* gold.cc (queue_middle_tasks): Process existing GOT/PLT entries.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49
50 // An abtract class for data which has to go into the output file.
51
52 class Output_data
53 {
54 public:
55 explicit Output_data()
56 : address_(0), data_size_(0), offset_(-1),
57 is_address_valid_(false), is_data_size_valid_(false),
58 is_offset_valid_(false), is_data_size_fixed_(false),
59 has_dynamic_reloc_(false)
60 { }
61
62 virtual
63 ~Output_data();
64
65 // Return the address. For allocated sections, this is only valid
66 // after Layout::finalize is finished.
67 uint64_t
68 address() const
69 {
70 gold_assert(this->is_address_valid_);
71 return this->address_;
72 }
73
74 // Return the size of the data. For allocated sections, this must
75 // be valid after Layout::finalize calls set_address, but need not
76 // be valid before then.
77 off_t
78 data_size() const
79 {
80 gold_assert(this->is_data_size_valid_);
81 return this->data_size_;
82 }
83
84 // Get the current data size.
85 off_t
86 current_data_size() const
87 { return this->current_data_size_for_child(); }
88
89 // Return true if data size is fixed.
90 bool
91 is_data_size_fixed() const
92 { return this->is_data_size_fixed_; }
93
94 // Return the file offset. This is only valid after
95 // Layout::finalize is finished. For some non-allocated sections,
96 // it may not be valid until near the end of the link.
97 off_t
98 offset() const
99 {
100 gold_assert(this->is_offset_valid_);
101 return this->offset_;
102 }
103
104 // Reset the address and file offset. This essentially disables the
105 // sanity testing about duplicate and unknown settings.
106 void
107 reset_address_and_file_offset()
108 {
109 this->is_address_valid_ = false;
110 this->is_offset_valid_ = false;
111 if (!this->is_data_size_fixed_)
112 this->is_data_size_valid_ = false;
113 this->do_reset_address_and_file_offset();
114 }
115
116 // Return true if address and file offset already have reset values. In
117 // other words, calling reset_address_and_file_offset will not change them.
118 bool
119 address_and_file_offset_have_reset_values() const
120 { return this->do_address_and_file_offset_have_reset_values(); }
121
122 // Return the required alignment.
123 uint64_t
124 addralign() const
125 { return this->do_addralign(); }
126
127 // Return whether this has a load address.
128 bool
129 has_load_address() const
130 { return this->do_has_load_address(); }
131
132 // Return the load address.
133 uint64_t
134 load_address() const
135 { return this->do_load_address(); }
136
137 // Return whether this is an Output_section.
138 bool
139 is_section() const
140 { return this->do_is_section(); }
141
142 // Return whether this is an Output_section of the specified type.
143 bool
144 is_section_type(elfcpp::Elf_Word stt) const
145 { return this->do_is_section_type(stt); }
146
147 // Return whether this is an Output_section with the specified flag
148 // set.
149 bool
150 is_section_flag_set(elfcpp::Elf_Xword shf) const
151 { return this->do_is_section_flag_set(shf); }
152
153 // Return the output section that this goes in, if there is one.
154 Output_section*
155 output_section()
156 { return this->do_output_section(); }
157
158 const Output_section*
159 output_section() const
160 { return this->do_output_section(); }
161
162 // Return the output section index, if there is an output section.
163 unsigned int
164 out_shndx() const
165 { return this->do_out_shndx(); }
166
167 // Set the output section index, if this is an output section.
168 void
169 set_out_shndx(unsigned int shndx)
170 { this->do_set_out_shndx(shndx); }
171
172 // Set the address and file offset of this data, and finalize the
173 // size of the data. This is called during Layout::finalize for
174 // allocated sections.
175 void
176 set_address_and_file_offset(uint64_t addr, off_t off)
177 {
178 this->set_address(addr);
179 this->set_file_offset(off);
180 this->finalize_data_size();
181 }
182
183 // Set the address.
184 void
185 set_address(uint64_t addr)
186 {
187 gold_assert(!this->is_address_valid_);
188 this->address_ = addr;
189 this->is_address_valid_ = true;
190 }
191
192 // Set the file offset.
193 void
194 set_file_offset(off_t off)
195 {
196 gold_assert(!this->is_offset_valid_);
197 this->offset_ = off;
198 this->is_offset_valid_ = true;
199 }
200
201 // Update the data size without finalizing it.
202 void
203 pre_finalize_data_size()
204 {
205 if (!this->is_data_size_valid_)
206 {
207 // Tell the child class to update the data size.
208 this->update_data_size();
209 }
210 }
211
212 // Finalize the data size.
213 void
214 finalize_data_size()
215 {
216 if (!this->is_data_size_valid_)
217 {
218 // Tell the child class to set the data size.
219 this->set_final_data_size();
220 gold_assert(this->is_data_size_valid_);
221 }
222 }
223
224 // Set the TLS offset. Called only for SHT_TLS sections.
225 void
226 set_tls_offset(uint64_t tls_base)
227 { this->do_set_tls_offset(tls_base); }
228
229 // Return the TLS offset, relative to the base of the TLS segment.
230 // Valid only for SHT_TLS sections.
231 uint64_t
232 tls_offset() const
233 { return this->do_tls_offset(); }
234
235 // Write the data to the output file. This is called after
236 // Layout::finalize is complete.
237 void
238 write(Output_file* file)
239 { this->do_write(file); }
240
241 // This is called by Layout::finalize to note that the sizes of
242 // allocated sections must now be fixed.
243 static void
244 layout_complete()
245 { Output_data::allocated_sizes_are_fixed = true; }
246
247 // Used to check that layout has been done.
248 static bool
249 is_layout_complete()
250 { return Output_data::allocated_sizes_are_fixed; }
251
252 // Note that a dynamic reloc has been applied to this data.
253 void
254 add_dynamic_reloc()
255 { this->has_dynamic_reloc_ = true; }
256
257 // Return whether a dynamic reloc has been applied.
258 bool
259 has_dynamic_reloc() const
260 { return this->has_dynamic_reloc_; }
261
262 // Whether the address is valid.
263 bool
264 is_address_valid() const
265 { return this->is_address_valid_; }
266
267 // Whether the file offset is valid.
268 bool
269 is_offset_valid() const
270 { return this->is_offset_valid_; }
271
272 // Whether the data size is valid.
273 bool
274 is_data_size_valid() const
275 { return this->is_data_size_valid_; }
276
277 // Print information to the map file.
278 void
279 print_to_mapfile(Mapfile* mapfile) const
280 { return this->do_print_to_mapfile(mapfile); }
281
282 protected:
283 // Functions that child classes may or in some cases must implement.
284
285 // Write the data to the output file.
286 virtual void
287 do_write(Output_file*) = 0;
288
289 // Return the required alignment.
290 virtual uint64_t
291 do_addralign() const = 0;
292
293 // Return whether this has a load address.
294 virtual bool
295 do_has_load_address() const
296 { return false; }
297
298 // Return the load address.
299 virtual uint64_t
300 do_load_address() const
301 { gold_unreachable(); }
302
303 // Return whether this is an Output_section.
304 virtual bool
305 do_is_section() const
306 { return false; }
307
308 // Return whether this is an Output_section of the specified type.
309 // This only needs to be implement by Output_section.
310 virtual bool
311 do_is_section_type(elfcpp::Elf_Word) const
312 { return false; }
313
314 // Return whether this is an Output_section with the specific flag
315 // set. This only needs to be implemented by Output_section.
316 virtual bool
317 do_is_section_flag_set(elfcpp::Elf_Xword) const
318 { return false; }
319
320 // Return the output section, if there is one.
321 virtual Output_section*
322 do_output_section()
323 { return NULL; }
324
325 virtual const Output_section*
326 do_output_section() const
327 { return NULL; }
328
329 // Return the output section index, if there is an output section.
330 virtual unsigned int
331 do_out_shndx() const
332 { gold_unreachable(); }
333
334 // Set the output section index, if this is an output section.
335 virtual void
336 do_set_out_shndx(unsigned int)
337 { gold_unreachable(); }
338
339 // This is a hook for derived classes to set the preliminary data size.
340 // This is called by pre_finalize_data_size, normally called during
341 // Layout::finalize, before the section address is set, and is used
342 // during an incremental update, when we need to know the size of a
343 // section before allocating space in the output file. For classes
344 // where the current data size is up to date, this default version of
345 // the method can be inherited.
346 virtual void
347 update_data_size()
348 { }
349
350 // This is a hook for derived classes to set the data size. This is
351 // called by finalize_data_size, normally called during
352 // Layout::finalize, when the section address is set.
353 virtual void
354 set_final_data_size()
355 { gold_unreachable(); }
356
357 // A hook for resetting the address and file offset.
358 virtual void
359 do_reset_address_and_file_offset()
360 { }
361
362 // Return true if address and file offset already have reset values. In
363 // other words, calling reset_address_and_file_offset will not change them.
364 // A child class overriding do_reset_address_and_file_offset may need to
365 // also override this.
366 virtual bool
367 do_address_and_file_offset_have_reset_values() const
368 { return !this->is_address_valid_ && !this->is_offset_valid_; }
369
370 // Set the TLS offset. Called only for SHT_TLS sections.
371 virtual void
372 do_set_tls_offset(uint64_t)
373 { gold_unreachable(); }
374
375 // Return the TLS offset, relative to the base of the TLS segment.
376 // Valid only for SHT_TLS sections.
377 virtual uint64_t
378 do_tls_offset() const
379 { gold_unreachable(); }
380
381 // Print to the map file. This only needs to be implemented by
382 // classes which may appear in a PT_LOAD segment.
383 virtual void
384 do_print_to_mapfile(Mapfile*) const
385 { gold_unreachable(); }
386
387 // Functions that child classes may call.
388
389 // Reset the address. The Output_section class needs this when an
390 // SHF_ALLOC input section is added to an output section which was
391 // formerly not SHF_ALLOC.
392 void
393 mark_address_invalid()
394 { this->is_address_valid_ = false; }
395
396 // Set the size of the data.
397 void
398 set_data_size(off_t data_size)
399 {
400 gold_assert(!this->is_data_size_valid_
401 && !this->is_data_size_fixed_);
402 this->data_size_ = data_size;
403 this->is_data_size_valid_ = true;
404 }
405
406 // Fix the data size. Once it is fixed, it cannot be changed
407 // and the data size remains always valid.
408 void
409 fix_data_size()
410 {
411 gold_assert(this->is_data_size_valid_);
412 this->is_data_size_fixed_ = true;
413 }
414
415 // Get the current data size--this is for the convenience of
416 // sections which build up their size over time.
417 off_t
418 current_data_size_for_child() const
419 { return this->data_size_; }
420
421 // Set the current data size--this is for the convenience of
422 // sections which build up their size over time.
423 void
424 set_current_data_size_for_child(off_t data_size)
425 {
426 gold_assert(!this->is_data_size_valid_);
427 this->data_size_ = data_size;
428 }
429
430 // Return default alignment for the target size.
431 static uint64_t
432 default_alignment();
433
434 // Return default alignment for a specified size--32 or 64.
435 static uint64_t
436 default_alignment_for_size(int size);
437
438 private:
439 Output_data(const Output_data&);
440 Output_data& operator=(const Output_data&);
441
442 // This is used for verification, to make sure that we don't try to
443 // change any sizes of allocated sections after we set the section
444 // addresses.
445 static bool allocated_sizes_are_fixed;
446
447 // Memory address in output file.
448 uint64_t address_;
449 // Size of data in output file.
450 off_t data_size_;
451 // File offset of contents in output file.
452 off_t offset_;
453 // Whether address_ is valid.
454 bool is_address_valid_ : 1;
455 // Whether data_size_ is valid.
456 bool is_data_size_valid_ : 1;
457 // Whether offset_ is valid.
458 bool is_offset_valid_ : 1;
459 // Whether data size is fixed.
460 bool is_data_size_fixed_ : 1;
461 // Whether any dynamic relocs have been applied to this section.
462 bool has_dynamic_reloc_ : 1;
463 };
464
465 // Output the section headers.
466
467 class Output_section_headers : public Output_data
468 {
469 public:
470 Output_section_headers(const Layout*,
471 const Layout::Segment_list*,
472 const Layout::Section_list*,
473 const Layout::Section_list*,
474 const Stringpool*,
475 const Output_section*);
476
477 protected:
478 // Write the data to the file.
479 void
480 do_write(Output_file*);
481
482 // Return the required alignment.
483 uint64_t
484 do_addralign() const
485 { return Output_data::default_alignment(); }
486
487 // Write to a map file.
488 void
489 do_print_to_mapfile(Mapfile* mapfile) const
490 { mapfile->print_output_data(this, _("** section headers")); }
491
492 // Update the data size.
493 void
494 update_data_size()
495 { this->set_data_size(this->do_size()); }
496
497 // Set final data size.
498 void
499 set_final_data_size()
500 { this->set_data_size(this->do_size()); }
501
502 private:
503 // Write the data to the file with the right size and endianness.
504 template<int size, bool big_endian>
505 void
506 do_sized_write(Output_file*);
507
508 // Compute data size.
509 off_t
510 do_size() const;
511
512 const Layout* layout_;
513 const Layout::Segment_list* segment_list_;
514 const Layout::Section_list* section_list_;
515 const Layout::Section_list* unattached_section_list_;
516 const Stringpool* secnamepool_;
517 const Output_section* shstrtab_section_;
518 };
519
520 // Output the segment headers.
521
522 class Output_segment_headers : public Output_data
523 {
524 public:
525 Output_segment_headers(const Layout::Segment_list& segment_list);
526
527 protected:
528 // Write the data to the file.
529 void
530 do_write(Output_file*);
531
532 // Return the required alignment.
533 uint64_t
534 do_addralign() const
535 { return Output_data::default_alignment(); }
536
537 // Write to a map file.
538 void
539 do_print_to_mapfile(Mapfile* mapfile) const
540 { mapfile->print_output_data(this, _("** segment headers")); }
541
542 // Set final data size.
543 void
544 set_final_data_size()
545 { this->set_data_size(this->do_size()); }
546
547 private:
548 // Write the data to the file with the right size and endianness.
549 template<int size, bool big_endian>
550 void
551 do_sized_write(Output_file*);
552
553 // Compute the current size.
554 off_t
555 do_size() const;
556
557 const Layout::Segment_list& segment_list_;
558 };
559
560 // Output the ELF file header.
