* object.h (Relobj::local_symbol_value): New function.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless);
1025
1026 Output_reloc(Symbol* gsym, unsigned int type,
1027 Sized_relobj<size, big_endian>* relobj,
1028 unsigned int shndx, Address address, bool is_relative,
1029 bool is_symbolless);
1030
1031 // A reloc against a local symbol or local section symbol.
1032
1033 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1034 unsigned int local_sym_index, unsigned int type,
1035 Output_data* od, Address address, bool is_relative,
1036 bool is_symbolless, bool is_section_symbol,
1037 bool use_plt_offset);
1038
1039 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1040 unsigned int local_sym_index, unsigned int type,
1041 unsigned int shndx, Address address, bool is_relative,
1042 bool is_symbolless, bool is_section_symbol,
1043 bool use_plt_offset);
1044
1045 // A reloc against the STT_SECTION symbol of an output section.
1046
1047 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1048 Address address);
1049
1050 Output_reloc(Output_section* os, unsigned int type,
1051 Sized_relobj<size, big_endian>* relobj,
1052 unsigned int shndx, Address address);
1053
1054 // An absolute relocation with no symbol.
1055
1056 Output_reloc(unsigned int type, Output_data* od, Address address);
1057
1058 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1059 unsigned int shndx, Address address);
1060
1061 // A target specific relocation. The target will be called to get
1062 // the symbol index, passing ARG. The type and offset will be set
1063 // as for other relocation types.
1064
1065 Output_reloc(unsigned int type, void* arg, Output_data* od,
1066 Address address);
1067
1068 Output_reloc(unsigned int type, void* arg,
1069 Sized_relobj<size, big_endian>* relobj,
1070 unsigned int shndx, Address address);
1071
1072 // Return the reloc type.
1073 unsigned int
1074 type() const
1075 { return this->type_; }
1076
1077 // Return whether this is a RELATIVE relocation.
1078 bool
1079 is_relative() const
1080 { return this->is_relative_; }
1081
1082 // Return whether this is a relocation which should not use
1083 // a symbol, but which obtains its addend from a symbol.
1084 bool
1085 is_symbolless() const
1086 { return this->is_symbolless_; }
1087
1088 // Return whether this is against a local section symbol.
1089 bool
1090 is_local_section_symbol() const
1091 {
1092 return (this->local_sym_index_ != GSYM_CODE
1093 && this->local_sym_index_ != SECTION_CODE
1094 && this->local_sym_index_ != INVALID_CODE
1095 && this->local_sym_index_ != TARGET_CODE
1096 && this->is_section_symbol_);
1097 }
1098
1099 // Return whether this is a target specific relocation.
1100 bool
1101 is_target_specific() const
1102 { return this->local_sym_index_ == TARGET_CODE; }
1103
1104 // Return the argument to pass to the target for a target specific
1105 // relocation.
1106 void*
1107 target_arg() const
1108 {
1109 gold_assert(this->local_sym_index_ == TARGET_CODE);
1110 return this->u1_.arg;
1111 }
1112
1113 // For a local section symbol, return the offset of the input
1114 // section within the output section. ADDEND is the addend being
1115 // applied to the input section.
1116 Address
1117 local_section_offset(Addend addend) const;
1118
1119 // Get the value of the symbol referred to by a Rel relocation when
1120 // we are adding the given ADDEND.
1121 Address
1122 symbol_value(Addend addend) const;
1123
1124 // If this relocation is against an input section, return the
1125 // relocatable object containing the input section.
1126 Sized_relobj<size, big_endian>*
1127 get_relobj() const
1128 {
1129 if (this->shndx_ == INVALID_CODE)
1130 return NULL;
1131 return this->u2_.relobj;
1132 }
1133
1134 // Write the reloc entry to an output view.
1135 void
1136 write(unsigned char* pov) const;
1137
1138 // Write the offset and info fields to Write_rel.
1139 template<typename Write_rel>
1140 void write_rel(Write_rel*) const;
1141
1142 // This is used when sorting dynamic relocs. Return -1 to sort this
1143 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1144 int
1145 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1146 const;
1147
1148 // Return whether this reloc should be sorted before the argument
1149 // when sorting dynamic relocs.
1150 bool
1151 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1152 r2) const
1153 { return this->compare(r2) < 0; }
1154
1155 private:
1156 // Record that we need a dynamic symbol index.
1157 void
1158 set_needs_dynsym_index();
1159
1160 // Return the symbol index.
1161 unsigned int
1162 get_symbol_index() const;
1163
1164 // Return the output address.
1165 Address
1166 get_address() const;
1167
1168 // Codes for local_sym_index_.
1169 enum
1170 {
1171 // Global symbol.
1172 GSYM_CODE = -1U,
1173 // Output section.
1174 SECTION_CODE = -2U,
1175 // Target specific.
1176 TARGET_CODE = -3U,
1177 // Invalid uninitialized entry.
1178 INVALID_CODE = -4U
1179 };
1180
1181 union
1182 {
1183 // For a local symbol or local section symbol
1184 // (this->local_sym_index_ >= 0), the object. We will never
1185 // generate a relocation against a local symbol in a dynamic
1186 // object; that doesn't make sense. And our callers will always
1187 // be templatized, so we use Sized_relobj here.
1188 Sized_relobj<size, big_endian>* relobj;
1189 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1190 // symbol. If this is NULL, it indicates a relocation against the
1191 // undefined 0 symbol.
1192 Symbol* gsym;
1193 // For a relocation against an output section
1194 // (this->local_sym_index_ == SECTION_CODE), the output section.
1195 Output_section* os;
1196 // For a target specific relocation, an argument to pass to the
1197 // target.
1198 void* arg;
1199 } u1_;
1200 union
1201 {
1202 // If this->shndx_ is not INVALID CODE, the object which holds the
1203 // input section being used to specify the reloc address.
1204 Sized_relobj<size, big_endian>* relobj;
1205 // If this->shndx_ is INVALID_CODE, the output data being used to
1206 // specify the reloc address. This may be NULL if the reloc
1207 // address is absolute.
1208 Output_data* od;
1209 } u2_;
1210 // The address offset within the input section or the Output_data.
1211 Address address_;
1212 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1213 // relocation against an output section, or TARGET_CODE for a target
1214 // specific relocation, or INVALID_CODE for an uninitialized value.
1215 // Otherwise, for a local symbol (this->is_section_symbol_ is
1216 // false), the local symbol index. For a local section symbol
1217 // (this->is_section_symbol_ is true), the section index in the
1218 // input file.
1219 unsigned int local_sym_index_;
1220 // The reloc type--a processor specific code.
1221 unsigned int type_ : 28;
1222 // True if the relocation is a RELATIVE relocation.
1223 bool is_relative_ : 1;
1224 // True if the relocation is one which should not use
1225 // a symbol, but which obtains its addend from a symbol.
1226 bool is_symbolless_ : 1;
1227 // True if the relocation is against a section symbol.
1228 bool is_section_symbol_ : 1;
1229 // True if the addend should be the PLT offset. This is used only
1230 // for RELATIVE relocations to local symbols.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1237 };
1238
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1252 { }
1253
1254 // A reloc against a global symbol.
1255
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1260 addend_(addend)
1261 { }
1262
1263 Output_reloc(Symbol* gsym, unsigned int type,
1264 Sized_relobj<size, big_endian>* relobj,
1265 unsigned int shndx, Address address, Addend addend,
1266 bool is_relative, bool is_symbolless)
1267 : rel_(gsym, type, relobj, shndx, address, is_relative,
1268 is_symbolless), addend_(addend)
1269 { }
1270
1271 // A reloc against a local symbol.
1272
1273 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1274 unsigned int local_sym_index, unsigned int type,
1275 Output_data* od, Address address,
1276 Addend addend, bool is_relative,
1277 bool is_symbolless, bool is_section_symbol,
1278 bool use_plt_offset)
1279 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1280 is_symbolless, is_section_symbol, use_plt_offset),
1281 addend_(addend)
1282 { }
1283
1284 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1285 unsigned int local_sym_index, unsigned int type,
1286 unsigned int shndx, Address address,
1287 Addend addend, bool is_relative,
1288 bool is_symbolless, bool is_section_symbol,
1289 bool use_plt_offset)
1290 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1291 is_symbolless, is_section_symbol, use_plt_offset),
1292 addend_(addend)
1293 { }
1294
1295 // A reloc against the STT_SECTION symbol of an output section.
1296
1297 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1298 Address address, Addend addend)
1299 : rel_(os, type, od, address), addend_(addend)
1300 { }
1301
1302 Output_reloc(Output_section* os, unsigned int type,
1303 Sized_relobj<size, big_endian>* relobj,
1304 unsigned int shndx, Address address, Addend addend)
1305 : rel_(os, type, relobj, shndx, address), addend_(addend)
1306 { }
1307
1308 // An absolute relocation with no symbol.
1309
1310 Output_reloc(unsigned int type, Output_data* od, Address address,
1311 Addend addend)
1312 : rel_(type, od, address), addend_(addend)
1313 { }
1314
1315 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1316 unsigned int shndx, Address address, Addend addend)
1317 : rel_(type, relobj, shndx, address), addend_(addend)
1318 { }
1319
1320 // A target specific relocation. The target will be called to get
1321 // the symbol index and the addend, passing ARG. The type and
1322 // offset will be set as for other relocation types.
1323
1324 Output_reloc(unsigned int type, void* arg, Output_data* od,
1325 Address address, Addend addend)
1326 : rel_(type, arg, od, address), addend_(addend)
1327 { }
1328
1329 Output_reloc(unsigned int type, void* arg,
1330 Sized_relobj<size, big_endian>* relobj,
1331 unsigned int shndx, Address address, Addend addend)
1332 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1333 { }
1334
1335 // Return whether this is a RELATIVE relocation.
1336 bool
1337 is_relative() const
1338 { return this->rel_.is_relative(); }
1339
1340 // Return whether this is a relocation which should not use
1341 // a symbol, but which obtains its addend from a symbol.
1342 bool
1343 is_symbolless() const
1344 { return this->rel_.is_symbolless(); }
1345
1346 // If this relocation is against an input section, return the
1347 // relocatable object containing the input section.
1348 Sized_relobj<size, big_endian>*
1349 get_relobj() const
1350 { return this->rel_.get_relobj(); }
1351
1352 // Write the reloc entry to an output view.
1353 void
1354 write(unsigned char* pov) const;
1355
1356 // Return whether this reloc should be sorted before the argument
1357 // when sorting dynamic relocs.
1358 bool
1359 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1360 r2) const
1361 {
1362 int i = this->rel_.compare(r2.rel_);
1363 if (i < 0)
1364 return true;
1365 else if (i > 0)
1366 return false;
1367 else
1368 return this->addend_ < r2.addend_;
1369 }
1370
1371 private:
1372 // The basic reloc.
1373 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1374 // The addend.
1375 Addend addend_;
1376 };
1377
1378 // Output_data_reloc_generic is a non-template base class for
1379 // Output_data_reloc_base. This gives the generic code a way to hold
1380 // a pointer to a reloc section.
1381
1382 class Output_data_reloc_generic : public Output_section_data_build
1383 {
1384 public:
1385 Output_data_reloc_generic(int size, bool sort_relocs)
1386 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1387 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1388 { }
1389
1390 // Return the number of relative relocs in this section.
1391 size_t
1392 relative_reloc_count() const
1393 { return this->relative_reloc_count_; }
1394
1395 // Whether we should sort the relocs.
1396 bool
1397 sort_relocs() const
1398 { return this->sort_relocs_; }
1399
1400 // Add a reloc of type TYPE against the global symbol GSYM. The
1401 // relocation applies to the data at offset ADDRESS within OD.
1402 virtual void
1403 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1404 uint64_t address, uint64_t addend) = 0;
1405
1406 // Add a reloc of type TYPE against the global symbol GSYM. The
1407 // relocation applies to data at offset ADDRESS within section SHNDX
1408 // of object file RELOBJ. OD is the associated output section.
1409 virtual void
1410 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1411 Relobj* relobj, unsigned int shndx, uint64_t address,
1412 uint64_t addend) = 0;
1413
1414 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1415 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1416 // within OD.
1417 virtual void
1418 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1419 unsigned int type, Output_data* od, uint64_t address,
1420 uint64_t addend) = 0;
1421
1422 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1423 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1424 // within section SHNDX of RELOBJ. OD is the associated output
1425 // section.
1426 virtual void
1427 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1428 unsigned int type, Output_data* od, unsigned int shndx,
1429 uint64_t address, uint64_t addend) = 0;
1430
1431 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1432 // output section OS. The relocation applies to the data at offset
1433 // ADDRESS within OD.
1434 virtual void
1435 add_output_section_generic(Output_section *os, unsigned int type,
1436 Output_data* od, uint64_t address,
1437 uint64_t addend) = 0;
1438
1439 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1440 // output section OS. The relocation applies to the data at offset
1441 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1442 // output section.
1443 virtual void
1444 add_output_section_generic(Output_section* os, unsigned int type,
1445 Output_data* od, Relobj* relobj,
1446 unsigned int shndx, uint64_t address,
1447 uint64_t addend) = 0;
1448
1449 protected:
1450 // Note that we've added another relative reloc.
1451 void
1452 bump_relative_reloc_count()
1453 { ++this->relative_reloc_count_; }
1454
1455 private:
1456 // The number of relative relocs added to this section. This is to
1457 // support DT_RELCOUNT.
1458 size_t relative_reloc_count_;
1459 // Whether to sort the relocations when writing them out, to make
1460 // the dynamic linker more efficient.
1461 bool sort_relocs_;
1462 };
1463
1464 // Output_data_reloc is used to manage a section containing relocs.
