2009-10-20 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49
50 // This class specifies an input section. It is used as a key type
51 // for maps.
52
53 class Input_section_specifier
54 {
55 public:
56 Input_section_specifier(const Relobj* relobj, unsigned int shndx)
57 : relobj_(relobj), shndx_(shndx)
58 { }
59
60 // Return Relobj of this.
61 const Relobj*
62 relobj() const
63 { return this->relobj_; }
64
65 // Return section index of this.
66 unsigned int
67 shndx() const
68 { return this->shndx_; }
69
70 // Whether this equals to another specifier ISS.
71 bool
72 eq(const Input_section_specifier& iss) const
73 { return this->relobj_ == iss.relobj_ && this->shndx_ == iss.shndx_; }
74
75 // Compute a hash value of this.
76 size_t
77 hash_value() const
78 { return this->string_hash(this->relobj_->name().c_str()) ^ this->shndx_; }
79
80 // Functors for containers.
81 struct equal_to
82 {
83 bool
84 operator()(const Input_section_specifier& iss1,
85 const Input_section_specifier& iss2) const
86 { return iss1.eq(iss2); }
87 };
88
89 struct hash
90 {
91 size_t
92 operator()(const Input_section_specifier& iss) const
93 { return iss.hash_value(); }
94 };
95
96 private:
97 // For portability, we use our own string hash function instead of assuming
98 // __gnu_cxx::hash or std::tr1::hash is available. This is the same hash
99 // function used in Stringpool_template::string_hash.
100 static size_t
101 string_hash(const char* s)
102 {
103 size_t h = 5381;
104 while (*s != '\0')
105 h = h * 33 + *s++;
106 return h;
107 }
108
109 // An object.
110 const Relobj* relobj_;
111 // A section index.
112 unsigned int shndx_;
113 };
114
115 // An abtract class for data which has to go into the output file.
116
117 class Output_data
118 {
119 public:
120 explicit Output_data()
121 : address_(0), data_size_(0), offset_(-1),
122 is_address_valid_(false), is_data_size_valid_(false),
123 is_offset_valid_(false), is_data_size_fixed_(false),
124 dynamic_reloc_count_(0)
125 { }
126
127 virtual
128 ~Output_data();
129
130 // Return the address. For allocated sections, this is only valid
131 // after Layout::finalize is finished.
132 uint64_t
133 address() const
134 {
135 gold_assert(this->is_address_valid_);
136 return this->address_;
137 }
138
139 // Return the size of the data. For allocated sections, this must
140 // be valid after Layout::finalize calls set_address, but need not
141 // be valid before then.
142 off_t
143 data_size() const
144 {
145 gold_assert(this->is_data_size_valid_);
146 return this->data_size_;
147 }
148
149 // Return true if data size is fixed.
150 bool
151 is_data_size_fixed() const
152 { return this->is_data_size_fixed_; }
153
154 // Return the file offset. This is only valid after
155 // Layout::finalize is finished. For some non-allocated sections,
156 // it may not be valid until near the end of the link.
157 off_t
158 offset() const
159 {
160 gold_assert(this->is_offset_valid_);
161 return this->offset_;
162 }
163
164 // Reset the address and file offset. This essentially disables the
165 // sanity testing about duplicate and unknown settings.
166 void
167 reset_address_and_file_offset()
168 {
169 this->is_address_valid_ = false;
170 this->is_offset_valid_ = false;
171 if (!this->is_data_size_fixed_)
172 this->is_data_size_valid_ = false;
173 this->do_reset_address_and_file_offset();
174 }
175
176 // Return true if address and file offset already have reset values. In
177 // other words, calling reset_address_and_file_offset will not change them.
178 bool
179 address_and_file_offset_have_reset_values() const
180 { return this->do_address_and_file_offset_have_reset_values(); }
181
182 // Return the required alignment.
183 uint64_t
184 addralign() const
185 { return this->do_addralign(); }
186
187 // Return whether this has a load address.
188 bool
189 has_load_address() const
190 { return this->do_has_load_address(); }
191
192 // Return the load address.
193 uint64_t
194 load_address() const
195 { return this->do_load_address(); }
196
197 // Return whether this is an Output_section.
198 bool
199 is_section() const
200 { return this->do_is_section(); }
201
202 // Return whether this is an Output_section of the specified type.
203 bool
204 is_section_type(elfcpp::Elf_Word stt) const
205 { return this->do_is_section_type(stt); }
206
207 // Return whether this is an Output_section with the specified flag
208 // set.
209 bool
210 is_section_flag_set(elfcpp::Elf_Xword shf) const
211 { return this->do_is_section_flag_set(shf); }
212
213 // Return the output section that this goes in, if there is one.
214 Output_section*
215 output_section()
216 { return this->do_output_section(); }
217
218 // Return the output section index, if there is an output section.
219 unsigned int
220 out_shndx() const
221 { return this->do_out_shndx(); }
222
223 // Set the output section index, if this is an output section.
224 void
225 set_out_shndx(unsigned int shndx)
226 { this->do_set_out_shndx(shndx); }
227
228 // Set the address and file offset of this data, and finalize the
229 // size of the data. This is called during Layout::finalize for
230 // allocated sections.
231 void
232 set_address_and_file_offset(uint64_t addr, off_t off)
233 {
234 this->set_address(addr);
235 this->set_file_offset(off);
236 this->finalize_data_size();
237 }
238
239 // Set the address.
240 void
241 set_address(uint64_t addr)
242 {
243 gold_assert(!this->is_address_valid_);
244 this->address_ = addr;
245 this->is_address_valid_ = true;
246 }
247
248 // Set the file offset.
249 void
250 set_file_offset(off_t off)
251 {
252 gold_assert(!this->is_offset_valid_);
253 this->offset_ = off;
254 this->is_offset_valid_ = true;
255 }
256
257 // Finalize the data size.
258 void
259 finalize_data_size()
260 {
261 if (!this->is_data_size_valid_)
262 {
263 // Tell the child class to set the data size.
264 this->set_final_data_size();
265 gold_assert(this->is_data_size_valid_);
266 }
267 }
268
269 // Set the TLS offset. Called only for SHT_TLS sections.
270 void
271 set_tls_offset(uint64_t tls_base)
272 { this->do_set_tls_offset(tls_base); }
273
274 // Return the TLS offset, relative to the base of the TLS segment.
275 // Valid only for SHT_TLS sections.
276 uint64_t
277 tls_offset() const
278 { return this->do_tls_offset(); }
279
280 // Write the data to the output file. This is called after
281 // Layout::finalize is complete.
282 void
283 write(Output_file* file)
284 { this->do_write(file); }
285
286 // This is called by Layout::finalize to note that the sizes of
287 // allocated sections must now be fixed.
288 static void
289 layout_complete()
290 { Output_data::allocated_sizes_are_fixed = true; }
291
292 // Used to check that layout has been done.
293 static bool
294 is_layout_complete()
295 { return Output_data::allocated_sizes_are_fixed; }
296
297 // Count the number of dynamic relocations applied to this section.
298 void
299 add_dynamic_reloc()
300 { ++this->dynamic_reloc_count_; }
301
302 // Return the number of dynamic relocations applied to this section.
303 unsigned int
304 dynamic_reloc_count() const
305 { return this->dynamic_reloc_count_; }
306
307 // Whether the address is valid.
308 bool
309 is_address_valid() const
310 { return this->is_address_valid_; }
311
312 // Whether the file offset is valid.
313 bool
314 is_offset_valid() const
315 { return this->is_offset_valid_; }
316
317 // Whether the data size is valid.
318 bool
319 is_data_size_valid() const
320 { return this->is_data_size_valid_; }
321
322 // Print information to the map file.
323 void
324 print_to_mapfile(Mapfile* mapfile) const
325 { return this->do_print_to_mapfile(mapfile); }
326
327 protected:
328 // Functions that child classes may or in some cases must implement.
329
330 // Write the data to the output file.
331 virtual void
332 do_write(Output_file*) = 0;
333
334 // Return the required alignment.
335 virtual uint64_t
336 do_addralign() const = 0;
337
338 // Return whether this has a load address.
339 virtual bool
340 do_has_load_address() const
341 { return false; }
342
343 // Return the load address.
344 virtual uint64_t
345 do_load_address() const
346 { gold_unreachable(); }
347
348 // Return whether this is an Output_section.
349 virtual bool
350 do_is_section() const
351 { return false; }
352
353 // Return whether this is an Output_section of the specified type.
354 // This only needs to be implement by Output_section.
355 virtual bool
356 do_is_section_type(elfcpp::Elf_Word) const
357 { return false; }
358
359 // Return whether this is an Output_section with the specific flag
360 // set. This only needs to be implemented by Output_section.
361 virtual bool
362 do_is_section_flag_set(elfcpp::Elf_Xword) const
363 { return false; }
364
365 // Return the output section, if there is one.
366 virtual Output_section*
367 do_output_section()
368 { return NULL; }
369
370 // Return the output section index, if there is an output section.
371 virtual unsigned int
372 do_out_shndx() const
373 { gold_unreachable(); }
374
375 // Set the output section index, if this is an output section.
376 virtual void
377 do_set_out_shndx(unsigned int)
378 { gold_unreachable(); }
379
380 // This is a hook for derived classes to set the data size. This is
381 // called by finalize_data_size, normally called during
382 // Layout::finalize, when the section address is set.
383 virtual void
384 set_final_data_size()
385 { gold_unreachable(); }
386
387 // A hook for resetting the address and file offset.
388 virtual void
389 do_reset_address_and_file_offset()
390 { }
391
392 // Return true if address and file offset already have reset values. In
393 // other words, calling reset_address_and_file_offset will not change them.
394 // A child class overriding do_reset_address_and_file_offset may need to
395 // also override this.
396 virtual bool
397 do_address_and_file_offset_have_reset_values() const
398 { return !this->is_address_valid_ && !this->is_offset_valid_; }
399
400 // Set the TLS offset. Called only for SHT_TLS sections.
401 virtual void
402 do_set_tls_offset(uint64_t)
403 { gold_unreachable(); }
404
405 // Return the TLS offset, relative to the base of the TLS segment.
406 // Valid only for SHT_TLS sections.
407 virtual uint64_t
408 do_tls_offset() const
409 { gold_unreachable(); }
410
411 // Print to the map file. This only needs to be implemented by
412 // classes which may appear in a PT_LOAD segment.
413 virtual void
414 do_print_to_mapfile(Mapfile*) const
415 { gold_unreachable(); }
416
417 // Functions that child classes may call.
418
419 // Reset the address. The Output_section class needs this when an
420 // SHF_ALLOC input section is added to an output section which was
421 // formerly not SHF_ALLOC.
422 void
423 mark_address_invalid()
424 { this->is_address_valid_ = false; }
425
426 // Set the size of the data.
427 void
428 set_data_size(off_t data_size)
429 {
430 gold_assert(!this->is_data_size_valid_
431 && !this->is_data_size_fixed_);
432 this->data_size_ = data_size;
433 this->is_data_size_valid_ = true;
434 }
435
436 // Fix the data size. Once it is fixed, it cannot be changed
437 // and the data size remains always valid.
438 void
439 fix_data_size()
440 {
441 gold_assert(this->is_data_size_valid_);
442 this->is_data_size_fixed_ = true;
443 }
444
445 // Get the current data size--this is for the convenience of
446 // sections which build up their size over time.
447 off_t
448 current_data_size_for_child() const
449 { return this->data_size_; }
450
451 // Set the current data size--this is for the convenience of
452 // sections which build up their size over time.
453 void
454 set_current_data_size_for_child(off_t data_size)
455 {
456 gold_assert(!this->is_data_size_valid_);
457 this->data_size_ = data_size;
458 }
459
460 // Return default alignment for the target size.
461 static uint64_t
462 default_alignment();
463
464 // Return default alignment for a specified size--32 or 64.
465 static uint64_t
466 default_alignment_for_size(int size);
467
468 private:
469 Output_data(const Output_data&);
470 Output_data& operator=(const Output_data&);
471
472 // This is used for verification, to make sure that we don't try to
473 // change any sizes of allocated sections after we set the section
474 // addresses.
475 static bool allocated_sizes_are_fixed;
476
477 // Memory address in output file.
478 uint64_t address_;
479 // Size of data in output file.
480 off_t data_size_;
481 // File offset of contents in output file.
482 off_t offset_;
483 // Whether address_ is valid.
484 bool is_address_valid_;
485 // Whether data_size_ is valid.
486 bool is_data_size_valid_;
487 // Whether offset_ is valid.
488 bool is_offset_valid_;
489 // Whether data size is fixed.
490 bool is_data_size_fixed_;
491 // Count of dynamic relocations applied to this section.
492 unsigned int dynamic_reloc_count_;
493 };
494
495 // Output the section headers.
496
497 class Output_section_headers : public Output_data
498 {
499 public:
500 Output_section_headers(const Layout*,
501 const Layout::Segment_list*,
502 const Layout::Section_list*,
503 const Layout::Section_list*,
504 const Stringpool*,
505 const Output_section*);
506
507 protected:
508 // Write the data to the file.
509 void
510 do_write(Output_file*);
511
512 // Return the required alignment.
513 uint64_t
514 do_addralign() const
515 { return Output_data::default_alignment(); }
516
517 // Write to a map file.
518 void
519 do_print_to_mapfile(Mapfile* mapfile) const
520 { mapfile->print_output_data(this, _("** section headers")); }
521
522 // Set final data size.
523 void
524 set_final_data_size()
525 { this->set_data_size(this->do_size()); }
526
527 private:
528 // Write the data to the file with the right size and endianness.
529 template<int size, bool big_endian>
530 void
531 do_sized_write(Output_file*);
532
533 // Compute data size.
