }
262 }
263
264 // Set the TLS offset. Called only for SHT_TLS sections.
265 void
266 set_tls_offset(uint64_t tls_base)
267 { this->do_set_tls_offset(tls_base); }
268
269 // Return the TLS offset, relative to the base of the TLS segment.
270 // Valid only for SHT_TLS sections.
271 uint64_t
272 tls_offset() const
273 { return this->do_tls_offset(); }
274
275 // Write the data to the output file. This is called after
276 // Layout::finalize is complete.
277 void
278 write(Output_file* file)
279 { this->do_write(file); }
280
281 // This is called by Layout::finalize to note that the sizes of
282 // allocated sections must now be fixed.
283 static void
284 layout_complete()
285 { Output_data::allocated_sizes_are_fixed = true; }
286
287 // Used to check that layout has been done.
288 static bool
289 is_layout_complete()
290 { return Output_data::allocated_sizes_are_fixed; }
291
292 // Count the number of dynamic relocations applied to this section.
293 void
294 add_dynamic_reloc()
295 { ++this->dynamic_reloc_count_; }
296
297 // Return the number of dynamic relocations applied to this section.
298 unsigned int
299 dynamic_reloc_count() const
300 { return this->dynamic_reloc_count_; }
301
302 // Whether the address is valid.
303 bool
304 is_address_valid() const
305 { return this->is_address_valid_; }
306
307 // Whether the file offset is valid.
308 bool
309 is_offset_valid() const
310 { return this->is_offset_valid_; }
311
312 // Whether the data size is valid.
313 bool
314 is_data_size_valid() const
315 { return this->is_data_size_valid_; }
316
317 // Print information to the map file.
318 void
319 print_to_mapfile(Mapfile* mapfile) const
320 { return this->do_print_to_mapfile(mapfile); }
321
322 protected:
323 // Functions that child classes may or in some cases must implement.
324
325 // Write the data to the output file.
326 virtual void
327 do_write(Output_file*) = 0;
328
329 // Return the required alignment.
330 virtual uint64_t
331 do_addralign() const = 0;
332
333 // Return whether this has a load address.
334 virtual bool
335 do_has_load_address() const
336 { return false; }
337
338 // Return the load address.
339 virtual uint64_t
340 do_load_address() const
341 { gold_unreachable(); }
342
343 // Return whether this is an Output_section.
344 virtual bool
345 do_is_section() const
346 { return false; }
347
348 // Return whether this is an Output_section of the specified type.
349 // This only needs to be implement by Output_section.
350 virtual bool
351 do_is_section_type(elfcpp::Elf_Word) const
352 { return false; }
353
354 // Return whether this is an Output_section with the specific flag
355 // set. This only needs to be implemented by Output_section.
356 virtual bool
357 do_is_section_flag_set(elfcpp::Elf_Xword) const
358 { return false; }
359
360 // Return the output section, if there is one.
361 virtual Output_section*
362 do_output_section()
363 { return NULL; }
364
365 virtual const Output_section*
366 do_output_section() const
367 { return NULL; }
368
369 // Return the output section index, if there is an output section.
370 virtual unsigned int
371 do_out_shndx() const
372 { gold_unreachable(); }
373
374 // Set the output section index, if this is an output section.
375 virtual void
376 do_set_out_shndx(unsigned int)
377 { gold_unreachable(); }
378
379 // This is a hook for derived classes to set the data size. This is
380 // called by finalize_data_size, normally called during
381 // Layout::finalize, when the section address is set.
382 virtual void
383 set_final_data_size()
384 { gold_unreachable(); }
385
386 // A hook for resetting the address and file offset.
387 virtual void
388 do_reset_address_and_file_offset()
389 { }
390
391 // Return true if address and file offset already have reset values. In
392 // other words, calling reset_address_and_file_offset will not change them.
393 // A child class overriding do_reset_address_and_file_offset may need to
394 // also override this.
395 virtual bool
396 do_address_and_file_offset_have_reset_values() const
397 { return !this->is_address_valid_ && !this->is_offset_valid_; }
398
399 // Set the TLS offset. Called only for SHT_TLS sections.
400 virtual void
401 do_set_tls_offset(uint64_t)
402 { gold_unreachable(); }
403
404 // Return the TLS offset, relative to the base of the TLS segment.
405 // Valid only for SHT_TLS sections.
406 virtual uint64_t
407 do_tls_offset() const
408 { gold_unreachable(); }
409
410 // Print to the map file. This only needs to be implemented by
411 // classes which may appear in a PT_LOAD segment.
412 virtual void
413 do_print_to_mapfile(Mapfile*) const
414 { gold_unreachable(); }
415
416 // Functions that child classes may call.
417
418 // Reset the address. The Output_section class needs this when an
419 // SHF_ALLOC input section is added to an output section which was
420 // formerly not SHF_ALLOC.
421 void
422 mark_address_invalid()
423 { this->is_address_valid_ = false; }
424
425 // Set the size of the data.
426 void
427 set_data_size(off_t data_size)
428 {
429 gold_assert(!this->is_data_size_valid_
430 && !this->is_data_size_fixed_);
431 this->data_size_ = data_size;
432 this->is_data_size_valid_ = true;
433 }
434
435 // Fix the data size. Once it is fixed, it cannot be changed
436 // and the data size remains always valid.
437 void
438 fix_data_size()
439 {
440 gold_assert(this->is_data_size_valid_);
441 this->is_data_size_fixed_ = true;
442 }
443
444 // Get the current data size--this is for the convenience of
445 // sections which build up their size over time.
446 off_t
447 current_data_size_for_child() const
448 { return this->data_size_; }
449
450 // Set the current data size--this is for the convenience of
451 // sections which build up their size over time.
452 void
453 set_current_data_size_for_child(off_t data_size)
454 {
455 gold_assert(!this->is_data_size_valid_);
456 this->data_size_ = data_size;
457 }
458
459 // Return default alignment for the target size.
460 static uint64_t
461 default_alignment();
462
463 // Return default alignment for a specified size--32 or 64.
464 static uint64_t
465 default_alignment_for_size(int size);
466
467 private:
468 Output_data(const Output_data&);
469 Output_data& operator=(const Output_data&);
470
471 // This is used for verification, to make sure that we don't try to
472 // change any sizes of allocated sections after we set the section
473 // addresses.
474 static bool allocated_sizes_are_fixed;
475
476 // Memory address in output file.
477 uint64_t address_;
478 // Size of data in output file.
479 off_t data_size_;
480 // File offset of contents in output file.
481 off_t offset_;
482 // Whether address_ is valid.
483 bool is_address_valid_;
484 // Whether data_size_ is valid.
485 bool is_data_size_valid_;
486 // Whether offset_ is valid.
487 bool is_offset_valid_;
488 // Whether data size is fixed.
489 bool is_data_size_fixed_;
490 // Count of dynamic relocations applied to this section.
491 unsigned int dynamic_reloc_count_;
492 };
493
494 // Output the section headers.
495
496 class Output_section_headers : public Output_data
497 {
498 public:
499 Output_section_headers(const Layout*,
500 const Layout::Segment_list*,
501 const Layout::Section_list*,
502 const Layout::Section_list*,
503 const Stringpool*,
504 const Output_section*);
505
506 protected:
507 // Write the data to the file.
508 void
509 do_write(Output_file*);
510
511 // Return the required alignment.
512 uint64_t
513 do_addralign() const
514 { return Output_data::default_alignment(); }
515
516 // Write to a map file.
517 void
518 do_print_to_mapfile(Mapfile* mapfile) const
519 { mapfile->print_output_data(this, _("** section headers")); }
520
521 // Set final data size.
522 void
523 set_final_data_size()
524 { this->set_data_size(this->do_size()); }
525
526 private:
527 // Write the data to the file with the right size and endianness.
528 template<int size, bool big_endian>
529 void
530 do_sized_write(Output_file*);
531
532 // Compute data size.
533 off_t
534 do_size() const;
535
536 const Layout* layout_;
537 const Layout::Segment_list* segment_list_;
538 const Layout::Section_list* section_list_;
539 const Layout::Section_list* unattached_section_list_;
540 const Stringpool* secnamepool_;
541 const Output_section* shstrtab_section_;
542 };
543
544 // Output the segment headers.
545
546 class Output_segment_headers : public Output_data
547 {
548 public:
549 Output_segment_headers(const Layout::Segment_list& segment_list);
550
551 protected:
552 // Write the data to the file.
553 void
554 do_write(Output_file*);
555
556 // Return the required alignment.
557 uint64_t
558 do_addralign() const
559 { return Output_data::default_alignment(); }
560
561 // Write to a map file.
562 void
563 do_print_to_mapfile(Mapfile* mapfile) const
564 { mapfile->print_output_data(this, _("** segment headers")); }
565
566 // Set final data size.
567 void
568 set_final_data_size()
569 { this->set_data_size(this->do_size()); }
570
571 private:
572 // Write the data to the file with the right size and endianness.
573 template<int size, bool big_endian>
574 void
575 do_sized_write(Output_file*);
576
577 // Compute the current size.
578 off_t
579 do_size() const;
580
581 const Layout::Segment_list& segment_list_;
582 };
583
584 // Output the ELF file header.
585
586 class Output_file_header : public Output_data
587 {
588 public:
589 Output_file_header(const Target*,
590 const Symbol_table*,
591 const Output_segment_headers*,
592 const char* entry);
593
594 // Add information about the section headers. We lay out the ELF
595 // file header before we create the section headers.
596 void set_section_info(const Output_section_headers*,
597 const Output_section* shstrtab);
598
599 protected:
600 // Write the data to the file.
601 void
602 do_write(Output_file*);
603
604 // Return the required alignment.
605 uint64_t
606 do_addralign() const
607 { return Output_data::default_alignment(); }
608
609 // Write to a map file.
610 void
611 do_print_to_mapfile(Mapfile* mapfile) const
612 { mapfile->print_output_data(this, _("** file header")); }
613
614 // Set final data size.
615 void
616 set_final_data_size(void)
617 { this->set_data_size(this->do_size()); }
618
619 private:
620 // Write the data to the file with the right size and endianness.
621 template<int size, bool big_endian>
622 void
623 do_sized_write(Output_file*);
624
625 // Return the value to use for the entry address.
626 template<int size>
627 typename elfcpp::Elf_types<size>::Elf_Addr
628 entry();
629
630 // Compute the current data size.
631 off_t
632 do_size() const;
633
634 const Target* target_;
635 const Symbol_table* symtab_;
636 const Output_segment_headers* segment_header_;
637 const Output_section_headers* section_header_;
638 const Output_section* shstrtab_;
639 const char* entry_;
640 };
641
642 // Output sections are mainly comprised of input sections. However,
643 // there are cases where we have data to write out which is not in an
644 // input section. Output_section_data is used in such cases. This is
645 // an abstract base class.
646
647 class Output_section_data : public Output_data
648 {
649 public:
650 Output_section_data(off_t data_size, uint64_t addralign,
651 bool is_data_size_fixed)
652 : Output_data(), output_section_(NULL), addralign_(addralign)
653 {
654 this->set_data_size(data_size);
655 if (is_data_size_fixed)
656 this->fix_data_size();
657 }
658
659 Output_section_data(uint64_t addralign)
660 : Output_data(), output_section_(NULL), addralign_(addralign)
661 { }
662
663 // Return the output section.
664 const Output_section*
665 output_section() const
666 { return this->output_section_; }
667
668 // Record the output section.
669 void
670 set_output_section(Output_section* os);
671
672 // Add an input section, for SHF_MERGE sections. This returns true
673 // if the section was handled.
674 bool
675 add_input_section(Relobj* object, unsigned int shndx)
676 { return this->do_add_input_section(object, shndx); }
677
678 // Given an input OBJECT, an input section index SHNDX within that
679 // object, and an OFFSET relative to the start of that input
680 // section, return whether or not the corresponding offset within
681 // the output section is known. If this function returns true, it
682 // sets *POUTPUT to the output offset. The value -1 indicates that
683 // this input offset is being discarded.
684 bool
685 output_offset(const Relobj* object, unsigned int shndx,
686 section_offset_type offset,
687 section_offset_type *poutput) const
688 { return this->do_output_offset(object, shndx, offset, poutput); }
689
690 // Return whether this is the merge section for the input section
691 // SHNDX in OBJECT. This should return true when output_offset
692 // would return true for some values of OFFSET.
693 bool
694 is_merge_section_for(const Relobj* object, unsigned int shndx) const
695 { return this->do_is_merge_section_for(object, shndx); }
696
697 // Write the contents to a buffer. This is used for sections which
698 // require postprocessing, such as compression.
699 void
700 write_to_buffer(unsigned char* buffer)
701 { this->do_write_to_buffer(buffer); }
702
703 // Print merge stats to stderr. This should only be called for
704 // SHF_MERGE sections.
705 void
706 print_merge_stats(const char* section_name)
707 { this->do_print_merge_stats(section_name); }
708
709 protected:
710 // The child class must implement do_write.
711
712 // The child class may implement specific adjustments to the output
713 // section.
714 virtual void
715 do_adjust_output_section(Output_section*)
716 { }
717
718 // May be implemented by child class. Return true if the section
719 // was handled.
720 virtual bool
721 do_add_input_section(Relobj*, unsigned int)
722 { gold_unreachable(); }
723
724 // The child class may implement output_offset.
725 virtual bool
726 do_output_offset(const Relobj*, unsigned int, section_offset_type,
727 section_offset_type*) const
728 { return false; }
729
730 // The child class may implement is_merge_section_for.
731 virtual bool
732 do_is_merge_section_for(const Relobj*, unsigned int) const
733 { return false; }
734
735 // The child class may implement write_to_buffer. Most child
736 // classes can not appear in a compressed section, and they do not
737 // implement this.