1465 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1466 // indicates whether this is a dynamic relocation or a normal
1467 // relocation. Output_data_reloc_base is a base class.
1468 // Output_data_reloc is the real class, which we specialize based on
1469 // the reloc type.
1470
1471 template<int sh_type, bool dynamic, int size, bool big_endian>
1472 class Output_data_reloc_base : public Output_data_reloc_generic
1473 {
1474 public:
1475 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1476 typedef typename Output_reloc_type::Address Address;
1477 static const int reloc_size =
1478 Reloc_types<sh_type, size, big_endian>::reloc_size;
1479
1480 // Construct the section.
1481 Output_data_reloc_base(bool sort_relocs)
1482 : Output_data_reloc_generic(size, sort_relocs)
1483 { }
1484
1485 protected:
1486 // Write out the data.
1487 void
1488 do_write(Output_file*);
1489
1490 // Set the entry size and the link.
1491 void
1492 do_adjust_output_section(Output_section* os);
1493
1494 // Write to a map file.
1495 void
1496 do_print_to_mapfile(Mapfile* mapfile) const
1497 {
1498 mapfile->print_output_data(this,
1499 (dynamic
1500 ? _("** dynamic relocs")
1501 : _("** relocs")));
1502 }
1503
1504 // Add a relocation entry.
1505 void
1506 add(Output_data* od, const Output_reloc_type& reloc)
1507 {
1508 this->relocs_.push_back(reloc);
1509 this->set_current_data_size(this->relocs_.size() * reloc_size);
1510 if (dynamic)
1511 od->add_dynamic_reloc();
1512 if (reloc.is_relative())
1513 this->bump_relative_reloc_count();
1514 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1515 if (relobj != NULL)
1516 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1517 }
1518
1519 private:
1520 typedef std::vector<Output_reloc_type> Relocs;
1521
1522 // The class used to sort the relocations.
1523 struct Sort_relocs_comparison
1524 {
1525 bool
1526 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1527 { return r1.sort_before(r2); }
1528 };
1529
1530 // The relocations in this section.
1531 Relocs relocs_;
1532 };
1533
1534 // The class which callers actually create.
1535
1536 template<int sh_type, bool dynamic, int size, bool big_endian>
1537 class Output_data_reloc;
1538
1539 // The SHT_REL version of Output_data_reloc.
1540
1541 template<bool dynamic, int size, bool big_endian>
1542 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1543 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1544 {
1545 private:
1546 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1547 big_endian> Base;
1548
1549 public:
1550 typedef typename Base::Output_reloc_type Output_reloc_type;
1551 typedef typename Output_reloc_type::Address Address;
1552
1553 Output_data_reloc(bool sr)
1554 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1555 { }
1556
1557 // Add a reloc against a global symbol.
1558
1559 void
1560 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1561 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1562
1563 void
1564 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1565 Sized_relobj<size, big_endian>* relobj,
1566 unsigned int shndx, Address address)
1567 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1568 false, false)); }
1569
1570 void
1571 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1572 uint64_t address, uint64_t addend)
1573 {
1574 gold_assert(addend == 0);
1575 this->add(od, Output_reloc_type(gsym, type, od,
1576 convert_types<Address, uint64_t>(address),
1577 false, false));
1578 }
1579
1580 void
1581 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1582 Relobj* relobj, unsigned int shndx, uint64_t address,
1583 uint64_t addend)
1584 {
1585 gold_assert(addend == 0);
1586 Sized_relobj<size, big_endian>* sized_relobj =
1587 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1588 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1589 convert_types<Address, uint64_t>(address),
1590 false, false));
1591 }
1592
1593 // Add a RELATIVE reloc against a global symbol. The final relocation
1594 // will not reference the symbol.
1595
1596 void
1597 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1598 Address address)
1599 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1600
1601 void
1602 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1603 Sized_relobj<size, big_endian>* relobj,
1604 unsigned int shndx, Address address)
1605 {
1606 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1607 true, true));
1608 }
1609
1610 // Add a global relocation which does not use a symbol for the relocation,
1611 // but which gets its addend from a symbol.
1612
1613 void
1614 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1615 Output_data* od, Address address)
1616 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1617
1618 void
1619 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1620 Output_data* od,
1621 Sized_relobj<size, big_endian>* relobj,
1622 unsigned int shndx, Address address)
1623 {
1624 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1625 false, true));
1626 }
1627
1628 // Add a reloc against a local symbol.
1629
1630 void
1631 add_local(Sized_relobj<size, big_endian>* relobj,
1632 unsigned int local_sym_index, unsigned int type,
1633 Output_data* od, Address address)
1634 {
1635 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1636 address, false, false, false, false));
1637 }
1638
1639 void
1640 add_local(Sized_relobj<size, big_endian>* relobj,
1641 unsigned int local_sym_index, unsigned int type,
1642 Output_data* od, unsigned int shndx, Address address)
1643 {
1644 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1645 address, false, false, false, false));
1646 }
1647
1648 void
1649 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1650 unsigned int type, Output_data* od, uint64_t address,
1651 uint64_t addend)
1652 {
1653 gold_assert(addend == 0);
1654 Sized_relobj<size, big_endian>* sized_relobj =
1655 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1656 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1657 convert_types<Address, uint64_t>(address),
1658 false, false, false, false));
1659 }
1660
1661 void
1662 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1663 unsigned int type, Output_data* od, unsigned int shndx,
1664 uint64_t address, uint64_t addend)
1665 {
1666 gold_assert(addend == 0);
1667 Sized_relobj<size, big_endian>* sized_relobj =
1668 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1669 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1670 convert_types<Address, uint64_t>(address),
1671 false, false, false, false));
1672 }
1673
1674 // Add a RELATIVE reloc against a local symbol.
1675
1676 void
1677 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1678 unsigned int local_sym_index, unsigned int type,
1679 Output_data* od, Address address)
1680 {
1681 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1682 address, true, true, false, false));
1683 }
1684
1685 void
1686 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1687 unsigned int local_sym_index, unsigned int type,
1688 Output_data* od, unsigned int shndx, Address address)
1689 {
1690 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1691 address, true, true, false, false));
1692 }
1693
1694 // Add a local relocation which does not use a symbol for the relocation,
1695 // but which gets its addend from a symbol.
1696
1697 void
1698 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1699 unsigned int local_sym_index, unsigned int type,
1700 Output_data* od, Address address)
1701 {
1702 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1703 address, false, true, false, false));
1704 }
1705
1706 void
1707 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1708 unsigned int local_sym_index, unsigned int type,
1709 Output_data* od, unsigned int shndx,
1710 Address address)
1711 {
1712 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1713 address, false, true, false, false));
1714 }
1715
1716 // Add a reloc against a local section symbol. This will be
1717 // converted into a reloc against the STT_SECTION symbol of the
1718 // output section.
1719
1720 void
1721 add_local_section(Sized_relobj<size, big_endian>* relobj,
1722 unsigned int input_shndx, unsigned int type,
1723 Output_data* od, Address address)
1724 {
1725 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1726 address, false, false, true, false));
1727 }
1728
1729 void
1730 add_local_section(Sized_relobj<size, big_endian>* relobj,
1731 unsigned int input_shndx, unsigned int type,
1732 Output_data* od, unsigned int shndx, Address address)
1733 {
1734 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1735 address, false, false, true, false));
1736 }
1737
1738 // A reloc against the STT_SECTION symbol of an output section.
1739 // OS is the Output_section that the relocation refers to; OD is
1740 // the Output_data object being relocated.
1741
1742 void
1743 add_output_section(Output_section* os, unsigned int type,
1744 Output_data* od, Address address)
1745 { this->add(od, Output_reloc_type(os, type, od, address)); }
1746
1747 void
1748 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1749 Sized_relobj<size, big_endian>* relobj,
1750 unsigned int shndx, Address address)
1751 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1752
1753 void
1754 add_output_section_generic(Output_section* os, unsigned int type,
1755 Output_data* od, uint64_t address,
1756 uint64_t addend)
1757 {
1758 gold_assert(addend == 0);
1759 this->add(od, Output_reloc_type(os, type, od,
1760 convert_types<Address, uint64_t>(address)));
1761 }
1762
1763 void
1764 add_output_section_generic(Output_section* os, unsigned int type,
1765 Output_data* od, Relobj* relobj,
1766 unsigned int shndx, uint64_t address,
1767 uint64_t addend)
1768 {
1769 gold_assert(addend == 0);
1770 Sized_relobj<size, big_endian>* sized_relobj =
1771 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1772 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1773 convert_types<Address, uint64_t>(address)));
1774 }
1775
1776 // Add an absolute relocation.
1777
1778 void
1779 add_absolute(unsigned int type, Output_data* od, Address address)
1780 { this->add(od, Output_reloc_type(type, od, address)); }
1781
1782 void
1783 add_absolute(unsigned int type, Output_data* od,
1784 Sized_relobj<size, big_endian>* relobj,
1785 unsigned int shndx, Address address)
1786 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1787
1788 // Add a target specific relocation. A target which calls this must
1789 // define the reloc_symbol_index and reloc_addend virtual functions.
1790
1791 void
1792 add_target_specific(unsigned int type, void* arg, Output_data* od,
1793 Address address)
1794 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1795
1796 void
1797 add_target_specific(unsigned int type, void* arg, Output_data* od,
1798 Sized_relobj<size, big_endian>* relobj,
1799 unsigned int shndx, Address address)
1800 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1801 };
1802
1803 // The SHT_RELA version of Output_data_reloc.
1804
1805 template<bool dynamic, int size, bool big_endian>
1806 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1807 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1808 {
1809 private:
1810 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1811 big_endian> Base;
1812
1813 public:
1814 typedef typename Base::Output_reloc_type Output_reloc_type;
1815 typedef typename Output_reloc_type::Address Address;
1816 typedef typename Output_reloc_type::Addend Addend;
1817
1818 Output_data_reloc(bool sr)
1819 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1820 { }
1821
1822 // Add a reloc against a global symbol.
1823
1824 void
1825 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1826 Address address, Addend addend)
1827 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1828 false, false)); }
1829
1830 void
1831 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1832 Sized_relobj<size, big_endian>* relobj,
1833 unsigned int shndx, Address address,
1834 Addend addend)
1835 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1836 addend, false, false)); }
1837
1838 void
1839 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1840 uint64_t address, uint64_t addend)
1841 {
1842 this->add(od, Output_reloc_type(gsym, type, od,
1843 convert_types<Address, uint64_t>(address),
1844 convert_types<Addend, uint64_t>(addend),
1845 false, false));
1846 }
1847
1848 void
1849 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1850 Relobj* relobj, unsigned int shndx, uint64_t address,
1851 uint64_t addend)
1852 {
1853 Sized_relobj<size, big_endian>* sized_relobj =
1854 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1855 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1856 convert_types<Address, uint64_t>(address),
1857 convert_types<Addend, uint64_t>(addend),
1858 false, false));
1859 }
1860
1861 // Add a RELATIVE reloc against a global symbol. The final output
1862 // relocation will not reference the symbol, but we must keep the symbol
1863 // information long enough to set the addend of the relocation correctly
1864 // when it is written.
1865
1866 void
1867 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1868 Address address, Addend addend)
1869 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1870 true)); }
1871
1872 void
1873 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1874 Sized_relobj<size, big_endian>* relobj,
1875 unsigned int shndx, Address address, Addend addend)
1876 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1877 addend, true, true)); }
1878
1879 // Add a global relocation which does not use a symbol for the relocation,
1880 // but which gets its addend from a symbol.
1881
1882 void
1883 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1884 Address address, Addend addend)
1885 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1886 false, true)); }
1887
1888 void
1889 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1890 Output_data* od,
1891 Sized_relobj<size, big_endian>* relobj,
1892 unsigned int shndx, Address address, Addend addend)
1893 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1894 addend, false, true)); }
1895
1896 // Add a reloc against a local symbol.
1897
1898 void
1899 add_local(Sized_relobj<size, big_endian>* relobj,
1900 unsigned int local_sym_index, unsigned int type,
1901 Output_data* od, Address address, Addend addend)
1902 {
1903 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1904 addend, false, false, false, false));
1905 }
1906
1907 void
1908 add_local(Sized_relobj<size, big_endian>* relobj,
1909 unsigned int local_sym_index, unsigned int type,
1910 Output_data* od, unsigned int shndx, Address address,
1911 Addend addend)
1912 {
1913 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1914 address, addend, false, false, false,
1915 false));
1916 }
1917
1918 void
1919 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1920 unsigned int type, Output_data* od, uint64_t address,
1921 uint64_t addend)
1922 {
1923 Sized_relobj<size, big_endian>* sized_relobj =
1924 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1925 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1926 convert_types<Address, uint64_t>(address),
1927 convert_types<Addend, uint64_t>(addend),
1928 false, false, false, false));
1929 }
1930
1931 void
1932 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1933 unsigned int type, Output_data* od, unsigned int shndx,
1934 uint64_t address, uint64_t addend)
1935 {
1936 Sized_relobj<size, big_endian>* sized_relobj =
1937 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1938 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1939 convert_types<Address, uint64_t>(address),
1940 convert_types<Addend, uint64_t>(addend),
1941 false, false, false, false));
1942 }
1943
1944 // Add a RELATIVE reloc against a local symbol.
