* object.h (Sized_relobj_file::find_shdr): New function.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address and file offset. This essentially disables the
107 // sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // Return true if address and file offset already have reset values. In
119 // other words, calling reset_address_and_file_offset will not change them.
120 bool
121 address_and_file_offset_have_reset_values() const
122 { return this->do_address_and_file_offset_have_reset_values(); }
123
124 // Return the required alignment.
125 uint64_t
126 addralign() const
127 { return this->do_addralign(); }
128
129 // Return whether this has a load address.
130 bool
131 has_load_address() const
132 { return this->do_has_load_address(); }
133
134 // Return the load address.
135 uint64_t
136 load_address() const
137 { return this->do_load_address(); }
138
139 // Return whether this is an Output_section.
140 bool
141 is_section() const
142 { return this->do_is_section(); }
143
144 // Return whether this is an Output_section of the specified type.
145 bool
146 is_section_type(elfcpp::Elf_Word stt) const
147 { return this->do_is_section_type(stt); }
148
149 // Return whether this is an Output_section with the specified flag
150 // set.
151 bool
152 is_section_flag_set(elfcpp::Elf_Xword shf) const
153 { return this->do_is_section_flag_set(shf); }
154
155 // Return the output section that this goes in, if there is one.
156 Output_section*
157 output_section()
158 { return this->do_output_section(); }
159
160 const Output_section*
161 output_section() const
162 { return this->do_output_section(); }
163
164 // Return the output section index, if there is an output section.
165 unsigned int
166 out_shndx() const
167 { return this->do_out_shndx(); }
168
169 // Set the output section index, if this is an output section.
170 void
171 set_out_shndx(unsigned int shndx)
172 { this->do_set_out_shndx(shndx); }
173
174 // Set the address and file offset of this data, and finalize the
175 // size of the data. This is called during Layout::finalize for
176 // allocated sections.
177 void
178 set_address_and_file_offset(uint64_t addr, off_t off)
179 {
180 this->set_address(addr);
181 this->set_file_offset(off);
182 this->finalize_data_size();
183 }
184
185 // Set the address.
186 void
187 set_address(uint64_t addr)
188 {
189 gold_assert(!this->is_address_valid_);
190 this->address_ = addr;
191 this->is_address_valid_ = true;
192 }
193
194 // Set the file offset.
195 void
196 set_file_offset(off_t off)
197 {
198 gold_assert(!this->is_offset_valid_);
199 this->offset_ = off;
200 this->is_offset_valid_ = true;
201 }
202
203 // Update the data size without finalizing it.
204 void
205 pre_finalize_data_size()
206 {
207 if (!this->is_data_size_valid_)
208 {
209 // Tell the child class to update the data size.
210 this->update_data_size();
211 }
212 }
213
214 // Finalize the data size.
215 void
216 finalize_data_size()
217 {
218 if (!this->is_data_size_valid_)
219 {
220 // Tell the child class to set the data size.
221 this->set_final_data_size();
222 gold_assert(this->is_data_size_valid_);
223 }
224 }
225
226 // Set the TLS offset. Called only for SHT_TLS sections.
227 void
228 set_tls_offset(uint64_t tls_base)
229 { this->do_set_tls_offset(tls_base); }
230
231 // Return the TLS offset, relative to the base of the TLS segment.
232 // Valid only for SHT_TLS sections.
233 uint64_t
234 tls_offset() const
235 { return this->do_tls_offset(); }
236
237 // Write the data to the output file. This is called after
238 // Layout::finalize is complete.
239 void
240 write(Output_file* file)
241 { this->do_write(file); }
242
243 // This is called by Layout::finalize to note that the sizes of
244 // allocated sections must now be fixed.
245 static void
246 layout_complete()
247 { Output_data::allocated_sizes_are_fixed = true; }
248
249 // Used to check that layout has been done.
250 static bool
251 is_layout_complete()
252 { return Output_data::allocated_sizes_are_fixed; }
253
254 // Note that a dynamic reloc has been applied to this data.
255 void
256 add_dynamic_reloc()
257 { this->has_dynamic_reloc_ = true; }
258
259 // Return whether a dynamic reloc has been applied.
260 bool
261 has_dynamic_reloc() const
262 { return this->has_dynamic_reloc_; }
263
264 // Whether the address is valid.
265 bool
266 is_address_valid() const
267 { return this->is_address_valid_; }
268
269 // Whether the file offset is valid.
270 bool
271 is_offset_valid() const
272 { return this->is_offset_valid_; }
273
274 // Whether the data size is valid.
275 bool
276 is_data_size_valid() const
277 { return this->is_data_size_valid_; }
278
279 // Print information to the map file.
280 void
281 print_to_mapfile(Mapfile* mapfile) const
282 { return this->do_print_to_mapfile(mapfile); }
283
284 protected:
285 // Functions that child classes may or in some cases must implement.
286
287 // Write the data to the output file.
288 virtual void
289 do_write(Output_file*) = 0;
290
291 // Return the required alignment.
292 virtual uint64_t
293 do_addralign() const = 0;
294
295 // Return whether this has a load address.
296 virtual bool
297 do_has_load_address() const
298 { return false; }
299
300 // Return the load address.
301 virtual uint64_t
302 do_load_address() const
303 { gold_unreachable(); }
304
305 // Return whether this is an Output_section.
306 virtual bool
307 do_is_section() const
308 { return false; }
309
310 // Return whether this is an Output_section of the specified type.
311 // This only needs to be implement by Output_section.
312 virtual bool
313 do_is_section_type(elfcpp::Elf_Word) const
314 { return false; }
315
316 // Return whether this is an Output_section with the specific flag
317 // set. This only needs to be implemented by Output_section.
318 virtual bool
319 do_is_section_flag_set(elfcpp::Elf_Xword) const
320 { return false; }
321
322 // Return the output section, if there is one.
323 virtual Output_section*
324 do_output_section()
325 { return NULL; }
326
327 virtual const Output_section*
328 do_output_section() const
329 { return NULL; }
330
331 // Return the output section index, if there is an output section.
332 virtual unsigned int
333 do_out_shndx() const
334 { gold_unreachable(); }
335
336 // Set the output section index, if this is an output section.
337 virtual void
338 do_set_out_shndx(unsigned int)
339 { gold_unreachable(); }
340
341 // This is a hook for derived classes to set the preliminary data size.
342 // This is called by pre_finalize_data_size, normally called during
343 // Layout::finalize, before the section address is set, and is used
344 // during an incremental update, when we need to know the size of a
345 // section before allocating space in the output file. For classes
346 // where the current data size is up to date, this default version of
347 // the method can be inherited.
348 virtual void
349 update_data_size()
350 { }
351
352 // This is a hook for derived classes to set the data size. This is
353 // called by finalize_data_size, normally called during
354 // Layout::finalize, when the section address is set.
355 virtual void
356 set_final_data_size()
357 { gold_unreachable(); }
358
359 // A hook for resetting the address and file offset.
360 virtual void
361 do_reset_address_and_file_offset()
362 { }
363
364 // Return true if address and file offset already have reset values. In
365 // other words, calling reset_address_and_file_offset will not change them.
366 // A child class overriding do_reset_address_and_file_offset may need to
367 // also override this.
368 virtual bool
369 do_address_and_file_offset_have_reset_values() const
370 { return !this->is_address_valid_ && !this->is_offset_valid_; }
371
372 // Set the TLS offset. Called only for SHT_TLS sections.
373 virtual void
374 do_set_tls_offset(uint64_t)
375 { gold_unreachable(); }
376
377 // Return the TLS offset, relative to the base of the TLS segment.
378 // Valid only for SHT_TLS sections.
379 virtual uint64_t
380 do_tls_offset() const
381 { gold_unreachable(); }
382
383 // Print to the map file. This only needs to be implemented by
384 // classes which may appear in a PT_LOAD segment.
385 virtual void
386 do_print_to_mapfile(Mapfile*) const
387 { gold_unreachable(); }
388
389 // Functions that child classes may call.
390
391 // Reset the address. The Output_section class needs this when an
392 // SHF_ALLOC input section is added to an output section which was
393 // formerly not SHF_ALLOC.
394 void
395 mark_address_invalid()
396 { this->is_address_valid_ = false; }
397
398 // Set the size of the data.
399 void
400 set_data_size(off_t data_size)
401 {
402 gold_assert(!this->is_data_size_valid_
403 && !this->is_data_size_fixed_);
404 this->data_size_ = data_size;
405 this->is_data_size_valid_ = true;
406 }
407
408 // Fix the data size. Once it is fixed, it cannot be changed
409 // and the data size remains always valid.
410 void
411 fix_data_size()
412 {
413 gold_assert(this->is_data_size_valid_);
414 this->is_data_size_fixed_ = true;
415 }
416
417 // Get the current data size--this is for the convenience of
418 // sections which build up their size over time.
419 off_t
420 current_data_size_for_child() const
421 { return this->data_size_; }
422
423 // Set the current data size--this is for the convenience of
424 // sections which build up their size over time.
425 void
426 set_current_data_size_for_child(off_t data_size)
427 {
428 gold_assert(!this->is_data_size_valid_);
429 this->data_size_ = data_size;
430 }
431
432 // Return default alignment for the target size.
433 static uint64_t
434 default_alignment();
435
436 // Return default alignment for a specified size--32 or 64.
437 static uint64_t
438 default_alignment_for_size(int size);
439
440 private:
441 Output_data(const Output_data&);
442 Output_data& operator=(const Output_data&);
443
444 // This is used for verification, to make sure that we don't try to
445 // change any sizes of allocated sections after we set the section
446 // addresses.
447 static bool allocated_sizes_are_fixed;
448
449 // Memory address in output file.
450 uint64_t address_;
451 // Size of data in output file.
452 off_t data_size_;
453 // File offset of contents in output file.
454 off_t offset_;
455 // Whether address_ is valid.
456 bool is_address_valid_ : 1;
457 // Whether data_size_ is valid.
458 bool is_data_size_valid_ : 1;
459 // Whether offset_ is valid.
460 bool is_offset_valid_ : 1;
461 // Whether data size is fixed.
462 bool is_data_size_fixed_ : 1;
463 // Whether any dynamic relocs have been applied to this section.
464 bool has_dynamic_reloc_ : 1;
465 };
466
467 // Output the section headers.
468
469 class Output_section_headers : public Output_data
470 {
471 public:
472 Output_section_headers(const Layout*,
473 const Layout::Segment_list*,
474 const Layout::Section_list*,
475 const Layout::Section_list*,
476 const Stringpool*,
477 const Output_section*);
478
479 protected:
480 // Write the data to the file.
481 void
482 do_write(Output_file*);
483
484 // Return the required alignment.
485 uint64_t
486 do_addralign() const
487 { return Output_data::default_alignment(); }
488
489 // Write to a map file.
490 void
491 do_print_to_mapfile(Mapfile* mapfile) const
492 { mapfile->print_output_data(this, _("** section headers")); }
493
494 // Update the data size.
495 void
496 update_data_size()
497 { this->set_data_size(this->do_size()); }
498
499 // Set final data size.
500 void
501 set_final_data_size()
502 { this->set_data_size(this->do_size()); }
503
504 private:
505 // Write the data to the file with the right size and endianness.
506 template<int size, bool big_endian>
507 void
508 do_sized_write(Output_file*);
509
510 // Compute data size.
511 off_t
512 do_size() const;
513
514 const Layout* layout_;
515 const Layout::Segment_list* segment_list_;
516 const Layout::Section_list* section_list_;
517 const Layout::Section_list* unattached_section_list_;
518 const Stringpool* secnamepool_;
519 const Output_section* shstrtab_section_;
520 };
521
522 // Output the segment headers.
523
524 class Output_segment_headers : public Output_data
525 {
526 public:
527 Output_segment_headers(const Layout::Segment_list& segment_list);
528
529 protected:
530 // Write the data to the file.
531 void
532 do_write(Output_file*);
533
534 // Return the required alignment.
535 uint64_t
536 do_addralign() const
537 { return Output_data::default_alignment(); }
538
539 // Write to a map file.
540 void
541 do_print_to_mapfile(Mapfile* mapfile) const
542 { mapfile->print_output_data(this, _("** segment headers")); }
543
544 // Set final data size.
545 void
546 set_final_data_size()
547 { this->set_data_size(this->do_size()); }
548
549 private:
550 // Write the data to the file with the right size and endianness.
551 template<int size, bool big_endian>
552 void
553 do_sized_write(Output_file*);
554
555 // Compute the current size.
556 off_t
557 do_size() const;
558
559 const Layout::Segment_list& segment_list_;
560 };
561
562 // Output the ELF file header.
563
564 class Output_file_header : public Output_data
565 {
566 public:
567 Output_file_header(const Target*,
568 const Symbol_table*,
569 const Output_segment_headers*);
570
571 // Add information about the section headers. We lay out the ELF
572 // file header before we create the section headers.
573 void set_section_info(const Output_section_headers*,
574 const Output_section* shstrtab);
575
576 protected:
577 // Write the data to the file.
578 void
579 do_write(Output_file*);
580
581 // Return the required alignment.
582 uint64_t
583 do_addralign() const
584 { return Output_data::default_alignment(); }
585
586 // Write to a map file.
587 void
588 do_print_to_mapfile(Mapfile* mapfile) const
589 { mapfile->print_output_data(this, _("** file header")); }
590
591 // Set final data size.
592 void
593 set_final_data_size(void)
594 { this->set_data_size(this->do_size()); }
595
596 private:
597 // Write the data to the file with the right size and endianness.
598 template<int size, bool big_endian>
599 void
600 do_sized_write(Output_file*);
601
602 // Return the value to use for the entry address.
603 template<int size>
604 typename elfcpp::Elf_types<size>::Elf_Addr
605 entry();
606
607 // Compute the current data size.
608 off_t
609 do_size() const;
610
611 const Target* target_;
612 const Symbol_table* symtab_;
613 const Output_segment_headers* segment_header_;
614 const Output_section_headers* section_header_;
615 const Output_section* shstrtab_;
616 };
617
618 // Output sections are mainly comprised of input sections. However,
619 // there are cases where we have data to write out which is not in an
620 // input section. Output_section_data is used in such cases. This is
621 // an abstract base class.
622
623 class Output_section_data : public Output_data
624 {
625 public:
626 Output_section_data(off_t data_size, uint64_t addralign,
627 bool is_data_size_fixed)
628 : Output_data(), output_section_(NULL), addralign_(addralign)
629 {
630 this->set_data_size(data_size);
631 if (is_data_size_fixed)
632 this->fix_data_size();
633 }
634
635 Output_section_data(uint64_t addralign)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 { }
638
639 // Return the output section.
640 Output_section*
641 output_section()
642 { return this->output_section_; }
643
644 const Output_section*
645 output_section() const
646 { return this->output_section_; }
647
648 // Record the output section.
649 void
650 set_output_section(Output_section* os);
651
652 // Add an input section, for SHF_MERGE sections. This returns true
653 // if the section was handled.
654 bool
655 add_input_section(Relobj* object, unsigned int shndx)
656 { return this->do_add_input_section(object, shndx); }
657
658 // Given an input OBJECT, an input section index SHNDX within that
659 // object, and an OFFSET relative to the start of that input
660 // section, return whether or not the corresponding offset within
661 // the output section is known. If this function returns true, it
662 // sets *POUTPUT to the output offset. The value -1 indicates that
663 // this input offset is being discarded.
664 bool
665 output_offset(const Relobj* object, unsigned int shndx,
666 section_offset_type offset,
667 section_offset_type* poutput) const
668 { return this->do_output_offset(object, shndx, offset, poutput); }
669
670 // Return whether this is the merge section for the input section
671 // SHNDX in OBJECT. This should return true when output_offset
672 // would return true for some values of OFFSET.
673 bool
674 is_merge_section_for(const Relobj* object, unsigned int shndx) const
675 { return this->do_is_merge_section_for(object, shndx); }
676
677 // Write the contents to a buffer. This is used for sections which
678 // require postprocessing, such as compression.
679 void
680 write_to_buffer(unsigned char* buffer)
681 { this->do_write_to_buffer(buffer); }
682
683 // Print merge stats to stderr. This should only be called for
684 // SHF_MERGE sections.
685 void
686 print_merge_stats(const char* section_name)
687 { this->do_print_merge_stats(section_name); }
688
689 protected:
690 // The child class must implement do_write.
691
692 // The child class may implement specific adjustments to the output
693 // section.
694 virtual void
695 do_adjust_output_section(Output_section*)
696 { }
697
698 // May be implemented by child class. Return true if the section
699 // was handled.
700 virtual bool
701 do_add_input_section(Relobj*, unsigned int)
702 { gold_unreachable(); }
703
704 // The child class may implement output_offset.
705 virtual bool
706 do_output_offset(const Relobj*, unsigned int, section_offset_type,
707 section_offset_type*) const
708 { return false; }
709
710 // The child class may implement is_merge_section_for.
711 virtual bool
712 do_is_merge_section_for(const Relobj*, unsigned int) const
713 { return false; }
714
715 // The child class may implement write_to_buffer. Most child
716 // classes can not appear in a compressed section, and they do not
717 // implement this.