561
562 class Output_file_header : public Output_data
563 {
564 public:
565 Output_file_header(const Target*,
566 const Symbol_table*,
567 const Output_segment_headers*,
568 const char* entry);
569
570 // Add information about the section headers. We lay out the ELF
571 // file header before we create the section headers.
572 void set_section_info(const Output_section_headers*,
573 const Output_section* shstrtab);
574
575 protected:
576 // Write the data to the file.
577 void
578 do_write(Output_file*);
579
580 // Return the required alignment.
581 uint64_t
582 do_addralign() const
583 { return Output_data::default_alignment(); }
584
585 // Write to a map file.
586 void
587 do_print_to_mapfile(Mapfile* mapfile) const
588 { mapfile->print_output_data(this, _("** file header")); }
589
590 // Set final data size.
591 void
592 set_final_data_size(void)
593 { this->set_data_size(this->do_size()); }
594
595 private:
596 // Write the data to the file with the right size and endianness.
597 template<int size, bool big_endian>
598 void
599 do_sized_write(Output_file*);
600
601 // Return the value to use for the entry address.
602 template<int size>
603 typename elfcpp::Elf_types<size>::Elf_Addr
604 entry();
605
606 // Compute the current data size.
607 off_t
608 do_size() const;
609
610 const Target* target_;
611 const Symbol_table* symtab_;
612 const Output_segment_headers* segment_header_;
613 const Output_section_headers* section_header_;
614 const Output_section* shstrtab_;
615 const char* entry_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1025
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1030
1031 // A reloc against a local symbol or local section symbol.
1032
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol);
1037
1038 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1039 unsigned int local_sym_index, unsigned int type,
1040 unsigned int shndx, Address address, bool is_relative,
1041 bool is_symbolless, bool is_section_symbol);
1042
1043 // A reloc against the STT_SECTION symbol of an output section.
1044
1045 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1046 Address address);
1047
1048 Output_reloc(Output_section* os, unsigned int type,
1049 Sized_relobj<size, big_endian>* relobj,
1050 unsigned int shndx, Address address);
1051
1052 // An absolute relocation with no symbol.
1053
1054 Output_reloc(unsigned int type, Output_data* od, Address address);
1055
1056 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1057 unsigned int shndx, Address address);
1058
1059 // A target specific relocation. The target will be called to get
1060 // the symbol index, passing ARG. The type and offset will be set
1061 // as for other relocation types.
1062
1063 Output_reloc(unsigned int type, void* arg, Output_data* od,
1064 Address address);
1065
1066 Output_reloc(unsigned int type, void* arg,
1067 Sized_relobj<size, big_endian>* relobj,
1068 unsigned int shndx, Address address);
1069
1070 // Return the reloc type.
1071 unsigned int
1072 type() const
1073 { return this->type_; }
1074
1075 // Return whether this is a RELATIVE relocation.
1076 bool
1077 is_relative() const
1078 { return this->is_relative_; }
1079
1080 // Return whether this is a relocation which should not use
1081 // a symbol, but which obtains its addend from a symbol.
1082 bool
1083 is_symbolless() const
1084 { return this->is_symbolless_; }
1085
1086 // Return whether this is against a local section symbol.
1087 bool
1088 is_local_section_symbol() const
1089 {
1090 return (this->local_sym_index_ != GSYM_CODE
1091 && this->local_sym_index_ != SECTION_CODE
1092 && this->local_sym_index_ != INVALID_CODE
1093 && this->local_sym_index_ != TARGET_CODE
1094 && this->is_section_symbol_);
1095 }
1096
1097 // Return whether this is a target specific relocation.
1098 bool
1099 is_target_specific() const
1100 { return this->local_sym_index_ == TARGET_CODE; }
1101
1102 // Return the argument to pass to the target for a target specific
1103 // relocation.
1104 void*
1105 target_arg() const
1106 {
1107 gold_assert(this->local_sym_index_ == TARGET_CODE);
1108 return this->u1_.arg;
1109 }
1110
1111 // For a local section symbol, return the offset of the input
1112 // section within the output section. ADDEND is the addend being
1113 // applied to the input section.
1114 Address
1115 local_section_offset(Addend addend) const;
1116
1117 // Get the value of the symbol referred to by a Rel relocation when
1118 // we are adding the given ADDEND.
1119 Address
1120 symbol_value(Addend addend) const;
1121
1122 // Write the reloc entry to an output view.
1123 void
1124 write(unsigned char* pov) const;
1125
1126 // Write the offset and info fields to Write_rel.
1127 template<typename Write_rel>
1128 void write_rel(Write_rel*) const;
1129
1130 // This is used when sorting dynamic relocs. Return -1 to sort this
1131 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1132 int
1133 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1134 const;
1135
1136 // Return whether this reloc should be sorted before the argument
1137 // when sorting dynamic relocs.
1138 bool
1139 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1140 r2) const
1141 { return this->compare(r2) < 0; }
1142
1143 private:
1144 // Record that we need a dynamic symbol index.
1145 void
1146 set_needs_dynsym_index();
1147
1148 // Return the symbol index.
1149 unsigned int
1150 get_symbol_index() const;
1151
1152 // Return the output address.
1153 Address
1154 get_address() const;
1155
1156 // Codes for local_sym_index_.
1157 enum
1158 {
1159 // Global symbol.
1160 GSYM_CODE = -1U,
1161 // Output section.
1162 SECTION_CODE = -2U,
1163 // Target specific.
1164 TARGET_CODE = -3U,
1165 // Invalid uninitialized entry.
1166 INVALID_CODE = -4U
1167 };
1168
1169 union
1170 {
1171 // For a local symbol or local section symbol
1172 // (this->local_sym_index_ >= 0), the object. We will never
1173 // generate a relocation against a local symbol in a dynamic
1174 // object; that doesn't make sense. And our callers will always
1175 // be templatized, so we use Sized_relobj here.
1176 Sized_relobj<size, big_endian>* relobj;
1177 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1178 // symbol. If this is NULL, it indicates a relocation against the
1179 // undefined 0 symbol.
1180 Symbol* gsym;
1181 // For a relocation against an output section
1182 // (this->local_sym_index_ == SECTION_CODE), the output section.
1183 Output_section* os;
1184 // For a target specific relocation, an argument to pass to the
1185 // target.
1186 void* arg;
1187 } u1_;
1188 union
1189 {
1190 // If this->shndx_ is not INVALID CODE, the object which holds the
1191 // input section being used to specify the reloc address.
1192 Sized_relobj<size, big_endian>* relobj;
1193 // If this->shndx_ is INVALID_CODE, the output data being used to
1194 // specify the reloc address. This may be NULL if the reloc
1195 // address is absolute.
1196 Output_data* od;
1197 } u2_;
1198 // The address offset within the input section or the Output_data.
1199 Address address_;
1200 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1201 // relocation against an output section, or TARGET_CODE for a target
1202 // specific relocation, or INVALID_CODE for an uninitialized value.
1203 // Otherwise, for a local symbol (this->is_section_symbol_ is
1204 // false), the local symbol index. For a local section symbol
1205 // (this->is_section_symbol_ is true), the section index in the
1206 // input file.
1207 unsigned int local_sym_index_;
1208 // The reloc type--a processor specific code.
1209 unsigned int type_ : 29;
1210 // True if the relocation is a RELATIVE relocation.
1211 bool is_relative_ : 1;
1212 // True if the relocation is one which should not use
1213 // a symbol, but which obtains its addend from a symbol.
1214 bool is_symbolless_ : 1;
1215 // True if the relocation is against a section symbol.
1216 bool is_section_symbol_ : 1;
1217 // If the reloc address is an input section in an object, the
1218 // section index. This is INVALID_CODE if the reloc address is
1219 // specified in some other way.
1220 unsigned int shndx_;
1221 };
1222
1223 // The SHT_RELA version of Output_reloc<>. This is just derived from
1224 // the SHT_REL version of Output_reloc, but it adds an addend.
1225
1226 template<bool dynamic, int size, bool big_endian>
1227 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1228 {
1229 public:
1230 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1231 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1232
1233 // An uninitialized entry.
1234 Output_reloc()
1235 : rel_()
1236 { }
1237
1238 // A reloc against a global symbol.
1239
1240 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1241 Address address, Addend addend, bool is_relative,
1242 bool is_symbolless)
1243 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1244 addend_(addend)
1245 { }
1246
1247 Output_reloc(Symbol* gsym, unsigned int type,
1248 Sized_relobj<size, big_endian>* relobj,
1249 unsigned int shndx, Address address, Addend addend,
1250 bool is_relative, bool is_symbolless)
1251 : rel_(gsym, type, relobj, shndx, address, is_relative,
1252 is_symbolless), addend_(addend)
1253 { }
1254
1255 // A reloc against a local symbol.
1256
1257 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1258 unsigned int local_sym_index, unsigned int type,
1259 Output_data* od, Address address,
1260 Addend addend, bool is_relative,
1261 bool is_symbolless, bool is_section_symbol)
1262 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1263 is_symbolless, is_section_symbol),
1264 addend_(addend)
1265 { }
1266
1267 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1268 unsigned int local_sym_index, unsigned int type,
1269 unsigned int shndx, Address address,
1270 Addend addend, bool is_relative,
1271 bool is_symbolless, bool is_section_symbol)
1272 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1273 is_symbolless, is_section_symbol),
1274 addend_(addend)
1275 { }
1276
1277 // A reloc against the STT_SECTION symbol of an output section.
1278
1279 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1280 Address address, Addend addend)
1281 : rel_(os, type, od, address), addend_(addend)
1282 { }
1283
1284 Output_reloc(Output_section* os, unsigned int type,
1285 Sized_relobj<size, big_endian>* relobj,
1286 unsigned int shndx, Address address, Addend addend)
1287 : rel_(os, type, relobj, shndx, address), addend_(addend)
1288 { }
1289
1290 // An absolute relocation with no symbol.
1291
1292 Output_reloc(unsigned int type, Output_data* od, Address address,
1293 Addend addend)
1294 : rel_(type, od, address), addend_(addend)
1295 { }
1296
1297 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1298 unsigned int shndx, Address address, Addend addend)
1299 : rel_(type, relobj, shndx, address), addend_(addend)
1300 { }
1301
1302 // A target specific relocation. The target will be called to get
1303 // the symbol index and the addend, passing ARG. The type and
1304 // offset will be set as for other relocation types.
1305
1306 Output_reloc(unsigned int type, void* arg, Output_data* od,
1307 Address address, Addend addend)
1308 : rel_(type, arg, od, address), addend_(addend)
1309 { }
1310
1311 Output_reloc(unsigned int type, void* arg,
1312 Sized_relobj<size, big_endian>* relobj,
1313 unsigned int shndx, Address address, Addend addend)
1314 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1315 { }
1316
1317 // Return whether this is a RELATIVE relocation.
1318 bool
1319 is_relative() const
1320 { return this->rel_.is_relative(); }
1321
1322 // Return whether this is a relocation which should not use
1323 // a symbol, but which obtains its addend from a symbol.
1324 bool
1325 is_symbolless() const
1326 { return this->rel_.is_symbolless(); }
1327
1328 // Write the reloc entry to an output view.
1329 void
1330 write(unsigned char* pov) const;
1331
1332 // Return whether this reloc should be sorted before the argument
1333 // when sorting dynamic relocs.
1334 bool
1335 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1336 r2) const
1337 {
1338 int i = this->rel_.compare(r2.rel_);
1339 if (i < 0)
1340 return true;
1341 else if (i > 0)
1342 return false;
1343 else
1344 return this->addend_ < r2.addend_;
1345 }
1346
1347 private:
1348 // The basic reloc.
1349 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1350 // The addend.
1351 Addend addend_;
1352 };
1353
1354 // Output_data_reloc_generic is a non-template base class for
1355 // Output_data_reloc_base. This gives the generic code a way to hold
1356 // a pointer to a reloc section.
1357
1358 class Output_data_reloc_generic : public Output_section_data_build
1359 {
1360 public:
1361 Output_data_reloc_generic(int size, bool sort_relocs)
1362 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1363 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1364 { }
1365
1366 // Return the number of relative relocs in this section.
1367 size_t
1368 relative_reloc_count() const
1369 { return this->relative_reloc_count_; }
1370
1371 // Whether we should sort the relocs.
1372 bool
1373 sort_relocs() const
1374 { return this->sort_relocs_; }
1375
1376 protected:
1377 // Note that we've added another relative reloc.
1378 void
1379 bump_relative_reloc_count()
1380 { ++this->relative_reloc_count_; }
1381
1382 private:
1383 // The number of relative relocs added to this section. This is to
1384 // support DT_RELCOUNT.
1385 size_t relative_reloc_count_;
1386 // Whether to sort the relocations when writing them out, to make
1387 // the dynamic linker more efficient.
1388 bool sort_relocs_;
1389 };
1390
1391 // Output_data_reloc is used to manage a section containing relocs.
1392 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1393 // indicates whether this is a dynamic relocation or a normal
1394 // relocation. Output_data_reloc_base is a base class.
1395 // Output_data_reloc is the real class, which we specialize based on
1396 // the reloc type.
1397
1398 template<int sh_type, bool dynamic, int size, bool big_endian>
1399 class Output_data_reloc_base : public Output_data_reloc_generic
1400 {
1401 public:
1402 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1403 typedef typename Output_reloc_type::Address Address;
1404 static const int reloc_size =
1405 Reloc_types<sh_type, size, big_endian>::reloc_size;
1406
1407 // Construct the section.
1408 Output_data_reloc_base(bool sort_relocs)
1409 : Output_data_reloc_generic(size, sort_relocs)
1410 { }
1411
1412 protected:
1413 // Write out the data.
1414 void
1415 do_write(Output_file*);
1416
1417 // Set the entry size and the link.
1418 void
1419 do_adjust_output_section(Output_section* os);
1420
1421 // Write to a map file.
1422 void
1423 do_print_to_mapfile(Mapfile* mapfile) const
1424 {
1425 mapfile->print_output_data(this,
1426 (dynamic
1427 ? _("** dynamic relocs")
1428 : _("** relocs")));
1429 }
1430
1431 // Add a relocation entry.
1432 void
1433 add(Output_data* od, const Output_reloc_type& reloc)
1434 {
1435 this->relocs_.push_back(reloc);
1436 this->set_current_data_size(this->relocs_.size() * reloc_size);
1437 od->add_dynamic_reloc();
1438 if (reloc.is_relative())
1439 this->bump_relative_reloc_count();
1440 }
1441
1442 private:
1443 typedef std::vector<Output_reloc_type> Relocs;
1444
1445 // The class used to sort the relocations.