1945
1946 void
1947 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1948 unsigned int local_sym_index, unsigned int type,
1949 Output_data* od, Address address, Addend addend,
1950 bool use_plt_offset)
1951 {
1952 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1953 addend, true, true, false,
1954 use_plt_offset));
1955 }
1956
1957 void
1958 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1959 unsigned int local_sym_index, unsigned int type,
1960 Output_data* od, unsigned int shndx, Address address,
1961 Addend addend, bool use_plt_offset)
1962 {
1963 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1964 address, addend, true, true, false,
1965 use_plt_offset));
1966 }
1967
1968 // Add a local relocation which does not use a symbol for the relocation,
1969 // but which gets it's addend from a symbol.
1970
1971 void
1972 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1973 unsigned int local_sym_index, unsigned int type,
1974 Output_data* od, Address address, Addend addend)
1975 {
1976 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1977 addend, false, true, false, false));
1978 }
1979
1980 void
1981 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1982 unsigned int local_sym_index, unsigned int type,
1983 Output_data* od, unsigned int shndx,
1984 Address address, Addend addend)
1985 {
1986 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1987 address, addend, false, true, false,
1988 false));
1989 }
1990
1991 // Add a reloc against a local section symbol. This will be
1992 // converted into a reloc against the STT_SECTION symbol of the
1993 // output section.
1994
1995 void
1996 add_local_section(Sized_relobj<size, big_endian>* relobj,
1997 unsigned int input_shndx, unsigned int type,
1998 Output_data* od, Address address, Addend addend)
1999 {
2000 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2001 addend, false, false, true, false));
2002 }
2003
2004 void
2005 add_local_section(Sized_relobj<size, big_endian>* relobj,
2006 unsigned int input_shndx, unsigned int type,
2007 Output_data* od, unsigned int shndx, Address address,
2008 Addend addend)
2009 {
2010 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2011 address, addend, false, false, true,
2012 false));
2013 }
2014
2015 // A reloc against the STT_SECTION symbol of an output section.
2016
2017 void
2018 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2019 Address address, Addend addend)
2020 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
2021
2022 void
2023 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2024 Sized_relobj<size, big_endian>* relobj,
2025 unsigned int shndx, Address address, Addend addend)
2026 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2027 addend)); }
2028
2029 void
2030 add_output_section_generic(Output_section* os, unsigned int type,
2031 Output_data* od, uint64_t address,
2032 uint64_t addend)
2033 {
2034 this->add(od, Output_reloc_type(os, type, od,
2035 convert_types<Address, uint64_t>(address),
2036 convert_types<Addend, uint64_t>(addend)));
2037 }
2038
2039 void
2040 add_output_section_generic(Output_section* os, unsigned int type,
2041 Output_data* od, Relobj* relobj,
2042 unsigned int shndx, uint64_t address,
2043 uint64_t addend)
2044 {
2045 Sized_relobj<size, big_endian>* sized_relobj =
2046 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2047 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2048 convert_types<Address, uint64_t>(address),
2049 convert_types<Addend, uint64_t>(addend)));
2050 }
2051
2052 // Add an absolute relocation.
2053
2054 void
2055 add_absolute(unsigned int type, Output_data* od, Address address,
2056 Addend addend)
2057 { this->add(od, Output_reloc_type(type, od, address, addend)); }
2058
2059 void
2060 add_absolute(unsigned int type, Output_data* od,
2061 Sized_relobj<size, big_endian>* relobj,
2062 unsigned int shndx, Address address, Addend addend)
2063 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2064
2065 // Add a target specific relocation. A target which calls this must
2066 // define the reloc_symbol_index and reloc_addend virtual functions.
2067
2068 void
2069 add_target_specific(unsigned int type, void* arg, Output_data* od,
2070 Address address, Addend addend)
2071 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2072
2073 void
2074 add_target_specific(unsigned int type, void* arg, Output_data* od,
2075 Sized_relobj<size, big_endian>* relobj,
2076 unsigned int shndx, Address address, Addend addend)
2077 {
2078 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2079 addend));
2080 }
2081 };
2082
2083 // Output_relocatable_relocs represents a relocation section in a
2084 // relocatable link. The actual data is written out in the target
2085 // hook relocate_for_relocatable. This just saves space for it.
2086
2087 template<int sh_type, int size, bool big_endian>
2088 class Output_relocatable_relocs : public Output_section_data
2089 {
2090 public:
2091 Output_relocatable_relocs(Relocatable_relocs* rr)
2092 : Output_section_data(Output_data::default_alignment_for_size(size)),
2093 rr_(rr)
2094 { }
2095
2096 void
2097 set_final_data_size();
2098
2099 // Write out the data. There is nothing to do here.
2100 void
2101 do_write(Output_file*)
2102 { }
2103
2104 // Write to a map file.
2105 void
2106 do_print_to_mapfile(Mapfile* mapfile) const
2107 { mapfile->print_output_data(this, _("** relocs")); }
2108
2109 private:
2110 // The relocs associated with this input section.
2111 Relocatable_relocs* rr_;
2112 };
2113
2114 // Handle a GROUP section.
2115
2116 template<int size, bool big_endian>
2117 class Output_data_group : public Output_section_data
2118 {
2119 public:
2120 // The constructor clears *INPUT_SHNDXES.
2121 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2122 section_size_type entry_count,
2123 elfcpp::Elf_Word flags,
2124 std::vector<unsigned int>* input_shndxes);
2125
2126 void
2127 do_write(Output_file*);
2128
2129 // Write to a map file.
2130 void
2131 do_print_to_mapfile(Mapfile* mapfile) const
2132 { mapfile->print_output_data(this, _("** group")); }
2133
2134 // Set final data size.
2135 void
2136 set_final_data_size()
2137 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2138
2139 private:
2140 // The input object.
2141 Sized_relobj_file<size, big_endian>* relobj_;
2142 // The group flag word.
2143 elfcpp::Elf_Word flags_;
2144 // The section indexes of the input sections in this group.
2145 std::vector<unsigned int> input_shndxes_;
2146 };
2147
2148 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2149 // for one symbol--either a global symbol or a local symbol in an
2150 // object. The target specific code adds entries to the GOT as
2151 // needed. The GOT_SIZE template parameter is the size in bits of a
2152 // GOT entry, typically 32 or 64.
2153
2154 template<int got_size, bool big_endian>
2155 class Output_data_got : public Output_section_data_build
2156 {
2157 public:
2158 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2159
2160 Output_data_got()
2161 : Output_section_data_build(Output_data::default_alignment_for_size(got_size)),
2162 entries_(), free_list_()
2163 { }
2164
2165 Output_data_got(off_t data_size)
2166 : Output_section_data_build(data_size,
2167 Output_data::default_alignment_for_size(got_size)),
2168 entries_(), free_list_()
2169 {
2170 // For an incremental update, we have an existing GOT section.
2171 // Initialize the list of entries and the free list.
2172 this->entries_.resize(data_size / (got_size / 8));
2173 this->free_list_.init(data_size, false);
2174 }
2175
2176 // Add an entry for a global symbol to the GOT. Return true if this
2177 // is a new GOT entry, false if the symbol was already in the GOT.
2178 bool
2179 add_global(Symbol* gsym, unsigned int got_type);
2180
2181 // Like add_global, but use the PLT offset of the global symbol if
2182 // it has one.
2183 bool
2184 add_global_plt(Symbol* gsym, unsigned int got_type);
2185
2186 // Add an entry for a global symbol to the GOT, and add a dynamic
2187 // relocation of type R_TYPE for the GOT entry.
2188 void
2189 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2190 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2191
2192 // Add a pair of entries for a global symbol to the GOT, and add
2193 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2194 void
2195 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2196 Output_data_reloc_generic* rel_dyn,
2197 unsigned int r_type_1, unsigned int r_type_2);
2198
2199 // Add an entry for a local symbol to the GOT. This returns true if
2200 // this is a new GOT entry, false if the symbol already has a GOT
2201 // entry.
2202 bool
2203 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2204
2205 // Like add_local, but use the PLT offset of the local symbol if it
2206 // has one.
2207 bool
2208 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2209
2210 // Add an entry for a local symbol to the GOT, and add a dynamic
2211 // relocation of type R_TYPE for the GOT entry.
2212 void
2213 add_local_with_rel(Relobj* object, unsigned int sym_index,
2214 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2215 unsigned int r_type);
2216
2217 // Add a pair of entries for a local symbol to the GOT, and add
2218 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2219 void
2220 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2221 unsigned int shndx, unsigned int got_type,
2222 Output_data_reloc_generic* rel_dyn,
2223 unsigned int r_type_1, unsigned int r_type_2);
2224
2225 // Add a constant to the GOT. This returns the offset of the new
2226 // entry from the start of the GOT.
2227 unsigned int
2228 add_constant(Valtype constant)
2229 {
2230 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2231 return got_offset;
2232 }
2233
2234 // Reserve a slot in the GOT.
2235 void
2236 reserve_slot(unsigned int i)
2237 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2238
2239 // Reserve a slot in the GOT for a local symbol.
2240 void
2241 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2242 unsigned int got_type);
2243
2244 // Reserve a slot in the GOT for a global symbol.
2245 void
2246 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2247
2248 protected:
2249 // Write out the GOT table.
2250 void
2251 do_write(Output_file*);
2252
2253 // Write to a map file.
2254 void
2255 do_print_to_mapfile(Mapfile* mapfile) const
2256 { mapfile->print_output_data(this, _("** GOT")); }
2257
2258 private:
2259 // This POD class holds a single GOT entry.
2260 class Got_entry
2261 {
2262 public:
2263 // Create a zero entry.
2264 Got_entry()
2265 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2266 { this->u_.constant = 0; }
2267
2268 // Create a global symbol entry.
2269 Got_entry(Symbol* gsym, bool use_plt_offset)
2270 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2271 { this->u_.gsym = gsym; }
2272
2273 // Create a local symbol entry.
2274 Got_entry(Relobj* object, unsigned int local_sym_index,
2275 bool use_plt_offset)
2276 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2277 {
2278 gold_assert(local_sym_index != GSYM_CODE
2279 && local_sym_index != CONSTANT_CODE
2280 && local_sym_index != RESERVED_CODE
2281 && local_sym_index == this->local_sym_index_);
2282 this->u_.object = object;
2283 }
2284
2285 // Create a constant entry. The constant is a host value--it will
2286 // be swapped, if necessary, when it is written out.
2287 explicit Got_entry(Valtype constant)
2288 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2289 { this->u_.constant = constant; }
2290
2291 // Write the GOT entry to an output view.
2292 void
2293 write(unsigned char* pov) const;
2294
2295 private:
2296 enum
2297 {
2298 GSYM_CODE = 0x7fffffff,
2299 CONSTANT_CODE = 0x7ffffffe,
2300 RESERVED_CODE = 0x7ffffffd
2301 };
2302
2303 union
2304 {
2305 // For a local symbol, the object.
2306 Relobj* object;
2307 // For a global symbol, the symbol.
2308 Symbol* gsym;
2309 // For a constant, the constant.
2310 Valtype constant;
2311 } u_;
2312 // For a local symbol, the local symbol index. This is GSYM_CODE
2313 // for a global symbol, or CONSTANT_CODE for a constant.
2314 unsigned int local_sym_index_ : 31;
2315 // Whether to use the PLT offset of the symbol if it has one.
2316 bool use_plt_offset_ : 1;
2317 };
2318
2319 typedef std::vector<Got_entry> Got_entries;
2320
2321 // Create a new GOT entry and return its offset.
2322 unsigned int
2323 add_got_entry(Got_entry got_entry);
2324
2325 // Create a pair of new GOT entries and return the offset of the first.
2326 unsigned int
2327 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2328
2329 // Return the offset into the GOT of GOT entry I.
2330 unsigned int
2331 got_offset(unsigned int i) const
2332 { return i * (got_size / 8); }
2333
2334 // Return the offset into the GOT of the last entry added.
2335 unsigned int
2336 last_got_offset() const
2337 { return this->got_offset(this->entries_.size() - 1); }
2338
2339 // Set the size of the section.
2340 void
2341 set_got_size()
2342 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2343
2344 // The list of GOT entries.
2345 Got_entries entries_;
2346
2347 // List of available regions within the section, for incremental
2348 // update links.
2349 Free_list free_list_;
2350 };
2351
2352 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2353 // section.
2354
2355 class Output_data_dynamic : public Output_section_data
2356 {
2357 public:
2358 Output_data_dynamic(Stringpool* pool)
2359 : Output_section_data(Output_data::default_alignment()),
2360 entries_(), pool_(pool)
2361 { }
2362
2363 // Add a new dynamic entry with a fixed numeric value.
2364 void
2365 add_constant(elfcpp::DT tag, unsigned int val)
2366 { this->add_entry(Dynamic_entry(tag, val)); }
2367
2368 // Add a new dynamic entry with the address of output data.
2369 void
2370 add_section_address(elfcpp::DT tag, const Output_data* od)
2371 { this->add_entry(Dynamic_entry(tag, od, false)); }
2372
2373 // Add a new dynamic entry with the address of output data
2374 // plus a constant offset.
2375 void
2376 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2377 unsigned int offset)
2378 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2379
2380 // Add a new dynamic entry with the size of output data.
2381 void
2382 add_section_size(elfcpp::DT tag, const Output_data* od)
2383 { this->add_entry(Dynamic_entry(tag, od, true)); }
2384
2385 // Add a new dynamic entry with the total size of two output datas.
2386 void
2387 add_section_size(elfcpp::DT tag, const Output_data* od,
2388 const Output_data* od2)
2389 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2390
2391 // Add a new dynamic entry with the address of a symbol.
2392 void
2393 add_symbol(elfcpp::DT tag, const Symbol* sym)
2394 { this->add_entry(Dynamic_entry(tag, sym)); }
2395
2396 // Add a new dynamic entry with a string.