718 virtual void
719 do_write_to_buffer(unsigned char*)
720 { gold_unreachable(); }
721
722 // Print merge statistics.
723 virtual void
724 do_print_merge_stats(const char*)
725 { gold_unreachable(); }
726
727 // Return the required alignment.
728 uint64_t
729 do_addralign() const
730 { return this->addralign_; }
731
732 // Return the output section.
733 Output_section*
734 do_output_section()
735 { return this->output_section_; }
736
737 const Output_section*
738 do_output_section() const
739 { return this->output_section_; }
740
741 // Return the section index of the output section.
742 unsigned int
743 do_out_shndx() const;
744
745 // Set the alignment.
746 void
747 set_addralign(uint64_t addralign);
748
749 private:
750 // The output section for this section.
751 Output_section* output_section_;
752 // The required alignment.
753 uint64_t addralign_;
754 };
755
756 // Some Output_section_data classes build up their data step by step,
757 // rather than all at once. This class provides an interface for
758 // them.
759
760 class Output_section_data_build : public Output_section_data
761 {
762 public:
763 Output_section_data_build(uint64_t addralign)
764 : Output_section_data(addralign)
765 { }
766
767 Output_section_data_build(off_t data_size, uint64_t addralign)
768 : Output_section_data(data_size, addralign, false)
769 { }
770
771 // Set the current data size.
772 void
773 set_current_data_size(off_t data_size)
774 { this->set_current_data_size_for_child(data_size); }
775
776 protected:
777 // Set the final data size.
778 virtual void
779 set_final_data_size()
780 { this->set_data_size(this->current_data_size_for_child()); }
781 };
782
783 // A simple case of Output_data in which we have constant data to
784 // output.
785
786 class Output_data_const : public Output_section_data
787 {
788 public:
789 Output_data_const(const std::string& data, uint64_t addralign)
790 : Output_section_data(data.size(), addralign, true), data_(data)
791 { }
792
793 Output_data_const(const char* p, off_t len, uint64_t addralign)
794 : Output_section_data(len, addralign, true), data_(p, len)
795 { }
796
797 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
798 : Output_section_data(len, addralign, true),
799 data_(reinterpret_cast<const char*>(p), len)
800 { }
801
802 protected:
803 // Write the data to the output file.
804 void
805 do_write(Output_file*);
806
807 // Write the data to a buffer.
808 void
809 do_write_to_buffer(unsigned char* buffer)
810 { memcpy(buffer, this->data_.data(), this->data_.size()); }
811
812 // Write to a map file.
813 void
814 do_print_to_mapfile(Mapfile* mapfile) const
815 { mapfile->print_output_data(this, _("** fill")); }
816
817 private:
818 std::string data_;
819 };
820
821 // Another version of Output_data with constant data, in which the
822 // buffer is allocated by the caller.
823
824 class Output_data_const_buffer : public Output_section_data
825 {
826 public:
827 Output_data_const_buffer(const unsigned char* p, off_t len,
828 uint64_t addralign, const char* map_name)
829 : Output_section_data(len, addralign, true),
830 p_(p), map_name_(map_name)
831 { }
832
833 protected:
834 // Write the data the output file.
835 void
836 do_write(Output_file*);
837
838 // Write the data to a buffer.
839 void
840 do_write_to_buffer(unsigned char* buffer)
841 { memcpy(buffer, this->p_, this->data_size()); }
842
843 // Write to a map file.
844 void
845 do_print_to_mapfile(Mapfile* mapfile) const
846 { mapfile->print_output_data(this, _(this->map_name_)); }
847
848 private:
849 // The data to output.
850 const unsigned char* p_;
851 // Name to use in a map file. Maps are a rarely used feature, but
852 // the space usage is minor as aren't very many of these objects.
853 const char* map_name_;
854 };
855
856 // A place holder for a fixed amount of data written out via some
857 // other mechanism.
858
859 class Output_data_fixed_space : public Output_section_data
860 {
861 public:
862 Output_data_fixed_space(off_t data_size, uint64_t addralign,
863 const char* map_name)
864 : Output_section_data(data_size, addralign, true),
865 map_name_(map_name)
866 { }
867
868 protected:
869 // Write out the data--the actual data must be written out
870 // elsewhere.
871 void
872 do_write(Output_file*)
873 { }
874
875 // Write to a map file.
876 void
877 do_print_to_mapfile(Mapfile* mapfile) const
878 { mapfile->print_output_data(this, _(this->map_name_)); }
879
880 private:
881 // Name to use in a map file. Maps are a rarely used feature, but
882 // the space usage is minor as aren't very many of these objects.
883 const char* map_name_;
884 };
885
886 // A place holder for variable sized data written out via some other
887 // mechanism.
888
889 class Output_data_space : public Output_section_data_build
890 {
891 public:
892 explicit Output_data_space(uint64_t addralign, const char* map_name)
893 : Output_section_data_build(addralign),
894 map_name_(map_name)
895 { }
896
897 explicit Output_data_space(off_t data_size, uint64_t addralign,
898 const char* map_name)
899 : Output_section_data_build(data_size, addralign),
900 map_name_(map_name)
901 { }
902
903 // Set the alignment.
904 void
905 set_space_alignment(uint64_t align)
906 { this->set_addralign(align); }
907
908 protected:
909 // Write out the data--the actual data must be written out
910 // elsewhere.
911 void
912 do_write(Output_file*)
913 { }
914
915 // Write to a map file.
916 void
917 do_print_to_mapfile(Mapfile* mapfile) const
918 { mapfile->print_output_data(this, _(this->map_name_)); }
919
920 private:
921 // Name to use in a map file. Maps are a rarely used feature, but
922 // the space usage is minor as aren't very many of these objects.
923 const char* map_name_;
924 };
925
926 // Fill fixed space with zeroes. This is just like
927 // Output_data_fixed_space, except that the map name is known.
928
929 class Output_data_zero_fill : public Output_section_data
930 {
931 public:
932 Output_data_zero_fill(off_t data_size, uint64_t addralign)
933 : Output_section_data(data_size, addralign, true)
934 { }
935
936 protected:
937 // There is no data to write out.
938 void
939 do_write(Output_file*)
940 { }
941
942 // Write to a map file.
943 void
944 do_print_to_mapfile(Mapfile* mapfile) const
945 { mapfile->print_output_data(this, "** zero fill"); }
946 };
947
948 // A string table which goes into an output section.
949
950 class Output_data_strtab : public Output_section_data
951 {
952 public:
953 Output_data_strtab(Stringpool* strtab)
954 : Output_section_data(1), strtab_(strtab)
955 { }
956
957 protected:
958 // This is called to update the section size prior to assigning
959 // the address and file offset.
960 void
961 update_data_size()
962 { this->set_final_data_size(); }
963
964 // This is called to set the address and file offset. Here we make
965 // sure that the Stringpool is finalized.
966 void
967 set_final_data_size();
968
969 // Write out the data.
970 void
971 do_write(Output_file*);
972
973 // Write the data to a buffer.
974 void
975 do_write_to_buffer(unsigned char* buffer)
976 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
977
978 // Write to a map file.
979 void
980 do_print_to_mapfile(Mapfile* mapfile) const
981 { mapfile->print_output_data(this, _("** string table")); }
982
983 private:
984 Stringpool* strtab_;
985 };
986
987 // This POD class is used to represent a single reloc in the output
988 // file. This could be a private class within Output_data_reloc, but
989 // the templatization is complex enough that I broke it out into a
990 // separate class. The class is templatized on either elfcpp::SHT_REL
991 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
992 // relocation or an ordinary relocation.
993
994 // A relocation can be against a global symbol, a local symbol, a
995 // local section symbol, an output section, or the undefined symbol at
996 // index 0. We represent the latter by using a NULL global symbol.
997
998 template<int sh_type, bool dynamic, int size, bool big_endian>
999 class Output_reloc;
1000
1001 template<bool dynamic, int size, bool big_endian>
1002 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1003 {
1004 public:
1005 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1006 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1007
1008 static const Address invalid_address = static_cast<Address>(0) - 1;
1009
1010 // An uninitialized entry. We need this because we want to put
1011 // instances of this class into an STL container.
1012 Output_reloc()
1013 : local_sym_index_(INVALID_CODE)
1014 { }
1015
1016 // We have a bunch of different constructors. They come in pairs
1017 // depending on how the address of the relocation is specified. It
1018 // can either be an offset in an Output_data or an offset in an
1019 // input section.
1020
1021 // A reloc against a global symbol.
1022
1023 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1024 Address address, bool is_relative, bool is_symbolless,
1025 bool use_plt_offset);
1026
1027 Output_reloc(Symbol* gsym, unsigned int type,
1028 Sized_relobj<size, big_endian>* relobj,
1029 unsigned int shndx, Address address, bool is_relative,
1030 bool is_symbolless, bool use_plt_offset);
1031
1032 // A reloc against a local symbol or local section symbol.
1033
1034 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1035 unsigned int local_sym_index, unsigned int type,
1036 Output_data* od, Address address, bool is_relative,
1037 bool is_symbolless, bool is_section_symbol,
1038 bool use_plt_offset);
1039
1040 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1041 unsigned int local_sym_index, unsigned int type,
1042 unsigned int shndx, Address address, bool is_relative,
1043 bool is_symbolless, bool is_section_symbol,
1044 bool use_plt_offset);
1045
1046 // A reloc against the STT_SECTION symbol of an output section.
1047
1048 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1049 Address address);
1050
1051 Output_reloc(Output_section* os, unsigned int type,
1052 Sized_relobj<size, big_endian>* relobj,
1053 unsigned int shndx, Address address);
1054
1055 // An absolute relocation with no symbol.
1056
1057 Output_reloc(unsigned int type, Output_data* od, Address address);
1058
1059 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1060 unsigned int shndx, Address address);
1061
1062 // A target specific relocation. The target will be called to get
1063 // the symbol index, passing ARG. The type and offset will be set
1064 // as for other relocation types.
1065
1066 Output_reloc(unsigned int type, void* arg, Output_data* od,
1067 Address address);
1068
1069 Output_reloc(unsigned int type, void* arg,
1070 Sized_relobj<size, big_endian>* relobj,
1071 unsigned int shndx, Address address);
1072
1073 // Return the reloc type.
1074 unsigned int
1075 type() const
1076 { return this->type_; }
1077
1078 // Return whether this is a RELATIVE relocation.
1079 bool
1080 is_relative() const
1081 { return this->is_relative_; }
1082
1083 // Return whether this is a relocation which should not use
1084 // a symbol, but which obtains its addend from a symbol.
1085 bool
1086 is_symbolless() const
1087 { return this->is_symbolless_; }
1088
1089 // Return whether this is against a local section symbol.
1090 bool
1091 is_local_section_symbol() const
1092 {
1093 return (this->local_sym_index_ != GSYM_CODE
1094 && this->local_sym_index_ != SECTION_CODE
1095 && this->local_sym_index_ != INVALID_CODE
1096 && this->local_sym_index_ != TARGET_CODE
1097 && this->is_section_symbol_);
1098 }
1099
1100 // Return whether this is a target specific relocation.
1101 bool
1102 is_target_specific() const
1103 { return this->local_sym_index_ == TARGET_CODE; }
1104
1105 // Return the argument to pass to the target for a target specific
1106 // relocation.
1107 void*
1108 target_arg() const
1109 {
1110 gold_assert(this->local_sym_index_ == TARGET_CODE);
1111 return this->u1_.arg;
1112 }
1113
1114 // For a local section symbol, return the offset of the input
1115 // section within the output section. ADDEND is the addend being
1116 // applied to the input section.
1117 Address
1118 local_section_offset(Addend addend) const;
1119
1120 // Get the value of the symbol referred to by a Rel relocation when
1121 // we are adding the given ADDEND.
1122 Address
1123 symbol_value(Addend addend) const;
1124
1125 // If this relocation is against an input section, return the
1126 // relocatable object containing the input section.
1127 Sized_relobj<size, big_endian>*
1128 get_relobj() const
1129 {
1130 if (this->shndx_ == INVALID_CODE)
1131 return NULL;
1132 return this->u2_.relobj;
1133 }
1134
1135 // Write the reloc entry to an output view.
1136 void
1137 write(unsigned char* pov) const;
1138
1139 // Write the offset and info fields to Write_rel.
1140 template<typename Write_rel>
1141 void write_rel(Write_rel*) const;
1142
1143 // This is used when sorting dynamic relocs. Return -1 to sort this
1144 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1145 int
1146 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1147 const;
1148
1149 // Return whether this reloc should be sorted before the argument
1150 // when sorting dynamic relocs.
1151 bool
1152 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1153 r2) const
1154 { return this->compare(r2) < 0; }
1155
1156 private:
1157 // Record that we need a dynamic symbol index.
1158 void
1159 set_needs_dynsym_index();
1160
1161 // Return the symbol index.
1162 unsigned int
1163 get_symbol_index() const;
1164
1165 // Return the output address.
1166 Address
1167 get_address() const;
1168
1169 // Codes for local_sym_index_.
1170 enum
1171 {
1172 // Global symbol.
1173 GSYM_CODE = -1U,
1174 // Output section.
1175 SECTION_CODE = -2U,
1176 // Target specific.
1177 TARGET_CODE = -3U,
1178 // Invalid uninitialized entry.
1179 INVALID_CODE = -4U
1180 };
1181
1182 union
1183 {
1184 // For a local symbol or local section symbol
1185 // (this->local_sym_index_ >= 0), the object. We will never
1186 // generate a relocation against a local symbol in a dynamic
1187 // object; that doesn't make sense. And our callers will always
1188 // be templatized, so we use Sized_relobj here.
1189 Sized_relobj<size, big_endian>* relobj;
1190 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1191 // symbol. If this is NULL, it indicates a relocation against the
1192 // undefined 0 symbol.
1193 Symbol* gsym;
1194 // For a relocation against an output section
1195 // (this->local_sym_index_ == SECTION_CODE), the output section.
1196 Output_section* os;
1197 // For a target specific relocation, an argument to pass to the
1198 // target.
1199 void* arg;
1200 } u1_;
1201 union
1202 {
1203 // If this->shndx_ is not INVALID CODE, the object which holds the
1204 // input section being used to specify the reloc address.
1205 Sized_relobj<size, big_endian>* relobj;
1206 // If this->shndx_ is INVALID_CODE, the output data being used to
1207 // specify the reloc address. This may be NULL if the reloc
1208 // address is absolute.
1209 Output_data* od;
1210 } u2_;
1211 // The address offset within the input section or the Output_data.
1212 Address address_;
1213 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1214 // relocation against an output section, or TARGET_CODE for a target
1215 // specific relocation, or INVALID_CODE for an uninitialized value.
1216 // Otherwise, for a local symbol (this->is_section_symbol_ is
1217 // false), the local symbol index. For a local section symbol
1218 // (this->is_section_symbol_ is true), the section index in the
1219 // input file.
1220 unsigned int local_sym_index_;
1221 // The reloc type--a processor specific code.
1222 unsigned int type_ : 28;
1223 // True if the relocation is a RELATIVE relocation.
1224 bool is_relative_ : 1;
1225 // True if the relocation is one which should not use
1226 // a symbol, but which obtains its addend from a symbol.
1227 bool is_symbolless_ : 1;
1228 // True if the relocation is against a section symbol.
1229 bool is_section_symbol_ : 1;
1230 // True if the addend should be the PLT offset.
1231 // (Used only for RELA, but stored here for space.)
1232 bool use_plt_offset_ : 1;
1233 // If the reloc address is an input section in an object, the
1234 // section index. This is INVALID_CODE if the reloc address is
1235 // specified in some other way.
1236 unsigned int shndx_;
1237 };
1238
1239 // The SHT_RELA version of Output_reloc<>. This is just derived from
1240 // the SHT_REL version of Output_reloc, but it adds an addend.
1241
1242 template<bool dynamic, int size, bool big_endian>
1243 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1244 {
1245 public:
1246 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1247 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1248
1249 // An uninitialized entry.
1250 Output_reloc()
1251 : rel_()
1252 { }
1253
1254 // A reloc against a global symbol.
1255
1256 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1257 Address address, Addend addend, bool is_relative,
1258 bool is_symbolless, bool use_plt_offset)
1259 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1260 use_plt_offset),
1261 addend_(addend)
1262 { }
1263
1264 Output_reloc(Symbol* gsym, unsigned int type,
1265 Sized_relobj<size, big_endian>* relobj,
1266 unsigned int shndx, Address address, Addend addend,
1267 bool is_relative, bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, relobj, shndx, address, is_relative,
1269 is_symbolless, use_plt_offset), addend_(addend)
1270 { }
1271
1272 // A reloc against a local symbol.
1273
1274 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1275 unsigned int local_sym_index, unsigned int type,
1276 Output_data* od, Address address,
1277 Addend addend, bool is_relative,
1278 bool is_symbolless, bool is_section_symbol,
1279 bool use_plt_offset)
1280 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1281 is_symbolless, is_section_symbol, use_plt_offset),
1282 addend_(addend)
1283 { }
1284
1285 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1286 unsigned int local_sym_index, unsigned int type,
1287 unsigned int shndx, Address address,
1288 Addend addend, bool is_relative,
1289 bool is_symbolless, bool is_section_symbol,
1290 bool use_plt_offset)
1291 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1292 is_symbolless, is_section_symbol, use_plt_offset),
1293 addend_(addend)
1294 { }
1295
1296 // A reloc against the STT_SECTION symbol of an output section.
