* common.cc (Symbol_table::do_allocate_commons_list): For incremental
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1025
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1030
1031 // A reloc against a local symbol or local section symbol.
1032
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol);
1037
1038 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1039 unsigned int local_sym_index, unsigned int type,
1040 unsigned int shndx, Address address, bool is_relative,
1041 bool is_symbolless, bool is_section_symbol);
1042
1043 // A reloc against the STT_SECTION symbol of an output section.
1044
1045 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1046 Address address);
1047
1048 Output_reloc(Output_section* os, unsigned int type,
1049 Sized_relobj<size, big_endian>* relobj,
1050 unsigned int shndx, Address address);
1051
1052 // An absolute relocation with no symbol.
1053
1054 Output_reloc(unsigned int type, Output_data* od, Address address);
1055
1056 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1057 unsigned int shndx, Address address);
1058
1059 // A target specific relocation. The target will be called to get
1060 // the symbol index, passing ARG. The type and offset will be set
1061 // as for other relocation types.
1062
1063 Output_reloc(unsigned int type, void* arg, Output_data* od,
1064 Address address);
1065
1066 Output_reloc(unsigned int type, void* arg,
1067 Sized_relobj<size, big_endian>* relobj,
1068 unsigned int shndx, Address address);
1069
1070 // Return the reloc type.
1071 unsigned int
1072 type() const
1073 { return this->type_; }
1074
1075 // Return whether this is a RELATIVE relocation.
1076 bool
1077 is_relative() const
1078 { return this->is_relative_; }
1079
1080 // Return whether this is a relocation which should not use
1081 // a symbol, but which obtains its addend from a symbol.
1082 bool
1083 is_symbolless() const
1084 { return this->is_symbolless_; }
1085
1086 // Return whether this is against a local section symbol.
1087 bool
1088 is_local_section_symbol() const
1089 {
1090 return (this->local_sym_index_ != GSYM_CODE
1091 && this->local_sym_index_ != SECTION_CODE
1092 && this->local_sym_index_ != INVALID_CODE
1093 && this->local_sym_index_ != TARGET_CODE
1094 && this->is_section_symbol_);
1095 }
1096
1097 // Return whether this is a target specific relocation.
1098 bool
1099 is_target_specific() const
1100 { return this->local_sym_index_ == TARGET_CODE; }
1101
1102 // Return the argument to pass to the target for a target specific
1103 // relocation.
1104 void*
1105 target_arg() const
1106 {
1107 gold_assert(this->local_sym_index_ == TARGET_CODE);
1108 return this->u1_.arg;
1109 }
1110
1111 // For a local section symbol, return the offset of the input
1112 // section within the output section. ADDEND is the addend being
1113 // applied to the input section.
1114 Address
1115 local_section_offset(Addend addend) const;
1116
1117 // Get the value of the symbol referred to by a Rel relocation when
1118 // we are adding the given ADDEND.
1119 Address
1120 symbol_value(Addend addend) const;
1121
1122 // If this relocation is against an input section, return the
1123 // relocatable object containing the input section.
1124 Sized_relobj<size, big_endian>*
1125 get_relobj() const
1126 {
1127 if (this->shndx_ == INVALID_CODE)
1128 return NULL;
1129 return this->u2_.relobj;
1130 }
1131
1132 // Write the reloc entry to an output view.
1133 void
1134 write(unsigned char* pov) const;
1135
1136 // Write the offset and info fields to Write_rel.
1137 template<typename Write_rel>
1138 void write_rel(Write_rel*) const;
1139
1140 // This is used when sorting dynamic relocs. Return -1 to sort this
1141 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1142 int
1143 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1144 const;
1145
1146 // Return whether this reloc should be sorted before the argument
1147 // when sorting dynamic relocs.
1148 bool
1149 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1150 r2) const
1151 { return this->compare(r2) < 0; }
1152
1153 private:
1154 // Record that we need a dynamic symbol index.
1155 void
1156 set_needs_dynsym_index();
1157
1158 // Return the symbol index.
1159 unsigned int
1160 get_symbol_index() const;
1161
1162 // Return the output address.
1163 Address
1164 get_address() const;
1165
1166 // Codes for local_sym_index_.
1167 enum
1168 {
1169 // Global symbol.
1170 GSYM_CODE = -1U,
1171 // Output section.
1172 SECTION_CODE = -2U,
1173 // Target specific.
1174 TARGET_CODE = -3U,
1175 // Invalid uninitialized entry.
1176 INVALID_CODE = -4U
1177 };
1178
1179 union
1180 {
1181 // For a local symbol or local section symbol
1182 // (this->local_sym_index_ >= 0), the object. We will never
1183 // generate a relocation against a local symbol in a dynamic
1184 // object; that doesn't make sense. And our callers will always
1185 // be templatized, so we use Sized_relobj here.
1186 Sized_relobj<size, big_endian>* relobj;
1187 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1188 // symbol. If this is NULL, it indicates a relocation against the
1189 // undefined 0 symbol.
1190 Symbol* gsym;
1191 // For a relocation against an output section
1192 // (this->local_sym_index_ == SECTION_CODE), the output section.
1193 Output_section* os;
1194 // For a target specific relocation, an argument to pass to the
1195 // target.
1196 void* arg;
1197 } u1_;
1198 union
1199 {
1200 // If this->shndx_ is not INVALID CODE, the object which holds the
1201 // input section being used to specify the reloc address.
1202 Sized_relobj<size, big_endian>* relobj;
1203 // If this->shndx_ is INVALID_CODE, the output data being used to
1204 // specify the reloc address. This may be NULL if the reloc
1205 // address is absolute.
1206 Output_data* od;
1207 } u2_;
1208 // The address offset within the input section or the Output_data.
1209 Address address_;
1210 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1211 // relocation against an output section, or TARGET_CODE for a target
1212 // specific relocation, or INVALID_CODE for an uninitialized value.
1213 // Otherwise, for a local symbol (this->is_section_symbol_ is
1214 // false), the local symbol index. For a local section symbol
1215 // (this->is_section_symbol_ is true), the section index in the
1216 // input file.
1217 unsigned int local_sym_index_;
1218 // The reloc type--a processor specific code.
1219 unsigned int type_ : 29;
1220 // True if the relocation is a RELATIVE relocation.
1221 bool is_relative_ : 1;
1222 // True if the relocation is one which should not use
1223 // a symbol, but which obtains its addend from a symbol.
1224 bool is_symbolless_ : 1;
1225 // True if the relocation is against a section symbol.
1226 bool is_section_symbol_ : 1;
1227 // If the reloc address is an input section in an object, the
1228 // section index. This is INVALID_CODE if the reloc address is
1229 // specified in some other way.
1230 unsigned int shndx_;
1231 };
1232
1233 // The SHT_RELA version of Output_reloc<>. This is just derived from
1234 // the SHT_REL version of Output_reloc, but it adds an addend.
1235
1236 template<bool dynamic, int size, bool big_endian>
1237 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1238 {
1239 public:
1240 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1241 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1242
1243 // An uninitialized entry.
1244 Output_reloc()
1245 : rel_()
1246 { }
1247
1248 // A reloc against a global symbol.
1249
1250 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1251 Address address, Addend addend, bool is_relative,
1252 bool is_symbolless)
1253 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1254 addend_(addend)
1255 { }
1256
1257 Output_reloc(Symbol* gsym, unsigned int type,
1258 Sized_relobj<size, big_endian>* relobj,
1259 unsigned int shndx, Address address, Addend addend,
1260 bool is_relative, bool is_symbolless)
1261 : rel_(gsym, type, relobj, shndx, address, is_relative,
1262 is_symbolless), addend_(addend)
1263 { }
1264
1265 // A reloc against a local symbol.
1266
1267 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1268 unsigned int local_sym_index, unsigned int type,
1269 Output_data* od, Address address,
1270 Addend addend, bool is_relative,
1271 bool is_symbolless, bool is_section_symbol)
1272 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1273 is_symbolless, is_section_symbol),
1274 addend_(addend)
1275 { }
1276
1277 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1278 unsigned int local_sym_index, unsigned int type,
1279 unsigned int shndx, Address address,
1280 Addend addend, bool is_relative,
1281 bool is_symbolless, bool is_section_symbol)
1282 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1283 is_symbolless, is_section_symbol),
1284 addend_(addend)
1285 { }
1286
1287 // A reloc against the STT_SECTION symbol of an output section.
1288
1289 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1290 Address address, Addend addend)
1291 : rel_(os, type, od, address), addend_(addend)
1292 { }
1293
1294 Output_reloc(Output_section* os, unsigned int type,
1295 Sized_relobj<size, big_endian>* relobj,
1296 unsigned int shndx, Address address, Addend addend)
1297 : rel_(os, type, relobj, shndx, address), addend_(addend)
1298 { }
1299
1300 // An absolute relocation with no symbol.
1301
1302 Output_reloc(unsigned int type, Output_data* od, Address address,
1303 Addend addend)
1304 : rel_(type, od, address), addend_(addend)
1305 { }
1306
1307 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1308 unsigned int shndx, Address address, Addend addend)
1309 : rel_(type, relobj, shndx, address), addend_(addend)
1310 { }
1311
1312 // A target specific relocation. The target will be called to get
1313 // the symbol index and the addend, passing ARG. The type and
1314 // offset will be set as for other relocation types.
1315
1316 Output_reloc(unsigned int type, void* arg, Output_data* od,
1317 Address address, Addend addend)
1318 : rel_(type, arg, od, address), addend_(addend)
1319 { }
1320
1321 Output_reloc(unsigned int type, void* arg,
1322 Sized_relobj<size, big_endian>* relobj,
1323 unsigned int shndx, Address address, Addend addend)
1324 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1325 { }
1326
1327 // Return whether this is a RELATIVE relocation.
1328 bool
1329 is_relative() const
1330 { return this->rel_.is_relative(); }
1331
1332 // Return whether this is a relocation which should not use
1333 // a symbol, but which obtains its addend from a symbol.
1334 bool
1335 is_symbolless() const
1336 { return this->rel_.is_symbolless(); }
1337
1338 // If this relocation is against an input section, return the
1339 // relocatable object containing the input section.
1340 Sized_relobj<size, big_endian>*
1341 get_relobj() const
1342 { return this->rel_.get_relobj(); }
1343
1344 // Write the reloc entry to an output view.
1345 void
1346 write(unsigned char* pov) const;
1347
1348 // Return whether this reloc should be sorted before the argument
1349 // when sorting dynamic relocs.
1350 bool
1351 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1352 r2) const
1353 {
1354 int i = this->rel_.compare(r2.rel_);
1355 if (i < 0)
1356 return true;
1357 else if (i > 0)
1358 return false;
1359 else
1360 return this->addend_ < r2.addend_;
1361 }
1362
1363 private:
1364 // The basic reloc.
1365 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1366 // The addend.
1367 Addend addend_;
1368 };
1369
1370 // Output_data_reloc_generic is a non-template base class for
1371 // Output_data_reloc_base. This gives the generic code a way to hold
1372 // a pointer to a reloc section.
1373
1374 class Output_data_reloc_generic : public Output_section_data_build
1375 {
1376 public:
1377 Output_data_reloc_generic(int size, bool sort_relocs)
1378 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1379 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1380 { }
1381
1382 // Return the number of relative relocs in this section.
1383 size_t
1384 relative_reloc_count() const
1385 { return this->relative_reloc_count_; }
1386
1387 // Whether we should sort the relocs.
1388 bool
1389 sort_relocs() const
1390 { return this->sort_relocs_; }
1391
1392 protected:
1393 // Note that we've added another relative reloc.
1394 void
1395 bump_relative_reloc_count()
1396 { ++this->relative_reloc_count_; }
1397
1398 private:
1399 // The number of relative relocs added to this section. This is to
1400 // support DT_RELCOUNT.
1401 size_t relative_reloc_count_;
1402 // Whether to sort the relocations when writing them out, to make
1403 // the dynamic linker more efficient.
1404 bool sort_relocs_;
1405 };
1406
1407 // Output_data_reloc is used to manage a section containing relocs.
1408 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1409 // indicates whether this is a dynamic relocation or a normal
1410 // relocation. Output_data_reloc_base is a base class.
1411 // Output_data_reloc is the real class, which we specialize based on
1412 // the reloc type.
1413
1414 template<int sh_type, bool dynamic, int size, bool big_endian>
1415 class Output_data_reloc_base : public Output_data_reloc_generic
1416 {
1417 public:
1418 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1419 typedef typename Output_reloc_type::Address Address;
1420 static const int reloc_size =
1421 Reloc_types<sh_type, size, big_endian>::reloc_size;
1422
1423 // Construct the section.