1446 struct Sort_relocs_comparison
1447 {
1448 bool
1449 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1450 { return r1.sort_before(r2); }
1451 };
1452
1453 // The relocations in this section.
1454 Relocs relocs_;
1455 };
1456
1457 // The class which callers actually create.
1458
1459 template<int sh_type, bool dynamic, int size, bool big_endian>
1460 class Output_data_reloc;
1461
1462 // The SHT_REL version of Output_data_reloc.
1463
1464 template<bool dynamic, int size, bool big_endian>
1465 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1466 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1467 {
1468 private:
1469 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1470 big_endian> Base;
1471
1472 public:
1473 typedef typename Base::Output_reloc_type Output_reloc_type;
1474 typedef typename Output_reloc_type::Address Address;
1475
1476 Output_data_reloc(bool sr)
1477 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1478 { }
1479
1480 // Add a reloc against a global symbol.
1481
1482 void
1483 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1484 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1485
1486 void
1487 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1488 Sized_relobj<size, big_endian>* relobj,
1489 unsigned int shndx, Address address)
1490 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1491 false, false)); }
1492
1493 // These are to simplify the Copy_relocs class.
1494
1495 void
1496 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1497 Address addend)
1498 {
1499 gold_assert(addend == 0);
1500 this->add_global(gsym, type, od, address);
1501 }
1502
1503 void
1504 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1505 Sized_relobj<size, big_endian>* relobj,
1506 unsigned int shndx, Address address, Address addend)
1507 {
1508 gold_assert(addend == 0);
1509 this->add_global(gsym, type, od, relobj, shndx, address);
1510 }
1511
1512 // Add a RELATIVE reloc against a global symbol. The final relocation
1513 // will not reference the symbol.
1514
1515 void
1516 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1517 Address address)
1518 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1519
1520 void
1521 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1522 Sized_relobj<size, big_endian>* relobj,
1523 unsigned int shndx, Address address)
1524 {
1525 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1526 true, true));
1527 }
1528
1529 // Add a global relocation which does not use a symbol for the relocation,
1530 // but which gets its addend from a symbol.
1531
1532 void
1533 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1534 Output_data* od, Address address)
1535 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1536
1537 void
1538 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1539 Output_data* od,
1540 Sized_relobj<size, big_endian>* relobj,
1541 unsigned int shndx, Address address)
1542 {
1543 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1544 false, true));
1545 }
1546
1547 // Add a reloc against a local symbol.
1548
1549 void
1550 add_local(Sized_relobj<size, big_endian>* relobj,
1551 unsigned int local_sym_index, unsigned int type,
1552 Output_data* od, Address address)
1553 {
1554 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1555 address, false, false, false));
1556 }
1557
1558 void
1559 add_local(Sized_relobj<size, big_endian>* relobj,
1560 unsigned int local_sym_index, unsigned int type,
1561 Output_data* od, unsigned int shndx, Address address)
1562 {
1563 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1564 address, false, false, false));
1565 }
1566
1567 // Add a RELATIVE reloc against a local symbol.
1568
1569 void
1570 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1571 unsigned int local_sym_index, unsigned int type,
1572 Output_data* od, Address address)
1573 {
1574 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1575 address, true, true, false));
1576 }
1577
1578 void
1579 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1580 unsigned int local_sym_index, unsigned int type,
1581 Output_data* od, unsigned int shndx, Address address)
1582 {
1583 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1584 address, true, true, false));
1585 }
1586
1587 // Add a local relocation which does not use a symbol for the relocation,
1588 // but which gets its addend from a symbol.
1589
1590 void
1591 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1592 unsigned int local_sym_index, unsigned int type,
1593 Output_data* od, Address address)
1594 {
1595 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1596 address, false, true, false));
1597 }
1598
1599 void
1600 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1601 unsigned int local_sym_index, unsigned int type,
1602 Output_data* od, unsigned int shndx,
1603 Address address)
1604 {
1605 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1606 address, false, true, false));
1607 }
1608
1609 // Add a reloc against a local section symbol. This will be
1610 // converted into a reloc against the STT_SECTION symbol of the
1611 // output section.
1612
1613 void
1614 add_local_section(Sized_relobj<size, big_endian>* relobj,
1615 unsigned int input_shndx, unsigned int type,
1616 Output_data* od, Address address)
1617 {
1618 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1619 address, false, false, true));
1620 }
1621
1622 void
1623 add_local_section(Sized_relobj<size, big_endian>* relobj,
1624 unsigned int input_shndx, unsigned int type,
1625 Output_data* od, unsigned int shndx, Address address)
1626 {
1627 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1628 address, false, false, true));
1629 }
1630
1631 // A reloc against the STT_SECTION symbol of an output section.
1632 // OS is the Output_section that the relocation refers to; OD is
1633 // the Output_data object being relocated.
1634
1635 void
1636 add_output_section(Output_section* os, unsigned int type,
1637 Output_data* od, Address address)
1638 { this->add(od, Output_reloc_type(os, type, od, address)); }
1639
1640 void
1641 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1642 Sized_relobj<size, big_endian>* relobj,
1643 unsigned int shndx, Address address)
1644 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1645
1646 // Add an absolute relocation.
1647
1648 void
1649 add_absolute(unsigned int type, Output_data* od, Address address)
1650 { this->add(od, Output_reloc_type(type, od, address)); }
1651
1652 void
1653 add_absolute(unsigned int type, Output_data* od,
1654 Sized_relobj<size, big_endian>* relobj,
1655 unsigned int shndx, Address address)
1656 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1657
1658 // Add a target specific relocation. A target which calls this must
1659 // define the reloc_symbol_index and reloc_addend virtual functions.
1660
1661 void
1662 add_target_specific(unsigned int type, void* arg, Output_data* od,
1663 Address address)
1664 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1665
1666 void
1667 add_target_specific(unsigned int type, void* arg, Output_data* od,
1668 Sized_relobj<size, big_endian>* relobj,
1669 unsigned int shndx, Address address)
1670 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1671 };
1672
1673 // The SHT_RELA version of Output_data_reloc.
1674
1675 template<bool dynamic, int size, bool big_endian>
1676 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1677 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1678 {
1679 private:
1680 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1681 big_endian> Base;
1682
1683 public:
1684 typedef typename Base::Output_reloc_type Output_reloc_type;
1685 typedef typename Output_reloc_type::Address Address;
1686 typedef typename Output_reloc_type::Addend Addend;
1687
1688 Output_data_reloc(bool sr)
1689 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1690 { }
1691
1692 // Add a reloc against a global symbol.
1693
1694 void
1695 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1696 Address address, Addend addend)
1697 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1698 false, false)); }
1699
1700 void
1701 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1702 Sized_relobj<size, big_endian>* relobj,
1703 unsigned int shndx, Address address,
1704 Addend addend)
1705 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1706 addend, false, false)); }
1707
1708 // Add a RELATIVE reloc against a global symbol. The final output
1709 // relocation will not reference the symbol, but we must keep the symbol
1710 // information long enough to set the addend of the relocation correctly
1711 // when it is written.
1712
1713 void
1714 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1715 Address address, Addend addend)
1716 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1717 true)); }
1718
1719 void
1720 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1721 Sized_relobj<size, big_endian>* relobj,
1722 unsigned int shndx, Address address, Addend addend)
1723 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1724 addend, true, true)); }
1725
1726 // Add a global relocation which does not use a symbol for the relocation,
1727 // but which gets its addend from a symbol.
1728
1729 void
1730 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1731 Address address, Addend addend)
1732 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1733 false, true)); }
1734
1735 void
1736 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1737 Output_data* od,
1738 Sized_relobj<size, big_endian>* relobj,
1739 unsigned int shndx, Address address, Addend addend)
1740 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1741 addend, false, true)); }
1742
1743 // Add a reloc against a local symbol.
1744
1745 void
1746 add_local(Sized_relobj<size, big_endian>* relobj,
1747 unsigned int local_sym_index, unsigned int type,
1748 Output_data* od, Address address, Addend addend)
1749 {
1750 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1751 addend, false, false, false));
1752 }
1753
1754 void
1755 add_local(Sized_relobj<size, big_endian>* relobj,
1756 unsigned int local_sym_index, unsigned int type,
1757 Output_data* od, unsigned int shndx, Address address,
1758 Addend addend)
1759 {
1760 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1761 address, addend, false, false, false));
1762 }
1763
1764 // Add a RELATIVE reloc against a local symbol.
1765
1766 void
1767 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1768 unsigned int local_sym_index, unsigned int type,
1769 Output_data* od, Address address, Addend addend)
1770 {
1771 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1772 addend, true, true, false));
1773 }
1774
1775 void
1776 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1777 unsigned int local_sym_index, unsigned int type,
1778 Output_data* od, unsigned int shndx, Address address,
1779 Addend addend)
1780 {
1781 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1782 address, addend, true, true, false));
1783 }
1784
1785 // Add a local relocation which does not use a symbol for the relocation,
1786 // but which gets it's addend from a symbol.
1787
1788 void
1789 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1790 unsigned int local_sym_index, unsigned int type,
1791 Output_data* od, Address address, Addend addend)
1792 {
1793 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1794 addend, false, true, false));
1795 }
1796
1797 void
1798 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1799 unsigned int local_sym_index, unsigned int type,
1800 Output_data* od, unsigned int shndx,
1801 Address address, Addend addend)
1802 {
1803 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1804 address, addend, false, true, false));
1805 }
1806
1807 // Add a reloc against a local section symbol. This will be
1808 // converted into a reloc against the STT_SECTION symbol of the
1809 // output section.
1810
1811 void
1812 add_local_section(Sized_relobj<size, big_endian>* relobj,
1813 unsigned int input_shndx, unsigned int type,
1814 Output_data* od, Address address, Addend addend)
1815 {
1816 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1817 addend, false, false, true));
1818 }
1819
1820 void
1821 add_local_section(Sized_relobj<size, big_endian>* relobj,
1822 unsigned int input_shndx, unsigned int type,
1823 Output_data* od, unsigned int shndx, Address address,
1824 Addend addend)
1825 {
1826 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1827 address, addend, false, false, true));
1828 }
1829
1830 // A reloc against the STT_SECTION symbol of an output section.
1831
1832 void
1833 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1834 Address address, Addend addend)
1835 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1836
1837 void
1838 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1839 Sized_relobj<size, big_endian>* relobj,
1840 unsigned int shndx, Address address, Addend addend)
1841 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1842 addend)); }
1843
1844 // Add an absolute relocation.
1845
1846 void
1847 add_absolute(unsigned int type, Output_data* od, Address address,
1848 Addend addend)
1849 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1850
1851 void
1852 add_absolute(unsigned int type, Output_data* od,
1853 Sized_relobj<size, big_endian>* relobj,
1854 unsigned int shndx, Address address, Addend addend)
1855 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1856
1857 // Add a target specific relocation. A target which calls this must
1858 // define the reloc_symbol_index and reloc_addend virtual functions.
1859
1860 void
1861 add_target_specific(unsigned int type, void* arg, Output_data* od,
1862 Address address, Addend addend)
1863 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1864
1865 void
1866 add_target_specific(unsigned int type, void* arg, Output_data* od,
1867 Sized_relobj<size, big_endian>* relobj,
1868 unsigned int shndx, Address address, Addend addend)
1869 {
1870 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1871 addend));
1872 }
1873 };
1874
1875 // Output_relocatable_relocs represents a relocation section in a
1876 // relocatable link. The actual data is written out in the target
1877 // hook relocate_for_relocatable. This just saves space for it.
1878
1879 template<int sh_type, int size, bool big_endian>
1880 class Output_relocatable_relocs : public Output_section_data
1881 {
1882 public:
1883 Output_relocatable_relocs(Relocatable_relocs* rr)
1884 : Output_section_data(Output_data::default_alignment_for_size(size)),
1885 rr_(rr)
1886 { }
1887
1888 void
1889 set_final_data_size();
1890
1891 // Write out the data. There is nothing to do here.
1892 void
1893 do_write(Output_file*)
1894 { }
1895
1896 // Write to a map file.
1897 void
1898 do_print_to_mapfile(Mapfile* mapfile) const
1899 { mapfile->print_output_data(this, _("** relocs")); }
1900
1901 private:
1902 // The relocs associated with this input section.
1903 Relocatable_relocs* rr_;
1904 };
1905
1906 // Handle a GROUP section.
1907
1908 template<int size, bool big_endian>
1909 class Output_data_group : public Output_section_data
1910 {
1911 public:
1912 // The constructor clears *INPUT_SHNDXES.
1913 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1914 section_size_type entry_count,
1915 elfcpp::Elf_Word flags,
1916 std::vector<unsigned int>* input_shndxes);
1917
1918 void
1919 do_write(Output_file*);
1920
1921 // Write to a map file.
1922 void
1923 do_print_to_mapfile(Mapfile* mapfile) const
1924 { mapfile->print_output_data(this, _("** group")); }
1925
1926 // Set final data size.
1927 void
1928 set_final_data_size()
1929 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1930
1931 private:
1932 // The input object.
1933 Sized_relobj<size, big_endian>* relobj_;
1934 // The group flag word.
1935 elfcpp::Elf_Word flags_;
1936 // The section indexes of the input sections in this group.
1937 std::vector<unsigned int> input_shndxes_;
1938 };
1939
1940 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1941 // for one symbol--either a global symbol or a local symbol in an
1942 // object. The target specific code adds entries to the GOT as
1943 // needed.
1944
1945 template<int size, bool big_endian>
1946 class Output_data_got : public Output_section_data_build
1947 {
1948 public:
1949 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1950 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1951 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1952
1953 Output_data_got()
1954 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1955 entries_(), free_list_()
1956 { }
1957
1958 Output_data_got(off_t data_size)
1959 : Output_section_data_build(data_size,
1960 Output_data::default_alignment_for_size(size)),
1961 entries_(), free_list_()
1962 {
1963 // For an incremental update, we have an existing GOT section.
1964 // Initialize the list of entries and the free list.
1965 this->entries_.resize(data_size / (size / 8));
1966 this->free_list_.init(data_size, false);
1967 }
1968
1969 // Add an entry for a global symbol to the GOT. Return true if this
1970 // is a new GOT entry, false if the symbol was already in the GOT.