1297
1298 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1299 Address address, Addend addend)
1300 : rel_(os, type, od, address), addend_(addend)
1301 { }
1302
1303 Output_reloc(Output_section* os, unsigned int type,
1304 Sized_relobj<size, big_endian>* relobj,
1305 unsigned int shndx, Address address, Addend addend)
1306 : rel_(os, type, relobj, shndx, address), addend_(addend)
1307 { }
1308
1309 // An absolute relocation with no symbol.
1310
1311 Output_reloc(unsigned int type, Output_data* od, Address address,
1312 Addend addend)
1313 : rel_(type, od, address), addend_(addend)
1314 { }
1315
1316 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1317 unsigned int shndx, Address address, Addend addend)
1318 : rel_(type, relobj, shndx, address), addend_(addend)
1319 { }
1320
1321 // A target specific relocation. The target will be called to get
1322 // the symbol index and the addend, passing ARG. The type and
1323 // offset will be set as for other relocation types.
1324
1325 Output_reloc(unsigned int type, void* arg, Output_data* od,
1326 Address address, Addend addend)
1327 : rel_(type, arg, od, address), addend_(addend)
1328 { }
1329
1330 Output_reloc(unsigned int type, void* arg,
1331 Sized_relobj<size, big_endian>* relobj,
1332 unsigned int shndx, Address address, Addend addend)
1333 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1334 { }
1335
1336 // Return whether this is a RELATIVE relocation.
1337 bool
1338 is_relative() const
1339 { return this->rel_.is_relative(); }
1340
1341 // Return whether this is a relocation which should not use
1342 // a symbol, but which obtains its addend from a symbol.
1343 bool
1344 is_symbolless() const
1345 { return this->rel_.is_symbolless(); }
1346
1347 // If this relocation is against an input section, return the
1348 // relocatable object containing the input section.
1349 Sized_relobj<size, big_endian>*
1350 get_relobj() const
1351 { return this->rel_.get_relobj(); }
1352
1353 // Write the reloc entry to an output view.
1354 void
1355 write(unsigned char* pov) const;
1356
1357 // Return whether this reloc should be sorted before the argument
1358 // when sorting dynamic relocs.
1359 bool
1360 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1361 r2) const
1362 {
1363 int i = this->rel_.compare(r2.rel_);
1364 if (i < 0)
1365 return true;
1366 else if (i > 0)
1367 return false;
1368 else
1369 return this->addend_ < r2.addend_;
1370 }
1371
1372 private:
1373 // The basic reloc.
1374 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1375 // The addend.
1376 Addend addend_;
1377 };
1378
1379 // Output_data_reloc_generic is a non-template base class for
1380 // Output_data_reloc_base. This gives the generic code a way to hold
1381 // a pointer to a reloc section.
1382
1383 class Output_data_reloc_generic : public Output_section_data_build
1384 {
1385 public:
1386 Output_data_reloc_generic(int size, bool sort_relocs)
1387 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1388 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1389 { }
1390
1391 // Return the number of relative relocs in this section.
1392 size_t
1393 relative_reloc_count() const
1394 { return this->relative_reloc_count_; }
1395
1396 // Whether we should sort the relocs.
1397 bool
1398 sort_relocs() const
1399 { return this->sort_relocs_; }
1400
1401 // Add a reloc of type TYPE against the global symbol GSYM. The
1402 // relocation applies to the data at offset ADDRESS within OD.
1403 virtual void
1404 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1405 uint64_t address, uint64_t addend) = 0;
1406
1407 // Add a reloc of type TYPE against the global symbol GSYM. The
1408 // relocation applies to data at offset ADDRESS within section SHNDX
1409 // of object file RELOBJ. OD is the associated output section.
1410 virtual void
1411 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1412 Relobj* relobj, unsigned int shndx, uint64_t address,
1413 uint64_t addend) = 0;
1414
1415 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1416 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1417 // within OD.
1418 virtual void
1419 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1420 unsigned int type, Output_data* od, uint64_t address,
1421 uint64_t addend) = 0;
1422
1423 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1424 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1425 // within section SHNDX of RELOBJ. OD is the associated output
1426 // section.
1427 virtual void
1428 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1429 unsigned int type, Output_data* od, unsigned int shndx,
1430 uint64_t address, uint64_t addend) = 0;
1431
1432 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1433 // output section OS. The relocation applies to the data at offset
1434 // ADDRESS within OD.
1435 virtual void
1436 add_output_section_generic(Output_section *os, unsigned int type,
1437 Output_data* od, uint64_t address,
1438 uint64_t addend) = 0;
1439
1440 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1441 // output section OS. The relocation applies to the data at offset
1442 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1443 // output section.
1444 virtual void
1445 add_output_section_generic(Output_section* os, unsigned int type,
1446 Output_data* od, Relobj* relobj,
1447 unsigned int shndx, uint64_t address,
1448 uint64_t addend) = 0;
1449
1450 protected:
1451 // Note that we've added another relative reloc.
1452 void
1453 bump_relative_reloc_count()
1454 { ++this->relative_reloc_count_; }
1455
1456 private:
1457 // The number of relative relocs added to this section. This is to
1458 // support DT_RELCOUNT.
1459 size_t relative_reloc_count_;
1460 // Whether to sort the relocations when writing them out, to make
1461 // the dynamic linker more efficient.
1462 bool sort_relocs_;
1463 };
1464
1465 // Output_data_reloc is used to manage a section containing relocs.
1466 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1467 // indicates whether this is a dynamic relocation or a normal
1468 // relocation. Output_data_reloc_base is a base class.
1469 // Output_data_reloc is the real class, which we specialize based on
1470 // the reloc type.
1471
1472 template<int sh_type, bool dynamic, int size, bool big_endian>
1473 class Output_data_reloc_base : public Output_data_reloc_generic
1474 {
1475 public:
1476 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1477 typedef typename Output_reloc_type::Address Address;
1478 static const int reloc_size =
1479 Reloc_types<sh_type, size, big_endian>::reloc_size;
1480
1481 // Construct the section.
1482 Output_data_reloc_base(bool sort_relocs)
1483 : Output_data_reloc_generic(size, sort_relocs)
1484 { }
1485
1486 protected:
1487 // Write out the data.
1488 void
1489 do_write(Output_file*);
1490
1491 // Set the entry size and the link.
1492 void
1493 do_adjust_output_section(Output_section* os);
1494
1495 // Write to a map file.
1496 void
1497 do_print_to_mapfile(Mapfile* mapfile) const
1498 {
1499 mapfile->print_output_data(this,
1500 (dynamic
1501 ? _("** dynamic relocs")
1502 : _("** relocs")));
1503 }
1504
1505 // Add a relocation entry.
1506 void
1507 add(Output_data* od, const Output_reloc_type& reloc)
1508 {
1509 this->relocs_.push_back(reloc);
1510 this->set_current_data_size(this->relocs_.size() * reloc_size);
1511 if (dynamic)
1512 od->add_dynamic_reloc();
1513 if (reloc.is_relative())
1514 this->bump_relative_reloc_count();
1515 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1516 if (relobj != NULL)
1517 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1518 }
1519
1520 private:
1521 typedef std::vector<Output_reloc_type> Relocs;
1522
1523 // The class used to sort the relocations.
1524 struct Sort_relocs_comparison
1525 {
1526 bool
1527 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1528 { return r1.sort_before(r2); }
1529 };
1530
1531 // The relocations in this section.
1532 Relocs relocs_;
1533 };
1534
1535 // The class which callers actually create.
1536
1537 template<int sh_type, bool dynamic, int size, bool big_endian>
1538 class Output_data_reloc;
1539
1540 // The SHT_REL version of Output_data_reloc.
1541
1542 template<bool dynamic, int size, bool big_endian>
1543 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1544 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1545 {
1546 private:
1547 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1548 big_endian> Base;
1549
1550 public:
1551 typedef typename Base::Output_reloc_type Output_reloc_type;
1552 typedef typename Output_reloc_type::Address Address;
1553
1554 Output_data_reloc(bool sr)
1555 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1556 { }
1557
1558 // Add a reloc against a global symbol.
1559
1560 void
1561 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1562 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false, false)); }
1563
1564 void
1565 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1566 Sized_relobj<size, big_endian>* relobj,
1567 unsigned int shndx, Address address)
1568 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1569 false, false, false)); }
1570
1571 void
1572 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1573 uint64_t address, uint64_t addend)
1574 {
1575 gold_assert(addend == 0);
1576 this->add(od, Output_reloc_type(gsym, type, od,
1577 convert_types<Address, uint64_t>(address),
1578 false, false, false));
1579 }
1580
1581 void
1582 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1583 Relobj* relobj, unsigned int shndx, uint64_t address,
1584 uint64_t addend)
1585 {
1586 gold_assert(addend == 0);
1587 Sized_relobj<size, big_endian>* sized_relobj =
1588 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1589 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1590 convert_types<Address, uint64_t>(address),
1591 false, false, false));
1592 }
1593
1594 // Add a RELATIVE reloc against a global symbol. The final relocation
1595 // will not reference the symbol.
1596
1597 void
1598 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1599 Address address)
1600 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1601 false)); }
1602
1603 void
1604 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1605 Sized_relobj<size, big_endian>* relobj,
1606 unsigned int shndx, Address address)
1607 {
1608 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1609 true, true, false));
1610 }
1611
1612 // Add a global relocation which does not use a symbol for the relocation,
1613 // but which gets its addend from a symbol.
1614
1615 void
1616 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1617 Output_data* od, Address address)
1618 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1619 false)); }
1620
1621 void
1622 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1623 Output_data* od,
1624 Sized_relobj<size, big_endian>* relobj,
1625 unsigned int shndx, Address address)
1626 {
1627 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1628 false, true, false));
1629 }
1630
1631 // Add a reloc against a local symbol.
1632
1633 void
1634 add_local(Sized_relobj<size, big_endian>* relobj,
1635 unsigned int local_sym_index, unsigned int type,
1636 Output_data* od, Address address)
1637 {
1638 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1639 address, false, false, false, false));
1640 }
1641
1642 void
1643 add_local(Sized_relobj<size, big_endian>* relobj,
1644 unsigned int local_sym_index, unsigned int type,
1645 Output_data* od, unsigned int shndx, Address address)
1646 {
1647 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1648 address, false, false, false, false));
1649 }
1650
1651 void
1652 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1653 unsigned int type, Output_data* od, uint64_t address,
1654 uint64_t addend)
1655 {
1656 gold_assert(addend == 0);
1657 Sized_relobj<size, big_endian>* sized_relobj =
1658 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1659 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1660 convert_types<Address, uint64_t>(address),
1661 false, false, false, false));
1662 }
1663
1664 void
1665 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1666 unsigned int type, Output_data* od, unsigned int shndx,
1667 uint64_t address, uint64_t addend)
1668 {
1669 gold_assert(addend == 0);
1670 Sized_relobj<size, big_endian>* sized_relobj =
1671 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1672 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1673 convert_types<Address, uint64_t>(address),
1674 false, false, false, false));
1675 }
1676
1677 // Add a RELATIVE reloc against a local symbol.
1678
1679 void
1680 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1681 unsigned int local_sym_index, unsigned int type,
1682 Output_data* od, Address address)
1683 {
1684 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1685 address, true, true, false, false));
1686 }
1687
1688 void
1689 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1690 unsigned int local_sym_index, unsigned int type,
1691 Output_data* od, unsigned int shndx, Address address)
1692 {
1693 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1694 address, true, true, false, false));
1695 }
1696
1697 // Add a local relocation which does not use a symbol for the relocation,
1698 // but which gets its addend from a symbol.
1699
1700 void
1701 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1702 unsigned int local_sym_index, unsigned int type,
1703 Output_data* od, Address address)
1704 {
1705 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1706 address, false, true, false, false));
1707 }
1708
1709 void
1710 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1711 unsigned int local_sym_index, unsigned int type,
1712 Output_data* od, unsigned int shndx,
1713 Address address)
1714 {
1715 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1716 address, false, true, false, false));
1717 }
1718
1719 // Add a reloc against a local section symbol. This will be
1720 // converted into a reloc against the STT_SECTION symbol of the
1721 // output section.
1722
1723 void
1724 add_local_section(Sized_relobj<size, big_endian>* relobj,
1725 unsigned int input_shndx, unsigned int type,
1726 Output_data* od, Address address)
1727 {
1728 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1729 address, false, false, true, false));
1730 }
1731
1732 void
1733 add_local_section(Sized_relobj<size, big_endian>* relobj,
1734 unsigned int input_shndx, unsigned int type,
1735 Output_data* od, unsigned int shndx, Address address)
1736 {
1737 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1738 address, false, false, true, false));
1739 }
1740
1741 // A reloc against the STT_SECTION symbol of an output section.
1742 // OS is the Output_section that the relocation refers to; OD is
1743 // the Output_data object being relocated.
1744
1745 void
1746 add_output_section(Output_section* os, unsigned int type,
1747 Output_data* od, Address address)
1748 { this->add(od, Output_reloc_type(os, type, od, address)); }
1749
1750 void
1751 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1752 Sized_relobj<size, big_endian>* relobj,
1753 unsigned int shndx, Address address)
1754 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1755
1756 void
1757 add_output_section_generic(Output_section* os, unsigned int type,
1758 Output_data* od, uint64_t address,
1759 uint64_t addend)
1760 {
1761 gold_assert(addend == 0);
1762 this->add(od, Output_reloc_type(os, type, od,
1763 convert_types<Address, uint64_t>(address)));
1764 }
1765
1766 void
1767 add_output_section_generic(Output_section* os, unsigned int type,
1768 Output_data* od, Relobj* relobj,
1769 unsigned int shndx, uint64_t address,
1770 uint64_t addend)
1771 {
1772 gold_assert(addend == 0);
1773 Sized_relobj<size, big_endian>* sized_relobj =
1774 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1775 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1776 convert_types<Address, uint64_t>(address)));
1777 }
1778
1779 // Add an absolute relocation.
1780
1781 void
1782 add_absolute(unsigned int type, Output_data* od, Address address)
1783 { this->add(od, Output_reloc_type(type, od, address)); }
1784
1785 void
1786 add_absolute(unsigned int type, Output_data* od,
1787 Sized_relobj<size, big_endian>* relobj,
1788 unsigned int shndx, Address address)
1789 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1790
1791 // Add a target specific relocation. A target which calls this must
1792 // define the reloc_symbol_index and reloc_addend virtual functions.
1793
1794 void
1795 add_target_specific(unsigned int type, void* arg, Output_data* od,
1796 Address address)
1797 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1798
1799 void
1800 add_target_specific(unsigned int type, void* arg, Output_data* od,
1801 Sized_relobj<size, big_endian>* relobj,
1802 unsigned int shndx, Address address)
1803 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1804 };
1805
1806 // The SHT_RELA version of Output_data_reloc.
1807
1808 template<bool dynamic, int size, bool big_endian>
1809 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1810 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1811 {
1812 private:
1813 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1814 big_endian> Base;
1815
1816 public:
1817 typedef typename Base::Output_reloc_type Output_reloc_type;
1818 typedef typename Output_reloc_type::Address Address;
1819 typedef typename Output_reloc_type::Addend Addend;
1820
1821 Output_data_reloc(bool sr)
1822 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1823 { }
1824
1825 // Add a reloc against a global symbol.
1826
1827 void
1828 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1829 Address address, Addend addend)
1830 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1831 false, false, false)); }
1832
1833 void
1834 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1835 Sized_relobj<size, big_endian>* relobj,
1836 unsigned int shndx, Address address,
1837 Addend addend)
1838 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1839 addend, false, false, false)); }
1840
1841 void
1842 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1843 uint64_t address, uint64_t addend)
1844 {
1845 this->add(od, Output_reloc_type(gsym, type, od,
1846 convert_types<Address, uint64_t>(address),
1847 convert_types<Addend, uint64_t>(addend),
1848 false, false, false));
1849 }
1850
1851 void
1852 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1853 Relobj* relobj, unsigned int shndx, uint64_t address,
1854 uint64_t addend)
1855 {
1856 Sized_relobj<size, big_endian>* sized_relobj =
1857 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1858 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1859 convert_types<Address, uint64_t>(address),
1860 convert_types<Addend, uint64_t>(addend),
1861 false, false, false));
1862 }
1863
1864 // Add a RELATIVE reloc against a global symbol. The final output
1865 // relocation will not reference the symbol, but we must keep the symbol
1866 // information long enough to set the addend of the relocation correctly
1867 // when it is written.