534 off_t
535 do_size() const;
536
537 const Layout* layout_;
538 const Layout::Segment_list* segment_list_;
539 const Layout::Section_list* section_list_;
540 const Layout::Section_list* unattached_section_list_;
541 const Stringpool* secnamepool_;
542 const Output_section* shstrtab_section_;
543 };
544
545 // Output the segment headers.
546
547 class Output_segment_headers : public Output_data
548 {
549 public:
550 Output_segment_headers(const Layout::Segment_list& segment_list);
551
552 protected:
553 // Write the data to the file.
554 void
555 do_write(Output_file*);
556
557 // Return the required alignment.
558 uint64_t
559 do_addralign() const
560 { return Output_data::default_alignment(); }
561
562 // Write to a map file.
563 void
564 do_print_to_mapfile(Mapfile* mapfile) const
565 { mapfile->print_output_data(this, _("** segment headers")); }
566
567 // Set final data size.
568 void
569 set_final_data_size()
570 { this->set_data_size(this->do_size()); }
571
572 private:
573 // Write the data to the file with the right size and endianness.
574 template<int size, bool big_endian>
575 void
576 do_sized_write(Output_file*);
577
578 // Compute the current size.
579 off_t
580 do_size() const;
581
582 const Layout::Segment_list& segment_list_;
583 };
584
585 // Output the ELF file header.
586
587 class Output_file_header : public Output_data
588 {
589 public:
590 Output_file_header(const Target*,
591 const Symbol_table*,
592 const Output_segment_headers*,
593 const char* entry);
594
595 // Add information about the section headers. We lay out the ELF
596 // file header before we create the section headers.
597 void set_section_info(const Output_section_headers*,
598 const Output_section* shstrtab);
599
600 protected:
601 // Write the data to the file.
602 void
603 do_write(Output_file*);
604
605 // Return the required alignment.
606 uint64_t
607 do_addralign() const
608 { return Output_data::default_alignment(); }
609
610 // Write to a map file.
611 void
612 do_print_to_mapfile(Mapfile* mapfile) const
613 { mapfile->print_output_data(this, _("** file header")); }
614
615 // Set final data size.
616 void
617 set_final_data_size(void)
618 { this->set_data_size(this->do_size()); }
619
620 private:
621 // Write the data to the file with the right size and endianness.
622 template<int size, bool big_endian>
623 void
624 do_sized_write(Output_file*);
625
626 // Return the value to use for the entry address.
627 template<int size>
628 typename elfcpp::Elf_types<size>::Elf_Addr
629 entry();
630
631 // Compute the current data size.
632 off_t
633 do_size() const;
634
635 const Target* target_;
636 const Symbol_table* symtab_;
637 const Output_segment_headers* segment_header_;
638 const Output_section_headers* section_header_;
639 const Output_section* shstrtab_;
640 const char* entry_;
641 };
642
643 // Output sections are mainly comprised of input sections. However,
644 // there are cases where we have data to write out which is not in an
645 // input section. Output_section_data is used in such cases. This is
646 // an abstract base class.
647
648 class Output_section_data : public Output_data
649 {
650 public:
651 Output_section_data(off_t data_size, uint64_t addralign,
652 bool is_data_size_fixed)
653 : Output_data(), output_section_(NULL), addralign_(addralign)
654 {
655 this->set_data_size(data_size);
656 if (is_data_size_fixed)
657 this->fix_data_size();
658 }
659
660 Output_section_data(uint64_t addralign)
661 : Output_data(), output_section_(NULL), addralign_(addralign)
662 { }
663
664 // Return the output section.
665 const Output_section*
666 output_section() const
667 { return this->output_section_; }
668
669 // Record the output section.
670 void
671 set_output_section(Output_section* os);
672
673 // Add an input section, for SHF_MERGE sections. This returns true
674 // if the section was handled.
675 bool
676 add_input_section(Relobj* object, unsigned int shndx)
677 { return this->do_add_input_section(object, shndx); }
678
679 // Given an input OBJECT, an input section index SHNDX within that
680 // object, and an OFFSET relative to the start of that input
681 // section, return whether or not the corresponding offset within
682 // the output section is known. If this function returns true, it
683 // sets *POUTPUT to the output offset. The value -1 indicates that
684 // this input offset is being discarded.
685 bool
686 output_offset(const Relobj* object, unsigned int shndx,
687 section_offset_type offset,
688 section_offset_type *poutput) const
689 { return this->do_output_offset(object, shndx, offset, poutput); }
690
691 // Return whether this is the merge section for the input section
692 // SHNDX in OBJECT. This should return true when output_offset
693 // would return true for some values of OFFSET.
694 bool
695 is_merge_section_for(const Relobj* object, unsigned int shndx) const
696 { return this->do_is_merge_section_for(object, shndx); }
697
698 // Write the contents to a buffer. This is used for sections which
699 // require postprocessing, such as compression.
700 void
701 write_to_buffer(unsigned char* buffer)
702 { this->do_write_to_buffer(buffer); }
703
704 // Print merge stats to stderr. This should only be called for
705 // SHF_MERGE sections.
706 void
707 print_merge_stats(const char* section_name)
708 { this->do_print_merge_stats(section_name); }
709
710 protected:
711 // The child class must implement do_write.
712
713 // The child class may implement specific adjustments to the output
714 // section.
715 virtual void
716 do_adjust_output_section(Output_section*)
717 { }
718
719 // May be implemented by child class. Return true if the section
720 // was handled.
721 virtual bool
722 do_add_input_section(Relobj*, unsigned int)
723 { gold_unreachable(); }
724
725 // The child class may implement output_offset.
726 virtual bool
727 do_output_offset(const Relobj*, unsigned int, section_offset_type,
728 section_offset_type*) const
729 { return false; }
730
731 // The child class may implement is_merge_section_for.
732 virtual bool
733 do_is_merge_section_for(const Relobj*, unsigned int) const
734 { return false; }
735
736 // The child class may implement write_to_buffer. Most child
737 // classes can not appear in a compressed section, and they do not
738 // implement this.
739 virtual void
740 do_write_to_buffer(unsigned char*)
741 { gold_unreachable(); }
742
743 // Print merge statistics.
744 virtual void
745 do_print_merge_stats(const char*)
746 { gold_unreachable(); }
747
748 // Return the required alignment.
749 uint64_t
750 do_addralign() const
751 { return this->addralign_; }
752
753 // Return the output section.
754 Output_section*
755 do_output_section()
756 { return this->output_section_; }
757
758 // Return the section index of the output section.
759 unsigned int
760 do_out_shndx() const;
761
762 // Set the alignment.
763 void
764 set_addralign(uint64_t addralign);
765
766 private:
767 // The output section for this section.
768 Output_section* output_section_;
769 // The required alignment.
770 uint64_t addralign_;
771 };
772
773 // Some Output_section_data classes build up their data step by step,
774 // rather than all at once. This class provides an interface for
775 // them.
776
777 class Output_section_data_build : public Output_section_data
778 {
779 public:
780 Output_section_data_build(uint64_t addralign)
781 : Output_section_data(addralign)
782 { }
783
784 // Get the current data size.
785 off_t
786 current_data_size() const
787 { return this->current_data_size_for_child(); }
788
789 // Set the current data size.
790 void
791 set_current_data_size(off_t data_size)
792 { this->set_current_data_size_for_child(data_size); }
793
794 protected:
795 // Set the final data size.
796 virtual void
797 set_final_data_size()
798 { this->set_data_size(this->current_data_size_for_child()); }
799 };
800
801 // A simple case of Output_data in which we have constant data to
802 // output.
803
804 class Output_data_const : public Output_section_data
805 {
806 public:
807 Output_data_const(const std::string& data, uint64_t addralign)
808 : Output_section_data(data.size(), addralign, true), data_(data)
809 { }
810
811 Output_data_const(const char* p, off_t len, uint64_t addralign)
812 : Output_section_data(len, addralign, true), data_(p, len)
813 { }
814
815 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
816 : Output_section_data(len, addralign, true),
817 data_(reinterpret_cast<const char*>(p), len)
818 { }
819
820 protected:
821 // Write the data to the output file.
822 void
823 do_write(Output_file*);
824
825 // Write the data to a buffer.
826 void
827 do_write_to_buffer(unsigned char* buffer)
828 { memcpy(buffer, this->data_.data(), this->data_.size()); }
829
830 // Write to a map file.
831 void
832 do_print_to_mapfile(Mapfile* mapfile) const
833 { mapfile->print_output_data(this, _("** fill")); }
834
835 private:
836 std::string data_;
837 };
838
839 // Another version of Output_data with constant data, in which the
840 // buffer is allocated by the caller.
841
842 class Output_data_const_buffer : public Output_section_data
843 {
844 public:
845 Output_data_const_buffer(const unsigned char* p, off_t len,
846 uint64_t addralign, const char* map_name)
847 : Output_section_data(len, addralign, true),
848 p_(p), map_name_(map_name)
849 { }
850
851 protected:
852 // Write the data the output file.
853 void
854 do_write(Output_file*);
855
856 // Write the data to a buffer.
857 void
858 do_write_to_buffer(unsigned char* buffer)
859 { memcpy(buffer, this->p_, this->data_size()); }
860
861 // Write to a map file.
862 void
863 do_print_to_mapfile(Mapfile* mapfile) const
864 { mapfile->print_output_data(this, _(this->map_name_)); }
865
866 private:
867 // The data to output.
868 const unsigned char* p_;
869 // Name to use in a map file. Maps are a rarely used feature, but
870 // the space usage is minor as aren't very many of these objects.
871 const char* map_name_;
872 };
873
874 // A place holder for a fixed amount of data written out via some
875 // other mechanism.
876
877 class Output_data_fixed_space : public Output_section_data
878 {
879 public:
880 Output_data_fixed_space(off_t data_size, uint64_t addralign,
881 const char* map_name)
882 : Output_section_data(data_size, addralign, true),
883 map_name_(map_name)
884 { }
885
886 protected:
887 // Write out the data--the actual data must be written out
888 // elsewhere.
889 void
890 do_write(Output_file*)
891 { }
892
893 // Write to a map file.
894 void
895 do_print_to_mapfile(Mapfile* mapfile) const
896 { mapfile->print_output_data(this, _(this->map_name_)); }
897
898 private:
899 // Name to use in a map file. Maps are a rarely used feature, but
900 // the space usage is minor as aren't very many of these objects.
901 const char* map_name_;
902 };
903
904 // A place holder for variable sized data written out via some other
905 // mechanism.
906
907 class Output_data_space : public Output_section_data_build
908 {
909 public:
910 explicit Output_data_space(uint64_t addralign, const char* map_name)
911 : Output_section_data_build(addralign),
912 map_name_(map_name)
913 { }
914
915 // Set the alignment.
916 void
917 set_space_alignment(uint64_t align)
918 { this->set_addralign(align); }
919
920 protected:
921 // Write out the data--the actual data must be written out
922 // elsewhere.
923 void
924 do_write(Output_file*)
925 { }
926
927 // Write to a map file.
928 void
929 do_print_to_mapfile(Mapfile* mapfile) const
930 { mapfile->print_output_data(this, _(this->map_name_)); }
931
932 private:
933 // Name to use in a map file. Maps are a rarely used feature, but
934 // the space usage is minor as aren't very many of these objects.
935 const char* map_name_;
936 };
937
938 // Fill fixed space with zeroes. This is just like
939 // Output_data_fixed_space, except that the map name is known.
940
941 class Output_data_zero_fill : public Output_section_data
942 {
943 public:
944 Output_data_zero_fill(off_t data_size, uint64_t addralign)
945 : Output_section_data(data_size, addralign, true)
946 { }
947
948 protected:
949 // There is no data to write out.
950 void
951 do_write(Output_file*)
952 { }
953
954 // Write to a map file.
955 void
956 do_print_to_mapfile(Mapfile* mapfile) const
957 { mapfile->print_output_data(this, "** zero fill"); }
958 };
959
960 // A string table which goes into an output section.
961
962 class Output_data_strtab : public Output_section_data
963 {
964 public:
965 Output_data_strtab(Stringpool* strtab)
966 : Output_section_data(1), strtab_(strtab)
967 { }
968
969 protected:
970 // This is called to set the address and file offset. Here we make
971 // sure that the Stringpool is finalized.
972 void
973 set_final_data_size();
974
975 // Write out the data.
976 void
977 do_write(Output_file*);
978
979 // Write the data to a buffer.
980 void
981 do_write_to_buffer(unsigned char* buffer)
982 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
983
984 // Write to a map file.
985 void
986 do_print_to_mapfile(Mapfile* mapfile) const
987 { mapfile->print_output_data(this, _("** string table")); }
988
989 private:
990 Stringpool* strtab_;
991 };
992
993 // This POD class is used to represent a single reloc in the output
994 // file. This could be a private class within Output_data_reloc, but
995 // the templatization is complex enough that I broke it out into a
996 // separate class. The class is templatized on either elfcpp::SHT_REL
997 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
998 // relocation or an ordinary relocation.
999
1000 // A relocation can be against a global symbol, a local symbol, a
1001 // local section symbol, an output section, or the undefined symbol at
1002 // index 0. We represent the latter by using a NULL global symbol.
1003
1004 template<int sh_type, bool dynamic, int size, bool big_endian>
1005 class Output_reloc;
1006
1007 template<bool dynamic, int size, bool big_endian>
1008 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1009 {
1010 public:
1011 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1012 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1013
1014 static const Address invalid_address = static_cast<Address>(0) - 1;
1015
1016 // An uninitialized entry. We need this because we want to put
1017 // instances of this class into an STL container.
1018 Output_reloc()
1019 : local_sym_index_(INVALID_CODE)
1020 { }
1021
1022 // We have a bunch of different constructors. They come in pairs
1023 // depending on how the address of the relocation is specified. It
1024 // can either be an offset in an Output_data or an offset in an
1025 // input section.
1026
1027 // A reloc against a global symbol.