2397 void
2398 add_string(elfcpp::DT tag, const char* str)
2399 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2400
2401 void
2402 add_string(elfcpp::DT tag, const std::string& str)
2403 { this->add_string(tag, str.c_str()); }
2404
2405 protected:
2406 // Adjust the output section to set the entry size.
2407 void
2408 do_adjust_output_section(Output_section*);
2409
2410 // Set the final data size.
2411 void
2412 set_final_data_size();
2413
2414 // Write out the dynamic entries.
2415 void
2416 do_write(Output_file*);
2417
2418 // Write to a map file.
2419 void
2420 do_print_to_mapfile(Mapfile* mapfile) const
2421 { mapfile->print_output_data(this, _("** dynamic")); }
2422
2423 private:
2424 // This POD class holds a single dynamic entry.
2425 class Dynamic_entry
2426 {
2427 public:
2428 // Create an entry with a fixed numeric value.
2429 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2430 : tag_(tag), offset_(DYNAMIC_NUMBER)
2431 { this->u_.val = val; }
2432
2433 // Create an entry with the size or address of a section.
2434 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2435 : tag_(tag),
2436 offset_(section_size
2437 ? DYNAMIC_SECTION_SIZE
2438 : DYNAMIC_SECTION_ADDRESS)
2439 {
2440 this->u_.od = od;
2441 this->od2 = NULL;
2442 }
2443
2444 // Create an entry with the size of two sections.
2445 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2446 : tag_(tag),
2447 offset_(DYNAMIC_SECTION_SIZE)
2448 {
2449 this->u_.od = od;
2450 this->od2 = od2;
2451 }
2452
2453 // Create an entry with the address of a section plus a constant offset.
2454 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2455 : tag_(tag),
2456 offset_(offset)
2457 { this->u_.od = od; }
2458
2459 // Create an entry with the address of a symbol.
2460 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2461 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2462 { this->u_.sym = sym; }
2463
2464 // Create an entry with a string.
2465 Dynamic_entry(elfcpp::DT tag, const char* str)
2466 : tag_(tag), offset_(DYNAMIC_STRING)
2467 { this->u_.str = str; }
2468
2469 // Return the tag of this entry.
2470 elfcpp::DT
2471 tag() const
2472 { return this->tag_; }
2473
2474 // Write the dynamic entry to an output view.
2475 template<int size, bool big_endian>
2476 void
2477 write(unsigned char* pov, const Stringpool*) const;
2478
2479 private:
2480 // Classification is encoded in the OFFSET field.
2481 enum Classification
2482 {
2483 // Section address.
2484 DYNAMIC_SECTION_ADDRESS = 0,
2485 // Number.
2486 DYNAMIC_NUMBER = -1U,
2487 // Section size.
2488 DYNAMIC_SECTION_SIZE = -2U,
2489 // Symbol adress.
2490 DYNAMIC_SYMBOL = -3U,
2491 // String.
2492 DYNAMIC_STRING = -4U
2493 // Any other value indicates a section address plus OFFSET.
2494 };
2495
2496 union
2497 {
2498 // For DYNAMIC_NUMBER.
2499 unsigned int val;
2500 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2501 const Output_data* od;
2502 // For DYNAMIC_SYMBOL.
2503 const Symbol* sym;
2504 // For DYNAMIC_STRING.
2505 const char* str;
2506 } u_;
2507 // For DYNAMIC_SYMBOL with two sections.
2508 const Output_data* od2;
2509 // The dynamic tag.
2510 elfcpp::DT tag_;
2511 // The type of entry (Classification) or offset within a section.
2512 unsigned int offset_;
2513 };
2514
2515 // Add an entry to the list.
2516 void
2517 add_entry(const Dynamic_entry& entry)
2518 { this->entries_.push_back(entry); }
2519
2520 // Sized version of write function.
2521 template<int size, bool big_endian>
2522 void
2523 sized_write(Output_file* of);
2524
2525 // The type of the list of entries.
2526 typedef std::vector<Dynamic_entry> Dynamic_entries;
2527
2528 // The entries.
2529 Dynamic_entries entries_;
2530 // The pool used for strings.
2531 Stringpool* pool_;
2532 };
2533
2534 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2535 // which may be required if the object file has more than
2536 // SHN_LORESERVE sections.
2537
2538 class Output_symtab_xindex : public Output_section_data
2539 {
2540 public:
2541 Output_symtab_xindex(size_t symcount)
2542 : Output_section_data(symcount * 4, 4, true),
2543 entries_()
2544 { }
2545
2546 // Add an entry: symbol number SYMNDX has section SHNDX.
2547 void
2548 add(unsigned int symndx, unsigned int shndx)
2549 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2550
2551 protected:
2552 void
2553 do_write(Output_file*);
2554
2555 // Write to a map file.
2556 void
2557 do_print_to_mapfile(Mapfile* mapfile) const
2558 { mapfile->print_output_data(this, _("** symtab xindex")); }
2559
2560 private:
2561 template<bool big_endian>
2562 void
2563 endian_do_write(unsigned char*);
2564
2565 // It is likely that most symbols will not require entries. Rather
2566 // than keep a vector for all symbols, we keep pairs of symbol index
2567 // and section index.
2568 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2569
2570 // The entries we need.
2571 Xindex_entries entries_;
2572 };
2573
2574 // A relaxed input section.
2575 class Output_relaxed_input_section : public Output_section_data_build
2576 {
2577 public:
2578 // We would like to call relobj->section_addralign(shndx) to get the
2579 // alignment but we do not want the constructor to fail. So callers
2580 // are repsonsible for ensuring that.
2581 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2582 uint64_t addralign)
2583 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2584 { }
2585
2586 // Return the Relobj of this relaxed input section.
2587 Relobj*
2588 relobj() const
2589 { return this->relobj_; }
2590
2591 // Return the section index of this relaxed input section.
2592 unsigned int
2593 shndx() const
2594 { return this->shndx_; }
2595
2596 private:
2597 Relobj* relobj_;
2598 unsigned int shndx_;
2599 };
2600
2601 // This class describes properties of merge data sections. It is used
2602 // as a key type for maps.
2603 class Merge_section_properties
2604 {
2605 public:
2606 Merge_section_properties(bool is_string, uint64_t entsize,
2607 uint64_t addralign)
2608 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2609 { }
2610
2611 // Whether this equals to another Merge_section_properties MSP.
2612 bool
2613 eq(const Merge_section_properties& msp) const
2614 {
2615 return ((this->is_string_ == msp.is_string_)
2616 && (this->entsize_ == msp.entsize_)
2617 && (this->addralign_ == msp.addralign_));
2618 }
2619
2620 // Compute a hash value for this using 64-bit FNV-1a hash.
2621 size_t
2622 hash_value() const
2623 {
2624 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2625 uint64_t prime = 1099511628211ULL;
2626 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2627 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2628 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2629 return h;
2630 }
2631
2632 // Functors for associative containers.
2633 struct equal_to
2634 {
2635 bool
2636 operator()(const Merge_section_properties& msp1,
2637 const Merge_section_properties& msp2) const
2638 { return msp1.eq(msp2); }
2639 };
2640
2641 struct hash
2642 {
2643 size_t
2644 operator()(const Merge_section_properties& msp) const
2645 { return msp.hash_value(); }
2646 };
2647
2648 private:
2649 // Whether this merge data section is for strings.
2650 bool is_string_;
2651 // Entsize of this merge data section.
2652 uint64_t entsize_;
2653 // Address alignment.
2654 uint64_t addralign_;
2655 };
2656
2657 // This class is used to speed up look up of special input sections in an
2658 // Output_section.
2659
2660 class Output_section_lookup_maps
2661 {
2662 public:
2663 Output_section_lookup_maps()
2664 : is_valid_(true), merge_sections_by_properties_(),
2665 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2666 { }
2667
2668 // Whether the maps are valid.
2669 bool
2670 is_valid() const
2671 { return this->is_valid_; }
2672
2673 // Invalidate the maps.
2674 void
2675 invalidate()
2676 { this->is_valid_ = false; }
2677
2678 // Clear the maps.
2679 void
2680 clear()
2681 {
2682 this->merge_sections_by_properties_.clear();
2683 this->merge_sections_by_id_.clear();
2684 this->relaxed_input_sections_by_id_.clear();
2685 // A cleared map is valid.
2686 this->is_valid_ = true;
2687 }
2688
2689 // Find a merge section by merge section properties. Return NULL if none
2690 // is found.
2691 Output_merge_base*
2692 find_merge_section(const Merge_section_properties& msp) const
2693 {
2694 gold_assert(this->is_valid_);
2695 Merge_sections_by_properties::const_iterator p =
2696 this->merge_sections_by_properties_.find(msp);
2697 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2698 }
2699
2700 // Find a merge section by section ID of a merge input section. Return NULL
2701 // if none is found.
2702 Output_merge_base*
2703 find_merge_section(const Object* object, unsigned int shndx) const
2704 {
2705 gold_assert(this->is_valid_);
2706 Merge_sections_by_id::const_iterator p =
2707 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2708 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2709 }
2710
2711 // Add a merge section pointed by POMB with properties MSP.
2712 void
2713 add_merge_section(const Merge_section_properties& msp,
2714 Output_merge_base* pomb)
2715 {
2716 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2717 std::pair<Merge_sections_by_properties::iterator, bool> result =
2718 this->merge_sections_by_properties_.insert(value);
2719 gold_assert(result.second);
2720 }
2721
2722 // Add a mapping from a merged input section in OBJECT with index SHNDX
2723 // to a merge output section pointed by POMB.
2724 void
2725 add_merge_input_section(const Object* object, unsigned int shndx,
2726 Output_merge_base* pomb)
2727 {
2728 Const_section_id csid(object, shndx);
2729 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2730 std::pair<Merge_sections_by_id::iterator, bool> result =
2731 this->merge_sections_by_id_.insert(value);
2732 gold_assert(result.second);
2733 }
2734
2735 // Find a relaxed input section of OBJECT with index SHNDX.
2736 Output_relaxed_input_section*
2737 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2738 {
2739 gold_assert(this->is_valid_);
2740 Relaxed_input_sections_by_id::const_iterator p =
2741 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2742 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2743 }
2744
2745 // Add a relaxed input section pointed by POMB and whose original input
2746 // section is in OBJECT with index SHNDX.
2747 void
2748 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2749 Output_relaxed_input_section* poris)
2750 {
2751 Const_section_id csid(relobj, shndx);
2752 std::pair<Const_section_id, Output_relaxed_input_section*>
2753 value(csid, poris);
2754 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2755 this->relaxed_input_sections_by_id_.insert(value);
2756 gold_assert(result.second);
2757 }
2758
2759 private:
2760 typedef Unordered_map<Const_section_id, Output_merge_base*,
2761 Const_section_id_hash>
2762 Merge_sections_by_id;
2763
2764 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2765 Merge_section_properties::hash,
2766 Merge_section_properties::equal_to>
2767 Merge_sections_by_properties;
2768
2769 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2770 Const_section_id_hash>
2771 Relaxed_input_sections_by_id;
2772
2773 // Whether this is valid
2774 bool is_valid_;
2775 // Merge sections by merge section properties.
2776 Merge_sections_by_properties merge_sections_by_properties_;
2777 // Merge sections by section IDs.
2778 Merge_sections_by_id merge_sections_by_id_;
2779 // Relaxed sections by section IDs.
2780 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2781 };
2782
2783 // This abstract base class defines the interface for the
2784 // types of methods used to fill free space left in an output
2785 // section during an incremental link. These methods are used
2786 // to insert dummy compilation units into debug info so that
2787 // debug info consumers can scan the debug info serially.
2788
2789 class Output_fill
2790 {
2791 public:
2792 Output_fill()
2793 : is_big_endian_(parameters->target().is_big_endian())
2794 { }
2795
2796 // Return the smallest size chunk of free space that can be
2797 // filled with a dummy compilation unit.
2798 size_t
2799 minimum_hole_size() const
2800 { return this->do_minimum_hole_size(); }
2801
2802 // Write a fill pattern of length LEN at offset OFF in the file.
2803 void
2804 write(Output_file* of, off_t off, size_t len) const
2805 { this->do_write(of, off, len); }
2806
2807 protected:
2808 virtual size_t
2809 do_minimum_hole_size() const = 0;
2810
2811 virtual void
2812 do_write(Output_file* of, off_t off, size_t len) const = 0;
2813
2814 bool
2815 is_big_endian() const
2816 { return this->is_big_endian_; }
2817
2818 private:
2819 bool is_big_endian_;
2820 };
2821
2822 // Fill method that introduces a dummy compilation unit in
2823 // a .debug_info or .debug_types section.
2824
2825 class Output_fill_debug_info : public Output_fill
2826 {
2827 public:
2828 Output_fill_debug_info(bool is_debug_types)
2829 : is_debug_types_(is_debug_types)
2830 { }
2831
2832 protected:
2833 virtual size_t
2834 do_minimum_hole_size() const;
2835
2836 virtual void
2837 do_write(Output_file* of, off_t off, size_t len) const;
2838
2839 private:
2840 // Version of the header.
2841 static const int version = 4;
2842 // True if this is a .debug_types section.
2843 bool is_debug_types_;
2844 };
2845
2846 // Fill method that introduces a dummy compilation unit in
2847 // a .debug_line section.
2848
2849 class Output_fill_debug_line : public Output_fill
2850 {
2851 public:
2852 Output_fill_debug_line()
2853 { }
2854
2855 protected:
2856 virtual size_t
2857 do_minimum_hole_size() const;
2858
2859 virtual void
2860 do_write(Output_file* of, off_t off, size_t len) const;
2861
2862 private:
2863 // Version of the header. We write a DWARF-3 header because it's smaller
2864 // and many tools have not yet been updated to understand the DWARF-4 header.