1868
1869 void
1870 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1871 Address address, Addend addend, bool use_plt_offset)
1872 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1873 true, use_plt_offset)); }
1874
1875 void
1876 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1877 Sized_relobj<size, big_endian>* relobj,
1878 unsigned int shndx, Address address, Addend addend,
1879 bool use_plt_offset)
1880 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1881 addend, true, true, use_plt_offset)); }
1882
1883 // Add a global relocation which does not use a symbol for the relocation,
1884 // but which gets its addend from a symbol.
1885
1886 void
1887 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1888 Address address, Addend addend)
1889 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1890 false, true, false)); }
1891
1892 void
1893 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1894 Output_data* od,
1895 Sized_relobj<size, big_endian>* relobj,
1896 unsigned int shndx, Address address, Addend addend)
1897 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1898 addend, false, true, false)); }
1899
1900 // Add a reloc against a local symbol.
1901
1902 void
1903 add_local(Sized_relobj<size, big_endian>* relobj,
1904 unsigned int local_sym_index, unsigned int type,
1905 Output_data* od, Address address, Addend addend)
1906 {
1907 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1908 addend, false, false, false, false));
1909 }
1910
1911 void
1912 add_local(Sized_relobj<size, big_endian>* relobj,
1913 unsigned int local_sym_index, unsigned int type,
1914 Output_data* od, unsigned int shndx, Address address,
1915 Addend addend)
1916 {
1917 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1918 address, addend, false, false, false,
1919 false));
1920 }
1921
1922 void
1923 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1924 unsigned int type, Output_data* od, uint64_t address,
1925 uint64_t addend)
1926 {
1927 Sized_relobj<size, big_endian>* sized_relobj =
1928 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1929 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1930 convert_types<Address, uint64_t>(address),
1931 convert_types<Addend, uint64_t>(addend),
1932 false, false, false, false));
1933 }
1934
1935 void
1936 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1937 unsigned int type, Output_data* od, unsigned int shndx,
1938 uint64_t address, uint64_t addend)
1939 {
1940 Sized_relobj<size, big_endian>* sized_relobj =
1941 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1942 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1943 convert_types<Address, uint64_t>(address),
1944 convert_types<Addend, uint64_t>(addend),
1945 false, false, false, false));
1946 }
1947
1948 // Add a RELATIVE reloc against a local symbol.
1949
1950 void
1951 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1952 unsigned int local_sym_index, unsigned int type,
1953 Output_data* od, Address address, Addend addend,
1954 bool use_plt_offset)
1955 {
1956 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1957 addend, true, true, false,
1958 use_plt_offset));
1959 }
1960
1961 void
1962 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1963 unsigned int local_sym_index, unsigned int type,
1964 Output_data* od, unsigned int shndx, Address address,
1965 Addend addend, bool use_plt_offset)
1966 {
1967 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1968 address, addend, true, true, false,
1969 use_plt_offset));
1970 }
1971
1972 // Add a local relocation which does not use a symbol for the relocation,
1973 // but which gets it's addend from a symbol.
1974
1975 void
1976 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1977 unsigned int local_sym_index, unsigned int type,
1978 Output_data* od, Address address, Addend addend)
1979 {
1980 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1981 addend, false, true, false, false));
1982 }
1983
1984 void
1985 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1986 unsigned int local_sym_index, unsigned int type,
1987 Output_data* od, unsigned int shndx,
1988 Address address, Addend addend)
1989 {
1990 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1991 address, addend, false, true, false,
1992 false));
1993 }
1994
1995 // Add a reloc against a local section symbol. This will be
1996 // converted into a reloc against the STT_SECTION symbol of the
1997 // output section.
1998
1999 void
2000 add_local_section(Sized_relobj<size, big_endian>* relobj,
2001 unsigned int input_shndx, unsigned int type,
2002 Output_data* od, Address address, Addend addend)
2003 {
2004 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2005 addend, false, false, true, false));
2006 }
2007
2008 void
2009 add_local_section(Sized_relobj<size, big_endian>* relobj,
2010 unsigned int input_shndx, unsigned int type,
2011 Output_data* od, unsigned int shndx, Address address,
2012 Addend addend)
2013 {
2014 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2015 address, addend, false, false, true,
2016 false));
2017 }
2018
2019 // A reloc against the STT_SECTION symbol of an output section.
2020
2021 void
2022 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2023 Address address, Addend addend)
2024 { this->add(od, Output_reloc_type(os, type, od, address, addend)); }
2025
2026 void
2027 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2028 Sized_relobj<size, big_endian>* relobj,
2029 unsigned int shndx, Address address, Addend addend)
2030 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2031 addend)); }
2032
2033 void
2034 add_output_section_generic(Output_section* os, unsigned int type,
2035 Output_data* od, uint64_t address,
2036 uint64_t addend)
2037 {
2038 this->add(od, Output_reloc_type(os, type, od,
2039 convert_types<Address, uint64_t>(address),
2040 convert_types<Addend, uint64_t>(addend)));
2041 }
2042
2043 void
2044 add_output_section_generic(Output_section* os, unsigned int type,
2045 Output_data* od, Relobj* relobj,
2046 unsigned int shndx, uint64_t address,
2047 uint64_t addend)
2048 {
2049 Sized_relobj<size, big_endian>* sized_relobj =
2050 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2051 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2052 convert_types<Address, uint64_t>(address),
2053 convert_types<Addend, uint64_t>(addend)));
2054 }
2055
2056 // Add an absolute relocation.
2057
2058 void
2059 add_absolute(unsigned int type, Output_data* od, Address address,
2060 Addend addend)
2061 { this->add(od, Output_reloc_type(type, od, address, addend)); }
2062
2063 void
2064 add_absolute(unsigned int type, Output_data* od,
2065 Sized_relobj<size, big_endian>* relobj,
2066 unsigned int shndx, Address address, Addend addend)
2067 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
2068
2069 // Add a target specific relocation. A target which calls this must
2070 // define the reloc_symbol_index and reloc_addend virtual functions.
2071
2072 void
2073 add_target_specific(unsigned int type, void* arg, Output_data* od,
2074 Address address, Addend addend)
2075 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2076
2077 void
2078 add_target_specific(unsigned int type, void* arg, Output_data* od,
2079 Sized_relobj<size, big_endian>* relobj,
2080 unsigned int shndx, Address address, Addend addend)
2081 {
2082 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2083 addend));
2084 }
2085 };
2086
2087 // Output_relocatable_relocs represents a relocation section in a
2088 // relocatable link. The actual data is written out in the target
2089 // hook relocate_for_relocatable. This just saves space for it.
2090
2091 template<int sh_type, int size, bool big_endian>
2092 class Output_relocatable_relocs : public Output_section_data
2093 {
2094 public:
2095 Output_relocatable_relocs(Relocatable_relocs* rr)
2096 : Output_section_data(Output_data::default_alignment_for_size(size)),
2097 rr_(rr)
2098 { }
2099
2100 void
2101 set_final_data_size();
2102
2103 // Write out the data. There is nothing to do here.
2104 void
2105 do_write(Output_file*)
2106 { }
2107
2108 // Write to a map file.
2109 void
2110 do_print_to_mapfile(Mapfile* mapfile) const
2111 { mapfile->print_output_data(this, _("** relocs")); }
2112
2113 private:
2114 // The relocs associated with this input section.
2115 Relocatable_relocs* rr_;
2116 };
2117
2118 // Handle a GROUP section.
2119
2120 template<int size, bool big_endian>
2121 class Output_data_group : public Output_section_data
2122 {
2123 public:
2124 // The constructor clears *INPUT_SHNDXES.
2125 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2126 section_size_type entry_count,
2127 elfcpp::Elf_Word flags,
2128 std::vector<unsigned int>* input_shndxes);
2129
2130 void
2131 do_write(Output_file*);
2132
2133 // Write to a map file.
2134 void
2135 do_print_to_mapfile(Mapfile* mapfile) const
2136 { mapfile->print_output_data(this, _("** group")); }
2137
2138 // Set final data size.
2139 void
2140 set_final_data_size()
2141 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2142
2143 private:
2144 // The input object.
2145 Sized_relobj_file<size, big_endian>* relobj_;
2146 // The group flag word.
2147 elfcpp::Elf_Word flags_;
2148 // The section indexes of the input sections in this group.
2149 std::vector<unsigned int> input_shndxes_;
2150 };
2151
2152 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2153 // for one symbol--either a global symbol or a local symbol in an
2154 // object. The target specific code adds entries to the GOT as
2155 // needed. The GOT_SIZE template parameter is the size in bits of a
2156 // GOT entry, typically 32 or 64.
2157
2158 class Output_data_got_base : public Output_section_data_build
2159 {
2160 public:
2161 Output_data_got_base(uint64_t align)
2162 : Output_section_data_build(align)
2163 { }
2164
2165 Output_data_got_base(off_t data_size, uint64_t align)
2166 : Output_section_data_build(data_size, align)
2167 { }
2168
2169 // Reserve the slot at index I in the GOT.
2170 void
2171 reserve_slot(unsigned int i)
2172 { this->do_reserve_slot(i); }
2173
2174 protected:
2175 // Reserve the slot at index I in the GOT.
2176 virtual void
2177 do_reserve_slot(unsigned int i) = 0;
2178 };
2179
2180 template<int got_size, bool big_endian>
2181 class Output_data_got : public Output_data_got_base
2182 {
2183 public:
2184 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2185
2186 Output_data_got()
2187 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2188 entries_(), free_list_()
2189 { }
2190
2191 Output_data_got(off_t data_size)
2192 : Output_data_got_base(data_size,
2193 Output_data::default_alignment_for_size(got_size)),
2194 entries_(), free_list_()
2195 {
2196 // For an incremental update, we have an existing GOT section.
2197 // Initialize the list of entries and the free list.
2198 this->entries_.resize(data_size / (got_size / 8));
2199 this->free_list_.init(data_size, false);
2200 }
2201
2202 // Add an entry for a global symbol to the GOT. Return true if this
2203 // is a new GOT entry, false if the symbol was already in the GOT.
2204 bool
2205 add_global(Symbol* gsym, unsigned int got_type);
2206
2207 // Like add_global, but use the PLT offset of the global symbol if
2208 // it has one.
2209 bool
2210 add_global_plt(Symbol* gsym, unsigned int got_type);
2211
2212 // Add an entry for a global symbol to the GOT, and add a dynamic
2213 // relocation of type R_TYPE for the GOT entry.
2214 void
2215 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2216 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2217
2218 // Add a pair of entries for a global symbol to the GOT, and add
2219 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2220 void
2221 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2222 Output_data_reloc_generic* rel_dyn,
2223 unsigned int r_type_1, unsigned int r_type_2);
2224
2225 // Add an entry for a local symbol to the GOT. This returns true if
2226 // this is a new GOT entry, false if the symbol already has a GOT
2227 // entry.
2228 bool
2229 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2230
2231 // Like add_local, but use the PLT offset of the local symbol if it
2232 // has one.
2233 bool
2234 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2235
2236 // Add an entry for a local symbol to the GOT, and add a dynamic
2237 // relocation of type R_TYPE for the GOT entry.
2238 void
2239 add_local_with_rel(Relobj* object, unsigned int sym_index,
2240 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2241 unsigned int r_type);
2242
2243 // Add a pair of entries for a local symbol to the GOT, and add
2244 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2245 void
2246 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2247 unsigned int shndx, unsigned int got_type,
2248 Output_data_reloc_generic* rel_dyn,
2249 unsigned int r_type_1, unsigned int r_type_2);
2250
2251 // Add a constant to the GOT. This returns the offset of the new
2252 // entry from the start of the GOT.
2253 unsigned int
2254 add_constant(Valtype constant)
2255 {
2256 unsigned int got_offset = this->add_got_entry(Got_entry(constant));
2257 return got_offset;
2258 }
2259
2260 // Replace GOT entry I with a new constant.
2261 void
2262 replace_constant(unsigned int i, Valtype constant)
2263 {
2264 this->replace_got_entry(i, Got_entry(constant));
2265 }
2266
2267 // Reserve a slot in the GOT for a local symbol.
2268 void
2269 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2270 unsigned int got_type);
2271
2272 // Reserve a slot in the GOT for a global symbol.
2273 void
2274 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2275
2276 protected:
2277 // Write out the GOT table.
2278 void
2279 do_write(Output_file*);
2280
2281 // Write to a map file.
2282 void
2283 do_print_to_mapfile(Mapfile* mapfile) const
2284 { mapfile->print_output_data(this, _("** GOT")); }
2285
2286 // Reserve the slot at index I in the GOT.
2287 virtual void
2288 do_reserve_slot(unsigned int i)
2289 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2290
2291 // Return the number of words in the GOT.
2292 unsigned int
2293 num_entries () const
2294 { return this->entries_.size(); }
2295
2296 // Return the offset into the GOT of GOT entry I.
2297 unsigned int
2298 got_offset(unsigned int i) const
2299 { return i * (got_size / 8); }
2300
2301 private:
2302 // This POD class holds a single GOT entry.
2303 class Got_entry
2304 {
2305 public:
2306 // Create a zero entry.
2307 Got_entry()
2308 : local_sym_index_(RESERVED_CODE), use_plt_offset_(false)
2309 { this->u_.constant = 0; }
2310
2311 // Create a global symbol entry.
2312 Got_entry(Symbol* gsym, bool use_plt_offset)
2313 : local_sym_index_(GSYM_CODE), use_plt_offset_(use_plt_offset)
2314 { this->u_.gsym = gsym; }
2315
2316 // Create a local symbol entry.
2317 Got_entry(Relobj* object, unsigned int local_sym_index,
2318 bool use_plt_offset)
2319 : local_sym_index_(local_sym_index), use_plt_offset_(use_plt_offset)
2320 {
2321 gold_assert(local_sym_index != GSYM_CODE
2322 && local_sym_index != CONSTANT_CODE
2323 && local_sym_index != RESERVED_CODE
2324 && local_sym_index == this->local_sym_index_);
2325 this->u_.object = object;
2326 }
2327
2328 // Create a constant entry. The constant is a host value--it will
2329 // be swapped, if necessary, when it is written out.
2330 explicit Got_entry(Valtype constant)
2331 : local_sym_index_(CONSTANT_CODE), use_plt_offset_(false)
2332 { this->u_.constant = constant; }
2333
2334 // Write the GOT entry to an output view.
2335 void
2336 write(unsigned char* pov) const;
2337
2338 private:
2339 enum
2340 {
2341 GSYM_CODE = 0x7fffffff,
2342 CONSTANT_CODE = 0x7ffffffe,
2343 RESERVED_CODE = 0x7ffffffd
2344 };
2345
2346 union
2347 {
2348 // For a local symbol, the object.
2349 Relobj* object;
2350 // For a global symbol, the symbol.
2351 Symbol* gsym;
2352 // For a constant, the constant.
2353 Valtype constant;
2354 } u_;
2355 // For a local symbol, the local symbol index. This is GSYM_CODE
2356 // for a global symbol, or CONSTANT_CODE for a constant.
2357 unsigned int local_sym_index_ : 31;
2358 // Whether to use the PLT offset of the symbol if it has one.
2359 bool use_plt_offset_ : 1;
2360 };
2361
2362 typedef std::vector<Got_entry> Got_entries;
2363
2364 // Create a new GOT entry and return its offset.
2365 unsigned int
2366 add_got_entry(Got_entry got_entry);
2367
2368 // Create a pair of new GOT entries and return the offset of the first.
2369 unsigned int
2370 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2371
2372 // Replace GOT entry I with a new value.
2373 void
2374 replace_got_entry(unsigned int i, Got_entry got_entry);
2375
2376 // Return the offset into the GOT of the last entry added.
2377 unsigned int
2378 last_got_offset() const
2379 { return this->got_offset(this->num_entries() - 1); }
2380
2381 // Set the size of the section.
2382 void
2383 set_got_size()
2384 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2385
2386 // The list of GOT entries.
2387 Got_entries entries_;
2388
2389 // List of available regions within the section, for incremental
2390 // update links.
2391 Free_list free_list_;
2392 };
2393
2394 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2395 // section.
2396
2397 class Output_data_dynamic : public Output_section_data
2398 {
2399 public:
2400 Output_data_dynamic(Stringpool* pool)
2401 : Output_section_data(Output_data::default_alignment()),
2402 entries_(), pool_(pool)
2403 { }
2404
2405 // Add a new dynamic entry with a fixed numeric value.
2406 void
2407 add_constant(elfcpp::DT tag, unsigned int val)
2408 { this->add_entry(Dynamic_entry(tag, val)); }
2409
2410 // Add a new dynamic entry with the address of output data.
2411 void
2412 add_section_address(elfcpp::DT tag, const Output_data* od)
2413 { this->add_entry(Dynamic_entry(tag, od, false)); }
2414
2415 // Add a new dynamic entry with the address of output data
2416 // plus a constant offset.
2417 void
2418 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2419 unsigned int offset)
2420 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2421
2422 // Add a new dynamic entry with the size of output data.
2423 void
2424 add_section_size(elfcpp::DT tag, const Output_data* od)
2425 { this->add_entry(Dynamic_entry(tag, od, true)); }
2426
2427 // Add a new dynamic entry with the total size of two output datas.
2428 void
2429 add_section_size(elfcpp::DT tag, const Output_data* od,
2430 const Output_data* od2)
2431 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2432
2433 // Add a new dynamic entry with the address of a symbol.
