Update copyright years
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address, file offset and data size. This essentially
107 // disables the sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // As above, but just for data size.
119 void
120 reset_data_size()
121 {
122 if (!this->is_data_size_fixed_)
123 this->is_data_size_valid_ = false;
124 }
125
126 // Return true if address and file offset already have reset values. In
127 // other words, calling reset_address_and_file_offset will not change them.
128 bool
129 address_and_file_offset_have_reset_values() const
130 { return this->do_address_and_file_offset_have_reset_values(); }
131
132 // Return the required alignment.
133 uint64_t
134 addralign() const
135 { return this->do_addralign(); }
136
137 // Return whether this has a load address.
138 bool
139 has_load_address() const
140 { return this->do_has_load_address(); }
141
142 // Return the load address.
143 uint64_t
144 load_address() const
145 { return this->do_load_address(); }
146
147 // Return whether this is an Output_section.
148 bool
149 is_section() const
150 { return this->do_is_section(); }
151
152 // Return whether this is an Output_section of the specified type.
153 bool
154 is_section_type(elfcpp::Elf_Word stt) const
155 { return this->do_is_section_type(stt); }
156
157 // Return whether this is an Output_section with the specified flag
158 // set.
159 bool
160 is_section_flag_set(elfcpp::Elf_Xword shf) const
161 { return this->do_is_section_flag_set(shf); }
162
163 // Return the output section that this goes in, if there is one.
164 Output_section*
165 output_section()
166 { return this->do_output_section(); }
167
168 const Output_section*
169 output_section() const
170 { return this->do_output_section(); }
171
172 // Return the output section index, if there is an output section.
173 unsigned int
174 out_shndx() const
175 { return this->do_out_shndx(); }
176
177 // Set the output section index, if this is an output section.
178 void
179 set_out_shndx(unsigned int shndx)
180 { this->do_set_out_shndx(shndx); }
181
182 // Set the address and file offset of this data, and finalize the
183 // size of the data. This is called during Layout::finalize for
184 // allocated sections.
185 void
186 set_address_and_file_offset(uint64_t addr, off_t off)
187 {
188 this->set_address(addr);
189 this->set_file_offset(off);
190 this->finalize_data_size();
191 }
192
193 // Set the address.
194 void
195 set_address(uint64_t addr)
196 {
197 gold_assert(!this->is_address_valid_);
198 this->address_ = addr;
199 this->is_address_valid_ = true;
200 }
201
202 // Set the file offset.
203 void
204 set_file_offset(off_t off)
205 {
206 gold_assert(!this->is_offset_valid_);
207 this->offset_ = off;
208 this->is_offset_valid_ = true;
209 }
210
211 // Update the data size without finalizing it.
212 void
213 pre_finalize_data_size()
214 {
215 if (!this->is_data_size_valid_)
216 {
217 // Tell the child class to update the data size.
218 this->update_data_size();
219 }
220 }
221
222 // Finalize the data size.
223 void
224 finalize_data_size()
225 {
226 if (!this->is_data_size_valid_)
227 {
228 // Tell the child class to set the data size.
229 this->set_final_data_size();
230 gold_assert(this->is_data_size_valid_);
231 }
232 }
233
234 // Set the TLS offset. Called only for SHT_TLS sections.
235 void
236 set_tls_offset(uint64_t tls_base)
237 { this->do_set_tls_offset(tls_base); }
238
239 // Return the TLS offset, relative to the base of the TLS segment.
240 // Valid only for SHT_TLS sections.
241 uint64_t
242 tls_offset() const
243 { return this->do_tls_offset(); }
244
245 // Write the data to the output file. This is called after
246 // Layout::finalize is complete.
247 void
248 write(Output_file* file)
249 { this->do_write(file); }
250
251 // This is called by Layout::finalize to note that the sizes of
252 // allocated sections must now be fixed.
253 static void
254 layout_complete()
255 { Output_data::allocated_sizes_are_fixed = true; }
256
257 // Used to check that layout has been done.
258 static bool
259 is_layout_complete()
260 { return Output_data::allocated_sizes_are_fixed; }
261
262 // Note that a dynamic reloc has been applied to this data.
263 void
264 add_dynamic_reloc()
265 { this->has_dynamic_reloc_ = true; }
266
267 // Return whether a dynamic reloc has been applied.
268 bool
269 has_dynamic_reloc() const
270 { return this->has_dynamic_reloc_; }
271
272 // Whether the address is valid.
273 bool
274 is_address_valid() const
275 { return this->is_address_valid_; }
276
277 // Whether the file offset is valid.
278 bool
279 is_offset_valid() const
280 { return this->is_offset_valid_; }
281
282 // Whether the data size is valid.
283 bool
284 is_data_size_valid() const
285 { return this->is_data_size_valid_; }
286
287 // Print information to the map file.
288 void
289 print_to_mapfile(Mapfile* mapfile) const
290 { return this->do_print_to_mapfile(mapfile); }
291
292 protected:
293 // Functions that child classes may or in some cases must implement.
294
295 // Write the data to the output file.
296 virtual void
297 do_write(Output_file*) = 0;
298
299 // Return the required alignment.
300 virtual uint64_t
301 do_addralign() const = 0;
302
303 // Return whether this has a load address.
304 virtual bool
305 do_has_load_address() const
306 { return false; }
307
308 // Return the load address.
309 virtual uint64_t
310 do_load_address() const
311 { gold_unreachable(); }
312
313 // Return whether this is an Output_section.
314 virtual bool
315 do_is_section() const
316 { return false; }
317
318 // Return whether this is an Output_section of the specified type.
319 // This only needs to be implement by Output_section.
320 virtual bool
321 do_is_section_type(elfcpp::Elf_Word) const
322 { return false; }
323
324 // Return whether this is an Output_section with the specific flag
325 // set. This only needs to be implemented by Output_section.
326 virtual bool
327 do_is_section_flag_set(elfcpp::Elf_Xword) const
328 { return false; }
329
330 // Return the output section, if there is one.
331 virtual Output_section*
332 do_output_section()
333 { return NULL; }
334
335 virtual const Output_section*
336 do_output_section() const
337 { return NULL; }
338
339 // Return the output section index, if there is an output section.
340 virtual unsigned int
341 do_out_shndx() const
342 { gold_unreachable(); }
343
344 // Set the output section index, if this is an output section.
345 virtual void
346 do_set_out_shndx(unsigned int)
347 { gold_unreachable(); }
348
349 // This is a hook for derived classes to set the preliminary data size.
350 // This is called by pre_finalize_data_size, normally called during
351 // Layout::finalize, before the section address is set, and is used
352 // during an incremental update, when we need to know the size of a
353 // section before allocating space in the output file. For classes
354 // where the current data size is up to date, this default version of
355 // the method can be inherited.
356 virtual void
357 update_data_size()
358 { }
359
360 // This is a hook for derived classes to set the data size. This is
361 // called by finalize_data_size, normally called during
362 // Layout::finalize, when the section address is set.
363 virtual void
364 set_final_data_size()
365 { gold_unreachable(); }
366
367 // A hook for resetting the address and file offset.
368 virtual void
369 do_reset_address_and_file_offset()
370 { }
371
372 // Return true if address and file offset already have reset values. In
373 // other words, calling reset_address_and_file_offset will not change them.
374 // A child class overriding do_reset_address_and_file_offset may need to
375 // also override this.
376 virtual bool
377 do_address_and_file_offset_have_reset_values() const
378 { return !this->is_address_valid_ && !this->is_offset_valid_; }
379
380 // Set the TLS offset. Called only for SHT_TLS sections.
381 virtual void
382 do_set_tls_offset(uint64_t)
383 { gold_unreachable(); }
384
385 // Return the TLS offset, relative to the base of the TLS segment.
386 // Valid only for SHT_TLS sections.
387 virtual uint64_t
388 do_tls_offset() const
389 { gold_unreachable(); }
390
391 // Print to the map file. This only needs to be implemented by
392 // classes which may appear in a PT_LOAD segment.
393 virtual void
394 do_print_to_mapfile(Mapfile*) const
395 { gold_unreachable(); }
396
397 // Functions that child classes may call.
398
399 // Reset the address. The Output_section class needs this when an
400 // SHF_ALLOC input section is added to an output section which was
401 // formerly not SHF_ALLOC.
402 void
403 mark_address_invalid()
404 { this->is_address_valid_ = false; }
405
406 // Set the size of the data.
407 void
408 set_data_size(off_t data_size)
409 {
410 gold_assert(!this->is_data_size_valid_
411 && !this->is_data_size_fixed_);
412 this->data_size_ = data_size;
413 this->is_data_size_valid_ = true;
414 }
415
416 // Fix the data size. Once it is fixed, it cannot be changed
417 // and the data size remains always valid.
418 void
419 fix_data_size()
420 {
421 gold_assert(this->is_data_size_valid_);
422 this->is_data_size_fixed_ = true;
423 }
424
425 // Get the current data size--this is for the convenience of
426 // sections which build up their size over time.
427 off_t
428 current_data_size_for_child() const
429 { return this->data_size_; }
430
431 // Set the current data size--this is for the convenience of
432 // sections which build up their size over time.
433 void
434 set_current_data_size_for_child(off_t data_size)
435 {
436 gold_assert(!this->is_data_size_valid_);
437 this->data_size_ = data_size;
438 }
439
440 // Return default alignment for the target size.
441 static uint64_t
442 default_alignment();
443
444 // Return default alignment for a specified size--32 or 64.
445 static uint64_t
446 default_alignment_for_size(int size);
447
448 private:
449 Output_data(const Output_data&);
450 Output_data& operator=(const Output_data&);
451
452 // This is used for verification, to make sure that we don't try to
453 // change any sizes of allocated sections after we set the section
454 // addresses.
455 static bool allocated_sizes_are_fixed;
456
457 // Memory address in output file.
458 uint64_t address_;
459 // Size of data in output file.
460 off_t data_size_;
461 // File offset of contents in output file.
462 off_t offset_;
463 // Whether address_ is valid.
464 bool is_address_valid_ : 1;
465 // Whether data_size_ is valid.
466 bool is_data_size_valid_ : 1;
467 // Whether offset_ is valid.
468 bool is_offset_valid_ : 1;
469 // Whether data size is fixed.
470 bool is_data_size_fixed_ : 1;
471 // Whether any dynamic relocs have been applied to this section.
472 bool has_dynamic_reloc_ : 1;
473 };
474
475 // Output the section headers.
476
477 class Output_section_headers : public Output_data
478 {
479 public:
480 Output_section_headers(const Layout*,
481 const Layout::Segment_list*,
482 const Layout::Section_list*,
483 const Layout::Section_list*,
484 const Stringpool*,
485 const Output_section*);
486
487 protected:
488 // Write the data to the file.
489 void
490 do_write(Output_file*);
491
492 // Return the required alignment.
493 uint64_t
494 do_addralign() const
495 { return Output_data::default_alignment(); }
496
497 // Write to a map file.
498 void
499 do_print_to_mapfile(Mapfile* mapfile) const
500 { mapfile->print_output_data(this, _("** section headers")); }
501
502 // Update the data size.
503 void
504 update_data_size()
505 { this->set_data_size(this->do_size()); }
506
507 // Set final data size.
508 void
509 set_final_data_size()
510 { this->set_data_size(this->do_size()); }
511
512 private:
513 // Write the data to the file with the right size and endianness.
514 template<int size, bool big_endian>
515 void
516 do_sized_write(Output_file*);
517
518 // Compute data size.
519 off_t
520 do_size() const;
521
522 const Layout* layout_;
523 const Layout::Segment_list* segment_list_;
524 const Layout::Section_list* section_list_;
525 const Layout::Section_list* unattached_section_list_;
526 const Stringpool* secnamepool_;
527 const Output_section* shstrtab_section_;
528 };
529
530 // Output the segment headers.
531
532 class Output_segment_headers : public Output_data
533 {
534 public:
535 Output_segment_headers(const Layout::Segment_list& segment_list);
536
537 protected:
538 // Write the data to the file.
539 void
540 do_write(Output_file*);
541
542 // Return the required alignment.
543 uint64_t
544 do_addralign() const
545 { return Output_data::default_alignment(); }
546
547 // Write to a map file.
548 void
549 do_print_to_mapfile(Mapfile* mapfile) const
550 { mapfile->print_output_data(this, _("** segment headers")); }
551
552 // Set final data size.
553 void
554 set_final_data_size()
555 { this->set_data_size(this->do_size()); }
556
557 private:
558 // Write the data to the file with the right size and endianness.
559 template<int size, bool big_endian>
560 void
561 do_sized_write(Output_file*);
562
563 // Compute the current size.
564 off_t
565 do_size() const;
566
567 const Layout::Segment_list& segment_list_;
568 };
569
570 // Output the ELF file header.
571
572 class Output_file_header : public Output_data
573 {
574 public:
575 Output_file_header(Target*,
576 const Symbol_table*,
577 const Output_segment_headers*);
578
579 // Add information about the section headers. We lay out the ELF
580 // file header before we create the section headers.
581 void set_section_info(const Output_section_headers*,
582 const Output_section* shstrtab);
583
584 protected:
585 // Write the data to the file.
586 void
587 do_write(Output_file*);
588
589 // Return the required alignment.
590 uint64_t
591 do_addralign() const
592 { return Output_data::default_alignment(); }
593
594 // Write to a map file.
595 void
596 do_print_to_mapfile(Mapfile* mapfile) const
597 { mapfile->print_output_data(this, _("** file header")); }
598
599 // Set final data size.
600 void
601 set_final_data_size(void)
602 { this->set_data_size(this->do_size()); }
603
604 private:
605 // Write the data to the file with the right size and endianness.
606 template<int size, bool big_endian>
607 void
608 do_sized_write(Output_file*);
609
610 // Return the value to use for the entry address.
611 template<int size>
612 typename elfcpp::Elf_types<size>::Elf_Addr
613 entry();
614
615 // Compute the current data size.
616 off_t
617 do_size() const;
618
619 Target* target_;
620 const Symbol_table* symtab_;
621 const Output_segment_headers* segment_header_;
622 const Output_section_headers* section_header_;
623 const Output_section* shstrtab_;
624 };
625
626 // Output sections are mainly comprised of input sections. However,
627 // there are cases where we have data to write out which is not in an
628 // input section. Output_section_data is used in such cases. This is
629 // an abstract base class.
630
631 class Output_section_data : public Output_data
632 {
633 public:
634 Output_section_data(off_t data_size, uint64_t addralign,
635 bool is_data_size_fixed)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 {
638 this->set_data_size(data_size);
639 if (is_data_size_fixed)
640 this->fix_data_size();
641 }
642
643 Output_section_data(uint64_t addralign)
644 : Output_data(), output_section_(NULL), addralign_(addralign)
645 { }
646
647 // Return the output section.
648 Output_section*
649 output_section()
650 { return this->output_section_; }
651
652 const Output_section*
653 output_section() const
654 { return this->output_section_; }
655
656 // Record the output section.
657 void
658 set_output_section(Output_section* os);
659
660 // Add an input section, for SHF_MERGE sections. This returns true
661 // if the section was handled.
662 bool
663 add_input_section(Relobj* object, unsigned int shndx)
664 { return this->do_add_input_section(object, shndx); }
665
666 // Given an input OBJECT, an input section index SHNDX within that
667 // object, and an OFFSET relative to the start of that input
668 // section, return whether or not the corresponding offset within
669 // the output section is known. If this function returns true, it
670 // sets *POUTPUT to the output offset. The value -1 indicates that
671 // this input offset is being discarded.
672 bool
673 output_offset(const Relobj* object, unsigned int shndx,
674 section_offset_type offset,
675 section_offset_type* poutput) const
676 { return this->do_output_offset(object, shndx, offset, poutput); }
677
678 // Return whether this is the merge section for the input section
679 // SHNDX in OBJECT. This should return true when output_offset
680 // would return true for some values of OFFSET.
681 bool
682 is_merge_section_for(const Relobj* object, unsigned int shndx) const
683 { return this->do_is_merge_section_for(object, shndx); }
684
685 // Write the contents to a buffer. This is used for sections which
686 // require postprocessing, such as compression.
687 void
688 write_to_buffer(unsigned char* buffer)
689 { this->do_write_to_buffer(buffer); }
690
691 // Print merge stats to stderr. This should only be called for
692 // SHF_MERGE sections.
693 void
694 print_merge_stats(const char* section_name)
695 { this->do_print_merge_stats(section_name); }
696
697 protected:
698 // The child class must implement do_write.
699
700 // The child class may implement specific adjustments to the output
701 // section.
702 virtual void
703 do_adjust_output_section(Output_section*)
704 { }
705
706 // May be implemented by child class. Return true if the section
707 // was handled.
708 virtual bool
709 do_add_input_section(Relobj*, unsigned int)
710 { gold_unreachable(); }
711
712 // The child class may implement output_offset.
713 virtual bool
714 do_output_offset(const Relobj*, unsigned int, section_offset_type,
715 section_offset_type*) const
716 { return false; }
717
718 // The child class may implement is_merge_section_for.
719 virtual bool
720 do_is_merge_section_for(const Relobj*, unsigned int) const
721 { return false; }
722
723 // The child class may implement write_to_buffer. Most child
724 // classes can not appear in a compressed section, and they do not
725 // implement this.
726 virtual void
727 do_write_to_buffer(unsigned char*)
728 { gold_unreachable(); }
729
730 // Print merge statistics.
731 virtual void
732 do_print_merge_stats(const char*)
733 { gold_unreachable(); }
734
735 // Return the required alignment.
736 uint64_t
737 do_addralign() const
738 { return this->addralign_; }
739
740 // Return the output section.
741 Output_section*
742 do_output_section()
743 { return this->output_section_; }
744
745 const Output_section*
746 do_output_section() const
747 { return this->output_section_; }
748
749 // Return the section index of the output section.