738 virtual void
739 do_write_to_buffer(unsigned char*)
740 { gold_unreachable(); }
741
742 // Print merge statistics.
743 virtual void
744 do_print_merge_stats(const char*)
745 { gold_unreachable(); }
746
747 // Return the required alignment.
748 uint64_t
749 do_addralign() const
750 { return this->addralign_; }
751
752 // Return the output section.
753 Output_section*
754 do_output_section()
755 { return this->output_section_; }
756
757 const Output_section*
758 do_output_section() const
759 { return this->output_section_; }
760
761 // Return the section index of the output section.
762 unsigned int
763 do_out_shndx() const;
764
765 // Set the alignment.
766 void
767 set_addralign(uint64_t addralign);
768
769 private:
770 // The output section for this section.
771 Output_section* output_section_;
772 // The required alignment.
773 uint64_t addralign_;
774 };
775
776 // Some Output_section_data classes build up their data step by step,
777 // rather than all at once. This class provides an interface for
778 // them.
779
780 class Output_section_data_build : public Output_section_data
781 {
782 public:
783 Output_section_data_build(uint64_t addralign)
784 : Output_section_data(addralign)
785 { }
786
787 // Get the current data size.
788 off_t
789 current_data_size() const
790 { return this->current_data_size_for_child(); }
791
792 // Set the current data size.
793 void
794 set_current_data_size(off_t data_size)
795 { this->set_current_data_size_for_child(data_size); }
796
797 protected:
798 // Set the final data size.
799 virtual void
800 set_final_data_size()
801 { this->set_data_size(this->current_data_size_for_child()); }
802 };
803
804 // A simple case of Output_data in which we have constant data to
805 // output.
806
807 class Output_data_const : public Output_section_data
808 {
809 public:
810 Output_data_const(const std::string& data, uint64_t addralign)
811 : Output_section_data(data.size(), addralign, true), data_(data)
812 { }
813
814 Output_data_const(const char* p, off_t len, uint64_t addralign)
815 : Output_section_data(len, addralign, true), data_(p, len)
816 { }
817
818 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
819 : Output_section_data(len, addralign, true),
820 data_(reinterpret_cast<const char*>(p), len)
821 { }
822
823 protected:
824 // Write the data to the output file.
825 void
826 do_write(Output_file*);
827
828 // Write the data to a buffer.
829 void
830 do_write_to_buffer(unsigned char* buffer)
831 { memcpy(buffer, this->data_.data(), this->data_.size()); }
832
833 // Write to a map file.
834 void
835 do_print_to_mapfile(Mapfile* mapfile) const
836 { mapfile->print_output_data(this, _("** fill")); }
837
838 private:
839 std::string data_;
840 };
841
842 // Another version of Output_data with constant data, in which the
843 // buffer is allocated by the caller.
844
845 class Output_data_const_buffer : public Output_section_data
846 {
847 public:
848 Output_data_const_buffer(const unsigned char* p, off_t len,
849 uint64_t addralign, const char* map_name)
850 : Output_section_data(len, addralign, true),
851 p_(p), map_name_(map_name)
852 { }
853
854 protected:
855 // Write the data the output file.
856 void
857 do_write(Output_file*);
858
859 // Write the data to a buffer.
860 void
861 do_write_to_buffer(unsigned char* buffer)
862 { memcpy(buffer, this->p_, this->data_size()); }
863
864 // Write to a map file.
865 void
866 do_print_to_mapfile(Mapfile* mapfile) const
867 { mapfile->print_output_data(this, _(this->map_name_)); }
868
869 private:
870 // The data to output.
871 const unsigned char* p_;
872 // Name to use in a map file. Maps are a rarely used feature, but
873 // the space usage is minor as aren't very many of these objects.
874 const char* map_name_;
875 };
876
877 // A place holder for a fixed amount of data written out via some
878 // other mechanism.
879
880 class Output_data_fixed_space : public Output_section_data
881 {
882 public:
883 Output_data_fixed_space(off_t data_size, uint64_t addralign,
884 const char* map_name)
885 : Output_section_data(data_size, addralign, true),
886 map_name_(map_name)
887 { }
888
889 protected:
890 // Write out the data--the actual data must be written out
891 // elsewhere.
892 void
893 do_write(Output_file*)
894 { }
895
896 // Write to a map file.
897 void
898 do_print_to_mapfile(Mapfile* mapfile) const
899 { mapfile->print_output_data(this, _(this->map_name_)); }
900
901 private:
902 // Name to use in a map file. Maps are a rarely used feature, but
903 // the space usage is minor as aren't very many of these objects.
904 const char* map_name_;
905 };
906
907 // A place holder for variable sized data written out via some other
908 // mechanism.
909
910 class Output_data_space : public Output_section_data_build
911 {
912 public:
913 explicit Output_data_space(uint64_t addralign, const char* map_name)
914 : Output_section_data_build(addralign),
915 map_name_(map_name)
916 { }
917
918 // Set the alignment.
919 void
920 set_space_alignment(uint64_t align)
921 { this->set_addralign(align); }
922
923 protected:
924 // Write out the data--the actual data must be written out
925 // elsewhere.
926 void
927 do_write(Output_file*)
928 { }
929
930 // Write to a map file.
931 void
932 do_print_to_mapfile(Mapfile* mapfile) const
933 { mapfile->print_output_data(this, _(this->map_name_)); }
934
935 private:
936 // Name to use in a map file. Maps are a rarely used feature, but
937 // the space usage is minor as aren't very many of these objects.
938 const char* map_name_;
939 };
940
941 // Fill fixed space with zeroes. This is just like
942 // Output_data_fixed_space, except that the map name is known.
943
944 class Output_data_zero_fill : public Output_section_data
945 {
946 public:
947 Output_data_zero_fill(off_t data_size, uint64_t addralign)
948 : Output_section_data(data_size, addralign, true)
949 { }
950
951 protected:
952 // There is no data to write out.
953 void
954 do_write(Output_file*)
955 { }
956
957 // Write to a map file.
958 void
959 do_print_to_mapfile(Mapfile* mapfile) const
960 { mapfile->print_output_data(this, "** zero fill"); }
961 };
962
963 // A string table which goes into an output section.
964
965 class Output_data_strtab : public Output_section_data
966 {
967 public:
968 Output_data_strtab(Stringpool* strtab)
969 : Output_section_data(1), strtab_(strtab)
970 { }
971
972 protected:
973 // This is called to set the address and file offset. Here we make
974 // sure that the Stringpool is finalized.
975 void
976 set_final_data_size();
977
978 // Write out the data.
979 void
980 do_write(Output_file*);
981
982 // Write the data to a buffer.
983 void
984 do_write_to_buffer(unsigned char* buffer)
985 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
986
987 // Write to a map file.
988 void
989 do_print_to_mapfile(Mapfile* mapfile) const
990 { mapfile->print_output_data(this, _("** string table")); }
991
992 private:
993 Stringpool* strtab_;
994 };
995
996 // This POD class is used to represent a single reloc in the output
997 // file. This could be a private class within Output_data_reloc, but
998 // the templatization is complex enough that I broke it out into a
999 // separate class. The class is templatized on either elfcpp::SHT_REL
1000 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1001 // relocation or an ordinary relocation.
1002
1003 // A relocation can be against a global symbol, a local symbol, a
1004 // local section symbol, an output section, or the undefined symbol at
1005 // index 0. We represent the latter by using a NULL global symbol.
1006
1007 template<int sh_type, bool dynamic, int size, bool big_endian>
1008 class Output_reloc;
1009
1010 template<bool dynamic, int size, bool big_endian>
1011 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1012 {
1013 public:
1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1015 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1016
1017 static const Address invalid_address = static_cast<Address>(0) - 1;
1018
1019 // An uninitialized entry. We need this because we want to put
1020 // instances of this class into an STL container.
1021 Output_reloc()
1022 : local_sym_index_(INVALID_CODE)
1023 { }
1024
1025 // We have a bunch of different constructors. They come in pairs
1026 // depending on how the address of the relocation is specified. It
1027 // can either be an offset in an Output_data or an offset in an
1028 // input section.
1029
1030 // A reloc against a global symbol.
1031
1032 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1033 Address address, bool is_relative);
1034
1035 Output_reloc(Symbol* gsym, unsigned int type,
1036 Sized_relobj<size, big_endian>* relobj,
1037 unsigned int shndx, Address address, bool is_relative);
1038
1039 // A reloc against a local symbol or local section symbol.
1040
1041 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1042 unsigned int local_sym_index, unsigned int type,
1043 Output_data* od, Address address, bool is_relative,
1044 bool is_section_symbol);
1045
1046 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1047 unsigned int local_sym_index, unsigned int type,
1048 unsigned int shndx, Address address, bool is_relative,
1049 bool is_section_symbol);
1050
1051 // A reloc against the STT_SECTION symbol of an output section.
1052
1053 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1054 Address address);
1055
1056 Output_reloc(Output_section* os, unsigned int type,
1057 Sized_relobj<size, big_endian>* relobj,
1058 unsigned int shndx, Address address);
1059
1060 // Return TRUE if this is a RELATIVE relocation.
1061 bool
1062 is_relative() const
1063 { return this->is_relative_; }
1064
1065 // Return whether this is against a local section symbol.
1066 bool
1067 is_local_section_symbol() const
1068 {
1069 return (this->local_sym_index_ != GSYM_CODE
1070 && this->local_sym_index_ != SECTION_CODE
1071 && this->local_sym_index_ != INVALID_CODE
1072 && this->is_section_symbol_);
1073 }
1074
1075 // For a local section symbol, return the offset of the input
1076 // section within the output section. ADDEND is the addend being
1077 // applied to the input section.
1078 Address
1079 local_section_offset(Addend addend) const;
1080
1081 // Get the value of the symbol referred to by a Rel relocation when
1082 // we are adding the given ADDEND.
1083 Address
1084 symbol_value(Addend addend) const;
1085
1086 // Write the reloc entry to an output view.
1087 void
1088 write(unsigned char* pov) const;
1089
1090 // Write the offset and info fields to Write_rel.
1091 template<typename Write_rel>
1092 void write_rel(Write_rel*) const;
1093
1094 // This is used when sorting dynamic relocs. Return -1 to sort this
1095 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1096 int
1097 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1098 const;
1099
1100 // Return whether this reloc should be sorted before the argument
1101 // when sorting dynamic relocs.
1102 bool
1103 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1104 r2) const
1105 { return this->compare(r2) < 0; }
1106
1107 private:
1108 // Record that we need a dynamic symbol index.
1109 void
1110 set_needs_dynsym_index();
1111
1112 // Return the symbol index.
1113 unsigned int
1114 get_symbol_index() const;
1115
1116 // Return the output address.
1117 Address
1118 get_address() const;
1119
1120 // Codes for local_sym_index_.
1121 enum
1122 {
1123 // Global symbol.
1124 GSYM_CODE = -1U,
1125 // Output section.
1126 SECTION_CODE = -2U,
1127 // Invalid uninitialized entry.
1128 INVALID_CODE = -3U
1129 };
1130
1131 union
1132 {
1133 // For a local symbol or local section symbol
1134 // (this->local_sym_index_ >= 0), the object. We will never
1135 // generate a relocation against a local symbol in a dynamic
1136 // object; that doesn't make sense. And our callers will always
1137 // be templatized, so we use Sized_relobj here.
1138 Sized_relobj<size, big_endian>* relobj;
1139 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1140 // symbol. If this is NULL, it indicates a relocation against the
1141 // undefined 0 symbol.
1142 Symbol* gsym;
1143 // For a relocation against an output section
1144 // (this->local_sym_index_ == SECTION_CODE), the output section.
1145 Output_section* os;
1146 } u1_;
1147 union
1148 {
1149 // If this->shndx_ is not INVALID CODE, the object which holds the
1150 // input section being used to specify the reloc address.
1151 Sized_relobj<size, big_endian>* relobj;
1152 // If this->shndx_ is INVALID_CODE, the output data being used to
1153 // specify the reloc address. This may be NULL if the reloc
1154 // address is absolute.
1155 Output_data* od;
1156 } u2_;
1157 // The address offset within the input section or the Output_data.
1158 Address address_;
1159 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1160 // relocation against an output section, or INVALID_CODE for an
1161 // uninitialized value. Otherwise, for a local symbol
1162 // (this->is_section_symbol_ is false), the local symbol index. For
1163 // a local section symbol (this->is_section_symbol_ is true), the
1164 // section index in the input file.
1165 unsigned int local_sym_index_;
1166 // The reloc type--a processor specific code.
1167 unsigned int type_ : 30;
1168 // True if the relocation is a RELATIVE relocation.
1169 bool is_relative_ : 1;
1170 // True if the relocation is against a section symbol.
1171 bool is_section_symbol_ : 1;
1172 // If the reloc address is an input section in an object, the
1173 // section index. This is INVALID_CODE if the reloc address is
1174 // specified in some other way.
1175 unsigned int shndx_;
1176 };
1177
1178 // The SHT_RELA version of Output_reloc<>. This is just derived from
1179 // the SHT_REL version of Output_reloc, but it adds an addend.
1180
1181 template<bool dynamic, int size, bool big_endian>
1182 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1183 {
1184 public:
1185 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1186 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1187
1188 // An uninitialized entry.
1189 Output_reloc()
1190 : rel_()
1191 { }
1192
1193 // A reloc against a global symbol.