2434 void
2435 add_symbol(elfcpp::DT tag, const Symbol* sym)
2436 { this->add_entry(Dynamic_entry(tag, sym)); }
2437
2438 // Add a new dynamic entry with a string.
2439 void
2440 add_string(elfcpp::DT tag, const char* str)
2441 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2442
2443 void
2444 add_string(elfcpp::DT tag, const std::string& str)
2445 { this->add_string(tag, str.c_str()); }
2446
2447 protected:
2448 // Adjust the output section to set the entry size.
2449 void
2450 do_adjust_output_section(Output_section*);
2451
2452 // Set the final data size.
2453 void
2454 set_final_data_size();
2455
2456 // Write out the dynamic entries.
2457 void
2458 do_write(Output_file*);
2459
2460 // Write to a map file.
2461 void
2462 do_print_to_mapfile(Mapfile* mapfile) const
2463 { mapfile->print_output_data(this, _("** dynamic")); }
2464
2465 private:
2466 // This POD class holds a single dynamic entry.
2467 class Dynamic_entry
2468 {
2469 public:
2470 // Create an entry with a fixed numeric value.
2471 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2472 : tag_(tag), offset_(DYNAMIC_NUMBER)
2473 { this->u_.val = val; }
2474
2475 // Create an entry with the size or address of a section.
2476 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2477 : tag_(tag),
2478 offset_(section_size
2479 ? DYNAMIC_SECTION_SIZE
2480 : DYNAMIC_SECTION_ADDRESS)
2481 {
2482 this->u_.od = od;
2483 this->od2 = NULL;
2484 }
2485
2486 // Create an entry with the size of two sections.
2487 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2488 : tag_(tag),
2489 offset_(DYNAMIC_SECTION_SIZE)
2490 {
2491 this->u_.od = od;
2492 this->od2 = od2;
2493 }
2494
2495 // Create an entry with the address of a section plus a constant offset.
2496 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2497 : tag_(tag),
2498 offset_(offset)
2499 { this->u_.od = od; }
2500
2501 // Create an entry with the address of a symbol.
2502 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2503 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2504 { this->u_.sym = sym; }
2505
2506 // Create an entry with a string.
2507 Dynamic_entry(elfcpp::DT tag, const char* str)
2508 : tag_(tag), offset_(DYNAMIC_STRING)
2509 { this->u_.str = str; }
2510
2511 // Return the tag of this entry.
2512 elfcpp::DT
2513 tag() const
2514 { return this->tag_; }
2515
2516 // Write the dynamic entry to an output view.
2517 template<int size, bool big_endian>
2518 void
2519 write(unsigned char* pov, const Stringpool*) const;
2520
2521 private:
2522 // Classification is encoded in the OFFSET field.
2523 enum Classification
2524 {
2525 // Section address.
2526 DYNAMIC_SECTION_ADDRESS = 0,
2527 // Number.
2528 DYNAMIC_NUMBER = -1U,
2529 // Section size.
2530 DYNAMIC_SECTION_SIZE = -2U,
2531 // Symbol adress.
2532 DYNAMIC_SYMBOL = -3U,
2533 // String.
2534 DYNAMIC_STRING = -4U
2535 // Any other value indicates a section address plus OFFSET.
2536 };
2537
2538 union
2539 {
2540 // For DYNAMIC_NUMBER.
2541 unsigned int val;
2542 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2543 const Output_data* od;
2544 // For DYNAMIC_SYMBOL.
2545 const Symbol* sym;
2546 // For DYNAMIC_STRING.
2547 const char* str;
2548 } u_;
2549 // For DYNAMIC_SYMBOL with two sections.
2550 const Output_data* od2;
2551 // The dynamic tag.
2552 elfcpp::DT tag_;
2553 // The type of entry (Classification) or offset within a section.
2554 unsigned int offset_;
2555 };
2556
2557 // Add an entry to the list.
2558 void
2559 add_entry(const Dynamic_entry& entry)
2560 { this->entries_.push_back(entry); }
2561
2562 // Sized version of write function.
2563 template<int size, bool big_endian>
2564 void
2565 sized_write(Output_file* of);
2566
2567 // The type of the list of entries.
2568 typedef std::vector<Dynamic_entry> Dynamic_entries;
2569
2570 // The entries.
2571 Dynamic_entries entries_;
2572 // The pool used for strings.
2573 Stringpool* pool_;
2574 };
2575
2576 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2577 // which may be required if the object file has more than
2578 // SHN_LORESERVE sections.
2579
2580 class Output_symtab_xindex : public Output_section_data
2581 {
2582 public:
2583 Output_symtab_xindex(size_t symcount)
2584 : Output_section_data(symcount * 4, 4, true),
2585 entries_()
2586 { }
2587
2588 // Add an entry: symbol number SYMNDX has section SHNDX.
2589 void
2590 add(unsigned int symndx, unsigned int shndx)
2591 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2592
2593 protected:
2594 void
2595 do_write(Output_file*);
2596
2597 // Write to a map file.
2598 void
2599 do_print_to_mapfile(Mapfile* mapfile) const
2600 { mapfile->print_output_data(this, _("** symtab xindex")); }
2601
2602 private:
2603 template<bool big_endian>
2604 void
2605 endian_do_write(unsigned char*);
2606
2607 // It is likely that most symbols will not require entries. Rather
2608 // than keep a vector for all symbols, we keep pairs of symbol index
2609 // and section index.
2610 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2611
2612 // The entries we need.
2613 Xindex_entries entries_;
2614 };
2615
2616 // A relaxed input section.
2617 class Output_relaxed_input_section : public Output_section_data_build
2618 {
2619 public:
2620 // We would like to call relobj->section_addralign(shndx) to get the
2621 // alignment but we do not want the constructor to fail. So callers
2622 // are repsonsible for ensuring that.
2623 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2624 uint64_t addralign)
2625 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2626 { }
2627
2628 // Return the Relobj of this relaxed input section.
2629 Relobj*
2630 relobj() const
2631 { return this->relobj_; }
2632
2633 // Return the section index of this relaxed input section.
2634 unsigned int
2635 shndx() const
2636 { return this->shndx_; }
2637
2638 private:
2639 Relobj* relobj_;
2640 unsigned int shndx_;
2641 };
2642
2643 // This class describes properties of merge data sections. It is used
2644 // as a key type for maps.
2645 class Merge_section_properties
2646 {
2647 public:
2648 Merge_section_properties(bool is_string, uint64_t entsize,
2649 uint64_t addralign)
2650 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2651 { }
2652
2653 // Whether this equals to another Merge_section_properties MSP.
2654 bool
2655 eq(const Merge_section_properties& msp) const
2656 {
2657 return ((this->is_string_ == msp.is_string_)
2658 && (this->entsize_ == msp.entsize_)
2659 && (this->addralign_ == msp.addralign_));
2660 }
2661
2662 // Compute a hash value for this using 64-bit FNV-1a hash.
2663 size_t
2664 hash_value() const
2665 {
2666 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2667 uint64_t prime = 1099511628211ULL;
2668 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2669 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2670 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2671 return h;
2672 }
2673
2674 // Functors for associative containers.
2675 struct equal_to
2676 {
2677 bool
2678 operator()(const Merge_section_properties& msp1,
2679 const Merge_section_properties& msp2) const
2680 { return msp1.eq(msp2); }
2681 };
2682
2683 struct hash
2684 {
2685 size_t
2686 operator()(const Merge_section_properties& msp) const
2687 { return msp.hash_value(); }
2688 };
2689
2690 private:
2691 // Whether this merge data section is for strings.
2692 bool is_string_;
2693 // Entsize of this merge data section.
2694 uint64_t entsize_;
2695 // Address alignment.
2696 uint64_t addralign_;
2697 };
2698
2699 // This class is used to speed up look up of special input sections in an
2700 // Output_section.
2701
2702 class Output_section_lookup_maps
2703 {
2704 public:
2705 Output_section_lookup_maps()
2706 : is_valid_(true), merge_sections_by_properties_(),
2707 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2708 { }
2709
2710 // Whether the maps are valid.
2711 bool
2712 is_valid() const
2713 { return this->is_valid_; }
2714
2715 // Invalidate the maps.
2716 void
2717 invalidate()
2718 { this->is_valid_ = false; }
2719
2720 // Clear the maps.
2721 void
2722 clear()
2723 {
2724 this->merge_sections_by_properties_.clear();
2725 this->merge_sections_by_id_.clear();
2726 this->relaxed_input_sections_by_id_.clear();
2727 // A cleared map is valid.
2728 this->is_valid_ = true;
2729 }
2730
2731 // Find a merge section by merge section properties. Return NULL if none
2732 // is found.
2733 Output_merge_base*
2734 find_merge_section(const Merge_section_properties& msp) const
2735 {
2736 gold_assert(this->is_valid_);
2737 Merge_sections_by_properties::const_iterator p =
2738 this->merge_sections_by_properties_.find(msp);
2739 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2740 }
2741
2742 // Find a merge section by section ID of a merge input section. Return NULL
2743 // if none is found.
2744 Output_merge_base*
2745 find_merge_section(const Object* object, unsigned int shndx) const
2746 {
2747 gold_assert(this->is_valid_);
2748 Merge_sections_by_id::const_iterator p =
2749 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2750 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2751 }
2752
2753 // Add a merge section pointed by POMB with properties MSP.
2754 void
2755 add_merge_section(const Merge_section_properties& msp,
2756 Output_merge_base* pomb)
2757 {
2758 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2759 std::pair<Merge_sections_by_properties::iterator, bool> result =
2760 this->merge_sections_by_properties_.insert(value);
2761 gold_assert(result.second);
2762 }
2763
2764 // Add a mapping from a merged input section in OBJECT with index SHNDX
2765 // to a merge output section pointed by POMB.
2766 void
2767 add_merge_input_section(const Object* object, unsigned int shndx,
2768 Output_merge_base* pomb)
2769 {
2770 Const_section_id csid(object, shndx);
2771 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2772 std::pair<Merge_sections_by_id::iterator, bool> result =
2773 this->merge_sections_by_id_.insert(value);
2774 gold_assert(result.second);
2775 }
2776
2777 // Find a relaxed input section of OBJECT with index SHNDX.
2778 Output_relaxed_input_section*
2779 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2780 {
2781 gold_assert(this->is_valid_);
2782 Relaxed_input_sections_by_id::const_iterator p =
2783 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2784 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2785 }
2786
2787 // Add a relaxed input section pointed by POMB and whose original input
2788 // section is in OBJECT with index SHNDX.
2789 void
2790 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2791 Output_relaxed_input_section* poris)
2792 {
2793 Const_section_id csid(relobj, shndx);
2794 std::pair<Const_section_id, Output_relaxed_input_section*>
2795 value(csid, poris);
2796 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2797 this->relaxed_input_sections_by_id_.insert(value);
2798 gold_assert(result.second);
2799 }
2800
2801 private:
2802 typedef Unordered_map<Const_section_id, Output_merge_base*,
2803 Const_section_id_hash>
2804 Merge_sections_by_id;
2805
2806 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2807 Merge_section_properties::hash,
2808 Merge_section_properties::equal_to>
2809 Merge_sections_by_properties;
2810
2811 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2812 Const_section_id_hash>
2813 Relaxed_input_sections_by_id;
2814
2815 // Whether this is valid
2816 bool is_valid_;
2817 // Merge sections by merge section properties.
2818 Merge_sections_by_properties merge_sections_by_properties_;
2819 // Merge sections by section IDs.
2820 Merge_sections_by_id merge_sections_by_id_;
2821 // Relaxed sections by section IDs.
2822 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2823 };
2824
2825 // This abstract base class defines the interface for the
2826 // types of methods used to fill free space left in an output
2827 // section during an incremental link. These methods are used
2828 // to insert dummy compilation units into debug info so that
2829 // debug info consumers can scan the debug info serially.
2830
2831 class Output_fill
2832 {
2833 public:
2834 Output_fill()
2835 : is_big_endian_(parameters->target().is_big_endian())
2836 { }
2837
2838 virtual
2839 ~Output_fill()
2840 { }
2841
2842 // Return the smallest size chunk of free space that can be
2843 // filled with a dummy compilation unit.
2844 size_t
2845 minimum_hole_size() const
2846 { return this->do_minimum_hole_size(); }
2847
2848 // Write a fill pattern of length LEN at offset OFF in the file.
2849 void
2850 write(Output_file* of, off_t off, size_t len) const
2851 { this->do_write(of, off, len); }
2852
2853 protected:
2854 virtual size_t
2855 do_minimum_hole_size() const = 0;
2856
2857 virtual void
2858 do_write(Output_file* of, off_t off, size_t len) const = 0;
2859
2860 bool
2861 is_big_endian() const
2862 { return this->is_big_endian_; }
2863
2864 private:
2865 bool is_big_endian_;
2866 };
2867
2868 // Fill method that introduces a dummy compilation unit in
2869 // a .debug_info or .debug_types section.
2870
2871 class Output_fill_debug_info : public Output_fill
2872 {
2873 public:
2874 Output_fill_debug_info(bool is_debug_types)
2875 : is_debug_types_(is_debug_types)
2876 { }
2877
2878 protected:
2879 virtual size_t
2880 do_minimum_hole_size() const;
2881
2882 virtual void
2883 do_write(Output_file* of, off_t off, size_t len) const;
2884
2885 private:
2886 // Version of the header.
2887 static const int version = 4;
2888 // True if this is a .debug_types section.
2889 bool is_debug_types_;
2890 };
2891
2892 // Fill method that introduces a dummy compilation unit in
2893 // a .debug_line section.
2894
2895 class Output_fill_debug_line : public Output_fill
2896 {
2897 public:
2898 Output_fill_debug_line()
2899 { }
2900
2901 protected:
2902 virtual size_t
2903 do_minimum_hole_size() const;
2904
2905 virtual void
2906 do_write(Output_file* of, off_t off, size_t len) const;
2907
2908 private:
2909 // Version of the header. We write a DWARF-3 header because it's smaller
2910 // and many tools have not yet been updated to understand the DWARF-4 header.
2911 static const int version = 3;
2912 // Length of the portion of the header that follows the header_length
2913 // field. This includes the following fields:
2914 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2915 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2916 // The standard_opcode_lengths array is 12 bytes long, and the
2917 // include_directories and filenames fields each contain only a single
2918 // null byte.
2919 static const size_t header_length = 19;
2920 };
2921
2922 // An output section. We don't expect to have too many output
2923 // sections, so we don't bother to do a template on the size.
2924
2925 class Output_section : public Output_data
2926 {
2927 public:
2928 // Create an output section, giving the name, type, and flags.
2929 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2930 virtual ~Output_section();
2931
2932 // Add a new input section SHNDX, named NAME, with header SHDR, from
2933 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2934 // which applies to this section, or 0 if none, or -1 if more than
2935 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2936 // in a linker script; in that case we need to keep track of input
2937 // sections associated with an output section. Return the offset
2938 // within the output section.
2939 template<int size, bool big_endian>
2940 off_t
2941 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
2942 unsigned int shndx, const char* name,
2943 const elfcpp::Shdr<size, big_endian>& shdr,
2944 unsigned int reloc_shndx, bool have_sections_script);
2945
2946 // Add generated data POSD to this output section.
2947 void
2948 add_output_section_data(Output_section_data* posd);
2949
2950 // Add a relaxed input section PORIS called NAME to this output section
2951 // with LAYOUT.
2952 void
2953 add_relaxed_input_section(Layout* layout,
2954 Output_relaxed_input_section* poris,
2955 const std::string& name);
2956
2957 // Return the section name.
2958 const char*
2959 name() const
2960 { return this->name_; }
2961
2962 // Return the section type.
2963 elfcpp::Elf_Word
2964 type() const
2965 { return this->type_; }
2966
2967 // Return the section flags.
2968 elfcpp::Elf_Xword
2969 flags() const
2970 { return this->flags_; }
2971
2972 typedef std::map<Section_id, unsigned int> Section_layout_order;
2973
2974 void
2975 update_section_layout(const Section_layout_order* order_map);
2976
2977 // Update the output section flags based on input section flags.
2978 void
2979 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2980
2981 // Return the entsize field.
2982 uint64_t
2983 entsize() const
2984 { return this->entsize_; }
2985
2986 // Set the entsize field.
2987 void
2988 set_entsize(uint64_t v);
2989
2990 // Set the load address.
2991 void
2992 set_load_address(uint64_t load_address)
2993 {
2994 this->load_address_ = load_address;
2995 this->has_load_address_ = true;
2996 }
2997
2998 // Set the link field to the output section index of a section.
2999 void
3000 set_link_section(const Output_data* od)
3001 {
3002 gold_assert(this->link_ == 0
3003 && !this->should_link_to_symtab_
3004 && !this->should_link_to_dynsym_);
3005 this->link_section_ = od;
3006 }
3007
3008 // Set the link field to a constant.
3009 void
3010 set_link(unsigned int v)
3011 {
3012 gold_assert(this->link_section_ == NULL
3013 && !this->should_link_to_symtab_
3014 && !this->should_link_to_dynsym_);
3015 this->link_ = v;
3016 }
3017
3018 // Record that this section should link to the normal symbol table.