2865 static const int version = 3;
2866 // Length of the portion of the header that follows the header_length
2867 // field. This includes the following fields:
2868 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2869 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2870 // The standard_opcode_lengths array is 12 bytes long, and the
2871 // include_directories and filenames fields each contain only a single
2872 // null byte.
2873 static const size_t header_length = 19;
2874 };
2875
2876 // An output section. We don't expect to have too many output
2877 // sections, so we don't bother to do a template on the size.
2878
2879 class Output_section : public Output_data
2880 {
2881 public:
2882 // Create an output section, giving the name, type, and flags.
2883 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2884 virtual ~Output_section();
2885
2886 // Add a new input section SHNDX, named NAME, with header SHDR, from
2887 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2888 // which applies to this section, or 0 if none, or -1 if more than
2889 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2890 // in a linker script; in that case we need to keep track of input
2891 // sections associated with an output section. Return the offset
2892 // within the output section.
2893 template<int size, bool big_endian>
2894 off_t
2895 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2896 unsigned int shndx, const char* name,
2897 const elfcpp::Shdr<size, big_endian>& shdr,
2898 unsigned int reloc_shndx, bool have_sections_script);
2899
2900 // Add generated data POSD to this output section.
2901 void
2902 add_output_section_data(Output_section_data* posd);
2903
2904 // Add a relaxed input section PORIS called NAME to this output section
2905 // with LAYOUT.
2906 void
2907 add_relaxed_input_section(Layout* layout,
2908 Output_relaxed_input_section* poris,
2909 const std::string& name);
2910
2911 // Return the section name.
2912 const char*
2913 name() const
2914 { return this->name_; }
2915
2916 // Return the section type.
2917 elfcpp::Elf_Word
2918 type() const
2919 { return this->type_; }
2920
2921 // Return the section flags.
2922 elfcpp::Elf_Xword
2923 flags() const
2924 { return this->flags_; }
2925
2926 typedef std::map<Section_id, unsigned int> Section_layout_order;
2927
2928 void
2929 update_section_layout(const Section_layout_order* order_map);
2930
2931 // Update the output section flags based on input section flags.
2932 void
2933 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2934
2935 // Return the entsize field.
2936 uint64_t
2937 entsize() const
2938 { return this->entsize_; }
2939
2940 // Set the entsize field.
2941 void
2942 set_entsize(uint64_t v);
2943
2944 // Set the load address.
2945 void
2946 set_load_address(uint64_t load_address)
2947 {
2948 this->load_address_ = load_address;
2949 this->has_load_address_ = true;
2950 }
2951
2952 // Set the link field to the output section index of a section.
2953 void
2954 set_link_section(const Output_data* od)
2955 {
2956 gold_assert(this->link_ == 0
2957 && !this->should_link_to_symtab_
2958 && !this->should_link_to_dynsym_);
2959 this->link_section_ = od;
2960 }
2961
2962 // Set the link field to a constant.
2963 void
2964 set_link(unsigned int v)
2965 {
2966 gold_assert(this->link_section_ == NULL
2967 && !this->should_link_to_symtab_
2968 && !this->should_link_to_dynsym_);
2969 this->link_ = v;
2970 }
2971
2972 // Record that this section should link to the normal symbol table.
2973 void
2974 set_should_link_to_symtab()
2975 {
2976 gold_assert(this->link_section_ == NULL
2977 && this->link_ == 0
2978 && !this->should_link_to_dynsym_);
2979 this->should_link_to_symtab_ = true;
2980 }
2981
2982 // Record that this section should link to the dynamic symbol table.
2983 void
2984 set_should_link_to_dynsym()
2985 {
2986 gold_assert(this->link_section_ == NULL
2987 && this->link_ == 0
2988 && !this->should_link_to_symtab_);
2989 this->should_link_to_dynsym_ = true;
2990 }
2991
2992 // Return the info field.
2993 unsigned int
2994 info() const
2995 {
2996 gold_assert(this->info_section_ == NULL
2997 && this->info_symndx_ == NULL);
2998 return this->info_;
2999 }
3000
3001 // Set the info field to the output section index of a section.
3002 void
3003 set_info_section(const Output_section* os)
3004 {
3005 gold_assert((this->info_section_ == NULL
3006 || (this->info_section_ == os
3007 && this->info_uses_section_index_))
3008 && this->info_symndx_ == NULL
3009 && this->info_ == 0);
3010 this->info_section_ = os;
3011 this->info_uses_section_index_= true;
3012 }
3013
3014 // Set the info field to the symbol table index of a symbol.
3015 void
3016 set_info_symndx(const Symbol* sym)
3017 {
3018 gold_assert(this->info_section_ == NULL
3019 && (this->info_symndx_ == NULL
3020 || this->info_symndx_ == sym)
3021 && this->info_ == 0);
3022 this->info_symndx_ = sym;
3023 }
3024
3025 // Set the info field to the symbol table index of a section symbol.
3026 void
3027 set_info_section_symndx(const Output_section* os)
3028 {
3029 gold_assert((this->info_section_ == NULL
3030 || (this->info_section_ == os
3031 && !this->info_uses_section_index_))
3032 && this->info_symndx_ == NULL
3033 && this->info_ == 0);
3034 this->info_section_ = os;
3035 this->info_uses_section_index_ = false;
3036 }
3037
3038 // Set the info field to a constant.
3039 void
3040 set_info(unsigned int v)
3041 {
3042 gold_assert(this->info_section_ == NULL
3043 && this->info_symndx_ == NULL
3044 && (this->info_ == 0
3045 || this->info_ == v));
3046 this->info_ = v;
3047 }
3048
3049 // Set the addralign field.
3050 void
3051 set_addralign(uint64_t v)
3052 { this->addralign_ = v; }
3053
3054 // Whether the output section index has been set.
3055 bool
3056 has_out_shndx() const
3057 { return this->out_shndx_ != -1U; }
3058
3059 // Indicate that we need a symtab index.
3060 void
3061 set_needs_symtab_index()
3062 { this->needs_symtab_index_ = true; }
3063
3064 // Return whether we need a symtab index.
3065 bool
3066 needs_symtab_index() const
3067 { return this->needs_symtab_index_; }
3068
3069 // Get the symtab index.
3070 unsigned int
3071 symtab_index() const
3072 {
3073 gold_assert(this->symtab_index_ != 0);
3074 return this->symtab_index_;
3075 }
3076
3077 // Set the symtab index.
3078 void
3079 set_symtab_index(unsigned int index)
3080 {
3081 gold_assert(index != 0);
3082 this->symtab_index_ = index;
3083 }
3084
3085 // Indicate that we need a dynsym index.
3086 void
3087 set_needs_dynsym_index()
3088 { this->needs_dynsym_index_ = true; }
3089
3090 // Return whether we need a dynsym index.
3091 bool
3092 needs_dynsym_index() const
3093 { return this->needs_dynsym_index_; }
3094
3095 // Get the dynsym index.
3096 unsigned int
3097 dynsym_index() const
3098 {
3099 gold_assert(this->dynsym_index_ != 0);
3100 return this->dynsym_index_;
3101 }
3102
3103 // Set the dynsym index.
3104 void
3105 set_dynsym_index(unsigned int index)
3106 {
3107 gold_assert(index != 0);
3108 this->dynsym_index_ = index;
3109 }
3110
3111 // Return whether the input sections sections attachd to this output
3112 // section may require sorting. This is used to handle constructor
3113 // priorities compatibly with GNU ld.
3114 bool
3115 may_sort_attached_input_sections() const
3116 { return this->may_sort_attached_input_sections_; }
3117
3118 // Record that the input sections attached to this output section
3119 // may require sorting.
3120 void
3121 set_may_sort_attached_input_sections()
3122 { this->may_sort_attached_input_sections_ = true; }
3123
3124 // Returns true if input sections must be sorted according to the
3125 // order in which their name appear in the --section-ordering-file.
3126 bool
3127 input_section_order_specified()
3128 { return this->input_section_order_specified_; }
3129
3130 // Record that input sections must be sorted as some of their names
3131 // match the patterns specified through --section-ordering-file.
3132 void
3133 set_input_section_order_specified()
3134 { this->input_section_order_specified_ = true; }
3135
3136 // Return whether the input sections attached to this output section
3137 // require sorting. This is used to handle constructor priorities
3138 // compatibly with GNU ld.
3139 bool
3140 must_sort_attached_input_sections() const
3141 { return this->must_sort_attached_input_sections_; }
3142
3143 // Record that the input sections attached to this output section
3144 // require sorting.
3145 void
3146 set_must_sort_attached_input_sections()
3147 { this->must_sort_attached_input_sections_ = true; }
3148
3149 // Get the order in which this section appears in the PT_LOAD output
3150 // segment.
3151 Output_section_order
3152 order() const
3153 { return this->order_; }
3154
3155 // Set the order for this section.
3156 void
3157 set_order(Output_section_order order)
3158 { this->order_ = order; }
3159
3160 // Return whether this section holds relro data--data which has
3161 // dynamic relocations but which may be marked read-only after the
3162 // dynamic relocations have been completed.
3163 bool
3164 is_relro() const
3165 { return this->is_relro_; }
3166
3167 // Record that this section holds relro data.
3168 void
3169 set_is_relro()
3170 { this->is_relro_ = true; }
3171
3172 // Record that this section does not hold relro data.
3173 void
3174 clear_is_relro()
3175 { this->is_relro_ = false; }
3176
3177 // True if this is a small section: a section which holds small
3178 // variables.
3179 bool
3180 is_small_section() const
3181 { return this->is_small_section_; }
3182
3183 // Record that this is a small section.
3184 void
3185 set_is_small_section()
3186 { this->is_small_section_ = true; }
3187
3188 // True if this is a large section: a section which holds large
3189 // variables.
3190 bool
3191 is_large_section() const
3192 { return this->is_large_section_; }
3193
3194 // Record that this is a large section.
3195 void
3196 set_is_large_section()
3197 { this->is_large_section_ = true; }
3198
3199 // True if this is a large data (not BSS) section.
3200 bool
3201 is_large_data_section()
3202 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3203
3204 // Return whether this section should be written after all the input
3205 // sections are complete.
3206 bool
3207 after_input_sections() const
3208 { return this->after_input_sections_; }
3209
3210 // Record that this section should be written after all the input
3211 // sections are complete.
3212 void
3213 set_after_input_sections()
3214 { this->after_input_sections_ = true; }
3215
3216 // Return whether this section requires postprocessing after all
3217 // relocations have been applied.
3218 bool
3219 requires_postprocessing() const
3220 { return this->requires_postprocessing_; }
3221
3222 // If a section requires postprocessing, return the buffer to use.
3223 unsigned char*
3224 postprocessing_buffer() const
3225 {
3226 gold_assert(this->postprocessing_buffer_ != NULL);
3227 return this->postprocessing_buffer_;
3228 }
3229
3230 // If a section requires postprocessing, create the buffer to use.
3231 void
3232 create_postprocessing_buffer();
3233
3234 // If a section requires postprocessing, this is the size of the
3235 // buffer to which relocations should be applied.
3236 off_t
3237 postprocessing_buffer_size() const
3238 { return this->current_data_size_for_child(); }
3239
3240 // Modify the section name. This is only permitted for an
3241 // unallocated section, and only before the size has been finalized.
3242 // Otherwise the name will not get into Layout::namepool_.
3243 void
3244 set_name(const char* newname)
3245 {
3246 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3247 gold_assert(!this->is_data_size_valid());
3248 this->name_ = newname;
3249 }
3250
3251 // Return whether the offset OFFSET in the input section SHNDX in
3252 // object OBJECT is being included in the link.
3253 bool
3254 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3255 off_t offset) const;
3256
3257 // Return the offset within the output section of OFFSET relative to
3258 // the start of input section SHNDX in object OBJECT.
3259 section_offset_type
3260 output_offset(const Relobj* object, unsigned int shndx,
3261 section_offset_type offset) const;
3262
3263 // Return the output virtual address of OFFSET relative to the start
3264 // of input section SHNDX in object OBJECT.
3265 uint64_t
3266 output_address(const Relobj* object, unsigned int shndx,
3267 off_t offset) const;
3268
3269 // Look for the merged section for input section SHNDX in object
3270 // OBJECT. If found, return true, and set *ADDR to the address of
3271 // the start of the merged section. This is not necessary the
3272 // output offset corresponding to input offset 0 in the section,
3273 // since the section may be mapped arbitrarily.
3274 bool
3275 find_starting_output_address(const Relobj* object, unsigned int shndx,
3276 uint64_t* addr) const;
3277
3278 // Record that this output section was found in the SECTIONS clause
3279 // of a linker script.
3280 void
3281 set_found_in_sections_clause()
3282 { this->found_in_sections_clause_ = true; }
3283
3284 // Return whether this output section was found in the SECTIONS
3285 // clause of a linker script.
3286 bool
3287 found_in_sections_clause() const
3288 { return this->found_in_sections_clause_; }
3289
3290 // Write the section header into *OPHDR.
3291 template<int size, bool big_endian>
3292 void
3293 write_header(const Layout*, const Stringpool*,
3294 elfcpp::Shdr_write<size, big_endian>*) const;
3295
3296 // The next few calls are for linker script support.
3297
3298 // In some cases we need to keep a list of the input sections
3299 // associated with this output section. We only need the list if we
3300 // might have to change the offsets of the input section within the
3301 // output section after we add the input section. The ordinary
3302 // input sections will be written out when we process the object
3303 // file, and as such we don't need to track them here. We do need
3304 // to track Output_section_data objects here. We store instances of
3305 // this structure in a std::vector, so it must be a POD. There can
3306 // be many instances of this structure, so we use a union to save
3307 // some space.