1424 Output_data_reloc_base(bool sort_relocs)
1425 : Output_data_reloc_generic(size, sort_relocs)
1426 { }
1427
1428 protected:
1429 // Write out the data.
1430 void
1431 do_write(Output_file*);
1432
1433 // Set the entry size and the link.
1434 void
1435 do_adjust_output_section(Output_section* os);
1436
1437 // Write to a map file.
1438 void
1439 do_print_to_mapfile(Mapfile* mapfile) const
1440 {
1441 mapfile->print_output_data(this,
1442 (dynamic
1443 ? _("** dynamic relocs")
1444 : _("** relocs")));
1445 }
1446
1447 // Add a relocation entry.
1448 void
1449 add(Output_data* od, const Output_reloc_type& reloc)
1450 {
1451 this->relocs_.push_back(reloc);
1452 this->set_current_data_size(this->relocs_.size() * reloc_size);
1453 od->add_dynamic_reloc();
1454 if (reloc.is_relative())
1455 this->bump_relative_reloc_count();
1456 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1457 if (relobj != NULL)
1458 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1459 }
1460
1461 private:
1462 typedef std::vector<Output_reloc_type> Relocs;
1463
1464 // The class used to sort the relocations.
1465 struct Sort_relocs_comparison
1466 {
1467 bool
1468 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1469 { return r1.sort_before(r2); }
1470 };
1471
1472 // The relocations in this section.
1473 Relocs relocs_;
1474 };
1475
1476 // The class which callers actually create.
1477
1478 template<int sh_type, bool dynamic, int size, bool big_endian>
1479 class Output_data_reloc;
1480
1481 // The SHT_REL version of Output_data_reloc.
1482
1483 template<bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1485 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1486 {
1487 private:
1488 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1489 big_endian> Base;
1490
1491 public:
1492 typedef typename Base::Output_reloc_type Output_reloc_type;
1493 typedef typename Output_reloc_type::Address Address;
1494
1495 Output_data_reloc(bool sr)
1496 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1497 { }
1498
1499 // Add a reloc against a global symbol.
1500
1501 void
1502 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1503 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1504
1505 void
1506 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1507 Sized_relobj<size, big_endian>* relobj,
1508 unsigned int shndx, Address address)
1509 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1510 false, false)); }
1511
1512 // These are to simplify the Copy_relocs class.
1513
1514 void
1515 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1516 Address addend)
1517 {
1518 gold_assert(addend == 0);
1519 this->add_global(gsym, type, od, address);
1520 }
1521
1522 void
1523 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1524 Sized_relobj<size, big_endian>* relobj,
1525 unsigned int shndx, Address address, Address addend)
1526 {
1527 gold_assert(addend == 0);
1528 this->add_global(gsym, type, od, relobj, shndx, address);
1529 }
1530
1531 // Add a RELATIVE reloc against a global symbol. The final relocation
1532 // will not reference the symbol.
1533
1534 void
1535 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1536 Address address)
1537 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1538
1539 void
1540 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1541 Sized_relobj<size, big_endian>* relobj,
1542 unsigned int shndx, Address address)
1543 {
1544 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1545 true, true));
1546 }
1547
1548 // Add a global relocation which does not use a symbol for the relocation,
1549 // but which gets its addend from a symbol.
1550
1551 void
1552 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1553 Output_data* od, Address address)
1554 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1555
1556 void
1557 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1558 Output_data* od,
1559 Sized_relobj<size, big_endian>* relobj,
1560 unsigned int shndx, Address address)
1561 {
1562 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1563 false, true));
1564 }
1565
1566 // Add a reloc against a local symbol.
1567
1568 void
1569 add_local(Sized_relobj<size, big_endian>* relobj,
1570 unsigned int local_sym_index, unsigned int type,
1571 Output_data* od, Address address)
1572 {
1573 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1574 address, false, false, false));
1575 }
1576
1577 void
1578 add_local(Sized_relobj<size, big_endian>* relobj,
1579 unsigned int local_sym_index, unsigned int type,
1580 Output_data* od, unsigned int shndx, Address address)
1581 {
1582 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1583 address, false, false, false));
1584 }
1585
1586 // Add a RELATIVE reloc against a local symbol.
1587
1588 void
1589 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1590 unsigned int local_sym_index, unsigned int type,
1591 Output_data* od, Address address)
1592 {
1593 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1594 address, true, true, false));
1595 }
1596
1597 void
1598 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1599 unsigned int local_sym_index, unsigned int type,
1600 Output_data* od, unsigned int shndx, Address address)
1601 {
1602 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1603 address, true, true, false));
1604 }
1605
1606 // Add a local relocation which does not use a symbol for the relocation,
1607 // but which gets its addend from a symbol.
1608
1609 void
1610 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1611 unsigned int local_sym_index, unsigned int type,
1612 Output_data* od, Address address)
1613 {
1614 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1615 address, false, true, false));
1616 }
1617
1618 void
1619 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1620 unsigned int local_sym_index, unsigned int type,
1621 Output_data* od, unsigned int shndx,
1622 Address address)
1623 {
1624 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1625 address, false, true, false));
1626 }
1627
1628 // Add a reloc against a local section symbol. This will be
1629 // converted into a reloc against the STT_SECTION symbol of the
1630 // output section.
1631
1632 void
1633 add_local_section(Sized_relobj<size, big_endian>* relobj,
1634 unsigned int input_shndx, unsigned int type,
1635 Output_data* od, Address address)
1636 {
1637 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1638 address, false, false, true));
1639 }
1640
1641 void
1642 add_local_section(Sized_relobj<size, big_endian>* relobj,
1643 unsigned int input_shndx, unsigned int type,
1644 Output_data* od, unsigned int shndx, Address address)
1645 {
1646 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1647 address, false, false, true));
1648 }
1649
1650 // A reloc against the STT_SECTION symbol of an output section.
1651 // OS is the Output_section that the relocation refers to; OD is
1652 // the Output_data object being relocated.
1653
1654 void
1655 add_output_section(Output_section* os, unsigned int type,
1656 Output_data* od, Address address)
1657 { this->add(od, Output_reloc_type(os, type, od, address)); }
1658
1659 void
1660 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1661 Sized_relobj<size, big_endian>* relobj,
1662 unsigned int shndx, Address address)
1663 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1664
1665 // Add an absolute relocation.
1666
1667 void
1668 add_absolute(unsigned int type, Output_data* od, Address address)
1669 { this->add(od, Output_reloc_type(type, od, address)); }
1670
1671 void
1672 add_absolute(unsigned int type, Output_data* od,
1673 Sized_relobj<size, big_endian>* relobj,
1674 unsigned int shndx, Address address)
1675 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1676
1677 // Add a target specific relocation. A target which calls this must
1678 // define the reloc_symbol_index and reloc_addend virtual functions.
1679
1680 void
1681 add_target_specific(unsigned int type, void* arg, Output_data* od,
1682 Address address)
1683 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1684
1685 void
1686 add_target_specific(unsigned int type, void* arg, Output_data* od,
1687 Sized_relobj<size, big_endian>* relobj,
1688 unsigned int shndx, Address address)
1689 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1690 };
1691
1692 // The SHT_RELA version of Output_data_reloc.
1693
1694 template<bool dynamic, int size, bool big_endian>
1695 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1696 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1697 {
1698 private:
1699 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1700 big_endian> Base;
1701
1702 public:
1703 typedef typename Base::Output_reloc_type Output_reloc_type;
1704 typedef typename Output_reloc_type::Address Address;
1705 typedef typename Output_reloc_type::Addend Addend;
1706
1707 Output_data_reloc(bool sr)
1708 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1709 { }
1710
1711 // Add a reloc against a global symbol.
1712
1713 void
1714 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1715 Address address, Addend addend)
1716 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1717 false, false)); }
1718
1719 void
1720 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1721 Sized_relobj<size, big_endian>* relobj,
1722 unsigned int shndx, Address address,
1723 Addend addend)
1724 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1725 addend, false, false)); }
1726
1727 // Add a RELATIVE reloc against a global symbol. The final output
1728 // relocation will not reference the symbol, but we must keep the symbol
1729 // information long enough to set the addend of the relocation correctly
1730 // when it is written.
1731
1732 void
1733 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1734 Address address, Addend addend)
1735 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1736 true)); }
1737
1738 void
1739 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1740 Sized_relobj<size, big_endian>* relobj,
1741 unsigned int shndx, Address address, Addend addend)
1742 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1743 addend, true, true)); }
1744
1745 // Add a global relocation which does not use a symbol for the relocation,
1746 // but which gets its addend from a symbol.
1747
1748 void
1749 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1750 Address address, Addend addend)
1751 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1752 false, true)); }
1753
1754 void
1755 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1756 Output_data* od,
1757 Sized_relobj<size, big_endian>* relobj,
1758 unsigned int shndx, Address address, Addend addend)
1759 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1760 addend, false, true)); }
1761
1762 // Add a reloc against a local symbol.
1763
1764 void
1765 add_local(Sized_relobj<size, big_endian>* relobj,
1766 unsigned int local_sym_index, unsigned int type,
1767 Output_data* od, Address address, Addend addend)
1768 {
1769 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1770 addend, false, false, false));
1771 }
1772
1773 void
1774 add_local(Sized_relobj<size, big_endian>* relobj,
1775 unsigned int local_sym_index, unsigned int type,
1776 Output_data* od, unsigned int shndx, Address address,
1777 Addend addend)
1778 {
1779 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1780 address, addend, false, false, false));
1781 }
1782
1783 // Add a RELATIVE reloc against a local symbol.
1784
1785 void
1786 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1787 unsigned int local_sym_index, unsigned int type,
1788 Output_data* od, Address address, Addend addend)
1789 {
1790 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1791 addend, true, true, false));
1792 }
1793
1794 void
1795 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1796 unsigned int local_sym_index, unsigned int type,
1797 Output_data* od, unsigned int shndx, Address address,
1798 Addend addend)
1799 {
1800 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1801 address, addend, true, true, false));
1802 }
1803
1804 // Add a local relocation which does not use a symbol for the relocation,
1805 // but which gets it's addend from a symbol.
1806
1807 void
1808 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1809 unsigned int local_sym_index, unsigned int type,
1810 Output_data* od, Address address, Addend addend)
1811 {
1812 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1813 addend, false, true, false));
1814 }
1815
1816 void
1817 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1818 unsigned int local_sym_index, unsigned int type,
1819 Output_data* od, unsigned int shndx,
1820 Address address, Addend addend)
1821 {
1822 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1823 address, addend, false, true, false));
1824 }
1825
1826 // Add a reloc against a local section symbol. This will be
1827 // converted into a reloc against the STT_SECTION symbol of the
1828 // output section.
1829
1830 void
1831 add_local_section(Sized_relobj<size, big_endian>* relobj,
1832 unsigned int input_shndx, unsigned int type,
1833 Output_data* od, Address address, Addend addend)
1834 {
1835 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1836 addend, false, false, true));
1837 }
1838
1839 void
1840 add_local_section(Sized_relobj<size, big_endian>* relobj,
1841 unsigned int input_shndx, unsigned int type,
1842 Output_data* od, unsigned int shndx, Address address,
1843 Addend addend)
1844 {
1845 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1846 address, addend, false, false, true));
1847 }
1848
1849 // A reloc against the STT_SECTION symbol of an output section.
1850
1851 void
1852 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1853 Address address, Addend addend)
1854 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
1855
1856 void
1857 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1858 Sized_relobj<size, big_endian>* relobj,
1859 unsigned int shndx, Address address, Addend addend)
1860 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
1861 addend)); }
1862
1863 // Add an absolute relocation.
1864
1865 void
1866 add_absolute(unsigned int type, Output_data* od, Address address,
1867 Addend addend)
1868 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1869
1870 void
1871 add_absolute(unsigned int type, Output_data* od,
1872 Sized_relobj<size, big_endian>* relobj,
1873 unsigned int shndx, Address address, Addend addend)
1874 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1875
1876 // Add a target specific relocation. A target which calls this must
1877 // define the reloc_symbol_index and reloc_addend virtual functions.
1878
1879 void
1880 add_target_specific(unsigned int type, void* arg, Output_data* od,
1881 Address address, Addend addend)
1882 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1883
1884 void
1885 add_target_specific(unsigned int type, void* arg, Output_data* od,
1886 Sized_relobj<size, big_endian>* relobj,
1887 unsigned int shndx, Address address, Addend addend)
1888 {
1889 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1890 addend));
1891 }
1892 };
1893
1894 // Output_relocatable_relocs represents a relocation section in a
1895 // relocatable link. The actual data is written out in the target
1896 // hook relocate_for_relocatable. This just saves space for it.
