* output.h (Output_section::Input_section): Initialize p2align_ to
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_section;
42 class Relocatable_relocs;
43 class Target;
44 template<int size, bool big_endian>
45 class Sized_target;
46 template<int size, bool big_endian>
47 class Sized_relobj;
48
49 // An abtract class for data which has to go into the output file.
50
51 class Output_data
52 {
53 public:
54 explicit Output_data()
55 : address_(0), data_size_(0), offset_(-1),
56 is_address_valid_(false), is_data_size_valid_(false),
57 is_offset_valid_(false),
58 dynamic_reloc_count_(0)
59 { }
60
61 virtual
62 ~Output_data();
63
64 // Return the address. For allocated sections, this is only valid
65 // after Layout::finalize is finished.
66 uint64_t
67 address() const
68 {
69 gold_assert(this->is_address_valid_);
70 return this->address_;
71 }
72
73 // Return the size of the data. For allocated sections, this must
74 // be valid after Layout::finalize calls set_address, but need not
75 // be valid before then.
76 off_t
77 data_size() const
78 {
79 gold_assert(this->is_data_size_valid_);
80 return this->data_size_;
81 }
82
83 // Return the file offset. This is only valid after
84 // Layout::finalize is finished. For some non-allocated sections,
85 // it may not be valid until near the end of the link.
86 off_t
87 offset() const
88 {
89 gold_assert(this->is_offset_valid_);
90 return this->offset_;
91 }
92
93 // Reset the address and file offset. This essentially disables the
94 // sanity testing about duplicate and unknown settings.
95 void
96 reset_address_and_file_offset()
97 {
98 this->is_address_valid_ = false;
99 this->is_offset_valid_ = false;
100 this->is_data_size_valid_ = false;
101 this->do_reset_address_and_file_offset();
102 }
103
104 // Return the required alignment.
105 uint64_t
106 addralign() const
107 { return this->do_addralign(); }
108
109 // Return whether this has a load address.
110 bool
111 has_load_address() const
112 { return this->do_has_load_address(); }
113
114 // Return the load address.
115 uint64_t
116 load_address() const
117 { return this->do_load_address(); }
118
119 // Return whether this is an Output_section.
120 bool
121 is_section() const
122 { return this->do_is_section(); }
123
124 // Return whether this is an Output_section of the specified type.
125 bool
126 is_section_type(elfcpp::Elf_Word stt) const
127 { return this->do_is_section_type(stt); }
128
129 // Return whether this is an Output_section with the specified flag
130 // set.
131 bool
132 is_section_flag_set(elfcpp::Elf_Xword shf) const
133 { return this->do_is_section_flag_set(shf); }
134
135 // Return the output section that this goes in, if there is one.
136 Output_section*
137 output_section()
138 { return this->do_output_section(); }
139
140 // Return the output section index, if there is an output section.
141 unsigned int
142 out_shndx() const
143 { return this->do_out_shndx(); }
144
145 // Set the output section index, if this is an output section.
146 void
147 set_out_shndx(unsigned int shndx)
148 { this->do_set_out_shndx(shndx); }
149
150 // Set the address and file offset of this data, and finalize the
151 // size of the data. This is called during Layout::finalize for
152 // allocated sections.
153 void
154 set_address_and_file_offset(uint64_t addr, off_t off)
155 {
156 this->set_address(addr);
157 this->set_file_offset(off);
158 this->finalize_data_size();
159 }
160
161 // Set the address.
162 void
163 set_address(uint64_t addr)
164 {
165 gold_assert(!this->is_address_valid_);
166 this->address_ = addr;
167 this->is_address_valid_ = true;
168 }
169
170 // Set the file offset.
171 void
172 set_file_offset(off_t off)
173 {
174 gold_assert(!this->is_offset_valid_);
175 this->offset_ = off;
176 this->is_offset_valid_ = true;
177 }
178
179 // Finalize the data size.
180 void
181 finalize_data_size()
182 {
183 if (!this->is_data_size_valid_)
184 {
185 // Tell the child class to set the data size.
186 this->set_final_data_size();
187 gold_assert(this->is_data_size_valid_);
188 }
189 }
190
191 // Set the TLS offset. Called only for SHT_TLS sections.
192 void
193 set_tls_offset(uint64_t tls_base)
194 { this->do_set_tls_offset(tls_base); }
195
196 // Return the TLS offset, relative to the base of the TLS segment.
197 // Valid only for SHT_TLS sections.