3308 class Input_section
3309 {
3310 public:
3311 Input_section()
3312 : shndx_(0), p2align_(0)
3313 {
3314 this->u1_.data_size = 0;
3315 this->u2_.object = NULL;
3316 }
3317
3318 // For an ordinary input section.
3319 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3320 uint64_t addralign)
3321 : shndx_(shndx),
3322 p2align_(ffsll(static_cast<long long>(addralign))),
3323 section_order_index_(0)
3324 {
3325 gold_assert(shndx != OUTPUT_SECTION_CODE
3326 && shndx != MERGE_DATA_SECTION_CODE
3327 && shndx != MERGE_STRING_SECTION_CODE
3328 && shndx != RELAXED_INPUT_SECTION_CODE);
3329 this->u1_.data_size = data_size;
3330 this->u2_.object = object;
3331 }
3332
3333 // For a non-merge output section.
3334 Input_section(Output_section_data* posd)
3335 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3336 section_order_index_(0)
3337 {
3338 this->u1_.data_size = 0;
3339 this->u2_.posd = posd;
3340 }
3341
3342 // For a merge section.
3343 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3344 : shndx_(is_string
3345 ? MERGE_STRING_SECTION_CODE
3346 : MERGE_DATA_SECTION_CODE),
3347 p2align_(0),
3348 section_order_index_(0)
3349 {
3350 this->u1_.entsize = entsize;
3351 this->u2_.posd = posd;
3352 }
3353
3354 // For a relaxed input section.
3355 Input_section(Output_relaxed_input_section* psection)
3356 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3357 section_order_index_(0)
3358 {
3359 this->u1_.data_size = 0;
3360 this->u2_.poris = psection;
3361 }
3362
3363 unsigned int
3364 section_order_index() const
3365 {
3366 return this->section_order_index_;
3367 }
3368
3369 void
3370 set_section_order_index(unsigned int number)
3371 {
3372 this->section_order_index_ = number;
3373 }
3374
3375 // The required alignment.
3376 uint64_t
3377 addralign() const
3378 {
3379 if (this->p2align_ != 0)
3380 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3381 else if (!this->is_input_section())
3382 return this->u2_.posd->addralign();
3383 else
3384 return 0;
3385 }
3386
3387 // Set the required alignment, which must be either 0 or a power of 2.
3388 // For input sections that are sub-classes of Output_section_data, a
3389 // alignment of zero means asking the underlying object for alignment.
3390 void
3391 set_addralign(uint64_t addralign)
3392 {
3393 if (addralign == 0)
3394 this->p2align_ = 0;
3395 else
3396 {
3397 gold_assert((addralign & (addralign - 1)) == 0);
3398 this->p2align_ = ffsll(static_cast<long long>(addralign));
3399 }
3400 }
3401
3402 // Return the current required size, without finalization.
3403 off_t
3404 current_data_size() const;
3405
3406 // Return the required size.
3407 off_t
3408 data_size() const;
3409
3410 // Whether this is an input section.
3411 bool
3412 is_input_section() const
3413 {
3414 return (this->shndx_ != OUTPUT_SECTION_CODE
3415 && this->shndx_ != MERGE_DATA_SECTION_CODE
3416 && this->shndx_ != MERGE_STRING_SECTION_CODE
3417 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3418 }
3419
3420 // Return whether this is a merge section which matches the
3421 // parameters.
3422 bool
3423 is_merge_section(bool is_string, uint64_t entsize,
3424 uint64_t addralign) const
3425 {
3426 return (this->shndx_ == (is_string
3427 ? MERGE_STRING_SECTION_CODE
3428 : MERGE_DATA_SECTION_CODE)
3429 && this->u1_.entsize == entsize
3430 && this->addralign() == addralign);
3431 }
3432
3433 // Return whether this is a merge section for some input section.
3434 bool
3435 is_merge_section() const
3436 {
3437 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3438 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3439 }
3440
3441 // Return whether this is a relaxed input section.
3442 bool
3443 is_relaxed_input_section() const
3444 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3445
3446 // Return whether this is a generic Output_section_data.
3447 bool
3448 is_output_section_data() const
3449 {
3450 return this->shndx_ == OUTPUT_SECTION_CODE;
3451 }
3452
3453 // Return the object for an input section.
3454 Relobj*
3455 relobj() const;
3456
3457 // Return the input section index for an input section.
3458 unsigned int
3459 shndx() const;
3460
3461 // For non-input-sections, return the associated Output_section_data
3462 // object.
3463 Output_section_data*
3464 output_section_data() const
3465 {
3466 gold_assert(!this->is_input_section());
3467 return this->u2_.posd;
3468 }
3469
3470 // For a merge section, return the Output_merge_base pointer.
3471 Output_merge_base*
3472 output_merge_base() const
3473 {
3474 gold_assert(this->is_merge_section());
3475 return this->u2_.pomb;
3476 }
3477
3478 // Return the Output_relaxed_input_section object.
3479 Output_relaxed_input_section*
3480 relaxed_input_section() const
3481 {
3482 gold_assert(this->is_relaxed_input_section());
3483 return this->u2_.poris;
3484 }
3485
3486 // Set the output section.
3487 void
3488 set_output_section(Output_section* os)
3489 {
3490 gold_assert(!this->is_input_section());
3491 Output_section_data* posd =
3492 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3493 posd->set_output_section(os);
3494 }
3495
3496 // Set the address and file offset. This is called during
3497 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3498 // the enclosing section.
3499 void
3500 set_address_and_file_offset(uint64_t address, off_t file_offset,
3501 off_t section_file_offset);
3502
3503 // Reset the address and file offset.
3504 void
3505 reset_address_and_file_offset();
3506
3507 // Finalize the data size.
3508 void
3509 finalize_data_size();
3510
3511 // Add an input section, for SHF_MERGE sections.
3512 bool
3513 add_input_section(Relobj* object, unsigned int shndx)
3514 {
3515 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3516 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3517 return this->u2_.posd->add_input_section(object, shndx);
3518 }
3519
3520 // Given an input OBJECT, an input section index SHNDX within that
3521 // object, and an OFFSET relative to the start of that input
3522 // section, return whether or not the output offset is known. If
3523 // this function returns true, it sets *POUTPUT to the offset in
3524 // the output section, relative to the start of the input section
3525 // in the output section. *POUTPUT may be different from OFFSET
3526 // for a merged section.
3527 bool
3528 output_offset(const Relobj* object, unsigned int shndx,
3529 section_offset_type offset,
3530 section_offset_type* poutput) const;
3531
3532 // Return whether this is the merge section for the input section
3533 // SHNDX in OBJECT.
3534 bool
3535 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3536
3537 // Write out the data. This does nothing for an input section.
3538 void
3539 write(Output_file*);
3540
3541 // Write the data to a buffer. This does nothing for an input
3542 // section.
3543 void
3544 write_to_buffer(unsigned char*);
3545
3546 // Print to a map file.
3547 void
3548 print_to_mapfile(Mapfile*) const;
3549
3550 // Print statistics about merge sections to stderr.
3551 void
3552 print_merge_stats(const char* section_name)
3553 {
3554 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3555 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3556 this->u2_.posd->print_merge_stats(section_name);
3557 }
3558
3559 private:
3560 // Code values which appear in shndx_. If the value is not one of
3561 // these codes, it is the input section index in the object file.
3562 enum
3563 {
3564 // An Output_section_data.
3565 OUTPUT_SECTION_CODE = -1U,
3566 // An Output_section_data for an SHF_MERGE section with
3567 // SHF_STRINGS not set.
3568 MERGE_DATA_SECTION_CODE = -2U,
3569 // An Output_section_data for an SHF_MERGE section with
3570 // SHF_STRINGS set.
3571 MERGE_STRING_SECTION_CODE = -3U,
3572 // An Output_section_data for a relaxed input section.
3573 RELAXED_INPUT_SECTION_CODE = -4U
3574 };
3575
3576 // For an ordinary input section, this is the section index in the
3577 // input file. For an Output_section_data, this is
3578 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3579 // MERGE_STRING_SECTION_CODE.
3580 unsigned int shndx_;
3581 // The required alignment, stored as a power of 2.
3582 unsigned int p2align_;
3583 union
3584 {
3585 // For an ordinary input section, the section size.
3586 off_t data_size;
3587 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3588 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3589 // entity size.
3590 uint64_t entsize;
3591 } u1_;
3592 union
3593 {
3594 // For an ordinary input section, the object which holds the
3595 // input section.
3596 Relobj* object;
3597 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3598 // MERGE_STRING_SECTION_CODE, the data.
3599 Output_section_data* posd;
3600 Output_merge_base* pomb;
3601 // For RELAXED_INPUT_SECTION_CODE, the data.
3602 Output_relaxed_input_section* poris;
3603 } u2_;
3604 // The line number of the pattern it matches in the --section-ordering-file
3605 // file. It is 0 if does not match any pattern.
3606 unsigned int section_order_index_;
3607 };
3608
3609 // Store the list of input sections for this Output_section into the
3610 // list passed in. This removes the input sections, leaving only
3611 // any Output_section_data elements. This returns the size of those
3612 // Output_section_data elements. ADDRESS is the address of this
3613 // output section. FILL is the fill value to use, in case there are
3614 // any spaces between the remaining Output_section_data elements.
3615 uint64_t
3616 get_input_sections(uint64_t address, const std::string& fill,
3617 std::list<Input_section>*);
3618
3619 // Add a script input section. A script input section can either be
3620 // a plain input section or a sub-class of Output_section_data.
3621 void
3622 add_script_input_section(const Input_section& input_section);
3623
3624 // Set the current size of the output section.
3625 void
3626 set_current_data_size(off_t size)
3627 { this->set_current_data_size_for_child(size); }
3628
3629 // End of linker script support.
3630
3631 // Save states before doing section layout.
3632 // This is used for relaxation.
3633 void
3634 save_states();
3635
3636 // Restore states prior to section layout.
3637 void
3638 restore_states();
3639
3640 // Discard states.
3641 void
3642 discard_states();
3643
3644 // Convert existing input sections to relaxed input sections.
3645 void
3646 convert_input_sections_to_relaxed_sections(
3647 const std::vector<Output_relaxed_input_section*>& sections);
3648
3649 // Find a relaxed input section to an input section in OBJECT
3650 // with index SHNDX. Return NULL if none is found.
3651 const Output_relaxed_input_section*
3652 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3653
3654 // Whether section offsets need adjustment due to relaxation.
3655 bool
3656 section_offsets_need_adjustment() const
3657 { return this->section_offsets_need_adjustment_; }
3658
3659 // Set section_offsets_need_adjustment to be true.
3660 void
3661 set_section_offsets_need_adjustment()
3662 { this->section_offsets_need_adjustment_ = true; }
3663
3664 // Adjust section offsets of input sections in this. This is
3665 // requires if relaxation caused some input sections to change sizes.
3666 void
3667 adjust_section_offsets();
3668
3669 // Whether this is a NOLOAD section.
3670 bool
3671 is_noload() const
3672 { return this->is_noload_; }
3673
3674 // Set NOLOAD flag.
3675 void
3676 set_is_noload()
3677 { this->is_noload_ = true; }
3678
3679 // Print merge statistics to stderr.
3680 void
3681 print_merge_stats();
3682
3683 // Set a fixed layout for the section. Used for incremental update links.
3684 void
3685 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3686 uint64_t sh_addralign);
3687
3688 // Return TRUE if the section has a fixed layout.
3689 bool
3690 has_fixed_layout() const
3691 { return this->has_fixed_layout_; }
3692
3693 // Set flag to allow patch space for this section. Used for full
3694 // incremental links.
3695 void
3696 set_is_patch_space_allowed()
3697 { this->is_patch_space_allowed_ = true; }
3698
3699 // Set a fill method to use for free space left in the output section
3700 // during incremental links.
3701 void
3702 set_free_space_fill(Output_fill* free_space_fill)
3703 {
3704 this->free_space_fill_ = free_space_fill;
3705 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3706 }
3707
3708 // Reserve space within the fixed layout for the section. Used for
3709 // incremental update links.
3710 void
3711 reserve(uint64_t sh_offset, uint64_t sh_size);
3712
3713 // Allocate space from the free list for the section. Used for
3714 // incremental update links.
3715 off_t
3716 allocate(off_t len, uint64_t addralign);
3717
3718 protected:
3719 // Return the output section--i.e., the object itself.
3720 Output_section*
3721 do_output_section()
3722 { return this; }
3723
3724 const Output_section*
3725 do_output_section() const
3726 { return this; }
3727
3728 // Return the section index in the output file.
3729 unsigned int
3730 do_out_shndx() const
3731 {
3732 gold_assert(this->out_shndx_ != -1U);
3733 return this->out_shndx_;
3734 }
3735
3736 // Set the output section index.
3737 void
3738 do_set_out_shndx(unsigned int shndx)
3739 {
3740 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3741 this->out_shndx_ = shndx;
3742 }
3743
3744 // Update the data size of the Output_section. For a typical
3745 // Output_section, there is nothing to do, but if there are any
3746 // Output_section_data objects we need to do a trial layout
3747 // here.
3748 virtual void
3749 update_data_size();
3750
3751 // Set the final data size of the Output_section. For a typical
3752 // Output_section, there is nothing to do, but if there are any
3753 // Output_section_data objects we need to set their final addresses
3754 // here.
3755 virtual void
3756 set_final_data_size();
3757
3758 // Reset the address and file offset.
3759 void
3760 do_reset_address_and_file_offset();
3761
3762 // Return true if address and file offset already have reset values. In
3763 // other words, calling reset_address_and_file_offset will not change them.