750 unsigned int
751 do_out_shndx() const;
752
753 // Set the alignment.
754 void
755 set_addralign(uint64_t addralign);
756
757 private:
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
761 uint64_t addralign_;
762 };
763
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
766 // them.
767
768 class Output_section_data_build : public Output_section_data
769 {
770 public:
771 Output_section_data_build(uint64_t addralign)
772 : Output_section_data(addralign)
773 { }
774
775 Output_section_data_build(off_t data_size, uint64_t addralign)
776 : Output_section_data(data_size, addralign, false)
777 { }
778
779 // Set the current data size.
780 void
781 set_current_data_size(off_t data_size)
782 { this->set_current_data_size_for_child(data_size); }
783
784 protected:
785 // Set the final data size.
786 virtual void
787 set_final_data_size()
788 { this->set_data_size(this->current_data_size_for_child()); }
789 };
790
791 // A simple case of Output_data in which we have constant data to
792 // output.
793
794 class Output_data_const : public Output_section_data
795 {
796 public:
797 Output_data_const(const std::string& data, uint64_t addralign)
798 : Output_section_data(data.size(), addralign, true), data_(data)
799 { }
800
801 Output_data_const(const char* p, off_t len, uint64_t addralign)
802 : Output_section_data(len, addralign, true), data_(p, len)
803 { }
804
805 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
806 : Output_section_data(len, addralign, true),
807 data_(reinterpret_cast<const char*>(p), len)
808 { }
809
810 protected:
811 // Write the data to the output file.
812 void
813 do_write(Output_file*);
814
815 // Write the data to a buffer.
816 void
817 do_write_to_buffer(unsigned char* buffer)
818 { memcpy(buffer, this->data_.data(), this->data_.size()); }
819
820 // Write to a map file.
821 void
822 do_print_to_mapfile(Mapfile* mapfile) const
823 { mapfile->print_output_data(this, _("** fill")); }
824
825 private:
826 std::string data_;
827 };
828
829 // Another version of Output_data with constant data, in which the
830 // buffer is allocated by the caller.
831
832 class Output_data_const_buffer : public Output_section_data
833 {
834 public:
835 Output_data_const_buffer(const unsigned char* p, off_t len,
836 uint64_t addralign, const char* map_name)
837 : Output_section_data(len, addralign, true),
838 p_(p), map_name_(map_name)
839 { }
840
841 protected:
842 // Write the data the output file.
843 void
844 do_write(Output_file*);
845
846 // Write the data to a buffer.
847 void
848 do_write_to_buffer(unsigned char* buffer)
849 { memcpy(buffer, this->p_, this->data_size()); }
850
851 // Write to a map file.
852 void
853 do_print_to_mapfile(Mapfile* mapfile) const
854 { mapfile->print_output_data(this, _(this->map_name_)); }
855
856 private:
857 // The data to output.
858 const unsigned char* p_;
859 // Name to use in a map file. Maps are a rarely used feature, but
860 // the space usage is minor as aren't very many of these objects.
861 const char* map_name_;
862 };
863
864 // A place holder for a fixed amount of data written out via some
865 // other mechanism.
866
867 class Output_data_fixed_space : public Output_section_data
868 {
869 public:
870 Output_data_fixed_space(off_t data_size, uint64_t addralign,
871 const char* map_name)
872 : Output_section_data(data_size, addralign, true),
873 map_name_(map_name)
874 { }
875
876 protected:
877 // Write out the data--the actual data must be written out
878 // elsewhere.
879 void
880 do_write(Output_file*)
881 { }
882
883 // Write to a map file.
884 void
885 do_print_to_mapfile(Mapfile* mapfile) const
886 { mapfile->print_output_data(this, _(this->map_name_)); }
887
888 private:
889 // Name to use in a map file. Maps are a rarely used feature, but
890 // the space usage is minor as aren't very many of these objects.
891 const char* map_name_;
892 };
893
894 // A place holder for variable sized data written out via some other
895 // mechanism.
896
897 class Output_data_space : public Output_section_data_build
898 {
899 public:
900 explicit Output_data_space(uint64_t addralign, const char* map_name)
901 : Output_section_data_build(addralign),
902 map_name_(map_name)
903 { }
904
905 explicit Output_data_space(off_t data_size, uint64_t addralign,
906 const char* map_name)
907 : Output_section_data_build(data_size, addralign),
908 map_name_(map_name)
909 { }
910
911 // Set the alignment.
912 void
913 set_space_alignment(uint64_t align)
914 { this->set_addralign(align); }
915
916 protected:
917 // Write out the data--the actual data must be written out
918 // elsewhere.
919 void
920 do_write(Output_file*)
921 { }
922
923 // Write to a map file.
924 void
925 do_print_to_mapfile(Mapfile* mapfile) const
926 { mapfile->print_output_data(this, _(this->map_name_)); }
927
928 private:
929 // Name to use in a map file. Maps are a rarely used feature, but
930 // the space usage is minor as aren't very many of these objects.
931 const char* map_name_;
932 };
933
934 // Fill fixed space with zeroes. This is just like
935 // Output_data_fixed_space, except that the map name is known.
936
937 class Output_data_zero_fill : public Output_section_data
938 {
939 public:
940 Output_data_zero_fill(off_t data_size, uint64_t addralign)
941 : Output_section_data(data_size, addralign, true)
942 { }
943
944 protected:
945 // There is no data to write out.
946 void
947 do_write(Output_file*)
948 { }
949
950 // Write to a map file.
951 void
952 do_print_to_mapfile(Mapfile* mapfile) const
953 { mapfile->print_output_data(this, "** zero fill"); }
954 };
955
956 // A string table which goes into an output section.
957
958 class Output_data_strtab : public Output_section_data
959 {
960 public:
961 Output_data_strtab(Stringpool* strtab)
962 : Output_section_data(1), strtab_(strtab)
963 { }
964
965 protected:
966 // This is called to update the section size prior to assigning
967 // the address and file offset.
968 void
969 update_data_size()
970 { this->set_final_data_size(); }
971
972 // This is called to set the address and file offset. Here we make
973 // sure that the Stringpool is finalized.
974 void
975 set_final_data_size();
976
977 // Write out the data.
978 void
979 do_write(Output_file*);
980
981 // Write the data to a buffer.
982 void
983 do_write_to_buffer(unsigned char* buffer)
984 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
985
986 // Write to a map file.
987 void
988 do_print_to_mapfile(Mapfile* mapfile) const
989 { mapfile->print_output_data(this, _("** string table")); }
990
991 private:
992 Stringpool* strtab_;
993 };
994
995 // This POD class is used to represent a single reloc in the output
996 // file. This could be a private class within Output_data_reloc, but
997 // the templatization is complex enough that I broke it out into a
998 // separate class. The class is templatized on either elfcpp::SHT_REL
999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1000 // relocation or an ordinary relocation.
1001
1002 // A relocation can be against a global symbol, a local symbol, a
1003 // local section symbol, an output section, or the undefined symbol at
1004 // index 0. We represent the latter by using a NULL global symbol.
1005
1006 template<int sh_type, bool dynamic, int size, bool big_endian>
1007 class Output_reloc;
1008
1009 template<bool dynamic, int size, bool big_endian>
1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1011 {
1012 public:
1013 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1015
1016 static const Address invalid_address = static_cast<Address>(0) - 1;
1017
1018 // An uninitialized entry. We need this because we want to put
1019 // instances of this class into an STL container.
1020 Output_reloc()
1021 : local_sym_index_(INVALID_CODE)
1022 { }
1023
1024 // We have a bunch of different constructors. They come in pairs
1025 // depending on how the address of the relocation is specified. It
1026 // can either be an offset in an Output_data or an offset in an
1027 // input section.
1028
1029 // A reloc against a global symbol.
1030
1031 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1032 Address address, bool is_relative, bool is_symbolless,
1033 bool use_plt_offset);
1034
1035 Output_reloc(Symbol* gsym, unsigned int type,
1036 Sized_relobj<size, big_endian>* relobj,
1037 unsigned int shndx, Address address, bool is_relative,
1038 bool is_symbolless, bool use_plt_offset);
1039
1040 // A reloc against a local symbol or local section symbol.
1041
1042 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1043 unsigned int local_sym_index, unsigned int type,
1044 Output_data* od, Address address, bool is_relative,
1045 bool is_symbolless, bool is_section_symbol,
1046 bool use_plt_offset);
1047
1048 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1049 unsigned int local_sym_index, unsigned int type,
1050 unsigned int shndx, Address address, bool is_relative,
1051 bool is_symbolless, bool is_section_symbol,
1052 bool use_plt_offset);
1053
1054 // A reloc against the STT_SECTION symbol of an output section.
1055
1056 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1057 Address address, bool is_relative);
1058
1059 Output_reloc(Output_section* os, unsigned int type,
1060 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1061 Address address, bool is_relative);
1062
1063 // An absolute or relative relocation with no symbol.
1064
1065 Output_reloc(unsigned int type, Output_data* od, Address address,
1066 bool is_relative);
1067
1068 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1069 unsigned int shndx, Address address, bool is_relative);
1070
1071 // A target specific relocation. The target will be called to get
1072 // the symbol index, passing ARG. The type and offset will be set
1073 // as for other relocation types.
1074
1075 Output_reloc(unsigned int type, void* arg, Output_data* od,
1076 Address address);
1077
1078 Output_reloc(unsigned int type, void* arg,
1079 Sized_relobj<size, big_endian>* relobj,
1080 unsigned int shndx, Address address);
1081
1082 // Return the reloc type.
1083 unsigned int
1084 type() const
1085 { return this->type_; }
1086
1087 // Return whether this is a RELATIVE relocation.
1088 bool
1089 is_relative() const
1090 { return this->is_relative_; }
1091
1092 // Return whether this is a relocation which should not use
1093 // a symbol, but which obtains its addend from a symbol.
1094 bool
1095 is_symbolless() const
1096 { return this->is_symbolless_; }
1097
1098 // Return whether this is against a local section symbol.
1099 bool
1100 is_local_section_symbol() const
1101 {
1102 return (this->local_sym_index_ != GSYM_CODE
1103 && this->local_sym_index_ != SECTION_CODE
1104 && this->local_sym_index_ != INVALID_CODE
1105 && this->local_sym_index_ != TARGET_CODE
1106 && this->is_section_symbol_);
1107 }
1108
1109 // Return whether this is a target specific relocation.
1110 bool
1111 is_target_specific() const
1112 { return this->local_sym_index_ == TARGET_CODE; }
1113
1114 // Return the argument to pass to the target for a target specific
1115 // relocation.
1116 void*
1117 target_arg() const
1118 {
1119 gold_assert(this->local_sym_index_ == TARGET_CODE);
1120 return this->u1_.arg;
1121 }
1122
1123 // For a local section symbol, return the offset of the input
1124 // section within the output section. ADDEND is the addend being
1125 // applied to the input section.
1126 Address
1127 local_section_offset(Addend addend) const;
1128
1129 // Get the value of the symbol referred to by a Rel relocation when
1130 // we are adding the given ADDEND.
1131 Address
1132 symbol_value(Addend addend) const;
1133
1134 // If this relocation is against an input section, return the
1135 // relocatable object containing the input section.
1136 Sized_relobj<size, big_endian>*
1137 get_relobj() const
1138 {
1139 if (this->shndx_ == INVALID_CODE)
1140 return NULL;
1141 return this->u2_.relobj;
1142 }
1143
1144 // Write the reloc entry to an output view.
1145 void
1146 write(unsigned char* pov) const;
1147
1148 // Write the offset and info fields to Write_rel.
1149 template<typename Write_rel>
1150 void write_rel(Write_rel*) const;
1151
1152 // This is used when sorting dynamic relocs. Return -1 to sort this
1153 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1154 int
1155 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1156 const;
1157
1158 // Return whether this reloc should be sorted before the argument
1159 // when sorting dynamic relocs.
1160 bool
1161 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1162 r2) const
1163 { return this->compare(r2) < 0; }
1164
1165 private:
1166 // Record that we need a dynamic symbol index.
1167 void
1168 set_needs_dynsym_index();
1169
1170 // Return the symbol index.
1171 unsigned int
1172 get_symbol_index() const;
1173
1174 // Return the output address.
1175 Address
1176 get_address() const;
1177
1178 // Codes for local_sym_index_.
1179 enum
1180 {
1181 // Global symbol.
1182 GSYM_CODE = -1U,
1183 // Output section.
1184 SECTION_CODE = -2U,
1185 // Target specific.
1186 TARGET_CODE = -3U,
1187 // Invalid uninitialized entry.
1188 INVALID_CODE = -4U
1189 };
1190
1191 union
1192 {
1193 // For a local symbol or local section symbol
1194 // (this->local_sym_index_ >= 0), the object. We will never
1195 // generate a relocation against a local symbol in a dynamic
1196 // object; that doesn't make sense. And our callers will always
1197 // be templatized, so we use Sized_relobj here.
1198 Sized_relobj<size, big_endian>* relobj;
1199 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1200 // symbol. If this is NULL, it indicates a relocation against the
1201 // undefined 0 symbol.
1202 Symbol* gsym;
1203 // For a relocation against an output section
1204 // (this->local_sym_index_ == SECTION_CODE), the output section.
1205 Output_section* os;
1206 // For a target specific relocation, an argument to pass to the
1207 // target.
1208 void* arg;
1209 } u1_;
1210 union
1211 {
1212 // If this->shndx_ is not INVALID CODE, the object which holds the
1213 // input section being used to specify the reloc address.
1214 Sized_relobj<size, big_endian>* relobj;
1215 // If this->shndx_ is INVALID_CODE, the output data being used to
1216 // specify the reloc address. This may be NULL if the reloc
1217 // address is absolute.
1218 Output_data* od;
1219 } u2_;
1220 // The address offset within the input section or the Output_data.
1221 Address address_;
1222 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1223 // relocation against an output section, or TARGET_CODE for a target
1224 // specific relocation, or INVALID_CODE for an uninitialized value.
1225 // Otherwise, for a local symbol (this->is_section_symbol_ is
1226 // false), the local symbol index. For a local section symbol
1227 // (this->is_section_symbol_ is true), the section index in the
1228 // input file.
1229 unsigned int local_sym_index_;
1230 // The reloc type--a processor specific code.
1231 unsigned int type_ : 28;
1232 // True if the relocation is a RELATIVE relocation.
1233 bool is_relative_ : 1;
1234 // True if the relocation is one which should not use
1235 // a symbol, but which obtains its addend from a symbol.
1236 bool is_symbolless_ : 1;
1237 // True if the relocation is against a section symbol.
1238 bool is_section_symbol_ : 1;
1239 // True if the addend should be the PLT offset.
1240 // (Used only for RELA, but stored here for space.)
1241 bool use_plt_offset_ : 1;
1242 // If the reloc address is an input section in an object, the
1243 // section index. This is INVALID_CODE if the reloc address is
1244 // specified in some other way.
1245 unsigned int shndx_;
1246 };
1247
1248 // The SHT_RELA version of Output_reloc<>. This is just derived from
1249 // the SHT_REL version of Output_reloc, but it adds an addend.
1250
1251 template<bool dynamic, int size, bool big_endian>
1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1253 {
1254 public:
1255 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1256 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1257
1258 // An uninitialized entry.
1259 Output_reloc()
1260 : rel_()
1261 { }
1262
1263 // A reloc against a global symbol.
1264
1265 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1266 Address address, Addend addend, bool is_relative,
1267 bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1269 use_plt_offset),
1270 addend_(addend)
1271 { }
1272
1273 Output_reloc(Symbol* gsym, unsigned int type,
1274 Sized_relobj<size, big_endian>* relobj,
1275 unsigned int shndx, Address address, Addend addend,
1276 bool is_relative, bool is_symbolless, bool use_plt_offset)
1277 : rel_(gsym, type, relobj, shndx, address, is_relative,
1278 is_symbolless, use_plt_offset), addend_(addend)
1279 { }
1280
1281 // A reloc against a local symbol.
1282
1283 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1284 unsigned int local_sym_index, unsigned int type,
1285 Output_data* od, Address address,
1286 Addend addend, bool is_relative,
1287 bool is_symbolless, bool is_section_symbol,
1288 bool use_plt_offset)
1289 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1290 is_symbolless, is_section_symbol, use_plt_offset),
1291 addend_(addend)
1292 { }
1293
1294 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1295 unsigned int local_sym_index, unsigned int type,
1296 unsigned int shndx, Address address,
1297 Addend addend, bool is_relative,
1298 bool is_symbolless, bool is_section_symbol,
1299 bool use_plt_offset)
1300 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1301 is_symbolless, is_section_symbol, use_plt_offset),
1302 addend_(addend)
1303 { }
1304
1305 // A reloc against the STT_SECTION symbol of an output section.
1306
1307 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1308 Address address, Addend addend, bool is_relative)
1309 : rel_(os, type, od, address, is_relative), addend_(addend)
1310 { }
1311
1312 Output_reloc(Output_section* os, unsigned int type,
1313 Sized_relobj<size, big_endian>* relobj,
1314 unsigned int shndx, Address address, Addend addend,
1315 bool is_relative)
1316 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1317 { }
1318
1319 // An absolute or relative relocation with no symbol.
1320
1321 Output_reloc(unsigned int type, Output_data* od, Address address,
1322 Addend addend, bool is_relative)
1323 : rel_(type, od, address, is_relative), addend_(addend)
1324 { }
1325
1326 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1327 unsigned int shndx, Address address, Addend addend,
1328 bool is_relative)
1329 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1330 { }
1331
1332 // A target specific relocation. The target will be called to get
1333 // the symbol index and the addend, passing ARG. The type and
1334 // offset will be set as for other relocation types.