198 uint64_t
199 tls_offset() const
200 { return this->do_tls_offset(); }
201
202 // Write the data to the output file. This is called after
203 // Layout::finalize is complete.
204 void
205 write(Output_file* file)
206 { this->do_write(file); }
207
208 // This is called by Layout::finalize to note that the sizes of
209 // allocated sections must now be fixed.
210 static void
211 layout_complete()
212 { Output_data::allocated_sizes_are_fixed = true; }
213
214 // Used to check that layout has been done.
215 static bool
216 is_layout_complete()
217 { return Output_data::allocated_sizes_are_fixed; }
218
219 // Count the number of dynamic relocations applied to this section.
220 void
221 add_dynamic_reloc()
222 { ++this->dynamic_reloc_count_; }
223
224 // Return the number of dynamic relocations applied to this section.
225 unsigned int
226 dynamic_reloc_count() const
227 { return this->dynamic_reloc_count_; }
228
229 // Whether the address is valid.
230 bool
231 is_address_valid() const
232 { return this->is_address_valid_; }
233
234 // Whether the file offset is valid.
235 bool
236 is_offset_valid() const
237 { return this->is_offset_valid_; }
238
239 // Whether the data size is valid.
240 bool
241 is_data_size_valid() const
242 { return this->is_data_size_valid_; }
243
244 // Print information to the map file.
245 void
246 print_to_mapfile(Mapfile* mapfile) const
247 { return this->do_print_to_mapfile(mapfile); }
248
249 protected:
250 // Functions that child classes may or in some cases must implement.
251
252 // Write the data to the output file.
253 virtual void
254 do_write(Output_file*) = 0;
255
256 // Return the required alignment.
257 virtual uint64_t
258 do_addralign() const = 0;
259
260 // Return whether this has a load address.
261 virtual bool
262 do_has_load_address() const
263 { return false; }
264
265 // Return the load address.
266 virtual uint64_t
267 do_load_address() const
268 { gold_unreachable(); }
269
270 // Return whether this is an Output_section.
271 virtual bool
272 do_is_section() const
273 { return false; }
274
275 // Return whether this is an Output_section of the specified type.
276 // This only needs to be implement by Output_section.
277 virtual bool
278 do_is_section_type(elfcpp::Elf_Word) const
279 { return false; }
280
281 // Return whether this is an Output_section with the specific flag
282 // set. This only needs to be implemented by Output_section.
283 virtual bool
284 do_is_section_flag_set(elfcpp::Elf_Xword) const
285 { return false; }
286
287 // Return the output section, if there is one.
288 virtual Output_section*
289 do_output_section()
290 { return NULL; }
291
292 // Return the output section index, if there is an output section.
293 virtual unsigned int
294 do_out_shndx() const
295 { gold_unreachable(); }
296
297 // Set the output section index, if this is an output section.
298 virtual void
299 do_set_out_shndx(unsigned int)
300 { gold_unreachable(); }
301
302 // This is a hook for derived classes to set the data size. This is
303 // called by finalize_data_size, normally called during
304 // Layout::finalize, when the section address is set.
305 virtual void
306 set_final_data_size()
307 { gold_unreachable(); }
308
309 // A hook for resetting the address and file offset.
310 virtual void
311 do_reset_address_and_file_offset()
312 { }
313
314 // Set the TLS offset. Called only for SHT_TLS sections.
315 virtual void
316 do_set_tls_offset(uint64_t)
317 { gold_unreachable(); }
318
319 // Return the TLS offset, relative to the base of the TLS segment.
320 // Valid only for SHT_TLS sections.
321 virtual uint64_t
322 do_tls_offset() const
323 { gold_unreachable(); }
324
325 // Print to the map file. This only needs to be implemented by
326 // classes which may appear in a PT_LOAD segment.
327 virtual void
328 do_print_to_mapfile(Mapfile*) const
329 { gold_unreachable(); }
330
331 // Functions that child classes may call.
332
333 // Set the size of the data.
334 void
335 set_data_size(off_t data_size)
336 {
337 gold_assert(!this->is_data_size_valid_);
338 this->data_size_ = data_size;
339 this->is_data_size_valid_ = true;
340 }
341
342 // Get the current data size--this is for the convenience of
343 // sections which build up their size over time.
344 off_t
345 current_data_size_for_child() const
346 { return this->data_size_; }
347
348 // Set the current data size--this is for the convenience of
349 // sections which build up their size over time.