1897
1898 template<int sh_type, int size, bool big_endian>
1899 class Output_relocatable_relocs : public Output_section_data
1900 {
1901 public:
1902 Output_relocatable_relocs(Relocatable_relocs* rr)
1903 : Output_section_data(Output_data::default_alignment_for_size(size)),
1904 rr_(rr)
1905 { }
1906
1907 void
1908 set_final_data_size();
1909
1910 // Write out the data. There is nothing to do here.
1911 void
1912 do_write(Output_file*)
1913 { }
1914
1915 // Write to a map file.
1916 void
1917 do_print_to_mapfile(Mapfile* mapfile) const
1918 { mapfile->print_output_data(this, _("** relocs")); }
1919
1920 private:
1921 // The relocs associated with this input section.
1922 Relocatable_relocs* rr_;
1923 };
1924
1925 // Handle a GROUP section.
1926
1927 template<int size, bool big_endian>
1928 class Output_data_group : public Output_section_data
1929 {
1930 public:
1931 // The constructor clears *INPUT_SHNDXES.
1932 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
1933 section_size_type entry_count,
1934 elfcpp::Elf_Word flags,
1935 std::vector<unsigned int>* input_shndxes);
1936
1937 void
1938 do_write(Output_file*);
1939
1940 // Write to a map file.
1941 void
1942 do_print_to_mapfile(Mapfile* mapfile) const
1943 { mapfile->print_output_data(this, _("** group")); }
1944
1945 // Set final data size.
1946 void
1947 set_final_data_size()
1948 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1949
1950 private:
1951 // The input object.
1952 Sized_relobj_file<size, big_endian>* relobj_;
1953 // The group flag word.
1954 elfcpp::Elf_Word flags_;
1955 // The section indexes of the input sections in this group.
1956 std::vector<unsigned int> input_shndxes_;
1957 };
1958
1959 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1960 // for one symbol--either a global symbol or a local symbol in an
1961 // object. The target specific code adds entries to the GOT as
1962 // needed.
1963
1964 template<int size, bool big_endian>
1965 class Output_data_got : public Output_section_data_build
1966 {
1967 public:
1968 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1969 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1970 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1971
1972 Output_data_got()
1973 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1974 entries_(), free_list_()
1975 { }
1976
1977 Output_data_got(off_t data_size)
1978 : Output_section_data_build(data_size,
1979 Output_data::default_alignment_for_size(size)),
1980 entries_(), free_list_()
1981 {
1982 // For an incremental update, we have an existing GOT section.
1983 // Initialize the list of entries and the free list.
1984 this->entries_.resize(data_size / (size / 8));
1985 this->free_list_.init(data_size, false);
1986 }
1987
1988 // Add an entry for a global symbol to the GOT. Return true if this
1989 // is a new GOT entry, false if the symbol was already in the GOT.
1990 bool
1991 add_global(Symbol* gsym, unsigned int got_type);
1992
1993 // Like add_global, but use the PLT offset of the global symbol if
1994 // it has one.
1995 bool
1996 add_global_plt(Symbol* gsym, unsigned int got_type);
1997
1998 // Add an entry for a global symbol to the GOT, and add a dynamic
1999 // relocation of type R_TYPE for the GOT entry.
2000 void
2001 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2002 Rel_dyn* rel_dyn, unsigned int r_type);
2003
2004 void
2005 add_global_with_rela(Symbol* gsym, unsigned int got_type,
2006 Rela_dyn* rela_dyn, unsigned int r_type);
2007
2008 // Add a pair of entries for a global symbol to the GOT, and add
2009 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2010 void
2011 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2012 Rel_dyn* rel_dyn, unsigned int r_type_1,
2013 unsigned int r_type_2);
2014
2015 void
2016 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
2017 Rela_dyn* rela_dyn, unsigned int r_type_1,
2018 unsigned int r_type_2);
2019
2020 // Add an entry for a local symbol to the GOT. This returns true if
2021 // this is a new GOT entry, false if the symbol already has a GOT
2022 // entry.
2023 bool
2024 add_local(Sized_relobj_file<size, big_endian>* object, unsigned int sym_index,
2025 unsigned int got_type);
2026
2027 // Like add_local, but use the PLT offset of the local symbol if it
2028 // has one.
2029 bool
2030 add_local_plt(Sized_relobj_file<size, big_endian>* object,
2031 unsigned int sym_index,
2032 unsigned int got_type);
2033
2034 // Add an entry for a local symbol to the GOT, and add a dynamic
2035 // relocation of type R_TYPE for the GOT entry.
2036 void
2037 add_local_with_rel(Sized_relobj_file<size, big_endian>* object,
2038 unsigned int sym_index, unsigned int got_type,
2039 Rel_dyn* rel_dyn, unsigned int r_type);
2040
2041 void
2042 add_local_with_rela(Sized_relobj_file<size, big_endian>* object,
2043 unsigned int sym_index, unsigned int got_type,
2044 Rela_dyn* rela_dyn, unsigned int r_type);
2045
2046 // Add a pair of entries for a local symbol to the GOT, and add
2047 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2048 void
2049 add_local_pair_with_rel(Sized_relobj_file<size, big_endian>* object,
2050 unsigned int sym_index, unsigned int shndx,
2051 unsigned int got_type, Rel_dyn* rel_dyn,
2052 unsigned int r_type_1, unsigned int r_type_2);
2053
2054 void
2055 add_local_pair_with_rela(Sized_relobj_file<size, big_endian>* object,
2056 unsigned int sym_index, unsigned int shndx,
2057 unsigned int got_type, Rela_dyn* rela_dyn,
2058 unsigned int r_type_1, unsigned int r_type_2);
2059
2060 // Add a constant to the GOT. This returns the offset of the new
2061 // entry from the start of the GOT.
2062 unsigned int
2063 add_constant(Valtype constant)
2064 {
2065 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2066 return got_offset;
2067 }
2068
2069 // Reserve a slot in the GOT.
2070 void
2071 reserve_slot(unsigned int i)
2072 { this->free_list_.remove(i * size / 8, (i + 1) * size / 8); }
2073
2074 // Reserve a slot in the GOT for a local symbol.
2075 void
2076 reserve_local(unsigned int i, Sized_relobj<size, big_endian>* object,
2077 unsigned int sym_index, unsigned int got_type);
2078
2079 // Reserve a slot in the GOT for a global symbol.
2080 void
2081 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2082
2083 protected:
2084 // Write out the GOT table.
2085 void
2086 do_write(Output_file*);
2087
2088 // Write to a map file.
2089 void
2090 do_print_to_mapfile(Mapfile* mapfile) const
2091 { mapfile->print_output_data(this, _("** GOT")); }
2092
2093 private:
2094 // This POD class holds a single GOT entry.
2095 class Got_entry
2096 {
2097 public:
2098 // Create a zero entry.
2099 Got_entry()
2100 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2101 { this->u_.constant = 0; }
2102
2103 // Create a global symbol entry.
2104 Got_entry(Symbol* gsym, bool use_plt_offset)
2105 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2106 { this->u_.gsym = gsym; }
2107
2108 // Create a local symbol entry.
2109 Got_entry(Sized_relobj_file<size, big_endian>* object,
2110 unsigned int local_sym_index, bool use_plt_offset)
2111 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2112 {
2113 gold_assert(local_sym_index != GSYM_CODE
2114 && local_sym_index != CONSTANT_CODE
2115 && local_sym_index != RESERVED_CODE
2116 && local_sym_index == this->local_sym_index_);
2117 this->u_.object = object;
2118 }
2119
2120 // Create a constant entry. The constant is a host value--it will
2121 // be swapped, if necessary, when it is written out.
2122 explicit Got_entry(Valtype constant)
2123 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2124 { this->u_.constant = constant; }
2125
2126 // Write the GOT entry to an output view.
2127 void
2128 write(unsigned char* pov) const;
2129
2130 private:
2131 enum
2132 {
2133 GSYM_CODE = 0x7fffffff,
2134 CONSTANT_CODE = 0x7ffffffe,
2135 RESERVED_CODE = 0x7ffffffd
2136 };
2137
2138 union
2139 {
2140 // For a local symbol, the object.
2141 Sized_relobj_file<size, big_endian>* object;
2142 // For a global symbol, the symbol.
2143 Symbol* gsym;
2144 // For a constant, the constant.
2145 Valtype constant;
2146 } u_;
2147 // For a local symbol, the local symbol index. This is GSYM_CODE
2148 // for a global symbol, or CONSTANT_CODE for a constant.
2149 unsigned int local_sym_index_ : 31;
2150 // Whether to use the PLT offset of the symbol if it has one.
2151 bool use_plt_offset_ : 1;
2152 };
2153
2154 typedef std::vector<Got_entry> Got_entries;
2155
2156 // Create a new GOT entry and return its offset.
2157 unsigned int
2158 add_got_entry(Got_entry got_entry);
2159
2160 // Create a pair of new GOT entries and return the offset of the first.
2161 unsigned int
2162 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2163
2164 // Return the offset into the GOT of GOT entry I.
2165 unsigned int
2166 got_offset(unsigned int i) const
2167 { return i * (size / 8); }
2168
2169 // Return the offset into the GOT of the last entry added.
2170 unsigned int
2171 last_got_offset() const
2172 { return this->got_offset(this->entries_.size() - 1); }
2173
2174 // Set the size of the section.
2175 void
2176 set_got_size()
2177 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2178
2179 // The list of GOT entries.
2180 Got_entries entries_;
2181
2182 // List of available regions within the section, for incremental
2183 // update links.
2184 Free_list free_list_;
2185 };
2186
2187 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2188 // section.
2189
2190 class Output_data_dynamic : public Output_section_data
2191 {
2192 public:
2193 Output_data_dynamic(Stringpool* pool)
2194 : Output_section_data(Output_data::default_alignment()),
2195 entries_(), pool_(pool)
2196 { }
2197
2198 // Add a new dynamic entry with a fixed numeric value.
2199 void
2200 add_constant(elfcpp::DT tag, unsigned int val)
2201 { this->add_entry(Dynamic_entry(tag, val)); }
2202
2203 // Add a new dynamic entry with the address of output data.
2204 void
2205 add_section_address(elfcpp::DT tag, const Output_data* od)
2206 { this->add_entry(Dynamic_entry(tag, od, false)); }
2207
2208 // Add a new dynamic entry with the address of output data
2209 // plus a constant offset.
2210 void
2211 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2212 unsigned int offset)
2213 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2214
2215 // Add a new dynamic entry with the size of output data.
2216 void
2217 add_section_size(elfcpp::DT tag, const Output_data* od)
2218 { this->add_entry(Dynamic_entry(tag, od, true)); }
2219
2220 // Add a new dynamic entry with the total size of two output datas.
2221 void
2222 add_section_size(elfcpp::DT tag, const Output_data* od,
2223 const Output_data* od2)
2224 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2225
2226 // Add a new dynamic entry with the address of a symbol.
2227 void
2228 add_symbol(elfcpp::DT tag, const Symbol* sym)
2229 { this->add_entry(Dynamic_entry(tag, sym)); }
2230
2231 // Add a new dynamic entry with a string.
2232 void
2233 add_string(elfcpp::DT tag, const char* str)
2234 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2235
2236 void
2237 add_string(elfcpp::DT tag, const std::string& str)
2238 { this->add_string(tag, str.c_str()); }
2239
2240 protected:
2241 // Adjust the output section to set the entry size.
2242 void
2243 do_adjust_output_section(Output_section*);
2244
2245 // Set the final data size.
2246 void
2247 set_final_data_size();
2248
2249 // Write out the dynamic entries.
2250 void
2251 do_write(Output_file*);
2252
2253 // Write to a map file.
2254 void
2255 do_print_to_mapfile(Mapfile* mapfile) const
2256 { mapfile->print_output_data(this, _("** dynamic")); }
2257
2258 private:
2259 // This POD class holds a single dynamic entry.
2260 class Dynamic_entry
2261 {
2262 public:
2263 // Create an entry with a fixed numeric value.
2264 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2265 : tag_(tag), offset_(DYNAMIC_NUMBER)
2266 { this->u_.val = val; }
2267
2268 // Create an entry with the size or address of a section.
2269 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2270 : tag_(tag),
2271 offset_(section_size
2272 ? DYNAMIC_SECTION_SIZE
2273 : DYNAMIC_SECTION_ADDRESS)
2274 {
2275 this->u_.od = od;
2276 this->od2 = NULL;
2277 }
2278
2279 // Create an entry with the size of two sections.
2280 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2281 : tag_(tag),
2282 offset_(DYNAMIC_SECTION_SIZE)
2283 {
2284 this->u_.od = od;
2285 this->od2 = od2;
2286 }
2287
2288 // Create an entry with the address of a section plus a constant offset.