1194
1195 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1196 Address address, Addend addend, bool is_relative)
1197 : rel_(gsym, type, od, address, is_relative), addend_(addend)
1198 { }
1199
1200 Output_reloc(Symbol* gsym, unsigned int type,
1201 Sized_relobj<size, big_endian>* relobj,
1202 unsigned int shndx, Address address, Addend addend,
1203 bool is_relative)
1204 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
1205 { }
1206
1207 // A reloc against a local symbol.
1208
1209 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1210 unsigned int local_sym_index, unsigned int type,
1211 Output_data* od, Address address,
1212 Addend addend, bool is_relative, bool is_section_symbol)
1213 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1214 is_section_symbol),
1215 addend_(addend)
1216 { }
1217
1218 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1219 unsigned int local_sym_index, unsigned int type,
1220 unsigned int shndx, Address address,
1221 Addend addend, bool is_relative, bool is_section_symbol)
1222 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1223 is_section_symbol),
1224 addend_(addend)
1225 { }
1226
1227 // A reloc against the STT_SECTION symbol of an output section.
1228
1229 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1230 Address address, Addend addend)
1231 : rel_(os, type, od, address), addend_(addend)
1232 { }
1233
1234 Output_reloc(Output_section* os, unsigned int type,
1235 Sized_relobj<size, big_endian>* relobj,
1236 unsigned int shndx, Address address, Addend addend)
1237 : rel_(os, type, relobj, shndx, address), addend_(addend)
1238 { }
1239
1240 // Return TRUE if this is a RELATIVE relocation.
1241 bool
1242 is_relative() const
1243 { return this->rel_.is_relative(); }
1244
1245 // Write the reloc entry to an output view.
1246 void
1247 write(unsigned char* pov) const;
1248
1249 // Return whether this reloc should be sorted before the argument
1250 // when sorting dynamic relocs.
1251 bool
1252 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1253 r2) const
1254 {
1255 int i = this->rel_.compare(r2.rel_);
1256 if (i < 0)
1257 return true;
1258 else if (i > 0)
1259 return false;
1260 else
1261 return this->addend_ < r2.addend_;
1262 }
1263
1264 private:
1265 // The basic reloc.
1266 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1267 // The addend.
1268 Addend addend_;
1269 };
1270
1271 // Output_data_reloc_generic is a non-template base class for
1272 // Output_data_reloc_base. This gives the generic code a way to hold
1273 // a pointer to a reloc section.
1274
1275 class Output_data_reloc_generic : public Output_section_data_build
1276 {
1277 public:
1278 Output_data_reloc_generic(int size, bool sort_relocs)
1279 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1280 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1281 { }
1282
1283 // Return the number of relative relocs in this section.
1284 size_t
1285 relative_reloc_count() const
1286 { return this->relative_reloc_count_; }
1287
1288 // Whether we should sort the relocs.
1289 bool
1290 sort_relocs() const
1291 { return this->sort_relocs_; }
1292
1293 protected:
1294 // Note that we've added another relative reloc.
1295 void
1296 bump_relative_reloc_count()
1297 { ++this->relative_reloc_count_; }
1298
1299 private:
1300 // The number of relative relocs added to this section. This is to
1301 // support DT_RELCOUNT.
1302 size_t relative_reloc_count_;
1303 // Whether to sort the relocations when writing them out, to make
1304 // the dynamic linker more efficient.
1305 bool sort_relocs_;
1306 };
1307
1308 // Output_data_reloc is used to manage a section containing relocs.
1309 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1310 // indicates whether this is a dynamic relocation or a normal
1311 // relocation. Output_data_reloc_base is a base class.
1312 // Output_data_reloc is the real class, which we specialize based on
1313 // the reloc type.
1314
1315 template<int sh_type, bool dynamic, int size, bool big_endian>
1316 class Output_data_reloc_base : public Output_data_reloc_generic
1317 {
1318 public:
1319 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1320 typedef typename Output_reloc_type::Address Address;
1321 static const int reloc_size =
1322 Reloc_types<sh_type, size, big_endian>::reloc_size;
1323
1324 // Construct the section.
1325 Output_data_reloc_base(bool sort_relocs)
1326 : Output_data_reloc_generic(size, sort_relocs)
1327 { }
1328
1329 protected:
1330 // Write out the data.
1331 void
1332 do_write(Output_file*);
1333
1334 // Set the entry size and the link.
1335 void
1336 do_adjust_output_section(Output_section *os);
1337
1338 // Write to a map file.
1339 void
1340 do_print_to_mapfile(Mapfile* mapfile) const
1341 {
1342 mapfile->print_output_data(this,
1343 (dynamic
1344 ? _("** dynamic relocs")
1345 : _("** relocs")));
1346 }
1347
1348 // Add a relocation entry.
1349 void
1350 add(Output_data *od, const Output_reloc_type& reloc)
1351 {
1352 this->relocs_.push_back(reloc);
1353 this->set_current_data_size(this->relocs_.size() * reloc_size);
1354 od->add_dynamic_reloc();
1355 if (reloc.is_relative())
1356 this->bump_relative_reloc_count();
1357 }
1358
1359 private:
1360 typedef std::vector<Output_reloc_type> Relocs;
1361
1362 // The class used to sort the relocations.
1363 struct Sort_relocs_comparison
1364 {
1365 bool
1366 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1367 { return r1.sort_before(r2); }
1368 };
1369
1370 // The relocations in this section.
1371 Relocs relocs_;
1372 };
1373
1374 // The class which callers actually create.
1375
1376 template<int sh_type, bool dynamic, int size, bool big_endian>
1377 class Output_data_reloc;
1378
1379 // The SHT_REL version of Output_data_reloc.
1380
1381 template<bool dynamic, int size, bool big_endian>
1382 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1383 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1384 {
1385 private:
1386 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1387 big_endian> Base;
1388
1389 public:
1390 typedef typename Base::Output_reloc_type Output_reloc_type;
1391 typedef typename Output_reloc_type::Address Address;
1392
1393 Output_data_reloc(bool sr)
1394 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1395 { }
1396
1397 // Add a reloc against a global symbol.
1398
1399 void
1400 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1401 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
1402
1403 void
1404 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1405 Sized_relobj<size, big_endian>* relobj,
1406 unsigned int shndx, Address address)
1407 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1408 false)); }
1409
1410 // These are to simplify the Copy_relocs class.
1411
1412 void
1413 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1414 Address addend)
1415 {
1416 gold_assert(addend == 0);
1417 this->add_global(gsym, type, od, address);
1418 }
1419
1420 void
1421 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1422 Sized_relobj<size, big_endian>* relobj,
1423 unsigned int shndx, Address address, Address addend)
1424 {
1425 gold_assert(addend == 0);
1426 this->add_global(gsym, type, od, relobj, shndx, address);
1427 }
1428
1429 // Add a RELATIVE reloc against a global symbol. The final relocation
1430 // will not reference the symbol.
1431
1432 void
1433 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1434 Address address)
1435 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
1436
1437 void
1438 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1439 Sized_relobj<size, big_endian>* relobj,
1440 unsigned int shndx, Address address)
1441 {
1442 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1443 true));
1444 }
1445
1446 // Add a reloc against a local symbol.
1447
1448 void
1449 add_local(Sized_relobj<size, big_endian>* relobj,
1450 unsigned int local_sym_index, unsigned int type,
1451 Output_data* od, Address address)
1452 {
1453 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1454 address, false, false));
1455 }
1456
1457 void
1458 add_local(Sized_relobj<size, big_endian>* relobj,
1459 unsigned int local_sym_index, unsigned int type,
1460 Output_data* od, unsigned int shndx, Address address)
1461 {
1462 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1463 address, false, false));
1464 }
1465
1466 // Add a RELATIVE reloc against a local symbol.
1467
1468 void
1469 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1470 unsigned int local_sym_index, unsigned int type,
1471 Output_data* od, Address address)
1472 {
1473 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1474 address, true, false));
1475 }
1476
1477 void
1478 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1479 unsigned int local_sym_index, unsigned int type,
1480 Output_data* od, unsigned int shndx, Address address)
1481 {
1482 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1483 address, true, false));
1484 }
1485
1486 // Add a reloc against a local section symbol. This will be
1487 // converted into a reloc against the STT_SECTION symbol of the
1488 // output section.
1489
1490 void
1491 add_local_section(Sized_relobj<size, big_endian>* relobj,
1492 unsigned int input_shndx, unsigned int type,
1493 Output_data* od, Address address)
1494 {
1495 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1496 address, false, true));
1497 }
1498
1499 void
1500 add_local_section(Sized_relobj<size, big_endian>* relobj,
1501 unsigned int input_shndx, unsigned int type,
1502 Output_data* od, unsigned int shndx, Address address)
1503 {
1504 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1505 address, false, true));
1506 }
1507
1508 // A reloc against the STT_SECTION symbol of an output section.
1509 // OS is the Output_section that the relocation refers to; OD is
1510 // the Output_data object being relocated.
1511
1512 void
1513 add_output_section(Output_section* os, unsigned int type,
1514 Output_data* od, Address address)
1515 { this->add(od, Output_reloc_type(os, type, od, address)); }
1516
1517 void
1518 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1519 Sized_relobj<size, big_endian>* relobj,
1520 unsigned int shndx, Address address)
1521 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1522 };
1523
1524 // The SHT_RELA version of Output_data_reloc.
1525
1526 template<bool dynamic, int size, bool big_endian>
1527 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1528 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1529 {
1530 private:
1531 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1532 big_endian> Base;
1533
1534 public:
1535 typedef typename Base::Output_reloc_type Output_reloc_type;
1536 typedef typename Output_reloc_type::Address Address;
1537 typedef typename Output_reloc_type::Addend Addend;
1538
1539 Output_data_reloc(bool sr)
1540 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1541 { }
1542
1543 // Add a reloc against a global symbol.
1544
1545 void
1546 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1547 Address address, Addend addend)
1548 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1549 false)); }
1550
1551 void
1552 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1553 Sized_relobj<size, big_endian>* relobj,
1554 unsigned int shndx, Address address,
1555 Addend addend)
1556 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1557 addend, false)); }
1558
1559 // Add a RELATIVE reloc against a global symbol. The final output
1560 // relocation will not reference the symbol, but we must keep the symbol
1561 // information long enough to set the addend of the relocation correctly
1562 // when it is written.
1563
1564 void
1565 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1566 Address address, Addend addend)
1567 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1568
1569 void
1570 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1571 Sized_relobj<size, big_endian>* relobj,
1572 unsigned int shndx, Address address, Addend addend)
1573 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1574 addend, true)); }
1575
1576 // Add a reloc against a local symbol.
1577
1578 void
1579 add_local(Sized_relobj<size, big_endian>* relobj,
1580 unsigned int local_sym_index, unsigned int type,
1581 Output_data* od, Address address, Addend addend)
1582 {
1583 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1584 addend, false, false));
1585 }
1586
1587 void
1588 add_local(Sized_relobj<size, big_endian>* relobj,
1589 unsigned int local_sym_index, unsigned int type,
1590 Output_data* od, unsigned int shndx, Address address,
1591 Addend addend)
1592 {
1593 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1594 address, addend, false, false));
1595 }
1596
1597 // Add a RELATIVE reloc against a local symbol.
1598
1599 void
1600 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1601 unsigned int local_sym_index, unsigned int type,
1602 Output_data* od, Address address, Addend addend)
1603 {
1604 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1605 addend, true, false));
1606 }
1607
1608 void
1609 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1610 unsigned int local_sym_index, unsigned int type,
1611 Output_data* od, unsigned int shndx, Address address,
1612 Addend addend)
1613 {
1614 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1615 address, addend, true, false));
1616 }
1617
1618 // Add a reloc against a local section symbol. This will be
1619 // converted into a reloc against the STT_SECTION symbol of the
1620 // output section.
1621
1622 void
1623 add_local_section(Sized_relobj<size, big_endian>* relobj,
1624 unsigned int input_shndx, unsigned int type,
1625 Output_data* od, Address address, Addend addend)
1626 {
1627 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1628 addend, false, true));
1629 }
1630
1631 void
1632 add_local_section(Sized_relobj<size, big_endian>* relobj,
1633 unsigned int input_shndx, unsigned int type,
1634 Output_data* od, unsigned int shndx, Address address,
1635 Addend addend)
1636 {
1637 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1638 address, addend, false, true));
1639 }
1640
1641 // A reloc against the STT_SECTION symbol of an output section.
1642
1643 void
1644 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1645 Address address, Addend addend)
1646 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1647
1648 void
1649 add_output_section(Output_section* os, unsigned int type,
1650 Sized_relobj<size, big_endian>* relobj,
1651 unsigned int shndx, Address address, Addend addend)
1652 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1653 addend)); }
1654 };
1655
1656 // Output_relocatable_relocs represents a relocation section in a
1657 // relocatable link. The actual data is written out in the target
1658 // hook relocate_for_relocatable. This just saves space for it.
1659
1660 template<int sh_type, int size, bool big_endian>
1661 class Output_relocatable_relocs : public Output_section_data
1662 {
1663 public:
1664 Output_relocatable_relocs(Relocatable_relocs* rr)
1665 : Output_section_data(Output_data::default_alignment_for_size(size)),
1666 rr_(rr)
1667 { }
1668
1669 void
1670 set_final_data_size();
1671
1672 // Write out the data. There is nothing to do here.
1673 void
1674 do_write(Output_file*)
1675 { }
1676
1677 // Write to a map file.
1678 void
1679 do_print_to_mapfile(Mapfile* mapfile) const
1680 { mapfile->print_output_data(this, _("** relocs")); }
1681
1682 private:
1683 // The relocs associated with this input section.
1684 Relocatable_relocs* rr_;
1685 };
1686
1687 // Handle a GROUP section.
1688
1689 template<int size, bool big_endian>
1690 class Output_data_group : public Output_section_data
1691 {
1692 public:
1693 // The constructor clears *INPUT_SHNDXES.