1971 bool
1972 add_global(Symbol* gsym, unsigned int got_type);
1973
1974 // Like add_global, but use the PLT offset of the global symbol if
1975 // it has one.
1976 bool
1977 add_global_plt(Symbol* gsym, unsigned int got_type);
1978
1979 // Add an entry for a global symbol to the GOT, and add a dynamic
1980 // relocation of type R_TYPE for the GOT entry.
1981 void
1982 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1983 Rel_dyn* rel_dyn, unsigned int r_type);
1984
1985 void
1986 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1987 Rela_dyn* rela_dyn, unsigned int r_type);
1988
1989 // Add a pair of entries for a global symbol to the GOT, and add
1990 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1991 void
1992 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1993 Rel_dyn* rel_dyn, unsigned int r_type_1,
1994 unsigned int r_type_2);
1995
1996 void
1997 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1998 Rela_dyn* rela_dyn, unsigned int r_type_1,
1999 unsigned int r_type_2);
2000
2001 // Add an entry for a local symbol to the GOT. This returns true if
2002 // this is a new GOT entry, false if the symbol already has a GOT
2003 // entry.
2004 bool
2005 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
2006 unsigned int got_type);
2007
2008 // Like add_local, but use the PLT offset of the local symbol if it
2009 // has one.
2010 bool
2011 add_local_plt(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
2012 unsigned int got_type);
2013
2014 // Add an entry for a local symbol to the GOT, and add a dynamic
2015 // relocation of type R_TYPE for the GOT entry.
2016 void
2017 add_local_with_rel(Sized_relobj<size, big_endian>* object,
2018 unsigned int sym_index, unsigned int got_type,
2019 Rel_dyn* rel_dyn, unsigned int r_type);
2020
2021 void
2022 add_local_with_rela(Sized_relobj<size, big_endian>* object,
2023 unsigned int sym_index, unsigned int got_type,
2024 Rela_dyn* rela_dyn, unsigned int r_type);
2025
2026 // Add a pair of entries for a local symbol to the GOT, and add
2027 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2028 void
2029 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
2030 unsigned int sym_index, unsigned int shndx,
2031 unsigned int got_type, Rel_dyn* rel_dyn,
2032 unsigned int r_type_1, unsigned int r_type_2);
2033
2034 void
2035 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
2036 unsigned int sym_index, unsigned int shndx,
2037 unsigned int got_type, Rela_dyn* rela_dyn,
2038 unsigned int r_type_1, unsigned int r_type_2);
2039
2040 // Add a constant to the GOT. This returns the offset of the new
2041 // entry from the start of the GOT.
2042 unsigned int
2043 add_constant(Valtype constant)
2044 {
2045 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2046 return got_offset;
2047 }
2048
2049 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
2050 void
2051 reserve_slot(unsigned int i);
2052
2053 // Reserve a slot in the GOT for a global symbol.
2054 void
2055 reserve_slot_for_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2056
2057 protected:
2058 // Write out the GOT table.
2059 void
2060 do_write(Output_file*);
2061
2062 // Write to a map file.
2063 void
2064 do_print_to_mapfile(Mapfile* mapfile) const
2065 { mapfile->print_output_data(this, _("** GOT")); }
2066
2067 private:
2068 // This POD class holds a single GOT entry.
2069 class Got_entry
2070 {
2071 public:
2072 // Create a zero entry.
2073 Got_entry()
2074 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2075 { this->u_.constant = 0; }
2076
2077 // Create a global symbol entry.
2078 Got_entry(Symbol* gsym, bool use_plt_offset)
2079 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2080 { this->u_.gsym = gsym; }
2081
2082 // Create a local symbol entry.
2083 Got_entry(Sized_relobj<size, big_endian>* object,
2084 unsigned int local_sym_index, bool use_plt_offset)
2085 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2086 {
2087 gold_assert(local_sym_index != GSYM_CODE
2088 && local_sym_index != CONSTANT_CODE
2089 && local_sym_index != RESERVED_CODE
2090 && local_sym_index == this->local_sym_index_);
2091 this->u_.object = object;
2092 }
2093
2094 // Create a constant entry. The constant is a host value--it will
2095 // be swapped, if necessary, when it is written out.
2096 explicit Got_entry(Valtype constant)
2097 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2098 { this->u_.constant = constant; }
2099
2100 // Write the GOT entry to an output view.
2101 void
2102 write(unsigned char* pov) const;
2103
2104 private:
2105 enum
2106 {
2107 GSYM_CODE = 0x7fffffff,
2108 CONSTANT_CODE = 0x7ffffffe,
2109 RESERVED_CODE = 0x7ffffffd
2110 };
2111
2112 union
2113 {
2114 // For a local symbol, the object.
2115 Sized_relobj<size, big_endian>* object;
2116 // For a global symbol, the symbol.
2117 Symbol* gsym;
2118 // For a constant, the constant.
2119 Valtype constant;
2120 } u_;
2121 // For a local symbol, the local symbol index. This is GSYM_CODE
2122 // for a global symbol, or CONSTANT_CODE for a constant.
2123 unsigned int local_sym_index_ : 31;
2124 // Whether to use the PLT offset of the symbol if it has one.
2125 bool use_plt_offset_ : 1;
2126 };
2127
2128 typedef std::vector<Got_entry> Got_entries;
2129
2130 // Create a new GOT entry and return its offset.
2131 unsigned int
2132 add_got_entry(Got_entry got_entry);
2133
2134 // Create a pair of new GOT entries and return the offset of the first.
2135 unsigned int
2136 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2137
2138 // Return the offset into the GOT of GOT entry I.
2139 unsigned int
2140 got_offset(unsigned int i) const
2141 { return i * (size / 8); }
2142
2143 // Return the offset into the GOT of the last entry added.
2144 unsigned int
2145 last_got_offset() const
2146 { return this->got_offset(this->entries_.size() - 1); }
2147
2148 // Set the size of the section.
2149 void
2150 set_got_size()
2151 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2152
2153 // The list of GOT entries.
2154 Got_entries entries_;
2155
2156 // List of available regions within the section, for incremental
2157 // update links.
2158 Free_list free_list_;
2159 };
2160
2161 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2162 // section.
2163
2164 class Output_data_dynamic : public Output_section_data
2165 {
2166 public:
2167 Output_data_dynamic(Stringpool* pool)
2168 : Output_section_data(Output_data::default_alignment()),
2169 entries_(), pool_(pool)
2170 { }
2171
2172 // Add a new dynamic entry with a fixed numeric value.
2173 void
2174 add_constant(elfcpp::DT tag, unsigned int val)
2175 { this->add_entry(Dynamic_entry(tag, val)); }
2176
2177 // Add a new dynamic entry with the address of output data.
2178 void
2179 add_section_address(elfcpp::DT tag, const Output_data* od)
2180 { this->add_entry(Dynamic_entry(tag, od, false)); }
2181
2182 // Add a new dynamic entry with the address of output data
2183 // plus a constant offset.
2184 void
2185 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2186 unsigned int offset)
2187 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2188
2189 // Add a new dynamic entry with the size of output data.
2190 void
2191 add_section_size(elfcpp::DT tag, const Output_data* od)
2192 { this->add_entry(Dynamic_entry(tag, od, true)); }
2193
2194 // Add a new dynamic entry with the total size of two output datas.
2195 void
2196 add_section_size(elfcpp::DT tag, const Output_data* od,
2197 const Output_data* od2)
2198 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2199
2200 // Add a new dynamic entry with the address of a symbol.
2201 void
2202 add_symbol(elfcpp::DT tag, const Symbol* sym)
2203 { this->add_entry(Dynamic_entry(tag, sym)); }
2204
2205 // Add a new dynamic entry with a string.
2206 void
2207 add_string(elfcpp::DT tag, const char* str)
2208 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2209
2210 void
2211 add_string(elfcpp::DT tag, const std::string& str)
2212 { this->add_string(tag, str.c_str()); }
2213
2214 protected:
2215 // Adjust the output section to set the entry size.
2216 void
2217 do_adjust_output_section(Output_section*);
2218
2219 // Set the final data size.
2220 void
2221 set_final_data_size();
2222
2223 // Write out the dynamic entries.
2224 void
2225 do_write(Output_file*);
2226
2227 // Write to a map file.
2228 void
2229 do_print_to_mapfile(Mapfile* mapfile) const
2230 { mapfile->print_output_data(this, _("** dynamic")); }
2231
2232 private:
2233 // This POD class holds a single dynamic entry.
2234 class Dynamic_entry
2235 {
2236 public:
2237 // Create an entry with a fixed numeric value.
2238 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2239 : tag_(tag), offset_(DYNAMIC_NUMBER)
2240 { this->u_.val = val; }
2241
2242 // Create an entry with the size or address of a section.
2243 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2244 : tag_(tag),
2245 offset_(section_size
2246 ? DYNAMIC_SECTION_SIZE
2247 : DYNAMIC_SECTION_ADDRESS)
2248 {
2249 this->u_.od = od;
2250 this->od2 = NULL;
2251 }
2252
2253 // Create an entry with the size of two sections.
2254 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2255 : tag_(tag),
2256 offset_(DYNAMIC_SECTION_SIZE)
2257 {
2258 this->u_.od = od;
2259 this->od2 = od2;
2260 }
2261
2262 // Create an entry with the address of a section plus a constant offset.
2263 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2264 : tag_(tag),
2265 offset_(offset)
2266 { this->u_.od = od; }
2267
2268 // Create an entry with the address of a symbol.
2269 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2270 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2271 { this->u_.sym = sym; }
2272
2273 // Create an entry with a string.
2274 Dynamic_entry(elfcpp::DT tag, const char* str)
2275 : tag_(tag), offset_(DYNAMIC_STRING)
2276 { this->u_.str = str; }
2277
2278 // Return the tag of this entry.
2279 elfcpp::DT
2280 tag() const
2281 { return this->tag_; }
2282
2283 // Write the dynamic entry to an output view.
2284 template<int size, bool big_endian>
2285 void
2286 write(unsigned char* pov, const Stringpool*) const;
2287
2288 private:
2289 // Classification is encoded in the OFFSET field.
2290 enum Classification
2291 {
2292 // Section address.
2293 DYNAMIC_SECTION_ADDRESS = 0,
2294 // Number.
2295 DYNAMIC_NUMBER = -1U,
2296 // Section size.
2297 DYNAMIC_SECTION_SIZE = -2U,
2298 // Symbol adress.
2299 DYNAMIC_SYMBOL = -3U,
2300 // String.
2301 DYNAMIC_STRING = -4U
2302 // Any other value indicates a section address plus OFFSET.
2303 };
2304
2305 union
2306 {
2307 // For DYNAMIC_NUMBER.
2308 unsigned int val;
2309 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2310 const Output_data* od;
2311 // For DYNAMIC_SYMBOL.
2312 const Symbol* sym;
2313 // For DYNAMIC_STRING.
2314 const char* str;
2315 } u_;
2316 // For DYNAMIC_SYMBOL with two sections.
2317 const Output_data* od2;
2318 // The dynamic tag.
2319 elfcpp::DT tag_;
2320 // The type of entry (Classification) or offset within a section.
2321 unsigned int offset_;
2322 };
2323
2324 // Add an entry to the list.
2325 void
2326 add_entry(const Dynamic_entry& entry)
2327 { this->entries_.push_back(entry); }
2328
2329 // Sized version of write function.
2330 template<int size, bool big_endian>
2331 void
2332 sized_write(Output_file* of);
2333
2334 // The type of the list of entries.
2335 typedef std::vector<Dynamic_entry> Dynamic_entries;
2336
2337 // The entries.
2338 Dynamic_entries entries_;
2339 // The pool used for strings.
2340 Stringpool* pool_;
2341 };
2342
2343 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2344 // which may be required if the object file has more than
2345 // SHN_LORESERVE sections.
2346
2347 class Output_symtab_xindex : public Output_section_data
2348 {
2349 public:
2350 Output_symtab_xindex(size_t symcount)
2351 : Output_section_data(symcount * 4, 4, true),
2352 entries_()
2353 { }
2354
2355 // Add an entry: symbol number SYMNDX has section SHNDX.
2356 void
2357 add(unsigned int symndx, unsigned int shndx)
2358 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2359
2360 protected:
2361 void
2362 do_write(Output_file*);
2363
2364 // Write to a map file.
2365 void
2366 do_print_to_mapfile(Mapfile* mapfile) const
2367 { mapfile->print_output_data(this, _("** symtab xindex")); }
2368
2369 private:
2370 template<bool big_endian>
2371 void
2372 endian_do_write(unsigned char*);
2373
2374 // It is likely that most symbols will not require entries. Rather
2375 // than keep a vector for all symbols, we keep pairs of symbol index
2376 // and section index.
2377 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2378
2379 // The entries we need.
2380 Xindex_entries entries_;
2381 };
2382
2383 // A relaxed input section.
2384 class Output_relaxed_input_section : public Output_section_data_build
2385 {
2386 public:
2387 // We would like to call relobj->section_addralign(shndx) to get the
2388 // alignment but we do not want the constructor to fail. So callers
2389 // are repsonsible for ensuring that.
2390 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2391 uint64_t addralign)
2392 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2393 { }
2394
2395 // Return the Relobj of this relaxed input section.
2396 Relobj*
2397 relobj() const
2398 { return this->relobj_; }
2399
2400 // Return the section index of this relaxed input section.
2401 unsigned int
2402 shndx() const
2403 { return this->shndx_; }
2404
2405 private:
2406 Relobj* relobj_;
2407 unsigned int shndx_;
2408 };
2409
2410 // This class describes properties of merge data sections. It is used
2411 // as a key type for maps.
2412 class Merge_section_properties
2413 {
2414 public:
2415 Merge_section_properties(bool is_string, uint64_t entsize,
2416 uint64_t addralign)
2417 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2418 { }
2419
2420 // Whether this equals to another Merge_section_properties MSP.
2421 bool
2422 eq(const Merge_section_properties& msp) const
2423 {
2424 return ((this->is_string_ == msp.is_string_)
2425 && (this->entsize_ == msp.entsize_)
2426 && (this->addralign_ == msp.addralign_));
2427 }
2428
2429 // Compute a hash value for this using 64-bit FNV-1a hash.
2430 size_t
2431 hash_value() const
2432 {
2433 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2434 uint64_t prime = 1099511628211ULL;
2435 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2436 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2437 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2438 return h;
2439 }
2440
2441 // Functors for associative containers.