1028
1029 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1030 Address address, bool is_relative);
1031
1032 Output_reloc(Symbol* gsym, unsigned int type,
1033 Sized_relobj<size, big_endian>* relobj,
1034 unsigned int shndx, Address address, bool is_relative);
1035
1036 // A reloc against a local symbol or local section symbol.
1037
1038 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1039 unsigned int local_sym_index, unsigned int type,
1040 Output_data* od, Address address, bool is_relative,
1041 bool is_section_symbol);
1042
1043 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1044 unsigned int local_sym_index, unsigned int type,
1045 unsigned int shndx, Address address, bool is_relative,
1046 bool is_section_symbol);
1047
1048 // A reloc against the STT_SECTION symbol of an output section.
1049
1050 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1051 Address address);
1052
1053 Output_reloc(Output_section* os, unsigned int type,
1054 Sized_relobj<size, big_endian>* relobj,
1055 unsigned int shndx, Address address);
1056
1057 // Return TRUE if this is a RELATIVE relocation.
1058 bool
1059 is_relative() const
1060 { return this->is_relative_; }
1061
1062 // Return whether this is against a local section symbol.
1063 bool
1064 is_local_section_symbol() const
1065 {
1066 return (this->local_sym_index_ != GSYM_CODE
1067 && this->local_sym_index_ != SECTION_CODE
1068 && this->local_sym_index_ != INVALID_CODE
1069 && this->is_section_symbol_);
1070 }
1071
1072 // For a local section symbol, return the offset of the input
1073 // section within the output section. ADDEND is the addend being
1074 // applied to the input section.
1075 Address
1076 local_section_offset(Addend addend) const;
1077
1078 // Get the value of the symbol referred to by a Rel relocation when
1079 // we are adding the given ADDEND.
1080 Address
1081 symbol_value(Addend addend) const;
1082
1083 // Write the reloc entry to an output view.
1084 void
1085 write(unsigned char* pov) const;
1086
1087 // Write the offset and info fields to Write_rel.
1088 template<typename Write_rel>
1089 void write_rel(Write_rel*) const;
1090
1091 // This is used when sorting dynamic relocs. Return -1 to sort this
1092 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1093 int
1094 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1095 const;
1096
1097 // Return whether this reloc should be sorted before the argument
1098 // when sorting dynamic relocs.
1099 bool
1100 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1101 r2) const
1102 { return this->compare(r2) < 0; }
1103
1104 private:
1105 // Record that we need a dynamic symbol index.
1106 void
1107 set_needs_dynsym_index();
1108
1109 // Return the symbol index.
1110 unsigned int
1111 get_symbol_index() const;
1112
1113 // Return the output address.
1114 Address
1115 get_address() const;
1116
1117 // Codes for local_sym_index_.
1118 enum
1119 {
1120 // Global symbol.
1121 GSYM_CODE = -1U,
1122 // Output section.
1123 SECTION_CODE = -2U,
1124 // Invalid uninitialized entry.
1125 INVALID_CODE = -3U
1126 };
1127
1128 union
1129 {
1130 // For a local symbol or local section symbol
1131 // (this->local_sym_index_ >= 0), the object. We will never
1132 // generate a relocation against a local symbol in a dynamic
1133 // object; that doesn't make sense. And our callers will always
1134 // be templatized, so we use Sized_relobj here.
1135 Sized_relobj<size, big_endian>* relobj;
1136 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1137 // symbol. If this is NULL, it indicates a relocation against the
1138 // undefined 0 symbol.
1139 Symbol* gsym;
1140 // For a relocation against an output section
1141 // (this->local_sym_index_ == SECTION_CODE), the output section.
1142 Output_section* os;
1143 } u1_;
1144 union
1145 {
1146 // If this->shndx_ is not INVALID CODE, the object which holds the
1147 // input section being used to specify the reloc address.
1148 Sized_relobj<size, big_endian>* relobj;
1149 // If this->shndx_ is INVALID_CODE, the output data being used to
1150 // specify the reloc address. This may be NULL if the reloc
1151 // address is absolute.
1152 Output_data* od;
1153 } u2_;
1154 // The address offset within the input section or the Output_data.
1155 Address address_;
1156 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1157 // relocation against an output section, or INVALID_CODE for an
1158 // uninitialized value. Otherwise, for a local symbol
1159 // (this->is_section_symbol_ is false), the local symbol index. For
1160 // a local section symbol (this->is_section_symbol_ is true), the
1161 // section index in the input file.
1162 unsigned int local_sym_index_;
1163 // The reloc type--a processor specific code.
1164 unsigned int type_ : 30;
1165 // True if the relocation is a RELATIVE relocation.
1166 bool is_relative_ : 1;
1167 // True if the relocation is against a section symbol.
1168 bool is_section_symbol_ : 1;
1169 // If the reloc address is an input section in an object, the
1170 // section index. This is INVALID_CODE if the reloc address is
1171 // specified in some other way.
1172 unsigned int shndx_;
1173 };
1174
1175 // The SHT_RELA version of Output_reloc<>. This is just derived from
1176 // the SHT_REL version of Output_reloc, but it adds an addend.
1177
1178 template<bool dynamic, int size, bool big_endian>
1179 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1180 {
1181 public:
1182 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1183 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1184
1185 // An uninitialized entry.
1186 Output_reloc()
1187 : rel_()
1188 { }
1189
1190 // A reloc against a global symbol.
1191
1192 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1193 Address address, Addend addend, bool is_relative)
1194 : rel_(gsym, type, od, address, is_relative), addend_(addend)
1195 { }
1196
1197 Output_reloc(Symbol* gsym, unsigned int type,
1198 Sized_relobj<size, big_endian>* relobj,
1199 unsigned int shndx, Address address, Addend addend,
1200 bool is_relative)
1201 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
1202 { }
1203
1204 // A reloc against a local symbol.
1205
1206 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1207 unsigned int local_sym_index, unsigned int type,
1208 Output_data* od, Address address,
1209 Addend addend, bool is_relative, bool is_section_symbol)
1210 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1211 is_section_symbol),
1212 addend_(addend)
1213 { }
1214
1215 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1216 unsigned int local_sym_index, unsigned int type,
1217 unsigned int shndx, Address address,
1218 Addend addend, bool is_relative, bool is_section_symbol)
1219 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1220 is_section_symbol),
1221 addend_(addend)
1222 { }
1223
1224 // A reloc against the STT_SECTION symbol of an output section.
1225
1226 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1227 Address address, Addend addend)
1228 : rel_(os, type, od, address), addend_(addend)
1229 { }
1230
1231 Output_reloc(Output_section* os, unsigned int type,
1232 Sized_relobj<size, big_endian>* relobj,
1233 unsigned int shndx, Address address, Addend addend)
1234 : rel_(os, type, relobj, shndx, address), addend_(addend)
1235 { }
1236
1237 // Write the reloc entry to an output view.
1238 void
1239 write(unsigned char* pov) const;
1240
1241 // Return whether this reloc should be sorted before the argument
1242 // when sorting dynamic relocs.
1243 bool
1244 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1245 r2) const
1246 {
1247 int i = this->rel_.compare(r2.rel_);
1248 if (i < 0)
1249 return true;
1250 else if (i > 0)
1251 return false;
1252 else
1253 return this->addend_ < r2.addend_;
1254 }
1255
1256 private:
1257 // The basic reloc.
1258 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1259 // The addend.
1260 Addend addend_;
1261 };
1262
1263 // Output_data_reloc is used to manage a section containing relocs.
1264 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1265 // indicates whether this is a dynamic relocation or a normal
1266 // relocation. Output_data_reloc_base is a base class.
1267 // Output_data_reloc is the real class, which we specialize based on
1268 // the reloc type.
1269
1270 template<int sh_type, bool dynamic, int size, bool big_endian>
1271 class Output_data_reloc_base : public Output_section_data_build
1272 {
1273 public:
1274 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1275 typedef typename Output_reloc_type::Address Address;
1276 static const int reloc_size =
1277 Reloc_types<sh_type, size, big_endian>::reloc_size;
1278
1279 // Construct the section.
1280 Output_data_reloc_base(bool sort_relocs)
1281 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1282 sort_relocs_(sort_relocs)
1283 { }
1284
1285 protected:
1286 // Write out the data.
1287 void
1288 do_write(Output_file*);
1289
1290 // Set the entry size and the link.
1291 void
1292 do_adjust_output_section(Output_section *os);
1293
1294 // Write to a map file.
1295 void
1296 do_print_to_mapfile(Mapfile* mapfile) const
1297 {
1298 mapfile->print_output_data(this,
1299 (dynamic
1300 ? _("** dynamic relocs")
1301 : _("** relocs")));
1302 }
1303
1304 // Add a relocation entry.
1305 void
1306 add(Output_data *od, const Output_reloc_type& reloc)
1307 {
1308 this->relocs_.push_back(reloc);
1309 this->set_current_data_size(this->relocs_.size() * reloc_size);
1310 od->add_dynamic_reloc();
1311 }
1312
1313 private:
1314 typedef std::vector<Output_reloc_type> Relocs;
1315
1316 // The class used to sort the relocations.
1317 struct Sort_relocs_comparison
1318 {
1319 bool
1320 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1321 { return r1.sort_before(r2); }
1322 };
1323
1324 // The relocations in this section.
1325 Relocs relocs_;
1326 // Whether to sort the relocations when writing them out, to make
1327 // the dynamic linker more efficient.
1328 bool sort_relocs_;
1329 };
1330
1331 // The class which callers actually create.
1332
1333 template<int sh_type, bool dynamic, int size, bool big_endian>
1334 class Output_data_reloc;
1335
1336 // The SHT_REL version of Output_data_reloc.
1337
1338 template<bool dynamic, int size, bool big_endian>
1339 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1340 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1341 {
1342 private:
1343 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1344 big_endian> Base;
1345
1346 public:
1347 typedef typename Base::Output_reloc_type Output_reloc_type;
1348 typedef typename Output_reloc_type::Address Address;
1349
1350 Output_data_reloc(bool sr)
1351 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1352 { }
1353
1354 // Add a reloc against a global symbol.
1355
1356 void
1357 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1358 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
1359
1360 void
1361 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1362 Sized_relobj<size, big_endian>* relobj,
1363 unsigned int shndx, Address address)
1364 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1365 false)); }
1366
1367 // These are to simplify the Copy_relocs class.
1368
1369 void
1370 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1371 Address addend)
1372 {
1373 gold_assert(addend == 0);
1374 this->add_global(gsym, type, od, address);
1375 }
1376
1377 void
1378 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1379 Sized_relobj<size, big_endian>* relobj,
1380 unsigned int shndx, Address address, Address addend)
1381 {
1382 gold_assert(addend == 0);
1383 this->add_global(gsym, type, od, relobj, shndx, address);
1384 }
1385
1386 // Add a RELATIVE reloc against a global symbol. The final relocation
1387 // will not reference the symbol.
1388
1389 void
1390 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1391 Address address)
1392 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
1393
1394 void
1395 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1396 Sized_relobj<size, big_endian>* relobj,
1397 unsigned int shndx, Address address)
1398 {
1399 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1400 true));
1401 }
1402
1403 // Add a reloc against a local symbol.
1404
1405 void
1406 add_local(Sized_relobj<size, big_endian>* relobj,
1407 unsigned int local_sym_index, unsigned int type,
1408 Output_data* od, Address address)
1409 {
1410 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1411 address, false, false));
1412 }
1413
1414 void
1415 add_local(Sized_relobj<size, big_endian>* relobj,
1416 unsigned int local_sym_index, unsigned int type,
1417 Output_data* od, unsigned int shndx, Address address)
1418 {
1419 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1420 address, false, false));
1421 }
1422
1423 // Add a RELATIVE reloc against a local symbol.
1424
1425 void
1426 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1427 unsigned int local_sym_index, unsigned int type,
1428 Output_data* od, Address address)
1429 {
1430 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1431 address, true, false));
1432 }
1433
1434 void
1435 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1436 unsigned int local_sym_index, unsigned int type,
1437 Output_data* od, unsigned int shndx, Address address)
1438 {
1439 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1440 address, true, false));
1441 }
1442
1443 // Add a reloc against a local section symbol. This will be
1444 // converted into a reloc against the STT_SECTION symbol of the
1445 // output section.
1446
1447 void
1448 add_local_section(Sized_relobj<size, big_endian>* relobj,
1449 unsigned int input_shndx, unsigned int type,
1450 Output_data* od, Address address)
1451 {
1452 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1453 address, false, true));
1454 }
1455
1456 void
1457 add_local_section(Sized_relobj<size, big_endian>* relobj,
1458 unsigned int input_shndx, unsigned int type,
1459 Output_data* od, unsigned int shndx, Address address)
1460 {
1461 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1462 address, false, true));
1463 }
1464
1465 // A reloc against the STT_SECTION symbol of an output section.
1466 // OS is the Output_section that the relocation refers to; OD is
1467 // the Output_data object being relocated.
1468
1469 void
1470 add_output_section(Output_section* os, unsigned int type,
1471 Output_data* od, Address address)
1472 { this->add(od, Output_reloc_type(os, type, od, address)); }
1473
1474 void
1475 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1476 Sized_relobj<size, big_endian>* relobj,
1477 unsigned int shndx, Address address)
1478 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1479 };
1480
1481 // The SHT_RELA version of Output_data_reloc.
1482
1483 template<bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1485 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1486 {
1487 private:
1488 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1489 big_endian> Base;
1490
1491 public:
1492 typedef typename Base::Output_reloc_type Output_reloc_type;
1493 typedef typename Output_reloc_type::Address Address;
1494 typedef typename Output_reloc_type::Addend Addend;
1495
1496 Output_data_reloc(bool sr)
1497 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1498 { }
1499
1500 // Add a reloc against a global symbol.