2289 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2290 : tag_(tag),
2291 offset_(offset)
2292 { this->u_.od = od; }
2293
2294 // Create an entry with the address of a symbol.
2295 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2296 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2297 { this->u_.sym = sym; }
2298
2299 // Create an entry with a string.
2300 Dynamic_entry(elfcpp::DT tag, const char* str)
2301 : tag_(tag), offset_(DYNAMIC_STRING)
2302 { this->u_.str = str; }
2303
2304 // Return the tag of this entry.
2305 elfcpp::DT
2306 tag() const
2307 { return this->tag_; }
2308
2309 // Write the dynamic entry to an output view.
2310 template<int size, bool big_endian>
2311 void
2312 write(unsigned char* pov, const Stringpool*) const;
2313
2314 private:
2315 // Classification is encoded in the OFFSET field.
2316 enum Classification
2317 {
2318 // Section address.
2319 DYNAMIC_SECTION_ADDRESS = 0,
2320 // Number.
2321 DYNAMIC_NUMBER = -1U,
2322 // Section size.
2323 DYNAMIC_SECTION_SIZE = -2U,
2324 // Symbol adress.
2325 DYNAMIC_SYMBOL = -3U,
2326 // String.
2327 DYNAMIC_STRING = -4U
2328 // Any other value indicates a section address plus OFFSET.
2329 };
2330
2331 union
2332 {
2333 // For DYNAMIC_NUMBER.
2334 unsigned int val;
2335 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2336 const Output_data* od;
2337 // For DYNAMIC_SYMBOL.
2338 const Symbol* sym;
2339 // For DYNAMIC_STRING.
2340 const char* str;
2341 } u_;
2342 // For DYNAMIC_SYMBOL with two sections.
2343 const Output_data* od2;
2344 // The dynamic tag.
2345 elfcpp::DT tag_;
2346 // The type of entry (Classification) or offset within a section.
2347 unsigned int offset_;
2348 };
2349
2350 // Add an entry to the list.
2351 void
2352 add_entry(const Dynamic_entry& entry)
2353 { this->entries_.push_back(entry); }
2354
2355 // Sized version of write function.
2356 template<int size, bool big_endian>
2357 void
2358 sized_write(Output_file* of);
2359
2360 // The type of the list of entries.
2361 typedef std::vector<Dynamic_entry> Dynamic_entries;
2362
2363 // The entries.
2364 Dynamic_entries entries_;
2365 // The pool used for strings.
2366 Stringpool* pool_;
2367 };
2368
2369 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2370 // which may be required if the object file has more than
2371 // SHN_LORESERVE sections.
2372
2373 class Output_symtab_xindex : public Output_section_data
2374 {
2375 public:
2376 Output_symtab_xindex(size_t symcount)
2377 : Output_section_data(symcount * 4, 4, true),
2378 entries_()
2379 { }
2380
2381 // Add an entry: symbol number SYMNDX has section SHNDX.
2382 void
2383 add(unsigned int symndx, unsigned int shndx)
2384 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2385
2386 protected:
2387 void
2388 do_write(Output_file*);
2389
2390 // Write to a map file.
2391 void
2392 do_print_to_mapfile(Mapfile* mapfile) const
2393 { mapfile->print_output_data(this, _("** symtab xindex")); }
2394
2395 private:
2396 template<bool big_endian>
2397 void
2398 endian_do_write(unsigned char*);
2399
2400 // It is likely that most symbols will not require entries. Rather
2401 // than keep a vector for all symbols, we keep pairs of symbol index
2402 // and section index.
2403 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2404
2405 // The entries we need.
2406 Xindex_entries entries_;
2407 };
2408
2409 // A relaxed input section.
2410 class Output_relaxed_input_section : public Output_section_data_build
2411 {
2412 public:
2413 // We would like to call relobj->section_addralign(shndx) to get the
2414 // alignment but we do not want the constructor to fail. So callers
2415 // are repsonsible for ensuring that.
2416 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2417 uint64_t addralign)
2418 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2419 { }
2420
2421 // Return the Relobj of this relaxed input section.
2422 Relobj*
2423 relobj() const
2424 { return this->relobj_; }
2425
2426 // Return the section index of this relaxed input section.
2427 unsigned int
2428 shndx() const
2429 { return this->shndx_; }
2430
2431 private:
2432 Relobj* relobj_;
2433 unsigned int shndx_;
2434 };
2435
2436 // This class describes properties of merge data sections. It is used
2437 // as a key type for maps.
2438 class Merge_section_properties
2439 {
2440 public:
2441 Merge_section_properties(bool is_string, uint64_t entsize,
2442 uint64_t addralign)
2443 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2444 { }
2445
2446 // Whether this equals to another Merge_section_properties MSP.
2447 bool
2448 eq(const Merge_section_properties& msp) const
2449 {
2450 return ((this->is_string_ == msp.is_string_)
2451 && (this->entsize_ == msp.entsize_)
2452 && (this->addralign_ == msp.addralign_));
2453 }
2454
2455 // Compute a hash value for this using 64-bit FNV-1a hash.
2456 size_t
2457 hash_value() const
2458 {
2459 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2460 uint64_t prime = 1099511628211ULL;
2461 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2462 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2463 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2464 return h;
2465 }
2466
2467 // Functors for associative containers.
2468 struct equal_to
2469 {
2470 bool
2471 operator()(const Merge_section_properties& msp1,
2472 const Merge_section_properties& msp2) const
2473 { return msp1.eq(msp2); }
2474 };
2475
2476 struct hash
2477 {
2478 size_t
2479 operator()(const Merge_section_properties& msp) const
2480 { return msp.hash_value(); }
2481 };
2482
2483 private:
2484 // Whether this merge data section is for strings.
2485 bool is_string_;
2486 // Entsize of this merge data section.
2487 uint64_t entsize_;
2488 // Address alignment.
2489 uint64_t addralign_;
2490 };
2491
2492 // This class is used to speed up look up of special input sections in an
2493 // Output_section.
2494
2495 class Output_section_lookup_maps
2496 {
2497 public:
2498 Output_section_lookup_maps()
2499 : is_valid_(true), merge_sections_by_properties_(),
2500 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2501 { }
2502
2503 // Whether the maps are valid.
2504 bool
2505 is_valid() const
2506 { return this->is_valid_; }
2507
2508 // Invalidate the maps.
2509 void
2510 invalidate()
2511 { this->is_valid_ = false; }
2512
2513 // Clear the maps.
2514 void
2515 clear()
2516 {
2517 this->merge_sections_by_properties_.clear();
2518 this->merge_sections_by_id_.clear();
2519 this->relaxed_input_sections_by_id_.clear();
2520 // A cleared map is valid.
2521 this->is_valid_ = true;
2522 }
2523
2524 // Find a merge section by merge section properties. Return NULL if none
2525 // is found.
2526 Output_merge_base*
2527 find_merge_section(const Merge_section_properties& msp) const
2528 {
2529 gold_assert(this->is_valid_);
2530 Merge_sections_by_properties::const_iterator p =
2531 this->merge_sections_by_properties_.find(msp);
2532 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2533 }
2534
2535 // Find a merge section by section ID of a merge input section. Return NULL
2536 // if none is found.
2537 Output_merge_base*
2538 find_merge_section(const Object* object, unsigned int shndx) const
2539 {
2540 gold_assert(this->is_valid_);
2541 Merge_sections_by_id::const_iterator p =
2542 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2543 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2544 }
2545
2546 // Add a merge section pointed by POMB with properties MSP.
2547 void
2548 add_merge_section(const Merge_section_properties& msp,
2549 Output_merge_base* pomb)
2550 {
2551 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2552 std::pair<Merge_sections_by_properties::iterator, bool> result =
2553 this->merge_sections_by_properties_.insert(value);
2554 gold_assert(result.second);
2555 }
2556
2557 // Add a mapping from a merged input section in OBJECT with index SHNDX
2558 // to a merge output section pointed by POMB.
2559 void
2560 add_merge_input_section(const Object* object, unsigned int shndx,
2561 Output_merge_base* pomb)
2562 {
2563 Const_section_id csid(object, shndx);
2564 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2565 std::pair<Merge_sections_by_id::iterator, bool> result =
2566 this->merge_sections_by_id_.insert(value);
2567 gold_assert(result.second);
2568 }
2569
2570 // Find a relaxed input section of OBJECT with index SHNDX.
2571 Output_relaxed_input_section*
2572 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2573 {
2574 gold_assert(this->is_valid_);
2575 Relaxed_input_sections_by_id::const_iterator p =
2576 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2577 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2578 }
2579
2580 // Add a relaxed input section pointed by POMB and whose original input
2581 // section is in OBJECT with index SHNDX.
2582 void
2583 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2584 Output_relaxed_input_section* poris)
2585 {
2586 Const_section_id csid(relobj, shndx);
2587 std::pair<Const_section_id, Output_relaxed_input_section*>
2588 value(csid, poris);
2589 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2590 this->relaxed_input_sections_by_id_.insert(value);
2591 gold_assert(result.second);
2592 }
2593
2594 private:
2595 typedef Unordered_map<Const_section_id, Output_merge_base*,
2596 Const_section_id_hash>
2597 Merge_sections_by_id;
2598
2599 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2600 Merge_section_properties::hash,
2601 Merge_section_properties::equal_to>
2602 Merge_sections_by_properties;
2603
2604 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2605 Const_section_id_hash>
2606 Relaxed_input_sections_by_id;
2607
2608 // Whether this is valid
2609 bool is_valid_;
2610 // Merge sections by merge section properties.
2611 Merge_sections_by_properties merge_sections_by_properties_;
2612 // Merge sections by section IDs.
2613 Merge_sections_by_id merge_sections_by_id_;
2614 // Relaxed sections by section IDs.
2615 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2616 };
2617
2618 // An output section. We don't expect to have too many output
2619 // sections, so we don't bother to do a template on the size.
2620
2621 class Output_section : public Output_data
2622 {
2623 public:
2624 // Create an output section, giving the name, type, and flags.
2625 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2626 virtual ~Output_section();
2627
2628 // Add a new input section SHNDX, named NAME, with header SHDR, from
2629 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2630 // which applies to this section, or 0 if none, or -1 if more than
2631 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2632 // in a linker script; in that case we need to keep track of input
2633 // sections associated with an output section. Return the offset
2634 // within the output section.
2635 template<int size, bool big_endian>
2636 off_t
2637 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2638 unsigned int shndx, const char* name,
2639 const elfcpp::Shdr<size, big_endian>& shdr,
2640 unsigned int reloc_shndx, bool have_sections_script);
2641
2642 // Add generated data POSD to this output section.
2643 void
2644 add_output_section_data(Output_section_data* posd);
2645
2646 // Add a relaxed input section PORIS called NAME to this output section
2647 // with LAYOUT.
2648 void
2649 add_relaxed_input_section(Layout* layout,
2650 Output_relaxed_input_section* poris,
2651 const std::string& name);
2652
2653 // Return the section name.
2654 const char*
2655 name() const
2656 { return this->name_; }
2657
2658 // Return the section type.
2659 elfcpp::Elf_Word
2660 type() const
2661 { return this->type_; }
2662
2663 // Return the section flags.
2664 elfcpp::Elf_Xword
2665 flags() const
2666 { return this->flags_; }
2667
2668 // Update the output section flags based on input section flags.
2669 void
2670 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2671
2672 // Return the entsize field.
2673 uint64_t
2674 entsize() const
2675 { return this->entsize_; }
2676
2677 // Set the entsize field.
2678 void
2679 set_entsize(uint64_t v);
2680
2681 // Set the load address.
2682 void
2683 set_load_address(uint64_t load_address)
2684 {
2685 this->load_address_ = load_address;
2686 this->has_load_address_ = true;
2687 }
2688
2689 // Set the link field to the output section index of a section.
2690 void
2691 set_link_section(const Output_data* od)
2692 {
2693 gold_assert(this->link_ == 0
2694 && !this->should_link_to_symtab_
2695 && !this->should_link_to_dynsym_);
2696 this->link_section_ = od;
2697 }
2698
2699 // Set the link field to a constant.
2700 void
2701 set_link(unsigned int v)
2702 {
2703 gold_assert(this->link_section_ == NULL
2704 && !this->should_link_to_symtab_
2705 && !this->should_link_to_dynsym_);
2706 this->link_ = v;
2707 }
2708
2709 // Record that this section should link to the normal symbol table.