1335
1336 Output_reloc(unsigned int type, void* arg, Output_data* od,
1337 Address address, Addend addend)
1338 : rel_(type, arg, od, address), addend_(addend)
1339 { }
1340
1341 Output_reloc(unsigned int type, void* arg,
1342 Sized_relobj<size, big_endian>* relobj,
1343 unsigned int shndx, Address address, Addend addend)
1344 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1345 { }
1346
1347 // Return whether this is a RELATIVE relocation.
1348 bool
1349 is_relative() const
1350 { return this->rel_.is_relative(); }
1351
1352 // Return whether this is a relocation which should not use
1353 // a symbol, but which obtains its addend from a symbol.
1354 bool
1355 is_symbolless() const
1356 { return this->rel_.is_symbolless(); }
1357
1358 // If this relocation is against an input section, return the
1359 // relocatable object containing the input section.
1360 Sized_relobj<size, big_endian>*
1361 get_relobj() const
1362 { return this->rel_.get_relobj(); }
1363
1364 // Write the reloc entry to an output view.
1365 void
1366 write(unsigned char* pov) const;
1367
1368 // Return whether this reloc should be sorted before the argument
1369 // when sorting dynamic relocs.
1370 bool
1371 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1372 r2) const
1373 {
1374 int i = this->rel_.compare(r2.rel_);
1375 if (i < 0)
1376 return true;
1377 else if (i > 0)
1378 return false;
1379 else
1380 return this->addend_ < r2.addend_;
1381 }
1382
1383 private:
1384 // The basic reloc.
1385 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1386 // The addend.
1387 Addend addend_;
1388 };
1389
1390 // Output_data_reloc_generic is a non-template base class for
1391 // Output_data_reloc_base. This gives the generic code a way to hold
1392 // a pointer to a reloc section.
1393
1394 class Output_data_reloc_generic : public Output_section_data_build
1395 {
1396 public:
1397 Output_data_reloc_generic(int size, bool sort_relocs)
1398 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1399 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1400 { }
1401
1402 // Return the number of relative relocs in this section.
1403 size_t
1404 relative_reloc_count() const
1405 { return this->relative_reloc_count_; }
1406
1407 // Whether we should sort the relocs.
1408 bool
1409 sort_relocs() const
1410 { return this->sort_relocs_; }
1411
1412 // Add a reloc of type TYPE against the global symbol GSYM. The
1413 // relocation applies to the data at offset ADDRESS within OD.
1414 virtual void
1415 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1416 uint64_t address, uint64_t addend) = 0;
1417
1418 // Add a reloc of type TYPE against the global symbol GSYM. The
1419 // relocation applies to data at offset ADDRESS within section SHNDX
1420 // of object file RELOBJ. OD is the associated output section.
1421 virtual void
1422 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1423 Relobj* relobj, unsigned int shndx, uint64_t address,
1424 uint64_t addend) = 0;
1425
1426 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1427 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1428 // within OD.
1429 virtual void
1430 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1431 unsigned int type, Output_data* od, uint64_t address,
1432 uint64_t addend) = 0;
1433
1434 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1435 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1436 // within section SHNDX of RELOBJ. OD is the associated output
1437 // section.
1438 virtual void
1439 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1440 unsigned int type, Output_data* od, unsigned int shndx,
1441 uint64_t address, uint64_t addend) = 0;
1442
1443 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1444 // output section OS. The relocation applies to the data at offset
1445 // ADDRESS within OD.
1446 virtual void
1447 add_output_section_generic(Output_section *os, unsigned int type,
1448 Output_data* od, uint64_t address,
1449 uint64_t addend) = 0;
1450
1451 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1452 // output section OS. The relocation applies to the data at offset
1453 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1454 // output section.
1455 virtual void
1456 add_output_section_generic(Output_section* os, unsigned int type,
1457 Output_data* od, Relobj* relobj,
1458 unsigned int shndx, uint64_t address,
1459 uint64_t addend) = 0;
1460
1461 protected:
1462 // Note that we've added another relative reloc.
1463 void
1464 bump_relative_reloc_count()
1465 { ++this->relative_reloc_count_; }
1466
1467 private:
1468 // The number of relative relocs added to this section. This is to
1469 // support DT_RELCOUNT.
1470 size_t relative_reloc_count_;
1471 // Whether to sort the relocations when writing them out, to make
1472 // the dynamic linker more efficient.
1473 bool sort_relocs_;
1474 };
1475
1476 // Output_data_reloc is used to manage a section containing relocs.
1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1478 // indicates whether this is a dynamic relocation or a normal
1479 // relocation. Output_data_reloc_base is a base class.
1480 // Output_data_reloc is the real class, which we specialize based on
1481 // the reloc type.
1482
1483 template<int sh_type, bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc_base : public Output_data_reloc_generic
1485 {
1486 public:
1487 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1488 typedef typename Output_reloc_type::Address Address;
1489 static const int reloc_size =
1490 Reloc_types<sh_type, size, big_endian>::reloc_size;
1491
1492 // Construct the section.
1493 Output_data_reloc_base(bool sort_relocs)
1494 : Output_data_reloc_generic(size, sort_relocs)
1495 { }
1496
1497 protected:
1498 // Write out the data.
1499 void
1500 do_write(Output_file*);
1501
1502 // Set the entry size and the link.
1503 void
1504 do_adjust_output_section(Output_section* os);
1505
1506 // Write to a map file.
1507 void
1508 do_print_to_mapfile(Mapfile* mapfile) const
1509 {
1510 mapfile->print_output_data(this,
1511 (dynamic
1512 ? _("** dynamic relocs")
1513 : _("** relocs")));
1514 }
1515
1516 // Add a relocation entry.
1517 void
1518 add(Output_data* od, const Output_reloc_type& reloc)
1519 {
1520 this->relocs_.push_back(reloc);
1521 this->set_current_data_size(this->relocs_.size() * reloc_size);
1522 if (dynamic)
1523 od->add_dynamic_reloc();
1524 if (reloc.is_relative())
1525 this->bump_relative_reloc_count();
1526 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1527 if (relobj != NULL)
1528 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1529 }
1530
1531 private:
1532 typedef std::vector<Output_reloc_type> Relocs;
1533
1534 // The class used to sort the relocations.
1535 struct Sort_relocs_comparison
1536 {
1537 bool
1538 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1539 { return r1.sort_before(r2); }
1540 };
1541
1542 // The relocations in this section.
1543 Relocs relocs_;
1544 };
1545
1546 // The class which callers actually create.
1547
1548 template<int sh_type, bool dynamic, int size, bool big_endian>
1549 class Output_data_reloc;
1550
1551 // The SHT_REL version of Output_data_reloc.
1552
1553 template<bool dynamic, int size, bool big_endian>
1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1555 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1556 {
1557 private:
1558 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1559 big_endian> Base;
1560
1561 public:
1562 typedef typename Base::Output_reloc_type Output_reloc_type;
1563 typedef typename Output_reloc_type::Address Address;
1564
1565 Output_data_reloc(bool sr)
1566 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1567 { }
1568
1569 // Add a reloc against a global symbol.
1570
1571 void
1572 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1573 {
1574 this->add(od, Output_reloc_type(gsym, type, od, address,
1575 false, false, false));
1576 }
1577
1578 void
1579 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1580 Sized_relobj<size, big_endian>* relobj,
1581 unsigned int shndx, Address address)
1582 {
1583 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1584 false, false, false));
1585 }
1586
1587 void
1588 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1589 uint64_t address, uint64_t addend)
1590 {
1591 gold_assert(addend == 0);
1592 this->add(od, Output_reloc_type(gsym, type, od,
1593 convert_types<Address, uint64_t>(address),
1594 false, false, false));
1595 }
1596
1597 void
1598 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1599 Relobj* relobj, unsigned int shndx, uint64_t address,
1600 uint64_t addend)
1601 {
1602 gold_assert(addend == 0);
1603 Sized_relobj<size, big_endian>* sized_relobj =
1604 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1605 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1606 convert_types<Address, uint64_t>(address),
1607 false, false, false));
1608 }
1609
1610 // Add a RELATIVE reloc against a global symbol. The final relocation
1611 // will not reference the symbol.
1612
1613 void
1614 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1615 Address address)
1616 {
1617 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1618 false));
1619 }
1620
1621 void
1622 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1623 Sized_relobj<size, big_endian>* relobj,
1624 unsigned int shndx, Address address)
1625 {
1626 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1627 true, true, false));
1628 }
1629
1630 // Add a global relocation which does not use a symbol for the relocation,
1631 // but which gets its addend from a symbol.
1632
1633 void
1634 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1635 Output_data* od, Address address)
1636 {
1637 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1638 false));
1639 }
1640
1641 void
1642 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1643 Output_data* od,
1644 Sized_relobj<size, big_endian>* relobj,
1645 unsigned int shndx, Address address)
1646 {
1647 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1648 false, true, false));
1649 }
1650
1651 // Add a reloc against a local symbol.
1652
1653 void
1654 add_local(Sized_relobj<size, big_endian>* relobj,
1655 unsigned int local_sym_index, unsigned int type,
1656 Output_data* od, Address address)
1657 {
1658 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1659 address, false, false, false, false));
1660 }
1661
1662 void
1663 add_local(Sized_relobj<size, big_endian>* relobj,
1664 unsigned int local_sym_index, unsigned int type,
1665 Output_data* od, unsigned int shndx, Address address)
1666 {
1667 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1668 address, false, false, false, false));
1669 }
1670
1671 void
1672 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1673 unsigned int type, Output_data* od, uint64_t address,
1674 uint64_t addend)
1675 {
1676 gold_assert(addend == 0);
1677 Sized_relobj<size, big_endian>* sized_relobj =
1678 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1679 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1680 convert_types<Address, uint64_t>(address),
1681 false, false, false, false));
1682 }
1683
1684 void
1685 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1686 unsigned int type, Output_data* od, unsigned int shndx,
1687 uint64_t address, uint64_t addend)
1688 {
1689 gold_assert(addend == 0);
1690 Sized_relobj<size, big_endian>* sized_relobj =
1691 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1692 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1693 convert_types<Address, uint64_t>(address),
1694 false, false, false, false));
1695 }
1696
1697 // Add a RELATIVE reloc against a local symbol.
1698
1699 void
1700 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1701 unsigned int local_sym_index, unsigned int type,
1702 Output_data* od, Address address)
1703 {
1704 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1705 address, true, true, false, false));
1706 }
1707
1708 void
1709 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1710 unsigned int local_sym_index, unsigned int type,
1711 Output_data* od, unsigned int shndx, Address address)
1712 {
1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 address, true, true, false, false));
1715 }
1716
1717 // Add a local relocation which does not use a symbol for the relocation,
1718 // but which gets its addend from a symbol.
1719
1720 void
1721 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1722 unsigned int local_sym_index, unsigned int type,
1723 Output_data* od, Address address)
1724 {
1725 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1726 address, false, true, false, false));
1727 }
1728
1729 void
1730 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1731 unsigned int local_sym_index, unsigned int type,
1732 Output_data* od, unsigned int shndx,
1733 Address address)
1734 {
1735 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1736 address, false, true, false, false));
1737 }
1738
1739 // Add a reloc against a local section symbol. This will be
1740 // converted into a reloc against the STT_SECTION symbol of the
1741 // output section.
1742
1743 void
1744 add_local_section(Sized_relobj<size, big_endian>* relobj,
1745 unsigned int input_shndx, unsigned int type,
1746 Output_data* od, Address address)
1747 {
1748 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1749 address, false, false, true, false));
1750 }
1751
1752 void
1753 add_local_section(Sized_relobj<size, big_endian>* relobj,
1754 unsigned int input_shndx, unsigned int type,
1755 Output_data* od, unsigned int shndx, Address address)
1756 {
1757 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1758 address, false, false, true, false));
1759 }
1760
1761 // A reloc against the STT_SECTION symbol of an output section.
1762 // OS is the Output_section that the relocation refers to; OD is
1763 // the Output_data object being relocated.
1764
1765 void
1766 add_output_section(Output_section* os, unsigned int type,
1767 Output_data* od, Address address)
1768 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1769
1770 void
1771 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1772 Sized_relobj<size, big_endian>* relobj,
1773 unsigned int shndx, Address address)
1774 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1775
1776 void
1777 add_output_section_generic(Output_section* os, unsigned int type,
1778 Output_data* od, uint64_t address,
1779 uint64_t addend)
1780 {
1781 gold_assert(addend == 0);
1782 this->add(od, Output_reloc_type(os, type, od,
1783 convert_types<Address, uint64_t>(address),
1784 false));
1785 }
1786
1787 void
1788 add_output_section_generic(Output_section* os, unsigned int type,
1789 Output_data* od, Relobj* relobj,
1790 unsigned int shndx, uint64_t address,
1791 uint64_t addend)
1792 {
1793 gold_assert(addend == 0);
1794 Sized_relobj<size, big_endian>* sized_relobj =
1795 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1796 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1797 convert_types<Address, uint64_t>(address),
1798 false));
1799 }
1800
1801 // As above, but the reloc TYPE is relative
1802
1803 void
1804 add_output_section_relative(Output_section* os, unsigned int type,
1805 Output_data* od, Address address)
1806 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1807
1808 void
1809 add_output_section_relative(Output_section* os, unsigned int type,
1810 Output_data* od,
1811 Sized_relobj<size, big_endian>* relobj,
1812 unsigned int shndx, Address address)
1813 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1814
1815 // Add an absolute relocation.
1816
1817 void
1818 add_absolute(unsigned int type, Output_data* od, Address address)
1819 { this->add(od, Output_reloc_type(type, od, address, false)); }
1820
1821 void
1822 add_absolute(unsigned int type, Output_data* od,
1823 Sized_relobj<size, big_endian>* relobj,
1824 unsigned int shndx, Address address)
1825 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1826
1827 // Add a relative relocation
1828
1829 void
1830 add_relative(unsigned int type, Output_data* od, Address address)
1831 { this->add(od, Output_reloc_type(type, od, address, true)); }
1832
1833 void
1834 add_relative(unsigned int type, Output_data* od,
1835 Sized_relobj<size, big_endian>* relobj,
1836 unsigned int shndx, Address address)
1837 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1838
1839 // Add a target specific relocation. A target which calls this must
1840 // define the reloc_symbol_index and reloc_addend virtual functions.
1841
1842 void
1843 add_target_specific(unsigned int type, void* arg, Output_data* od,
1844 Address address)
1845 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1846
1847 void
1848 add_target_specific(unsigned int type, void* arg, Output_data* od,
1849 Sized_relobj<size, big_endian>* relobj,
1850 unsigned int shndx, Address address)
1851 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1852 };
1853
1854 // The SHT_RELA version of Output_data_reloc.
1855
1856 template<bool dynamic, int size, bool big_endian>
1857 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1858 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1859 {
1860 private:
1861 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1862 big_endian> Base;
1863
1864 public:
1865 typedef typename Base::Output_reloc_type Output_reloc_type;
1866 typedef typename Output_reloc_type::Address Address;
1867 typedef typename Output_reloc_type::Addend Addend;
1868
1869 Output_data_reloc(bool sr)
1870 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1871 { }
1872
1873 // Add a reloc against a global symbol.
1874
1875 void
1876 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1877 Address address, Addend addend)
1878 {
1879 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1880 false, false, false));
1881 }
1882
1883 void
1884 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1885 Sized_relobj<size, big_endian>* relobj,
1886 unsigned int shndx, Address address,
1887 Addend addend)
1888 {
1889 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1890 addend, false, false, false));
1891 }
1892
1893 void
1894 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1895 uint64_t address, uint64_t addend)
1896 {
1897 this->add(od, Output_reloc_type(gsym, type, od,
1898 convert_types<Address, uint64_t>(address),
1899 convert_types<Addend, uint64_t>(addend),
1900 false, false, false));
1901 }
1902
1903 void
1904 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1905 Relobj* relobj, unsigned int shndx, uint64_t address,
1906 uint64_t addend)
1907 {
1908 Sized_relobj<size, big_endian>* sized_relobj =
1909 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1910 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1911 convert_types<Address, uint64_t>(address),
1912 convert_types<Addend, uint64_t>(addend),
1913 false, false, false));
1914 }
1915
1916 // Add a RELATIVE reloc against a global symbol. The final output
1917 // relocation will not reference the symbol, but we must keep the symbol
1918 // information long enough to set the addend of the relocation correctly
1919 // when it is written.
1920
1921 void
1922 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1923 Address address, Addend addend, bool use_plt_offset)
1924 {
1925 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1926 true, use_plt_offset));
1927 }
1928
1929 void
1930 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1931 Sized_relobj<size, big_endian>* relobj,
1932 unsigned int shndx, Address address, Addend addend,
1933 bool use_plt_offset)
1934 {
1935 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1936 addend, true, true, use_plt_offset));
1937 }
1938
1939 // Add a global relocation which does not use a symbol for the relocation,
1940 // but which gets its addend from a symbol.
1941
1942 void
1943 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1944 Address address, Addend addend)
1945 {
1946 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1947 false, true, false));
1948 }
1949
1950 void
1951 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1952 Output_data* od,
1953 Sized_relobj<size, big_endian>* relobj,
1954 unsigned int shndx, Address address,
1955 Addend addend)
1956 {
1957 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1958 addend, false, true, false));
1959 }
1960
1961 // Add a reloc against a local symbol.