1501
1502 void
1503 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1504 Address address, Addend addend)
1505 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1506 false)); }
1507
1508 void
1509 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1510 Sized_relobj<size, big_endian>* relobj,
1511 unsigned int shndx, Address address,
1512 Addend addend)
1513 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1514 addend, false)); }
1515
1516 // Add a RELATIVE reloc against a global symbol. The final output
1517 // relocation will not reference the symbol, but we must keep the symbol
1518 // information long enough to set the addend of the relocation correctly
1519 // when it is written.
1520
1521 void
1522 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1523 Address address, Addend addend)
1524 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1525
1526 void
1527 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1528 Sized_relobj<size, big_endian>* relobj,
1529 unsigned int shndx, Address address, Addend addend)
1530 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1531 addend, true)); }
1532
1533 // Add a reloc against a local symbol.
1534
1535 void
1536 add_local(Sized_relobj<size, big_endian>* relobj,
1537 unsigned int local_sym_index, unsigned int type,
1538 Output_data* od, Address address, Addend addend)
1539 {
1540 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1541 addend, false, false));
1542 }
1543
1544 void
1545 add_local(Sized_relobj<size, big_endian>* relobj,
1546 unsigned int local_sym_index, unsigned int type,
1547 Output_data* od, unsigned int shndx, Address address,
1548 Addend addend)
1549 {
1550 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1551 address, addend, false, false));
1552 }
1553
1554 // Add a RELATIVE reloc against a local symbol.
1555
1556 void
1557 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1558 unsigned int local_sym_index, unsigned int type,
1559 Output_data* od, Address address, Addend addend)
1560 {
1561 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1562 addend, true, false));
1563 }
1564
1565 void
1566 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1567 unsigned int local_sym_index, unsigned int type,
1568 Output_data* od, unsigned int shndx, Address address,
1569 Addend addend)
1570 {
1571 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1572 address, addend, true, false));
1573 }
1574
1575 // Add a reloc against a local section symbol. This will be
1576 // converted into a reloc against the STT_SECTION symbol of the
1577 // output section.
1578
1579 void
1580 add_local_section(Sized_relobj<size, big_endian>* relobj,
1581 unsigned int input_shndx, unsigned int type,
1582 Output_data* od, Address address, Addend addend)
1583 {
1584 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1585 addend, false, true));
1586 }
1587
1588 void
1589 add_local_section(Sized_relobj<size, big_endian>* relobj,
1590 unsigned int input_shndx, unsigned int type,
1591 Output_data* od, unsigned int shndx, Address address,
1592 Addend addend)
1593 {
1594 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1595 address, addend, false, true));
1596 }
1597
1598 // A reloc against the STT_SECTION symbol of an output section.
1599
1600 void
1601 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1602 Address address, Addend addend)
1603 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1604
1605 void
1606 add_output_section(Output_section* os, unsigned int type,
1607 Sized_relobj<size, big_endian>* relobj,
1608 unsigned int shndx, Address address, Addend addend)
1609 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1610 addend)); }
1611 };
1612
1613 // Output_relocatable_relocs represents a relocation section in a
1614 // relocatable link. The actual data is written out in the target
1615 // hook relocate_for_relocatable. This just saves space for it.
1616
1617 template<int sh_type, int size, bool big_endian>
1618 class Output_relocatable_relocs : public Output_section_data
1619 {
1620 public:
1621 Output_relocatable_relocs(Relocatable_relocs* rr)
1622 : Output_section_data(Output_data::default_alignment_for_size(size)),
1623 rr_(rr)
1624 { }
1625
1626 void
1627 set_final_data_size();
1628
1629 // Write out the data. There is nothing to do here.
1630 void
1631 do_write(Output_file*)
1632 { }
1633
1634 // Write to a map file.
1635 void
1636 do_print_to_mapfile(Mapfile* mapfile) const
1637 { mapfile->print_output_data(this, _("** relocs")); }
1638
1639 private:
1640 // The relocs associated with this input section.
1641 Relocatable_relocs* rr_;
1642 };
1643
1644 // Handle a GROUP section.
1645
1646 template<int size, bool big_endian>
1647 class Output_data_group : public Output_section_data
1648 {
1649 public:
1650 // The constructor clears *INPUT_SHNDXES.
1651 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1652 section_size_type entry_count,
1653 elfcpp::Elf_Word flags,
1654 std::vector<unsigned int>* input_shndxes);
1655
1656 void
1657 do_write(Output_file*);
1658
1659 // Write to a map file.
1660 void
1661 do_print_to_mapfile(Mapfile* mapfile) const
1662 { mapfile->print_output_data(this, _("** group")); }
1663
1664 // Set final data size.
1665 void
1666 set_final_data_size()
1667 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1668
1669 private:
1670 // The input object.
1671 Sized_relobj<size, big_endian>* relobj_;
1672 // The group flag word.
1673 elfcpp::Elf_Word flags_;
1674 // The section indexes of the input sections in this group.
1675 std::vector<unsigned int> input_shndxes_;
1676 };
1677
1678 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1679 // for one symbol--either a global symbol or a local symbol in an
1680 // object. The target specific code adds entries to the GOT as
1681 // needed.
1682
1683 template<int size, bool big_endian>
1684 class Output_data_got : public Output_section_data_build
1685 {
1686 public:
1687 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1688 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1689 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1690
1691 Output_data_got()
1692 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1693 entries_()
1694 { }
1695
1696 // Add an entry for a global symbol to the GOT. Return true if this
1697 // is a new GOT entry, false if the symbol was already in the GOT.
1698 bool
1699 add_global(Symbol* gsym, unsigned int got_type);
1700
1701 // Add an entry for a global symbol to the GOT, and add a dynamic
1702 // relocation of type R_TYPE for the GOT entry.
1703 void
1704 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1705 Rel_dyn* rel_dyn, unsigned int r_type);
1706
1707 void
1708 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1709 Rela_dyn* rela_dyn, unsigned int r_type);
1710
1711 // Add a pair of entries for a global symbol to the GOT, and add
1712 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1713 void
1714 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1715 Rel_dyn* rel_dyn, unsigned int r_type_1,
1716 unsigned int r_type_2);
1717
1718 void
1719 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1720 Rela_dyn* rela_dyn, unsigned int r_type_1,
1721 unsigned int r_type_2);
1722
1723 // Add an entry for a local symbol to the GOT. This returns true if
1724 // this is a new GOT entry, false if the symbol already has a GOT
1725 // entry.
1726 bool
1727 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1728 unsigned int got_type);
1729
1730 // Add an entry for a local symbol to the GOT, and add a dynamic
1731 // relocation of type R_TYPE for the GOT entry.
1732 void
1733 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1734 unsigned int sym_index, unsigned int got_type,
1735 Rel_dyn* rel_dyn, unsigned int r_type);
1736
1737 void
1738 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1739 unsigned int sym_index, unsigned int got_type,
1740 Rela_dyn* rela_dyn, unsigned int r_type);
1741
1742 // Add a pair of entries for a local symbol to the GOT, and add
1743 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1744 void
1745 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1746 unsigned int sym_index, unsigned int shndx,
1747 unsigned int got_type, Rel_dyn* rel_dyn,
1748 unsigned int r_type_1, unsigned int r_type_2);
1749
1750 void
1751 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1752 unsigned int sym_index, unsigned int shndx,
1753 unsigned int got_type, Rela_dyn* rela_dyn,
1754 unsigned int r_type_1, unsigned int r_type_2);
1755
1756 // Add a constant to the GOT. This returns the offset of the new
1757 // entry from the start of the GOT.
1758 unsigned int
1759 add_constant(Valtype constant)
1760 {
1761 this->entries_.push_back(Got_entry(constant));
1762 this->set_got_size();
1763 return this->last_got_offset();
1764 }
1765
1766 protected:
1767 // Write out the GOT table.
1768 void
1769 do_write(Output_file*);
1770
1771 // Write to a map file.
1772 void
1773 do_print_to_mapfile(Mapfile* mapfile) const
1774 { mapfile->print_output_data(this, _("** GOT")); }
1775
1776 private:
1777 // This POD class holds a single GOT entry.
1778 class Got_entry
1779 {
1780 public:
1781 // Create a zero entry.
1782 Got_entry()
1783 : local_sym_index_(CONSTANT_CODE)
1784 { this->u_.constant = 0; }
1785
1786 // Create a global symbol entry.
1787 explicit Got_entry(Symbol* gsym)
1788 : local_sym_index_(GSYM_CODE)
1789 { this->u_.gsym = gsym; }
1790
1791 // Create a local symbol entry.
1792 Got_entry(Sized_relobj<size, big_endian>* object,
1793 unsigned int local_sym_index)
1794 : local_sym_index_(local_sym_index)
1795 {
1796 gold_assert(local_sym_index != GSYM_CODE
1797 && local_sym_index != CONSTANT_CODE);
1798 this->u_.object = object;
1799 }
1800
1801 // Create a constant entry. The constant is a host value--it will
1802 // be swapped, if necessary, when it is written out.
1803 explicit Got_entry(Valtype constant)
1804 : local_sym_index_(CONSTANT_CODE)
1805 { this->u_.constant = constant; }
1806
1807 // Write the GOT entry to an output view.
1808 void
1809 write(unsigned char* pov) const;
1810
1811 private:
1812 enum
1813 {
1814 GSYM_CODE = -1U,
1815 CONSTANT_CODE = -2U
1816 };
1817
1818 union
1819 {
1820 // For a local symbol, the object.
1821 Sized_relobj<size, big_endian>* object;
1822 // For a global symbol, the symbol.
1823 Symbol* gsym;
1824 // For a constant, the constant.
1825 Valtype constant;
1826 } u_;
1827 // For a local symbol, the local symbol index. This is GSYM_CODE
1828 // for a global symbol, or CONSTANT_CODE for a constant.
1829 unsigned int local_sym_index_;
1830 };
1831
1832 typedef std::vector<Got_entry> Got_entries;
1833
1834 // Return the offset into the GOT of GOT entry I.
1835 unsigned int
1836 got_offset(unsigned int i) const
1837 { return i * (size / 8); }
1838
1839 // Return the offset into the GOT of the last entry added.
1840 unsigned int
1841 last_got_offset() const
1842 { return this->got_offset(this->entries_.size() - 1); }
1843
1844 // Set the size of the section.
1845 void
1846 set_got_size()
1847 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1848
1849 // The list of GOT entries.
1850 Got_entries entries_;
1851 };
1852
1853 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1854 // section.
1855
1856 class Output_data_dynamic : public Output_section_data
1857 {
1858 public:
1859 Output_data_dynamic(Stringpool* pool)
1860 : Output_section_data(Output_data::default_alignment()),
1861 entries_(), pool_(pool)
1862 { }
1863
1864 // Add a new dynamic entry with a fixed numeric value.
1865 void
1866 add_constant(elfcpp::DT tag, unsigned int val)
1867 { this->add_entry(Dynamic_entry(tag, val)); }
1868
1869 // Add a new dynamic entry with the address of output data.
1870 void
1871 add_section_address(elfcpp::DT tag, const Output_data* od)
1872 { this->add_entry(Dynamic_entry(tag, od, false)); }
1873
1874 // Add a new dynamic entry with the address of output data
1875 // plus a constant offset.
1876 void
1877 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1878 unsigned int offset)
1879 { this->add_entry(Dynamic_entry(tag, od, offset)); }
1880
1881 // Add a new dynamic entry with the size of output data.
1882 void
1883 add_section_size(elfcpp::DT tag, const Output_data* od)
1884 { this->add_entry(Dynamic_entry(tag, od, true)); }
1885
1886 // Add a new dynamic entry with the address of a symbol.
1887 void
1888 add_symbol(elfcpp::DT tag, const Symbol* sym)
1889 { this->add_entry(Dynamic_entry(tag, sym)); }
1890
1891 // Add a new dynamic entry with a string.
1892 void
1893 add_string(elfcpp::DT tag, const char* str)
1894 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1895
1896 void
1897 add_string(elfcpp::DT tag, const std::string& str)
1898 { this->add_string(tag, str.c_str()); }
1899
1900 protected:
1901 // Adjust the output section to set the entry size.
1902 void
1903 do_adjust_output_section(Output_section*);
1904
1905 // Set the final data size.
1906 void
1907 set_final_data_size();
1908
1909 // Write out the dynamic entries.
1910 void
1911 do_write(Output_file*);
1912
1913 // Write to a map file.
1914 void
1915 do_print_to_mapfile(Mapfile* mapfile) const
1916 { mapfile->print_output_data(this, _("** dynamic")); }
1917
1918 private:
1919 // This POD class holds a single dynamic entry.
1920 class Dynamic_entry
1921 {
1922 public:
1923 // Create an entry with a fixed numeric value.
1924 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1925 : tag_(tag), offset_(DYNAMIC_NUMBER)
1926 { this->u_.val = val; }
1927
1928 // Create an entry with the size or address of a section.
1929 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1930 : tag_(tag),
1931 offset_(section_size
1932 ? DYNAMIC_SECTION_SIZE
1933 : DYNAMIC_SECTION_ADDRESS)
1934 { this->u_.od = od; }
1935
1936 // Create an entry with the address of a section plus a constant offset.
1937 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
1938 : tag_(tag),
1939 offset_(offset)
1940 { this->u_.od = od; }
1941
1942 // Create an entry with the address of a symbol.
1943 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1944 : tag_(tag), offset_(DYNAMIC_SYMBOL)
1945 { this->u_.sym = sym; }
1946
1947 // Create an entry with a string.
1948 Dynamic_entry(elfcpp::DT tag, const char* str)
1949 : tag_(tag), offset_(DYNAMIC_STRING)
1950 { this->u_.str = str; }
1951
1952 // Return the tag of this entry.
1953 elfcpp::DT
1954 tag() const
1955 { return this->tag_; }
1956
1957 // Write the dynamic entry to an output view.
1958 template<int size, bool big_endian>
1959 void
1960 write(unsigned char* pov, const Stringpool*) const;
1961
1962 private:
1963 // Classification is encoded in the OFFSET field.