350 void
351 set_current_data_size_for_child(off_t data_size)
352 {
353 gold_assert(!this->is_data_size_valid_);
354 this->data_size_ = data_size;
355 }
356
357 // Return default alignment for the target size.
358 static uint64_t
359 default_alignment();
360
361 // Return default alignment for a specified size--32 or 64.
362 static uint64_t
363 default_alignment_for_size(int size);
364
365 private:
366 Output_data(const Output_data&);
367 Output_data& operator=(const Output_data&);
368
369 // This is used for verification, to make sure that we don't try to
370 // change any sizes of allocated sections after we set the section
371 // addresses.
372 static bool allocated_sizes_are_fixed;
373
374 // Memory address in output file.
375 uint64_t address_;
376 // Size of data in output file.
377 off_t data_size_;
378 // File offset of contents in output file.
379 off_t offset_;
380 // Whether address_ is valid.
381 bool is_address_valid_;
382 // Whether data_size_ is valid.
383 bool is_data_size_valid_;
384 // Whether offset_ is valid.
385 bool is_offset_valid_;
386 // Count of dynamic relocations applied to this section.
387 unsigned int dynamic_reloc_count_;
388 };
389
390 // Output the section headers.
391
392 class Output_section_headers : public Output_data
393 {
394 public:
395 Output_section_headers(const Layout*,
396 const Layout::Segment_list*,
397 const Layout::Section_list*,
398 const Layout::Section_list*,
399 const Stringpool*,
400 const Output_section*);
401
402 protected:
403 // Write the data to the file.
404 void
405 do_write(Output_file*);
406
407 // Return the required alignment.
408 uint64_t
409 do_addralign() const
410 { return Output_data::default_alignment(); }
411
412 // Write to a map file.
413 void
414 do_print_to_mapfile(Mapfile* mapfile) const
415 { mapfile->print_output_data(this, _("** section headers")); }
416
417 private:
418 // Write the data to the file with the right size and endianness.
419 template<int size, bool big_endian>
420 void
421 do_sized_write(Output_file*);
422
423 const Layout* layout_;
424 const Layout::Segment_list* segment_list_;
425 const Layout::Section_list* section_list_;
426 const Layout::Section_list* unattached_section_list_;
427 const Stringpool* secnamepool_;
428 const Output_section* shstrtab_section_;
429 };
430
431 // Output the segment headers.
432
433 class Output_segment_headers : public Output_data
434 {
435 public:
436 Output_segment_headers(const Layout::Segment_list& segment_list);
437
438 protected:
439 // Write the data to the file.
440 void
441 do_write(Output_file*);
442
443 // Return the required alignment.
444 uint64_t
445 do_addralign() const
446 { return Output_data::default_alignment(); }
447
448 // Write to a map file.
449 void
450 do_print_to_mapfile(Mapfile* mapfile) const
451 { mapfile->print_output_data(this, _("** segment headers")); }
452
453 private:
454 // Write the data to the file with the right size and endianness.
455 template<int size, bool big_endian>
456 void
457 do_sized_write(Output_file*);
458
459 const Layout::Segment_list& segment_list_;
460 };
461
462 // Output the ELF file header.
463
464 class Output_file_header : public Output_data
465 {
466 public:
467 Output_file_header(const Target*,
468 const Symbol_table*,
469 const Output_segment_headers*,
470 const char* entry);
471
472 // Add information about the section headers. We lay out the ELF
473 // file header before we create the section headers.
474 void set_section_info(const Output_section_headers*,
475 const Output_section* shstrtab);
476
477 protected:
478 // Write the data to the file.
479 void
480 do_write(Output_file*);
481
482 // Return the required alignment.
483 uint64_t
484 do_addralign() const
485 { return Output_data::default_alignment(); }
486
487 // Write to a map file.
488 void
489 do_print_to_mapfile(Mapfile* mapfile) const
490 { mapfile->print_output_data(this, _("** file header")); }
491
492 private:
493 // Write the data to the file with the right size and endianness.
494 template<int size, bool big_endian>
495 void
496 do_sized_write(Output_file*);
497
498 // Return the value to use for the entry address.
499 template<int size>
500 typename elfcpp::Elf_types<size>::Elf_Addr
501 entry();
502
503 const Target* target_;
504 const Symbol_table* symtab_;
505 const Output_segment_headers* segment_header_;
506 const Output_section_headers* section_header_;
507 const Output_section* shstrtab_;
508 const char* entry_;
509 };
510
511 // Output sections are mainly comprised of input sections. However,
512 // there are cases where we have data to write out which is not in an
513 // input section. Output_section_data is used in such cases. This is
514 // an abstract base class.