1962
1963 void
1964 add_local(Sized_relobj<size, big_endian>* relobj,
1965 unsigned int local_sym_index, unsigned int type,
1966 Output_data* od, Address address, Addend addend)
1967 {
1968 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1969 addend, false, false, false, false));
1970 }
1971
1972 void
1973 add_local(Sized_relobj<size, big_endian>* relobj,
1974 unsigned int local_sym_index, unsigned int type,
1975 Output_data* od, unsigned int shndx, Address address,
1976 Addend addend)
1977 {
1978 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1979 address, addend, false, false, false,
1980 false));
1981 }
1982
1983 void
1984 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1985 unsigned int type, Output_data* od, uint64_t address,
1986 uint64_t addend)
1987 {
1988 Sized_relobj<size, big_endian>* sized_relobj =
1989 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1990 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1991 convert_types<Address, uint64_t>(address),
1992 convert_types<Addend, uint64_t>(addend),
1993 false, false, false, false));
1994 }
1995
1996 void
1997 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1998 unsigned int type, Output_data* od, unsigned int shndx,
1999 uint64_t address, uint64_t addend)
2000 {
2001 Sized_relobj<size, big_endian>* sized_relobj =
2002 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2003 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2004 convert_types<Address, uint64_t>(address),
2005 convert_types<Addend, uint64_t>(addend),
2006 false, false, false, false));
2007 }
2008
2009 // Add a RELATIVE reloc against a local symbol.
2010
2011 void
2012 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2013 unsigned int local_sym_index, unsigned int type,
2014 Output_data* od, Address address, Addend addend,
2015 bool use_plt_offset)
2016 {
2017 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2018 addend, true, true, false,
2019 use_plt_offset));
2020 }
2021
2022 void
2023 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2024 unsigned int local_sym_index, unsigned int type,
2025 Output_data* od, unsigned int shndx, Address address,
2026 Addend addend, bool use_plt_offset)
2027 {
2028 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2029 address, addend, true, true, false,
2030 use_plt_offset));
2031 }
2032
2033 // Add a local relocation which does not use a symbol for the relocation,
2034 // but which gets it's addend from a symbol.
2035
2036 void
2037 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2038 unsigned int local_sym_index, unsigned int type,
2039 Output_data* od, Address address, Addend addend)
2040 {
2041 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2042 addend, false, true, false, false));
2043 }
2044
2045 void
2046 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2047 unsigned int local_sym_index, unsigned int type,
2048 Output_data* od, unsigned int shndx,
2049 Address address, Addend addend)
2050 {
2051 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2052 address, addend, false, true, false,
2053 false));
2054 }
2055
2056 // Add a reloc against a local section symbol. This will be
2057 // converted into a reloc against the STT_SECTION symbol of the
2058 // output section.
2059
2060 void
2061 add_local_section(Sized_relobj<size, big_endian>* relobj,
2062 unsigned int input_shndx, unsigned int type,
2063 Output_data* od, Address address, Addend addend)
2064 {
2065 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2066 addend, false, false, true, false));
2067 }
2068
2069 void
2070 add_local_section(Sized_relobj<size, big_endian>* relobj,
2071 unsigned int input_shndx, unsigned int type,
2072 Output_data* od, unsigned int shndx, Address address,
2073 Addend addend)
2074 {
2075 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2076 address, addend, false, false, true,
2077 false));
2078 }
2079
2080 // A reloc against the STT_SECTION symbol of an output section.
2081
2082 void
2083 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2084 Address address, Addend addend)
2085 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2086
2087 void
2088 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2089 Sized_relobj<size, big_endian>* relobj,
2090 unsigned int shndx, Address address, Addend addend)
2091 {
2092 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2093 addend, false));
2094 }
2095
2096 void
2097 add_output_section_generic(Output_section* os, unsigned int type,
2098 Output_data* od, uint64_t address,
2099 uint64_t addend)
2100 {
2101 this->add(od, Output_reloc_type(os, type, od,
2102 convert_types<Address, uint64_t>(address),
2103 convert_types<Addend, uint64_t>(addend),
2104 false));
2105 }
2106
2107 void
2108 add_output_section_generic(Output_section* os, unsigned int type,
2109 Output_data* od, Relobj* relobj,
2110 unsigned int shndx, uint64_t address,
2111 uint64_t addend)
2112 {
2113 Sized_relobj<size, big_endian>* sized_relobj =
2114 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2115 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2116 convert_types<Address, uint64_t>(address),
2117 convert_types<Addend, uint64_t>(addend),
2118 false));
2119 }
2120
2121 // As above, but the reloc TYPE is relative
2122
2123 void
2124 add_output_section_relative(Output_section* os, unsigned int type,
2125 Output_data* od, Address address, Addend addend)
2126 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2127
2128 void
2129 add_output_section_relative(Output_section* os, unsigned int type,
2130 Output_data* od,
2131 Sized_relobj<size, big_endian>* relobj,
2132 unsigned int shndx, Address address,
2133 Addend addend)
2134 {
2135 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2136 address, addend, true));
2137 }
2138
2139 // Add an absolute relocation.
2140
2141 void
2142 add_absolute(unsigned int type, Output_data* od, Address address,
2143 Addend addend)
2144 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2145
2146 void
2147 add_absolute(unsigned int type, Output_data* od,
2148 Sized_relobj<size, big_endian>* relobj,
2149 unsigned int shndx, Address address, Addend addend)
2150 {
2151 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2152 false));
2153 }
2154
2155 // Add a relative relocation
2156
2157 void
2158 add_relative(unsigned int type, Output_data* od, Address address,
2159 Addend addend)
2160 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2161
2162 void
2163 add_relative(unsigned int type, Output_data* od,
2164 Sized_relobj<size, big_endian>* relobj,
2165 unsigned int shndx, Address address, Addend addend)
2166 {
2167 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2168 true));
2169 }
2170
2171 // Add a target specific relocation. A target which calls this must
2172 // define the reloc_symbol_index and reloc_addend virtual functions.
2173
2174 void
2175 add_target_specific(unsigned int type, void* arg, Output_data* od,
2176 Address address, Addend addend)
2177 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2178
2179 void
2180 add_target_specific(unsigned int type, void* arg, Output_data* od,
2181 Sized_relobj<size, big_endian>* relobj,
2182 unsigned int shndx, Address address, Addend addend)
2183 {
2184 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2185 addend));
2186 }
2187 };
2188
2189 // Output_relocatable_relocs represents a relocation section in a
2190 // relocatable link. The actual data is written out in the target
2191 // hook relocate_relocs. This just saves space for it.
2192
2193 template<int sh_type, int size, bool big_endian>
2194 class Output_relocatable_relocs : public Output_section_data
2195 {
2196 public:
2197 Output_relocatable_relocs(Relocatable_relocs* rr)
2198 : Output_section_data(Output_data::default_alignment_for_size(size)),
2199 rr_(rr)
2200 { }
2201
2202 void
2203 set_final_data_size();
2204
2205 // Write out the data. There is nothing to do here.
2206 void
2207 do_write(Output_file*)
2208 { }
2209
2210 // Write to a map file.
2211 void
2212 do_print_to_mapfile(Mapfile* mapfile) const
2213 { mapfile->print_output_data(this, _("** relocs")); }
2214
2215 private:
2216 // The relocs associated with this input section.
2217 Relocatable_relocs* rr_;
2218 };
2219
2220 // Handle a GROUP section.
2221
2222 template<int size, bool big_endian>
2223 class Output_data_group : public Output_section_data
2224 {
2225 public:
2226 // The constructor clears *INPUT_SHNDXES.
2227 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2228 section_size_type entry_count,
2229 elfcpp::Elf_Word flags,
2230 std::vector<unsigned int>* input_shndxes);
2231
2232 void
2233 do_write(Output_file*);
2234
2235 // Write to a map file.
2236 void
2237 do_print_to_mapfile(Mapfile* mapfile) const
2238 { mapfile->print_output_data(this, _("** group")); }
2239
2240 // Set final data size.
2241 void
2242 set_final_data_size()
2243 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2244
2245 private:
2246 // The input object.
2247 Sized_relobj_file<size, big_endian>* relobj_;
2248 // The group flag word.
2249 elfcpp::Elf_Word flags_;
2250 // The section indexes of the input sections in this group.
2251 std::vector<unsigned int> input_shndxes_;
2252 };
2253
2254 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2255 // for one symbol--either a global symbol or a local symbol in an
2256 // object. The target specific code adds entries to the GOT as
2257 // needed. The GOT_SIZE template parameter is the size in bits of a
2258 // GOT entry, typically 32 or 64.
2259
2260 class Output_data_got_base : public Output_section_data_build
2261 {
2262 public:
2263 Output_data_got_base(uint64_t align)
2264 : Output_section_data_build(align)
2265 { }
2266
2267 Output_data_got_base(off_t data_size, uint64_t align)
2268 : Output_section_data_build(data_size, align)
2269 { }
2270
2271 // Reserve the slot at index I in the GOT.
2272 void
2273 reserve_slot(unsigned int i)
2274 { this->do_reserve_slot(i); }
2275
2276 protected:
2277 // Reserve the slot at index I in the GOT.
2278 virtual void
2279 do_reserve_slot(unsigned int i) = 0;
2280 };
2281
2282 template<int got_size, bool big_endian>
2283 class Output_data_got : public Output_data_got_base
2284 {
2285 public:
2286 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2287
2288 Output_data_got()
2289 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2290 entries_(), free_list_()
2291 { }
2292
2293 Output_data_got(off_t data_size)
2294 : Output_data_got_base(data_size,
2295 Output_data::default_alignment_for_size(got_size)),
2296 entries_(), free_list_()
2297 {
2298 // For an incremental update, we have an existing GOT section.
2299 // Initialize the list of entries and the free list.
2300 this->entries_.resize(data_size / (got_size / 8));
2301 this->free_list_.init(data_size, false);
2302 }
2303
2304 // Add an entry for a global symbol to the GOT. Return true if this
2305 // is a new GOT entry, false if the symbol was already in the GOT.
2306 bool
2307 add_global(Symbol* gsym, unsigned int got_type);
2308
2309 // Like add_global, but use the PLT offset of the global symbol if
2310 // it has one.
2311 bool
2312 add_global_plt(Symbol* gsym, unsigned int got_type);
2313
2314 // Like add_global, but for a TLS symbol where the value will be
2315 // offset using Target::tls_offset_for_global.
2316 bool
2317 add_global_tls(Symbol* gsym, unsigned int got_type)
2318 { return add_global_plt(gsym, got_type); }
2319
2320 // Add an entry for a global symbol to the GOT, and add a dynamic
2321 // relocation of type R_TYPE for the GOT entry.
2322 void
2323 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2324 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2325
2326 // Add a pair of entries for a global symbol to the GOT, and add
2327 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2328 void
2329 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2330 Output_data_reloc_generic* rel_dyn,
2331 unsigned int r_type_1, unsigned int r_type_2);
2332
2333 // Add an entry for a local symbol to the GOT. This returns true if
2334 // this is a new GOT entry, false if the symbol already has a GOT
2335 // entry.
2336 bool
2337 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2338
2339 // Like add_local, but use the PLT offset of the local symbol if it
2340 // has one.
2341 bool
2342 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2343
2344 // Like add_local, but for a TLS symbol where the value will be
2345 // offset using Target::tls_offset_for_local.
2346 bool
2347 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2348 { return add_local_plt(object, sym_index, got_type); }
2349
2350 // Add an entry for a local symbol to the GOT, and add a dynamic
2351 // relocation of type R_TYPE for the GOT entry.
2352 void
2353 add_local_with_rel(Relobj* object, unsigned int sym_index,
2354 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2355 unsigned int r_type);
2356
2357 // Add a pair of entries for a local symbol to the GOT, and add
2358 // a dynamic relocation of type R_TYPE using the section symbol of
2359 // the output section to which input section SHNDX maps, on the first.
2360 // The first got entry will have a value of zero, the second the
2361 // value of the local symbol.
2362 void
2363 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2364 unsigned int shndx, unsigned int got_type,
2365 Output_data_reloc_generic* rel_dyn,
2366 unsigned int r_type);
2367
2368 // Add a pair of entries for a local symbol to the GOT, and add
2369 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2370 // The first got entry will have a value of zero, the second the
2371 // value of the local symbol offset by Target::tls_offset_for_local.
2372 void
2373 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2374 unsigned int got_type,
2375 Output_data_reloc_generic* rel_dyn,
2376 unsigned int r_type);
2377
2378 // Add a constant to the GOT. This returns the offset of the new
2379 // entry from the start of the GOT.
2380 unsigned int
2381 add_constant(Valtype constant)
2382 { return this->add_got_entry(Got_entry(constant)); }
2383
2384 // Add a pair of constants to the GOT. This returns the offset of
2385 // the new entry from the start of the GOT.
2386 unsigned int
2387 add_constant_pair(Valtype c1, Valtype c2)
2388 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2389
2390 // Replace GOT entry I with a new constant.
2391 void
2392 replace_constant(unsigned int i, Valtype constant)
2393 {
2394 this->replace_got_entry(i, Got_entry(constant));
2395 }
2396
2397 // Reserve a slot in the GOT for a local symbol.
2398 void
2399 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2400 unsigned int got_type);
2401
2402 // Reserve a slot in the GOT for a global symbol.
2403 void
2404 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2405
2406 protected:
2407 // Write out the GOT table.
2408 void
2409 do_write(Output_file*);
2410
2411 // Write to a map file.
2412 void
2413 do_print_to_mapfile(Mapfile* mapfile) const
2414 { mapfile->print_output_data(this, _("** GOT")); }
2415
2416 // Reserve the slot at index I in the GOT.
2417 virtual void
2418 do_reserve_slot(unsigned int i)
2419 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2420
2421 // Return the number of words in the GOT.
2422 unsigned int
2423 num_entries () const
2424 { return this->entries_.size(); }
2425
2426 // Return the offset into the GOT of GOT entry I.
2427 unsigned int
2428 got_offset(unsigned int i) const
2429 { return i * (got_size / 8); }
2430
2431 private:
2432 // This POD class holds a single GOT entry.
2433 class Got_entry
2434 {
2435 public:
2436 // Create a zero entry.
2437 Got_entry()
2438 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2439 { this->u_.constant = 0; }
2440
2441 // Create a global symbol entry.
2442 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2443 : local_sym_index_(GSYM_CODE),
2444 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2445 { this->u_.gsym = gsym; }
2446
2447 // Create a local symbol entry.
2448 Got_entry(Relobj* object, unsigned int local_sym_index,
2449 bool use_plt_or_tls_offset)
2450 : local_sym_index_(local_sym_index),
2451 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2452 {
2453 gold_assert(local_sym_index != GSYM_CODE
2454 && local_sym_index != CONSTANT_CODE
2455 && local_sym_index != RESERVED_CODE
2456 && local_sym_index == this->local_sym_index_);
2457 this->u_.object = object;
2458 }
2459
2460 // Create a constant entry. The constant is a host value--it will
2461 // be swapped, if necessary, when it is written out.
2462 explicit Got_entry(Valtype constant)
2463 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2464 { this->u_.constant = constant; }
2465
2466 // Write the GOT entry to an output view.
2467 void
2468 write(unsigned int got_indx, unsigned char* pov) const;
2469
2470 private:
2471 enum
2472 {
2473 GSYM_CODE = 0x7fffffff,
2474 CONSTANT_CODE = 0x7ffffffe,
2475 RESERVED_CODE = 0x7ffffffd
2476 };
2477
2478 union
2479 {
2480 // For a local symbol, the object.
2481 Relobj* object;
2482 // For a global symbol, the symbol.
2483 Symbol* gsym;
2484 // For a constant, the constant.
2485 Valtype constant;
2486 } u_;
2487 // For a local symbol, the local symbol index. This is GSYM_CODE
2488 // for a global symbol, or CONSTANT_CODE for a constant.
2489 unsigned int local_sym_index_ : 31;
2490 // Whether to use the PLT offset of the symbol if it has one.
2491 // For TLS symbols, whether to offset the symbol value.
2492 bool use_plt_or_tls_offset_ : 1;
2493 };
2494
2495 typedef std::vector<Got_entry> Got_entries;
2496
2497 // Create a new GOT entry and return its offset.
2498 unsigned int
2499 add_got_entry(Got_entry got_entry);
2500
2501 // Create a pair of new GOT entries and return the offset of the first.
2502 unsigned int
2503 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2504
2505 // Replace GOT entry I with a new value.
2506 void
2507 replace_got_entry(unsigned int i, Got_entry got_entry);
2508
2509 // Return the offset into the GOT of the last entry added.
2510 unsigned int
2511 last_got_offset() const
2512 { return this->got_offset(this->num_entries() - 1); }
2513
2514 // Set the size of the section.
2515 void
2516 set_got_size()
2517 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2518
2519 // The list of GOT entries.
2520 Got_entries entries_;
2521
2522 // List of available regions within the section, for incremental
2523 // update links.
2524 Free_list free_list_;
2525 };
2526
2527 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2528 // section.
2529
2530 class Output_data_dynamic : public Output_section_data
2531 {
2532 public:
2533 Output_data_dynamic(Stringpool* pool)
2534 : Output_section_data(Output_data::default_alignment()),
2535 entries_(), pool_(pool)
2536 { }
2537
2538 // Add a new dynamic entry with a fixed numeric value.
2539 void
2540 add_constant(elfcpp::DT tag, unsigned int val)
2541 { this->add_entry(Dynamic_entry(tag, val)); }
2542
2543 // Add a new dynamic entry with the address of output data.
2544 void
2545 add_section_address(elfcpp::DT tag, const Output_data* od)
2546 { this->add_entry(Dynamic_entry(tag, od, false)); }
2547
2548 // Add a new dynamic entry with the address of output data
2549 // plus a constant offset.
2550 void
2551 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2552 unsigned int offset)
2553 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2554
2555 // Add a new dynamic entry with the size of output data.
2556 void
2557 add_section_size(elfcpp::DT tag, const Output_data* od)
2558 { this->add_entry(Dynamic_entry(tag, od, true)); }
2559
2560 // Add a new dynamic entry with the total size of two output datas.
2561 void
2562 add_section_size(elfcpp::DT tag, const Output_data* od,
2563 const Output_data* od2)
2564 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2565
2566 // Add a new dynamic entry with the address of a symbol.