1964 enum Classification
1965 {
1966 // Section address.
1967 DYNAMIC_SECTION_ADDRESS = 0,
1968 // Number.
1969 DYNAMIC_NUMBER = -1U,
1970 // Section size.
1971 DYNAMIC_SECTION_SIZE = -2U,
1972 // Symbol adress.
1973 DYNAMIC_SYMBOL = -3U,
1974 // String.
1975 DYNAMIC_STRING = -4U
1976 // Any other value indicates a section address plus OFFSET.
1977 };
1978
1979 union
1980 {
1981 // For DYNAMIC_NUMBER.
1982 unsigned int val;
1983 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
1984 const Output_data* od;
1985 // For DYNAMIC_SYMBOL.
1986 const Symbol* sym;
1987 // For DYNAMIC_STRING.
1988 const char* str;
1989 } u_;
1990 // The dynamic tag.
1991 elfcpp::DT tag_;
1992 // The type of entry (Classification) or offset within a section.
1993 unsigned int offset_;
1994 };
1995
1996 // Add an entry to the list.
1997 void
1998 add_entry(const Dynamic_entry& entry)
1999 { this->entries_.push_back(entry); }
2000
2001 // Sized version of write function.
2002 template<int size, bool big_endian>
2003 void
2004 sized_write(Output_file* of);
2005
2006 // The type of the list of entries.
2007 typedef std::vector<Dynamic_entry> Dynamic_entries;
2008
2009 // The entries.
2010 Dynamic_entries entries_;
2011 // The pool used for strings.
2012 Stringpool* pool_;
2013 };
2014
2015 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2016 // which may be required if the object file has more than
2017 // SHN_LORESERVE sections.
2018
2019 class Output_symtab_xindex : public Output_section_data
2020 {
2021 public:
2022 Output_symtab_xindex(size_t symcount)
2023 : Output_section_data(symcount * 4, 4, true),
2024 entries_()
2025 { }
2026
2027 // Add an entry: symbol number SYMNDX has section SHNDX.
2028 void
2029 add(unsigned int symndx, unsigned int shndx)
2030 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2031
2032 protected:
2033 void
2034 do_write(Output_file*);
2035
2036 // Write to a map file.
2037 void
2038 do_print_to_mapfile(Mapfile* mapfile) const
2039 { mapfile->print_output_data(this, _("** symtab xindex")); }
2040
2041 private:
2042 template<bool big_endian>
2043 void
2044 endian_do_write(unsigned char*);
2045
2046 // It is likely that most symbols will not require entries. Rather
2047 // than keep a vector for all symbols, we keep pairs of symbol index
2048 // and section index.
2049 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2050
2051 // The entries we need.
2052 Xindex_entries entries_;
2053 };
2054
2055 // A relaxed input section.
2056 class Output_relaxed_input_section : public Output_section_data_build
2057 {
2058 public:
2059 // We would like to call relobj->section_addralign(shndx) to get the
2060 // alignment but we do not want the constructor to fail. So callers
2061 // are repsonsible for ensuring that.
2062 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2063 uint64_t addralign)
2064 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2065 { }
2066
2067 // Return the Relobj of this relaxed input section.
2068 Relobj*
2069 relobj() const
2070 { return this->relobj_; }
2071
2072 // Return the section index of this relaxed input section.
2073 unsigned int
2074 shndx() const
2075 { return this->shndx_; }
2076
2077 private:
2078 Relobj* relobj_;
2079 unsigned int shndx_;
2080 };
2081
2082 // An output section. We don't expect to have too many output
2083 // sections, so we don't bother to do a template on the size.
2084
2085 class Output_section : public Output_data
2086 {
2087 public:
2088 // Create an output section, giving the name, type, and flags.
2089 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2090 virtual ~Output_section();
2091
2092 // Add a new input section SHNDX, named NAME, with header SHDR, from
2093 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2094 // which applies to this section, or 0 if none, or -1 if more than
2095 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2096 // in a linker script; in that case we need to keep track of input
2097 // sections associated with an output section. Return the offset
2098 // within the output section.
2099 template<int size, bool big_endian>
2100 off_t
2101 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
2102 const char *name,
2103 const elfcpp::Shdr<size, big_endian>& shdr,
2104 unsigned int reloc_shndx, bool have_sections_script);
2105
2106 // Add generated data POSD to this output section.
2107 void
2108 add_output_section_data(Output_section_data* posd);
2109
2110 // Add a relaxed input section PORIS to this output section.
2111 void
2112 add_relaxed_input_section(Output_relaxed_input_section* poris);
2113
2114 // Return the section name.
2115 const char*
2116 name() const
2117 { return this->name_; }
2118
2119 // Return the section type.
2120 elfcpp::Elf_Word
2121 type() const
2122 { return this->type_; }
2123
2124 // Return the section flags.
2125 elfcpp::Elf_Xword
2126 flags() const
2127 { return this->flags_; }
2128
2129 // Update the output section flags based on input section flags.
2130 void
2131 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2132
2133 // Return the entsize field.
2134 uint64_t
2135 entsize() const
2136 { return this->entsize_; }
2137
2138 // Set the entsize field.
2139 void
2140 set_entsize(uint64_t v);
2141
2142 // Set the load address.
2143 void
2144 set_load_address(uint64_t load_address)
2145 {
2146 this->load_address_ = load_address;
2147 this->has_load_address_ = true;
2148 }
2149
2150 // Set the link field to the output section index of a section.
2151 void
2152 set_link_section(const Output_data* od)
2153 {
2154 gold_assert(this->link_ == 0
2155 && !this->should_link_to_symtab_
2156 && !this->should_link_to_dynsym_);
2157 this->link_section_ = od;
2158 }
2159
2160 // Set the link field to a constant.
2161 void
2162 set_link(unsigned int v)
2163 {
2164 gold_assert(this->link_section_ == NULL
2165 && !this->should_link_to_symtab_
2166 && !this->should_link_to_dynsym_);
2167 this->link_ = v;
2168 }
2169
2170 // Record that this section should link to the normal symbol table.
2171 void
2172 set_should_link_to_symtab()
2173 {
2174 gold_assert(this->link_section_ == NULL
2175 && this->link_ == 0
2176 && !this->should_link_to_dynsym_);
2177 this->should_link_to_symtab_ = true;
2178 }
2179
2180 // Record that this section should link to the dynamic symbol table.
2181 void
2182 set_should_link_to_dynsym()
2183 {
2184 gold_assert(this->link_section_ == NULL
2185 && this->link_ == 0
2186 && !this->should_link_to_symtab_);
2187 this->should_link_to_dynsym_ = true;
2188 }
2189
2190 // Return the info field.
2191 unsigned int
2192 info() const
2193 {
2194 gold_assert(this->info_section_ == NULL
2195 && this->info_symndx_ == NULL);
2196 return this->info_;
2197 }
2198
2199 // Set the info field to the output section index of a section.
2200 void
2201 set_info_section(const Output_section* os)
2202 {
2203 gold_assert((this->info_section_ == NULL
2204 || (this->info_section_ == os
2205 && this->info_uses_section_index_))
2206 && this->info_symndx_ == NULL
2207 && this->info_ == 0);
2208 this->info_section_ = os;
2209 this->info_uses_section_index_= true;
2210 }
2211
2212 // Set the info field to the symbol table index of a symbol.
2213 void
2214 set_info_symndx(const Symbol* sym)
2215 {
2216 gold_assert(this->info_section_ == NULL
2217 && (this->info_symndx_ == NULL
2218 || this->info_symndx_ == sym)
2219 && this->info_ == 0);
2220 this->info_symndx_ = sym;
2221 }
2222
2223 // Set the info field to the symbol table index of a section symbol.
2224 void
2225 set_info_section_symndx(const Output_section* os)
2226 {
2227 gold_assert((this->info_section_ == NULL
2228 || (this->info_section_ == os
2229 && !this->info_uses_section_index_))
2230 && this->info_symndx_ == NULL
2231 && this->info_ == 0);
2232 this->info_section_ = os;
2233 this->info_uses_section_index_ = false;
2234 }
2235
2236 // Set the info field to a constant.
2237 void
2238 set_info(unsigned int v)
2239 {
2240 gold_assert(this->info_section_ == NULL
2241 && this->info_symndx_ == NULL
2242 && (this->info_ == 0
2243 || this->info_ == v));
2244 this->info_ = v;
2245 }
2246
2247 // Set the addralign field.
2248 void
2249 set_addralign(uint64_t v)
2250 { this->addralign_ = v; }
2251
2252 // Whether the output section index has been set.
2253 bool
2254 has_out_shndx() const
2255 { return this->out_shndx_ != -1U; }
2256
2257 // Indicate that we need a symtab index.
2258 void
2259 set_needs_symtab_index()
2260 { this->needs_symtab_index_ = true; }
2261
2262 // Return whether we need a symtab index.
2263 bool
2264 needs_symtab_index() const
2265 { return this->needs_symtab_index_; }
2266
2267 // Get the symtab index.
2268 unsigned int
2269 symtab_index() const
2270 {
2271 gold_assert(this->symtab_index_ != 0);
2272 return this->symtab_index_;
2273 }
2274
2275 // Set the symtab index.
2276 void
2277 set_symtab_index(unsigned int index)
2278 {
2279 gold_assert(index != 0);
2280 this->symtab_index_ = index;
2281 }
2282
2283 // Indicate that we need a dynsym index.
2284 void
2285 set_needs_dynsym_index()
2286 { this->needs_dynsym_index_ = true; }
2287
2288 // Return whether we need a dynsym index.
2289 bool
2290 needs_dynsym_index() const
2291 { return this->needs_dynsym_index_; }
2292
2293 // Get the dynsym index.
2294 unsigned int
2295 dynsym_index() const
2296 {
2297 gold_assert(this->dynsym_index_ != 0);
2298 return this->dynsym_index_;
2299 }
2300
2301 // Set the dynsym index.
2302 void
2303 set_dynsym_index(unsigned int index)
2304 {
2305 gold_assert(index != 0);
2306 this->dynsym_index_ = index;
2307 }
2308
2309 // Return whether the input sections sections attachd to this output
2310 // section may require sorting. This is used to handle constructor
2311 // priorities compatibly with GNU ld.
2312 bool
2313 may_sort_attached_input_sections() const
2314 { return this->may_sort_attached_input_sections_; }
2315
2316 // Record that the input sections attached to this output section
2317 // may require sorting.
2318 void
2319 set_may_sort_attached_input_sections()
2320 { this->may_sort_attached_input_sections_ = true; }
2321
2322 // Return whether the input sections attached to this output section
2323 // require sorting. This is used to handle constructor priorities
2324 // compatibly with GNU ld.
2325 bool
2326 must_sort_attached_input_sections() const
2327 { return this->must_sort_attached_input_sections_; }
2328
2329 // Record that the input sections attached to this output section
2330 // require sorting.
2331 void
2332 set_must_sort_attached_input_sections()
2333 { this->must_sort_attached_input_sections_ = true; }
2334
2335 // Return whether this section holds relro data--data which has
2336 // dynamic relocations but which may be marked read-only after the
2337 // dynamic relocations have been completed.
2338 bool
2339 is_relro() const
2340 { return this->is_relro_; }
2341
2342 // Record that this section holds relro data.
2343 void
2344 set_is_relro()
2345 { this->is_relro_ = true; }
2346
2347 // Record that this section does not hold relro data.
2348 void
2349 clear_is_relro()
2350 { this->is_relro_ = false; }
2351
2352 // True if this section holds relro local data--relro data for which
2353 // the dynamic relocations are all RELATIVE relocations.
2354 bool
2355 is_relro_local() const
2356 { return this->is_relro_local_; }
2357
2358 // Record that this section holds relro local data.
2359 void
2360 set_is_relro_local()
2361 { this->is_relro_local_ = true; }
2362
2363 // True if this is a small section: a section which holds small
2364 // variables.
2365 bool
2366 is_small_section() const
2367 { return this->is_small_section_; }
2368
2369 // Record that this is a small section.
2370 void
2371 set_is_small_section()
2372 { this->is_small_section_ = true; }
2373
2374 // True if this is a large section: a section which holds large
2375 // variables.
2376 bool
2377 is_large_section() const
2378 { return this->is_large_section_; }
2379
2380 // Record that this is a large section.
2381 void
2382 set_is_large_section()
2383 { this->is_large_section_ = true; }
2384
2385 // True if this is a large data (not BSS) section.
2386 bool
2387 is_large_data_section()
2388 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2389
2390 // Return whether this section should be written after all the input
2391 // sections are complete.
2392 bool
2393 after_input_sections() const
2394 { return this->after_input_sections_; }
2395
2396 // Record that this section should be written after all the input
2397 // sections are complete.
2398 void
2399 set_after_input_sections()
2400 { this->after_input_sections_ = true; }
2401
2402 // Return whether this section requires postprocessing after all
2403 // relocations have been applied.
2404 bool
2405 requires_postprocessing() const
2406 { return this->requires_postprocessing_; }
2407
2408 // If a section requires postprocessing, return the buffer to use.
2409 unsigned char*
2410 postprocessing_buffer() const
2411 {
2412 gold_assert(this->postprocessing_buffer_ != NULL);
2413 return this->postprocessing_buffer_;
2414 }
2415
2416 // If a section requires postprocessing, create the buffer to use.
2417 void
2418 create_postprocessing_buffer();
2419
2420 // If a section requires postprocessing, this is the size of the
2421 // buffer to which relocations should be applied.
2422 off_t
2423 postprocessing_buffer_size() const
2424 { return this->current_data_size_for_child(); }
2425
2426 // Modify the section name. This is only permitted for an
2427 // unallocated section, and only before the size has been finalized.
2428 // Otherwise the name will not get into Layout::namepool_.