2442 struct equal_to
2443 {
2444 bool
2445 operator()(const Merge_section_properties& msp1,
2446 const Merge_section_properties& msp2) const
2447 { return msp1.eq(msp2); }
2448 };
2449
2450 struct hash
2451 {
2452 size_t
2453 operator()(const Merge_section_properties& msp) const
2454 { return msp.hash_value(); }
2455 };
2456
2457 private:
2458 // Whether this merge data section is for strings.
2459 bool is_string_;
2460 // Entsize of this merge data section.
2461 uint64_t entsize_;
2462 // Address alignment.
2463 uint64_t addralign_;
2464 };
2465
2466 // This class is used to speed up look up of special input sections in an
2467 // Output_section.
2468
2469 class Output_section_lookup_maps
2470 {
2471 public:
2472 Output_section_lookup_maps()
2473 : is_valid_(true), merge_sections_by_properties_(),
2474 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2475 { }
2476
2477 // Whether the maps are valid.
2478 bool
2479 is_valid() const
2480 { return this->is_valid_; }
2481
2482 // Invalidate the maps.
2483 void
2484 invalidate()
2485 { this->is_valid_ = false; }
2486
2487 // Clear the maps.
2488 void
2489 clear()
2490 {
2491 this->merge_sections_by_properties_.clear();
2492 this->merge_sections_by_id_.clear();
2493 this->relaxed_input_sections_by_id_.clear();
2494 // A cleared map is valid.
2495 this->is_valid_ = true;
2496 }
2497
2498 // Find a merge section by merge section properties. Return NULL if none
2499 // is found.
2500 Output_merge_base*
2501 find_merge_section(const Merge_section_properties& msp) const
2502 {
2503 gold_assert(this->is_valid_);
2504 Merge_sections_by_properties::const_iterator p =
2505 this->merge_sections_by_properties_.find(msp);
2506 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2507 }
2508
2509 // Find a merge section by section ID of a merge input section. Return NULL
2510 // if none is found.
2511 Output_merge_base*
2512 find_merge_section(const Object* object, unsigned int shndx) const
2513 {
2514 gold_assert(this->is_valid_);
2515 Merge_sections_by_id::const_iterator p =
2516 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2517 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2518 }
2519
2520 // Add a merge section pointed by POMB with properties MSP.
2521 void
2522 add_merge_section(const Merge_section_properties& msp,
2523 Output_merge_base* pomb)
2524 {
2525 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2526 std::pair<Merge_sections_by_properties::iterator, bool> result =
2527 this->merge_sections_by_properties_.insert(value);
2528 gold_assert(result.second);
2529 }
2530
2531 // Add a mapping from a merged input section in OBJECT with index SHNDX
2532 // to a merge output section pointed by POMB.
2533 void
2534 add_merge_input_section(const Object* object, unsigned int shndx,
2535 Output_merge_base* pomb)
2536 {
2537 Const_section_id csid(object, shndx);
2538 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2539 std::pair<Merge_sections_by_id::iterator, bool> result =
2540 this->merge_sections_by_id_.insert(value);
2541 gold_assert(result.second);
2542 }
2543
2544 // Find a relaxed input section of OBJECT with index SHNDX.
2545 Output_relaxed_input_section*
2546 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2547 {
2548 gold_assert(this->is_valid_);
2549 Relaxed_input_sections_by_id::const_iterator p =
2550 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2551 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2552 }
2553
2554 // Add a relaxed input section pointed by POMB and whose original input
2555 // section is in OBJECT with index SHNDX.
2556 void
2557 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2558 Output_relaxed_input_section* poris)
2559 {
2560 Const_section_id csid(relobj, shndx);
2561 std::pair<Const_section_id, Output_relaxed_input_section*>
2562 value(csid, poris);
2563 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2564 this->relaxed_input_sections_by_id_.insert(value);
2565 gold_assert(result.second);
2566 }
2567
2568 private:
2569 typedef Unordered_map<Const_section_id, Output_merge_base*,
2570 Const_section_id_hash>
2571 Merge_sections_by_id;
2572
2573 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2574 Merge_section_properties::hash,
2575 Merge_section_properties::equal_to>
2576 Merge_sections_by_properties;
2577
2578 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2579 Const_section_id_hash>
2580 Relaxed_input_sections_by_id;
2581
2582 // Whether this is valid
2583 bool is_valid_;
2584 // Merge sections by merge section properties.
2585 Merge_sections_by_properties merge_sections_by_properties_;
2586 // Merge sections by section IDs.
2587 Merge_sections_by_id merge_sections_by_id_;
2588 // Relaxed sections by section IDs.
2589 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2590 };
2591
2592 // An output section. We don't expect to have too many output
2593 // sections, so we don't bother to do a template on the size.
2594
2595 class Output_section : public Output_data
2596 {
2597 public:
2598 // Create an output section, giving the name, type, and flags.
2599 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2600 virtual ~Output_section();
2601
2602 // Add a new input section SHNDX, named NAME, with header SHDR, from
2603 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2604 // which applies to this section, or 0 if none, or -1 if more than
2605 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2606 // in a linker script; in that case we need to keep track of input
2607 // sections associated with an output section. Return the offset
2608 // within the output section.
2609 template<int size, bool big_endian>
2610 off_t
2611 add_input_section(Layout* layout, Sized_relobj<size, big_endian>* object,
2612 unsigned int shndx, const char* name,
2613 const elfcpp::Shdr<size, big_endian>& shdr,
2614 unsigned int reloc_shndx, bool have_sections_script);
2615
2616 // Add generated data POSD to this output section.
2617 void
2618 add_output_section_data(Output_section_data* posd);
2619
2620 // Add a relaxed input section PORIS called NAME to this output section
2621 // with LAYOUT.
2622 void
2623 add_relaxed_input_section(Layout* layout,
2624 Output_relaxed_input_section* poris,
2625 const std::string& name);
2626
2627 // Return the section name.
2628 const char*
2629 name() const
2630 { return this->name_; }
2631
2632 // Return the section type.
2633 elfcpp::Elf_Word
2634 type() const
2635 { return this->type_; }
2636
2637 // Return the section flags.
2638 elfcpp::Elf_Xword
2639 flags() const
2640 { return this->flags_; }
2641
2642 // Update the output section flags based on input section flags.
2643 void
2644 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2645
2646 // Return the entsize field.
2647 uint64_t
2648 entsize() const
2649 { return this->entsize_; }
2650
2651 // Set the entsize field.
2652 void
2653 set_entsize(uint64_t v);
2654
2655 // Set the load address.
2656 void
2657 set_load_address(uint64_t load_address)
2658 {
2659 this->load_address_ = load_address;
2660 this->has_load_address_ = true;
2661 }
2662
2663 // Set the link field to the output section index of a section.
2664 void
2665 set_link_section(const Output_data* od)
2666 {
2667 gold_assert(this->link_ == 0
2668 && !this->should_link_to_symtab_
2669 && !this->should_link_to_dynsym_);
2670 this->link_section_ = od;
2671 }
2672
2673 // Set the link field to a constant.
2674 void
2675 set_link(unsigned int v)
2676 {
2677 gold_assert(this->link_section_ == NULL
2678 && !this->should_link_to_symtab_
2679 && !this->should_link_to_dynsym_);
2680 this->link_ = v;
2681 }
2682
2683 // Record that this section should link to the normal symbol table.
2684 void
2685 set_should_link_to_symtab()
2686 {
2687 gold_assert(this->link_section_ == NULL
2688 && this->link_ == 0
2689 && !this->should_link_to_dynsym_);
2690 this->should_link_to_symtab_ = true;
2691 }
2692
2693 // Record that this section should link to the dynamic symbol table.
2694 void
2695 set_should_link_to_dynsym()
2696 {
2697 gold_assert(this->link_section_ == NULL
2698 && this->link_ == 0
2699 && !this->should_link_to_symtab_);
2700 this->should_link_to_dynsym_ = true;
2701 }
2702
2703 // Return the info field.
2704 unsigned int
2705 info() const
2706 {
2707 gold_assert(this->info_section_ == NULL
2708 && this->info_symndx_ == NULL);
2709 return this->info_;
2710 }
2711
2712 // Set the info field to the output section index of a section.
2713 void
2714 set_info_section(const Output_section* os)
2715 {
2716 gold_assert((this->info_section_ == NULL
2717 || (this->info_section_ == os
2718 && this->info_uses_section_index_))
2719 && this->info_symndx_ == NULL
2720 && this->info_ == 0);
2721 this->info_section_ = os;
2722 this->info_uses_section_index_= true;
2723 }
2724
2725 // Set the info field to the symbol table index of a symbol.
2726 void
2727 set_info_symndx(const Symbol* sym)
2728 {
2729 gold_assert(this->info_section_ == NULL
2730 && (this->info_symndx_ == NULL
2731 || this->info_symndx_ == sym)
2732 && this->info_ == 0);
2733 this->info_symndx_ = sym;
2734 }
2735
2736 // Set the info field to the symbol table index of a section symbol.
2737 void
2738 set_info_section_symndx(const Output_section* os)
2739 {
2740 gold_assert((this->info_section_ == NULL
2741 || (this->info_section_ == os
2742 && !this->info_uses_section_index_))
2743 && this->info_symndx_ == NULL
2744 && this->info_ == 0);
2745 this->info_section_ = os;
2746 this->info_uses_section_index_ = false;
2747 }
2748
2749 // Set the info field to a constant.
2750 void
2751 set_info(unsigned int v)
2752 {
2753 gold_assert(this->info_section_ == NULL
2754 && this->info_symndx_ == NULL
2755 && (this->info_ == 0
2756 || this->info_ == v));
2757 this->info_ = v;
2758 }
2759
2760 // Set the addralign field.
2761 void
2762 set_addralign(uint64_t v)
2763 { this->addralign_ = v; }
2764
2765 // Whether the output section index has been set.
2766 bool
2767 has_out_shndx() const
2768 { return this->out_shndx_ != -1U; }
2769
2770 // Indicate that we need a symtab index.
2771 void
2772 set_needs_symtab_index()
2773 { this->needs_symtab_index_ = true; }
2774
2775 // Return whether we need a symtab index.
2776 bool
2777 needs_symtab_index() const
2778 { return this->needs_symtab_index_; }
2779
2780 // Get the symtab index.
2781 unsigned int
2782 symtab_index() const
2783 {
2784 gold_assert(this->symtab_index_ != 0);
2785 return this->symtab_index_;
2786 }
2787
2788 // Set the symtab index.
2789 void
2790 set_symtab_index(unsigned int index)
2791 {
2792 gold_assert(index != 0);
2793 this->symtab_index_ = index;
2794 }
2795
2796 // Indicate that we need a dynsym index.
2797 void
2798 set_needs_dynsym_index()
2799 { this->needs_dynsym_index_ = true; }
2800
2801 // Return whether we need a dynsym index.
2802 bool
2803 needs_dynsym_index() const
2804 { return this->needs_dynsym_index_; }
2805
2806 // Get the dynsym index.
2807 unsigned int
2808 dynsym_index() const
2809 {
2810 gold_assert(this->dynsym_index_ != 0);
2811 return this->dynsym_index_;
2812 }
2813
2814 // Set the dynsym index.
2815 void
2816 set_dynsym_index(unsigned int index)
2817 {
2818 gold_assert(index != 0);
2819 this->dynsym_index_ = index;
2820 }
2821
2822 // Return whether the input sections sections attachd to this output
2823 // section may require sorting. This is used to handle constructor
2824 // priorities compatibly with GNU ld.
2825 bool
2826 may_sort_attached_input_sections() const
2827 { return this->may_sort_attached_input_sections_; }
2828
2829 // Record that the input sections attached to this output section
2830 // may require sorting.
2831 void
2832 set_may_sort_attached_input_sections()
2833 { this->may_sort_attached_input_sections_ = true; }
2834
2835 // Returns true if input sections must be sorted according to the
2836 // order in which their name appear in the --section-ordering-file.
2837 bool
2838 input_section_order_specified()
2839 { return this->input_section_order_specified_; }
2840
2841 // Record that input sections must be sorted as some of their names
2842 // match the patterns specified through --section-ordering-file.
2843 void
2844 set_input_section_order_specified()
2845 { this->input_section_order_specified_ = true; }
2846
2847 // Return whether the input sections attached to this output section
2848 // require sorting. This is used to handle constructor priorities
2849 // compatibly with GNU ld.
2850 bool
2851 must_sort_attached_input_sections() const
2852 { return this->must_sort_attached_input_sections_; }
2853
2854 // Record that the input sections attached to this output section
2855 // require sorting.
2856 void
2857 set_must_sort_attached_input_sections()
2858 { this->must_sort_attached_input_sections_ = true; }
2859
2860 // Get the order in which this section appears in the PT_LOAD output
2861 // segment.
2862 Output_section_order
2863 order() const
2864 { return this->order_; }
2865
2866 // Set the order for this section.
2867 void
2868 set_order(Output_section_order order)
2869 { this->order_ = order; }
2870
2871 // Return whether this section holds relro data--data which has
2872 // dynamic relocations but which may be marked read-only after the
2873 // dynamic relocations have been completed.
2874 bool
2875 is_relro() const
2876 { return this->is_relro_; }
2877
2878 // Record that this section holds relro data.
2879 void
2880 set_is_relro()
2881 { this->is_relro_ = true; }
2882
2883 // Record that this section does not hold relro data.
2884 void
2885 clear_is_relro()
2886 { this->is_relro_ = false; }
2887
2888 // True if this is a small section: a section which holds small
2889 // variables.
2890 bool
2891 is_small_section() const
2892 { return this->is_small_section_; }
2893
2894 // Record that this is a small section.
2895 void
2896 set_is_small_section()
2897 { this->is_small_section_ = true; }
2898
2899 // True if this is a large section: a section which holds large
2900 // variables.
2901 bool
2902 is_large_section() const
2903 { return this->is_large_section_; }
2904
2905 // Record that this is a large section.
2906 void
2907 set_is_large_section()
2908 { this->is_large_section_ = true; }
2909
2910 // True if this is a large data (not BSS) section.
2911 bool
2912 is_large_data_section()
2913 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2914
2915 // Return whether this section should be written after all the input
2916 // sections are complete.
2917 bool
2918 after_input_sections() const
2919 { return this->after_input_sections_; }
2920
2921 // Record that this section should be written after all the input
2922 // sections are complete.