2710 void
2711 set_should_link_to_symtab()
2712 {
2713 gold_assert(this->link_section_ == NULL
2714 && this->link_ == 0
2715 && !this->should_link_to_dynsym_);
2716 this->should_link_to_symtab_ = true;
2717 }
2718
2719 // Record that this section should link to the dynamic symbol table.
2720 void
2721 set_should_link_to_dynsym()
2722 {
2723 gold_assert(this->link_section_ == NULL
2724 && this->link_ == 0
2725 && !this->should_link_to_symtab_);
2726 this->should_link_to_dynsym_ = true;
2727 }
2728
2729 // Return the info field.
2730 unsigned int
2731 info() const
2732 {
2733 gold_assert(this->info_section_ == NULL
2734 && this->info_symndx_ == NULL);
2735 return this->info_;
2736 }
2737
2738 // Set the info field to the output section index of a section.
2739 void
2740 set_info_section(const Output_section* os)
2741 {
2742 gold_assert((this->info_section_ == NULL
2743 || (this->info_section_ == os
2744 && this->info_uses_section_index_))
2745 && this->info_symndx_ == NULL
2746 && this->info_ == 0);
2747 this->info_section_ = os;
2748 this->info_uses_section_index_= true;
2749 }
2750
2751 // Set the info field to the symbol table index of a symbol.
2752 void
2753 set_info_symndx(const Symbol* sym)
2754 {
2755 gold_assert(this->info_section_ == NULL
2756 && (this->info_symndx_ == NULL
2757 || this->info_symndx_ == sym)
2758 && this->info_ == 0);
2759 this->info_symndx_ = sym;
2760 }
2761
2762 // Set the info field to the symbol table index of a section symbol.
2763 void
2764 set_info_section_symndx(const Output_section* os)
2765 {
2766 gold_assert((this->info_section_ == NULL
2767 || (this->info_section_ == os
2768 && !this->info_uses_section_index_))
2769 && this->info_symndx_ == NULL
2770 && this->info_ == 0);
2771 this->info_section_ = os;
2772 this->info_uses_section_index_ = false;
2773 }
2774
2775 // Set the info field to a constant.
2776 void
2777 set_info(unsigned int v)
2778 {
2779 gold_assert(this->info_section_ == NULL
2780 && this->info_symndx_ == NULL
2781 && (this->info_ == 0
2782 || this->info_ == v));
2783 this->info_ = v;
2784 }
2785
2786 // Set the addralign field.
2787 void
2788 set_addralign(uint64_t v)
2789 { this->addralign_ = v; }
2790
2791 // Whether the output section index has been set.
2792 bool
2793 has_out_shndx() const
2794 { return this->out_shndx_ != -1U; }
2795
2796 // Indicate that we need a symtab index.
2797 void
2798 set_needs_symtab_index()
2799 { this->needs_symtab_index_ = true; }
2800
2801 // Return whether we need a symtab index.
2802 bool
2803 needs_symtab_index() const
2804 { return this->needs_symtab_index_; }
2805
2806 // Get the symtab index.
2807 unsigned int
2808 symtab_index() const
2809 {
2810 gold_assert(this->symtab_index_ != 0);
2811 return this->symtab_index_;
2812 }
2813
2814 // Set the symtab index.
2815 void
2816 set_symtab_index(unsigned int index)
2817 {
2818 gold_assert(index != 0);
2819 this->symtab_index_ = index;
2820 }
2821
2822 // Indicate that we need a dynsym index.
2823 void
2824 set_needs_dynsym_index()
2825 { this->needs_dynsym_index_ = true; }
2826
2827 // Return whether we need a dynsym index.
2828 bool
2829 needs_dynsym_index() const
2830 { return this->needs_dynsym_index_; }
2831
2832 // Get the dynsym index.
2833 unsigned int
2834 dynsym_index() const
2835 {
2836 gold_assert(this->dynsym_index_ != 0);
2837 return this->dynsym_index_;
2838 }
2839
2840 // Set the dynsym index.
2841 void
2842 set_dynsym_index(unsigned int index)
2843 {
2844 gold_assert(index != 0);
2845 this->dynsym_index_ = index;
2846 }
2847
2848 // Return whether the input sections sections attachd to this output
2849 // section may require sorting. This is used to handle constructor
2850 // priorities compatibly with GNU ld.
2851 bool
2852 may_sort_attached_input_sections() const
2853 { return this->may_sort_attached_input_sections_; }
2854
2855 // Record that the input sections attached to this output section
2856 // may require sorting.
2857 void
2858 set_may_sort_attached_input_sections()
2859 { this->may_sort_attached_input_sections_ = true; }
2860
2861 // Returns true if input sections must be sorted according to the
2862 // order in which their name appear in the --section-ordering-file.
2863 bool
2864 input_section_order_specified()
2865 { return this->input_section_order_specified_; }
2866
2867 // Record that input sections must be sorted as some of their names
2868 // match the patterns specified through --section-ordering-file.
2869 void
2870 set_input_section_order_specified()
2871 { this->input_section_order_specified_ = true; }
2872
2873 // Return whether the input sections attached to this output section
2874 // require sorting. This is used to handle constructor priorities
2875 // compatibly with GNU ld.
2876 bool
2877 must_sort_attached_input_sections() const
2878 { return this->must_sort_attached_input_sections_; }
2879
2880 // Record that the input sections attached to this output section
2881 // require sorting.
2882 void
2883 set_must_sort_attached_input_sections()
2884 { this->must_sort_attached_input_sections_ = true; }
2885
2886 // Get the order in which this section appears in the PT_LOAD output
2887 // segment.
2888 Output_section_order
2889 order() const
2890 { return this->order_; }
2891
2892 // Set the order for this section.
2893 void
2894 set_order(Output_section_order order)
2895 { this->order_ = order; }
2896
2897 // Return whether this section holds relro data--data which has
2898 // dynamic relocations but which may be marked read-only after the
2899 // dynamic relocations have been completed.
2900 bool
2901 is_relro() const
2902 { return this->is_relro_; }
2903
2904 // Record that this section holds relro data.
2905 void
2906 set_is_relro()
2907 { this->is_relro_ = true; }
2908
2909 // Record that this section does not hold relro data.
2910 void
2911 clear_is_relro()
2912 { this->is_relro_ = false; }
2913
2914 // True if this is a small section: a section which holds small
2915 // variables.
2916 bool
2917 is_small_section() const
2918 { return this->is_small_section_; }
2919
2920 // Record that this is a small section.
2921 void
2922 set_is_small_section()
2923 { this->is_small_section_ = true; }
2924
2925 // True if this is a large section: a section which holds large
2926 // variables.
2927 bool
2928 is_large_section() const
2929 { return this->is_large_section_; }
2930
2931 // Record that this is a large section.
2932 void
2933 set_is_large_section()
2934 { this->is_large_section_ = true; }
2935
2936 // True if this is a large data (not BSS) section.
2937 bool
2938 is_large_data_section()
2939 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2940
2941 // Return whether this section should be written after all the input
2942 // sections are complete.
2943 bool
2944 after_input_sections() const
2945 { return this->after_input_sections_; }
2946
2947 // Record that this section should be written after all the input
2948 // sections are complete.
2949 void
2950 set_after_input_sections()
2951 { this->after_input_sections_ = true; }
2952
2953 // Return whether this section requires postprocessing after all
2954 // relocations have been applied.
2955 bool
2956 requires_postprocessing() const
2957 { return this->requires_postprocessing_; }
2958
2959 // If a section requires postprocessing, return the buffer to use.
2960 unsigned char*
2961 postprocessing_buffer() const
2962 {
2963 gold_assert(this->postprocessing_buffer_ != NULL);
2964 return this->postprocessing_buffer_;
2965 }
2966
2967 // If a section requires postprocessing, create the buffer to use.
2968 void
2969 create_postprocessing_buffer();
2970
2971 // If a section requires postprocessing, this is the size of the
2972 // buffer to which relocations should be applied.
2973 off_t
2974 postprocessing_buffer_size() const
2975 { return this->current_data_size_for_child(); }
2976
2977 // Modify the section name. This is only permitted for an
2978 // unallocated section, and only before the size has been finalized.
2979 // Otherwise the name will not get into Layout::namepool_.
2980 void
2981 set_name(const char* newname)
2982 {
2983 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2984 gold_assert(!this->is_data_size_valid());
2985 this->name_ = newname;
2986 }
2987
2988 // Return whether the offset OFFSET in the input section SHNDX in
2989 // object OBJECT is being included in the link.
2990 bool
2991 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2992 off_t offset) const;
2993
2994 // Return the offset within the output section of OFFSET relative to
2995 // the start of input section SHNDX in object OBJECT.
2996 section_offset_type
2997 output_offset(const Relobj* object, unsigned int shndx,
2998 section_offset_type offset) const;
2999
3000 // Return the output virtual address of OFFSET relative to the start
3001 // of input section SHNDX in object OBJECT.
3002 uint64_t
3003 output_address(const Relobj* object, unsigned int shndx,
3004 off_t offset) const;
3005
3006 // Look for the merged section for input section SHNDX in object
3007 // OBJECT. If found, return true, and set *ADDR to the address of
3008 // the start of the merged section. This is not necessary the
3009 // output offset corresponding to input offset 0 in the section,
3010 // since the section may be mapped arbitrarily.
3011 bool
3012 find_starting_output_address(const Relobj* object, unsigned int shndx,
3013 uint64_t* addr) const;
3014
3015 // Record that this output section was found in the SECTIONS clause
3016 // of a linker script.
3017 void
3018 set_found_in_sections_clause()
3019 { this->found_in_sections_clause_ = true; }
3020
3021 // Return whether this output section was found in the SECTIONS
3022 // clause of a linker script.
3023 bool
3024 found_in_sections_clause() const
3025 { return this->found_in_sections_clause_; }
3026
3027 // Write the section header into *OPHDR.
3028 template<int size, bool big_endian>
3029 void
3030 write_header(const Layout*, const Stringpool*,
3031 elfcpp::Shdr_write<size, big_endian>*) const;
3032
3033 // The next few calls are for linker script support.
3034
3035 // In some cases we need to keep a list of the input sections
3036 // associated with this output section. We only need the list if we
3037 // might have to change the offsets of the input section within the
3038 // output section after we add the input section. The ordinary
3039 // input sections will be written out when we process the object
3040 // file, and as such we don't need to track them here. We do need
3041 // to track Output_section_data objects here. We store instances of
3042 // this structure in a std::vector, so it must be a POD. There can
3043 // be many instances of this structure, so we use a union to save
3044 // some space.
3045 class Input_section
3046 {
3047 public:
3048 Input_section()
3049 : shndx_(0), p2align_(0)
3050 {
3051 this->u1_.data_size = 0;
3052 this->u2_.object = NULL;
3053 }
3054
3055 // For an ordinary input section.
3056 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3057 uint64_t addralign)
3058 : shndx_(shndx),
3059 p2align_(ffsll(static_cast<long long>(addralign))),
3060 section_order_index_(0)
3061 {
3062 gold_assert(shndx != OUTPUT_SECTION_CODE
3063 && shndx != MERGE_DATA_SECTION_CODE
3064 && shndx != MERGE_STRING_SECTION_CODE
3065 && shndx != RELAXED_INPUT_SECTION_CODE);
3066 this->u1_.data_size = data_size;
3067 this->u2_.object = object;
3068 }
3069
3070 // For a non-merge output section.
3071 Input_section(Output_section_data* posd)
3072 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3073 section_order_index_(0)
3074 {
3075 this->u1_.data_size = 0;
3076 this->u2_.posd = posd;
3077 }
3078
3079 // For a merge section.
3080 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3081 : shndx_(is_string
3082 ? MERGE_STRING_SECTION_CODE
3083 : MERGE_DATA_SECTION_CODE),
3084 p2align_(0),
3085 section_order_index_(0)
3086 {
3087 this->u1_.entsize = entsize;
3088 this->u2_.posd = posd;
3089 }
3090
3091 // For a relaxed input section.
3092 Input_section(Output_relaxed_input_section* psection)
3093 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3094 section_order_index_(0)
3095 {
3096 this->u1_.data_size = 0;
3097 this->u2_.poris = psection;
3098 }
3099
3100 unsigned int
3101 section_order_index() const
3102 {
3103 return this->section_order_index_;
3104 }
3105
3106 void
3107 set_section_order_index(unsigned int number)
3108 {
3109 this->section_order_index_ = number;
3110 }
3111
3112 // The required alignment.
3113 uint64_t
3114 addralign() const
3115 {
3116 if (this->p2align_ != 0)
3117 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3118 else if (!this->is_input_section())
3119 return this->u2_.posd->addralign();
3120 else
3121 return 0;
3122 }
3123
3124 // Set the required alignment, which must be either 0 or a power of 2.