515
516 class Output_section_data : public Output_data
517 {
518 public:
519 Output_section_data(off_t data_size, uint64_t addralign)
520 : Output_data(), output_section_(NULL), addralign_(addralign)
521 { this->set_data_size(data_size); }
522
523 Output_section_data(uint64_t addralign)
524 : Output_data(), output_section_(NULL), addralign_(addralign)
525 { }
526
527 // Return the output section.
528 const Output_section*
529 output_section() const
530 { return this->output_section_; }
531
532 // Record the output section.
533 void
534 set_output_section(Output_section* os);
535
536 // Add an input section, for SHF_MERGE sections. This returns true
537 // if the section was handled.
538 bool
539 add_input_section(Relobj* object, unsigned int shndx)
540 { return this->do_add_input_section(object, shndx); }
541
542 // Given an input OBJECT, an input section index SHNDX within that
543 // object, and an OFFSET relative to the start of that input
544 // section, return whether or not the corresponding offset within
545 // the output section is known. If this function returns true, it
546 // sets *POUTPUT to the output offset. The value -1 indicates that
547 // this input offset is being discarded.
548 bool
549 output_offset(const Relobj* object, unsigned int shndx,
550 section_offset_type offset,
551 section_offset_type *poutput) const
552 { return this->do_output_offset(object, shndx, offset, poutput); }
553
554 // Return whether this is the merge section for the input section
555 // SHNDX in OBJECT. This should return true when output_offset
556 // would return true for some values of OFFSET.
557 bool
558 is_merge_section_for(const Relobj* object, unsigned int shndx) const
559 { return this->do_is_merge_section_for(object, shndx); }
560
561 // Write the contents to a buffer. This is used for sections which
562 // require postprocessing, such as compression.
563 void
564 write_to_buffer(unsigned char* buffer)
565 { this->do_write_to_buffer(buffer); }
566
567 // Print merge stats to stderr. This should only be called for
568 // SHF_MERGE sections.
569 void
570 print_merge_stats(const char* section_name)
571 { this->do_print_merge_stats(section_name); }
572
573 protected:
574 // The child class must implement do_write.
575
576 // The child class may implement specific adjustments to the output
577 // section.
578 virtual void
579 do_adjust_output_section(Output_section*)
580 { }
581
582 // May be implemented by child class. Return true if the section
583 // was handled.
584 virtual bool
585 do_add_input_section(Relobj*, unsigned int)
586 { gold_unreachable(); }
587
588 // The child class may implement output_offset.
589 virtual bool
590 do_output_offset(const Relobj*, unsigned int, section_offset_type,
591 section_offset_type*) const
592 { return false; }
593
594 // The child class may implement is_merge_section_for.
595 virtual bool
596 do_is_merge_section_for(const Relobj*, unsigned int) const
597 { return false; }
598
599 // The child class may implement write_to_buffer. Most child
600 // classes can not appear in a compressed section, and they do not
601 // implement this.
602 virtual void
603 do_write_to_buffer(unsigned char*)
604 { gold_unreachable(); }
605
606 // Print merge statistics.
607 virtual void
608 do_print_merge_stats(const char*)
609 { gold_unreachable(); }
610
611 // Return the required alignment.
612 uint64_t
613 do_addralign() const
614 { return this->addralign_; }
615
616 // Return the output section.
617 Output_section*
618 do_output_section()
619 { return this->output_section_; }
620
621 // Return the section index of the output section.
622 unsigned int
623 do_out_shndx() const;
624
625 // Set the alignment.
626 void
627 set_addralign(uint64_t addralign);
628
629 private:
630 // The output section for this section.
631 Output_section* output_section_;
632 // The required alignment.
633 uint64_t addralign_;
634 };
635
636 // Some Output_section_data classes build up their data step by step,
637 // rather than all at once. This class provides an interface for
638 // them.
639
640 class Output_section_data_build : public Output_section_data
641 {
642 public:
643 Output_section_data_build(uint64_t addralign)
644 : Output_section_data(addralign)
645 { }
646
647 // Get the current data size.
648 off_t
649 current_data_size() const
650 { return this->current_data_size_for_child(); }
651
652 // Set the current data size.
653 void
654 set_current_data_size(off_t data_size)
655 { this->set_current_data_size_for_child(data_size); }
656
657 protected:
658 // Set the final data size.