2567 void
2568 add_symbol(elfcpp::DT tag, const Symbol* sym)
2569 { this->add_entry(Dynamic_entry(tag, sym)); }
2570
2571 // Add a new dynamic entry with a string.
2572 void
2573 add_string(elfcpp::DT tag, const char* str)
2574 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2575
2576 void
2577 add_string(elfcpp::DT tag, const std::string& str)
2578 { this->add_string(tag, str.c_str()); }
2579
2580 protected:
2581 // Adjust the output section to set the entry size.
2582 void
2583 do_adjust_output_section(Output_section*);
2584
2585 // Set the final data size.
2586 void
2587 set_final_data_size();
2588
2589 // Write out the dynamic entries.
2590 void
2591 do_write(Output_file*);
2592
2593 // Write to a map file.
2594 void
2595 do_print_to_mapfile(Mapfile* mapfile) const
2596 { mapfile->print_output_data(this, _("** dynamic")); }
2597
2598 private:
2599 // This POD class holds a single dynamic entry.
2600 class Dynamic_entry
2601 {
2602 public:
2603 // Create an entry with a fixed numeric value.
2604 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2605 : tag_(tag), offset_(DYNAMIC_NUMBER)
2606 { this->u_.val = val; }
2607
2608 // Create an entry with the size or address of a section.
2609 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2610 : tag_(tag),
2611 offset_(section_size
2612 ? DYNAMIC_SECTION_SIZE
2613 : DYNAMIC_SECTION_ADDRESS)
2614 {
2615 this->u_.od = od;
2616 this->od2 = NULL;
2617 }
2618
2619 // Create an entry with the size of two sections.
2620 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2621 : tag_(tag),
2622 offset_(DYNAMIC_SECTION_SIZE)
2623 {
2624 this->u_.od = od;
2625 this->od2 = od2;
2626 }
2627
2628 // Create an entry with the address of a section plus a constant offset.
2629 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2630 : tag_(tag),
2631 offset_(offset)
2632 { this->u_.od = od; }
2633
2634 // Create an entry with the address of a symbol.
2635 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2636 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2637 { this->u_.sym = sym; }
2638
2639 // Create an entry with a string.
2640 Dynamic_entry(elfcpp::DT tag, const char* str)
2641 : tag_(tag), offset_(DYNAMIC_STRING)
2642 { this->u_.str = str; }
2643
2644 // Return the tag of this entry.
2645 elfcpp::DT
2646 tag() const
2647 { return this->tag_; }
2648
2649 // Write the dynamic entry to an output view.
2650 template<int size, bool big_endian>
2651 void
2652 write(unsigned char* pov, const Stringpool*) const;
2653
2654 private:
2655 // Classification is encoded in the OFFSET field.
2656 enum Classification
2657 {
2658 // Section address.
2659 DYNAMIC_SECTION_ADDRESS = 0,
2660 // Number.
2661 DYNAMIC_NUMBER = -1U,
2662 // Section size.
2663 DYNAMIC_SECTION_SIZE = -2U,
2664 // Symbol adress.
2665 DYNAMIC_SYMBOL = -3U,
2666 // String.
2667 DYNAMIC_STRING = -4U
2668 // Any other value indicates a section address plus OFFSET.
2669 };
2670
2671 union
2672 {
2673 // For DYNAMIC_NUMBER.
2674 unsigned int val;
2675 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2676 const Output_data* od;
2677 // For DYNAMIC_SYMBOL.
2678 const Symbol* sym;
2679 // For DYNAMIC_STRING.
2680 const char* str;
2681 } u_;
2682 // For DYNAMIC_SYMBOL with two sections.
2683 const Output_data* od2;
2684 // The dynamic tag.
2685 elfcpp::DT tag_;
2686 // The type of entry (Classification) or offset within a section.
2687 unsigned int offset_;
2688 };
2689
2690 // Add an entry to the list.
2691 void
2692 add_entry(const Dynamic_entry& entry)
2693 { this->entries_.push_back(entry); }
2694
2695 // Sized version of write function.
2696 template<int size, bool big_endian>
2697 void
2698 sized_write(Output_file* of);
2699
2700 // The type of the list of entries.
2701 typedef std::vector<Dynamic_entry> Dynamic_entries;
2702
2703 // The entries.
2704 Dynamic_entries entries_;
2705 // The pool used for strings.
2706 Stringpool* pool_;
2707 };
2708
2709 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2710 // which may be required if the object file has more than
2711 // SHN_LORESERVE sections.
2712
2713 class Output_symtab_xindex : public Output_section_data
2714 {
2715 public:
2716 Output_symtab_xindex(size_t symcount)
2717 : Output_section_data(symcount * 4, 4, true),
2718 entries_()
2719 { }
2720
2721 // Add an entry: symbol number SYMNDX has section SHNDX.
2722 void
2723 add(unsigned int symndx, unsigned int shndx)
2724 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2725
2726 protected:
2727 void
2728 do_write(Output_file*);
2729
2730 // Write to a map file.
2731 void
2732 do_print_to_mapfile(Mapfile* mapfile) const
2733 { mapfile->print_output_data(this, _("** symtab xindex")); }
2734
2735 private:
2736 template<bool big_endian>
2737 void
2738 endian_do_write(unsigned char*);
2739
2740 // It is likely that most symbols will not require entries. Rather
2741 // than keep a vector for all symbols, we keep pairs of symbol index
2742 // and section index.
2743 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2744
2745 // The entries we need.
2746 Xindex_entries entries_;
2747 };
2748
2749 // A relaxed input section.
2750 class Output_relaxed_input_section : public Output_section_data_build
2751 {
2752 public:
2753 // We would like to call relobj->section_addralign(shndx) to get the
2754 // alignment but we do not want the constructor to fail. So callers
2755 // are repsonsible for ensuring that.
2756 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2757 uint64_t addralign)
2758 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2759 { }
2760
2761 // Return the Relobj of this relaxed input section.
2762 Relobj*
2763 relobj() const
2764 { return this->relobj_; }
2765
2766 // Return the section index of this relaxed input section.
2767 unsigned int
2768 shndx() const
2769 { return this->shndx_; }
2770
2771 protected:
2772 void
2773 set_relobj(Relobj* relobj)
2774 { this->relobj_ = relobj; }
2775
2776 void
2777 set_shndx(unsigned int shndx)
2778 { this->shndx_ = shndx; }
2779
2780 private:
2781 Relobj* relobj_;
2782 unsigned int shndx_;
2783 };
2784
2785 // This class describes properties of merge data sections. It is used
2786 // as a key type for maps.
2787 class Merge_section_properties
2788 {
2789 public:
2790 Merge_section_properties(bool is_string, uint64_t entsize,
2791 uint64_t addralign)
2792 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2793 { }
2794
2795 // Whether this equals to another Merge_section_properties MSP.
2796 bool
2797 eq(const Merge_section_properties& msp) const
2798 {
2799 return ((this->is_string_ == msp.is_string_)
2800 && (this->entsize_ == msp.entsize_)
2801 && (this->addralign_ == msp.addralign_));
2802 }
2803
2804 // Compute a hash value for this using 64-bit FNV-1a hash.
2805 size_t
2806 hash_value() const
2807 {
2808 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2809 uint64_t prime = 1099511628211ULL;
2810 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2811 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2812 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2813 return h;
2814 }
2815
2816 // Functors for associative containers.
2817 struct equal_to
2818 {
2819 bool
2820 operator()(const Merge_section_properties& msp1,
2821 const Merge_section_properties& msp2) const
2822 { return msp1.eq(msp2); }
2823 };
2824
2825 struct hash
2826 {
2827 size_t
2828 operator()(const Merge_section_properties& msp) const
2829 { return msp.hash_value(); }
2830 };
2831
2832 private:
2833 // Whether this merge data section is for strings.
2834 bool is_string_;
2835 // Entsize of this merge data section.
2836 uint64_t entsize_;
2837 // Address alignment.
2838 uint64_t addralign_;
2839 };
2840
2841 // This class is used to speed up look up of special input sections in an
2842 // Output_section.
2843
2844 class Output_section_lookup_maps
2845 {
2846 public:
2847 Output_section_lookup_maps()
2848 : is_valid_(true), merge_sections_by_properties_(),
2849 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2850 { }
2851
2852 // Whether the maps are valid.
2853 bool
2854 is_valid() const
2855 { return this->is_valid_; }
2856
2857 // Invalidate the maps.
2858 void
2859 invalidate()
2860 { this->is_valid_ = false; }
2861
2862 // Clear the maps.
2863 void
2864 clear()
2865 {
2866 this->merge_sections_by_properties_.clear();
2867 this->merge_sections_by_id_.clear();
2868 this->relaxed_input_sections_by_id_.clear();
2869 // A cleared map is valid.
2870 this->is_valid_ = true;
2871 }
2872
2873 // Find a merge section by merge section properties. Return NULL if none
2874 // is found.
2875 Output_merge_base*
2876 find_merge_section(const Merge_section_properties& msp) const
2877 {
2878 gold_assert(this->is_valid_);
2879 Merge_sections_by_properties::const_iterator p =
2880 this->merge_sections_by_properties_.find(msp);
2881 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2882 }
2883
2884 // Find a merge section by section ID of a merge input section. Return NULL
2885 // if none is found.
2886 Output_merge_base*
2887 find_merge_section(const Object* object, unsigned int shndx) const
2888 {
2889 gold_assert(this->is_valid_);
2890 Merge_sections_by_id::const_iterator p =
2891 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2892 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2893 }
2894
2895 // Add a merge section pointed by POMB with properties MSP.
2896 void
2897 add_merge_section(const Merge_section_properties& msp,
2898 Output_merge_base* pomb)
2899 {
2900 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2901 std::pair<Merge_sections_by_properties::iterator, bool> result =
2902 this->merge_sections_by_properties_.insert(value);
2903 gold_assert(result.second);
2904 }
2905
2906 // Add a mapping from a merged input section in OBJECT with index SHNDX
2907 // to a merge output section pointed by POMB.
2908 void
2909 add_merge_input_section(const Object* object, unsigned int shndx,
2910 Output_merge_base* pomb)
2911 {
2912 Const_section_id csid(object, shndx);
2913 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2914 std::pair<Merge_sections_by_id::iterator, bool> result =
2915 this->merge_sections_by_id_.insert(value);
2916 gold_assert(result.second);
2917 }
2918
2919 // Find a relaxed input section of OBJECT with index SHNDX.
2920 Output_relaxed_input_section*
2921 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2922 {
2923 gold_assert(this->is_valid_);
2924 Relaxed_input_sections_by_id::const_iterator p =
2925 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2926 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2927 }
2928
2929 // Add a relaxed input section pointed by POMB and whose original input
2930 // section is in OBJECT with index SHNDX.
2931 void
2932 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2933 Output_relaxed_input_section* poris)
2934 {
2935 Const_section_id csid(relobj, shndx);
2936 std::pair<Const_section_id, Output_relaxed_input_section*>
2937 value(csid, poris);
2938 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2939 this->relaxed_input_sections_by_id_.insert(value);
2940 gold_assert(result.second);
2941 }
2942
2943 private:
2944 typedef Unordered_map<Const_section_id, Output_merge_base*,
2945 Const_section_id_hash>
2946 Merge_sections_by_id;
2947
2948 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2949 Merge_section_properties::hash,
2950 Merge_section_properties::equal_to>
2951 Merge_sections_by_properties;
2952
2953 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2954 Const_section_id_hash>
2955 Relaxed_input_sections_by_id;
2956
2957 // Whether this is valid
2958 bool is_valid_;
2959 // Merge sections by merge section properties.
2960 Merge_sections_by_properties merge_sections_by_properties_;
2961 // Merge sections by section IDs.
2962 Merge_sections_by_id merge_sections_by_id_;
2963 // Relaxed sections by section IDs.
2964 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2965 };
2966
2967 // This abstract base class defines the interface for the
2968 // types of methods used to fill free space left in an output
2969 // section during an incremental link. These methods are used
2970 // to insert dummy compilation units into debug info so that
2971 // debug info consumers can scan the debug info serially.
2972
2973 class Output_fill
2974 {
2975 public:
2976 Output_fill()
2977 : is_big_endian_(parameters->target().is_big_endian())
2978 { }
2979
2980 virtual
2981 ~Output_fill()
2982 { }
2983
2984 // Return the smallest size chunk of free space that can be
2985 // filled with a dummy compilation unit.
2986 size_t
2987 minimum_hole_size() const
2988 { return this->do_minimum_hole_size(); }
2989
2990 // Write a fill pattern of length LEN at offset OFF in the file.
2991 void
2992 write(Output_file* of, off_t off, size_t len) const
2993 { this->do_write(of, off, len); }
2994
2995 protected:
2996 virtual size_t
2997 do_minimum_hole_size() const = 0;
2998
2999 virtual void
3000 do_write(Output_file* of, off_t off, size_t len) const = 0;
3001
3002 bool
3003 is_big_endian() const
3004 { return this->is_big_endian_; }
3005
3006 private:
3007 bool is_big_endian_;
3008 };
3009
3010 // Fill method that introduces a dummy compilation unit in
3011 // a .debug_info or .debug_types section.
3012
3013 class Output_fill_debug_info : public Output_fill
3014 {
3015 public:
3016 Output_fill_debug_info(bool is_debug_types)
3017 : is_debug_types_(is_debug_types)
3018 { }
3019
3020 protected:
3021 virtual size_t
3022 do_minimum_hole_size() const;
3023
3024 virtual void
3025 do_write(Output_file* of, off_t off, size_t len) const;
3026
3027 private:
3028 // Version of the header.
3029 static const int version = 4;
3030 // True if this is a .debug_types section.
3031 bool is_debug_types_;
3032 };
3033
3034 // Fill method that introduces a dummy compilation unit in
3035 // a .debug_line section.
3036
3037 class Output_fill_debug_line : public Output_fill
3038 {
3039 public:
3040 Output_fill_debug_line()
3041 { }
3042
3043 protected:
3044 virtual size_t
3045 do_minimum_hole_size() const;
3046
3047 virtual void
3048 do_write(Output_file* of, off_t off, size_t len) const;
3049
3050 private:
3051 // Version of the header. We write a DWARF-3 header because it's smaller
3052 // and many tools have not yet been updated to understand the DWARF-4 header.
3053 static const int version = 3;
3054 // Length of the portion of the header that follows the header_length
3055 // field. This includes the following fields:
3056 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3057 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3058 // The standard_opcode_lengths array is 12 bytes long, and the
3059 // include_directories and filenames fields each contain only a single
3060 // null byte.
3061 static const size_t header_length = 19;
3062 };
3063
3064 // An output section. We don't expect to have too many output
3065 // sections, so we don't bother to do a template on the size.
3066
3067 class Output_section : public Output_data
3068 {
3069 public:
3070 // Create an output section, giving the name, type, and flags.
3071 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3072 virtual ~Output_section();
3073
3074 // Add a new input section SHNDX, named NAME, with header SHDR, from
3075 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3076 // which applies to this section, or 0 if none, or -1 if more than
3077 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3078 // in a linker script; in that case we need to keep track of input
3079 // sections associated with an output section. Return the offset
3080 // within the output section.
3081 template<int size, bool big_endian>
3082 off_t
3083 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3084 unsigned int shndx, const char* name,
3085 const elfcpp::Shdr<size, big_endian>& shdr,
3086 unsigned int reloc_shndx, bool have_sections_script);
3087
3088 // Add generated data POSD to this output section.
3089 void
3090 add_output_section_data(Output_section_data* posd);
3091
3092 // Add a relaxed input section PORIS called NAME to this output section
3093 // with LAYOUT.
3094 void
3095 add_relaxed_input_section(Layout* layout,
3096 Output_relaxed_input_section* poris,
3097 const std::string& name);
3098
3099 // Return the section name.
3100 const char*
3101 name() const
3102 { return this->name_; }
3103
3104 // Return the section type.
3105 elfcpp::Elf_Word
3106 type() const
3107 { return this->type_; }
3108
3109 // Return the section flags.
3110 elfcpp::Elf_Xword
3111 flags() const
3112 { return this->flags_; }
3113
3114 typedef std::map<Section_id, unsigned int> Section_layout_order;
3115
3116 void
3117 update_section_layout(const Section_layout_order* order_map);
3118
3119 // Update the output section flags based on input section flags.
3120 void
3121 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3122
3123 // Return the entsize field.
3124 uint64_t
3125 entsize() const
3126 { return this->entsize_; }
3127
3128 // Set the entsize field.
3129 void
3130 set_entsize(uint64_t v);
3131
3132 // Set the load address.
3133 void
3134 set_load_address(uint64_t load_address)
3135 {
3136 this->load_address_ = load_address;
3137 this->has_load_address_ = true;
3138 }
3139
3140 // Set the link field to the output section index of a section.
3141 void
3142 set_link_section(const Output_data* od)
3143 {
3144 gold_assert(this->link_ == 0
3145 && !this->should_link_to_symtab_
3146 && !this->should_link_to_dynsym_);
3147 this->link_section_ = od;
3148 }
3149
3150 // Set the link field to a constant.
3151 void
3152 set_link(unsigned int v)
3153 {
3154 gold_assert(this->link_section_ == NULL
3155 && !this->should_link_to_symtab_
3156 && !this->should_link_to_dynsym_);
3157 this->link_ = v;
3158 }
3159
3160 // Record that this section should link to the normal symbol table.
3161 void
3162 set_should_link_to_symtab()
3163 {
3164 gold_assert(this->link_section_ == NULL
3165 && this->link_ == 0
3166 && !this->should_link_to_dynsym_);
3167 this->should_link_to_symtab_ = true;
3168 }
3169
3170 // Record that this section should link to the dynamic symbol table.