2923 void
2924 set_after_input_sections()
2925 { this->after_input_sections_ = true; }
2926
2927 // Return whether this section requires postprocessing after all
2928 // relocations have been applied.
2929 bool
2930 requires_postprocessing() const
2931 { return this->requires_postprocessing_; }
2932
2933 // If a section requires postprocessing, return the buffer to use.
2934 unsigned char*
2935 postprocessing_buffer() const
2936 {
2937 gold_assert(this->postprocessing_buffer_ != NULL);
2938 return this->postprocessing_buffer_;
2939 }
2940
2941 // If a section requires postprocessing, create the buffer to use.
2942 void
2943 create_postprocessing_buffer();
2944
2945 // If a section requires postprocessing, this is the size of the
2946 // buffer to which relocations should be applied.
2947 off_t
2948 postprocessing_buffer_size() const
2949 { return this->current_data_size_for_child(); }
2950
2951 // Modify the section name. This is only permitted for an
2952 // unallocated section, and only before the size has been finalized.
2953 // Otherwise the name will not get into Layout::namepool_.
2954 void
2955 set_name(const char* newname)
2956 {
2957 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2958 gold_assert(!this->is_data_size_valid());
2959 this->name_ = newname;
2960 }
2961
2962 // Return whether the offset OFFSET in the input section SHNDX in
2963 // object OBJECT is being included in the link.
2964 bool
2965 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2966 off_t offset) const;
2967
2968 // Return the offset within the output section of OFFSET relative to
2969 // the start of input section SHNDX in object OBJECT.
2970 section_offset_type
2971 output_offset(const Relobj* object, unsigned int shndx,
2972 section_offset_type offset) const;
2973
2974 // Return the output virtual address of OFFSET relative to the start
2975 // of input section SHNDX in object OBJECT.
2976 uint64_t
2977 output_address(const Relobj* object, unsigned int shndx,
2978 off_t offset) const;
2979
2980 // Look for the merged section for input section SHNDX in object
2981 // OBJECT. If found, return true, and set *ADDR to the address of
2982 // the start of the merged section. This is not necessary the
2983 // output offset corresponding to input offset 0 in the section,
2984 // since the section may be mapped arbitrarily.
2985 bool
2986 find_starting_output_address(const Relobj* object, unsigned int shndx,
2987 uint64_t* addr) const;
2988
2989 // Record that this output section was found in the SECTIONS clause
2990 // of a linker script.
2991 void
2992 set_found_in_sections_clause()
2993 { this->found_in_sections_clause_ = true; }
2994
2995 // Return whether this output section was found in the SECTIONS
2996 // clause of a linker script.
2997 bool
2998 found_in_sections_clause() const
2999 { return this->found_in_sections_clause_; }
3000
3001 // Write the section header into *OPHDR.
3002 template<int size, bool big_endian>
3003 void
3004 write_header(const Layout*, const Stringpool*,
3005 elfcpp::Shdr_write<size, big_endian>*) const;
3006
3007 // The next few calls are for linker script support.
3008
3009 // In some cases we need to keep a list of the input sections
3010 // associated with this output section. We only need the list if we
3011 // might have to change the offsets of the input section within the
3012 // output section after we add the input section. The ordinary
3013 // input sections will be written out when we process the object
3014 // file, and as such we don't need to track them here. We do need
3015 // to track Output_section_data objects here. We store instances of
3016 // this structure in a std::vector, so it must be a POD. There can
3017 // be many instances of this structure, so we use a union to save
3018 // some space.
3019 class Input_section
3020 {
3021 public:
3022 Input_section()
3023 : shndx_(0), p2align_(0)
3024 {
3025 this->u1_.data_size = 0;
3026 this->u2_.object = NULL;
3027 }
3028
3029 // For an ordinary input section.
3030 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3031 uint64_t addralign)
3032 : shndx_(shndx),
3033 p2align_(ffsll(static_cast<long long>(addralign))),
3034 section_order_index_(0)
3035 {
3036 gold_assert(shndx != OUTPUT_SECTION_CODE
3037 && shndx != MERGE_DATA_SECTION_CODE
3038 && shndx != MERGE_STRING_SECTION_CODE
3039 && shndx != RELAXED_INPUT_SECTION_CODE);
3040 this->u1_.data_size = data_size;
3041 this->u2_.object = object;
3042 }
3043
3044 // For a non-merge output section.
3045 Input_section(Output_section_data* posd)
3046 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3047 section_order_index_(0)
3048 {
3049 this->u1_.data_size = 0;
3050 this->u2_.posd = posd;
3051 }
3052
3053 // For a merge section.
3054 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3055 : shndx_(is_string
3056 ? MERGE_STRING_SECTION_CODE
3057 : MERGE_DATA_SECTION_CODE),
3058 p2align_(0),
3059 section_order_index_(0)
3060 {
3061 this->u1_.entsize = entsize;
3062 this->u2_.posd = posd;
3063 }
3064
3065 // For a relaxed input section.
3066 Input_section(Output_relaxed_input_section* psection)
3067 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3068 section_order_index_(0)
3069 {
3070 this->u1_.data_size = 0;
3071 this->u2_.poris = psection;
3072 }
3073
3074 unsigned int
3075 section_order_index() const
3076 {
3077 return this->section_order_index_;
3078 }
3079
3080 void
3081 set_section_order_index(unsigned int number)
3082 {
3083 this->section_order_index_ = number;
3084 }
3085
3086 // The required alignment.
3087 uint64_t
3088 addralign() const
3089 {
3090 if (this->p2align_ != 0)
3091 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3092 else if (!this->is_input_section())
3093 return this->u2_.posd->addralign();
3094 else
3095 return 0;
3096 }
3097
3098 // Set the required alignment, which must be either 0 or a power of 2.
3099 // For input sections that are sub-classes of Output_section_data, a
3100 // alignment of zero means asking the underlying object for alignment.
3101 void
3102 set_addralign(uint64_t addralign)
3103 {
3104 if (addralign == 0)
3105 this->p2align_ = 0;
3106 else
3107 {
3108 gold_assert((addralign & (addralign - 1)) == 0);
3109 this->p2align_ = ffsll(static_cast<long long>(addralign));
3110 }
3111 }
3112
3113 // Return the current required size, without finalization.
3114 off_t
3115 current_data_size() const;
3116
3117 // Return the required size.
3118 off_t
3119 data_size() const;
3120
3121 // Whether this is an input section.
3122 bool
3123 is_input_section() const
3124 {
3125 return (this->shndx_ != OUTPUT_SECTION_CODE
3126 && this->shndx_ != MERGE_DATA_SECTION_CODE
3127 && this->shndx_ != MERGE_STRING_SECTION_CODE
3128 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3129 }
3130
3131 // Return whether this is a merge section which matches the
3132 // parameters.
3133 bool
3134 is_merge_section(bool is_string, uint64_t entsize,
3135 uint64_t addralign) const
3136 {
3137 return (this->shndx_ == (is_string
3138 ? MERGE_STRING_SECTION_CODE
3139 : MERGE_DATA_SECTION_CODE)
3140 && this->u1_.entsize == entsize
3141 && this->addralign() == addralign);
3142 }
3143
3144 // Return whether this is a merge section for some input section.
3145 bool
3146 is_merge_section() const
3147 {
3148 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3149 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3150 }
3151
3152 // Return whether this is a relaxed input section.
3153 bool
3154 is_relaxed_input_section() const
3155 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3156
3157 // Return whether this is a generic Output_section_data.
3158 bool
3159 is_output_section_data() const
3160 {
3161 return this->shndx_ == OUTPUT_SECTION_CODE;
3162 }
3163
3164 // Return the object for an input section.
3165 Relobj*
3166 relobj() const;
3167
3168 // Return the input section index for an input section.
3169 unsigned int
3170 shndx() const;
3171
3172 // For non-input-sections, return the associated Output_section_data
3173 // object.
3174 Output_section_data*
3175 output_section_data() const
3176 {
3177 gold_assert(!this->is_input_section());
3178 return this->u2_.posd;
3179 }
3180
3181 // For a merge section, return the Output_merge_base pointer.
3182 Output_merge_base*
3183 output_merge_base() const
3184 {
3185 gold_assert(this->is_merge_section());
3186 return this->u2_.pomb;
3187 }
3188
3189 // Return the Output_relaxed_input_section object.
3190 Output_relaxed_input_section*
3191 relaxed_input_section() const
3192 {
3193 gold_assert(this->is_relaxed_input_section());
3194 return this->u2_.poris;
3195 }
3196
3197 // Set the output section.
3198 void
3199 set_output_section(Output_section* os)
3200 {
3201 gold_assert(!this->is_input_section());
3202 Output_section_data* posd =
3203 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3204 posd->set_output_section(os);
3205 }
3206
3207 // Set the address and file offset. This is called during
3208 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3209 // the enclosing section.
3210 void
3211 set_address_and_file_offset(uint64_t address, off_t file_offset,
3212 off_t section_file_offset);
3213
3214 // Reset the address and file offset.
3215 void
3216 reset_address_and_file_offset();
3217
3218 // Finalize the data size.
3219 void
3220 finalize_data_size();
3221
3222 // Add an input section, for SHF_MERGE sections.
3223 bool
3224 add_input_section(Relobj* object, unsigned int shndx)
3225 {
3226 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3227 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3228 return this->u2_.posd->add_input_section(object, shndx);
3229 }
3230
3231 // Given an input OBJECT, an input section index SHNDX within that
3232 // object, and an OFFSET relative to the start of that input
3233 // section, return whether or not the output offset is known. If
3234 // this function returns true, it sets *POUTPUT to the offset in
3235 // the output section, relative to the start of the input section
3236 // in the output section. *POUTPUT may be different from OFFSET
3237 // for a merged section.
3238 bool
3239 output_offset(const Relobj* object, unsigned int shndx,
3240 section_offset_type offset,
3241 section_offset_type* poutput) const;
3242
3243 // Return whether this is the merge section for the input section
3244 // SHNDX in OBJECT.
3245 bool
3246 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3247
3248 // Write out the data. This does nothing for an input section.
3249 void
3250 write(Output_file*);
3251
3252 // Write the data to a buffer. This does nothing for an input
3253 // section.
3254 void
3255 write_to_buffer(unsigned char*);
3256
3257 // Print to a map file.
3258 void
3259 print_to_mapfile(Mapfile*) const;
3260
3261 // Print statistics about merge sections to stderr.
3262 void
3263 print_merge_stats(const char* section_name)
3264 {
3265 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3266 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3267 this->u2_.posd->print_merge_stats(section_name);
3268 }
3269
3270 private:
3271 // Code values which appear in shndx_. If the value is not one of
3272 // these codes, it is the input section index in the object file.
3273 enum
3274 {
3275 // An Output_section_data.
3276 OUTPUT_SECTION_CODE = -1U,
3277 // An Output_section_data for an SHF_MERGE section with
3278 // SHF_STRINGS not set.
3279 MERGE_DATA_SECTION_CODE = -2U,
3280 // An Output_section_data for an SHF_MERGE section with
3281 // SHF_STRINGS set.
3282 MERGE_STRING_SECTION_CODE = -3U,
3283 // An Output_section_data for a relaxed input section.
3284 RELAXED_INPUT_SECTION_CODE = -4U
3285 };
3286
3287 // For an ordinary input section, this is the section index in the
3288 // input file. For an Output_section_data, this is
3289 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3290 // MERGE_STRING_SECTION_CODE.
3291 unsigned int shndx_;
3292 // The required alignment, stored as a power of 2.
3293 unsigned int p2align_;
3294 union
3295 {
3296 // For an ordinary input section, the section size.
3297 off_t data_size;
3298 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3299 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3300 // entity size.
3301 uint64_t entsize;
3302 } u1_;
3303 union
3304 {
3305 // For an ordinary input section, the object which holds the
3306 // input section.
3307 Relobj* object;
3308 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3309 // MERGE_STRING_SECTION_CODE, the data.
3310 Output_section_data* posd;
3311 Output_merge_base* pomb;
3312 // For RELAXED_INPUT_SECTION_CODE, the data.
3313 Output_relaxed_input_section* poris;
3314 } u2_;
3315 // The line number of the pattern it matches in the --section-ordering-file
3316 // file. It is 0 if does not match any pattern.
3317 unsigned int section_order_index_;
3318 };
3319
3320 // Store the list of input sections for this Output_section into the
3321 // list passed in. This removes the input sections, leaving only
3322 // any Output_section_data elements. This returns the size of those
3323 // Output_section_data elements. ADDRESS is the address of this
3324 // output section. FILL is the fill value to use, in case there are
3325 // any spaces between the remaining Output_section_data elements.
3326 uint64_t
3327 get_input_sections(uint64_t address, const std::string& fill,
3328 std::list<Input_section>*);
3329
3330 // Add a script input section. A script input section can either be
3331 // a plain input section or a sub-class of Output_section_data.
3332 void
3333 add_script_input_section(const Input_section& input_section);
3334
3335 // Set the current size of the output section.
3336 void
3337 set_current_data_size(off_t size)
3338 { this->set_current_data_size_for_child(size); }
3339
3340 // End of linker script support.
3341
3342 // Save states before doing section layout.
3343 // This is used for relaxation.
3344 void
3345 save_states();
3346
3347 // Restore states prior to section layout.
3348 void
3349 restore_states();
3350
3351 // Discard states.
3352 void
3353 discard_states();
3354
3355 // Convert existing input sections to relaxed input sections.
3356 void
3357 convert_input_sections_to_relaxed_sections(
3358 const std::vector<Output_relaxed_input_section*>& sections);
3359
3360 // Find a relaxed input section to an input section in OBJECT
3361 // with index SHNDX. Return NULL if none is found.
3362 const Output_relaxed_input_section*
3363 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3364
3365 // Whether section offsets need adjustment due to relaxation.
3366 bool
3367 section_offsets_need_adjustment() const
3368 { return this->section_offsets_need_adjustment_; }
3369
3370 // Set section_offsets_need_adjustment to be true.
3371 void
3372 set_section_offsets_need_adjustment()
3373 { this->section_offsets_need_adjustment_ = true; }
3374
3375 // Adjust section offsets of input sections in this. This is
3376 // requires if relaxation caused some input sections to change sizes.
3377 void
3378 adjust_section_offsets();
3379
3380 // Whether this is a NOLOAD section.
3381 bool
3382 is_noload() const
3383 { return this->is_noload_; }
3384
3385 // Set NOLOAD flag.