1694 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1695 section_size_type entry_count,
1696 elfcpp::Elf_Word flags,
1697 std::vector<unsigned int>* input_shndxes);
1698
1699 void
1700 do_write(Output_file*);
1701
1702 // Write to a map file.
1703 void
1704 do_print_to_mapfile(Mapfile* mapfile) const
1705 { mapfile->print_output_data(this, _("** group")); }
1706
1707 // Set final data size.
1708 void
1709 set_final_data_size()
1710 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1711
1712 private:
1713 // The input object.
1714 Sized_relobj<size, big_endian>* relobj_;
1715 // The group flag word.
1716 elfcpp::Elf_Word flags_;
1717 // The section indexes of the input sections in this group.
1718 std::vector<unsigned int> input_shndxes_;
1719 };
1720
1721 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1722 // for one symbol--either a global symbol or a local symbol in an
1723 // object. The target specific code adds entries to the GOT as
1724 // needed.
1725
1726 template<int size, bool big_endian>
1727 class Output_data_got : public Output_section_data_build
1728 {
1729 public:
1730 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1731 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1732 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1733
1734 Output_data_got()
1735 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1736 entries_()
1737 { }
1738
1739 // Add an entry for a global symbol to the GOT. Return true if this
1740 // is a new GOT entry, false if the symbol was already in the GOT.
1741 bool
1742 add_global(Symbol* gsym, unsigned int got_type);
1743
1744 // Add an entry for a global symbol to the GOT, and add a dynamic
1745 // relocation of type R_TYPE for the GOT entry.
1746 void
1747 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1748 Rel_dyn* rel_dyn, unsigned int r_type);
1749
1750 void
1751 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1752 Rela_dyn* rela_dyn, unsigned int r_type);
1753
1754 // Add a pair of entries for a global symbol to the GOT, and add
1755 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1756 void
1757 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1758 Rel_dyn* rel_dyn, unsigned int r_type_1,
1759 unsigned int r_type_2);
1760
1761 void
1762 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1763 Rela_dyn* rela_dyn, unsigned int r_type_1,
1764 unsigned int r_type_2);
1765
1766 // Add an entry for a local symbol to the GOT. This returns true if
1767 // this is a new GOT entry, false if the symbol already has a GOT
1768 // entry.
1769 bool
1770 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1771 unsigned int got_type);
1772
1773 // Add an entry for a local symbol to the GOT, and add a dynamic
1774 // relocation of type R_TYPE for the GOT entry.
1775 void
1776 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1777 unsigned int sym_index, unsigned int got_type,
1778 Rel_dyn* rel_dyn, unsigned int r_type);
1779
1780 void
1781 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1782 unsigned int sym_index, unsigned int got_type,
1783 Rela_dyn* rela_dyn, unsigned int r_type);
1784
1785 // Add a pair of entries for a local symbol to the GOT, and add
1786 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1787 void
1788 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1789 unsigned int sym_index, unsigned int shndx,
1790 unsigned int got_type, Rel_dyn* rel_dyn,
1791 unsigned int r_type_1, unsigned int r_type_2);
1792
1793 void
1794 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1795 unsigned int sym_index, unsigned int shndx,
1796 unsigned int got_type, Rela_dyn* rela_dyn,
1797 unsigned int r_type_1, unsigned int r_type_2);
1798
1799 // Add a constant to the GOT. This returns the offset of the new
1800 // entry from the start of the GOT.
1801 unsigned int
1802 add_constant(Valtype constant)
1803 {
1804 this->entries_.push_back(Got_entry(constant));
1805 this->set_got_size();
1806 return this->last_got_offset();
1807 }
1808
1809 protected:
1810 // Write out the GOT table.
1811 void
1812 do_write(Output_file*);
1813
1814 // Write to a map file.
1815 void
1816 do_print_to_mapfile(Mapfile* mapfile) const
1817 { mapfile->print_output_data(this, _("** GOT")); }
1818
1819 private:
1820 // This POD class holds a single GOT entry.
1821 class Got_entry
1822 {
1823 public:
1824 // Create a zero entry.
1825 Got_entry()
1826 : local_sym_index_(CONSTANT_CODE)
1827 { this->u_.constant = 0; }
1828
1829 // Create a global symbol entry.
1830 explicit Got_entry(Symbol* gsym)
1831 : local_sym_index_(GSYM_CODE)
1832 { this->u_.gsym = gsym; }
1833
1834 // Create a local symbol entry.
1835 Got_entry(Sized_relobj<size, big_endian>* object,
1836 unsigned int local_sym_index)
1837 : local_sym_index_(local_sym_index)
1838 {
1839 gold_assert(local_sym_index != GSYM_CODE
1840 && local_sym_index != CONSTANT_CODE);
1841 this->u_.object = object;
1842 }
1843
1844 // Create a constant entry. The constant is a host value--it will
1845 // be swapped, if necessary, when it is written out.
1846 explicit Got_entry(Valtype constant)
1847 : local_sym_index_(CONSTANT_CODE)
1848 { this->u_.constant = constant; }
1849
1850 // Write the GOT entry to an output view.
1851 void
1852 write(unsigned char* pov) const;
1853
1854 private:
1855 enum
1856 {
1857 GSYM_CODE = -1U,
1858 CONSTANT_CODE = -2U
1859 };
1860
1861 union
1862 {
1863 // For a local symbol, the object.
1864 Sized_relobj<size, big_endian>* object;
1865 // For a global symbol, the symbol.
1866 Symbol* gsym;
1867 // For a constant, the constant.
1868 Valtype constant;
1869 } u_;
1870 // For a local symbol, the local symbol index. This is GSYM_CODE
1871 // for a global symbol, or CONSTANT_CODE for a constant.
1872 unsigned int local_sym_index_;
1873 };
1874
1875 typedef std::vector<Got_entry> Got_entries;
1876
1877 // Return the offset into the GOT of GOT entry I.
1878 unsigned int
1879 got_offset(unsigned int i) const
1880 { return i * (size / 8); }
1881
1882 // Return the offset into the GOT of the last entry added.
1883 unsigned int
1884 last_got_offset() const
1885 { return this->got_offset(this->entries_.size() - 1); }
1886
1887 // Set the size of the section.
1888 void
1889 set_got_size()
1890 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1891
1892 // The list of GOT entries.
1893 Got_entries entries_;
1894 };
1895
1896 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1897 // section.
1898
1899 class Output_data_dynamic : public Output_section_data
1900 {
1901 public:
1902 Output_data_dynamic(Stringpool* pool)
1903 : Output_section_data(Output_data::default_alignment()),
1904 entries_(), pool_(pool)
1905 { }
1906
1907 // Add a new dynamic entry with a fixed numeric value.
1908 void
1909 add_constant(elfcpp::DT tag, unsigned int val)
1910 { this->add_entry(Dynamic_entry(tag, val)); }
1911
1912 // Add a new dynamic entry with the address of output data.
1913 void
1914 add_section_address(elfcpp::DT tag, const Output_data* od)
1915 { this->add_entry(Dynamic_entry(tag, od, false)); }
1916
1917 // Add a new dynamic entry with the address of output data
1918 // plus a constant offset.
1919 void
1920 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1921 unsigned int offset)
1922 { this->add_entry(Dynamic_entry(tag, od, offset)); }
1923
1924 // Add a new dynamic entry with the size of output data.
1925 void
1926 add_section_size(elfcpp::DT tag, const Output_data* od)
1927 { this->add_entry(Dynamic_entry(tag, od, true)); }
1928
1929 // Add a new dynamic entry with the address of a symbol.
1930 void
1931 add_symbol(elfcpp::DT tag, const Symbol* sym)
1932 { this->add_entry(Dynamic_entry(tag, sym)); }
1933
1934 // Add a new dynamic entry with a string.
1935 void
1936 add_string(elfcpp::DT tag, const char* str)
1937 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1938
1939 void
1940 add_string(elfcpp::DT tag, const std::string& str)
1941 { this->add_string(tag, str.c_str()); }
1942
1943 protected:
1944 // Adjust the output section to set the entry size.
1945 void
1946 do_adjust_output_section(Output_section*);
1947
1948 // Set the final data size.
1949 void
1950 set_final_data_size();
1951
1952 // Write out the dynamic entries.
1953 void
1954 do_write(Output_file*);
1955
1956 // Write to a map file.
1957 void
1958 do_print_to_mapfile(Mapfile* mapfile) const
1959 { mapfile->print_output_data(this, _("** dynamic")); }
1960
1961 private:
1962 // This POD class holds a single dynamic entry.
1963 class Dynamic_entry
1964 {
1965 public:
1966 // Create an entry with a fixed numeric value.
1967 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1968 : tag_(tag), offset_(DYNAMIC_NUMBER)
1969 { this->u_.val = val; }
1970
1971 // Create an entry with the size or address of a section.
1972 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1973 : tag_(tag),
1974 offset_(section_size
1975 ? DYNAMIC_SECTION_SIZE
1976 : DYNAMIC_SECTION_ADDRESS)
1977 { this->u_.od = od; }
1978
1979 // Create an entry with the address of a section plus a constant offset.
1980 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
1981 : tag_(tag),
1982 offset_(offset)
1983 { this->u_.od = od; }
1984
1985 // Create an entry with the address of a symbol.
1986 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1987 : tag_(tag), offset_(DYNAMIC_SYMBOL)
1988 { this->u_.sym = sym; }
1989
1990 // Create an entry with a string.
1991 Dynamic_entry(elfcpp::DT tag, const char* str)
1992 : tag_(tag), offset_(DYNAMIC_STRING)
1993 { this->u_.str = str; }
1994
1995 // Return the tag of this entry.
1996 elfcpp::DT
1997 tag() const
1998 { return this->tag_; }
1999
2000 // Write the dynamic entry to an output view.
2001 template<int size, bool big_endian>
2002 void
2003 write(unsigned char* pov, const Stringpool*) const;
2004
2005 private:
2006 // Classification is encoded in the OFFSET field.
2007 enum Classification
2008 {
2009 // Section address.
2010 DYNAMIC_SECTION_ADDRESS = 0,
2011 // Number.
2012 DYNAMIC_NUMBER = -1U,
2013 // Section size.
2014 DYNAMIC_SECTION_SIZE = -2U,
2015 // Symbol adress.
2016 DYNAMIC_SYMBOL = -3U,
2017 // String.
2018 DYNAMIC_STRING = -4U
2019 // Any other value indicates a section address plus OFFSET.
2020 };
2021
2022 union
2023 {
2024 // For DYNAMIC_NUMBER.
2025 unsigned int val;
2026 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2027 const Output_data* od;
2028 // For DYNAMIC_SYMBOL.
2029 const Symbol* sym;
2030 // For DYNAMIC_STRING.
2031 const char* str;
2032 } u_;
2033 // The dynamic tag.
2034 elfcpp::DT tag_;
2035 // The type of entry (Classification) or offset within a section.
2036 unsigned int offset_;
2037 };
2038
2039 // Add an entry to the list.
2040 void
2041 add_entry(const Dynamic_entry& entry)
2042 { this->entries_.push_back(entry); }
2043
2044 // Sized version of write function.
2045 template<int size, bool big_endian>
2046 void
2047 sized_write(Output_file* of);
2048
2049 // The type of the list of entries.
2050 typedef std::vector<Dynamic_entry> Dynamic_entries;
2051
2052 // The entries.
2053 Dynamic_entries entries_;
2054 // The pool used for strings.
2055 Stringpool* pool_;
2056 };
2057
2058 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2059 // which may be required if the object file has more than
2060 // SHN_LORESERVE sections.
2061
2062 class Output_symtab_xindex : public Output_section_data
2063 {
2064 public:
2065 Output_symtab_xindex(size_t symcount)
2066 : Output_section_data(symcount * 4, 4, true),
2067 entries_()
2068 { }
2069
2070 // Add an entry: symbol number SYMNDX has section SHNDX.
2071 void
2072 add(unsigned int symndx, unsigned int shndx)
2073 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2074
2075 protected:
2076 void
2077 do_write(Output_file*);
2078
2079 // Write to a map file.
2080 void
2081 do_print_to_mapfile(Mapfile* mapfile) const
2082 { mapfile->print_output_data(this, _("** symtab xindex")); }
2083
2084 private:
2085 template<bool big_endian>
2086 void
2087 endian_do_write(unsigned char*);
2088
2089 // It is likely that most symbols will not require entries. Rather
2090 // than keep a vector for all symbols, we keep pairs of symbol index
2091 // and section index.
2092 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2093
2094 // The entries we need.
2095 Xindex_entries entries_;
2096 };
2097
2098 // A relaxed input section.
2099 class Output_relaxed_input_section : public Output_section_data_build
2100 {
2101 public:
2102 // We would like to call relobj->section_addralign(shndx) to get the
2103 // alignment but we do not want the constructor to fail. So callers
2104 // are repsonsible for ensuring that.
2105 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2106 uint64_t addralign)
2107 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2108 { }
2109
2110 // Return the Relobj of this relaxed input section.
2111 Relobj*
2112 relobj() const
2113 { return this->relobj_; }
2114
2115 // Return the section index of this relaxed input section.
2116 unsigned int
2117 shndx() const
2118 { return this->shndx_; }
2119
2120 private:
2121 Relobj* relobj_;
2122 unsigned int shndx_;
2123 };
2124
2125 // An output section. We don't expect to have too many output
2126 // sections, so we don't bother to do a template on the size.
2127
2128 class Output_section : public Output_data
2129 {
2130 public:
2131 // Create an output section, giving the name, type, and flags.