3764 bool
3765 do_address_and_file_offset_have_reset_values() const;
3766
3767 // Write the data to the file. For a typical Output_section, this
3768 // does nothing: the data is written out by calling Object::Relocate
3769 // on each input object. But if there are any Output_section_data
3770 // objects we do need to write them out here.
3771 virtual void
3772 do_write(Output_file*);
3773
3774 // Return the address alignment--function required by parent class.
3775 uint64_t
3776 do_addralign() const
3777 { return this->addralign_; }
3778
3779 // Return whether there is a load address.
3780 bool
3781 do_has_load_address() const
3782 { return this->has_load_address_; }
3783
3784 // Return the load address.
3785 uint64_t
3786 do_load_address() const
3787 {
3788 gold_assert(this->has_load_address_);
3789 return this->load_address_;
3790 }
3791
3792 // Return whether this is an Output_section.
3793 bool
3794 do_is_section() const
3795 { return true; }
3796
3797 // Return whether this is a section of the specified type.
3798 bool
3799 do_is_section_type(elfcpp::Elf_Word type) const
3800 { return this->type_ == type; }
3801
3802 // Return whether the specified section flag is set.
3803 bool
3804 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3805 { return (this->flags_ & flag) != 0; }
3806
3807 // Set the TLS offset. Called only for SHT_TLS sections.
3808 void
3809 do_set_tls_offset(uint64_t tls_base);
3810
3811 // Return the TLS offset, relative to the base of the TLS segment.
3812 // Valid only for SHT_TLS sections.
3813 uint64_t
3814 do_tls_offset() const
3815 { return this->tls_offset_; }
3816
3817 // This may be implemented by a child class.
3818 virtual void
3819 do_finalize_name(Layout*)
3820 { }
3821
3822 // Print to the map file.
3823 virtual void
3824 do_print_to_mapfile(Mapfile*) const;
3825
3826 // Record that this section requires postprocessing after all
3827 // relocations have been applied. This is called by a child class.
3828 void
3829 set_requires_postprocessing()
3830 {
3831 this->requires_postprocessing_ = true;
3832 this->after_input_sections_ = true;
3833 }
3834
3835 // Write all the data of an Output_section into the postprocessing
3836 // buffer.
3837 void
3838 write_to_postprocessing_buffer();
3839
3840 typedef std::vector<Input_section> Input_section_list;
3841
3842 // Allow a child class to access the input sections.
3843 const Input_section_list&
3844 input_sections() const
3845 { return this->input_sections_; }
3846
3847 // Whether this always keeps an input section list
3848 bool
3849 always_keeps_input_sections() const
3850 { return this->always_keeps_input_sections_; }
3851
3852 // Always keep an input section list.
3853 void
3854 set_always_keeps_input_sections()
3855 {
3856 gold_assert(this->current_data_size_for_child() == 0);
3857 this->always_keeps_input_sections_ = true;
3858 }
3859
3860 private:
3861 // We only save enough information to undo the effects of section layout.
3862 class Checkpoint_output_section
3863 {
3864 public:
3865 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3866 const Input_section_list& input_sections,
3867 off_t first_input_offset,
3868 bool attached_input_sections_are_sorted)
3869 : addralign_(addralign), flags_(flags),
3870 input_sections_(input_sections),
3871 input_sections_size_(input_sections_.size()),
3872 input_sections_copy_(), first_input_offset_(first_input_offset),
3873 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3874 { }
3875
3876 virtual
3877 ~Checkpoint_output_section()
3878 { }
3879
3880 // Return the address alignment.
3881 uint64_t
3882 addralign() const
3883 { return this->addralign_; }
3884
3885 // Return the section flags.
3886 elfcpp::Elf_Xword
3887 flags() const
3888 { return this->flags_; }
3889
3890 // Return a reference to the input section list copy.
3891 Input_section_list*
3892 input_sections()
3893 { return &this->input_sections_copy_; }
3894
3895 // Return the size of input_sections at the time when checkpoint is
3896 // taken.
3897 size_t
3898 input_sections_size() const
3899 { return this->input_sections_size_; }
3900
3901 // Whether input sections are copied.
3902 bool
3903 input_sections_saved() const
3904 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3905
3906 off_t
3907 first_input_offset() const
3908 { return this->first_input_offset_; }
3909
3910 bool
3911 attached_input_sections_are_sorted() const
3912 { return this->attached_input_sections_are_sorted_; }
3913
3914 // Save input sections.
3915 void
3916 save_input_sections()
3917 {
3918 this->input_sections_copy_.reserve(this->input_sections_size_);
3919 this->input_sections_copy_.clear();
3920 Input_section_list::const_iterator p = this->input_sections_.begin();
3921 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3922 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3923 this->input_sections_copy_.push_back(*p);
3924 }
3925
3926 private:
3927 // The section alignment.
3928 uint64_t addralign_;
3929 // The section flags.
3930 elfcpp::Elf_Xword flags_;
3931 // Reference to the input sections to be checkpointed.
3932 const Input_section_list& input_sections_;
3933 // Size of the checkpointed portion of input_sections_;
3934 size_t input_sections_size_;
3935 // Copy of input sections.
3936 Input_section_list input_sections_copy_;
3937 // The offset of the first entry in input_sections_.
3938 off_t first_input_offset_;
3939 // True if the input sections attached to this output section have
3940 // already been sorted.
3941 bool attached_input_sections_are_sorted_;
3942 };
3943
3944 // This class is used to sort the input sections.
3945 class Input_section_sort_entry;
3946
3947 // This is the sort comparison function for ctors and dtors.
3948 struct Input_section_sort_compare
3949 {
3950 bool
3951 operator()(const Input_section_sort_entry&,
3952 const Input_section_sort_entry&) const;
3953 };
3954
3955 // This is the sort comparison function for .init_array and .fini_array.
3956 struct Input_section_sort_init_fini_compare
3957 {
3958 bool
3959 operator()(const Input_section_sort_entry&,
3960 const Input_section_sort_entry&) const;
3961 };
3962
3963 // This is the sort comparison function when a section order is specified
3964 // from an input file.
3965 struct Input_section_sort_section_order_index_compare
3966 {
3967 bool
3968 operator()(const Input_section_sort_entry&,
3969 const Input_section_sort_entry&) const;
3970 };
3971
3972 // Fill data. This is used to fill in data between input sections.
3973 // It is also used for data statements (BYTE, WORD, etc.) in linker
3974 // scripts. When we have to keep track of the input sections, we
3975 // can use an Output_data_const, but we don't want to have to keep
3976 // track of input sections just to implement fills.
3977 class Fill
3978 {
3979 public:
3980 Fill(off_t section_offset, off_t length)
3981 : section_offset_(section_offset),
3982 length_(convert_to_section_size_type(length))
3983 { }
3984
3985 // Return section offset.
3986 off_t
3987 section_offset() const
3988 { return this->section_offset_; }
3989
3990 // Return fill length.
3991 section_size_type
3992 length() const
3993 { return this->length_; }
3994
3995 private:
3996 // The offset within the output section.
3997 off_t section_offset_;
3998 // The length of the space to fill.
3999 section_size_type length_;
4000 };
4001
4002 typedef std::vector<Fill> Fill_list;
4003
4004 // Map used during relaxation of existing sections. This map
4005 // a section id an input section list index. We assume that
4006 // Input_section_list is a vector.
4007 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4008
4009 // Add a new output section by Input_section.
4010 void
4011 add_output_section_data(Input_section*);
4012
4013 // Add an SHF_MERGE input section. Returns true if the section was
4014 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4015 // stores information about the merged input sections.
4016 bool
4017 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4018 uint64_t entsize, uint64_t addralign,
4019 bool keeps_input_sections);
4020
4021 // Add an output SHF_MERGE section POSD to this output section.
4022 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4023 // ENTSIZE is the entity size. This returns the entry added to
4024 // input_sections_.
4025 void
4026 add_output_merge_section(Output_section_data* posd, bool is_string,
4027 uint64_t entsize);
4028
4029 // Sort the attached input sections.
4030 void
4031 sort_attached_input_sections();
4032
4033 // Find the merge section into which an input section with index SHNDX in
4034 // OBJECT has been added. Return NULL if none found.
4035 Output_section_data*
4036 find_merge_section(const Relobj* object, unsigned int shndx) const;
4037
4038 // Build a relaxation map.
4039 void
4040 build_relaxation_map(
4041 const Input_section_list& input_sections,
4042 size_t limit,
4043 Relaxation_map* map) const;
4044
4045 // Convert input sections in an input section list into relaxed sections.
4046 void
4047 convert_input_sections_in_list_to_relaxed_sections(
4048 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4049 const Relaxation_map& map,
4050 Input_section_list* input_sections);
4051
4052 // Build the lookup maps for merge and relaxed input sections.
4053 void
4054 build_lookup_maps() const;
4055
4056 // Most of these fields are only valid after layout.
4057
4058 // The name of the section. This will point into a Stringpool.
4059 const char* name_;
4060 // The section address is in the parent class.
4061 // The section alignment.
4062 uint64_t addralign_;
4063 // The section entry size.
4064 uint64_t entsize_;
4065 // The load address. This is only used when using a linker script
4066 // with a SECTIONS clause. The has_load_address_ field indicates
4067 // whether this field is valid.
4068 uint64_t load_address_;
4069 // The file offset is in the parent class.
4070 // Set the section link field to the index of this section.
4071 const Output_data* link_section_;
4072 // If link_section_ is NULL, this is the link field.
4073 unsigned int link_;
4074 // Set the section info field to the index of this section.
4075 const Output_section* info_section_;
4076 // If info_section_ is NULL, set the info field to the symbol table
4077 // index of this symbol.
4078 const Symbol* info_symndx_;
4079 // If info_section_ and info_symndx_ are NULL, this is the section
4080 // info field.
4081 unsigned int info_;
4082 // The section type.
4083 const elfcpp::Elf_Word type_;
4084 // The section flags.
4085 elfcpp::Elf_Xword flags_;
4086 // The order of this section in the output segment.
4087 Output_section_order order_;
4088 // The section index.
4089 unsigned int out_shndx_;
4090 // If there is a STT_SECTION for this output section in the normal
4091 // symbol table, this is the symbol index. This starts out as zero.
4092 // It is initialized in Layout::finalize() to be the index, or -1U
4093 // if there isn't one.
4094 unsigned int symtab_index_;
4095 // If there is a STT_SECTION for this output section in the dynamic
4096 // symbol table, this is the symbol index. This starts out as zero.
4097 // It is initialized in Layout::finalize() to be the index, or -1U
4098 // if there isn't one.
4099 unsigned int dynsym_index_;
4100 // The input sections. This will be empty in cases where we don't
4101 // need to keep track of them.
4102 Input_section_list input_sections_;
4103 // The offset of the first entry in input_sections_.
4104 off_t first_input_offset_;
4105 // The fill data. This is separate from input_sections_ because we
4106 // often will need fill sections without needing to keep track of
4107 // input sections.
4108 Fill_list fills_;
4109 // If the section requires postprocessing, this buffer holds the
4110 // section contents during relocation.
4111 unsigned char* postprocessing_buffer_;
4112 // Whether this output section needs a STT_SECTION symbol in the
4113 // normal symbol table. This will be true if there is a relocation
4114 // which needs it.
4115 bool needs_symtab_index_ : 1;
4116 // Whether this output section needs a STT_SECTION symbol in the
4117 // dynamic symbol table. This will be true if there is a dynamic
4118 // relocation which needs it.
4119 bool needs_dynsym_index_ : 1;
4120 // Whether the link field of this output section should point to the
4121 // normal symbol table.
4122 bool should_link_to_symtab_ : 1;
4123 // Whether the link field of this output section should point to the
4124 // dynamic symbol table.
4125 bool should_link_to_dynsym_ : 1;
4126 // Whether this section should be written after all the input
4127 // sections are complete.
4128 bool after_input_sections_ : 1;
4129 // Whether this section requires post processing after all
4130 // relocations have been applied.
4131 bool requires_postprocessing_ : 1;
4132 // Whether an input section was mapped to this output section
4133 // because of a SECTIONS clause in a linker script.
4134 bool found_in_sections_clause_ : 1;
4135 // Whether this section has an explicitly specified load address.
4136 bool has_load_address_ : 1;
4137 // True if the info_section_ field means the section index of the
4138 // section, false if it means the symbol index of the corresponding
4139 // section symbol.
4140 bool info_uses_section_index_ : 1;
4141 // True if input sections attached to this output section have to be
4142 // sorted according to a specified order.
4143 bool input_section_order_specified_ : 1;
4144 // True if the input sections attached to this output section may
4145 // need sorting.
4146 bool may_sort_attached_input_sections_ : 1;
4147 // True if the input sections attached to this output section must
4148 // be sorted.
4149 bool must_sort_attached_input_sections_ : 1;
4150 // True if the input sections attached to this output section have
4151 // already been sorted.
4152 bool attached_input_sections_are_sorted_ : 1;
4153 // True if this section holds relro data.
4154 bool is_relro_ : 1;
4155 // True if this is a small section.
4156 bool is_small_section_ : 1;
4157 // True if this is a large section.
4158 bool is_large_section_ : 1;
4159 // Whether code-fills are generated at write.
4160 bool generate_code_fills_at_write_ : 1;
4161 // Whether the entry size field should be zero.
4162 bool is_entsize_zero_ : 1;
4163 // Whether section offsets need adjustment due to relaxation.
4164 bool section_offsets_need_adjustment_ : 1;
4165 // Whether this is a NOLOAD section.
4166 bool is_noload_ : 1;
4167 // Whether this always keeps input section.