3386 void
3387 set_is_noload()
3388 { this->is_noload_ = true; }
3389
3390 // Print merge statistics to stderr.
3391 void
3392 print_merge_stats();
3393
3394 // Set a fixed layout for the section. Used for incremental update links.
3395 void
3396 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3397 uint64_t sh_addralign);
3398
3399 // Return TRUE if the section has a fixed layout.
3400 bool
3401 has_fixed_layout() const
3402 { return this->has_fixed_layout_; }
3403
3404 // Reserve space within the fixed layout for the section. Used for
3405 // incremental update links.
3406 void
3407 reserve(uint64_t sh_offset, uint64_t sh_size);
3408
3409 protected:
3410 // Return the output section--i.e., the object itself.
3411 Output_section*
3412 do_output_section()
3413 { return this; }
3414
3415 const Output_section*
3416 do_output_section() const
3417 { return this; }
3418
3419 // Return the section index in the output file.
3420 unsigned int
3421 do_out_shndx() const
3422 {
3423 gold_assert(this->out_shndx_ != -1U);
3424 return this->out_shndx_;
3425 }
3426
3427 // Set the output section index.
3428 void
3429 do_set_out_shndx(unsigned int shndx)
3430 {
3431 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3432 this->out_shndx_ = shndx;
3433 }
3434
3435 // Update the data size of the Output_section. For a typical
3436 // Output_section, there is nothing to do, but if there are any
3437 // Output_section_data objects we need to do a trial layout
3438 // here.
3439 virtual void
3440 update_data_size();
3441
3442 // Set the final data size of the Output_section. For a typical
3443 // Output_section, there is nothing to do, but if there are any
3444 // Output_section_data objects we need to set their final addresses
3445 // here.
3446 virtual void
3447 set_final_data_size();
3448
3449 // Reset the address and file offset.
3450 void
3451 do_reset_address_and_file_offset();
3452
3453 // Return true if address and file offset already have reset values. In
3454 // other words, calling reset_address_and_file_offset will not change them.
3455 bool
3456 do_address_and_file_offset_have_reset_values() const;
3457
3458 // Write the data to the file. For a typical Output_section, this
3459 // does nothing: the data is written out by calling Object::Relocate
3460 // on each input object. But if there are any Output_section_data
3461 // objects we do need to write them out here.
3462 virtual void
3463 do_write(Output_file*);
3464
3465 // Return the address alignment--function required by parent class.
3466 uint64_t
3467 do_addralign() const
3468 { return this->addralign_; }
3469
3470 // Return whether there is a load address.
3471 bool
3472 do_has_load_address() const
3473 { return this->has_load_address_; }
3474
3475 // Return the load address.
3476 uint64_t
3477 do_load_address() const
3478 {
3479 gold_assert(this->has_load_address_);
3480 return this->load_address_;
3481 }
3482
3483 // Return whether this is an Output_section.
3484 bool
3485 do_is_section() const
3486 { return true; }
3487
3488 // Return whether this is a section of the specified type.
3489 bool
3490 do_is_section_type(elfcpp::Elf_Word type) const
3491 { return this->type_ == type; }
3492
3493 // Return whether the specified section flag is set.
3494 bool
3495 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3496 { return (this->flags_ & flag) != 0; }
3497
3498 // Set the TLS offset. Called only for SHT_TLS sections.
3499 void
3500 do_set_tls_offset(uint64_t tls_base);
3501
3502 // Return the TLS offset, relative to the base of the TLS segment.
3503 // Valid only for SHT_TLS sections.
3504 uint64_t
3505 do_tls_offset() const
3506 { return this->tls_offset_; }
3507
3508 // This may be implemented by a child class.
3509 virtual void
3510 do_finalize_name(Layout*)
3511 { }
3512
3513 // Print to the map file.
3514 virtual void
3515 do_print_to_mapfile(Mapfile*) const;
3516
3517 // Record that this section requires postprocessing after all
3518 // relocations have been applied. This is called by a child class.
3519 void
3520 set_requires_postprocessing()
3521 {
3522 this->requires_postprocessing_ = true;
3523 this->after_input_sections_ = true;
3524 }
3525
3526 // Write all the data of an Output_section into the postprocessing
3527 // buffer.
3528 void
3529 write_to_postprocessing_buffer();
3530
3531 typedef std::vector<Input_section> Input_section_list;
3532
3533 // Allow a child class to access the input sections.
3534 const Input_section_list&
3535 input_sections() const
3536 { return this->input_sections_; }
3537
3538 // Whether this always keeps an input section list
3539 bool
3540 always_keeps_input_sections() const
3541 { return this->always_keeps_input_sections_; }
3542
3543 // Always keep an input section list.
3544 void
3545 set_always_keeps_input_sections()
3546 {
3547 gold_assert(this->current_data_size_for_child() == 0);
3548 this->always_keeps_input_sections_ = true;
3549 }
3550
3551 private:
3552 // We only save enough information to undo the effects of section layout.
3553 class Checkpoint_output_section
3554 {
3555 public:
3556 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3557 const Input_section_list& input_sections,
3558 off_t first_input_offset,
3559 bool attached_input_sections_are_sorted)
3560 : addralign_(addralign), flags_(flags),
3561 input_sections_(input_sections),
3562 input_sections_size_(input_sections_.size()),
3563 input_sections_copy_(), first_input_offset_(first_input_offset),
3564 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3565 { }
3566
3567 virtual
3568 ~Checkpoint_output_section()
3569 { }
3570
3571 // Return the address alignment.
3572 uint64_t
3573 addralign() const
3574 { return this->addralign_; }
3575
3576 // Return the section flags.
3577 elfcpp::Elf_Xword
3578 flags() const
3579 { return this->flags_; }
3580
3581 // Return a reference to the input section list copy.
3582 Input_section_list*
3583 input_sections()
3584 { return &this->input_sections_copy_; }
3585
3586 // Return the size of input_sections at the time when checkpoint is
3587 // taken.
3588 size_t
3589 input_sections_size() const
3590 { return this->input_sections_size_; }
3591
3592 // Whether input sections are copied.
3593 bool
3594 input_sections_saved() const
3595 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3596
3597 off_t
3598 first_input_offset() const
3599 { return this->first_input_offset_; }
3600
3601 bool
3602 attached_input_sections_are_sorted() const
3603 { return this->attached_input_sections_are_sorted_; }
3604
3605 // Save input sections.
3606 void
3607 save_input_sections()
3608 {
3609 this->input_sections_copy_.reserve(this->input_sections_size_);
3610 this->input_sections_copy_.clear();
3611 Input_section_list::const_iterator p = this->input_sections_.begin();
3612 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3613 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3614 this->input_sections_copy_.push_back(*p);
3615 }
3616
3617 private:
3618 // The section alignment.
3619 uint64_t addralign_;
3620 // The section flags.
3621 elfcpp::Elf_Xword flags_;
3622 // Reference to the input sections to be checkpointed.
3623 const Input_section_list& input_sections_;
3624 // Size of the checkpointed portion of input_sections_;
3625 size_t input_sections_size_;
3626 // Copy of input sections.
3627 Input_section_list input_sections_copy_;
3628 // The offset of the first entry in input_sections_.
3629 off_t first_input_offset_;
3630 // True if the input sections attached to this output section have
3631 // already been sorted.
3632 bool attached_input_sections_are_sorted_;
3633 };
3634
3635 // This class is used to sort the input sections.
3636 class Input_section_sort_entry;
3637
3638 // This is the sort comparison function for ctors and dtors.
3639 struct Input_section_sort_compare
3640 {
3641 bool
3642 operator()(const Input_section_sort_entry&,
3643 const Input_section_sort_entry&) const;
3644 };
3645
3646 // This is the sort comparison function for .init_array and .fini_array.
3647 struct Input_section_sort_init_fini_compare
3648 {
3649 bool
3650 operator()(const Input_section_sort_entry&,
3651 const Input_section_sort_entry&) const;
3652 };
3653
3654 // This is the sort comparison function when a section order is specified
3655 // from an input file.
3656 struct Input_section_sort_section_order_index_compare
3657 {
3658 bool
3659 operator()(const Input_section_sort_entry&,
3660 const Input_section_sort_entry&) const;
3661 };
3662
3663 // Fill data. This is used to fill in data between input sections.
3664 // It is also used for data statements (BYTE, WORD, etc.) in linker
3665 // scripts. When we have to keep track of the input sections, we
3666 // can use an Output_data_const, but we don't want to have to keep
3667 // track of input sections just to implement fills.
3668 class Fill
3669 {
3670 public:
3671 Fill(off_t section_offset, off_t length)
3672 : section_offset_(section_offset),
3673 length_(convert_to_section_size_type(length))
3674 { }
3675
3676 // Return section offset.
3677 off_t
3678 section_offset() const
3679 { return this->section_offset_; }
3680
3681 // Return fill length.
3682 section_size_type
3683 length() const
3684 { return this->length_; }
3685
3686 private:
3687 // The offset within the output section.
3688 off_t section_offset_;
3689 // The length of the space to fill.
3690 section_size_type length_;
3691 };
3692
3693 typedef std::vector<Fill> Fill_list;
3694
3695 // Map used during relaxation of existing sections. This map
3696 // a section id an input section list index. We assume that
3697 // Input_section_list is a vector.
3698 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3699
3700 // Add a new output section by Input_section.
3701 void
3702 add_output_section_data(Input_section*);
3703
3704 // Add an SHF_MERGE input section. Returns true if the section was
3705 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3706 // stores information about the merged input sections.
3707 bool
3708 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3709 uint64_t entsize, uint64_t addralign,
3710 bool keeps_input_sections);
3711
3712 // Add an output SHF_MERGE section POSD to this output section.
3713 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3714 // ENTSIZE is the entity size. This returns the entry added to
3715 // input_sections_.
3716 void
3717 add_output_merge_section(Output_section_data* posd, bool is_string,
3718 uint64_t entsize);
3719
3720 // Sort the attached input sections.
3721 void
3722 sort_attached_input_sections();
3723
3724 // Find the merge section into which an input section with index SHNDX in
3725 // OBJECT has been added. Return NULL if none found.
3726 Output_section_data*
3727 find_merge_section(const Relobj* object, unsigned int shndx) const;
3728
3729 // Build a relaxation map.
3730 void
3731 build_relaxation_map(
3732 const Input_section_list& input_sections,
3733 size_t limit,
3734 Relaxation_map* map) const;
3735
3736 // Convert input sections in an input section list into relaxed sections.
3737 void
3738 convert_input_sections_in_list_to_relaxed_sections(
3739 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3740 const Relaxation_map& map,
3741 Input_section_list* input_sections);
3742
3743 // Build the lookup maps for merge and relaxed input sections.
3744 void
3745 build_lookup_maps() const;
3746
3747 // Most of these fields are only valid after layout.
3748
3749 // The name of the section. This will point into a Stringpool.
3750 const char* name_;
3751 // The section address is in the parent class.
3752 // The section alignment.
3753 uint64_t addralign_;
3754 // The section entry size.
3755 uint64_t entsize_;
3756 // The load address. This is only used when using a linker script
3757 // with a SECTIONS clause. The has_load_address_ field indicates
3758 // whether this field is valid.
3759 uint64_t load_address_;
3760 // The file offset is in the parent class.
3761 // Set the section link field to the index of this section.
3762 const Output_data* link_section_;
3763 // If link_section_ is NULL, this is the link field.
3764 unsigned int link_;
3765 // Set the section info field to the index of this section.
3766 const Output_section* info_section_;
3767 // If info_section_ is NULL, set the info field to the symbol table
3768 // index of this symbol.
3769 const Symbol* info_symndx_;
3770 // If info_section_ and info_symndx_ are NULL, this is the section
3771 // info field.
3772 unsigned int info_;
3773 // The section type.
3774 const elfcpp::Elf_Word type_;
3775 // The section flags.
3776 elfcpp::Elf_Xword flags_;
3777 // The order of this section in the output segment.
3778 Output_section_order order_;
3779 // The section index.
3780 unsigned int out_shndx_;
3781 // If there is a STT_SECTION for this output section in the normal
3782 // symbol table, this is the symbol index. This starts out as zero.
3783 // It is initialized in Layout::finalize() to be the index, or -1U
3784 // if there isn't one.
3785 unsigned int symtab_index_;
3786 // If there is a STT_SECTION for this output section in the dynamic
3787 // symbol table, this is the symbol index. This starts out as zero.
3788 // It is initialized in Layout::finalize() to be the index, or -1U
3789 // if there isn't one.
3790 unsigned int dynsym_index_;
3791 // The input sections. This will be empty in cases where we don't
3792 // need to keep track of them.
3793 Input_section_list input_sections_;
3794 // The offset of the first entry in input_sections_.
3795 off_t first_input_offset_;
3796 // The fill data. This is separate from input_sections_ because we
3797 // often will need fill sections without needing to keep track of
3798 // input sections.
3799 Fill_list fills_;
3800 // If the section requires postprocessing, this buffer holds the
3801 // section contents during relocation.
3802 unsigned char* postprocessing_buffer_;
3803 // Whether this output section needs a STT_SECTION symbol in the
3804 // normal symbol table. This will be true if there is a relocation
3805 // which needs it.
3806 bool needs_symtab_index_ : 1;
3807 // Whether this output section needs a STT_SECTION symbol in the
3808 // dynamic symbol table. This will be true if there is a dynamic
3809 // relocation which needs it.
3810 bool needs_dynsym_index_ : 1;
3811 // Whether the link field of this output section should point to the
3812 // normal symbol table.
3813 bool should_link_to_symtab_ : 1;
3814 // Whether the link field of this output section should point to the
3815 // dynamic symbol table.
3816 bool should_link_to_dynsym_ : 1;
3817 // Whether this section should be written after all the input
3818 // sections are complete.
3819 bool after_input_sections_ : 1;
3820 // Whether this section requires post processing after all
3821 // relocations have been applied.
3822 bool requires_postprocessing_ : 1;
3823 // Whether an input section was mapped to this output section
3824 // because of a SECTIONS clause in a linker script.
3825 bool found_in_sections_clause_ : 1;
3826 // Whether this section has an explicitly specified load address.
3827 bool has_load_address_ : 1;
3828 // True if the info_section_ field means the section index of the
3829 // section, false if it means the symbol index of the corresponding
3830 // section symbol.
3831 bool info_uses_section_index_ : 1;
3832 // True if input sections attached to this output section have to be
3833 // sorted according to a specified order.