3019 void
3020 set_should_link_to_symtab()
3021 {
3022 gold_assert(this->link_section_ == NULL
3023 && this->link_ == 0
3024 && !this->should_link_to_dynsym_);
3025 this->should_link_to_symtab_ = true;
3026 }
3027
3028 // Record that this section should link to the dynamic symbol table.
3029 void
3030 set_should_link_to_dynsym()
3031 {
3032 gold_assert(this->link_section_ == NULL
3033 && this->link_ == 0
3034 && !this->should_link_to_symtab_);
3035 this->should_link_to_dynsym_ = true;
3036 }
3037
3038 // Return the info field.
3039 unsigned int
3040 info() const
3041 {
3042 gold_assert(this->info_section_ == NULL
3043 && this->info_symndx_ == NULL);
3044 return this->info_;
3045 }
3046
3047 // Set the info field to the output section index of a section.
3048 void
3049 set_info_section(const Output_section* os)
3050 {
3051 gold_assert((this->info_section_ == NULL
3052 || (this->info_section_ == os
3053 && this->info_uses_section_index_))
3054 && this->info_symndx_ == NULL
3055 && this->info_ == 0);
3056 this->info_section_ = os;
3057 this->info_uses_section_index_= true;
3058 }
3059
3060 // Set the info field to the symbol table index of a symbol.
3061 void
3062 set_info_symndx(const Symbol* sym)
3063 {
3064 gold_assert(this->info_section_ == NULL
3065 && (this->info_symndx_ == NULL
3066 || this->info_symndx_ == sym)
3067 && this->info_ == 0);
3068 this->info_symndx_ = sym;
3069 }
3070
3071 // Set the info field to the symbol table index of a section symbol.
3072 void
3073 set_info_section_symndx(const Output_section* os)
3074 {
3075 gold_assert((this->info_section_ == NULL
3076 || (this->info_section_ == os
3077 && !this->info_uses_section_index_))
3078 && this->info_symndx_ == NULL
3079 && this->info_ == 0);
3080 this->info_section_ = os;
3081 this->info_uses_section_index_ = false;
3082 }
3083
3084 // Set the info field to a constant.
3085 void
3086 set_info(unsigned int v)
3087 {
3088 gold_assert(this->info_section_ == NULL
3089 && this->info_symndx_ == NULL
3090 && (this->info_ == 0
3091 || this->info_ == v));
3092 this->info_ = v;
3093 }
3094
3095 // Set the addralign field.
3096 void
3097 set_addralign(uint64_t v)
3098 { this->addralign_ = v; }
3099
3100 // Whether the output section index has been set.
3101 bool
3102 has_out_shndx() const
3103 { return this->out_shndx_ != -1U; }
3104
3105 // Indicate that we need a symtab index.
3106 void
3107 set_needs_symtab_index()
3108 { this->needs_symtab_index_ = true; }
3109
3110 // Return whether we need a symtab index.
3111 bool
3112 needs_symtab_index() const
3113 { return this->needs_symtab_index_; }
3114
3115 // Get the symtab index.
3116 unsigned int
3117 symtab_index() const
3118 {
3119 gold_assert(this->symtab_index_ != 0);
3120 return this->symtab_index_;
3121 }
3122
3123 // Set the symtab index.
3124 void
3125 set_symtab_index(unsigned int index)
3126 {
3127 gold_assert(index != 0);
3128 this->symtab_index_ = index;
3129 }
3130
3131 // Indicate that we need a dynsym index.
3132 void
3133 set_needs_dynsym_index()
3134 { this->needs_dynsym_index_ = true; }
3135
3136 // Return whether we need a dynsym index.
3137 bool
3138 needs_dynsym_index() const
3139 { return this->needs_dynsym_index_; }
3140
3141 // Get the dynsym index.
3142 unsigned int
3143 dynsym_index() const
3144 {
3145 gold_assert(this->dynsym_index_ != 0);
3146 return this->dynsym_index_;
3147 }
3148
3149 // Set the dynsym index.
3150 void
3151 set_dynsym_index(unsigned int index)
3152 {
3153 gold_assert(index != 0);
3154 this->dynsym_index_ = index;
3155 }
3156
3157 // Return whether the input sections sections attachd to this output
3158 // section may require sorting. This is used to handle constructor
3159 // priorities compatibly with GNU ld.
3160 bool
3161 may_sort_attached_input_sections() const
3162 { return this->may_sort_attached_input_sections_; }
3163
3164 // Record that the input sections attached to this output section
3165 // may require sorting.
3166 void
3167 set_may_sort_attached_input_sections()
3168 { this->may_sort_attached_input_sections_ = true; }
3169
3170 // Returns true if input sections must be sorted according to the
3171 // order in which their name appear in the --section-ordering-file.
3172 bool
3173 input_section_order_specified()
3174 { return this->input_section_order_specified_; }
3175
3176 // Record that input sections must be sorted as some of their names
3177 // match the patterns specified through --section-ordering-file.
3178 void
3179 set_input_section_order_specified()
3180 { this->input_section_order_specified_ = true; }
3181
3182 // Return whether the input sections attached to this output section
3183 // require sorting. This is used to handle constructor priorities
3184 // compatibly with GNU ld.
3185 bool
3186 must_sort_attached_input_sections() const
3187 { return this->must_sort_attached_input_sections_; }
3188
3189 // Record that the input sections attached to this output section
3190 // require sorting.
3191 void
3192 set_must_sort_attached_input_sections()
3193 { this->must_sort_attached_input_sections_ = true; }
3194
3195 // Get the order in which this section appears in the PT_LOAD output
3196 // segment.
3197 Output_section_order
3198 order() const
3199 { return this->order_; }
3200
3201 // Set the order for this section.
3202 void
3203 set_order(Output_section_order order)
3204 { this->order_ = order; }
3205
3206 // Return whether this section holds relro data--data which has
3207 // dynamic relocations but which may be marked read-only after the
3208 // dynamic relocations have been completed.
3209 bool
3210 is_relro() const
3211 { return this->is_relro_; }
3212
3213 // Record that this section holds relro data.
3214 void
3215 set_is_relro()
3216 { this->is_relro_ = true; }
3217
3218 // Record that this section does not hold relro data.
3219 void
3220 clear_is_relro()
3221 { this->is_relro_ = false; }
3222
3223 // True if this is a small section: a section which holds small
3224 // variables.
3225 bool
3226 is_small_section() const
3227 { return this->is_small_section_; }
3228
3229 // Record that this is a small section.
3230 void
3231 set_is_small_section()
3232 { this->is_small_section_ = true; }
3233
3234 // True if this is a large section: a section which holds large
3235 // variables.
3236 bool
3237 is_large_section() const
3238 { return this->is_large_section_; }
3239
3240 // Record that this is a large section.
3241 void
3242 set_is_large_section()
3243 { this->is_large_section_ = true; }
3244
3245 // True if this is a large data (not BSS) section.
3246 bool
3247 is_large_data_section()
3248 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3249
3250 // Return whether this section should be written after all the input
3251 // sections are complete.
3252 bool
3253 after_input_sections() const
3254 { return this->after_input_sections_; }
3255
3256 // Record that this section should be written after all the input
3257 // sections are complete.
3258 void
3259 set_after_input_sections()
3260 { this->after_input_sections_ = true; }
3261
3262 // Return whether this section requires postprocessing after all
3263 // relocations have been applied.
3264 bool
3265 requires_postprocessing() const
3266 { return this->requires_postprocessing_; }
3267
3268 // If a section requires postprocessing, return the buffer to use.
3269 unsigned char*
3270 postprocessing_buffer() const
3271 {
3272 gold_assert(this->postprocessing_buffer_ != NULL);
3273 return this->postprocessing_buffer_;
3274 }
3275
3276 // If a section requires postprocessing, create the buffer to use.
3277 void
3278 create_postprocessing_buffer();
3279
3280 // If a section requires postprocessing, this is the size of the
3281 // buffer to which relocations should be applied.
3282 off_t
3283 postprocessing_buffer_size() const
3284 { return this->current_data_size_for_child(); }
3285
3286 // Modify the section name. This is only permitted for an
3287 // unallocated section, and only before the size has been finalized.
3288 // Otherwise the name will not get into Layout::namepool_.
3289 void
3290 set_name(const char* newname)
3291 {
3292 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3293 gold_assert(!this->is_data_size_valid());
3294 this->name_ = newname;
3295 }
3296
3297 // Return whether the offset OFFSET in the input section SHNDX in
3298 // object OBJECT is being included in the link.
3299 bool
3300 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3301 off_t offset) const;
3302
3303 // Return the offset within the output section of OFFSET relative to
3304 // the start of input section SHNDX in object OBJECT.
3305 section_offset_type
3306 output_offset(const Relobj* object, unsigned int shndx,
3307 section_offset_type offset) const;
3308
3309 // Return the output virtual address of OFFSET relative to the start
3310 // of input section SHNDX in object OBJECT.
3311 uint64_t
3312 output_address(const Relobj* object, unsigned int shndx,
3313 off_t offset) const;
3314
3315 // Look for the merged section for input section SHNDX in object
3316 // OBJECT. If found, return true, and set *ADDR to the address of
3317 // the start of the merged section. This is not necessary the
3318 // output offset corresponding to input offset 0 in the section,
3319 // since the section may be mapped arbitrarily.
3320 bool
3321 find_starting_output_address(const Relobj* object, unsigned int shndx,
3322 uint64_t* addr) const;
3323
3324 // Record that this output section was found in the SECTIONS clause
3325 // of a linker script.
3326 void
3327 set_found_in_sections_clause()
3328 { this->found_in_sections_clause_ = true; }
3329
3330 // Return whether this output section was found in the SECTIONS
3331 // clause of a linker script.
3332 bool
3333 found_in_sections_clause() const
3334 { return this->found_in_sections_clause_; }
3335
3336 // Write the section header into *OPHDR.
3337 template<int size, bool big_endian>
3338 void
3339 write_header(const Layout*, const Stringpool*,
3340 elfcpp::Shdr_write<size, big_endian>*) const;
3341
3342 // The next few calls are for linker script support.
3343
3344 // In some cases we need to keep a list of the input sections
3345 // associated with this output section. We only need the list if we
3346 // might have to change the offsets of the input section within the
3347 // output section after we add the input section. The ordinary
3348 // input sections will be written out when we process the object
3349 // file, and as such we don't need to track them here. We do need
3350 // to track Output_section_data objects here. We store instances of
3351 // this structure in a std::vector, so it must be a POD. There can
3352 // be many instances of this structure, so we use a union to save
3353 // some space.
3354 class Input_section
3355 {
3356 public:
3357 Input_section()
3358 : shndx_(0), p2align_(0)
3359 {
3360 this->u1_.data_size = 0;
3361 this->u2_.object = NULL;
3362 }
3363
3364 // For an ordinary input section.
3365 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3366 uint64_t addralign)
3367 : shndx_(shndx),
3368 p2align_(ffsll(static_cast<long long>(addralign))),
3369 section_order_index_(0)
3370 {
3371 gold_assert(shndx != OUTPUT_SECTION_CODE
3372 && shndx != MERGE_DATA_SECTION_CODE
3373 && shndx != MERGE_STRING_SECTION_CODE
3374 && shndx != RELAXED_INPUT_SECTION_CODE);
3375 this->u1_.data_size = data_size;
3376 this->u2_.object = object;
3377 }
3378
3379 // For a non-merge output section.
3380 Input_section(Output_section_data* posd)
3381 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3382 section_order_index_(0)
3383 {
3384 this->u1_.data_size = 0;
3385 this->u2_.posd = posd;
3386 }
3387
3388 // For a merge section.
3389 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3390 : shndx_(is_string
3391 ? MERGE_STRING_SECTION_CODE
3392 : MERGE_DATA_SECTION_CODE),
3393 p2align_(0),
3394 section_order_index_(0)
3395 {
3396 this->u1_.entsize = entsize;
3397 this->u2_.posd = posd;
3398 }
3399
3400 // For a relaxed input section.
3401 Input_section(Output_relaxed_input_section* psection)
3402 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3403 section_order_index_(0)
3404 {
3405 this->u1_.data_size = 0;
3406 this->u2_.poris = psection;
3407 }
3408
3409 unsigned int
3410 section_order_index() const
3411 {
3412 return this->section_order_index_;
3413 }
3414
3415 void
3416 set_section_order_index(unsigned int number)
3417 {
3418 this->section_order_index_ = number;
3419 }
3420
3421 // The required alignment.
3422 uint64_t
3423 addralign() const
3424 {
3425 if (this->p2align_ != 0)
3426 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3427 else if (!this->is_input_section())
3428 return this->u2_.posd->addralign();
3429 else
3430 return 0;
3431 }
3432
3433 // Set the required alignment, which must be either 0 or a power of 2.
3434 // For input sections that are sub-classes of Output_section_data, a
3435 // alignment of zero means asking the underlying object for alignment.
3436 void
3437 set_addralign(uint64_t addralign)
3438 {
3439 if (addralign == 0)
3440 this->p2align_ = 0;
3441 else
3442 {
3443 gold_assert((addralign & (addralign - 1)) == 0);
3444 this->p2align_ = ffsll(static_cast<long long>(addralign));
3445 }
3446 }
3447
3448 // Return the current required size, without finalization.
3449 off_t
3450 current_data_size() const;
3451
3452 // Return the required size.
3453 off_t
3454 data_size() const;
3455
3456 // Whether this is an input section.
3457 bool
3458 is_input_section() const
3459 {
3460 return (this->shndx_ != OUTPUT_SECTION_CODE
3461 && this->shndx_ != MERGE_DATA_SECTION_CODE
3462 && this->shndx_ != MERGE_STRING_SECTION_CODE
3463 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3464 }
3465
3466 // Return whether this is a merge section which matches the
3467 // parameters.
3468 bool
3469 is_merge_section(bool is_string, uint64_t entsize,
3470 uint64_t addralign) const
3471 {
3472 return (this->shndx_ == (is_string
3473 ? MERGE_STRING_SECTION_CODE
3474 : MERGE_DATA_SECTION_CODE)
3475 && this->u1_.entsize == entsize
3476 && this->addralign() == addralign);
3477 }
3478
3479 // Return whether this is a merge section for some input section.
3480 bool
3481 is_merge_section() const
3482 {
3483 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3484 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3485 }
3486
3487 // Return whether this is a relaxed input section.
3488 bool
3489 is_relaxed_input_section() const
3490 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3491
3492 // Return whether this is a generic Output_section_data.
3493 bool
3494 is_output_section_data() const
3495 {
3496 return this->shndx_ == OUTPUT_SECTION_CODE;
3497 }
3498
3499 // Return the object for an input section.
3500 Relobj*
3501 relobj() const;
3502
3503 // Return the input section index for an input section.
3504 unsigned int
3505 shndx() const;
3506
3507 // For non-input-sections, return the associated Output_section_data
3508 // object.
3509 Output_section_data*
3510 output_section_data() const
3511 {
3512 gold_assert(!this->is_input_section());
3513 return this->u2_.posd;
3514 }
3515
3516 // For a merge section, return the Output_merge_base pointer.
3517 Output_merge_base*
3518 output_merge_base() const
3519 {
3520 gold_assert(this->is_merge_section());
3521 return this->u2_.pomb;
3522 }
3523
3524 // Return the Output_relaxed_input_section object.
3525 Output_relaxed_input_section*
3526 relaxed_input_section() const
3527 {
3528 gold_assert(this->is_relaxed_input_section());
3529 return this->u2_.poris;
3530 }
3531
3532 // Set the output section.
3533 void
3534 set_output_section(Output_section* os)
3535 {
3536 gold_assert(!this->is_input_section());
3537 Output_section_data* posd =
3538 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3539 posd->set_output_section(os);
3540 }
3541
3542 // Set the address and file offset. This is called during
3543 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3544 // the enclosing section.
3545 void
3546 set_address_and_file_offset(uint64_t address, off_t file_offset,
3547 off_t section_file_offset);
3548
3549 // Reset the address and file offset.
3550 void
3551 reset_address_and_file_offset();
3552
3553 // Finalize the data size.
3554 void
3555 finalize_data_size();
3556
3557 // Add an input section, for SHF_MERGE sections.
3558 bool
3559 add_input_section(Relobj* object, unsigned int shndx)
3560 {
3561 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3562 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3563 return this->u2_.posd->add_input_section(object, shndx);
3564 }
3565
3566 // Given an input OBJECT, an input section index SHNDX within that
3567 // object, and an OFFSET relative to the start of that input
3568 // section, return whether or not the output offset is known. If
3569 // this function returns true, it sets *POUTPUT to the offset in
3570 // the output section, relative to the start of the input section
3571 // in the output section. *POUTPUT may be different from OFFSET
3572 // for a merged section.
3573 bool
3574 output_offset(const Relobj* object, unsigned int shndx,
3575 section_offset_type offset,
3576 section_offset_type* poutput) const;
3577
3578 // Return whether this is the merge section for the input section
3579 // SHNDX in OBJECT.