4168 bool always_keeps_input_sections_ : 1;
4169 // Whether this section has a fixed layout, for incremental update links.
4170 bool has_fixed_layout_ : 1;
4171 // True if we can add patch space to this section.
4172 bool is_patch_space_allowed_ : 1;
4173 // For SHT_TLS sections, the offset of this section relative to the base
4174 // of the TLS segment.
4175 uint64_t tls_offset_;
4176 // Saved checkpoint.
4177 Checkpoint_output_section* checkpoint_;
4178 // Fast lookup maps for merged and relaxed input sections.
4179 Output_section_lookup_maps* lookup_maps_;
4180 // List of available regions within the section, for incremental
4181 // update links.
4182 Free_list free_list_;
4183 // Method for filling chunks of free space.
4184 Output_fill* free_space_fill_;
4185 // Amount added as patch space for incremental linking.
4186 off_t patch_space_;
4187 };
4188
4189 // An output segment. PT_LOAD segments are built from collections of
4190 // output sections. Other segments typically point within PT_LOAD
4191 // segments, and are built directly as needed.
4192 //
4193 // NOTE: We want to use the copy constructor for this class. During
4194 // relaxation, we may try built the segments multiple times. We do
4195 // that by copying the original segment list before lay-out, doing
4196 // a trial lay-out and roll-back to the saved copied if we need to
4197 // to the lay-out again.
4198
4199 class Output_segment
4200 {
4201 public:
4202 // Create an output segment, specifying the type and flags.
4203 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4204
4205 // Return the virtual address.
4206 uint64_t
4207 vaddr() const
4208 { return this->vaddr_; }
4209
4210 // Return the physical address.
4211 uint64_t
4212 paddr() const
4213 { return this->paddr_; }
4214
4215 // Return the segment type.
4216 elfcpp::Elf_Word
4217 type() const
4218 { return this->type_; }
4219
4220 // Return the segment flags.
4221 elfcpp::Elf_Word
4222 flags() const
4223 { return this->flags_; }
4224
4225 // Return the memory size.
4226 uint64_t
4227 memsz() const
4228 { return this->memsz_; }
4229
4230 // Return the file size.
4231 off_t
4232 filesz() const
4233 { return this->filesz_; }
4234
4235 // Return the file offset.
4236 off_t
4237 offset() const
4238 { return this->offset_; }
4239
4240 // Whether this is a segment created to hold large data sections.
4241 bool
4242 is_large_data_segment() const
4243 { return this->is_large_data_segment_; }
4244
4245 // Record that this is a segment created to hold large data
4246 // sections.
4247 void
4248 set_is_large_data_segment()
4249 { this->is_large_data_segment_ = true; }
4250
4251 // Return the maximum alignment of the Output_data.
4252 uint64_t
4253 maximum_alignment();
4254
4255 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4256 // the segment flags to use.
4257 void
4258 add_output_section_to_load(Layout* layout, Output_section* os,
4259 elfcpp::Elf_Word seg_flags);
4260
4261 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4262 // is the segment flags to use.
4263 void
4264 add_output_section_to_nonload(Output_section* os,
4265 elfcpp::Elf_Word seg_flags);
4266
4267 // Remove an Output_section from this segment. It is an error if it
4268 // is not present.
4269 void
4270 remove_output_section(Output_section* os);
4271
4272 // Add an Output_data (which need not be an Output_section) to the
4273 // start of this segment.
4274 void
4275 add_initial_output_data(Output_data*);
4276
4277 // Return true if this segment has any sections which hold actual
4278 // data, rather than being a BSS section.
4279 bool
4280 has_any_data_sections() const;
4281
4282 // Whether this segment has a dynamic relocs.
4283 bool
4284 has_dynamic_reloc() const;
4285
4286 // Return the address of the first section.
4287 uint64_t
4288 first_section_load_address() const;
4289
4290 // Return whether the addresses have been set already.
4291 bool
4292 are_addresses_set() const
4293 { return this->are_addresses_set_; }
4294
4295 // Set the addresses.
4296 void
4297 set_addresses(uint64_t vaddr, uint64_t paddr)
4298 {
4299 this->vaddr_ = vaddr;
4300 this->paddr_ = paddr;
4301 this->are_addresses_set_ = true;
4302 }
4303
4304 // Update the flags for the flags of an output section added to this
4305 // segment.
4306 void
4307 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4308 {
4309 // The ELF ABI specifies that a PT_TLS segment should always have
4310 // PF_R as the flags.
4311 if (this->type() != elfcpp::PT_TLS)
4312 this->flags_ |= flags;
4313 }
4314
4315 // Set the segment flags. This is only used if we have a PHDRS
4316 // clause which explicitly specifies the flags.
4317 void
4318 set_flags(elfcpp::Elf_Word flags)
4319 { this->flags_ = flags; }
4320
4321 // Set the address of the segment to ADDR and the offset to *POFF
4322 // and set the addresses and offsets of all contained output
4323 // sections accordingly. Set the section indexes of all contained
4324 // output sections starting with *PSHNDX. If RESET is true, first
4325 // reset the addresses of the contained sections. Return the
4326 // address of the immediately following segment. Update *POFF and
4327 // *PSHNDX. This should only be called for a PT_LOAD segment.
4328 uint64_t
4329 set_section_addresses(Layout*, bool reset, uint64_t addr,
4330 unsigned int* increase_relro, bool* has_relro,
4331 off_t* poff, unsigned int* pshndx);
4332
4333 // Set the minimum alignment of this segment. This may be adjusted
4334 // upward based on the section alignments.
4335 void
4336 set_minimum_p_align(uint64_t align)
4337 {
4338 if (align > this->min_p_align_)
4339 this->min_p_align_ = align;
4340 }
4341
4342 // Set the offset of this segment based on the section. This should
4343 // only be called for a non-PT_LOAD segment.
4344 void
4345 set_offset(unsigned int increase);
4346
4347 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4348 void
4349 set_tls_offsets();
4350
4351 // Return the number of output sections.
4352 unsigned int
4353 output_section_count() const;
4354
4355 // Return the section attached to the list segment with the lowest
4356 // load address. This is used when handling a PHDRS clause in a
4357 // linker script.
4358 Output_section*
4359 section_with_lowest_load_address() const;
4360
4361 // Write the segment header into *OPHDR.
4362 template<int size, bool big_endian>
4363 void
4364 write_header(elfcpp::Phdr_write<size, big_endian>*);
4365
4366 // Write the section headers of associated sections into V.
4367 template<int size, bool big_endian>
4368 unsigned char*
4369 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4370 unsigned int* pshndx) const;
4371
4372 // Print the output sections in the map file.
4373 void
4374 print_sections_to_mapfile(Mapfile*) const;
4375
4376 private:
4377 typedef std::vector<Output_data*> Output_data_list;
4378
4379 // Find the maximum alignment in an Output_data_list.
4380 static uint64_t
4381 maximum_alignment_list(const Output_data_list*);
4382
4383 // Return whether the first data section is a relro section.
4384 bool
4385 is_first_section_relro() const;
4386
4387 // Set the section addresses in an Output_data_list.
4388 uint64_t
4389 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4390 uint64_t addr, off_t* poff, unsigned int* pshndx,
4391 bool* in_tls);
4392
4393 // Return the number of Output_sections in an Output_data_list.
4394 unsigned int
4395 output_section_count_list(const Output_data_list*) const;
4396
4397 // Return whether an Output_data_list has a dynamic reloc.
4398 bool
4399 has_dynamic_reloc_list(const Output_data_list*) const;
4400
4401 // Find the section with the lowest load address in an
4402 // Output_data_list.
4403 void
4404 lowest_load_address_in_list(const Output_data_list* pdl,
4405 Output_section** found,
4406 uint64_t* found_lma) const;
4407
4408 // Find the first and last entries by address.
4409 void
4410 find_first_and_last_list(const Output_data_list* pdl,
4411 const Output_data** pfirst,
4412 const Output_data** plast) const;
4413
4414 // Write the section headers in the list into V.
4415 template<int size, bool big_endian>
4416 unsigned char*
4417 write_section_headers_list(const Layout*, const Stringpool*,
4418 const Output_data_list*, unsigned char* v,
4419 unsigned int* pshdx) const;
4420
4421 // Print a section list to the mapfile.
4422 void
4423 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4424
4425 // NOTE: We want to use the copy constructor. Currently, shallow copy
4426 // works for us so we do not need to write our own copy constructor.
4427
4428 // The list of output data attached to this segment.
4429 Output_data_list output_lists_[ORDER_MAX];
4430 // The segment virtual address.
4431 uint64_t vaddr_;
4432 // The segment physical address.
4433 uint64_t paddr_;
4434 // The size of the segment in memory.
4435 uint64_t memsz_;
4436 // The maximum section alignment. The is_max_align_known_ field
4437 // indicates whether this has been finalized.
4438 uint64_t max_align_;
4439 // The required minimum value for the p_align field. This is used
4440 // for PT_LOAD segments. Note that this does not mean that
4441 // addresses should be aligned to this value; it means the p_paddr
4442 // and p_vaddr fields must be congruent modulo this value. For
4443 // non-PT_LOAD segments, the dynamic linker works more efficiently
4444 // if the p_align field has the more conventional value, although it
4445 // can align as needed.
4446 uint64_t min_p_align_;
4447 // The offset of the segment data within the file.
4448 off_t offset_;
4449 // The size of the segment data in the file.
4450 off_t filesz_;
4451 // The segment type;
4452 elfcpp::Elf_Word type_;
4453 // The segment flags.
4454 elfcpp::Elf_Word flags_;
4455 // Whether we have finalized max_align_.
4456 bool is_max_align_known_ : 1;
4457 // Whether vaddr and paddr were set by a linker script.
4458 bool are_addresses_set_ : 1;
4459 // Whether this segment holds large data sections.
4460 bool is_large_data_segment_ : 1;
4461 };
4462
4463 // This class represents the output file.
4464
4465 class Output_file
4466 {
4467 public:
4468 Output_file(const char* name);
4469
4470 // Indicate that this is a temporary file which should not be
4471 // output.
4472 void
4473 set_is_temporary()
4474 { this->is_temporary_ = true; }
4475
4476 // Try to open an existing file. Returns false if the file doesn't
4477 // exist, has a size of 0 or can't be mmaped. This method is
4478 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4479 // that file as the base for incremental linking.
4480 bool
4481 open_base_file(const char* base_name, bool writable);
4482
4483 // Open the output file. FILE_SIZE is the final size of the file.
4484 // If the file already exists, it is deleted/truncated. This method
4485 // is thread-unsafe.
4486 void
4487 open(off_t file_size);
4488
4489 // Resize the output file. This method is thread-unsafe.
4490 void
4491 resize(off_t file_size);
4492
4493 // Close the output file (flushing all buffered data) and make sure
4494 // there are no errors. This method is thread-unsafe.
4495 void
4496 close();
4497
4498 // Return the size of this file.
4499 off_t
4500 filesize()
4501 { return this->file_size_; }
4502
4503 // Return the name of this file.
4504 const char*
4505 filename()
4506 { return this->name_; }
4507
4508 // We currently always use mmap which makes the view handling quite
4509 // simple. In the future we may support other approaches.
4510
4511 // Write data to the output file.
4512 void
4513 write(off_t offset, const void* data, size_t len)
4514 { memcpy(this->base_ + offset, data, len); }
4515
4516 // Get a buffer to use to write to the file, given the offset into
4517 // the file and the size.
4518 unsigned char*
4519 get_output_view(off_t start, size_t size)
4520 {
4521 gold_assert(start >= 0
4522 && start + static_cast<off_t>(size) <= this->file_size_);
4523 return this->base_ + start;
4524 }
4525
4526 // VIEW must have been returned by get_output_view. Write the
4527 // buffer to the file, passing in the offset and the size.
4528 void
4529 write_output_view(off_t, size_t, unsigned char*)
4530 { }
4531
4532 // Get a read/write buffer. This is used when we want to write part
4533 // of the file, read it in, and write it again.
4534 unsigned char*
4535 get_input_output_view(off_t start, size_t size)
4536 { return this->get_output_view(start, size); }
4537
4538 // Write a read/write buffer back to the file.
4539 void
4540 write_input_output_view(off_t, size_t, unsigned char*)
4541 { }
4542
4543 // Get a read buffer. This is used when we just want to read part
4544 // of the file back it in.
4545 const unsigned char*
4546 get_input_view(off_t start, size_t size)
4547 { return this->get_output_view(start, size); }
4548
4549 // Release a read bfufer.
4550 void
4551 free_input_view(off_t, size_t, const unsigned char*)
4552 { }
4553
4554 private:
4555 // Map the file into memory or, if that fails, allocate anonymous
4556 // memory.
4557 void
4558 map();
4559
4560 // Allocate anonymous memory for the file.
4561 bool
4562 map_anonymous();
4563
4564 // Map the file into memory.
4565 bool
4566 map_no_anonymous(bool);
4567
4568 // Unmap the file from memory (and flush to disk buffers).
4569 void
4570 unmap();
4571
4572 // File name.
4573 const char* name_;
4574 // File descriptor.
4575 int o_;
4576 // File size.
4577 off_t file_size_;
4578 // Base of file mapped into memory.
4579 unsigned char* base_;
4580 // True iff base_ points to a memory buffer rather than an output file.
4581 bool map_is_anonymous_;
4582 // True if base_ was allocated using new rather than mmap.
4583 bool map_is_allocated_;
4584 // True if this is a temporary file which should not be output.
4585 bool is_temporary_;
4586 };
4587
4588 } // End namespace gold.
4589
4590 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.143765 seconds and 5 git commands to generate.