3171 void
3172 set_should_link_to_dynsym()
3173 {
3174 gold_assert(this->link_section_ == NULL
3175 && this->link_ == 0
3176 && !this->should_link_to_symtab_);
3177 this->should_link_to_dynsym_ = true;
3178 }
3179
3180 // Return the info field.
3181 unsigned int
3182 info() const
3183 {
3184 gold_assert(this->info_section_ == NULL
3185 && this->info_symndx_ == NULL);
3186 return this->info_;
3187 }
3188
3189 // Set the info field to the output section index of a section.
3190 void
3191 set_info_section(const Output_section* os)
3192 {
3193 gold_assert((this->info_section_ == NULL
3194 || (this->info_section_ == os
3195 && this->info_uses_section_index_))
3196 && this->info_symndx_ == NULL
3197 && this->info_ == 0);
3198 this->info_section_ = os;
3199 this->info_uses_section_index_= true;
3200 }
3201
3202 // Set the info field to the symbol table index of a symbol.
3203 void
3204 set_info_symndx(const Symbol* sym)
3205 {
3206 gold_assert(this->info_section_ == NULL
3207 && (this->info_symndx_ == NULL
3208 || this->info_symndx_ == sym)
3209 && this->info_ == 0);
3210 this->info_symndx_ = sym;
3211 }
3212
3213 // Set the info field to the symbol table index of a section symbol.
3214 void
3215 set_info_section_symndx(const Output_section* os)
3216 {
3217 gold_assert((this->info_section_ == NULL
3218 || (this->info_section_ == os
3219 && !this->info_uses_section_index_))
3220 && this->info_symndx_ == NULL
3221 && this->info_ == 0);
3222 this->info_section_ = os;
3223 this->info_uses_section_index_ = false;
3224 }
3225
3226 // Set the info field to a constant.
3227 void
3228 set_info(unsigned int v)
3229 {
3230 gold_assert(this->info_section_ == NULL
3231 && this->info_symndx_ == NULL
3232 && (this->info_ == 0
3233 || this->info_ == v));
3234 this->info_ = v;
3235 }
3236
3237 // Set the addralign field.
3238 void
3239 set_addralign(uint64_t v)
3240 { this->addralign_ = v; }
3241
3242 void
3243 checkpoint_set_addralign(uint64_t val)
3244 {
3245 if (this->checkpoint_ != NULL)
3246 this->checkpoint_->set_addralign(val);
3247 }
3248
3249 // Whether the output section index has been set.
3250 bool
3251 has_out_shndx() const
3252 { return this->out_shndx_ != -1U; }
3253
3254 // Indicate that we need a symtab index.
3255 void
3256 set_needs_symtab_index()
3257 { this->needs_symtab_index_ = true; }
3258
3259 // Return whether we need a symtab index.
3260 bool
3261 needs_symtab_index() const
3262 { return this->needs_symtab_index_; }
3263
3264 // Get the symtab index.
3265 unsigned int
3266 symtab_index() const
3267 {
3268 gold_assert(this->symtab_index_ != 0);
3269 return this->symtab_index_;
3270 }
3271
3272 // Set the symtab index.
3273 void
3274 set_symtab_index(unsigned int index)
3275 {
3276 gold_assert(index != 0);
3277 this->symtab_index_ = index;
3278 }
3279
3280 // Indicate that we need a dynsym index.
3281 void
3282 set_needs_dynsym_index()
3283 { this->needs_dynsym_index_ = true; }
3284
3285 // Return whether we need a dynsym index.
3286 bool
3287 needs_dynsym_index() const
3288 { return this->needs_dynsym_index_; }
3289
3290 // Get the dynsym index.
3291 unsigned int
3292 dynsym_index() const
3293 {
3294 gold_assert(this->dynsym_index_ != 0);
3295 return this->dynsym_index_;
3296 }
3297
3298 // Set the dynsym index.
3299 void
3300 set_dynsym_index(unsigned int index)
3301 {
3302 gold_assert(index != 0);
3303 this->dynsym_index_ = index;
3304 }
3305
3306 // Sort the attached input sections.
3307 void
3308 sort_attached_input_sections();
3309
3310 // Return whether the input sections sections attachd to this output
3311 // section may require sorting. This is used to handle constructor
3312 // priorities compatibly with GNU ld.
3313 bool
3314 may_sort_attached_input_sections() const
3315 { return this->may_sort_attached_input_sections_; }
3316
3317 // Record that the input sections attached to this output section
3318 // may require sorting.
3319 void
3320 set_may_sort_attached_input_sections()
3321 { this->may_sort_attached_input_sections_ = true; }
3322
3323 // Returns true if input sections must be sorted according to the
3324 // order in which their name appear in the --section-ordering-file.
3325 bool
3326 input_section_order_specified()
3327 { return this->input_section_order_specified_; }
3328
3329 // Record that input sections must be sorted as some of their names
3330 // match the patterns specified through --section-ordering-file.
3331 void
3332 set_input_section_order_specified()
3333 { this->input_section_order_specified_ = true; }
3334
3335 // Return whether the input sections attached to this output section
3336 // require sorting. This is used to handle constructor priorities
3337 // compatibly with GNU ld.
3338 bool
3339 must_sort_attached_input_sections() const
3340 { return this->must_sort_attached_input_sections_; }
3341
3342 // Record that the input sections attached to this output section
3343 // require sorting.
3344 void
3345 set_must_sort_attached_input_sections()
3346 { this->must_sort_attached_input_sections_ = true; }
3347
3348 // Get the order in which this section appears in the PT_LOAD output
3349 // segment.
3350 Output_section_order
3351 order() const
3352 { return this->order_; }
3353
3354 // Set the order for this section.
3355 void
3356 set_order(Output_section_order order)
3357 { this->order_ = order; }
3358
3359 // Return whether this section holds relro data--data which has
3360 // dynamic relocations but which may be marked read-only after the
3361 // dynamic relocations have been completed.
3362 bool
3363 is_relro() const
3364 { return this->is_relro_; }
3365
3366 // Record that this section holds relro data.
3367 void
3368 set_is_relro()
3369 { this->is_relro_ = true; }
3370
3371 // Record that this section does not hold relro data.
3372 void
3373 clear_is_relro()
3374 { this->is_relro_ = false; }
3375
3376 // True if this is a small section: a section which holds small
3377 // variables.
3378 bool
3379 is_small_section() const
3380 { return this->is_small_section_; }
3381
3382 // Record that this is a small section.
3383 void
3384 set_is_small_section()
3385 { this->is_small_section_ = true; }
3386
3387 // True if this is a large section: a section which holds large
3388 // variables.
3389 bool
3390 is_large_section() const
3391 { return this->is_large_section_; }
3392
3393 // Record that this is a large section.
3394 void
3395 set_is_large_section()
3396 { this->is_large_section_ = true; }
3397
3398 // True if this is a large data (not BSS) section.
3399 bool
3400 is_large_data_section()
3401 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3402
3403 // Return whether this section should be written after all the input
3404 // sections are complete.
3405 bool
3406 after_input_sections() const
3407 { return this->after_input_sections_; }
3408
3409 // Record that this section should be written after all the input
3410 // sections are complete.
3411 void
3412 set_after_input_sections()
3413 { this->after_input_sections_ = true; }
3414
3415 // Return whether this section requires postprocessing after all
3416 // relocations have been applied.
3417 bool
3418 requires_postprocessing() const
3419 { return this->requires_postprocessing_; }
3420
3421 bool
3422 is_unique_segment() const
3423 { return this->is_unique_segment_; }
3424
3425 void
3426 set_is_unique_segment()
3427 { this->is_unique_segment_ = true; }
3428
3429 uint64_t extra_segment_flags() const
3430 { return this->extra_segment_flags_; }
3431
3432 void
3433 set_extra_segment_flags(uint64_t flags)
3434 { this->extra_segment_flags_ = flags; }
3435
3436 uint64_t segment_alignment() const
3437 { return this->segment_alignment_; }
3438
3439 void
3440 set_segment_alignment(uint64_t align)
3441 { this->segment_alignment_ = align; }
3442
3443 // If a section requires postprocessing, return the buffer to use.
3444 unsigned char*
3445 postprocessing_buffer() const
3446 {
3447 gold_assert(this->postprocessing_buffer_ != NULL);
3448 return this->postprocessing_buffer_;
3449 }
3450
3451 // If a section requires postprocessing, create the buffer to use.
3452 void
3453 create_postprocessing_buffer();
3454
3455 // If a section requires postprocessing, this is the size of the
3456 // buffer to which relocations should be applied.
3457 off_t
3458 postprocessing_buffer_size() const
3459 { return this->current_data_size_for_child(); }
3460
3461 // Modify the section name. This is only permitted for an
3462 // unallocated section, and only before the size has been finalized.
3463 // Otherwise the name will not get into Layout::namepool_.
3464 void
3465 set_name(const char* newname)
3466 {
3467 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3468 gold_assert(!this->is_data_size_valid());
3469 this->name_ = newname;
3470 }
3471
3472 // Return whether the offset OFFSET in the input section SHNDX in
3473 // object OBJECT is being included in the link.
3474 bool
3475 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3476 off_t offset) const;
3477
3478 // Return the offset within the output section of OFFSET relative to
3479 // the start of input section SHNDX in object OBJECT.
3480 section_offset_type
3481 output_offset(const Relobj* object, unsigned int shndx,
3482 section_offset_type offset) const;
3483
3484 // Return the output virtual address of OFFSET relative to the start
3485 // of input section SHNDX in object OBJECT.
3486 uint64_t
3487 output_address(const Relobj* object, unsigned int shndx,
3488 off_t offset) const;
3489
3490 // Look for the merged section for input section SHNDX in object
3491 // OBJECT. If found, return true, and set *ADDR to the address of
3492 // the start of the merged section. This is not necessary the
3493 // output offset corresponding to input offset 0 in the section,
3494 // since the section may be mapped arbitrarily.
3495 bool
3496 find_starting_output_address(const Relobj* object, unsigned int shndx,
3497 uint64_t* addr) const;
3498
3499 // Record that this output section was found in the SECTIONS clause
3500 // of a linker script.
3501 void
3502 set_found_in_sections_clause()
3503 { this->found_in_sections_clause_ = true; }
3504
3505 // Return whether this output section was found in the SECTIONS
3506 // clause of a linker script.
3507 bool
3508 found_in_sections_clause() const
3509 { return this->found_in_sections_clause_; }
3510
3511 // Write the section header into *OPHDR.
3512 template<int size, bool big_endian>
3513 void
3514 write_header(const Layout*, const Stringpool*,
3515 elfcpp::Shdr_write<size, big_endian>*) const;
3516
3517 // The next few calls are for linker script support.
3518
3519 // In some cases we need to keep a list of the input sections
3520 // associated with this output section. We only need the list if we
3521 // might have to change the offsets of the input section within the
3522 // output section after we add the input section. The ordinary
3523 // input sections will be written out when we process the object
3524 // file, and as such we don't need to track them here. We do need
3525 // to track Output_section_data objects here. We store instances of
3526 // this structure in a std::vector, so it must be a POD. There can
3527 // be many instances of this structure, so we use a union to save
3528 // some space.
3529 class Input_section
3530 {
3531 public:
3532 Input_section()
3533 : shndx_(0), p2align_(0)
3534 {
3535 this->u1_.data_size = 0;
3536 this->u2_.object = NULL;
3537 }
3538
3539 // For an ordinary input section.
3540 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3541 uint64_t addralign)
3542 : shndx_(shndx),
3543 p2align_(ffsll(static_cast<long long>(addralign))),
3544 section_order_index_(0)
3545 {
3546 gold_assert(shndx != OUTPUT_SECTION_CODE
3547 && shndx != MERGE_DATA_SECTION_CODE
3548 && shndx != MERGE_STRING_SECTION_CODE
3549 && shndx != RELAXED_INPUT_SECTION_CODE);
3550 this->u1_.data_size = data_size;
3551 this->u2_.object = object;
3552 }
3553
3554 // For a non-merge output section.
3555 Input_section(Output_section_data* posd)
3556 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3557 section_order_index_(0)
3558 {
3559 this->u1_.data_size = 0;
3560 this->u2_.posd = posd;
3561 }
3562
3563 // For a merge section.
3564 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3565 : shndx_(is_string
3566 ? MERGE_STRING_SECTION_CODE
3567 : MERGE_DATA_SECTION_CODE),
3568 p2align_(0),
3569 section_order_index_(0)
3570 {
3571 this->u1_.entsize = entsize;
3572 this->u2_.posd = posd;
3573 }
3574
3575 // For a relaxed input section.
3576 Input_section(Output_relaxed_input_section* psection)
3577 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3578 section_order_index_(0)
3579 {
3580 this->u1_.data_size = 0;
3581 this->u2_.poris = psection;
3582 }
3583
3584 unsigned int
3585 section_order_index() const
3586 {
3587 return this->section_order_index_;
3588 }
3589
3590 void
3591 set_section_order_index(unsigned int number)
3592 {
3593 this->section_order_index_ = number;
3594 }
3595
3596 // The required alignment.
3597 uint64_t
3598 addralign() const
3599 {
3600 if (this->p2align_ != 0)
3601 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3602 else if (!this->is_input_section())
3603 return this->u2_.posd->addralign();
3604 else
3605 return 0;
3606 }
3607
3608 // Set the required alignment, which must be either 0 or a power of 2.
3609 // For input sections that are sub-classes of Output_section_data, a
3610 // alignment of zero means asking the underlying object for alignment.
3611 void
3612 set_addralign(uint64_t addralign)
3613 {
3614 if (addralign == 0)
3615 this->p2align_ = 0;
3616 else
3617 {
3618 gold_assert((addralign & (addralign - 1)) == 0);
3619 this->p2align_ = ffsll(static_cast<long long>(addralign));
3620 }
3621 }
3622
3623 // Return the current required size, without finalization.
3624 off_t
3625 current_data_size() const;
3626
3627 // Return the required size.
3628 off_t
3629 data_size() const;
3630
3631 // Whether this is an input section.
3632 bool
3633 is_input_section() const
3634 {
3635 return (this->shndx_ != OUTPUT_SECTION_CODE
3636 && this->shndx_ != MERGE_DATA_SECTION_CODE
3637 && this->shndx_ != MERGE_STRING_SECTION_CODE
3638 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3639 }
3640
3641 // Return whether this is a merge section which matches the
3642 // parameters.
3643 bool
3644 is_merge_section(bool is_string, uint64_t entsize,
3645 uint64_t addralign) const
3646 {
3647 return (this->shndx_ == (is_string
3648 ? MERGE_STRING_SECTION_CODE
3649 : MERGE_DATA_SECTION_CODE)
3650 && this->u1_.entsize == entsize
3651 && this->addralign() == addralign);
3652 }
3653
3654 // Return whether this is a merge section for some input section.
3655 bool
3656 is_merge_section() const
3657 {
3658 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3659 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3660 }
3661
3662 // Return whether this is a relaxed input section.
3663 bool
3664 is_relaxed_input_section() const
3665 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3666
3667 // Return whether this is a generic Output_section_data.
3668 bool
3669 is_output_section_data() const
3670 {
3671 return this->shndx_ == OUTPUT_SECTION_CODE;
3672 }
3673
3674 // Return the object for an input section.
3675 Relobj*
3676 relobj() const;
3677
3678 // Return the input section index for an input section.
3679 unsigned int
3680 shndx() const;
3681
3682 // For non-input-sections, return the associated Output_section_data
3683 // object.
3684 Output_section_data*
3685 output_section_data() const
3686 {
3687 gold_assert(!this->is_input_section());
3688 return this->u2_.posd;
3689 }
3690
3691 // For a merge section, return the Output_merge_base pointer.
3692 Output_merge_base*
3693 output_merge_base() const
3694 {
3695 gold_assert(this->is_merge_section());
3696 return this->u2_.pomb;
3697 }
3698
3699 // Return the Output_relaxed_input_section object.
3700 Output_relaxed_input_section*
3701 relaxed_input_section() const
3702 {
3703 gold_assert(this->is_relaxed_input_section());
3704 return this->u2_.poris;
3705 }
3706
3707 // Set the output section.
3708 void
3709 set_output_section(Output_section* os)
3710 {
3711 gold_assert(!this->is_input_section());
3712 Output_section_data* posd =
3713 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3714 posd->set_output_section(os);
3715 }
3716
3717 // Set the address and file offset. This is called during
3718 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3719 // the enclosing section.
3720 void
3721 set_address_and_file_offset(uint64_t address, off_t file_offset,
3722 off_t section_file_offset);
3723
3724 // Reset the address and file offset.
3725 void
3726 reset_address_and_file_offset();
3727
3728 // Finalize the data size.
3729 void
3730 finalize_data_size();
3731
3732 // Add an input section, for SHF_MERGE sections.
3733 bool
3734 add_input_section(Relobj* object, unsigned int shndx)
3735 {
3736 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3737 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3738 return this->u2_.posd->add_input_section(object, shndx);
3739 }
3740
3741 // Given an input OBJECT, an input section index SHNDX within that
3742 // object, and an OFFSET relative to the start of that input
3743 // section, return whether or not the output offset is known. If
3744 // this function returns true, it sets *POUTPUT to the offset in
3745 // the output section, relative to the start of the input section
3746 // in the output section. *POUTPUT may be different from OFFSET
3747 // for a merged section.
3748 bool
3749 output_offset(const Relobj* object, unsigned int shndx,
3750 section_offset_type offset,
3751 section_offset_type* poutput) const;
3752
3753 // Return whether this is the merge section for the input section
3754 // SHNDX in OBJECT.
3755 bool
3756 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3757
3758 // Write out the data. This does nothing for an input section.
3759 void
3760 write(Output_file*);
3761
3762 // Write the data to a buffer. This does nothing for an input
3763 // section.
3764 void
3765 write_to_buffer(unsigned char*);
3766
3767 // Print to a map file.