2132 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2133 virtual ~Output_section();
2134
2135 // Add a new input section SHNDX, named NAME, with header SHDR, from
2136 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2137 // which applies to this section, or 0 if none, or -1 if more than
2138 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2139 // in a linker script; in that case we need to keep track of input
2140 // sections associated with an output section. Return the offset
2141 // within the output section.
2142 template<int size, bool big_endian>
2143 off_t
2144 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
2145 const char *name,
2146 const elfcpp::Shdr<size, big_endian>& shdr,
2147 unsigned int reloc_shndx, bool have_sections_script);
2148
2149 // Add generated data POSD to this output section.
2150 void
2151 add_output_section_data(Output_section_data* posd);
2152
2153 // Add a relaxed input section PORIS to this output section.
2154 void
2155 add_relaxed_input_section(Output_relaxed_input_section* poris);
2156
2157 // Return the section name.
2158 const char*
2159 name() const
2160 { return this->name_; }
2161
2162 // Return the section type.
2163 elfcpp::Elf_Word
2164 type() const
2165 { return this->type_; }
2166
2167 // Return the section flags.
2168 elfcpp::Elf_Xword
2169 flags() const
2170 { return this->flags_; }
2171
2172 // Update the output section flags based on input section flags.
2173 void
2174 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2175
2176 // Return the entsize field.
2177 uint64_t
2178 entsize() const
2179 { return this->entsize_; }
2180
2181 // Set the entsize field.
2182 void
2183 set_entsize(uint64_t v);
2184
2185 // Set the load address.
2186 void
2187 set_load_address(uint64_t load_address)
2188 {
2189 this->load_address_ = load_address;
2190 this->has_load_address_ = true;
2191 }
2192
2193 // Set the link field to the output section index of a section.
2194 void
2195 set_link_section(const Output_data* od)
2196 {
2197 gold_assert(this->link_ == 0
2198 && !this->should_link_to_symtab_
2199 && !this->should_link_to_dynsym_);
2200 this->link_section_ = od;
2201 }
2202
2203 // Set the link field to a constant.
2204 void
2205 set_link(unsigned int v)
2206 {
2207 gold_assert(this->link_section_ == NULL
2208 && !this->should_link_to_symtab_
2209 && !this->should_link_to_dynsym_);
2210 this->link_ = v;
2211 }
2212
2213 // Record that this section should link to the normal symbol table.
2214 void
2215 set_should_link_to_symtab()
2216 {
2217 gold_assert(this->link_section_ == NULL
2218 && this->link_ == 0
2219 && !this->should_link_to_dynsym_);
2220 this->should_link_to_symtab_ = true;
2221 }
2222
2223 // Record that this section should link to the dynamic symbol table.
2224 void
2225 set_should_link_to_dynsym()
2226 {
2227 gold_assert(this->link_section_ == NULL
2228 && this->link_ == 0
2229 && !this->should_link_to_symtab_);
2230 this->should_link_to_dynsym_ = true;
2231 }
2232
2233 // Return the info field.
2234 unsigned int
2235 info() const
2236 {
2237 gold_assert(this->info_section_ == NULL
2238 && this->info_symndx_ == NULL);
2239 return this->info_;
2240 }
2241
2242 // Set the info field to the output section index of a section.
2243 void
2244 set_info_section(const Output_section* os)
2245 {
2246 gold_assert((this->info_section_ == NULL
2247 || (this->info_section_ == os
2248 && this->info_uses_section_index_))
2249 && this->info_symndx_ == NULL
2250 && this->info_ == 0);
2251 this->info_section_ = os;
2252 this->info_uses_section_index_= true;
2253 }
2254
2255 // Set the info field to the symbol table index of a symbol.
2256 void
2257 set_info_symndx(const Symbol* sym)
2258 {
2259 gold_assert(this->info_section_ == NULL
2260 && (this->info_symndx_ == NULL
2261 || this->info_symndx_ == sym)
2262 && this->info_ == 0);
2263 this->info_symndx_ = sym;
2264 }
2265
2266 // Set the info field to the symbol table index of a section symbol.
2267 void
2268 set_info_section_symndx(const Output_section* os)
2269 {
2270 gold_assert((this->info_section_ == NULL
2271 || (this->info_section_ == os
2272 && !this->info_uses_section_index_))
2273 && this->info_symndx_ == NULL
2274 && this->info_ == 0);
2275 this->info_section_ = os;
2276 this->info_uses_section_index_ = false;
2277 }
2278
2279 // Set the info field to a constant.
2280 void
2281 set_info(unsigned int v)
2282 {
2283 gold_assert(this->info_section_ == NULL
2284 && this->info_symndx_ == NULL
2285 && (this->info_ == 0
2286 || this->info_ == v));
2287 this->info_ = v;
2288 }
2289
2290 // Set the addralign field.
2291 void
2292 set_addralign(uint64_t v)
2293 { this->addralign_ = v; }
2294
2295 // Whether the output section index has been set.
2296 bool
2297 has_out_shndx() const
2298 { return this->out_shndx_ != -1U; }
2299
2300 // Indicate that we need a symtab index.
2301 void
2302 set_needs_symtab_index()
2303 { this->needs_symtab_index_ = true; }
2304
2305 // Return whether we need a symtab index.
2306 bool
2307 needs_symtab_index() const
2308 { return this->needs_symtab_index_; }
2309
2310 // Get the symtab index.
2311 unsigned int
2312 symtab_index() const
2313 {
2314 gold_assert(this->symtab_index_ != 0);
2315 return this->symtab_index_;
2316 }
2317
2318 // Set the symtab index.
2319 void
2320 set_symtab_index(unsigned int index)
2321 {
2322 gold_assert(index != 0);
2323 this->symtab_index_ = index;
2324 }
2325
2326 // Indicate that we need a dynsym index.
2327 void
2328 set_needs_dynsym_index()
2329 { this->needs_dynsym_index_ = true; }
2330
2331 // Return whether we need a dynsym index.
2332 bool
2333 needs_dynsym_index() const
2334 { return this->needs_dynsym_index_; }
2335
2336 // Get the dynsym index.
2337 unsigned int
2338 dynsym_index() const
2339 {
2340 gold_assert(this->dynsym_index_ != 0);
2341 return this->dynsym_index_;
2342 }
2343
2344 // Set the dynsym index.
2345 void
2346 set_dynsym_index(unsigned int index)
2347 {
2348 gold_assert(index != 0);
2349 this->dynsym_index_ = index;
2350 }
2351
2352 // Return whether the input sections sections attachd to this output
2353 // section may require sorting. This is used to handle constructor
2354 // priorities compatibly with GNU ld.
2355 bool
2356 may_sort_attached_input_sections() const
2357 { return this->may_sort_attached_input_sections_; }
2358
2359 // Record that the input sections attached to this output section
2360 // may require sorting.
2361 void
2362 set_may_sort_attached_input_sections()
2363 { this->may_sort_attached_input_sections_ = true; }
2364
2365 // Return whether the input sections attached to this output section
2366 // require sorting. This is used to handle constructor priorities
2367 // compatibly with GNU ld.
2368 bool
2369 must_sort_attached_input_sections() const
2370 { return this->must_sort_attached_input_sections_; }
2371
2372 // Record that the input sections attached to this output section
2373 // require sorting.
2374 void
2375 set_must_sort_attached_input_sections()
2376 { this->must_sort_attached_input_sections_ = true; }
2377
2378 // Return whether this section holds relro data--data which has
2379 // dynamic relocations but which may be marked read-only after the
2380 // dynamic relocations have been completed.
2381 bool
2382 is_relro() const
2383 { return this->is_relro_; }
2384
2385 // Record that this section holds relro data.
2386 void
2387 set_is_relro()
2388 { this->is_relro_ = true; }
2389
2390 // Record that this section does not hold relro data.
2391 void
2392 clear_is_relro()
2393 { this->is_relro_ = false; }
2394
2395 // True if this section holds relro local data--relro data for which
2396 // the dynamic relocations are all RELATIVE relocations.
2397 bool
2398 is_relro_local() const
2399 { return this->is_relro_local_; }
2400
2401 // Record that this section holds relro local data.
2402 void
2403 set_is_relro_local()
2404 { this->is_relro_local_ = true; }
2405
2406 // True if this must be the last relro section.
2407 bool
2408 is_last_relro() const
2409 { return this->is_last_relro_; }
2410
2411 // Record that this must be the last relro section.
2412 void
2413 set_is_last_relro()
2414 {
2415 gold_assert(this->is_relro_);
2416 this->is_last_relro_ = true;
2417 }
2418
2419 // True if this must be the first section following the relro sections.
2420 bool
2421 is_first_non_relro() const
2422 {
2423 gold_assert(!this->is_relro_);
2424 return this->is_first_non_relro_;
2425 }
2426
2427 // Record that this must be the first non-relro section.
2428 void
2429 set_is_first_non_relro()
2430 {
2431 gold_assert(!this->is_relro_);
2432 this->is_first_non_relro_ = true;
2433 }
2434
2435 // True if this is a small section: a section which holds small
2436 // variables.
2437 bool
2438 is_small_section() const
2439 { return this->is_small_section_; }
2440
2441 // Record that this is a small section.
2442 void
2443 set_is_small_section()
2444 { this->is_small_section_ = true; }
2445
2446 // True if this is a large section: a section which holds large
2447 // variables.
2448 bool
2449 is_large_section() const
2450 { return this->is_large_section_; }
2451
2452 // Record that this is a large section.
2453 void
2454 set_is_large_section()
2455 { this->is_large_section_ = true; }
2456
2457 // True if this is a large data (not BSS) section.
2458 bool
2459 is_large_data_section()
2460 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2461
2462 // True if this is the .interp section which goes into the PT_INTERP
2463 // segment.
2464 bool
2465 is_interp() const
2466 { return this->is_interp_; }
2467
2468 // Record that this is the interp section.
2469 void
2470 set_is_interp()
2471 { this->is_interp_ = true; }
2472
2473 // True if this is a section used by the dynamic linker.
2474 bool
2475 is_dynamic_linker_section() const
2476 { return this->is_dynamic_linker_section_; }
2477
2478 // Record that this is a section used by the dynamic linker.
2479 void
2480 set_is_dynamic_linker_section()
2481 { this->is_dynamic_linker_section_ = true; }
2482
2483 // Return whether this section should be written after all the input
2484 // sections are complete.
2485 bool
2486 after_input_sections() const
2487 { return this->after_input_sections_; }
2488
2489 // Record that this section should be written after all the input
2490 // sections are complete.
2491 void
2492 set_after_input_sections()
2493 { this->after_input_sections_ = true; }
2494
2495 // Return whether this section requires postprocessing after all
2496 // relocations have been applied.
2497 bool
2498 requires_postprocessing() const
2499 { return this->requires_postprocessing_; }
2500
2501 // If a section requires postprocessing, return the buffer to use.
2502 unsigned char*
2503 postprocessing_buffer() const
2504 {
2505 gold_assert(this->postprocessing_buffer_ != NULL);
2506 return this->postprocessing_buffer_;
2507 }
2508
2509 // If a section requires postprocessing, create the buffer to use.
2510 void
2511 create_postprocessing_buffer();
2512
2513 // If a section requires postprocessing, this is the size of the
2514 // buffer to which relocations should be applied.
2515 off_t
2516 postprocessing_buffer_size() const
2517 { return this->current_data_size_for_child(); }
2518
2519 // Modify the section name. This is only permitted for an
2520 // unallocated section, and only before the size has been finalized.
2521 // Otherwise the name will not get into Layout::namepool_.
2522 void
2523 set_name(const char* newname)
2524 {
2525 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2526 gold_assert(!this->is_data_size_valid());
2527 this->name_ = newname;
2528 }
2529
2530 // Return whether the offset OFFSET in the input section SHNDX in
2531 // object OBJECT is being included in the link.
2532 bool
2533 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2534 off_t offset) const;
2535
2536 // Return the offset within the output section of OFFSET relative to
2537 // the start of input section SHNDX in object OBJECT.
2538 section_offset_type
2539 output_offset(const Relobj* object, unsigned int shndx,
2540 section_offset_type offset) const;
2541
2542 // Return the output virtual address of OFFSET relative to the start
2543 // of input section SHNDX in object OBJECT.
2544 uint64_t
2545 output_address(const Relobj* object, unsigned int shndx,
2546 off_t offset) const;
2547
2548 // Look for the merged section for input section SHNDX in object
2549 // OBJECT. If found, return true, and set *ADDR to the address of
2550 // the start of the merged section. This is not necessary the
2551 // output offset corresponding to input offset 0 in the section,
2552 // since the section may be mapped arbitrarily.
2553 bool
2554 find_starting_output_address(const Relobj* object, unsigned int shndx,
2555 uint64_t* addr) const;
2556
2557 // Record that this output section was found in the SECTIONS clause
2558 // of a linker script.
2559 void
2560 set_found_in_sections_clause()
2561 { this->found_in_sections_clause_ = true; }
2562
2563 // Return whether this output section was found in the SECTIONS
2564 // clause of a linker script.
2565 bool
2566 found_in_sections_clause() const
2567 { return this->found_in_sections_clause_; }
2568
2569 // Write the section header into *OPHDR.
2570 template<int size, bool big_endian>
2571 void
2572 write_header(const Layout*, const Stringpool*,
2573 elfcpp::Shdr_write<size, big_endian>*) const;
2574
2575 // The next few calls are for linker script support.
2576
2577 // We need to export the input sections to linker scripts. Previously
2578 // we export a pair of Relobj pointer and section index. We now need to
2579 // handle relaxed input sections as well. So we use this class.