659 virtual void
660 set_final_data_size()
661 { this->set_data_size(this->current_data_size_for_child()); }
662 };
663
664 // A simple case of Output_data in which we have constant data to
665 // output.
666
667 class Output_data_const : public Output_section_data
668 {
669 public:
670 Output_data_const(const std::string& data, uint64_t addralign)
671 : Output_section_data(data.size(), addralign), data_(data)
672 { }
673
674 Output_data_const(const char* p, off_t len, uint64_t addralign)
675 : Output_section_data(len, addralign), data_(p, len)
676 { }
677
678 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
679 : Output_section_data(len, addralign),
680 data_(reinterpret_cast<const char*>(p), len)
681 { }
682
683 protected:
684 // Write the data to the output file.
685 void
686 do_write(Output_file*);
687
688 // Write the data to a buffer.
689 void
690 do_write_to_buffer(unsigned char* buffer)
691 { memcpy(buffer, this->data_.data(), this->data_.size()); }
692
693 // Write to a map file.
694 void
695 do_print_to_mapfile(Mapfile* mapfile) const
696 { mapfile->print_output_data(this, _("** fill")); }
697
698 private:
699 std::string data_;
700 };
701
702 // Another version of Output_data with constant data, in which the
703 // buffer is allocated by the caller.
704
705 class Output_data_const_buffer : public Output_section_data
706 {
707 public:
708 Output_data_const_buffer(const unsigned char* p, off_t len,
709 uint64_t addralign, const char* map_name)
710 : Output_section_data(len, addralign),
711 p_(p), map_name_(map_name)
712 { }
713
714 protected:
715 // Write the data the output file.
716 void
717 do_write(Output_file*);
718
719 // Write the data to a buffer.
720 void
721 do_write_to_buffer(unsigned char* buffer)
722 { memcpy(buffer, this->p_, this->data_size()); }
723
724 // Write to a map file.
725 void
726 do_print_to_mapfile(Mapfile* mapfile) const
727 { mapfile->print_output_data(this, _(this->map_name_)); }
728
729 private:
730 // The data to output.
731 const unsigned char* p_;
732 // Name to use in a map file. Maps are a rarely used feature, but
733 // the space usage is minor as aren't very many of these objects.
734 const char* map_name_;
735 };
736
737 // A place holder for a fixed amount of data written out via some
738 // other mechanism.
739
740 class Output_data_fixed_space : public Output_section_data
741 {
742 public:
743 Output_data_fixed_space(off_t data_size, uint64_t addralign,
744 const char* map_name)
745 : Output_section_data(data_size, addralign),
746 map_name_(map_name)
747 { }
748
749 protected:
750 // Write out the data--the actual data must be written out
751 // elsewhere.
752 void
753 do_write(Output_file*)
754 { }
755
756 // Write to a map file.
757 void
758 do_print_to_mapfile(Mapfile* mapfile) const
759 { mapfile->print_output_data(this, _(this->map_name_)); }
760
761 private:
762 // Name to use in a map file. Maps are a rarely used feature, but
763 // the space usage is minor as aren't very many of these objects.
764 const char* map_name_;
765 };
766
767 // A place holder for variable sized data written out via some other
768 // mechanism.
769
770 class Output_data_space : public Output_section_data_build
771 {
772 public:
773 explicit Output_data_space(uint64_t addralign, const char* map_name)
774 : Output_section_data_build(addralign),
775 map_name_(map_name)
776 { }
777
778 // Set the alignment.
779 void
780 set_space_alignment(uint64_t align)
781 { this->set_addralign(align); }
782
783 protected:
784 // Write out the data--the actual data must be written out
785 // elsewhere.
786 void
787 do_write(Output_file*)
788 { }
789
790 // Write to a map file.
791 void
792 do_print_to_mapfile(Mapfile* mapfile) const
793 { mapfile->print_output_data(this, _(this->map_name_)); }
794
795 private:
796 // Name to use in a map file. Maps are a rarely used feature, but
797 // the space usage is minor as aren't very many of these objects.
798 const char* map_name_;
799 };
800
801 // Fill fixed space with zeroes. This is just like
802 // Output_data_fixed_space, except that the map name is known.
803
804 class Output_data_zero_fill : public Output_section_data
805 {
806 public:
807 Output_data_zero_fill(off_t data_size, uint64_t addralign)
808 : Output_section_data(data_size, addralign)
809 { }
810
811 protected:
812 // There is no data to write out.
813 void
814 do_write(Output_file*)
815 { }
816
817 // Write to a map file.