3768 void
3769 print_to_mapfile(Mapfile*) const;
3770
3771 // Print statistics about merge sections to stderr.
3772 void
3773 print_merge_stats(const char* section_name)
3774 {
3775 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3776 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3777 this->u2_.posd->print_merge_stats(section_name);
3778 }
3779
3780 private:
3781 // Code values which appear in shndx_. If the value is not one of
3782 // these codes, it is the input section index in the object file.
3783 enum
3784 {
3785 // An Output_section_data.
3786 OUTPUT_SECTION_CODE = -1U,
3787 // An Output_section_data for an SHF_MERGE section with
3788 // SHF_STRINGS not set.
3789 MERGE_DATA_SECTION_CODE = -2U,
3790 // An Output_section_data for an SHF_MERGE section with
3791 // SHF_STRINGS set.
3792 MERGE_STRING_SECTION_CODE = -3U,
3793 // An Output_section_data for a relaxed input section.
3794 RELAXED_INPUT_SECTION_CODE = -4U
3795 };
3796
3797 // For an ordinary input section, this is the section index in the
3798 // input file. For an Output_section_data, this is
3799 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3800 // MERGE_STRING_SECTION_CODE.
3801 unsigned int shndx_;
3802 // The required alignment, stored as a power of 2.
3803 unsigned int p2align_;
3804 union
3805 {
3806 // For an ordinary input section, the section size.
3807 off_t data_size;
3808 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3809 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3810 // entity size.
3811 uint64_t entsize;
3812 } u1_;
3813 union
3814 {
3815 // For an ordinary input section, the object which holds the
3816 // input section.
3817 Relobj* object;
3818 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3819 // MERGE_STRING_SECTION_CODE, the data.
3820 Output_section_data* posd;
3821 Output_merge_base* pomb;
3822 // For RELAXED_INPUT_SECTION_CODE, the data.
3823 Output_relaxed_input_section* poris;
3824 } u2_;
3825 // The line number of the pattern it matches in the --section-ordering-file
3826 // file. It is 0 if does not match any pattern.
3827 unsigned int section_order_index_;
3828 };
3829
3830 // Store the list of input sections for this Output_section into the
3831 // list passed in. This removes the input sections, leaving only
3832 // any Output_section_data elements. This returns the size of those
3833 // Output_section_data elements. ADDRESS is the address of this
3834 // output section. FILL is the fill value to use, in case there are
3835 // any spaces between the remaining Output_section_data elements.
3836 uint64_t
3837 get_input_sections(uint64_t address, const std::string& fill,
3838 std::list<Input_section>*);
3839
3840 // Add a script input section. A script input section can either be
3841 // a plain input section or a sub-class of Output_section_data.
3842 void
3843 add_script_input_section(const Input_section& input_section);
3844
3845 // Set the current size of the output section.
3846 void
3847 set_current_data_size(off_t size)
3848 { this->set_current_data_size_for_child(size); }
3849
3850 // End of linker script support.
3851
3852 // Save states before doing section layout.
3853 // This is used for relaxation.
3854 void
3855 save_states();
3856
3857 // Restore states prior to section layout.
3858 void
3859 restore_states();
3860
3861 // Discard states.
3862 void
3863 discard_states();
3864
3865 // Convert existing input sections to relaxed input sections.
3866 void
3867 convert_input_sections_to_relaxed_sections(
3868 const std::vector<Output_relaxed_input_section*>& sections);
3869
3870 // Find a relaxed input section to an input section in OBJECT
3871 // with index SHNDX. Return NULL if none is found.
3872 const Output_relaxed_input_section*
3873 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3874
3875 // Whether section offsets need adjustment due to relaxation.
3876 bool
3877 section_offsets_need_adjustment() const
3878 { return this->section_offsets_need_adjustment_; }
3879
3880 // Set section_offsets_need_adjustment to be true.
3881 void
3882 set_section_offsets_need_adjustment()
3883 { this->section_offsets_need_adjustment_ = true; }
3884
3885 // Set section_offsets_need_adjustment to be false.
3886 void
3887 clear_section_offsets_need_adjustment()
3888 { this->section_offsets_need_adjustment_ = false; }
3889
3890 // Adjust section offsets of input sections in this. This is
3891 // requires if relaxation caused some input sections to change sizes.
3892 void
3893 adjust_section_offsets();
3894
3895 // Whether this is a NOLOAD section.
3896 bool
3897 is_noload() const
3898 { return this->is_noload_; }
3899
3900 // Set NOLOAD flag.
3901 void
3902 set_is_noload()
3903 { this->is_noload_ = true; }
3904
3905 // Print merge statistics to stderr.
3906 void
3907 print_merge_stats();
3908
3909 // Set a fixed layout for the section. Used for incremental update links.
3910 void
3911 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3912 uint64_t sh_addralign);
3913
3914 // Return TRUE if the section has a fixed layout.
3915 bool
3916 has_fixed_layout() const
3917 { return this->has_fixed_layout_; }
3918
3919 // Set flag to allow patch space for this section. Used for full
3920 // incremental links.
3921 void
3922 set_is_patch_space_allowed()
3923 { this->is_patch_space_allowed_ = true; }
3924
3925 // Set a fill method to use for free space left in the output section
3926 // during incremental links.
3927 void
3928 set_free_space_fill(Output_fill* free_space_fill)
3929 {
3930 this->free_space_fill_ = free_space_fill;
3931 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3932 }
3933
3934 // Reserve space within the fixed layout for the section. Used for
3935 // incremental update links.
3936 void
3937 reserve(uint64_t sh_offset, uint64_t sh_size);
3938
3939 // Allocate space from the free list for the section. Used for
3940 // incremental update links.
3941 off_t
3942 allocate(off_t len, uint64_t addralign);
3943
3944 typedef std::vector<Input_section> Input_section_list;
3945
3946 // Allow access to the input sections.
3947 const Input_section_list&
3948 input_sections() const
3949 { return this->input_sections_; }
3950
3951 Input_section_list&
3952 input_sections()
3953 { return this->input_sections_; }
3954
3955 protected:
3956 // Return the output section--i.e., the object itself.
3957 Output_section*
3958 do_output_section()
3959 { return this; }
3960
3961 const Output_section*
3962 do_output_section() const
3963 { return this; }
3964
3965 // Return the section index in the output file.
3966 unsigned int
3967 do_out_shndx() const
3968 {
3969 gold_assert(this->out_shndx_ != -1U);
3970 return this->out_shndx_;
3971 }
3972
3973 // Set the output section index.
3974 void
3975 do_set_out_shndx(unsigned int shndx)
3976 {
3977 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3978 this->out_shndx_ = shndx;
3979 }
3980
3981 // Update the data size of the Output_section. For a typical
3982 // Output_section, there is nothing to do, but if there are any
3983 // Output_section_data objects we need to do a trial layout
3984 // here.
3985 virtual void
3986 update_data_size();
3987
3988 // Set the final data size of the Output_section. For a typical
3989 // Output_section, there is nothing to do, but if there are any
3990 // Output_section_data objects we need to set their final addresses
3991 // here.
3992 virtual void
3993 set_final_data_size();
3994
3995 // Reset the address and file offset.
3996 void
3997 do_reset_address_and_file_offset();
3998
3999 // Return true if address and file offset already have reset values. In
4000 // other words, calling reset_address_and_file_offset will not change them.
4001 bool
4002 do_address_and_file_offset_have_reset_values() const;
4003
4004 // Write the data to the file. For a typical Output_section, this
4005 // does nothing: the data is written out by calling Object::Relocate
4006 // on each input object. But if there are any Output_section_data
4007 // objects we do need to write them out here.
4008 virtual void
4009 do_write(Output_file*);
4010
4011 // Return the address alignment--function required by parent class.
4012 uint64_t
4013 do_addralign() const
4014 { return this->addralign_; }
4015
4016 // Return whether there is a load address.
4017 bool
4018 do_has_load_address() const
4019 { return this->has_load_address_; }
4020
4021 // Return the load address.
4022 uint64_t
4023 do_load_address() const
4024 {
4025 gold_assert(this->has_load_address_);
4026 return this->load_address_;
4027 }
4028
4029 // Return whether this is an Output_section.
4030 bool
4031 do_is_section() const
4032 { return true; }
4033
4034 // Return whether this is a section of the specified type.
4035 bool
4036 do_is_section_type(elfcpp::Elf_Word type) const
4037 { return this->type_ == type; }
4038
4039 // Return whether the specified section flag is set.
4040 bool
4041 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4042 { return (this->flags_ & flag) != 0; }
4043
4044 // Set the TLS offset. Called only for SHT_TLS sections.
4045 void
4046 do_set_tls_offset(uint64_t tls_base);
4047
4048 // Return the TLS offset, relative to the base of the TLS segment.
4049 // Valid only for SHT_TLS sections.
4050 uint64_t
4051 do_tls_offset() const
4052 { return this->tls_offset_; }
4053
4054 // This may be implemented by a child class.
4055 virtual void
4056 do_finalize_name(Layout*)
4057 { }
4058
4059 // Print to the map file.
4060 virtual void
4061 do_print_to_mapfile(Mapfile*) const;
4062
4063 // Record that this section requires postprocessing after all
4064 // relocations have been applied. This is called by a child class.
4065 void
4066 set_requires_postprocessing()
4067 {
4068 this->requires_postprocessing_ = true;
4069 this->after_input_sections_ = true;
4070 }
4071
4072 // Write all the data of an Output_section into the postprocessing
4073 // buffer.
4074 void
4075 write_to_postprocessing_buffer();
4076
4077 // Whether this always keeps an input section list
4078 bool
4079 always_keeps_input_sections() const
4080 { return this->always_keeps_input_sections_; }
4081
4082 // Always keep an input section list.
4083 void
4084 set_always_keeps_input_sections()
4085 {
4086 gold_assert(this->current_data_size_for_child() == 0);
4087 this->always_keeps_input_sections_ = true;
4088 }
4089
4090 private:
4091 // We only save enough information to undo the effects of section layout.
4092 class Checkpoint_output_section
4093 {
4094 public:
4095 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4096 const Input_section_list& input_sections,
4097 off_t first_input_offset,
4098 bool attached_input_sections_are_sorted)
4099 : addralign_(addralign), flags_(flags),
4100 input_sections_(input_sections),
4101 input_sections_size_(input_sections_.size()),
4102 input_sections_copy_(), first_input_offset_(first_input_offset),
4103 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4104 { }
4105
4106 virtual
4107 ~Checkpoint_output_section()
4108 { }
4109
4110 // Return the address alignment.
4111 uint64_t
4112 addralign() const
4113 { return this->addralign_; }
4114
4115 void
4116 set_addralign(uint64_t val)
4117 { this->addralign_ = val; }
4118
4119 // Return the section flags.
4120 elfcpp::Elf_Xword
4121 flags() const
4122 { return this->flags_; }
4123
4124 // Return a reference to the input section list copy.
4125 Input_section_list*
4126 input_sections()
4127 { return &this->input_sections_copy_; }
4128
4129 // Return the size of input_sections at the time when checkpoint is
4130 // taken.
4131 size_t
4132 input_sections_size() const
4133 { return this->input_sections_size_; }
4134
4135 // Whether input sections are copied.
4136 bool
4137 input_sections_saved() const
4138 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4139
4140 off_t
4141 first_input_offset() const
4142 { return this->first_input_offset_; }
4143
4144 bool
4145 attached_input_sections_are_sorted() const
4146 { return this->attached_input_sections_are_sorted_; }
4147
4148 // Save input sections.
4149 void
4150 save_input_sections()
4151 {
4152 this->input_sections_copy_.reserve(this->input_sections_size_);
4153 this->input_sections_copy_.clear();
4154 Input_section_list::const_iterator p = this->input_sections_.begin();
4155 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4156 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4157 this->input_sections_copy_.push_back(*p);
4158 }
4159
4160 private:
4161 // The section alignment.
4162 uint64_t addralign_;
4163 // The section flags.
4164 elfcpp::Elf_Xword flags_;
4165 // Reference to the input sections to be checkpointed.
4166 const Input_section_list& input_sections_;
4167 // Size of the checkpointed portion of input_sections_;
4168 size_t input_sections_size_;
4169 // Copy of input sections.
4170 Input_section_list input_sections_copy_;
4171 // The offset of the first entry in input_sections_.
4172 off_t first_input_offset_;
4173 // True if the input sections attached to this output section have
4174 // already been sorted.
4175 bool attached_input_sections_are_sorted_;
4176 };
4177
4178 // This class is used to sort the input sections.
4179 class Input_section_sort_entry;
4180
4181 // This is the sort comparison function for ctors and dtors.
4182 struct Input_section_sort_compare
4183 {
4184 bool
4185 operator()(const Input_section_sort_entry&,
4186 const Input_section_sort_entry&) const;
4187 };
4188
4189 // This is the sort comparison function for .init_array and .fini_array.
4190 struct Input_section_sort_init_fini_compare
4191 {
4192 bool
4193 operator()(const Input_section_sort_entry&,
4194 const Input_section_sort_entry&) const;
4195 };
4196
4197 // This is the sort comparison function when a section order is specified
4198 // from an input file.
4199 struct Input_section_sort_section_order_index_compare
4200 {
4201 bool
4202 operator()(const Input_section_sort_entry&,
4203 const Input_section_sort_entry&) const;
4204 };
4205
4206 // This is the sort comparison function for .text to sort sections with
4207 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4208 struct Input_section_sort_section_prefix_special_ordering_compare
4209 {
4210 bool
4211 operator()(const Input_section_sort_entry&,
4212 const Input_section_sort_entry&) const;
4213 };
4214
4215 // This is the sort comparison function for sorting sections by name.
4216 struct Input_section_sort_section_name_compare
4217 {
4218 bool
4219 operator()(const Input_section_sort_entry&,
4220 const Input_section_sort_entry&) const;
4221 };
4222
4223 // Fill data. This is used to fill in data between input sections.
4224 // It is also used for data statements (BYTE, WORD, etc.) in linker
4225 // scripts. When we have to keep track of the input sections, we
4226 // can use an Output_data_const, but we don't want to have to keep
4227 // track of input sections just to implement fills.
4228 class Fill
4229 {
4230 public:
4231 Fill(off_t section_offset, off_t length)
4232 : section_offset_(section_offset),
4233 length_(convert_to_section_size_type(length))
4234 { }
4235
4236 // Return section offset.
4237 off_t
4238 section_offset() const
4239 { return this->section_offset_; }
4240
4241 // Return fill length.
4242 section_size_type
4243 length() const
4244 { return this->length_; }
4245
4246 private:
4247 // The offset within the output section.
4248 off_t section_offset_;
4249 // The length of the space to fill.
4250 section_size_type length_;
4251 };
4252
4253 typedef std::vector<Fill> Fill_list;
4254
4255 // Map used during relaxation of existing sections. This map
4256 // a section id an input section list index. We assume that
4257 // Input_section_list is a vector.
4258 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4259
4260 // Add a new output section by Input_section.
4261 void
4262 add_output_section_data(Input_section*);
4263
4264 // Add an SHF_MERGE input section. Returns true if the section was
4265 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4266 // stores information about the merged input sections.
4267 bool
4268 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4269 uint64_t entsize, uint64_t addralign,
4270 bool keeps_input_sections);
4271
4272 // Add an output SHF_MERGE section POSD to this output section.
4273 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4274 // ENTSIZE is the entity size. This returns the entry added to
4275 // input_sections_.
4276 void
4277 add_output_merge_section(Output_section_data* posd, bool is_string,
4278 uint64_t entsize);
4279
4280 // Find the merge section into which an input section with index SHNDX in
4281 // OBJECT has been added. Return NULL if none found.
4282 Output_section_data*
4283 find_merge_section(const Relobj* object, unsigned int shndx) const;
4284
4285 // Build a relaxation map.
4286 void
4287 build_relaxation_map(
4288 const Input_section_list& input_sections,
4289 size_t limit,
4290 Relaxation_map* map) const;
4291
4292 // Convert input sections in an input section list into relaxed sections.
4293 void
4294 convert_input_sections_in_list_to_relaxed_sections(
4295 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4296 const Relaxation_map& map,
4297 Input_section_list* input_sections);
4298
4299 // Build the lookup maps for merge and relaxed input sections.
4300 void
4301 build_lookup_maps() const;
4302
4303 // Most of these fields are only valid after layout.
4304
4305 // The name of the section. This will point into a Stringpool.
4306 const char* name_;
4307 // The section address is in the parent class.
4308 // The section alignment.
4309 uint64_t addralign_;
4310 // The section entry size.
4311 uint64_t entsize_;
4312 // The load address. This is only used when using a linker script
4313 // with a SECTIONS clause. The has_load_address_ field indicates
4314 // whether this field is valid.
4315 uint64_t load_address_;
4316 // The file offset is in the parent class.
4317 // Set the section link field to the index of this section.
4318 const Output_data* link_section_;
4319 // If link_section_ is NULL, this is the link field.
4320 unsigned int link_;
4321 // Set the section info field to the index of this section.
4322 const Output_section* info_section_;
4323 // If info_section_ is NULL, set the info field to the symbol table
4324 // index of this symbol.
4325 const Symbol* info_symndx_;
4326 // If info_section_ and info_symndx_ are NULL, this is the section
4327 // info field.
4328 unsigned int info_;
4329 // The section type.
4330 const elfcpp::Elf_Word type_;
4331 // The section flags.
4332 elfcpp::Elf_Xword flags_;
4333 // The order of this section in the output segment.
4334 Output_section_order order_;
4335 // The section index.
4336 unsigned int out_shndx_;
4337 // If there is a STT_SECTION for this output section in the normal
4338 // symbol table, this is the symbol index. This starts out as zero.
4339 // It is initialized in Layout::finalize() to be the index, or -1U
4340 // if there isn't one.