2580 class Simple_input_section
2581 {
2582 private:
2583 static const unsigned int invalid_shndx = static_cast<unsigned int>(-1);
2584
2585 public:
2586 Simple_input_section(Relobj *relobj, unsigned int shndx)
2587 : shndx_(shndx)
2588 {
2589 gold_assert(shndx != invalid_shndx);
2590 this->u_.relobj = relobj;
2591 }
2592
2593 Simple_input_section(Output_relaxed_input_section* section)
2594 : shndx_(invalid_shndx)
2595 { this->u_.relaxed_input_section = section; }
2596
2597 // Whether this is a relaxed section.
2598 bool
2599 is_relaxed_input_section() const
2600 { return this->shndx_ == invalid_shndx; }
2601
2602 // Return object of an input section.
2603 Relobj*
2604 relobj() const
2605 {
2606 return ((this->shndx_ != invalid_shndx)
2607 ? this->u_.relobj
2608 : this->u_.relaxed_input_section->relobj());
2609 }
2610
2611 // Return index of an input section.
2612 unsigned int
2613 shndx() const
2614 {
2615 return ((this->shndx_ != invalid_shndx)
2616 ? this->shndx_
2617 : this->u_.relaxed_input_section->shndx());
2618 }
2619
2620 // Return the Output_relaxed_input_section object of a relaxed section.
2621 Output_relaxed_input_section*
2622 relaxed_input_section() const
2623 {
2624 gold_assert(this->shndx_ == invalid_shndx);
2625 return this->u_.relaxed_input_section;
2626 }
2627
2628 private:
2629 // Pointer to either an Relobj or an Output_relaxed_input_section.
2630 union
2631 {
2632 Relobj* relobj;
2633 Output_relaxed_input_section* relaxed_input_section;
2634 } u_;
2635 // Section index for an non-relaxed section or invalid_shndx for
2636 // a relaxed section.
2637 unsigned int shndx_;
2638 };
2639
2640 // Store the list of input sections for this Output_section into the
2641 // list passed in. This removes the input sections, leaving only
2642 // any Output_section_data elements. This returns the size of those
2643 // Output_section_data elements. ADDRESS is the address of this
2644 // output section. FILL is the fill value to use, in case there are
2645 // any spaces between the remaining Output_section_data elements.
2646 uint64_t
2647 get_input_sections(uint64_t address, const std::string& fill,
2648 std::list<Simple_input_section>*);
2649
2650 // Add an input section from a script.
2651 void
2652 add_input_section_for_script(const Simple_input_section& input_section,
2653 off_t data_size, uint64_t addralign);
2654
2655 // Set the current size of the output section.
2656 void
2657 set_current_data_size(off_t size)
2658 { this->set_current_data_size_for_child(size); }
2659
2660 // Get the current size of the output section.
2661 off_t
2662 current_data_size() const
2663 { return this->current_data_size_for_child(); }
2664
2665 // End of linker script support.
2666
2667 // Save states before doing section layout.
2668 // This is used for relaxation.
2669 void
2670 save_states();
2671
2672 // Restore states prior to section layout.
2673 void
2674 restore_states();
2675
2676 // Convert existing input sections to relaxed input sections.
2677 void
2678 convert_input_sections_to_relaxed_sections(
2679 const std::vector<Output_relaxed_input_section*>& sections);
2680
2681 // Find a relaxed input section to an input section in OBJECT
2682 // with index SHNDX. Return NULL if none is found.
2683 const Output_relaxed_input_section*
2684 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
2685
2686 // Print merge statistics to stderr.
2687 void
2688 print_merge_stats();
2689
2690 protected:
2691 // Return the output section--i.e., the object itself.
2692 Output_section*
2693 do_output_section()
2694 { return this; }
2695
2696 const Output_section*
2697 do_output_section() const
2698 { return this; }
2699
2700 // Return the section index in the output file.
2701 unsigned int
2702 do_out_shndx() const
2703 {
2704 gold_assert(this->out_shndx_ != -1U);
2705 return this->out_shndx_;
2706 }
2707
2708 // Set the output section index.
2709 void
2710 do_set_out_shndx(unsigned int shndx)
2711 {
2712 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2713 this->out_shndx_ = shndx;
2714 }
2715
2716 // Set the final data size of the Output_section. For a typical
2717 // Output_section, there is nothing to do, but if there are any
2718 // Output_section_data objects we need to set their final addresses
2719 // here.
2720 virtual void
2721 set_final_data_size();
2722
2723 // Reset the address and file offset.
2724 void
2725 do_reset_address_and_file_offset();
2726
2727 // Return true if address and file offset already have reset values. In
2728 // other words, calling reset_address_and_file_offset will not change them.
2729 bool
2730 do_address_and_file_offset_have_reset_values() const;
2731
2732 // Write the data to the file. For a typical Output_section, this
2733 // does nothing: the data is written out by calling Object::Relocate
2734 // on each input object. But if there are any Output_section_data
2735 // objects we do need to write them out here.
2736 virtual void
2737 do_write(Output_file*);
2738
2739 // Return the address alignment--function required by parent class.
2740 uint64_t
2741 do_addralign() const
2742 { return this->addralign_; }
2743
2744 // Return whether there is a load address.
2745 bool
2746 do_has_load_address() const
2747 { return this->has_load_address_; }
2748
2749 // Return the load address.
2750 uint64_t
2751 do_load_address() const
2752 {
2753 gold_assert(this->has_load_address_);
2754 return this->load_address_;
2755 }
2756
2757 // Return whether this is an Output_section.
2758 bool
2759 do_is_section() const
2760 { return true; }
2761
2762 // Return whether this is a section of the specified type.
2763 bool
2764 do_is_section_type(elfcpp::Elf_Word type) const
2765 { return this->type_ == type; }
2766
2767 // Return whether the specified section flag is set.
2768 bool
2769 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2770 { return (this->flags_ & flag) != 0; }
2771
2772 // Set the TLS offset. Called only for SHT_TLS sections.
2773 void
2774 do_set_tls_offset(uint64_t tls_base);
2775
2776 // Return the TLS offset, relative to the base of the TLS segment.
2777 // Valid only for SHT_TLS sections.
2778 uint64_t
2779 do_tls_offset() const
2780 { return this->tls_offset_; }
2781
2782 // This may be implemented by a child class.
2783 virtual void
2784 do_finalize_name(Layout*)
2785 { }
2786
2787 // Print to the map file.
2788 virtual void
2789 do_print_to_mapfile(Mapfile*) const;
2790
2791 // Record that this section requires postprocessing after all
2792 // relocations have been applied. This is called by a child class.
2793 void
2794 set_requires_postprocessing()
2795 {
2796 this->requires_postprocessing_ = true;
2797 this->after_input_sections_ = true;
2798 }
2799
2800 // Write all the data of an Output_section into the postprocessing
2801 // buffer.
2802 void
2803 write_to_postprocessing_buffer();
2804
2805 // In some cases we need to keep a list of the input sections
2806 // associated with this output section. We only need the list if we
2807 // might have to change the offsets of the input section within the
2808 // output section after we add the input section. The ordinary
2809 // input sections will be written out when we process the object
2810 // file, and as such we don't need to track them here. We do need
2811 // to track Output_section_data objects here. We store instances of
2812 // this structure in a std::vector, so it must be a POD. There can
2813 // be many instances of this structure, so we use a union to save
2814 // some space.
2815 class Input_section
2816 {
2817 public:
2818 Input_section()
2819 : shndx_(0), p2align_(0)
2820 {
2821 this->u1_.data_size = 0;
2822 this->u2_.object = NULL;
2823 }
2824
2825 // For an ordinary input section.
2826 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2827 uint64_t addralign)
2828 : shndx_(shndx),
2829 p2align_(ffsll(static_cast<long long>(addralign)))
2830 {
2831 gold_assert(shndx != OUTPUT_SECTION_CODE
2832 && shndx != MERGE_DATA_SECTION_CODE
2833 && shndx != MERGE_STRING_SECTION_CODE
2834 && shndx != RELAXED_INPUT_SECTION_CODE);
2835 this->u1_.data_size = data_size;
2836 this->u2_.object = object;
2837 }
2838
2839 // For a non-merge output section.
2840 Input_section(Output_section_data* posd)
2841 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
2842 {
2843 this->u1_.data_size = 0;
2844 this->u2_.posd = posd;
2845 }
2846
2847 // For a merge section.
2848 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2849 : shndx_(is_string
2850 ? MERGE_STRING_SECTION_CODE
2851 : MERGE_DATA_SECTION_CODE),
2852 p2align_(0)
2853 {
2854 this->u1_.entsize = entsize;
2855 this->u2_.posd = posd;
2856 }
2857
2858 // For a relaxed input section.
2859 Input_section(Output_relaxed_input_section *psection)
2860 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0)
2861 {
2862 this->u1_.data_size = 0;
2863 this->u2_.poris = psection;
2864 }
2865
2866 // The required alignment.
2867 uint64_t
2868 addralign() const
2869 {
2870 if (!this->is_input_section())
2871 return this->u2_.posd->addralign();
2872 return (this->p2align_ == 0
2873 ? 0
2874 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2875 }
2876
2877 // Return the required size.
2878 off_t
2879 data_size() const;
2880
2881 // Whether this is an input section.
2882 bool
2883 is_input_section() const
2884 {
2885 return (this->shndx_ != OUTPUT_SECTION_CODE
2886 && this->shndx_ != MERGE_DATA_SECTION_CODE
2887 && this->shndx_ != MERGE_STRING_SECTION_CODE
2888 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
2889 }
2890
2891 // Return whether this is a merge section which matches the
2892 // parameters.
2893 bool
2894 is_merge_section(bool is_string, uint64_t entsize,
2895 uint64_t addralign) const
2896 {
2897 return (this->shndx_ == (is_string
2898 ? MERGE_STRING_SECTION_CODE
2899 : MERGE_DATA_SECTION_CODE)
2900 && this->u1_.entsize == entsize
2901 && this->addralign() == addralign);
2902 }
2903
2904 // Return whether this is a relaxed input section.
2905 bool
2906 is_relaxed_input_section() const
2907 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
2908
2909 // Return whether this is a generic Output_section_data.
2910 bool
2911 is_output_section_data() const
2912 {
2913 return this->shndx_ == OUTPUT_SECTION_CODE;
2914 }
2915
2916 // Return the object for an input section.
2917 Relobj*
2918 relobj() const
2919 {
2920 if (this->is_input_section())
2921 return this->u2_.object;
2922 else if (this->is_relaxed_input_section())
2923 return this->u2_.poris->relobj();
2924 else
2925 gold_unreachable();
2926 }
2927
2928 // Return the input section index for an input section.
2929 unsigned int
2930 shndx() const
2931 {
2932 if (this->is_input_section())
2933 return this->shndx_;
2934 else if (this->is_relaxed_input_section())
2935 return this->u2_.poris->shndx();
2936 else
2937 gold_unreachable();
2938 }
2939
2940 // For non-input-sections, return the associated Output_section_data
2941 // object.
2942 Output_section_data*
2943 output_section_data() const
2944 {
2945 gold_assert(!this->is_input_section());
2946 return this->u2_.posd;
2947 }
2948
2949 // Return the Output_relaxed_input_section object.
2950 Output_relaxed_input_section*
2951 relaxed_input_section() const
2952 {
2953 gold_assert(this->is_relaxed_input_section());
2954 return this->u2_.poris;
2955 }
2956
2957 // Set the output section.
2958 void
2959 set_output_section(Output_section* os)
2960 {
2961 gold_assert(!this->is_input_section());
2962 Output_section_data *posd =
2963 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
2964 posd->set_output_section(os);
2965 }
2966
2967 // Set the address and file offset. This is called during
2968 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2969 // the enclosing section.
2970 void
2971 set_address_and_file_offset(uint64_t address, off_t file_offset,
2972 off_t section_file_offset);
2973
2974 // Reset the address and file offset.
2975 void
2976 reset_address_and_file_offset();
2977
2978 // Finalize the data size.
2979 void
2980 finalize_data_size();
2981
2982 // Add an input section, for SHF_MERGE sections.
2983 bool
2984 add_input_section(Relobj* object, unsigned int shndx)
2985 {
2986 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2987 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2988 return this->u2_.posd->add_input_section(object, shndx);
2989 }
2990
2991 // Given an input OBJECT, an input section index SHNDX within that
2992 // object, and an OFFSET relative to the start of that input
2993 // section, return whether or not the output offset is known. If
2994 // this function returns true, it sets *POUTPUT to the offset in
2995 // the output section, relative to the start of the input section
2996 // in the output section. *POUTPUT may be different from OFFSET
2997 // for a merged section.
2998 bool
2999 output_offset(const Relobj* object, unsigned int shndx,
3000 section_offset_type offset,
3001 section_offset_type *poutput) const;
3002
3003 // Return whether this is the merge section for the input section
3004 // SHNDX in OBJECT.
3005 bool
3006 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3007
3008 // Write out the data. This does nothing for an input section.
3009 void
3010 write(Output_file*);
3011
3012 // Write the data to a buffer. This does nothing for an input
3013 // section.
3014 void
3015 write_to_buffer(unsigned char*);
3016
3017 // Print to a map file.
3018 void
3019 print_to_mapfile(Mapfile*) const;
3020
3021 // Print statistics about merge sections to stderr.
3022 void
3023 print_merge_stats(const char* section_name)
3024 {
3025 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3026 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3027 this->u2_.posd->print_merge_stats(section_name);
3028 }
3029
3030 private:
3031 // Code values which appear in shndx_. If the value is not one of
3032 // these codes, it is the input section index in the object file.
3033 enum
3034 {
3035 // An Output_section_data.
3036 OUTPUT_SECTION_CODE = -1U,
3037 // An Output_section_data for an SHF_MERGE section with
3038 // SHF_STRINGS not set.