2429 void
2430 set_name(const char* newname)
2431 {
2432 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2433 gold_assert(!this->is_data_size_valid());
2434 this->name_ = newname;
2435 }
2436
2437 // Return whether the offset OFFSET in the input section SHNDX in
2438 // object OBJECT is being included in the link.
2439 bool
2440 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2441 off_t offset) const;
2442
2443 // Return the offset within the output section of OFFSET relative to
2444 // the start of input section SHNDX in object OBJECT.
2445 section_offset_type
2446 output_offset(const Relobj* object, unsigned int shndx,
2447 section_offset_type offset) const;
2448
2449 // Return the output virtual address of OFFSET relative to the start
2450 // of input section SHNDX in object OBJECT.
2451 uint64_t
2452 output_address(const Relobj* object, unsigned int shndx,
2453 off_t offset) const;
2454
2455 // Look for the merged section for input section SHNDX in object
2456 // OBJECT. If found, return true, and set *ADDR to the address of
2457 // the start of the merged section. This is not necessary the
2458 // output offset corresponding to input offset 0 in the section,
2459 // since the section may be mapped arbitrarily.
2460 bool
2461 find_starting_output_address(const Relobj* object, unsigned int shndx,
2462 uint64_t* addr) const;
2463
2464 // Record that this output section was found in the SECTIONS clause
2465 // of a linker script.
2466 void
2467 set_found_in_sections_clause()
2468 { this->found_in_sections_clause_ = true; }
2469
2470 // Return whether this output section was found in the SECTIONS
2471 // clause of a linker script.
2472 bool
2473 found_in_sections_clause() const
2474 { return this->found_in_sections_clause_; }
2475
2476 // Write the section header into *OPHDR.
2477 template<int size, bool big_endian>
2478 void
2479 write_header(const Layout*, const Stringpool*,
2480 elfcpp::Shdr_write<size, big_endian>*) const;
2481
2482 // The next few calls are for linker script support.
2483
2484 // We need to export the input sections to linker scripts. Previously
2485 // we export a pair of Relobj pointer and section index. We now need to
2486 // handle relaxed input sections as well. So we use this class.
2487 class Simple_input_section
2488 {
2489 private:
2490 static const unsigned int invalid_shndx = static_cast<unsigned int>(-1);
2491
2492 public:
2493 Simple_input_section(Relobj *relobj, unsigned int shndx)
2494 : shndx_(shndx)
2495 {
2496 gold_assert(shndx != invalid_shndx);
2497 this->u_.relobj = relobj;
2498 }
2499
2500 Simple_input_section(Output_relaxed_input_section* section)
2501 : shndx_(invalid_shndx)
2502 { this->u_.relaxed_input_section = section; }
2503
2504 // Whether this is a relaxed section.
2505 bool
2506 is_relaxed_input_section() const
2507 { return this->shndx_ == invalid_shndx; }
2508
2509 // Return object of an input section.
2510 Relobj*
2511 relobj() const
2512 {
2513 return ((this->shndx_ != invalid_shndx)
2514 ? this->u_.relobj
2515 : this->u_.relaxed_input_section->relobj());
2516 }
2517
2518 // Return index of an input section.
2519 unsigned int
2520 shndx() const
2521 {
2522 return ((this->shndx_ != invalid_shndx)
2523 ? this->shndx_
2524 : this->u_.relaxed_input_section->shndx());
2525 }
2526
2527 // Return the Output_relaxed_input_section object of a relaxed section.
2528 Output_relaxed_input_section*
2529 relaxed_input_section() const
2530 {
2531 gold_assert(this->shndx_ == invalid_shndx);
2532 return this->u_.relaxed_input_section;
2533 }
2534
2535 private:
2536 // Pointer to either an Relobj or an Output_relaxed_input_section.
2537 union
2538 {
2539 Relobj* relobj;
2540 Output_relaxed_input_section* relaxed_input_section;
2541 } u_;
2542 // Section index for an non-relaxed section or invalid_shndx for
2543 // a relaxed section.
2544 unsigned int shndx_;
2545 };
2546
2547 // Store the list of input sections for this Output_section into the
2548 // list passed in. This removes the input sections, leaving only
2549 // any Output_section_data elements. This returns the size of those
2550 // Output_section_data elements. ADDRESS is the address of this
2551 // output section. FILL is the fill value to use, in case there are
2552 // any spaces between the remaining Output_section_data elements.
2553 uint64_t
2554 get_input_sections(uint64_t address, const std::string& fill,
2555 std::list<Simple_input_section>*);
2556
2557 // Add an input section from a script.
2558 void
2559 add_input_section_for_script(const Simple_input_section& input_section,
2560 off_t data_size, uint64_t addralign);
2561
2562 // Set the current size of the output section.
2563 void
2564 set_current_data_size(off_t size)
2565 { this->set_current_data_size_for_child(size); }
2566
2567 // Get the current size of the output section.
2568 off_t
2569 current_data_size() const
2570 { return this->current_data_size_for_child(); }
2571
2572 // End of linker script support.
2573
2574 // Save states before doing section layout.
2575 // This is used for relaxation.
2576 void
2577 save_states();
2578
2579 // Restore states prior to section layout.
2580 void
2581 restore_states();
2582
2583 // Convert existing input sections to relaxed input sections.
2584 void
2585 convert_input_sections_to_relaxed_sections(
2586 const std::vector<Output_relaxed_input_section*>& sections);
2587
2588 // Find a relaxed input section to an input section in OBJECT
2589 // with index SHNDX. Return NULL if none is found.
2590 const Output_section_data*
2591 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
2592
2593 // Print merge statistics to stderr.
2594 void
2595 print_merge_stats();
2596
2597 protected:
2598 // Return the output section--i.e., the object itself.
2599 Output_section*
2600 do_output_section()
2601 { return this; }
2602
2603 // Return the section index in the output file.
2604 unsigned int
2605 do_out_shndx() const
2606 {
2607 gold_assert(this->out_shndx_ != -1U);
2608 return this->out_shndx_;
2609 }
2610
2611 // Set the output section index.
2612 void
2613 do_set_out_shndx(unsigned int shndx)
2614 {
2615 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2616 this->out_shndx_ = shndx;
2617 }
2618
2619 // Set the final data size of the Output_section. For a typical
2620 // Output_section, there is nothing to do, but if there are any
2621 // Output_section_data objects we need to set their final addresses
2622 // here.
2623 virtual void
2624 set_final_data_size();
2625
2626 // Reset the address and file offset.
2627 void
2628 do_reset_address_and_file_offset();
2629
2630 // Return true if address and file offset already have reset values. In
2631 // other words, calling reset_address_and_file_offset will not change them.
2632 bool
2633 do_address_and_file_offset_have_reset_values() const;
2634
2635 // Write the data to the file. For a typical Output_section, this
2636 // does nothing: the data is written out by calling Object::Relocate
2637 // on each input object. But if there are any Output_section_data
2638 // objects we do need to write them out here.
2639 virtual void
2640 do_write(Output_file*);
2641
2642 // Return the address alignment--function required by parent class.
2643 uint64_t
2644 do_addralign() const
2645 { return this->addralign_; }
2646
2647 // Return whether there is a load address.
2648 bool
2649 do_has_load_address() const
2650 { return this->has_load_address_; }
2651
2652 // Return the load address.
2653 uint64_t
2654 do_load_address() const
2655 {
2656 gold_assert(this->has_load_address_);
2657 return this->load_address_;
2658 }
2659
2660 // Return whether this is an Output_section.
2661 bool
2662 do_is_section() const
2663 { return true; }
2664
2665 // Return whether this is a section of the specified type.
2666 bool
2667 do_is_section_type(elfcpp::Elf_Word type) const
2668 { return this->type_ == type; }
2669
2670 // Return whether the specified section flag is set.
2671 bool
2672 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2673 { return (this->flags_ & flag) != 0; }
2674
2675 // Set the TLS offset. Called only for SHT_TLS sections.
2676 void
2677 do_set_tls_offset(uint64_t tls_base);
2678
2679 // Return the TLS offset, relative to the base of the TLS segment.
2680 // Valid only for SHT_TLS sections.
2681 uint64_t
2682 do_tls_offset() const
2683 { return this->tls_offset_; }
2684
2685 // This may be implemented by a child class.
2686 virtual void
2687 do_finalize_name(Layout*)
2688 { }
2689
2690 // Print to the map file.
2691 virtual void
2692 do_print_to_mapfile(Mapfile*) const;
2693
2694 // Record that this section requires postprocessing after all
2695 // relocations have been applied. This is called by a child class.
2696 void
2697 set_requires_postprocessing()
2698 {
2699 this->requires_postprocessing_ = true;
2700 this->after_input_sections_ = true;
2701 }
2702
2703 // Write all the data of an Output_section into the postprocessing
2704 // buffer.
2705 void
2706 write_to_postprocessing_buffer();
2707
2708 // In some cases we need to keep a list of the input sections
2709 // associated with this output section. We only need the list if we
2710 // might have to change the offsets of the input section within the
2711 // output section after we add the input section. The ordinary
2712 // input sections will be written out when we process the object
2713 // file, and as such we don't need to track them here. We do need
2714 // to track Output_section_data objects here. We store instances of
2715 // this structure in a std::vector, so it must be a POD. There can
2716 // be many instances of this structure, so we use a union to save
2717 // some space.
2718 class Input_section
2719 {
2720 public:
2721 Input_section()
2722 : shndx_(0), p2align_(0)
2723 {
2724 this->u1_.data_size = 0;
2725 this->u2_.object = NULL;
2726 }
2727
2728 // For an ordinary input section.
2729 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2730 uint64_t addralign)
2731 : shndx_(shndx),
2732 p2align_(ffsll(static_cast<long long>(addralign)))
2733 {
2734 gold_assert(shndx != OUTPUT_SECTION_CODE
2735 && shndx != MERGE_DATA_SECTION_CODE
2736 && shndx != MERGE_STRING_SECTION_CODE
2737 && shndx != RELAXED_INPUT_SECTION_CODE);
2738 this->u1_.data_size = data_size;
2739 this->u2_.object = object;
2740 }
2741
2742 // For a non-merge output section.
2743 Input_section(Output_section_data* posd)
2744 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
2745 {
2746 this->u1_.data_size = 0;
2747 this->u2_.posd = posd;
2748 }
2749
2750 // For a merge section.
2751 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2752 : shndx_(is_string
2753 ? MERGE_STRING_SECTION_CODE
2754 : MERGE_DATA_SECTION_CODE),
2755 p2align_(0)
2756 {
2757 this->u1_.entsize = entsize;
2758 this->u2_.posd = posd;
2759 }
2760
2761 // For a relaxed input section.
2762 Input_section(Output_relaxed_input_section *psection)
2763 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0)
2764 {
2765 this->u1_.data_size = 0;
2766 this->u2_.poris = psection;
2767 }
2768
2769 // The required alignment.
2770 uint64_t
2771 addralign() const
2772 {
2773 if (!this->is_input_section())
2774 return this->u2_.posd->addralign();
2775 return (this->p2align_ == 0
2776 ? 0
2777 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2778 }
2779
2780 // Return the required size.
2781 off_t
2782 data_size() const;
2783
2784 // Whether this is an input section.
2785 bool
2786 is_input_section() const
2787 {
2788 return (this->shndx_ != OUTPUT_SECTION_CODE
2789 && this->shndx_ != MERGE_DATA_SECTION_CODE
2790 && this->shndx_ != MERGE_STRING_SECTION_CODE
2791 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
2792 }
2793
2794 // Return whether this is a merge section which matches the
2795 // parameters.
2796 bool
2797 is_merge_section(bool is_string, uint64_t entsize,
2798 uint64_t addralign) const
2799 {
2800 return (this->shndx_ == (is_string
2801 ? MERGE_STRING_SECTION_CODE
2802 : MERGE_DATA_SECTION_CODE)
2803 && this->u1_.entsize == entsize
2804 && this->addralign() == addralign);
2805 }
2806
2807 // Return whether this is a relaxed input section.
2808 bool
2809 is_relaxed_input_section() const
2810 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
2811
2812 // Return whether this is a generic Output_section_data.
2813 bool
2814 is_output_section_data() const
2815 {
2816 return this->shndx_ == OUTPUT_SECTION_CODE;
2817 }
2818
2819 // Return the object for an input section.
2820 Relobj*
2821 relobj() const
2822 {
2823 if (this->is_input_section())
2824 return this->u2_.object;
2825 else if (this->is_relaxed_input_section())
2826 return this->u2_.poris->relobj();
2827 else
2828 gold_unreachable();
2829 }
2830
2831 // Return the input section index for an input section.
2832 unsigned int
2833 shndx() const
2834 {
2835 if (this->is_input_section())
2836 return this->shndx_;
2837 else if (this->is_relaxed_input_section())
2838 return this->u2_.poris->shndx();
2839 else
2840 gold_unreachable();
2841 }
2842
2843 // For non-input-sections, return the associated Output_section_data
2844 // object.
2845 Output_section_data*
2846 output_section_data() const
2847 {
2848 gold_assert(!this->is_input_section());
2849 return this->u2_.posd;
2850 }
2851
2852 // Return the Output_relaxed_input_section object.
2853 Output_relaxed_input_section*
2854 relaxed_input_section() const
2855 {
2856 gold_assert(this->is_relaxed_input_section());
2857 return this->u2_.poris;
2858 }
2859
2860 // Set the output section.
2861 void
2862 set_output_section(Output_section* os)
2863 {
2864 gold_assert(!this->is_input_section());
2865 Output_section_data *posd =
2866 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
2867 posd->set_output_section(os);
2868 }
2869
2870 // Set the address and file offset. This is called during
2871 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2872 // the enclosing section.
2873 void
2874 set_address_and_file_offset(uint64_t address, off_t file_offset,
2875 off_t section_file_offset);
2876
2877 // Reset the address and file offset.
2878 void
2879 reset_address_and_file_offset();
2880
2881 // Finalize the data size.