4341 unsigned int symtab_index_;
4342 // If there is a STT_SECTION for this output section in the dynamic
4343 // symbol table, this is the symbol index. This starts out as zero.
4344 // It is initialized in Layout::finalize() to be the index, or -1U
4345 // if there isn't one.
4346 unsigned int dynsym_index_;
4347 // The input sections. This will be empty in cases where we don't
4348 // need to keep track of them.
4349 Input_section_list input_sections_;
4350 // The offset of the first entry in input_sections_.
4351 off_t first_input_offset_;
4352 // The fill data. This is separate from input_sections_ because we
4353 // often will need fill sections without needing to keep track of
4354 // input sections.
4355 Fill_list fills_;
4356 // If the section requires postprocessing, this buffer holds the
4357 // section contents during relocation.
4358 unsigned char* postprocessing_buffer_;
4359 // Whether this output section needs a STT_SECTION symbol in the
4360 // normal symbol table. This will be true if there is a relocation
4361 // which needs it.
4362 bool needs_symtab_index_ : 1;
4363 // Whether this output section needs a STT_SECTION symbol in the
4364 // dynamic symbol table. This will be true if there is a dynamic
4365 // relocation which needs it.
4366 bool needs_dynsym_index_ : 1;
4367 // Whether the link field of this output section should point to the
4368 // normal symbol table.
4369 bool should_link_to_symtab_ : 1;
4370 // Whether the link field of this output section should point to the
4371 // dynamic symbol table.
4372 bool should_link_to_dynsym_ : 1;
4373 // Whether this section should be written after all the input
4374 // sections are complete.
4375 bool after_input_sections_ : 1;
4376 // Whether this section requires post processing after all
4377 // relocations have been applied.
4378 bool requires_postprocessing_ : 1;
4379 // Whether an input section was mapped to this output section
4380 // because of a SECTIONS clause in a linker script.
4381 bool found_in_sections_clause_ : 1;
4382 // Whether this section has an explicitly specified load address.
4383 bool has_load_address_ : 1;
4384 // True if the info_section_ field means the section index of the
4385 // section, false if it means the symbol index of the corresponding
4386 // section symbol.
4387 bool info_uses_section_index_ : 1;
4388 // True if input sections attached to this output section have to be
4389 // sorted according to a specified order.
4390 bool input_section_order_specified_ : 1;
4391 // True if the input sections attached to this output section may
4392 // need sorting.
4393 bool may_sort_attached_input_sections_ : 1;
4394 // True if the input sections attached to this output section must
4395 // be sorted.
4396 bool must_sort_attached_input_sections_ : 1;
4397 // True if the input sections attached to this output section have
4398 // already been sorted.
4399 bool attached_input_sections_are_sorted_ : 1;
4400 // True if this section holds relro data.
4401 bool is_relro_ : 1;
4402 // True if this is a small section.
4403 bool is_small_section_ : 1;
4404 // True if this is a large section.
4405 bool is_large_section_ : 1;
4406 // Whether code-fills are generated at write.
4407 bool generate_code_fills_at_write_ : 1;
4408 // Whether the entry size field should be zero.
4409 bool is_entsize_zero_ : 1;
4410 // Whether section offsets need adjustment due to relaxation.
4411 bool section_offsets_need_adjustment_ : 1;
4412 // Whether this is a NOLOAD section.
4413 bool is_noload_ : 1;
4414 // Whether this always keeps input section.
4415 bool always_keeps_input_sections_ : 1;
4416 // Whether this section has a fixed layout, for incremental update links.
4417 bool has_fixed_layout_ : 1;
4418 // True if we can add patch space to this section.
4419 bool is_patch_space_allowed_ : 1;
4420 // True if this output section goes into a unique segment.
4421 bool is_unique_segment_ : 1;
4422 // For SHT_TLS sections, the offset of this section relative to the base
4423 // of the TLS segment.
4424 uint64_t tls_offset_;
4425 // Additional segment flags, specified via linker plugin, when mapping some
4426 // input sections to unique segments.
4427 uint64_t extra_segment_flags_;
4428 // Segment alignment specified via linker plugin, when mapping some
4429 // input sections to unique segments.
4430 uint64_t segment_alignment_;
4431 // Saved checkpoint.
4432 Checkpoint_output_section* checkpoint_;
4433 // Fast lookup maps for merged and relaxed input sections.
4434 Output_section_lookup_maps* lookup_maps_;
4435 // List of available regions within the section, for incremental
4436 // update links.
4437 Free_list free_list_;
4438 // Method for filling chunks of free space.
4439 Output_fill* free_space_fill_;
4440 // Amount added as patch space for incremental linking.
4441 off_t patch_space_;
4442 };
4443
4444 // An output segment. PT_LOAD segments are built from collections of
4445 // output sections. Other segments typically point within PT_LOAD
4446 // segments, and are built directly as needed.
4447 //
4448 // NOTE: We want to use the copy constructor for this class. During
4449 // relaxation, we may try built the segments multiple times. We do
4450 // that by copying the original segment list before lay-out, doing
4451 // a trial lay-out and roll-back to the saved copied if we need to
4452 // to the lay-out again.
4453
4454 class Output_segment
4455 {
4456 public:
4457 // Create an output segment, specifying the type and flags.
4458 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4459
4460 // Return the virtual address.
4461 uint64_t
4462 vaddr() const
4463 { return this->vaddr_; }
4464
4465 // Return the physical address.
4466 uint64_t
4467 paddr() const
4468 { return this->paddr_; }
4469
4470 // Return the segment type.
4471 elfcpp::Elf_Word
4472 type() const
4473 { return this->type_; }
4474
4475 // Return the segment flags.
4476 elfcpp::Elf_Word
4477 flags() const
4478 { return this->flags_; }
4479
4480 // Return the memory size.
4481 uint64_t
4482 memsz() const
4483 { return this->memsz_; }
4484
4485 // Return the file size.
4486 off_t
4487 filesz() const
4488 { return this->filesz_; }
4489
4490 // Return the file offset.
4491 off_t
4492 offset() const
4493 { return this->offset_; }
4494
4495 // Whether this is a segment created to hold large data sections.
4496 bool
4497 is_large_data_segment() const
4498 { return this->is_large_data_segment_; }
4499
4500 // Record that this is a segment created to hold large data
4501 // sections.
4502 void
4503 set_is_large_data_segment()
4504 { this->is_large_data_segment_ = true; }
4505
4506 bool
4507 is_unique_segment() const
4508 { return this->is_unique_segment_; }
4509
4510 // Mark segment as unique, happens when linker plugins request that
4511 // certain input sections be mapped to unique segments.
4512 void
4513 set_is_unique_segment()
4514 { this->is_unique_segment_ = true; }
4515
4516 // Return the maximum alignment of the Output_data.
4517 uint64_t
4518 maximum_alignment();
4519
4520 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4521 // the segment flags to use.
4522 void
4523 add_output_section_to_load(Layout* layout, Output_section* os,
4524 elfcpp::Elf_Word seg_flags);
4525
4526 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4527 // is the segment flags to use.
4528 void
4529 add_output_section_to_nonload(Output_section* os,
4530 elfcpp::Elf_Word seg_flags);
4531
4532 // Remove an Output_section from this segment. It is an error if it
4533 // is not present.
4534 void
4535 remove_output_section(Output_section* os);
4536
4537 // Add an Output_data (which need not be an Output_section) to the
4538 // start of this segment.
4539 void
4540 add_initial_output_data(Output_data*);
4541
4542 // Return true if this segment has any sections which hold actual
4543 // data, rather than being a BSS section.
4544 bool
4545 has_any_data_sections() const;
4546
4547 // Whether this segment has a dynamic relocs.
4548 bool
4549 has_dynamic_reloc() const;
4550
4551 // Return the first section.
4552 Output_section*
4553 first_section() const;
4554
4555 // Return the address of the first section.
4556 uint64_t
4557 first_section_load_address() const
4558 {
4559 const Output_section* os = this->first_section();
4560 return os->has_load_address() ? os->load_address() : os->address();
4561 }
4562
4563 // Return whether the addresses have been set already.
4564 bool
4565 are_addresses_set() const
4566 { return this->are_addresses_set_; }
4567
4568 // Set the addresses.
4569 void
4570 set_addresses(uint64_t vaddr, uint64_t paddr)
4571 {
4572 this->vaddr_ = vaddr;
4573 this->paddr_ = paddr;
4574 this->are_addresses_set_ = true;
4575 }
4576
4577 // Update the flags for the flags of an output section added to this
4578 // segment.
4579 void
4580 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4581 {
4582 // The ELF ABI specifies that a PT_TLS segment should always have
4583 // PF_R as the flags.
4584 if (this->type() != elfcpp::PT_TLS)
4585 this->flags_ |= flags;
4586 }
4587
4588 // Set the segment flags. This is only used if we have a PHDRS
4589 // clause which explicitly specifies the flags.
4590 void
4591 set_flags(elfcpp::Elf_Word flags)
4592 { this->flags_ = flags; }
4593
4594 // Set the address of the segment to ADDR and the offset to *POFF
4595 // and set the addresses and offsets of all contained output
4596 // sections accordingly. Set the section indexes of all contained
4597 // output sections starting with *PSHNDX. If RESET is true, first
4598 // reset the addresses of the contained sections. Return the
4599 // address of the immediately following segment. Update *POFF and
4600 // *PSHNDX. This should only be called for a PT_LOAD segment.
4601 uint64_t
4602 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4603 unsigned int* increase_relro, bool* has_relro,
4604 off_t* poff, unsigned int* pshndx);
4605
4606 // Set the minimum alignment of this segment. This may be adjusted
4607 // upward based on the section alignments.
4608 void
4609 set_minimum_p_align(uint64_t align)
4610 {
4611 if (align > this->min_p_align_)
4612 this->min_p_align_ = align;
4613 }
4614
4615 // Set the offset of this segment based on the section. This should
4616 // only be called for a non-PT_LOAD segment.
4617 void
4618 set_offset(unsigned int increase);
4619
4620 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4621 void
4622 set_tls_offsets();
4623
4624 // Return the number of output sections.
4625 unsigned int
4626 output_section_count() const;
4627
4628 // Return the section attached to the list segment with the lowest
4629 // load address. This is used when handling a PHDRS clause in a
4630 // linker script.
4631 Output_section*
4632 section_with_lowest_load_address() const;
4633
4634 // Write the segment header into *OPHDR.
4635 template<int size, bool big_endian>
4636 void
4637 write_header(elfcpp::Phdr_write<size, big_endian>*);
4638
4639 // Write the section headers of associated sections into V.
4640 template<int size, bool big_endian>
4641 unsigned char*
4642 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4643 unsigned int* pshndx) const;
4644
4645 // Print the output sections in the map file.
4646 void
4647 print_sections_to_mapfile(Mapfile*) const;
4648
4649 private:
4650 typedef std::vector<Output_data*> Output_data_list;
4651
4652 // Find the maximum alignment in an Output_data_list.
4653 static uint64_t
4654 maximum_alignment_list(const Output_data_list*);
4655
4656 // Return whether the first data section is a relro section.
4657 bool
4658 is_first_section_relro() const;
4659
4660 // Set the section addresses in an Output_data_list.
4661 uint64_t
4662 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4663 uint64_t addr, off_t* poff, unsigned int* pshndx,
4664 bool* in_tls);
4665
4666 // Return the number of Output_sections in an Output_data_list.
4667 unsigned int
4668 output_section_count_list(const Output_data_list*) const;
4669
4670 // Return whether an Output_data_list has a dynamic reloc.
4671 bool
4672 has_dynamic_reloc_list(const Output_data_list*) const;
4673
4674 // Find the section with the lowest load address in an
4675 // Output_data_list.
4676 void
4677 lowest_load_address_in_list(const Output_data_list* pdl,
4678 Output_section** found,
4679 uint64_t* found_lma) const;
4680
4681 // Find the first and last entries by address.
4682 void
4683 find_first_and_last_list(const Output_data_list* pdl,
4684 const Output_data** pfirst,
4685 const Output_data** plast) const;
4686
4687 // Write the section headers in the list into V.
4688 template<int size, bool big_endian>
4689 unsigned char*
4690 write_section_headers_list(const Layout*, const Stringpool*,
4691 const Output_data_list*, unsigned char* v,
4692 unsigned int* pshdx) const;
4693
4694 // Print a section list to the mapfile.
4695 void
4696 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4697
4698 // NOTE: We want to use the copy constructor. Currently, shallow copy
4699 // works for us so we do not need to write our own copy constructor.
4700
4701 // The list of output data attached to this segment.
4702 Output_data_list output_lists_[ORDER_MAX];
4703 // The segment virtual address.
4704 uint64_t vaddr_;
4705 // The segment physical address.
4706 uint64_t paddr_;
4707 // The size of the segment in memory.
4708 uint64_t memsz_;
4709 // The maximum section alignment. The is_max_align_known_ field
4710 // indicates whether this has been finalized.
4711 uint64_t max_align_;
4712 // The required minimum value for the p_align field. This is used
4713 // for PT_LOAD segments. Note that this does not mean that
4714 // addresses should be aligned to this value; it means the p_paddr
4715 // and p_vaddr fields must be congruent modulo this value. For
4716 // non-PT_LOAD segments, the dynamic linker works more efficiently
4717 // if the p_align field has the more conventional value, although it
4718 // can align as needed.
4719 uint64_t min_p_align_;
4720 // The offset of the segment data within the file.
4721 off_t offset_;
4722 // The size of the segment data in the file.
4723 off_t filesz_;
4724 // The segment type;
4725 elfcpp::Elf_Word type_;
4726 // The segment flags.
4727 elfcpp::Elf_Word flags_;
4728 // Whether we have finalized max_align_.
4729 bool is_max_align_known_ : 1;
4730 // Whether vaddr and paddr were set by a linker script.
4731 bool are_addresses_set_ : 1;
4732 // Whether this segment holds large data sections.
4733 bool is_large_data_segment_ : 1;
4734 // Whether this was marked as a unique segment via a linker plugin.
4735 bool is_unique_segment_ : 1;
4736 };
4737
4738 // This class represents the output file.
4739
4740 class Output_file
4741 {
4742 public:
4743 Output_file(const char* name);
4744
4745 // Indicate that this is a temporary file which should not be
4746 // output.
4747 void
4748 set_is_temporary()
4749 { this->is_temporary_ = true; }
4750
4751 // Try to open an existing file. Returns false if the file doesn't
4752 // exist, has a size of 0 or can't be mmaped. This method is
4753 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4754 // that file as the base for incremental linking.
4755 bool
4756 open_base_file(const char* base_name, bool writable);
4757
4758 // Open the output file. FILE_SIZE is the final size of the file.
4759 // If the file already exists, it is deleted/truncated. This method
4760 // is thread-unsafe.
4761 void
4762 open(off_t file_size);
4763
4764 // Resize the output file. This method is thread-unsafe.
4765 void
4766 resize(off_t file_size);
4767
4768 // Close the output file (flushing all buffered data) and make sure
4769 // there are no errors. This method is thread-unsafe.
4770 void
4771 close();
4772
4773 // Return the size of this file.
4774 off_t
4775 filesize()
4776 { return this->file_size_; }
4777
4778 // Return the name of this file.
4779 const char*
4780 filename()
4781 { return this->name_; }
4782
4783 // We currently always use mmap which makes the view handling quite
4784 // simple. In the future we may support other approaches.
4785
4786 // Write data to the output file.
4787 void
4788 write(off_t offset, const void* data, size_t len)
4789 { memcpy(this->base_ + offset, data, len); }
4790
4791 // Get a buffer to use to write to the file, given the offset into
4792 // the file and the size.
4793 unsigned char*
4794 get_output_view(off_t start, size_t size)
4795 {
4796 gold_assert(start >= 0
4797 && start + static_cast<off_t>(size) <= this->file_size_);
4798 return this->base_ + start;
4799 }
4800
4801 // VIEW must have been returned by get_output_view. Write the
4802 // buffer to the file, passing in the offset and the size.
4803 void
4804 write_output_view(off_t, size_t, unsigned char*)
4805 { }
4806
4807 // Get a read/write buffer. This is used when we want to write part
4808 // of the file, read it in, and write it again.
4809 unsigned char*
4810 get_input_output_view(off_t start, size_t size)
4811 { return this->get_output_view(start, size); }
4812
4813 // Write a read/write buffer back to the file.
4814 void
4815 write_input_output_view(off_t, size_t, unsigned char*)
4816 { }
4817
4818 // Get a read buffer. This is used when we just want to read part
4819 // of the file back it in.
4820 const unsigned char*
4821 get_input_view(off_t start, size_t size)
4822 { return this->get_output_view(start, size); }
4823
4824 // Release a read bfufer.
4825 void
4826 free_input_view(off_t, size_t, const unsigned char*)
4827 { }
4828
4829 private:
4830 // Map the file into memory or, if that fails, allocate anonymous
4831 // memory.
4832 void
4833 map();
4834
4835 // Allocate anonymous memory for the file.
4836 bool
4837 map_anonymous();
4838
4839 // Map the file into memory.
4840 bool
4841 map_no_anonymous(bool);
4842
4843 // Unmap the file from memory (and flush to disk buffers).
4844 void
4845 unmap();
4846
4847 // File name.
4848 const char* name_;
4849 // File descriptor.
4850 int o_;
4851 // File size.
4852 off_t file_size_;
4853 // Base of file mapped into memory.
4854 unsigned char* base_;
4855 // True iff base_ points to a memory buffer rather than an output file.
4856 bool map_is_anonymous_;
4857 // True if base_ was allocated using new rather than mmap.
4858 bool map_is_allocated_;
4859 // True if this is a temporary file which should not be output.
4860 bool is_temporary_;
4861 };
4862
4863 } // End namespace gold.
4864
4865 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.174982 seconds and 5 git commands to generate.