3580 bool
3581 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3582
3583 // Write out the data. This does nothing for an input section.
3584 void
3585 write(Output_file*);
3586
3587 // Write the data to a buffer. This does nothing for an input
3588 // section.
3589 void
3590 write_to_buffer(unsigned char*);
3591
3592 // Print to a map file.
3593 void
3594 print_to_mapfile(Mapfile*) const;
3595
3596 // Print statistics about merge sections to stderr.
3597 void
3598 print_merge_stats(const char* section_name)
3599 {
3600 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3601 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3602 this->u2_.posd->print_merge_stats(section_name);
3603 }
3604
3605 private:
3606 // Code values which appear in shndx_. If the value is not one of
3607 // these codes, it is the input section index in the object file.
3608 enum
3609 {
3610 // An Output_section_data.
3611 OUTPUT_SECTION_CODE = -1U,
3612 // An Output_section_data for an SHF_MERGE section with
3613 // SHF_STRINGS not set.
3614 MERGE_DATA_SECTION_CODE = -2U,
3615 // An Output_section_data for an SHF_MERGE section with
3616 // SHF_STRINGS set.
3617 MERGE_STRING_SECTION_CODE = -3U,
3618 // An Output_section_data for a relaxed input section.
3619 RELAXED_INPUT_SECTION_CODE = -4U
3620 };
3621
3622 // For an ordinary input section, this is the section index in the
3623 // input file. For an Output_section_data, this is
3624 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3625 // MERGE_STRING_SECTION_CODE.
3626 unsigned int shndx_;
3627 // The required alignment, stored as a power of 2.
3628 unsigned int p2align_;
3629 union
3630 {
3631 // For an ordinary input section, the section size.
3632 off_t data_size;
3633 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3634 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3635 // entity size.
3636 uint64_t entsize;
3637 } u1_;
3638 union
3639 {
3640 // For an ordinary input section, the object which holds the
3641 // input section.
3642 Relobj* object;
3643 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3644 // MERGE_STRING_SECTION_CODE, the data.
3645 Output_section_data* posd;
3646 Output_merge_base* pomb;
3647 // For RELAXED_INPUT_SECTION_CODE, the data.
3648 Output_relaxed_input_section* poris;
3649 } u2_;
3650 // The line number of the pattern it matches in the --section-ordering-file
3651 // file. It is 0 if does not match any pattern.
3652 unsigned int section_order_index_;
3653 };
3654
3655 // Store the list of input sections for this Output_section into the
3656 // list passed in. This removes the input sections, leaving only
3657 // any Output_section_data elements. This returns the size of those
3658 // Output_section_data elements. ADDRESS is the address of this
3659 // output section. FILL is the fill value to use, in case there are
3660 // any spaces between the remaining Output_section_data elements.
3661 uint64_t
3662 get_input_sections(uint64_t address, const std::string& fill,
3663 std::list<Input_section>*);
3664
3665 // Add a script input section. A script input section can either be
3666 // a plain input section or a sub-class of Output_section_data.
3667 void
3668 add_script_input_section(const Input_section& input_section);
3669
3670 // Set the current size of the output section.
3671 void
3672 set_current_data_size(off_t size)
3673 { this->set_current_data_size_for_child(size); }
3674
3675 // End of linker script support.
3676
3677 // Save states before doing section layout.
3678 // This is used for relaxation.
3679 void
3680 save_states();
3681
3682 // Restore states prior to section layout.
3683 void
3684 restore_states();
3685
3686 // Discard states.
3687 void
3688 discard_states();
3689
3690 // Convert existing input sections to relaxed input sections.
3691 void
3692 convert_input_sections_to_relaxed_sections(
3693 const std::vector<Output_relaxed_input_section*>& sections);
3694
3695 // Find a relaxed input section to an input section in OBJECT
3696 // with index SHNDX. Return NULL if none is found.
3697 const Output_relaxed_input_section*
3698 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3699
3700 // Whether section offsets need adjustment due to relaxation.
3701 bool
3702 section_offsets_need_adjustment() const
3703 { return this->section_offsets_need_adjustment_; }
3704
3705 // Set section_offsets_need_adjustment to be true.
3706 void
3707 set_section_offsets_need_adjustment()
3708 { this->section_offsets_need_adjustment_ = true; }
3709
3710 // Adjust section offsets of input sections in this. This is
3711 // requires if relaxation caused some input sections to change sizes.
3712 void
3713 adjust_section_offsets();
3714
3715 // Whether this is a NOLOAD section.
3716 bool
3717 is_noload() const
3718 { return this->is_noload_; }
3719
3720 // Set NOLOAD flag.
3721 void
3722 set_is_noload()
3723 { this->is_noload_ = true; }
3724
3725 // Print merge statistics to stderr.
3726 void
3727 print_merge_stats();
3728
3729 // Set a fixed layout for the section. Used for incremental update links.
3730 void
3731 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3732 uint64_t sh_addralign);
3733
3734 // Return TRUE if the section has a fixed layout.
3735 bool
3736 has_fixed_layout() const
3737 { return this->has_fixed_layout_; }
3738
3739 // Set flag to allow patch space for this section. Used for full
3740 // incremental links.
3741 void
3742 set_is_patch_space_allowed()
3743 { this->is_patch_space_allowed_ = true; }
3744
3745 // Set a fill method to use for free space left in the output section
3746 // during incremental links.
3747 void
3748 set_free_space_fill(Output_fill* free_space_fill)
3749 {
3750 this->free_space_fill_ = free_space_fill;
3751 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3752 }
3753
3754 // Reserve space within the fixed layout for the section. Used for
3755 // incremental update links.
3756 void
3757 reserve(uint64_t sh_offset, uint64_t sh_size);
3758
3759 // Allocate space from the free list for the section. Used for
3760 // incremental update links.
3761 off_t
3762 allocate(off_t len, uint64_t addralign);
3763
3764 protected:
3765 // Return the output section--i.e., the object itself.
3766 Output_section*
3767 do_output_section()
3768 { return this; }
3769
3770 const Output_section*
3771 do_output_section() const
3772 { return this; }
3773
3774 // Return the section index in the output file.
3775 unsigned int
3776 do_out_shndx() const
3777 {
3778 gold_assert(this->out_shndx_ != -1U);
3779 return this->out_shndx_;
3780 }
3781
3782 // Set the output section index.
3783 void
3784 do_set_out_shndx(unsigned int shndx)
3785 {
3786 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
3787 this->out_shndx_ = shndx;
3788 }
3789
3790 // Update the data size of the Output_section. For a typical
3791 // Output_section, there is nothing to do, but if there are any
3792 // Output_section_data objects we need to do a trial layout
3793 // here.
3794 virtual void
3795 update_data_size();
3796
3797 // Set the final data size of the Output_section. For a typical
3798 // Output_section, there is nothing to do, but if there are any
3799 // Output_section_data objects we need to set their final addresses
3800 // here.
3801 virtual void
3802 set_final_data_size();
3803
3804 // Reset the address and file offset.
3805 void
3806 do_reset_address_and_file_offset();
3807
3808 // Return true if address and file offset already have reset values. In
3809 // other words, calling reset_address_and_file_offset will not change them.
3810 bool
3811 do_address_and_file_offset_have_reset_values() const;
3812
3813 // Write the data to the file. For a typical Output_section, this
3814 // does nothing: the data is written out by calling Object::Relocate
3815 // on each input object. But if there are any Output_section_data
3816 // objects we do need to write them out here.
3817 virtual void
3818 do_write(Output_file*);
3819
3820 // Return the address alignment--function required by parent class.
3821 uint64_t
3822 do_addralign() const
3823 { return this->addralign_; }
3824
3825 // Return whether there is a load address.
3826 bool
3827 do_has_load_address() const
3828 { return this->has_load_address_; }
3829
3830 // Return the load address.
3831 uint64_t
3832 do_load_address() const
3833 {
3834 gold_assert(this->has_load_address_);
3835 return this->load_address_;
3836 }
3837
3838 // Return whether this is an Output_section.
3839 bool
3840 do_is_section() const
3841 { return true; }
3842
3843 // Return whether this is a section of the specified type.
3844 bool
3845 do_is_section_type(elfcpp::Elf_Word type) const
3846 { return this->type_ == type; }
3847
3848 // Return whether the specified section flag is set.
3849 bool
3850 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
3851 { return (this->flags_ & flag) != 0; }
3852
3853 // Set the TLS offset. Called only for SHT_TLS sections.
3854 void
3855 do_set_tls_offset(uint64_t tls_base);
3856
3857 // Return the TLS offset, relative to the base of the TLS segment.
3858 // Valid only for SHT_TLS sections.
3859 uint64_t
3860 do_tls_offset() const
3861 { return this->tls_offset_; }
3862
3863 // This may be implemented by a child class.
3864 virtual void
3865 do_finalize_name(Layout*)
3866 { }
3867
3868 // Print to the map file.
3869 virtual void
3870 do_print_to_mapfile(Mapfile*) const;
3871
3872 // Record that this section requires postprocessing after all
3873 // relocations have been applied. This is called by a child class.
3874 void
3875 set_requires_postprocessing()
3876 {
3877 this->requires_postprocessing_ = true;
3878 this->after_input_sections_ = true;
3879 }
3880
3881 // Write all the data of an Output_section into the postprocessing
3882 // buffer.
3883 void
3884 write_to_postprocessing_buffer();
3885
3886 typedef std::vector<Input_section> Input_section_list;
3887
3888 // Allow a child class to access the input sections.
3889 const Input_section_list&
3890 input_sections() const
3891 { return this->input_sections_; }
3892
3893 // Whether this always keeps an input section list
3894 bool
3895 always_keeps_input_sections() const
3896 { return this->always_keeps_input_sections_; }
3897
3898 // Always keep an input section list.
3899 void
3900 set_always_keeps_input_sections()
3901 {
3902 gold_assert(this->current_data_size_for_child() == 0);
3903 this->always_keeps_input_sections_ = true;
3904 }
3905
3906 private:
3907 // We only save enough information to undo the effects of section layout.
3908 class Checkpoint_output_section
3909 {
3910 public:
3911 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3912 const Input_section_list& input_sections,
3913 off_t first_input_offset,
3914 bool attached_input_sections_are_sorted)
3915 : addralign_(addralign), flags_(flags),
3916 input_sections_(input_sections),
3917 input_sections_size_(input_sections_.size()),
3918 input_sections_copy_(), first_input_offset_(first_input_offset),
3919 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3920 { }
3921
3922 virtual
3923 ~Checkpoint_output_section()
3924 { }
3925
3926 // Return the address alignment.
3927 uint64_t
3928 addralign() const
3929 { return this->addralign_; }
3930
3931 // Return the section flags.
3932 elfcpp::Elf_Xword
3933 flags() const
3934 { return this->flags_; }
3935
3936 // Return a reference to the input section list copy.
3937 Input_section_list*
3938 input_sections()
3939 { return &this->input_sections_copy_; }
3940
3941 // Return the size of input_sections at the time when checkpoint is
3942 // taken.
3943 size_t
3944 input_sections_size() const
3945 { return this->input_sections_size_; }
3946
3947 // Whether input sections are copied.
3948 bool
3949 input_sections_saved() const
3950 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3951
3952 off_t
3953 first_input_offset() const
3954 { return this->first_input_offset_; }
3955
3956 bool
3957 attached_input_sections_are_sorted() const
3958 { return this->attached_input_sections_are_sorted_; }
3959
3960 // Save input sections.
3961 void
3962 save_input_sections()
3963 {
3964 this->input_sections_copy_.reserve(this->input_sections_size_);
3965 this->input_sections_copy_.clear();
3966 Input_section_list::const_iterator p = this->input_sections_.begin();
3967 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3968 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3969 this->input_sections_copy_.push_back(*p);
3970 }
3971
3972 private:
3973 // The section alignment.
3974 uint64_t addralign_;
3975 // The section flags.
3976 elfcpp::Elf_Xword flags_;
3977 // Reference to the input sections to be checkpointed.
3978 const Input_section_list& input_sections_;
3979 // Size of the checkpointed portion of input_sections_;
3980 size_t input_sections_size_;
3981 // Copy of input sections.
3982 Input_section_list input_sections_copy_;
3983 // The offset of the first entry in input_sections_.
3984 off_t first_input_offset_;
3985 // True if the input sections attached to this output section have
3986 // already been sorted.
3987 bool attached_input_sections_are_sorted_;
3988 };
3989
3990 // This class is used to sort the input sections.
3991 class Input_section_sort_entry;
3992
3993 // This is the sort comparison function for ctors and dtors.
3994 struct Input_section_sort_compare
3995 {
3996 bool
3997 operator()(const Input_section_sort_entry&,
3998 const Input_section_sort_entry&) const;
3999 };
4000
4001 // This is the sort comparison function for .init_array and .fini_array.
4002 struct Input_section_sort_init_fini_compare
4003 {
4004 bool
4005 operator()(const Input_section_sort_entry&,
4006 const Input_section_sort_entry&) const;
4007 };
4008
4009 // This is the sort comparison function when a section order is specified
4010 // from an input file.
4011 struct Input_section_sort_section_order_index_compare
4012 {
4013 bool
4014 operator()(const Input_section_sort_entry&,
4015 const Input_section_sort_entry&) const;
4016 };
4017
4018 // Fill data. This is used to fill in data between input sections.
4019 // It is also used for data statements (BYTE, WORD, etc.) in linker
4020 // scripts. When we have to keep track of the input sections, we
4021 // can use an Output_data_const, but we don't want to have to keep
4022 // track of input sections just to implement fills.
4023 class Fill
4024 {
4025 public:
4026 Fill(off_t section_offset, off_t length)
4027 : section_offset_(section_offset),
4028 length_(convert_to_section_size_type(length))
4029 { }
4030
4031 // Return section offset.
4032 off_t
4033 section_offset() const
4034 { return this->section_offset_; }
4035
4036 // Return fill length.
4037 section_size_type
4038 length() const
4039 { return this->length_; }
4040
4041 private:
4042 // The offset within the output section.
4043 off_t section_offset_;
4044 // The length of the space to fill.
4045 section_size_type length_;
4046 };
4047
4048 typedef std::vector<Fill> Fill_list;
4049
4050 // Map used during relaxation of existing sections. This map
4051 // a section id an input section list index. We assume that
4052 // Input_section_list is a vector.
4053 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4054
4055 // Add a new output section by Input_section.
4056 void
4057 add_output_section_data(Input_section*);
4058
4059 // Add an SHF_MERGE input section. Returns true if the section was
4060 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4061 // stores information about the merged input sections.
4062 bool
4063 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4064 uint64_t entsize, uint64_t addralign,
4065 bool keeps_input_sections);
4066
4067 // Add an output SHF_MERGE section POSD to this output section.
4068 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4069 // ENTSIZE is the entity size. This returns the entry added to
4070 // input_sections_.
4071 void
4072 add_output_merge_section(Output_section_data* posd, bool is_string,
4073 uint64_t entsize);
4074
4075 // Sort the attached input sections.
4076 void
4077 sort_attached_input_sections();
4078
4079 // Find the merge section into which an input section with index SHNDX in
4080 // OBJECT has been added. Return NULL if none found.
4081 Output_section_data*
4082 find_merge_section(const Relobj* object, unsigned int shndx) const;
4083
4084 // Build a relaxation map.
4085 void
4086 build_relaxation_map(
4087 const Input_section_list& input_sections,
4088 size_t limit,
4089 Relaxation_map* map) const;
4090
4091 // Convert input sections in an input section list into relaxed sections.
4092 void
4093 convert_input_sections_in_list_to_relaxed_sections(
4094 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4095 const Relaxation_map& map,
4096 Input_section_list* input_sections);
4097
4098 // Build the lookup maps for merge and relaxed input sections.
4099 void
4100 build_lookup_maps() const;
4101
4102 // Most of these fields are only valid after layout.
4103
4104 // The name of the section. This will point into a Stringpool.
4105 const char* name_;
4106 // The section address is in the parent class.
4107 // The section alignment.
4108 uint64_t addralign_;
4109 // The section entry size.
4110 uint64_t entsize_;
4111 // The load address. This is only used when using a linker script
4112 // with a SECTIONS clause. The has_load_address_ field indicates
4113 // whether this field is valid.
4114 uint64_t load_address_;
4115 // The file offset is in the parent class.
4116 // Set the section link field to the index of this section.
4117 const Output_data* link_section_;
4118 // If link_section_ is NULL, this is the link field.
4119 unsigned int link_;
4120 // Set the section info field to the index of this section.
4121 const Output_section* info_section_;
4122 // If info_section_ is NULL, set the info field to the symbol table
4123 // index of this symbol.
4124 const Symbol* info_symndx_;
4125 // If info_section_ and info_symndx_ are NULL, this is the section
4126 // info field.
4127 unsigned int info_;
4128 // The section type.
4129 const elfcpp::Elf_Word type_;
4130 // The section flags.
4131 elfcpp::Elf_Xword flags_;
4132 // The order of this section in the output segment.
4133 Output_section_order order_;
4134 // The section index.