3039 MERGE_DATA_SECTION_CODE = -2U,
3040 // An Output_section_data for an SHF_MERGE section with
3041 // SHF_STRINGS set.
3042 MERGE_STRING_SECTION_CODE = -3U,
3043 // An Output_section_data for a relaxed input section.
3044 RELAXED_INPUT_SECTION_CODE = -4U
3045 };
3046
3047 // For an ordinary input section, this is the section index in the
3048 // input file. For an Output_section_data, this is
3049 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3050 // MERGE_STRING_SECTION_CODE.
3051 unsigned int shndx_;
3052 // The required alignment, stored as a power of 2.
3053 unsigned int p2align_;
3054 union
3055 {
3056 // For an ordinary input section, the section size.
3057 off_t data_size;
3058 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3059 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3060 // entity size.
3061 uint64_t entsize;
3062 } u1_;
3063 union
3064 {
3065 // For an ordinary input section, the object which holds the
3066 // input section.
3067 Relobj* object;
3068 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3069 // MERGE_STRING_SECTION_CODE, the data.
3070 Output_section_data* posd;
3071 // For RELAXED_INPUT_SECTION_CODE, the data.
3072 Output_relaxed_input_section* poris;
3073 } u2_;
3074 };
3075
3076 typedef std::vector<Input_section> Input_section_list;
3077
3078 // Allow a child class to access the input sections.
3079 const Input_section_list&
3080 input_sections() const
3081 { return this->input_sections_; }
3082
3083 private:
3084 // We only save enough information to undo the effects of section layout.
3085 class Checkpoint_output_section
3086 {
3087 public:
3088 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3089 const Input_section_list& input_sections,
3090 off_t first_input_offset,
3091 bool attached_input_sections_are_sorted)
3092 : addralign_(addralign), flags_(flags),
3093 input_sections_(input_sections),
3094 input_sections_size_(input_sections_.size()),
3095 input_sections_copy_(), first_input_offset_(first_input_offset),
3096 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3097 { }
3098
3099 virtual
3100 ~Checkpoint_output_section()
3101 { }
3102
3103 // Return the address alignment.
3104 uint64_t
3105 addralign() const
3106 { return this->addralign_; }
3107
3108 // Return the section flags.
3109 elfcpp::Elf_Xword
3110 flags() const
3111 { return this->flags_; }
3112
3113 // Return a reference to the input section list copy.
3114 Input_section_list*
3115 input_sections()
3116 { return &this->input_sections_copy_; }
3117
3118 // Return the size of input_sections at the time when checkpoint is
3119 // taken.
3120 size_t
3121 input_sections_size() const
3122 { return this->input_sections_size_; }
3123
3124 // Whether input sections are copied.
3125 bool
3126 input_sections_saved() const
3127 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3128
3129 off_t
3130 first_input_offset() const
3131 { return this->first_input_offset_; }
3132
3133 bool
3134 attached_input_sections_are_sorted() const
3135 { return this->attached_input_sections_are_sorted_; }
3136
3137 // Save input sections.
3138 void
3139 save_input_sections()
3140 {
3141 this->input_sections_copy_.reserve(this->input_sections_size_);
3142 this->input_sections_copy_.clear();
3143 Input_section_list::const_iterator p = this->input_sections_.begin();
3144 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3145 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3146 this->input_sections_copy_.push_back(*p);
3147 }
3148
3149 private:
3150 // The section alignment.
3151 uint64_t addralign_;
3152 // The section flags.
3153 elfcpp::Elf_Xword flags_;
3154 // Reference to the input sections to be checkpointed.
3155 const Input_section_list& input_sections_;
3156 // Size of the checkpointed portion of input_sections_;
3157 size_t input_sections_size_;
3158 // Copy of input sections.
3159 Input_section_list input_sections_copy_;
3160 // The offset of the first entry in input_sections_.
3161 off_t first_input_offset_;
3162 // True if the input sections attached to this output section have
3163 // already been sorted.
3164 bool attached_input_sections_are_sorted_;
3165 };
3166
3167 // This class is used to sort the input sections.
3168 class Input_section_sort_entry;
3169
3170 // This is the sort comparison function.
3171 struct Input_section_sort_compare
3172 {
3173 bool
3174 operator()(const Input_section_sort_entry&,
3175 const Input_section_sort_entry&) const;
3176 };
3177
3178 // Fill data. This is used to fill in data between input sections.
3179 // It is also used for data statements (BYTE, WORD, etc.) in linker
3180 // scripts. When we have to keep track of the input sections, we
3181 // can use an Output_data_const, but we don't want to have to keep
3182 // track of input sections just to implement fills.
3183 class Fill
3184 {
3185 public:
3186 Fill(off_t section_offset, off_t length)
3187 : section_offset_(section_offset),
3188 length_(convert_to_section_size_type(length))
3189 { }
3190
3191 // Return section offset.
3192 off_t
3193 section_offset() const
3194 { return this->section_offset_; }
3195
3196 // Return fill length.
3197 section_size_type
3198 length() const
3199 { return this->length_; }
3200
3201 private:
3202 // The offset within the output section.
3203 off_t section_offset_;
3204 // The length of the space to fill.
3205 section_size_type length_;
3206 };
3207
3208 typedef std::vector<Fill> Fill_list;
3209
3210 // This class describes properties of merge data sections. It is used
3211 // as a key type for maps.
3212 class Merge_section_properties
3213 {
3214 public:
3215 Merge_section_properties(bool is_string, uint64_t entsize,
3216 uint64_t addralign)
3217 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3218 { }
3219
3220 // Whether this equals to another Merge_section_properties MSP.
3221 bool
3222 eq(const Merge_section_properties& msp) const
3223 {
3224 return ((this->is_string_ == msp.is_string_)
3225 && (this->entsize_ == msp.entsize_)
3226 && (this->addralign_ == msp.addralign_));
3227 }
3228
3229 // Compute a hash value for this using 64-bit FNV-1a hash.
3230 size_t
3231 hash_value() const
3232 {
3233 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3234 uint64_t prime = 1099511628211ULL;
3235 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3236 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3237 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3238 return h;
3239 }
3240
3241 // Functors for associative containers.
3242 struct equal_to
3243 {
3244 bool
3245 operator()(const Merge_section_properties& msp1,
3246 const Merge_section_properties& msp2) const
3247 { return msp1.eq(msp2); }
3248 };
3249
3250 struct hash
3251 {
3252 size_t
3253 operator()(const Merge_section_properties& msp) const
3254 { return msp.hash_value(); }
3255 };
3256
3257 private:
3258 // Whether this merge data section is for strings.
3259 bool is_string_;
3260 // Entsize of this merge data section.
3261 uint64_t entsize_;
3262 // Address alignment.
3263 uint64_t addralign_;
3264 };
3265
3266 // Map that link Merge_section_properties to Output_merge_base.
3267 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3268 Merge_section_properties::hash,
3269 Merge_section_properties::equal_to>
3270 Merge_section_by_properties_map;
3271
3272 // Map that link Input_section_specifier to Output_section_data.
3273 typedef Unordered_map<Input_section_specifier, Output_section_data*,
3274 Input_section_specifier::hash,
3275 Input_section_specifier::equal_to>
3276 Output_section_data_by_input_section_map;
3277
3278 // Map that link Input_section_specifier to Output_relaxed_input_section.
3279 typedef Unordered_map<Input_section_specifier, Output_relaxed_input_section*,
3280 Input_section_specifier::hash,
3281 Input_section_specifier::equal_to>
3282 Output_relaxed_input_section_by_input_section_map;
3283
3284 // Map used during relaxation of existing sections. This map
3285 // an input section specifier to an input section list index.
3286 // We assume that Input_section_list is a vector.
3287 typedef Unordered_map<Input_section_specifier, size_t,
3288 Input_section_specifier::hash,
3289 Input_section_specifier::equal_to>
3290 Relaxation_map;
3291
3292 // Add a new output section by Input_section.
3293 void
3294 add_output_section_data(Input_section*);
3295
3296 // Add an SHF_MERGE input section. Returns true if the section was
3297 // handled.
3298 bool
3299 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3300 uint64_t entsize, uint64_t addralign);
3301
3302 // Add an output SHF_MERGE section POSD to this output section.
3303 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3304 // ENTSIZE is the entity size. This returns the entry added to
3305 // input_sections_.
3306 void
3307 add_output_merge_section(Output_section_data* posd, bool is_string,
3308 uint64_t entsize);
3309
3310 // Sort the attached input sections.
3311 void
3312 sort_attached_input_sections();
3313
3314 // Find the merge section into which an input section with index SHNDX in
3315 // OBJECT has been added. Return NULL if none found.
3316 Output_section_data*
3317 find_merge_section(const Relobj* object, unsigned int shndx) const;
3318
3319 // Build a relaxation map.
3320 void
3321 build_relaxation_map(
3322 const Input_section_list& input_sections,
3323 size_t limit,
3324 Relaxation_map* map) const;
3325
3326 // Convert input sections in an input section list into relaxed sections.
3327 void
3328 convert_input_sections_in_list_to_relaxed_sections(
3329 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3330 const Relaxation_map& map,
3331 Input_section_list* input_sections);
3332
3333 // Most of these fields are only valid after layout.
3334
3335 // The name of the section. This will point into a Stringpool.
3336 const char* name_;
3337 // The section address is in the parent class.
3338 // The section alignment.
3339 uint64_t addralign_;
3340 // The section entry size.
3341 uint64_t entsize_;
3342 // The load address. This is only used when using a linker script
3343 // with a SECTIONS clause. The has_load_address_ field indicates
3344 // whether this field is valid.
3345 uint64_t load_address_;
3346 // The file offset is in the parent class.
3347 // Set the section link field to the index of this section.
3348 const Output_data* link_section_;
3349 // If link_section_ is NULL, this is the link field.
3350 unsigned int link_;
3351 // Set the section info field to the index of this section.
3352 const Output_section* info_section_;
3353 // If info_section_ is NULL, set the info field to the symbol table
3354 // index of this symbol.
3355 const Symbol* info_symndx_;
3356 // If info_section_ and info_symndx_ are NULL, this is the section
3357 // info field.
3358 unsigned int info_;
3359 // The section type.
3360 const elfcpp::Elf_Word type_;
3361 // The section flags.
3362 elfcpp::Elf_Xword flags_;
3363 // The section index.
3364 unsigned int out_shndx_;
3365 // If there is a STT_SECTION for this output section in the normal
3366 // symbol table, this is the symbol index. This starts out as zero.
3367 // It is initialized in Layout::finalize() to be the index, or -1U
3368 // if there isn't one.
3369 unsigned int symtab_index_;
3370 // If there is a STT_SECTION for this output section in the dynamic
3371 // symbol table, this is the symbol index. This starts out as zero.
3372 // It is initialized in Layout::finalize() to be the index, or -1U
3373 // if there isn't one.
3374 unsigned int dynsym_index_;
3375 // The input sections. This will be empty in cases where we don't
3376 // need to keep track of them.
3377 Input_section_list input_sections_;
3378 // The offset of the first entry in input_sections_.
3379 off_t first_input_offset_;
3380 // The fill data. This is separate from input_sections_ because we
3381 // often will need fill sections without needing to keep track of
3382 // input sections.
3383 Fill_list fills_;
3384 // If the section requires postprocessing, this buffer holds the
3385 // section contents during relocation.
3386 unsigned char* postprocessing_buffer_;
3387 // Whether this output section needs a STT_SECTION symbol in the
3388 // normal symbol table. This will be true if there is a relocation
3389 // which needs it.
3390 bool needs_symtab_index_ : 1;
3391 // Whether this output section needs a STT_SECTION symbol in the
3392 // dynamic symbol table. This will be true if there is a dynamic
3393 // relocation which needs it.
3394 bool needs_dynsym_index_ : 1;
3395 // Whether the link field of this output section should point to the
3396 // normal symbol table.
3397 bool should_link_to_symtab_ : 1;
3398 // Whether the link field of this output section should point to the
3399 // dynamic symbol table.
3400 bool should_link_to_dynsym_ : 1;
3401 // Whether this section should be written after all the input
3402 // sections are complete.
3403 bool after_input_sections_ : 1;
3404 // Whether this section requires post processing after all
3405 // relocations have been applied.
3406 bool requires_postprocessing_ : 1;
3407 // Whether an input section was mapped to this output section
3408 // because of a SECTIONS clause in a linker script.
3409 bool found_in_sections_clause_ : 1;
3410 // Whether this section has an explicitly specified load address.
3411 bool has_load_address_ : 1;
3412 // True if the info_section_ field means the section index of the
3413 // section, false if it means the symbol index of the corresponding
3414 // section symbol.
3415 bool info_uses_section_index_ : 1;
3416 // True if the input sections attached to this output section may
3417 // need sorting.
3418 bool may_sort_attached_input_sections_ : 1;
3419 // True if the input sections attached to this output section must
3420 // be sorted.
3421 bool must_sort_attached_input_sections_ : 1;
3422 // True if the input sections attached to this output section have
3423 // already been sorted.
3424 bool attached_input_sections_are_sorted_ : 1;
3425 // True if this section holds relro data.
3426 bool is_relro_ : 1;
3427 // True if this section holds relro local data.
3428 bool is_relro_local_ : 1;
3429 // True if this must be the last relro section.
3430 bool is_last_relro_ : 1;
3431 // True if this must be the first section after the relro sections.
3432 bool is_first_non_relro_ : 1;
3433 // True if this is a small section.
3434 bool is_small_section_ : 1;
3435 // True if this is a large section.