2882 void
2883 finalize_data_size();
2884
2885 // Add an input section, for SHF_MERGE sections.
2886 bool
2887 add_input_section(Relobj* object, unsigned int shndx)
2888 {
2889 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2890 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2891 return this->u2_.posd->add_input_section(object, shndx);
2892 }
2893
2894 // Given an input OBJECT, an input section index SHNDX within that
2895 // object, and an OFFSET relative to the start of that input
2896 // section, return whether or not the output offset is known. If
2897 // this function returns true, it sets *POUTPUT to the offset in
2898 // the output section, relative to the start of the input section
2899 // in the output section. *POUTPUT may be different from OFFSET
2900 // for a merged section.
2901 bool
2902 output_offset(const Relobj* object, unsigned int shndx,
2903 section_offset_type offset,
2904 section_offset_type *poutput) const;
2905
2906 // Return whether this is the merge section for the input section
2907 // SHNDX in OBJECT.
2908 bool
2909 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
2910
2911 // Write out the data. This does nothing for an input section.
2912 void
2913 write(Output_file*);
2914
2915 // Write the data to a buffer. This does nothing for an input
2916 // section.
2917 void
2918 write_to_buffer(unsigned char*);
2919
2920 // Print to a map file.
2921 void
2922 print_to_mapfile(Mapfile*) const;
2923
2924 // Print statistics about merge sections to stderr.
2925 void
2926 print_merge_stats(const char* section_name)
2927 {
2928 if (this->shndx_ == MERGE_DATA_SECTION_CODE
2929 || this->shndx_ == MERGE_STRING_SECTION_CODE)
2930 this->u2_.posd->print_merge_stats(section_name);
2931 }
2932
2933 private:
2934 // Code values which appear in shndx_. If the value is not one of
2935 // these codes, it is the input section index in the object file.
2936 enum
2937 {
2938 // An Output_section_data.
2939 OUTPUT_SECTION_CODE = -1U,
2940 // An Output_section_data for an SHF_MERGE section with
2941 // SHF_STRINGS not set.
2942 MERGE_DATA_SECTION_CODE = -2U,
2943 // An Output_section_data for an SHF_MERGE section with
2944 // SHF_STRINGS set.
2945 MERGE_STRING_SECTION_CODE = -3U,
2946 // An Output_section_data for a relaxed input section.
2947 RELAXED_INPUT_SECTION_CODE = -4U
2948 };
2949
2950 // For an ordinary input section, this is the section index in the
2951 // input file. For an Output_section_data, this is
2952 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2953 // MERGE_STRING_SECTION_CODE.
2954 unsigned int shndx_;
2955 // The required alignment, stored as a power of 2.
2956 unsigned int p2align_;
2957 union
2958 {
2959 // For an ordinary input section, the section size.
2960 off_t data_size;
2961 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
2962 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
2963 // entity size.
2964 uint64_t entsize;
2965 } u1_;
2966 union
2967 {
2968 // For an ordinary input section, the object which holds the
2969 // input section.
2970 Relobj* object;
2971 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2972 // MERGE_STRING_SECTION_CODE, the data.
2973 Output_section_data* posd;
2974 // For RELAXED_INPUT_SECTION_CODE, the data.
2975 Output_relaxed_input_section* poris;
2976 } u2_;
2977 };
2978
2979 typedef std::vector<Input_section> Input_section_list;
2980
2981 // Allow a child class to access the input sections.
2982 const Input_section_list&
2983 input_sections() const
2984 { return this->input_sections_; }
2985
2986 private:
2987 // We only save enough information to undo the effects of section layout.
2988 class Checkpoint_output_section
2989 {
2990 public:
2991 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
2992 const Input_section_list& input_sections,
2993 off_t first_input_offset,
2994 bool attached_input_sections_are_sorted)
2995 : addralign_(addralign), flags_(flags),
2996 input_sections_(input_sections),
2997 input_sections_size_(input_sections_.size()),
2998 input_sections_copy_(), first_input_offset_(first_input_offset),
2999 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3000 { }
3001
3002 virtual
3003 ~Checkpoint_output_section()
3004 { }
3005
3006 // Return the address alignment.
3007 uint64_t
3008 addralign() const
3009 { return this->addralign_; }
3010
3011 // Return the section flags.
3012 elfcpp::Elf_Xword
3013 flags() const
3014 { return this->flags_; }
3015
3016 // Return a reference to the input section list copy.
3017 Input_section_list*
3018 input_sections()
3019 { return &this->input_sections_copy_; }
3020
3021 // Return the size of input_sections at the time when checkpoint is
3022 // taken.
3023 size_t
3024 input_sections_size() const
3025 { return this->input_sections_size_; }
3026
3027 // Whether input sections are copied.
3028 bool
3029 input_sections_saved() const
3030 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3031
3032 off_t
3033 first_input_offset() const
3034 { return this->first_input_offset_; }
3035
3036 bool
3037 attached_input_sections_are_sorted() const
3038 { return this->attached_input_sections_are_sorted_; }
3039
3040 // Save input sections.
3041 void
3042 save_input_sections()
3043 {
3044 this->input_sections_copy_.reserve(this->input_sections_size_);
3045 this->input_sections_copy_.clear();
3046 Input_section_list::const_iterator p = this->input_sections_.begin();
3047 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3048 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3049 this->input_sections_copy_.push_back(*p);
3050 }
3051
3052 private:
3053 // The section alignment.
3054 uint64_t addralign_;
3055 // The section flags.
3056 elfcpp::Elf_Xword flags_;
3057 // Reference to the input sections to be checkpointed.
3058 const Input_section_list& input_sections_;
3059 // Size of the checkpointed portion of input_sections_;
3060 size_t input_sections_size_;
3061 // Copy of input sections.
3062 Input_section_list input_sections_copy_;
3063 // The offset of the first entry in input_sections_.
3064 off_t first_input_offset_;
3065 // True if the input sections attached to this output section have
3066 // already been sorted.
3067 bool attached_input_sections_are_sorted_;
3068 };
3069
3070 // This class is used to sort the input sections.
3071 class Input_section_sort_entry;
3072
3073 // This is the sort comparison function.
3074 struct Input_section_sort_compare
3075 {
3076 bool
3077 operator()(const Input_section_sort_entry&,
3078 const Input_section_sort_entry&) const;
3079 };
3080
3081 // Fill data. This is used to fill in data between input sections.
3082 // It is also used for data statements (BYTE, WORD, etc.) in linker
3083 // scripts. When we have to keep track of the input sections, we
3084 // can use an Output_data_const, but we don't want to have to keep
3085 // track of input sections just to implement fills.
3086 class Fill
3087 {
3088 public:
3089 Fill(off_t section_offset, off_t length)
3090 : section_offset_(section_offset),
3091 length_(convert_to_section_size_type(length))
3092 { }
3093
3094 // Return section offset.
3095 off_t
3096 section_offset() const
3097 { return this->section_offset_; }
3098
3099 // Return fill length.
3100 section_size_type
3101 length() const
3102 { return this->length_; }
3103
3104 private:
3105 // The offset within the output section.
3106 off_t section_offset_;
3107 // The length of the space to fill.
3108 section_size_type length_;
3109 };
3110
3111 typedef std::vector<Fill> Fill_list;
3112
3113 // This class describes properties of merge data sections. It is used
3114 // as a key type for maps.
3115 class Merge_section_properties
3116 {
3117 public:
3118 Merge_section_properties(bool is_string, uint64_t entsize,
3119 uint64_t addralign)
3120 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3121 { }
3122
3123 // Whether this equals to another Merge_section_properties MSP.
3124 bool
3125 eq(const Merge_section_properties& msp) const
3126 {
3127 return ((this->is_string_ == msp.is_string_)
3128 && (this->entsize_ == msp.entsize_)
3129 && (this->addralign_ == msp.addralign_));
3130 }
3131
3132 // Compute a hash value for this using 64-bit FNV-1a hash.
3133 size_t
3134 hash_value() const
3135 {
3136 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3137 uint64_t prime = 1099511628211ULL;
3138 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3139 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3140 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3141 return h;
3142 }
3143
3144 // Functors for associative containers.
3145 struct equal_to
3146 {
3147 bool
3148 operator()(const Merge_section_properties& msp1,
3149 const Merge_section_properties& msp2) const
3150 { return msp1.eq(msp2); }
3151 };
3152
3153 struct hash
3154 {
3155 size_t
3156 operator()(const Merge_section_properties& msp) const
3157 { return msp.hash_value(); }
3158 };
3159
3160 private:
3161 // Whether this merge data section is for strings.
3162 bool is_string_;
3163 // Entsize of this merge data section.
3164 uint64_t entsize_;
3165 // Address alignment.
3166 uint64_t addralign_;
3167 };
3168
3169 // Map that link Merge_section_properties to Output_merge_base.
3170 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3171 Merge_section_properties::hash,
3172 Merge_section_properties::equal_to>
3173 Merge_section_by_properties_map;
3174
3175 // Map that link Input_section_specifier to Output_section_data.
3176 typedef Unordered_map<Input_section_specifier, Output_section_data*,
3177 Input_section_specifier::hash,
3178 Input_section_specifier::equal_to>
3179 Output_section_data_by_input_section_map;
3180
3181 // Map used during relaxation of existing sections. This map
3182 // an input section specifier to an input section list index.
3183 // We assume that Input_section_list is a vector.
3184 typedef Unordered_map<Input_section_specifier, size_t,
3185 Input_section_specifier::hash,
3186 Input_section_specifier::equal_to>
3187 Relaxation_map;
3188
3189 // Add a new output section by Input_section.
3190 void
3191 add_output_section_data(Input_section*);
3192
3193 // Add an SHF_MERGE input section. Returns true if the section was
3194 // handled.
3195 bool
3196 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3197 uint64_t entsize, uint64_t addralign);
3198
3199 // Add an output SHF_MERGE section POSD to this output section.
3200 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3201 // ENTSIZE is the entity size. This returns the entry added to
3202 // input_sections_.
3203 void
3204 add_output_merge_section(Output_section_data* posd, bool is_string,
3205 uint64_t entsize);
3206
3207 // Sort the attached input sections.
3208 void
3209 sort_attached_input_sections();
3210
3211 // Find the merge section into which an input section with index SHNDX in
3212 // OBJECT has been added. Return NULL if none found.
3213 Output_section_data*
3214 find_merge_section(const Relobj* object, unsigned int shndx) const;
3215
3216 // Build a relaxation map.
3217 void
3218 build_relaxation_map(
3219 const Input_section_list& input_sections,
3220 size_t limit,
3221 Relaxation_map* map) const;
3222
3223 // Convert input sections in an input section list into relaxed sections.
3224 void
3225 convert_input_sections_in_list_to_relaxed_sections(
3226 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3227 const Relaxation_map& map,
3228 Input_section_list* input_sections);
3229
3230 // Most of these fields are only valid after layout.
3231
3232 // The name of the section. This will point into a Stringpool.
3233 const char* name_;
3234 // The section address is in the parent class.
3235 // The section alignment.
3236 uint64_t addralign_;
3237 // The section entry size.
3238 uint64_t entsize_;
3239 // The load address. This is only used when using a linker script
3240 // with a SECTIONS clause. The has_load_address_ field indicates
3241 // whether this field is valid.
3242 uint64_t load_address_;
3243 // The file offset is in the parent class.
3244 // Set the section link field to the index of this section.
3245 const Output_data* link_section_;
3246 // If link_section_ is NULL, this is the link field.
3247 unsigned int link_;
3248 // Set the section info field to the index of this section.
3249 const Output_section* info_section_;
3250 // If info_section_ is NULL, set the info field to the symbol table
3251 // index of this symbol.
3252 const Symbol* info_symndx_;
3253 // If info_section_ and info_symndx_ are NULL, this is the section
3254 // info field.
3255 unsigned int info_;
3256 // The section type.
3257 const elfcpp::Elf_Word type_;
3258 // The section flags.
3259 elfcpp::Elf_Xword flags_;
3260 // The section index.
3261 unsigned int out_shndx_;
3262 // If there is a STT_SECTION for this output section in the normal
3263 // symbol table, this is the symbol index. This starts out as zero.
3264 // It is initialized in Layout::finalize() to be the index, or -1U
3265 // if there isn't one.
3266 unsigned int symtab_index_;
3267 // If there is a STT_SECTION for this output section in the dynamic
3268 // symbol table, this is the symbol index. This starts out as zero.
3269 // It is initialized in Layout::finalize() to be the index, or -1U
3270 // if there isn't one.
3271 unsigned int dynsym_index_;
3272 // The input sections. This will be empty in cases where we don't
3273 // need to keep track of them.
3274 Input_section_list input_sections_;
3275 // The offset of the first entry in input_sections_.
3276 off_t first_input_offset_;
3277 // The fill data. This is separate from input_sections_ because we
3278 // often will need fill sections without needing to keep track of
3279 // input sections.
3280 Fill_list fills_;
3281 // If the section requires postprocessing, this buffer holds the
3282 // section contents during relocation.
3283 unsigned char* postprocessing_buffer_;
3284 // Whether this output section needs a STT_SECTION symbol in the
3285 // normal symbol table. This will be true if there is a relocation
3286 // which needs it.
3287 bool needs_symtab_index_ : 1;
3288 // Whether this output section needs a STT_SECTION symbol in the
3289 // dynamic symbol table. This will be true if there is a dynamic
3290 // relocation which needs it.
3291 bool needs_dynsym_index_ : 1;
3292 // Whether the link field of this output section should point to the
3293 // normal symbol table.
3294 bool should_link_to_symtab_ : 1;
3295 // Whether the link field of this output section should point to the
3296 // dynamic symbol table.
3297 bool should_link_to_dynsym_ : 1;
3298 // Whether this section should be written after all the input
3299 // sections are complete.