4135 unsigned int out_shndx_;
4136 // If there is a STT_SECTION for this output section in the normal
4137 // symbol table, this is the symbol index. This starts out as zero.
4138 // It is initialized in Layout::finalize() to be the index, or -1U
4139 // if there isn't one.
4140 unsigned int symtab_index_;
4141 // If there is a STT_SECTION for this output section in the dynamic
4142 // symbol table, this is the symbol index. This starts out as zero.
4143 // It is initialized in Layout::finalize() to be the index, or -1U
4144 // if there isn't one.
4145 unsigned int dynsym_index_;
4146 // The input sections. This will be empty in cases where we don't
4147 // need to keep track of them.
4148 Input_section_list input_sections_;
4149 // The offset of the first entry in input_sections_.
4150 off_t first_input_offset_;
4151 // The fill data. This is separate from input_sections_ because we
4152 // often will need fill sections without needing to keep track of
4153 // input sections.
4154 Fill_list fills_;
4155 // If the section requires postprocessing, this buffer holds the
4156 // section contents during relocation.
4157 unsigned char* postprocessing_buffer_;
4158 // Whether this output section needs a STT_SECTION symbol in the
4159 // normal symbol table. This will be true if there is a relocation
4160 // which needs it.
4161 bool needs_symtab_index_ : 1;
4162 // Whether this output section needs a STT_SECTION symbol in the
4163 // dynamic symbol table. This will be true if there is a dynamic
4164 // relocation which needs it.
4165 bool needs_dynsym_index_ : 1;
4166 // Whether the link field of this output section should point to the
4167 // normal symbol table.
4168 bool should_link_to_symtab_ : 1;
4169 // Whether the link field of this output section should point to the
4170 // dynamic symbol table.
4171 bool should_link_to_dynsym_ : 1;
4172 // Whether this section should be written after all the input
4173 // sections are complete.
4174 bool after_input_sections_ : 1;
4175 // Whether this section requires post processing after all
4176 // relocations have been applied.
4177 bool requires_postprocessing_ : 1;
4178 // Whether an input section was mapped to this output section
4179 // because of a SECTIONS clause in a linker script.
4180 bool found_in_sections_clause_ : 1;
4181 // Whether this section has an explicitly specified load address.
4182 bool has_load_address_ : 1;
4183 // True if the info_section_ field means the section index of the
4184 // section, false if it means the symbol index of the corresponding
4185 // section symbol.
4186 bool info_uses_section_index_ : 1;
4187 // True if input sections attached to this output section have to be
4188 // sorted according to a specified order.
4189 bool input_section_order_specified_ : 1;
4190 // True if the input sections attached to this output section may
4191 // need sorting.
4192 bool may_sort_attached_input_sections_ : 1;
4193 // True if the input sections attached to this output section must
4194 // be sorted.
4195 bool must_sort_attached_input_sections_ : 1;
4196 // True if the input sections attached to this output section have
4197 // already been sorted.
4198 bool attached_input_sections_are_sorted_ : 1;
4199 // True if this section holds relro data.
4200 bool is_relro_ : 1;
4201 // True if this is a small section.
4202 bool is_small_section_ : 1;
4203 // True if this is a large section.
4204 bool is_large_section_ : 1;
4205 // Whether code-fills are generated at write.
4206 bool generate_code_fills_at_write_ : 1;
4207 // Whether the entry size field should be zero.
4208 bool is_entsize_zero_ : 1;
4209 // Whether section offsets need adjustment due to relaxation.
4210 bool section_offsets_need_adjustment_ : 1;
4211 // Whether this is a NOLOAD section.
4212 bool is_noload_ : 1;
4213 // Whether this always keeps input section.
4214 bool always_keeps_input_sections_ : 1;
4215 // Whether this section has a fixed layout, for incremental update links.
4216 bool has_fixed_layout_ : 1;
4217 // True if we can add patch space to this section.
4218 bool is_patch_space_allowed_ : 1;
4219 // For SHT_TLS sections, the offset of this section relative to the base
4220 // of the TLS segment.
4221 uint64_t tls_offset_;
4222 // Saved checkpoint.
4223 Checkpoint_output_section* checkpoint_;
4224 // Fast lookup maps for merged and relaxed input sections.
4225 Output_section_lookup_maps* lookup_maps_;
4226 // List of available regions within the section, for incremental
4227 // update links.
4228 Free_list free_list_;
4229 // Method for filling chunks of free space.
4230 Output_fill* free_space_fill_;
4231 // Amount added as patch space for incremental linking.
4232 off_t patch_space_;
4233 };
4234
4235 // An output segment. PT_LOAD segments are built from collections of
4236 // output sections. Other segments typically point within PT_LOAD
4237 // segments, and are built directly as needed.
4238 //
4239 // NOTE: We want to use the copy constructor for this class. During
4240 // relaxation, we may try built the segments multiple times. We do
4241 // that by copying the original segment list before lay-out, doing
4242 // a trial lay-out and roll-back to the saved copied if we need to
4243 // to the lay-out again.
4244
4245 class Output_segment
4246 {
4247 public:
4248 // Create an output segment, specifying the type and flags.
4249 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4250
4251 // Return the virtual address.
4252 uint64_t
4253 vaddr() const
4254 { return this->vaddr_; }
4255
4256 // Return the physical address.
4257 uint64_t
4258 paddr() const
4259 { return this->paddr_; }
4260
4261 // Return the segment type.
4262 elfcpp::Elf_Word
4263 type() const
4264 { return this->type_; }
4265
4266 // Return the segment flags.
4267 elfcpp::Elf_Word
4268 flags() const
4269 { return this->flags_; }
4270
4271 // Return the memory size.
4272 uint64_t
4273 memsz() const
4274 { return this->memsz_; }
4275
4276 // Return the file size.
4277 off_t
4278 filesz() const
4279 { return this->filesz_; }
4280
4281 // Return the file offset.
4282 off_t
4283 offset() const
4284 { return this->offset_; }
4285
4286 // Whether this is a segment created to hold large data sections.
4287 bool
4288 is_large_data_segment() const
4289 { return this->is_large_data_segment_; }
4290
4291 // Record that this is a segment created to hold large data
4292 // sections.
4293 void
4294 set_is_large_data_segment()
4295 { this->is_large_data_segment_ = true; }
4296
4297 // Return the maximum alignment of the Output_data.
4298 uint64_t
4299 maximum_alignment();
4300
4301 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4302 // the segment flags to use.
4303 void
4304 add_output_section_to_load(Layout* layout, Output_section* os,
4305 elfcpp::Elf_Word seg_flags);
4306
4307 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4308 // is the segment flags to use.
4309 void
4310 add_output_section_to_nonload(Output_section* os,
4311 elfcpp::Elf_Word seg_flags);
4312
4313 // Remove an Output_section from this segment. It is an error if it
4314 // is not present.
4315 void
4316 remove_output_section(Output_section* os);
4317
4318 // Add an Output_data (which need not be an Output_section) to the
4319 // start of this segment.
4320 void
4321 add_initial_output_data(Output_data*);
4322
4323 // Return true if this segment has any sections which hold actual
4324 // data, rather than being a BSS section.
4325 bool
4326 has_any_data_sections() const;
4327
4328 // Whether this segment has a dynamic relocs.
4329 bool
4330 has_dynamic_reloc() const;
4331
4332 // Return the address of the first section.
4333 uint64_t
4334 first_section_load_address() const;
4335
4336 // Return whether the addresses have been set already.
4337 bool
4338 are_addresses_set() const
4339 { return this->are_addresses_set_; }
4340
4341 // Set the addresses.
4342 void
4343 set_addresses(uint64_t vaddr, uint64_t paddr)
4344 {
4345 this->vaddr_ = vaddr;
4346 this->paddr_ = paddr;
4347 this->are_addresses_set_ = true;
4348 }
4349
4350 // Update the flags for the flags of an output section added to this
4351 // segment.
4352 void
4353 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4354 {
4355 // The ELF ABI specifies that a PT_TLS segment should always have
4356 // PF_R as the flags.
4357 if (this->type() != elfcpp::PT_TLS)
4358 this->flags_ |= flags;
4359 }
4360
4361 // Set the segment flags. This is only used if we have a PHDRS
4362 // clause which explicitly specifies the flags.
4363 void
4364 set_flags(elfcpp::Elf_Word flags)
4365 { this->flags_ = flags; }
4366
4367 // Set the address of the segment to ADDR and the offset to *POFF
4368 // and set the addresses and offsets of all contained output
4369 // sections accordingly. Set the section indexes of all contained
4370 // output sections starting with *PSHNDX. If RESET is true, first
4371 // reset the addresses of the contained sections. Return the
4372 // address of the immediately following segment. Update *POFF and
4373 // *PSHNDX. This should only be called for a PT_LOAD segment.
4374 uint64_t
4375 set_section_addresses(Layout*, bool reset, uint64_t addr,
4376 unsigned int* increase_relro, bool* has_relro,
4377 off_t* poff, unsigned int* pshndx);
4378
4379 // Set the minimum alignment of this segment. This may be adjusted
4380 // upward based on the section alignments.
4381 void
4382 set_minimum_p_align(uint64_t align)
4383 {
4384 if (align > this->min_p_align_)
4385 this->min_p_align_ = align;
4386 }
4387
4388 // Set the offset of this segment based on the section. This should
4389 // only be called for a non-PT_LOAD segment.
4390 void
4391 set_offset(unsigned int increase);
4392
4393 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4394 void
4395 set_tls_offsets();
4396
4397 // Return the number of output sections.
4398 unsigned int
4399 output_section_count() const;
4400
4401 // Return the section attached to the list segment with the lowest
4402 // load address. This is used when handling a PHDRS clause in a
4403 // linker script.
4404 Output_section*
4405 section_with_lowest_load_address() const;
4406
4407 // Write the segment header into *OPHDR.
4408 template<int size, bool big_endian>
4409 void
4410 write_header(elfcpp::Phdr_write<size, big_endian>*);
4411
4412 // Write the section headers of associated sections into V.
4413 template<int size, bool big_endian>
4414 unsigned char*
4415 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4416 unsigned int* pshndx) const;
4417
4418 // Print the output sections in the map file.
4419 void
4420 print_sections_to_mapfile(Mapfile*) const;
4421
4422 private:
4423 typedef std::vector<Output_data*> Output_data_list;
4424
4425 // Find the maximum alignment in an Output_data_list.
4426 static uint64_t
4427 maximum_alignment_list(const Output_data_list*);
4428
4429 // Return whether the first data section is a relro section.
4430 bool
4431 is_first_section_relro() const;
4432
4433 // Set the section addresses in an Output_data_list.
4434 uint64_t
4435 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4436 uint64_t addr, off_t* poff, unsigned int* pshndx,
4437 bool* in_tls);
4438
4439 // Return the number of Output_sections in an Output_data_list.
4440 unsigned int
4441 output_section_count_list(const Output_data_list*) const;
4442
4443 // Return whether an Output_data_list has a dynamic reloc.
4444 bool
4445 has_dynamic_reloc_list(const Output_data_list*) const;
4446
4447 // Find the section with the lowest load address in an
4448 // Output_data_list.
4449 void
4450 lowest_load_address_in_list(const Output_data_list* pdl,
4451 Output_section** found,
4452 uint64_t* found_lma) const;
4453
4454 // Find the first and last entries by address.
4455 void
4456 find_first_and_last_list(const Output_data_list* pdl,
4457 const Output_data** pfirst,
4458 const Output_data** plast) const;
4459
4460 // Write the section headers in the list into V.
4461 template<int size, bool big_endian>
4462 unsigned char*
4463 write_section_headers_list(const Layout*, const Stringpool*,
4464 const Output_data_list*, unsigned char* v,
4465 unsigned int* pshdx) const;
4466
4467 // Print a section list to the mapfile.
4468 void
4469 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4470
4471 // NOTE: We want to use the copy constructor. Currently, shallow copy
4472 // works for us so we do not need to write our own copy constructor.
4473
4474 // The list of output data attached to this segment.
4475 Output_data_list output_lists_[ORDER_MAX];
4476 // The segment virtual address.
4477 uint64_t vaddr_;
4478 // The segment physical address.
4479 uint64_t paddr_;
4480 // The size of the segment in memory.
4481 uint64_t memsz_;
4482 // The maximum section alignment. The is_max_align_known_ field
4483 // indicates whether this has been finalized.
4484 uint64_t max_align_;
4485 // The required minimum value for the p_align field. This is used
4486 // for PT_LOAD segments. Note that this does not mean that
4487 // addresses should be aligned to this value; it means the p_paddr
4488 // and p_vaddr fields must be congruent modulo this value. For
4489 // non-PT_LOAD segments, the dynamic linker works more efficiently
4490 // if the p_align field has the more conventional value, although it
4491 // can align as needed.
4492 uint64_t min_p_align_;
4493 // The offset of the segment data within the file.
4494 off_t offset_;
4495 // The size of the segment data in the file.
4496 off_t filesz_;
4497 // The segment type;
4498 elfcpp::Elf_Word type_;
4499 // The segment flags.
4500 elfcpp::Elf_Word flags_;
4501 // Whether we have finalized max_align_.
4502 bool is_max_align_known_ : 1;
4503 // Whether vaddr and paddr were set by a linker script.
4504 bool are_addresses_set_ : 1;
4505 // Whether this segment holds large data sections.
4506 bool is_large_data_segment_ : 1;
4507 };
4508
4509 // This class represents the output file.
4510
4511 class Output_file
4512 {
4513 public:
4514 Output_file(const char* name);
4515
4516 // Indicate that this is a temporary file which should not be
4517 // output.
4518 void
4519 set_is_temporary()
4520 { this->is_temporary_ = true; }
4521
4522 // Try to open an existing file. Returns false if the file doesn't
4523 // exist, has a size of 0 or can't be mmaped. This method is
4524 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4525 // that file as the base for incremental linking.
4526 bool
4527 open_base_file(const char* base_name, bool writable);
4528
4529 // Open the output file. FILE_SIZE is the final size of the file.
4530 // If the file already exists, it is deleted/truncated. This method
4531 // is thread-unsafe.
4532 void
4533 open(off_t file_size);
4534
4535 // Resize the output file. This method is thread-unsafe.
4536 void
4537 resize(off_t file_size);
4538
4539 // Close the output file (flushing all buffered data) and make sure
4540 // there are no errors. This method is thread-unsafe.
4541 void
4542 close();
4543
4544 // Return the size of this file.
4545 off_t
4546 filesize()
4547 { return this->file_size_; }
4548
4549 // Return the name of this file.
4550 const char*
4551 filename()
4552 { return this->name_; }
4553
4554 // We currently always use mmap which makes the view handling quite
4555 // simple. In the future we may support other approaches.
4556
4557 // Write data to the output file.
4558 void
4559 write(off_t offset, const void* data, size_t len)
4560 { memcpy(this->base_ + offset, data, len); }
4561
4562 // Get a buffer to use to write to the file, given the offset into
4563 // the file and the size.
4564 unsigned char*
4565 get_output_view(off_t start, size_t size)
4566 {
4567 gold_assert(start >= 0
4568 && start + static_cast<off_t>(size) <= this->file_size_);
4569 return this->base_ + start;
4570 }
4571
4572 // VIEW must have been returned by get_output_view. Write the
4573 // buffer to the file, passing in the offset and the size.
4574 void
4575 write_output_view(off_t, size_t, unsigned char*)
4576 { }
4577
4578 // Get a read/write buffer. This is used when we want to write part
4579 // of the file, read it in, and write it again.
4580 unsigned char*
4581 get_input_output_view(off_t start, size_t size)
4582 { return this->get_output_view(start, size); }
4583
4584 // Write a read/write buffer back to the file.
4585 void
4586 write_input_output_view(off_t, size_t, unsigned char*)
4587 { }
4588
4589 // Get a read buffer. This is used when we just want to read part
4590 // of the file back it in.
4591 const unsigned char*
4592 get_input_view(off_t start, size_t size)
4593 { return this->get_output_view(start, size); }
4594
4595 // Release a read bfufer.
4596 void
4597 free_input_view(off_t, size_t, const unsigned char*)
4598 { }
4599
4600 private:
4601 // Map the file into memory or, if that fails, allocate anonymous
4602 // memory.
4603 void
4604 map();
4605
4606 // Allocate anonymous memory for the file.
4607 bool
4608 map_anonymous();
4609
4610 // Map the file into memory.
4611 bool
4612 map_no_anonymous(bool);
4613
4614 // Unmap the file from memory (and flush to disk buffers).
4615 void
4616 unmap();
4617
4618 // File name.
4619 const char* name_;
4620 // File descriptor.
4621 int o_;
4622 // File size.
4623 off_t file_size_;
4624 // Base of file mapped into memory.
4625 unsigned char* base_;
4626 // True iff base_ points to a memory buffer rather than an output file.
4627 bool map_is_anonymous_;
4628 // True if base_ was allocated using new rather than mmap.
4629 bool map_is_allocated_;
4630 // True if this is a temporary file which should not be output.
4631 bool is_temporary_;
4632 };
4633
4634 } // End namespace gold.
4635
4636 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.133904 seconds and 5 git commands to generate.