3125 // For input sections that are sub-classes of Output_section_data, a
3126 // alignment of zero means asking the underlying object for alignment.
3127 void
3128 set_addralign(uint64_t addralign)
3129 {
3130 if (addralign == 0)
3131 this->p2align_ = 0;
3132 else
3133 {
3134 gold_assert((addralign & (addralign - 1)) == 0);
3135 this->p2align_ = ffsll(static_cast<long long>(addralign));
3136 }
3137 }
3138
3139 // Return the current required size, without finalization.
3140 off_t
3141 current_data_size() const;
3142
3143 // Return the required size.
3144 off_t
3145 data_size() const;
3146
3147 // Whether this is an input section.
3148 bool
3149 is_input_section() const
3150 {
3151 return (this->shndx_ != OUTPUT_SECTION_CODE
3152 && this->shndx_ != MERGE_DATA_SECTION_CODE
3153 && this->shndx_ != MERGE_STRING_SECTION_CODE
3154 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3155 }
3156
3157 // Return whether this is a merge section which matches the
3158 // parameters.
3159 bool
3160 is_merge_section(bool is_string, uint64_t entsize,
3161 uint64_t addralign) const
3162 {
3163 return (this->shndx_ == (is_string
3164 ? MERGE_STRING_SECTION_CODE
3165 : MERGE_DATA_SECTION_CODE)
3166 && this->u1_.entsize == entsize
3167 && this->addralign() == addralign);
3168 }
3169
3170 // Return whether this is a merge section for some input section.
3171 bool
3172 is_merge_section() const
3173 {
3174 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3175 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3176 }
3177
3178 // Return whether this is a relaxed input section.
3179 bool
3180 is_relaxed_input_section() const
3181 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3182
3183 // Return whether this is a generic Output_section_data.
3184 bool
3185 is_output_section_data() const
3186 {
3187 return this->shndx_ == OUTPUT_SECTION_CODE;
3188 }
3189
3190 // Return the object for an input section.
3191 Relobj*
3192 relobj() const;
3193
3194 // Return the input section index for an input section.
3195 unsigned int
3196 shndx() const;
3197
3198 // For non-input-sections, return the associated Output_section_data
3199 // object.
3200 Output_section_data*
3201 output_section_data() const
3202 {
3203 gold_assert(!this->is_input_section());
3204 return this->u2_.posd;
3205 }
3206
3207 // For a merge section, return the Output_merge_base pointer.
3208 Output_merge_base*
3209 output_merge_base() const
3210 {
3211 gold_assert(this->is_merge_section());
3212 return this->u2_.pomb;
3213 }
3214
3215 // Return the Output_relaxed_input_section object.
3216 Output_relaxed_input_section*
3217 relaxed_input_section() const
3218 {
3219 gold_assert(this->is_relaxed_input_section());
3220 return this->u2_.poris;
3221 }
3222
3223 // Set the output section.
3224 void
3225 set_output_section(Output_section* os)
3226 {
3227 gold_assert(!this->is_input_section());
3228 Output_section_data* posd =
3229 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3230 posd->set_output_section(os);
3231 }
3232
3233 // Set the address and file offset. This is called during
3234 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3235 // the enclosing section.
3236 void
3237 set_address_and_file_offset(uint64_t address, off_t file_offset,
3238 off_t section_file_offset);
3239
3240 // Reset the address and file offset.
3241 void
3242 reset_address_and_file_offset();
3243
3244 // Finalize the data size.
3245 void
3246 finalize_data_size();
3247
3248 // Add an input section, for SHF_MERGE sections.
3249 bool
3250 add_input_section(Relobj* object, unsigned int shndx)
3251 {
3252 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3253 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3254 return this->u2_.posd->add_input_section(object, shndx);
3255 }
3256
3257 // Given an input OBJECT, an input section index SHNDX within that
3258 // object, and an OFFSET relative to the start of that input
3259 // section, return whether or not the output offset is known. If
3260 // this function returns true, it sets *POUTPUT to the offset in
3261 // the output section, relative to the start of the input section
3262 // in the output section. *POUTPUT may be different from OFFSET
3263 // for a merged section.
3264 bool
3265 output_offset(const Relobj* object, unsigned int shndx,
3266 section_offset_type offset,
3267 section_offset_type* poutput) const;
3268
3269 // Return whether this is the merge section for the input section
3270 // SHNDX in OBJECT.
3271 bool
3272 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3273
3274 // Write out the data. This does nothing for an input section.
3275 void
3276 write(Output_file*);
3277
3278 // Write the data to a buffer. This does nothing for an input
3279 // section.
3280 void
3281 write_to_buffer(unsigned char*);
3282
3283 // Print to a map file.
3284 void
3285 print_to_mapfile(Mapfile*) const;
3286
3287 // Print statistics about merge sections to stderr.
3288 void
3289 print_merge_stats(const char* section_name)
3290 {
3291 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3292 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3293 this->u2_.posd->print_merge_stats(section_name);
3294 }
3295
3296 private:
3297 // Code values which appear in shndx_. If the value is not one of
3298 // these codes, it is the input section index in the object file.
3299 enum
3300 {
3301 // An Output_section_data.
3302 OUTPUT_SECTION_CODE = -1U,
3303 // An Output_section_data for an SHF_MERGE section with
3304 // SHF_STRINGS not set.
3305 MERGE_DATA_SECTION_CODE = -2U,
3306 // An Output_section_data for an SHF_MERGE section with
3307 // SHF_STRINGS set.
3308 MERGE_STRING_SECTION_CODE = -3U,
3309 // An Output_section_data for a relaxed input section.
3310 RELAXED_INPUT_SECTION_CODE = -4U
3311 };
3312
3313 // For an ordinary input section, this is the section index in the
3314 // input file. For an Output_section_data, this is
3315 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3316 // MERGE_STRING_SECTION_CODE.
3317 unsigned int shndx_;
3318 // The required alignment, stored as a power of 2.
3319 unsigned int p2align_;
3320 union
3321 {
3322 // For an ordinary input section, the section size.
3323 off_t data_size;
3324 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3325 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3326 // entity size.
3327 uint64_t entsize;
3328 } u1_;
3329 union
3330 {
3331 // For an ordinary input section, the object which holds the
3332 // input section.
3333 Relobj* object;
3334 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3335 // MERGE_STRING_SECTION_CODE, the data.
3336 Output_section_data* posd;
3337 Output_merge_base* pomb;
3338 // For RELAXED_INPUT_SECTION_CODE, the data.
3339 Output_relaxed_input_section* poris;
3340 } u2_;
3341 // The line number of the pattern it matches in the --section-ordering-file
3342 // file. It is 0 if does not match any pattern.
3343 unsigned int section_order_index_;
3344 };
3345
3346 // Store the list of input sections for this Output_section into the
3347 // list passed in. This removes the input sections, leaving only
3348 // any Output_section_data elements. This returns the size of those
3349 // Output_section_data elements. ADDRESS is the address of this
3350 // output section. FILL is the fill value to use, in case there are
3351 // any spaces between the remaining Output_section_data elements.
3352 uint64_t
3353 get_input_sections(uint64_t address, const std::string& fill,
3354 std::list<Input_section>*);
3355
3356 // Add a script input section. A script input section can either be
3357 // a plain input section or a sub-class of Output_section_data.
3358 void
3359 add_script_input_section(const Input_section& input_section);
3360
3361 // Set the current size of the output section.
3362 void
3363 set_current_data_size(off_t size)
3364 { this->set_current_data_size_for_child(size); }
3365
3366 // End of linker script support.
3367
3368 // Save states before doing section layout.
3369 // This is used for relaxation.
3370 void
3371 save_states();
3372
3373 // Restore states prior to section layout.
3374 void
3375 restore_states();
3376
3377 // Discard states.
3378 void
3379 discard_states();
3380
3381 // Convert existing input sections to relaxed input sections.
3382 void
3383 convert_input_sections_to_relaxed_sections(
3384 const std::vector<Output_relaxed_input_section*>& sections);
3385
3386 // Find a relaxed input section to an input section in OBJECT
3387 // with index SHNDX. Return NULL if none is found.
3388 const Output_relaxed_input_section*
3389 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3390
3391 // Whether section offsets need adjustment due to relaxation.
3392 bool
3393 section_offsets_need_adjustment() const
3394 { return this->section_offsets_need_adjustment_; }
3395
3396 // Set section_offsets_need_adjustment to be true.
3397 void
3398 set_section_offsets_need_adjustment()
3399 { this->section_offsets_need_adjustment_ = true; }
3400
3401 // Adjust section offsets of input sections in this. This is
3402 // requires if relaxation caused some input sections to change sizes.
3403 void
3404 adjust_section_offsets();
3405
3406 // Whether this is a NOLOAD section.
3407 bool
3408 is_noload() const
3409 { return this->is_noload_; }
3410
3411 // Set NOLOAD flag.
3412 void
3413 set_is_noload()
3414 { this->is_noload_ = true; }
3415
3416 // Print merge statistics to stderr.
3417 void
3418 print_merge_stats();
3419
3420 // Set a fixed layout for the section. Used for incremental update links.
3421 void
3422 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3423 uint64_t sh_addralign);
3424
3425 // Return TRUE if the section has a fixed layout.
3426 bool
3427 has_fixed_layout() const
3428 { return this->has_fixed_layout_; }
3429
3430 // Reserve space within the fixed layout for the section. Used for
3431 // incremental update links.
3432 void
3433 reserve(uint64_t sh_offset, uint64_t sh_size);
3434
3435 // Allocate space from the free list for the section. Used for
3436 // incremental update links.
3437 off_t
3438 allocate(off_t len, uint64_t addralign);
3439
3440 protected:
3441 // Return the output section--i.e., the object itself.
3442 Output_section*
3443 do_output_section()
3444 { return this; }
3445
3446 const Output_section*
3447 do_output_section() const
3448 { return this; }
3449
3450 // Return the section index in the output file.
3451 unsigned int
3452 do_out_shndx() const
3453 {
3454 gold_assert(this->out_shndx_ != -1U);
3455 return this->out_shndx_;
3456 }
3457
3458 // Set the output section index.
3459 void
3460 do_set_out_shndx(unsigned int shndx)
3461 {
3462 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3463 this->out_shndx_ = shndx;
3464 }
3465
3466 // Update the data size of the Output_section. For a typical
3467 // Output_section, there is nothing to do, but if there are any
3468 // Output_section_data objects we need to do a trial layout
3469 // here.
3470 virtual void
3471 update_data_size();
3472
3473 // Set the final data size of the Output_section. For a typical
3474 // Output_section, there is nothing to do, but if there are any
3475 // Output_section_data objects we need to set their final addresses
3476 // here.
3477 virtual void
3478 set_final_data_size();
3479
3480 // Reset the address and file offset.
3481 void
3482 do_reset_address_and_file_offset();
3483
3484 // Return true if address and file offset already have reset values. In
3485 // other words, calling reset_address_and_file_offset will not change them.
3486 bool
3487 do_address_and_file_offset_have_reset_values() const;
3488
3489 // Write the data to the file. For a typical Output_section, this
3490 // does nothing: the data is written out by calling Object::Relocate
3491 // on each input object. But if there are any Output_section_data
3492 // objects we do need to write them out here.
3493 virtual void
3494 do_write(Output_file*);
3495
3496 // Return the address alignment--function required by parent class.
3497 uint64_t
3498 do_addralign() const
3499 { return this->addralign_; }
3500
3501 // Return whether there is a load address.
3502 bool
3503 do_has_load_address() const
3504 { return this->has_load_address_; }
3505
3506 // Return the load address.
3507 uint64_t
3508 do_load_address() const
3509 {
3510 gold_assert(this->has_load_address_);
3511 return this->load_address_;
3512 }
3513
3514 // Return whether this is an Output_section.
3515 bool
3516 do_is_section() const
3517 { return true; }
3518
3519 // Return whether this is a section of the specified type.
3520 bool
3521 do_is_section_type(elfcpp::Elf_Word type) const
3522 { return this->type_ == type; }
3523
3524 // Return whether the specified section flag is set.
3525 bool
3526 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3527 { return (this->flags_ & flag) != 0; }
3528
3529 // Set the TLS offset. Called only for SHT_TLS sections.
3530 void
3531 do_set_tls_offset(uint64_t tls_base);
3532
3533 // Return the TLS offset, relative to the base of the TLS segment.
3534 // Valid only for SHT_TLS sections.
3535 uint64_t
3536 do_tls_offset() const
3537 { return this->tls_offset_; }
3538
3539 // This may be implemented by a child class.
3540 virtual void
3541 do_finalize_name(Layout*)
3542 { }
3543
3544 // Print to the map file.