3436 bool is_large_section_ : 1;
3437 // True if this is the .interp section going into the PT_INTERP
3438 // segment.
3439 bool is_interp_ : 1;
3440 // True if this is section is read by the dynamic linker.
3441 bool is_dynamic_linker_section_ : 1;
3442 // Whether code-fills are generated at write.
3443 bool generate_code_fills_at_write_ : 1;
3444 // Whether the entry size field should be zero.
3445 bool is_entsize_zero_ : 1;
3446 // For SHT_TLS sections, the offset of this section relative to the base
3447 // of the TLS segment.
3448 uint64_t tls_offset_;
3449 // Saved checkpoint.
3450 Checkpoint_output_section* checkpoint_;
3451 // Map from input sections to merge sections.
3452 Output_section_data_by_input_section_map merge_section_map_;
3453 // Map from merge section properties to merge_sections;
3454 Merge_section_by_properties_map merge_section_by_properties_map_;
3455 // Map from input sections to relaxed input sections. This is mutable
3456 // because it is updated lazily. We may need to update it in a
3457 // const qualified method.
3458 mutable Output_relaxed_input_section_by_input_section_map
3459 relaxed_input_section_map_;
3460 // Whether relaxed_input_section_map_ is valid.
3461 mutable bool is_relaxed_input_section_map_valid_;
3462 };
3463
3464 // An output segment. PT_LOAD segments are built from collections of
3465 // output sections. Other segments typically point within PT_LOAD
3466 // segments, and are built directly as needed.
3467 //
3468 // NOTE: We want to use the copy constructor for this class. During
3469 // relaxation, we may try built the segments multiple times. We do
3470 // that by copying the original segment list before lay-out, doing
3471 // a trial lay-out and roll-back to the saved copied if we need to
3472 // to the lay-out again.
3473
3474 class Output_segment
3475 {
3476 public:
3477 // Create an output segment, specifying the type and flags.
3478 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3479
3480 // Return the virtual address.
3481 uint64_t
3482 vaddr() const
3483 { return this->vaddr_; }
3484
3485 // Return the physical address.
3486 uint64_t
3487 paddr() const
3488 { return this->paddr_; }
3489
3490 // Return the segment type.
3491 elfcpp::Elf_Word
3492 type() const
3493 { return this->type_; }
3494
3495 // Return the segment flags.
3496 elfcpp::Elf_Word
3497 flags() const
3498 { return this->flags_; }
3499
3500 // Return the memory size.
3501 uint64_t
3502 memsz() const
3503 { return this->memsz_; }
3504
3505 // Return the file size.
3506 off_t
3507 filesz() const
3508 { return this->filesz_; }
3509
3510 // Return the file offset.
3511 off_t
3512 offset() const
3513 { return this->offset_; }
3514
3515 // Whether this is a segment created to hold large data sections.
3516 bool
3517 is_large_data_segment() const
3518 { return this->is_large_data_segment_; }
3519
3520 // Record that this is a segment created to hold large data
3521 // sections.
3522 void
3523 set_is_large_data_segment()
3524 { this->is_large_data_segment_ = true; }
3525
3526 // Return the maximum alignment of the Output_data.
3527 uint64_t
3528 maximum_alignment();
3529
3530 // Add the Output_section OS to this segment. SEG_FLAGS is the
3531 // segment flags to use. DO_SORT is true if we should sort the
3532 // placement of the input section for more efficient generated code.
3533 void
3534 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags,
3535 bool do_sort);
3536
3537 // Remove an Output_section from this segment. It is an error if it
3538 // is not present.
3539 void
3540 remove_output_section(Output_section* os);
3541
3542 // Add an Output_data (which need not be an Output_section) to the
3543 // start of this segment.
3544 void
3545 add_initial_output_data(Output_data*);
3546
3547 // Return true if this segment has any sections which hold actual
3548 // data, rather than being a BSS section.
3549 bool
3550 has_any_data_sections() const
3551 { return !this->output_data_.empty(); }
3552
3553 // Return the number of dynamic relocations applied to this segment.
3554 unsigned int
3555 dynamic_reloc_count() const;
3556
3557 // Return the address of the first section.
3558 uint64_t
3559 first_section_load_address() const;
3560
3561 // Return whether the addresses have been set already.
3562 bool
3563 are_addresses_set() const
3564 { return this->are_addresses_set_; }
3565
3566 // Set the addresses.
3567 void
3568 set_addresses(uint64_t vaddr, uint64_t paddr)
3569 {
3570 this->vaddr_ = vaddr;
3571 this->paddr_ = paddr;
3572 this->are_addresses_set_ = true;
3573 }
3574
3575 // Update the flags for the flags of an output section added to this
3576 // segment.
3577 void
3578 update_flags_for_output_section(elfcpp::Elf_Xword flags)
3579 {
3580 // The ELF ABI specifies that a PT_TLS segment should always have
3581 // PF_R as the flags.
3582 if (this->type() != elfcpp::PT_TLS)
3583 this->flags_ |= flags;
3584 }
3585
3586 // Set the segment flags. This is only used if we have a PHDRS
3587 // clause which explicitly specifies the flags.
3588 void
3589 set_flags(elfcpp::Elf_Word flags)
3590 { this->flags_ = flags; }
3591
3592 // Set the address of the segment to ADDR and the offset to *POFF
3593 // and set the addresses and offsets of all contained output
3594 // sections accordingly. Set the section indexes of all contained
3595 // output sections starting with *PSHNDX. If RESET is true, first
3596 // reset the addresses of the contained sections. Return the
3597 // address of the immediately following segment. Update *POFF and
3598 // *PSHNDX. This should only be called for a PT_LOAD segment.
3599 uint64_t
3600 set_section_addresses(const Layout*, bool reset, uint64_t addr,
3601 unsigned int increase_relro, off_t* poff,
3602 unsigned int* pshndx);
3603
3604 // Set the minimum alignment of this segment. This may be adjusted
3605 // upward based on the section alignments.
3606 void
3607 set_minimum_p_align(uint64_t align)
3608 { this->min_p_align_ = align; }
3609
3610 // Set the offset of this segment based on the section. This should
3611 // only be called for a non-PT_LOAD segment.
3612 void
3613 set_offset(unsigned int increase);
3614
3615 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3616 void
3617 set_tls_offsets();
3618
3619 // Return the number of output sections.
3620 unsigned int
3621 output_section_count() const;
3622
3623 // Return the section attached to the list segment with the lowest
3624 // load address. This is used when handling a PHDRS clause in a
3625 // linker script.
3626 Output_section*
3627 section_with_lowest_load_address() const;
3628
3629 // Write the segment header into *OPHDR.
3630 template<int size, bool big_endian>
3631 void
3632 write_header(elfcpp::Phdr_write<size, big_endian>*);
3633
3634 // Write the section headers of associated sections into V.
3635 template<int size, bool big_endian>
3636 unsigned char*
3637 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3638 unsigned int* pshndx) const;
3639
3640 // Print the output sections in the map file.
3641 void
3642 print_sections_to_mapfile(Mapfile*) const;
3643
3644 private:
3645 typedef std::list<Output_data*> Output_data_list;
3646
3647 // Find the maximum alignment in an Output_data_list.
3648 static uint64_t
3649 maximum_alignment_list(const Output_data_list*);
3650
3651 // Return whether the first data section is a relro section.
3652 bool
3653 is_first_section_relro() const;
3654
3655 // Set the section addresses in an Output_data_list.
3656 uint64_t
3657 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3658 uint64_t addr, off_t* poff, unsigned int* pshndx,
3659 bool* in_tls);
3660
3661 // Return the number of Output_sections in an Output_data_list.
3662 unsigned int
3663 output_section_count_list(const Output_data_list*) const;
3664
3665 // Return the number of dynamic relocs in an Output_data_list.
3666 unsigned int
3667 dynamic_reloc_count_list(const Output_data_list*) const;
3668
3669 // Find the section with the lowest load address in an
3670 // Output_data_list.
3671 void
3672 lowest_load_address_in_list(const Output_data_list* pdl,
3673 Output_section** found,
3674 uint64_t* found_lma) const;
3675
3676 // Write the section headers in the list into V.
3677 template<int size, bool big_endian>
3678 unsigned char*
3679 write_section_headers_list(const Layout*, const Stringpool*,
3680 const Output_data_list*, unsigned char* v,
3681 unsigned int* pshdx) const;
3682
3683 // Print a section list to the mapfile.
3684 void
3685 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
3686
3687 // NOTE: We want to use the copy constructor. Currently, shallow copy
3688 // works for us so we do not need to write our own copy constructor.
3689
3690 // The list of output data with contents attached to this segment.
3691 Output_data_list output_data_;
3692 // The list of output data without contents attached to this segment.
3693 Output_data_list output_bss_;
3694 // The segment virtual address.
3695 uint64_t vaddr_;
3696 // The segment physical address.
3697 uint64_t paddr_;
3698 // The size of the segment in memory.
3699 uint64_t memsz_;
3700 // The maximum section alignment. The is_max_align_known_ field
3701 // indicates whether this has been finalized.
3702 uint64_t max_align_;
3703 // The required minimum value for the p_align field. This is used
3704 // for PT_LOAD segments. Note that this does not mean that
3705 // addresses should be aligned to this value; it means the p_paddr
3706 // and p_vaddr fields must be congruent modulo this value. For
3707 // non-PT_LOAD segments, the dynamic linker works more efficiently
3708 // if the p_align field has the more conventional value, although it
3709 // can align as needed.
3710 uint64_t min_p_align_;
3711 // The offset of the segment data within the file.
3712 off_t offset_;
3713 // The size of the segment data in the file.
3714 off_t filesz_;
3715 // The segment type;
3716 elfcpp::Elf_Word type_;
3717 // The segment flags.
3718 elfcpp::Elf_Word flags_;
3719 // Whether we have finalized max_align_.
3720 bool is_max_align_known_ : 1;
3721 // Whether vaddr and paddr were set by a linker script.
3722 bool are_addresses_set_ : 1;
3723 // Whether this segment holds large data sections.
3724 bool is_large_data_segment_ : 1;
3725 };
3726
3727 // This class represents the output file.
3728
3729 class Output_file
3730 {
3731 public:
3732 Output_file(const char* name);
3733
3734 // Indicate that this is a temporary file which should not be
3735 // output.
3736 void
3737 set_is_temporary()
3738 { this->is_temporary_ = true; }
3739
3740 // Try to open an existing file. Returns false if the file doesn't
3741 // exist, has a size of 0 or can't be mmaped. This method is
3742 // thread-unsafe.
3743 bool
3744 open_for_modification();
3745
3746 // Open the output file. FILE_SIZE is the final size of the file.
3747 // If the file already exists, it is deleted/truncated. This method
3748 // is thread-unsafe.
3749 void
3750 open(off_t file_size);
3751
3752 // Resize the output file. This method is thread-unsafe.
3753 void
3754 resize(off_t file_size);
3755
3756 // Close the output file (flushing all buffered data) and make sure
3757 // there are no errors. This method is thread-unsafe.
3758 void
3759 close();
3760
3761 // Return the size of this file.
3762 off_t
3763 filesize()
3764 { return this->file_size_; }
3765
3766 // Return the name of this file.
3767 const char*
3768 filename()
3769 { return this->name_; }
3770
3771 // We currently always use mmap which makes the view handling quite
3772 // simple. In the future we may support other approaches.
3773
3774 // Write data to the output file.
3775 void
3776 write(off_t offset, const void* data, size_t len)
3777 { memcpy(this->base_ + offset, data, len); }
3778
3779 // Get a buffer to use to write to the file, given the offset into
3780 // the file and the size.
3781 unsigned char*
3782 get_output_view(off_t start, size_t size)
3783 {
3784 gold_assert(start >= 0
3785 && start + static_cast<off_t>(size) <= this->file_size_);
3786 return this->base_ + start;
3787 }
3788
3789 // VIEW must have been returned by get_output_view. Write the
3790 // buffer to the file, passing in the offset and the size.
3791 void
3792 write_output_view(off_t, size_t, unsigned char*)
3793 { }
3794
3795 // Get a read/write buffer. This is used when we want to write part
3796 // of the file, read it in, and write it again.
3797 unsigned char*
3798 get_input_output_view(off_t start, size_t size)
3799 { return this->get_output_view(start, size); }
3800
3801 // Write a read/write buffer back to the file.
3802 void
3803 write_input_output_view(off_t, size_t, unsigned char*)
3804 { }
3805
3806 // Get a read buffer. This is used when we just want to read part
3807 // of the file back it in.
3808 const unsigned char*
3809 get_input_view(off_t start, size_t size)
3810 { return this->get_output_view(start, size); }
3811
3812 // Release a read bfufer.
3813 void
3814 free_input_view(off_t, size_t, const unsigned char*)
3815 { }
3816
3817 private:
3818 // Map the file into memory or, if that fails, allocate anonymous
3819 // memory.
3820 void
3821 map();
3822
3823 // Allocate anonymous memory for the file.
3824 bool
3825 map_anonymous();
3826
3827 // Map the file into memory.
3828 bool
3829 map_no_anonymous();
3830
3831 // Unmap the file from memory (and flush to disk buffers).
3832 void
3833 unmap();
3834
3835 // File name.
3836 const char* name_;
3837 // File descriptor.
3838 int o_;
3839 // File size.
3840 off_t file_size_;
3841 // Base of file mapped into memory.
3842 unsigned char* base_;
3843 // True iff base_ points to a memory buffer rather than an output file.
3844 bool map_is_anonymous_;
3845 // True if this is a temporary file which should not be output.
3846 bool is_temporary_;
3847 };
3848
3849 } // End namespace gold.
3850
3851 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.10431 seconds and 5 git commands to generate.