3834 bool input_section_order_specified_ : 1;
3835 // True if the input sections attached to this output section may
3836 // need sorting.
3837 bool may_sort_attached_input_sections_ : 1;
3838 // True if the input sections attached to this output section must
3839 // be sorted.
3840 bool must_sort_attached_input_sections_ : 1;
3841 // True if the input sections attached to this output section have
3842 // already been sorted.
3843 bool attached_input_sections_are_sorted_ : 1;
3844 // True if this section holds relro data.
3845 bool is_relro_ : 1;
3846 // True if this is a small section.
3847 bool is_small_section_ : 1;
3848 // True if this is a large section.
3849 bool is_large_section_ : 1;
3850 // Whether code-fills are generated at write.
3851 bool generate_code_fills_at_write_ : 1;
3852 // Whether the entry size field should be zero.
3853 bool is_entsize_zero_ : 1;
3854 // Whether section offsets need adjustment due to relaxation.
3855 bool section_offsets_need_adjustment_ : 1;
3856 // Whether this is a NOLOAD section.
3857 bool is_noload_ : 1;
3858 // Whether this always keeps input section.
3859 bool always_keeps_input_sections_ : 1;
3860 // Whether this section has a fixed layout, for incremental update links.
3861 bool has_fixed_layout_ : 1;
3862 // For SHT_TLS sections, the offset of this section relative to the base
3863 // of the TLS segment.
3864 uint64_t tls_offset_;
3865 // Saved checkpoint.
3866 Checkpoint_output_section* checkpoint_;
3867 // Fast lookup maps for merged and relaxed input sections.
3868 Output_section_lookup_maps* lookup_maps_;
3869 // List of available regions within the section, for incremental
3870 // update links.
3871 Free_list free_list_;
3872 };
3873
3874 // An output segment. PT_LOAD segments are built from collections of
3875 // output sections. Other segments typically point within PT_LOAD
3876 // segments, and are built directly as needed.
3877 //
3878 // NOTE: We want to use the copy constructor for this class. During
3879 // relaxation, we may try built the segments multiple times. We do
3880 // that by copying the original segment list before lay-out, doing
3881 // a trial lay-out and roll-back to the saved copied if we need to
3882 // to the lay-out again.
3883
3884 class Output_segment
3885 {
3886 public:
3887 // Create an output segment, specifying the type and flags.
3888 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3889
3890 // Return the virtual address.
3891 uint64_t
3892 vaddr() const
3893 { return this->vaddr_; }
3894
3895 // Return the physical address.
3896 uint64_t
3897 paddr() const
3898 { return this->paddr_; }
3899
3900 // Return the segment type.
3901 elfcpp::Elf_Word
3902 type() const
3903 { return this->type_; }
3904
3905 // Return the segment flags.
3906 elfcpp::Elf_Word
3907 flags() const
3908 { return this->flags_; }
3909
3910 // Return the memory size.
3911 uint64_t
3912 memsz() const
3913 { return this->memsz_; }
3914
3915 // Return the file size.
3916 off_t
3917 filesz() const
3918 { return this->filesz_; }
3919
3920 // Return the file offset.
3921 off_t
3922 offset() const
3923 { return this->offset_; }
3924
3925 // Whether this is a segment created to hold large data sections.
3926 bool
3927 is_large_data_segment() const
3928 { return this->is_large_data_segment_; }
3929
3930 // Record that this is a segment created to hold large data
3931 // sections.
3932 void
3933 set_is_large_data_segment()
3934 { this->is_large_data_segment_ = true; }
3935
3936 // Return the maximum alignment of the Output_data.
3937 uint64_t
3938 maximum_alignment();
3939
3940 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
3941 // the segment flags to use.
3942 void
3943 add_output_section_to_load(Layout* layout, Output_section* os,
3944 elfcpp::Elf_Word seg_flags);
3945
3946 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
3947 // is the segment flags to use.
3948 void
3949 add_output_section_to_nonload(Output_section* os,
3950 elfcpp::Elf_Word seg_flags);
3951
3952 // Remove an Output_section from this segment. It is an error if it
3953 // is not present.
3954 void
3955 remove_output_section(Output_section* os);
3956
3957 // Add an Output_data (which need not be an Output_section) to the
3958 // start of this segment.
3959 void
3960 add_initial_output_data(Output_data*);
3961
3962 // Return true if this segment has any sections which hold actual
3963 // data, rather than being a BSS section.
3964 bool
3965 has_any_data_sections() const;
3966
3967 // Whether this segment has a dynamic relocs.
3968 bool
3969 has_dynamic_reloc() const;
3970
3971 // Return the address of the first section.
3972 uint64_t
3973 first_section_load_address() const;
3974
3975 // Return whether the addresses have been set already.
3976 bool
3977 are_addresses_set() const
3978 { return this->are_addresses_set_; }
3979
3980 // Set the addresses.
3981 void
3982 set_addresses(uint64_t vaddr, uint64_t paddr)
3983 {
3984 this->vaddr_ = vaddr;
3985 this->paddr_ = paddr;
3986 this->are_addresses_set_ = true;
3987 }
3988
3989 // Update the flags for the flags of an output section added to this
3990 // segment.
3991 void
3992 update_flags_for_output_section(elfcpp::Elf_Xword flags)
3993 {
3994 // The ELF ABI specifies that a PT_TLS segment should always have
3995 // PF_R as the flags.
3996 if (this->type() != elfcpp::PT_TLS)
3997 this->flags_ |= flags;
3998 }
3999
4000 // Set the segment flags. This is only used if we have a PHDRS
4001 // clause which explicitly specifies the flags.
4002 void
4003 set_flags(elfcpp::Elf_Word flags)
4004 { this->flags_ = flags; }
4005
4006 // Set the address of the segment to ADDR and the offset to *POFF
4007 // and set the addresses and offsets of all contained output
4008 // sections accordingly. Set the section indexes of all contained
4009 // output sections starting with *PSHNDX. If RESET is true, first
4010 // reset the addresses of the contained sections. Return the
4011 // address of the immediately following segment. Update *POFF and
4012 // *PSHNDX. This should only be called for a PT_LOAD segment.
4013 uint64_t
4014 set_section_addresses(Layout*, bool reset, uint64_t addr,
4015 unsigned int* increase_relro, bool* has_relro,
4016 off_t* poff, unsigned int* pshndx);
4017
4018 // Set the minimum alignment of this segment. This may be adjusted
4019 // upward based on the section alignments.
4020 void
4021 set_minimum_p_align(uint64_t align)
4022 {
4023 if (align > this->min_p_align_)
4024 this->min_p_align_ = align;
4025 }
4026
4027 // Set the offset of this segment based on the section. This should
4028 // only be called for a non-PT_LOAD segment.
4029 void
4030 set_offset(unsigned int increase);
4031
4032 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4033 void
4034 set_tls_offsets();
4035
4036 // Return the number of output sections.
4037 unsigned int
4038 output_section_count() const;
4039
4040 // Return the section attached to the list segment with the lowest
4041 // load address. This is used when handling a PHDRS clause in a
4042 // linker script.
4043 Output_section*
4044 section_with_lowest_load_address() const;
4045
4046 // Write the segment header into *OPHDR.
4047 template<int size, bool big_endian>
4048 void
4049 write_header(elfcpp::Phdr_write<size, big_endian>*);
4050
4051 // Write the section headers of associated sections into V.
4052 template<int size, bool big_endian>
4053 unsigned char*
4054 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4055 unsigned int* pshndx) const;
4056
4057 // Print the output sections in the map file.
4058 void
4059 print_sections_to_mapfile(Mapfile*) const;
4060
4061 private:
4062 typedef std::vector<Output_data*> Output_data_list;
4063
4064 // Find the maximum alignment in an Output_data_list.
4065 static uint64_t
4066 maximum_alignment_list(const Output_data_list*);
4067
4068 // Return whether the first data section is a relro section.
4069 bool
4070 is_first_section_relro() const;
4071
4072 // Set the section addresses in an Output_data_list.
4073 uint64_t
4074 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4075 uint64_t addr, off_t* poff, unsigned int* pshndx,
4076 bool* in_tls);
4077
4078 // Return the number of Output_sections in an Output_data_list.
4079 unsigned int
4080 output_section_count_list(const Output_data_list*) const;
4081
4082 // Return whether an Output_data_list has a dynamic reloc.
4083 bool
4084 has_dynamic_reloc_list(const Output_data_list*) const;
4085
4086 // Find the section with the lowest load address in an
4087 // Output_data_list.
4088 void
4089 lowest_load_address_in_list(const Output_data_list* pdl,
4090 Output_section** found,
4091 uint64_t* found_lma) const;
4092
4093 // Find the first and last entries by address.
4094 void
4095 find_first_and_last_list(const Output_data_list* pdl,
4096 const Output_data** pfirst,
4097 const Output_data** plast) const;
4098
4099 // Write the section headers in the list into V.
4100 template<int size, bool big_endian>
4101 unsigned char*
4102 write_section_headers_list(const Layout*, const Stringpool*,
4103 const Output_data_list*, unsigned char* v,
4104 unsigned int* pshdx) const;
4105
4106 // Print a section list to the mapfile.
4107 void
4108 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4109
4110 // NOTE: We want to use the copy constructor. Currently, shallow copy
4111 // works for us so we do not need to write our own copy constructor.
4112
4113 // The list of output data attached to this segment.
4114 Output_data_list output_lists_[ORDER_MAX];
4115 // The segment virtual address.
4116 uint64_t vaddr_;
4117 // The segment physical address.
4118 uint64_t paddr_;
4119 // The size of the segment in memory.
4120 uint64_t memsz_;
4121 // The maximum section alignment. The is_max_align_known_ field
4122 // indicates whether this has been finalized.
4123 uint64_t max_align_;
4124 // The required minimum value for the p_align field. This is used
4125 // for PT_LOAD segments. Note that this does not mean that
4126 // addresses should be aligned to this value; it means the p_paddr
4127 // and p_vaddr fields must be congruent modulo this value. For
4128 // non-PT_LOAD segments, the dynamic linker works more efficiently
4129 // if the p_align field has the more conventional value, although it
4130 // can align as needed.
4131 uint64_t min_p_align_;
4132 // The offset of the segment data within the file.
4133 off_t offset_;
4134 // The size of the segment data in the file.
4135 off_t filesz_;
4136 // The segment type;
4137 elfcpp::Elf_Word type_;
4138 // The segment flags.
4139 elfcpp::Elf_Word flags_;
4140 // Whether we have finalized max_align_.
4141 bool is_max_align_known_ : 1;
4142 // Whether vaddr and paddr were set by a linker script.
4143 bool are_addresses_set_ : 1;
4144 // Whether this segment holds large data sections.
4145 bool is_large_data_segment_ : 1;
4146 };
4147
4148 // This class represents the output file.
4149
4150 class Output_file
4151 {
4152 public:
4153 Output_file(const char* name);
4154
4155 // Indicate that this is a temporary file which should not be
4156 // output.
4157 void
4158 set_is_temporary()
4159 { this->is_temporary_ = true; }
4160
4161 // Try to open an existing file. Returns false if the file doesn't
4162 // exist, has a size of 0 or can't be mmaped. This method is
4163 // thread-unsafe.
4164 bool
4165 open_for_modification();
4166
4167 // Open the output file. FILE_SIZE is the final size of the file.
4168 // If the file already exists, it is deleted/truncated. This method
4169 // is thread-unsafe.
4170 void
4171 open(off_t file_size);
4172
4173 // Resize the output file. This method is thread-unsafe.
4174 void
4175 resize(off_t file_size);
4176
4177 // Close the output file (flushing all buffered data) and make sure
4178 // there are no errors. This method is thread-unsafe.
4179 void
4180 close();
4181
4182 // Return the size of this file.
4183 off_t
4184 filesize()
4185 { return this->file_size_; }
4186
4187 // Return the name of this file.
4188 const char*
4189 filename()
4190 { return this->name_; }
4191
4192 // We currently always use mmap which makes the view handling quite
4193 // simple. In the future we may support other approaches.
4194
4195 // Write data to the output file.
4196 void
4197 write(off_t offset, const void* data, size_t len)
4198 { memcpy(this->base_ + offset, data, len); }
4199
4200 // Get a buffer to use to write to the file, given the offset into
4201 // the file and the size.
4202 unsigned char*
4203 get_output_view(off_t start, size_t size)
4204 {
4205 gold_assert(start >= 0
4206 && start + static_cast<off_t>(size) <= this->file_size_);
4207 return this->base_ + start;
4208 }
4209
4210 // VIEW must have been returned by get_output_view. Write the
4211 // buffer to the file, passing in the offset and the size.
4212 void
4213 write_output_view(off_t, size_t, unsigned char*)
4214 { }
4215
4216 // Get a read/write buffer. This is used when we want to write part
4217 // of the file, read it in, and write it again.
4218 unsigned char*
4219 get_input_output_view(off_t start, size_t size)
4220 { return this->get_output_view(start, size); }
4221
4222 // Write a read/write buffer back to the file.
4223 void
4224 write_input_output_view(off_t, size_t, unsigned char*)
4225 { }
4226
4227 // Get a read buffer. This is used when we just want to read part
4228 // of the file back it in.
4229 const unsigned char*
4230 get_input_view(off_t start, size_t size)
4231 { return this->get_output_view(start, size); }
4232
4233 // Release a read bfufer.
4234 void
4235 free_input_view(off_t, size_t, const unsigned char*)
4236 { }
4237
4238 private:
4239 // Map the file into memory or, if that fails, allocate anonymous
4240 // memory.
4241 void
4242 map();
4243
4244 // Allocate anonymous memory for the file.
4245 bool
4246 map_anonymous();
4247
4248 // Map the file into memory.
4249 bool
4250 map_no_anonymous();
4251
4252 // Unmap the file from memory (and flush to disk buffers).
4253 void
4254 unmap();
4255
4256 // File name.
4257 const char* name_;
4258 // File descriptor.
4259 int o_;
4260 // File size.
4261 off_t file_size_;
4262 // Base of file mapped into memory.
4263 unsigned char* base_;
4264 // True iff base_ points to a memory buffer rather than an output file.
4265 bool map_is_anonymous_;
4266 // True if base_ was allocated using new rather than mmap.
4267 bool map_is_allocated_;
4268 // True if this is a temporary file which should not be output.
4269 bool is_temporary_;
4270 };
4271
4272 } // End namespace gold.
4273
4274 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.152438 seconds and 5 git commands to generate.