3545 virtual void
3546 do_print_to_mapfile(Mapfile*) const;
3547
3548 // Record that this section requires postprocessing after all
3549 // relocations have been applied. This is called by a child class.
3550 void
3551 set_requires_postprocessing()
3552 {
3553 this->requires_postprocessing_ = true;
3554 this->after_input_sections_ = true;
3555 }
3556
3557 // Write all the data of an Output_section into the postprocessing
3558 // buffer.
3559 void
3560 write_to_postprocessing_buffer();
3561
3562 typedef std::vector<Input_section> Input_section_list;
3563
3564 // Allow a child class to access the input sections.
3565 const Input_section_list&
3566 input_sections() const
3567 { return this->input_sections_; }
3568
3569 // Whether this always keeps an input section list
3570 bool
3571 always_keeps_input_sections() const
3572 { return this->always_keeps_input_sections_; }
3573
3574 // Always keep an input section list.
3575 void
3576 set_always_keeps_input_sections()
3577 {
3578 gold_assert(this->current_data_size_for_child() == 0);
3579 this->always_keeps_input_sections_ = true;
3580 }
3581
3582 private:
3583 // We only save enough information to undo the effects of section layout.
3584 class Checkpoint_output_section
3585 {
3586 public:
3587 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3588 const Input_section_list& input_sections,
3589 off_t first_input_offset,
3590 bool attached_input_sections_are_sorted)
3591 : addralign_(addralign), flags_(flags),
3592 input_sections_(input_sections),
3593 input_sections_size_(input_sections_.size()),
3594 input_sections_copy_(), first_input_offset_(first_input_offset),
3595 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3596 { }
3597
3598 virtual
3599 ~Checkpoint_output_section()
3600 { }
3601
3602 // Return the address alignment.
3603 uint64_t
3604 addralign() const
3605 { return this->addralign_; }
3606
3607 // Return the section flags.
3608 elfcpp::Elf_Xword
3609 flags() const
3610 { return this->flags_; }
3611
3612 // Return a reference to the input section list copy.
3613 Input_section_list*
3614 input_sections()
3615 { return &this->input_sections_copy_; }
3616
3617 // Return the size of input_sections at the time when checkpoint is
3618 // taken.
3619 size_t
3620 input_sections_size() const
3621 { return this->input_sections_size_; }
3622
3623 // Whether input sections are copied.
3624 bool
3625 input_sections_saved() const
3626 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3627
3628 off_t
3629 first_input_offset() const
3630 { return this->first_input_offset_; }
3631
3632 bool
3633 attached_input_sections_are_sorted() const
3634 { return this->attached_input_sections_are_sorted_; }
3635
3636 // Save input sections.
3637 void
3638 save_input_sections()
3639 {
3640 this->input_sections_copy_.reserve(this->input_sections_size_);
3641 this->input_sections_copy_.clear();
3642 Input_section_list::const_iterator p = this->input_sections_.begin();
3643 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3644 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3645 this->input_sections_copy_.push_back(*p);
3646 }
3647
3648 private:
3649 // The section alignment.
3650 uint64_t addralign_;
3651 // The section flags.
3652 elfcpp::Elf_Xword flags_;
3653 // Reference to the input sections to be checkpointed.
3654 const Input_section_list& input_sections_;
3655 // Size of the checkpointed portion of input_sections_;
3656 size_t input_sections_size_;
3657 // Copy of input sections.
3658 Input_section_list input_sections_copy_;
3659 // The offset of the first entry in input_sections_.
3660 off_t first_input_offset_;
3661 // True if the input sections attached to this output section have
3662 // already been sorted.
3663 bool attached_input_sections_are_sorted_;
3664 };
3665
3666 // This class is used to sort the input sections.
3667 class Input_section_sort_entry;
3668
3669 // This is the sort comparison function for ctors and dtors.
3670 struct Input_section_sort_compare
3671 {
3672 bool
3673 operator()(const Input_section_sort_entry&,
3674 const Input_section_sort_entry&) const;
3675 };
3676
3677 // This is the sort comparison function for .init_array and .fini_array.
3678 struct Input_section_sort_init_fini_compare
3679 {
3680 bool
3681 operator()(const Input_section_sort_entry&,
3682 const Input_section_sort_entry&) const;
3683 };
3684
3685 // This is the sort comparison function when a section order is specified
3686 // from an input file.
3687 struct Input_section_sort_section_order_index_compare
3688 {
3689 bool
3690 operator()(const Input_section_sort_entry&,
3691 const Input_section_sort_entry&) const;
3692 };
3693
3694 // Fill data. This is used to fill in data between input sections.
3695 // It is also used for data statements (BYTE, WORD, etc.) in linker
3696 // scripts. When we have to keep track of the input sections, we
3697 // can use an Output_data_const, but we don't want to have to keep
3698 // track of input sections just to implement fills.
3699 class Fill
3700 {
3701 public:
3702 Fill(off_t section_offset, off_t length)
3703 : section_offset_(section_offset),
3704 length_(convert_to_section_size_type(length))
3705 { }
3706
3707 // Return section offset.
3708 off_t
3709 section_offset() const
3710 { return this->section_offset_; }
3711
3712 // Return fill length.
3713 section_size_type
3714 length() const
3715 { return this->length_; }
3716
3717 private:
3718 // The offset within the output section.
3719 off_t section_offset_;
3720 // The length of the space to fill.
3721 section_size_type length_;
3722 };
3723
3724 typedef std::vector<Fill> Fill_list;
3725
3726 // Map used during relaxation of existing sections. This map
3727 // a section id an input section list index. We assume that
3728 // Input_section_list is a vector.
3729 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3730
3731 // Add a new output section by Input_section.
3732 void
3733 add_output_section_data(Input_section*);
3734
3735 // Add an SHF_MERGE input section. Returns true if the section was
3736 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
3737 // stores information about the merged input sections.
3738 bool
3739 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3740 uint64_t entsize, uint64_t addralign,
3741 bool keeps_input_sections);
3742
3743 // Add an output SHF_MERGE section POSD to this output section.
3744 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3745 // ENTSIZE is the entity size. This returns the entry added to
3746 // input_sections_.
3747 void
3748 add_output_merge_section(Output_section_data* posd, bool is_string,
3749 uint64_t entsize);
3750
3751 // Sort the attached input sections.
3752 void
3753 sort_attached_input_sections();
3754
3755 // Find the merge section into which an input section with index SHNDX in
3756 // OBJECT has been added. Return NULL if none found.
3757 Output_section_data*
3758 find_merge_section(const Relobj* object, unsigned int shndx) const;
3759
3760 // Build a relaxation map.
3761 void
3762 build_relaxation_map(
3763 const Input_section_list& input_sections,
3764 size_t limit,
3765 Relaxation_map* map) const;
3766
3767 // Convert input sections in an input section list into relaxed sections.
3768 void
3769 convert_input_sections_in_list_to_relaxed_sections(
3770 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3771 const Relaxation_map& map,
3772 Input_section_list* input_sections);
3773
3774 // Build the lookup maps for merge and relaxed input sections.
3775 void
3776 build_lookup_maps() const;
3777
3778 // Most of these fields are only valid after layout.
3779
3780 // The name of the section. This will point into a Stringpool.
3781 const char* name_;
3782 // The section address is in the parent class.
3783 // The section alignment.
3784 uint64_t addralign_;
3785 // The section entry size.
3786 uint64_t entsize_;
3787 // The load address. This is only used when using a linker script
3788 // with a SECTIONS clause. The has_load_address_ field indicates
3789 // whether this field is valid.
3790 uint64_t load_address_;
3791 // The file offset is in the parent class.
3792 // Set the section link field to the index of this section.
3793 const Output_data* link_section_;
3794 // If link_section_ is NULL, this is the link field.
3795 unsigned int link_;
3796 // Set the section info field to the index of this section.
3797 const Output_section* info_section_;
3798 // If info_section_ is NULL, set the info field to the symbol table
3799 // index of this symbol.
3800 const Symbol* info_symndx_;
3801 // If info_section_ and info_symndx_ are NULL, this is the section
3802 // info field.
3803 unsigned int info_;
3804 // The section type.
3805 const elfcpp::Elf_Word type_;
3806 // The section flags.
3807 elfcpp::Elf_Xword flags_;
3808 // The order of this section in the output segment.
3809 Output_section_order order_;
3810 // The section index.
3811 unsigned int out_shndx_;
3812 // If there is a STT_SECTION for this output section in the normal
3813 // symbol table, this is the symbol index. This starts out as zero.
3814 // It is initialized in Layout::finalize() to be the index, or -1U
3815 // if there isn't one.
3816 unsigned int symtab_index_;
3817 // If there is a STT_SECTION for this output section in the dynamic
3818 // symbol table, this is the symbol index. This starts out as zero.
3819 // It is initialized in Layout::finalize() to be the index, or -1U
3820 // if there isn't one.
3821 unsigned int dynsym_index_;
3822 // The input sections. This will be empty in cases where we don't
3823 // need to keep track of them.
3824 Input_section_list input_sections_;
3825 // The offset of the first entry in input_sections_.
3826 off_t first_input_offset_;
3827 // The fill data. This is separate from input_sections_ because we
3828 // often will need fill sections without needing to keep track of
3829 // input sections.
3830 Fill_list fills_;
3831 // If the section requires postprocessing, this buffer holds the
3832 // section contents during relocation.
3833 unsigned char* postprocessing_buffer_;
3834 // Whether this output section needs a STT_SECTION symbol in the
3835 // normal symbol table. This will be true if there is a relocation
3836 // which needs it.
3837 bool needs_symtab_index_ : 1;
3838 // Whether this output section needs a STT_SECTION symbol in the
3839 // dynamic symbol table. This will be true if there is a dynamic
3840 // relocation which needs it.
3841 bool needs_dynsym_index_ : 1;
3842 // Whether the link field of this output section should point to the
3843 // normal symbol table.
3844 bool should_link_to_symtab_ : 1;
3845 // Whether the link field of this output section should point to the
3846 // dynamic symbol table.
3847 bool should_link_to_dynsym_ : 1;
3848 // Whether this section should be written after all the input
3849 // sections are complete.
3850 bool after_input_sections_ : 1;
3851 // Whether this section requires post processing after all
3852 // relocations have been applied.
3853 bool requires_postprocessing_ : 1;
3854 // Whether an input section was mapped to this output section
3855 // because of a SECTIONS clause in a linker script.
3856 bool found_in_sections_clause_ : 1;
3857 // Whether this section has an explicitly specified load address.
3858 bool has_load_address_ : 1;
3859 // True if the info_section_ field means the section index of the
3860 // section, false if it means the symbol index of the corresponding
3861 // section symbol.
3862 bool info_uses_section_index_ : 1;
3863 // True if input sections attached to this output section have to be
3864 // sorted according to a specified order.
3865 bool input_section_order_specified_ : 1;
3866 // True if the input sections attached to this output section may
3867 // need sorting.
3868 bool may_sort_attached_input_sections_ : 1;
3869 // True if the input sections attached to this output section must
3870 // be sorted.
3871 bool must_sort_attached_input_sections_ : 1;
3872 // True if the input sections attached to this output section have
3873 // already been sorted.
3874 bool attached_input_sections_are_sorted_ : 1;
3875 // True if this section holds relro data.
3876 bool is_relro_ : 1;
3877 // True if this is a small section.
3878 bool is_small_section_ : 1;
3879 // True if this is a large section.
3880 bool is_large_section_ : 1;
3881 // Whether code-fills are generated at write.
3882 bool generate_code_fills_at_write_ : 1;
3883 // Whether the entry size field should be zero.
3884 bool is_entsize_zero_ : 1;
3885 // Whether section offsets need adjustment due to relaxation.
3886 bool section_offsets_need_adjustment_ : 1;
3887 // Whether this is a NOLOAD section.
3888 bool is_noload_ : 1;
3889 // Whether this always keeps input section.
3890 bool always_keeps_input_sections_ : 1;
3891 // Whether this section has a fixed layout, for incremental update links.
3892 bool has_fixed_layout_ : 1;
3893 // For SHT_TLS sections, the offset of this section relative to the base
3894 // of the TLS segment.
3895 uint64_t tls_offset_;
3896 // Saved checkpoint.
3897 Checkpoint_output_section* checkpoint_;
3898 // Fast lookup maps for merged and relaxed input sections.
3899 Output_section_lookup_maps* lookup_maps_;
3900 // List of available regions within the section, for incremental
3901 // update links.
3902 Free_list free_list_;
3903 };
3904
3905 // An output segment. PT_LOAD segments are built from collections of
3906 // output sections. Other segments typically point within PT_LOAD
3907 // segments, and are built directly as needed.