3300 bool after_input_sections_ : 1;
3301 // Whether this section requires post processing after all
3302 // relocations have been applied.
3303 bool requires_postprocessing_ : 1;
3304 // Whether an input section was mapped to this output section
3305 // because of a SECTIONS clause in a linker script.
3306 bool found_in_sections_clause_ : 1;
3307 // Whether this section has an explicitly specified load address.
3308 bool has_load_address_ : 1;
3309 // True if the info_section_ field means the section index of the
3310 // section, false if it means the symbol index of the corresponding
3311 // section symbol.
3312 bool info_uses_section_index_ : 1;
3313 // True if the input sections attached to this output section may
3314 // need sorting.
3315 bool may_sort_attached_input_sections_ : 1;
3316 // True if the input sections attached to this output section must
3317 // be sorted.
3318 bool must_sort_attached_input_sections_ : 1;
3319 // True if the input sections attached to this output section have
3320 // already been sorted.
3321 bool attached_input_sections_are_sorted_ : 1;
3322 // True if this section holds relro data.
3323 bool is_relro_ : 1;
3324 // True if this section holds relro local data.
3325 bool is_relro_local_ : 1;
3326 // True if this is a small section.
3327 bool is_small_section_ : 1;
3328 // True if this is a large section.
3329 bool is_large_section_ : 1;
3330 // For SHT_TLS sections, the offset of this section relative to the base
3331 // of the TLS segment.
3332 uint64_t tls_offset_;
3333 // Saved checkpoint.
3334 Checkpoint_output_section* checkpoint_;
3335 // Map from input sections to merge sections.
3336 Output_section_data_by_input_section_map merge_section_map_;
3337 // Map from merge section properties to merge_sections;
3338 Merge_section_by_properties_map merge_section_by_properties_map_;
3339 // Map from input sections to relaxed input sections. This is mutable
3340 // beacause it is udpated lazily. We may need to update it in a
3341 // const qualified method.
3342 mutable Output_section_data_by_input_section_map relaxed_input_section_map_;
3343 // Whether relaxed_input_section_map_ is valid.
3344 mutable bool is_relaxed_input_section_map_valid_;
3345 // Whether code-fills are generated at write.
3346 bool generate_code_fills_at_write_;
3347 };
3348
3349 // An output segment. PT_LOAD segments are built from collections of
3350 // output sections. Other segments typically point within PT_LOAD
3351 // segments, and are built directly as needed.
3352 //
3353 // NOTE: We want to use the copy constructor for this class. During
3354 // relaxation, we may try built the segments multiple times. We do
3355 // that by copying the original segment list before lay-out, doing
3356 // a trial lay-out and roll-back to the saved copied if we need to
3357 // to the lay-out again.
3358
3359 class Output_segment
3360 {
3361 public:
3362 // Create an output segment, specifying the type and flags.
3363 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3364
3365 // Return the virtual address.
3366 uint64_t
3367 vaddr() const
3368 { return this->vaddr_; }
3369
3370 // Return the physical address.
3371 uint64_t
3372 paddr() const
3373 { return this->paddr_; }
3374
3375 // Return the segment type.
3376 elfcpp::Elf_Word
3377 type() const
3378 { return this->type_; }
3379
3380 // Return the segment flags.
3381 elfcpp::Elf_Word
3382 flags() const
3383 { return this->flags_; }
3384
3385 // Return the memory size.
3386 uint64_t
3387 memsz() const
3388 { return this->memsz_; }
3389
3390 // Return the file size.
3391 off_t
3392 filesz() const
3393 { return this->filesz_; }
3394
3395 // Return the file offset.
3396 off_t
3397 offset() const
3398 { return this->offset_; }
3399
3400 // Whether this is a segment created to hold large data sections.
3401 bool
3402 is_large_data_segment() const
3403 { return this->is_large_data_segment_; }
3404
3405 // Record that this is a segment created to hold large data
3406 // sections.
3407 void
3408 set_is_large_data_segment()
3409 { this->is_large_data_segment_ = true; }
3410
3411 // Return the maximum alignment of the Output_data.
3412 uint64_t
3413 maximum_alignment();
3414
3415 // Add an Output_section to this segment.
3416 void
3417 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags);
3418
3419 // Remove an Output_section from this segment. It is an error if it
3420 // is not present.
3421 void
3422 remove_output_section(Output_section* os);
3423
3424 // Add an Output_data (which is not an Output_section) to the start
3425 // of this segment.
3426 void
3427 add_initial_output_data(Output_data*);
3428
3429 // Return true if this segment has any sections which hold actual
3430 // data, rather than being a BSS section.
3431 bool
3432 has_any_data_sections() const
3433 { return !this->output_data_.empty(); }
3434
3435 // Return the number of dynamic relocations applied to this segment.
3436 unsigned int
3437 dynamic_reloc_count() const;
3438
3439 // Return the address of the first section.
3440 uint64_t
3441 first_section_load_address() const;
3442
3443 // Return whether the addresses have been set already.
3444 bool
3445 are_addresses_set() const
3446 { return this->are_addresses_set_; }
3447
3448 // Set the addresses.
3449 void
3450 set_addresses(uint64_t vaddr, uint64_t paddr)
3451 {
3452 this->vaddr_ = vaddr;
3453 this->paddr_ = paddr;
3454 this->are_addresses_set_ = true;
3455 }
3456
3457 // Set the segment flags. This is only used if we have a PHDRS
3458 // clause which explicitly specifies the flags.
3459 void
3460 set_flags(elfcpp::Elf_Word flags)
3461 { this->flags_ = flags; }
3462
3463 // Set the address of the segment to ADDR and the offset to *POFF
3464 // and set the addresses and offsets of all contained output
3465 // sections accordingly. Set the section indexes of all contained
3466 // output sections starting with *PSHNDX. If RESET is true, first
3467 // reset the addresses of the contained sections. Return the
3468 // address of the immediately following segment. Update *POFF and
3469 // *PSHNDX. This should only be called for a PT_LOAD segment.
3470 uint64_t
3471 set_section_addresses(const Layout*, bool reset, uint64_t addr, off_t* poff,
3472 unsigned int* pshndx);
3473
3474 // Set the minimum alignment of this segment. This may be adjusted
3475 // upward based on the section alignments.
3476 void
3477 set_minimum_p_align(uint64_t align)
3478 { this->min_p_align_ = align; }
3479
3480 // Set the offset of this segment based on the section. This should
3481 // only be called for a non-PT_LOAD segment.
3482 void
3483 set_offset();
3484
3485 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3486 void
3487 set_tls_offsets();
3488
3489 // Return the number of output sections.
3490 unsigned int
3491 output_section_count() const;
3492
3493 // Return the section attached to the list segment with the lowest
3494 // load address. This is used when handling a PHDRS clause in a
3495 // linker script.
3496 Output_section*
3497 section_with_lowest_load_address() const;
3498
3499 // Write the segment header into *OPHDR.
3500 template<int size, bool big_endian>
3501 void
3502 write_header(elfcpp::Phdr_write<size, big_endian>*);
3503
3504 // Write the section headers of associated sections into V.
3505 template<int size, bool big_endian>
3506 unsigned char*
3507 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3508 unsigned int* pshndx) const;
3509
3510 // Print the output sections in the map file.
3511 void
3512 print_sections_to_mapfile(Mapfile*) const;
3513
3514 private:
3515 typedef std::list<Output_data*> Output_data_list;
3516
3517 // Find the maximum alignment in an Output_data_list.
3518 static uint64_t
3519 maximum_alignment_list(const Output_data_list*);
3520
3521 // Return whether the first data section is a relro section.
3522 bool
3523 is_first_section_relro() const;
3524
3525 // Set the section addresses in an Output_data_list.
3526 uint64_t
3527 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3528 uint64_t addr, off_t* poff, unsigned int* pshndx,
3529 bool* in_tls, bool* in_relro);
3530
3531 // Return the number of Output_sections in an Output_data_list.
3532 unsigned int
3533 output_section_count_list(const Output_data_list*) const;
3534
3535 // Return the number of dynamic relocs in an Output_data_list.
3536 unsigned int
3537 dynamic_reloc_count_list(const Output_data_list*) const;
3538
3539 // Find the section with the lowest load address in an
3540 // Output_data_list.
3541 void
3542 lowest_load_address_in_list(const Output_data_list* pdl,
3543 Output_section** found,
3544 uint64_t* found_lma) const;
3545
3546 // Write the section headers in the list into V.
3547 template<int size, bool big_endian>
3548 unsigned char*
3549 write_section_headers_list(const Layout*, const Stringpool*,
3550 const Output_data_list*, unsigned char* v,
3551 unsigned int* pshdx) const;
3552
3553 // Print a section list to the mapfile.
3554 void
3555 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
3556
3557 // NOTE: We want to use the copy constructor. Currently, shallow copy
3558 // works for us so we do not need to write our own copy constructor.
3559
3560 // The list of output data with contents attached to this segment.
3561 Output_data_list output_data_;
3562 // The list of output data without contents attached to this segment.
3563 Output_data_list output_bss_;
3564 // The segment virtual address.
3565 uint64_t vaddr_;
3566 // The segment physical address.
3567 uint64_t paddr_;
3568 // The size of the segment in memory.
3569 uint64_t memsz_;
3570 // The maximum section alignment. The is_max_align_known_ field
3571 // indicates whether this has been finalized.
3572 uint64_t max_align_;
3573 // The required minimum value for the p_align field. This is used
3574 // for PT_LOAD segments. Note that this does not mean that
3575 // addresses should be aligned to this value; it means the p_paddr
3576 // and p_vaddr fields must be congruent modulo this value. For
3577 // non-PT_LOAD segments, the dynamic linker works more efficiently
3578 // if the p_align field has the more conventional value, although it
3579 // can align as needed.
3580 uint64_t min_p_align_;
3581 // The offset of the segment data within the file.
3582 off_t offset_;
3583 // The size of the segment data in the file.
3584 off_t filesz_;
3585 // The segment type;
3586 elfcpp::Elf_Word type_;
3587 // The segment flags.
3588 elfcpp::Elf_Word flags_;
3589 // Whether we have finalized max_align_.
3590 bool is_max_align_known_ : 1;
3591 // Whether vaddr and paddr were set by a linker script.
3592 bool are_addresses_set_ : 1;
3593 // Whether this segment holds large data sections.
3594 bool is_large_data_segment_ : 1;
3595 };
3596
3597 // This class represents the output file.
3598
3599 class Output_file
3600 {
3601 public:
3602 Output_file(const char* name);
3603
3604 // Indicate that this is a temporary file which should not be
3605 // output.
3606 void
3607 set_is_temporary()
3608 { this->is_temporary_ = true; }
3609
3610 // Try to open an existing file. Returns false if the file doesn't
3611 // exist, has a size of 0 or can't be mmaped. This method is
3612 // thread-unsafe.
3613 bool
3614 open_for_modification();
3615
3616 // Open the output file. FILE_SIZE is the final size of the file.
3617 // If the file already exists, it is deleted/truncated. This method
3618 // is thread-unsafe.
3619 void
3620 open(off_t file_size);
3621
3622 // Resize the output file. This method is thread-unsafe.
3623 void
3624 resize(off_t file_size);
3625
3626 // Close the output file (flushing all buffered data) and make sure
3627 // there are no errors. This method is thread-unsafe.
3628 void
3629 close();
3630
3631 // Return the size of this file.
3632 off_t
3633 filesize()
3634 { return this->file_size_; }
3635
3636 // We currently always use mmap which makes the view handling quite
3637 // simple. In the future we may support other approaches.
3638
3639 // Write data to the output file.
3640 void
3641 write(off_t offset, const void* data, size_t len)
3642 { memcpy(this->base_ + offset, data, len); }
3643
3644 // Get a buffer to use to write to the file, given the offset into
3645 // the file and the size.
3646 unsigned char*
3647 get_output_view(off_t start, size_t size)
3648 {
3649 gold_assert(start >= 0
3650 && start + static_cast<off_t>(size) <= this->file_size_);
3651 return this->base_ + start;
3652 }
3653
3654 // VIEW must have been returned by get_output_view. Write the
3655 // buffer to the file, passing in the offset and the size.
3656 void
3657 write_output_view(off_t, size_t, unsigned char*)
3658 { }
3659
3660 // Get a read/write buffer. This is used when we want to write part
3661 // of the file, read it in, and write it again.
3662 unsigned char*
3663 get_input_output_view(off_t start, size_t size)
3664 { return this->get_output_view(start, size); }
3665
3666 // Write a read/write buffer back to the file.
3667 void
3668 write_input_output_view(off_t, size_t, unsigned char*)
3669 { }
3670
3671 // Get a read buffer. This is used when we just want to read part
3672 // of the file back it in.
3673 const unsigned char*
3674 get_input_view(off_t start, size_t size)
3675 { return this->get_output_view(start, size); }
3676
3677 // Release a read bfufer.
3678 void
3679 free_input_view(off_t, size_t, const unsigned char*)
3680 { }
3681
3682 private:
3683 // Map the file into memory or, if that fails, allocate anonymous
3684 // memory.
3685 void
3686 map();
3687
3688 // Allocate anonymous memory for the file.
3689 bool
3690 map_anonymous();
3691
3692 // Map the file into memory.
3693 bool
3694 map_no_anonymous();
3695
3696 // Unmap the file from memory (and flush to disk buffers).
3697 void
3698 unmap();
3699
3700 // File name.
3701 const char* name_;
3702 // File descriptor.
3703 int o_;
3704 // File size.
3705 off_t file_size_;
3706 // Base of file mapped into memory.
3707 unsigned char* base_;
3708 // True iff base_ points to a memory buffer rather than an output file.
3709 bool map_is_anonymous_;
3710 // True if this is a temporary file which should not be output.
3711 bool is_temporary_;
3712 };
3713
3714 } // End namespace gold.
3715
3716 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.108857 seconds and 5 git commands to generate.