3908 //
3909 // NOTE: We want to use the copy constructor for this class. During
3910 // relaxation, we may try built the segments multiple times. We do
3911 // that by copying the original segment list before lay-out, doing
3912 // a trial lay-out and roll-back to the saved copied if we need to
3913 // to the lay-out again.
3914
3915 class Output_segment
3916 {
3917 public:
3918 // Create an output segment, specifying the type and flags.
3919 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3920
3921 // Return the virtual address.
3922 uint64_t
3923 vaddr() const
3924 { return this->vaddr_; }
3925
3926 // Return the physical address.
3927 uint64_t
3928 paddr() const
3929 { return this->paddr_; }
3930
3931 // Return the segment type.
3932 elfcpp::Elf_Word
3933 type() const
3934 { return this->type_; }
3935
3936 // Return the segment flags.
3937 elfcpp::Elf_Word
3938 flags() const
3939 { return this->flags_; }
3940
3941 // Return the memory size.
3942 uint64_t
3943 memsz() const
3944 { return this->memsz_; }
3945
3946 // Return the file size.
3947 off_t
3948 filesz() const
3949 { return this->filesz_; }
3950
3951 // Return the file offset.
3952 off_t
3953 offset() const
3954 { return this->offset_; }
3955
3956 // Whether this is a segment created to hold large data sections.
3957 bool
3958 is_large_data_segment() const
3959 { return this->is_large_data_segment_; }
3960
3961 // Record that this is a segment created to hold large data
3962 // sections.
3963 void
3964 set_is_large_data_segment()
3965 { this->is_large_data_segment_ = true; }
3966
3967 // Return the maximum alignment of the Output_data.
3968 uint64_t
3969 maximum_alignment();
3970
3971 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
3972 // the segment flags to use.
3973 void
3974 add_output_section_to_load(Layout* layout, Output_section* os,
3975 elfcpp::Elf_Word seg_flags);
3976
3977 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
3978 // is the segment flags to use.
3979 void
3980 add_output_section_to_nonload(Output_section* os,
3981 elfcpp::Elf_Word seg_flags);
3982
3983 // Remove an Output_section from this segment. It is an error if it
3984 // is not present.
3985 void
3986 remove_output_section(Output_section* os);
3987
3988 // Add an Output_data (which need not be an Output_section) to the
3989 // start of this segment.
3990 void
3991 add_initial_output_data(Output_data*);
3992
3993 // Return true if this segment has any sections which hold actual
3994 // data, rather than being a BSS section.
3995 bool
3996 has_any_data_sections() const;
3997
3998 // Whether this segment has a dynamic relocs.
3999 bool
4000 has_dynamic_reloc() const;
4001
4002 // Return the address of the first section.
4003 uint64_t
4004 first_section_load_address() const;
4005
4006 // Return whether the addresses have been set already.
4007 bool
4008 are_addresses_set() const
4009 { return this->are_addresses_set_; }
4010
4011 // Set the addresses.
4012 void
4013 set_addresses(uint64_t vaddr, uint64_t paddr)
4014 {
4015 this->vaddr_ = vaddr;
4016 this->paddr_ = paddr;
4017 this->are_addresses_set_ = true;
4018 }
4019
4020 // Update the flags for the flags of an output section added to this
4021 // segment.
4022 void
4023 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4024 {
4025 // The ELF ABI specifies that a PT_TLS segment should always have
4026 // PF_R as the flags.
4027 if (this->type() != elfcpp::PT_TLS)
4028 this->flags_ |= flags;
4029 }
4030
4031 // Set the segment flags. This is only used if we have a PHDRS
4032 // clause which explicitly specifies the flags.
4033 void
4034 set_flags(elfcpp::Elf_Word flags)
4035 { this->flags_ = flags; }
4036
4037 // Set the address of the segment to ADDR and the offset to *POFF
4038 // and set the addresses and offsets of all contained output
4039 // sections accordingly. Set the section indexes of all contained
4040 // output sections starting with *PSHNDX. If RESET is true, first
4041 // reset the addresses of the contained sections. Return the
4042 // address of the immediately following segment. Update *POFF and
4043 // *PSHNDX. This should only be called for a PT_LOAD segment.
4044 uint64_t
4045 set_section_addresses(Layout*, bool reset, uint64_t addr,
4046 unsigned int* increase_relro, bool* has_relro,
4047 off_t* poff, unsigned int* pshndx);
4048
4049 // Set the minimum alignment of this segment. This may be adjusted
4050 // upward based on the section alignments.
4051 void
4052 set_minimum_p_align(uint64_t align)
4053 {
4054 if (align > this->min_p_align_)
4055 this->min_p_align_ = align;
4056 }
4057
4058 // Set the offset of this segment based on the section. This should
4059 // only be called for a non-PT_LOAD segment.
4060 void
4061 set_offset(unsigned int increase);
4062
4063 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4064 void
4065 set_tls_offsets();
4066
4067 // Return the number of output sections.
4068 unsigned int
4069 output_section_count() const;
4070
4071 // Return the section attached to the list segment with the lowest
4072 // load address. This is used when handling a PHDRS clause in a
4073 // linker script.
4074 Output_section*
4075 section_with_lowest_load_address() const;
4076
4077 // Write the segment header into *OPHDR.
4078 template<int size, bool big_endian>
4079 void
4080 write_header(elfcpp::Phdr_write<size, big_endian>*);
4081
4082 // Write the section headers of associated sections into V.
4083 template<int size, bool big_endian>
4084 unsigned char*
4085 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4086 unsigned int* pshndx) const;
4087
4088 // Print the output sections in the map file.
4089 void
4090 print_sections_to_mapfile(Mapfile*) const;
4091
4092 private:
4093 typedef std::vector<Output_data*> Output_data_list;
4094
4095 // Find the maximum alignment in an Output_data_list.
4096 static uint64_t
4097 maximum_alignment_list(const Output_data_list*);
4098
4099 // Return whether the first data section is a relro section.
4100 bool
4101 is_first_section_relro() const;
4102
4103 // Set the section addresses in an Output_data_list.
4104 uint64_t
4105 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4106 uint64_t addr, off_t* poff, unsigned int* pshndx,
4107 bool* in_tls);
4108
4109 // Return the number of Output_sections in an Output_data_list.
4110 unsigned int
4111 output_section_count_list(const Output_data_list*) const;
4112
4113 // Return whether an Output_data_list has a dynamic reloc.
4114 bool
4115 has_dynamic_reloc_list(const Output_data_list*) const;
4116
4117 // Find the section with the lowest load address in an
4118 // Output_data_list.
4119 void
4120 lowest_load_address_in_list(const Output_data_list* pdl,
4121 Output_section** found,
4122 uint64_t* found_lma) const;
4123
4124 // Find the first and last entries by address.
4125 void
4126 find_first_and_last_list(const Output_data_list* pdl,
4127 const Output_data** pfirst,
4128 const Output_data** plast) const;
4129
4130 // Write the section headers in the list into V.
4131 template<int size, bool big_endian>
4132 unsigned char*
4133 write_section_headers_list(const Layout*, const Stringpool*,
4134 const Output_data_list*, unsigned char* v,
4135 unsigned int* pshdx) const;
4136
4137 // Print a section list to the mapfile.
4138 void
4139 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4140
4141 // NOTE: We want to use the copy constructor. Currently, shallow copy
4142 // works for us so we do not need to write our own copy constructor.
4143
4144 // The list of output data attached to this segment.
4145 Output_data_list output_lists_[ORDER_MAX];
4146 // The segment virtual address.
4147 uint64_t vaddr_;
4148 // The segment physical address.
4149 uint64_t paddr_;
4150 // The size of the segment in memory.
4151 uint64_t memsz_;
4152 // The maximum section alignment. The is_max_align_known_ field
4153 // indicates whether this has been finalized.
4154 uint64_t max_align_;
4155 // The required minimum value for the p_align field. This is used
4156 // for PT_LOAD segments. Note that this does not mean that
4157 // addresses should be aligned to this value; it means the p_paddr
4158 // and p_vaddr fields must be congruent modulo this value. For
4159 // non-PT_LOAD segments, the dynamic linker works more efficiently
4160 // if the p_align field has the more conventional value, although it
4161 // can align as needed.
4162 uint64_t min_p_align_;
4163 // The offset of the segment data within the file.
4164 off_t offset_;
4165 // The size of the segment data in the file.
4166 off_t filesz_;
4167 // The segment type;
4168 elfcpp::Elf_Word type_;
4169 // The segment flags.
4170 elfcpp::Elf_Word flags_;
4171 // Whether we have finalized max_align_.
4172 bool is_max_align_known_ : 1;
4173 // Whether vaddr and paddr were set by a linker script.
4174 bool are_addresses_set_ : 1;
4175 // Whether this segment holds large data sections.
4176 bool is_large_data_segment_ : 1;
4177 };
4178
4179 // This class represents the output file.
4180
4181 class Output_file
4182 {
4183 public:
4184 Output_file(const char* name);
4185
4186 // Indicate that this is a temporary file which should not be
4187 // output.
4188 void
4189 set_is_temporary()
4190 { this->is_temporary_ = true; }
4191
4192 // Try to open an existing file. Returns false if the file doesn't
4193 // exist, has a size of 0 or can't be mmaped. This method is
4194 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4195 // that file as the base for incremental linking.
4196 bool
4197 open_base_file(const char* base_name, bool writable);
4198
4199 // Open the output file. FILE_SIZE is the final size of the file.
4200 // If the file already exists, it is deleted/truncated. This method
4201 // is thread-unsafe.
4202 void
4203 open(off_t file_size);
4204
4205 // Resize the output file. This method is thread-unsafe.
4206 void
4207 resize(off_t file_size);
4208
4209 // Close the output file (flushing all buffered data) and make sure
4210 // there are no errors. This method is thread-unsafe.
4211 void
4212 close();
4213
4214 // Return the size of this file.
4215 off_t
4216 filesize()
4217 { return this->file_size_; }
4218
4219 // Return the name of this file.
4220 const char*
4221 filename()
4222 { return this->name_; }
4223
4224 // We currently always use mmap which makes the view handling quite
4225 // simple. In the future we may support other approaches.
4226
4227 // Write data to the output file.
4228 void
4229 write(off_t offset, const void* data, size_t len)
4230 { memcpy(this->base_ + offset, data, len); }
4231
4232 // Get a buffer to use to write to the file, given the offset into
4233 // the file and the size.
4234 unsigned char*
4235 get_output_view(off_t start, size_t size)
4236 {
4237 gold_assert(start >= 0
4238 && start + static_cast<off_t>(size) <= this->file_size_);
4239 return this->base_ + start;
4240 }
4241
4242 // VIEW must have been returned by get_output_view. Write the
4243 // buffer to the file, passing in the offset and the size.
4244 void
4245 write_output_view(off_t, size_t, unsigned char*)
4246 { }
4247
4248 // Get a read/write buffer. This is used when we want to write part
4249 // of the file, read it in, and write it again.
4250 unsigned char*
4251 get_input_output_view(off_t start, size_t size)
4252 { return this->get_output_view(start, size); }
4253
4254 // Write a read/write buffer back to the file.
4255 void
4256 write_input_output_view(off_t, size_t, unsigned char*)
4257 { }
4258
4259 // Get a read buffer. This is used when we just want to read part
4260 // of the file back it in.
4261 const unsigned char*
4262 get_input_view(off_t start, size_t size)
4263 { return this->get_output_view(start, size); }
4264
4265 // Release a read bfufer.
4266 void
4267 free_input_view(off_t, size_t, const unsigned char*)
4268 { }
4269
4270 private:
4271 // Map the file into memory or, if that fails, allocate anonymous
4272 // memory.
4273 void
4274 map();
4275
4276 // Allocate anonymous memory for the file.
4277 bool
4278 map_anonymous();
4279
4280 // Map the file into memory.
4281 bool
4282 map_no_anonymous(bool);
4283
4284 // Unmap the file from memory (and flush to disk buffers).
4285 void
4286 unmap();
4287
4288 // File name.
4289 const char* name_;
4290 // File descriptor.
4291 int o_;
4292 // File size.
4293 off_t file_size_;
4294 // Base of file mapped into memory.
4295 unsigned char* base_;
4296 // True iff base_ points to a memory buffer rather than an output file.
4297 bool map_is_anonymous_;
4298 // True if base_ was allocated using new rather than mmap.
4299 bool map_is_allocated_;
4300 // True if this is a temporary file which should not be output.
4301 bool is_temporary_;
4302 };
4303
4304 } // End namespace gold.
4305
4306 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.109671 seconds and 5 git commands to generate.