818 void
819 do_print_to_mapfile(Mapfile* mapfile) const
820 { mapfile->print_output_data(this, "** zero fill"); }
821 };
822
823 // A string table which goes into an output section.
824
825 class Output_data_strtab : public Output_section_data
826 {
827 public:
828 Output_data_strtab(Stringpool* strtab)
829 : Output_section_data(1), strtab_(strtab)
830 { }
831
832 protected:
833 // This is called to set the address and file offset. Here we make
834 // sure that the Stringpool is finalized.
835 void
836 set_final_data_size();
837
838 // Write out the data.
839 void
840 do_write(Output_file*);
841
842 // Write the data to a buffer.
843 void
844 do_write_to_buffer(unsigned char* buffer)
845 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
846
847 // Write to a map file.
848 void
849 do_print_to_mapfile(Mapfile* mapfile) const
850 { mapfile->print_output_data(this, _("** string table")); }
851
852 private:
853 Stringpool* strtab_;
854 };
855
856 // This POD class is used to represent a single reloc in the output
857 // file. This could be a private class within Output_data_reloc, but
858 // the templatization is complex enough that I broke it out into a
859 // separate class. The class is templatized on either elfcpp::SHT_REL
860 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
861 // relocation or an ordinary relocation.
862
863 // A relocation can be against a global symbol, a local symbol, a
864 // local section symbol, an output section, or the undefined symbol at
865 // index 0. We represent the latter by using a NULL global symbol.
866
867 template<int sh_type, bool dynamic, int size, bool big_endian>
868 class Output_reloc;
869
870 template<bool dynamic, int size, bool big_endian>
871 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
872 {
873 public:
874 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
875 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
876
877 // An uninitialized entry. We need this because we want to put
878 // instances of this class into an STL container.
879 Output_reloc()
880 : local_sym_index_(INVALID_CODE)
881 { }
882
883 // We have a bunch of different constructors. They come in pairs
884 // depending on how the address of the relocation is specified. It
885 // can either be an offset in an Output_data or an offset in an
886 // input section.
887
888 // A reloc against a global symbol.
889
890 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
891 Address address, bool is_relative);
892
893 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
894 unsigned int shndx, Address address, bool is_relative);
895
896 // A reloc against a local symbol or local section symbol.
897
898 Output_reloc(Sized_relobj<size, big_endian>* relobj,
899 unsigned int local_sym_index, unsigned int type,
900 Output_data* od, Address address, bool is_relative,
901 bool is_section_symbol);
902
903 Output_reloc(Sized_relobj<size, big_endian>* relobj,
904 unsigned int local_sym_index, unsigned int type,
905 unsigned int shndx, Address address, bool is_relative,
906 bool is_section_symbol);
907
908 // A reloc against the STT_SECTION symbol of an output section.
909
910 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
911 Address address);
912
913 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
914 unsigned int shndx, Address address);
915
916 // Return TRUE if this is a RELATIVE relocation.
917 bool
918 is_relative() const
919 { return this->is_relative_; }
920
921 // Return whether this is against a local section symbol.
922 bool
923 is_local_section_symbol() const
924 {
925 return (this->local_sym_index_ != GSYM_CODE
926 && this->local_sym_index_ != SECTION_CODE
927 && this->local_sym_index_ != INVALID_CODE
928 && this->is_section_symbol_);
929 }
930
931 // For a local section symbol, return the offset of the input
932 // section within the output section. ADDEND is the addend being
933 // applied to the input section.
934 section_offset_type
935 local_section_offset(Addend addend) const;
936
937 // Get the value of the symbol referred to by a Rel relocation when
938 // we are adding the given ADDEND.
939 Address
940 symbol_value(Addend addend) const;
941
942 // Write the reloc entry to an output view.
943 void
944 write(unsigned char* pov) const;
945
946 // Write the offset and info fields to Write_rel.
947 template<typename Write_rel>
948 void write_rel(Write_rel*) const;
949
950 // This is used when sorting dynamic relocs. Return -1 to sort this
951 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
952 int
953 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
954 const;
955
956 // Return whether this reloc should be sorted before the argument
957 // when sorting dynamic relocs.
958 bool
959 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
960 r2) const
961 { return this->compare(r2) < 0; }
962
963 private:
964 // Record that we need a dynamic symbol index.
965 void
966 set_needs_dynsym_index();
967
968 // Return the symbol index.
969 unsigned int
970 get_symbol_index() const;
971
972 // Return the output address.
973 Address
974 get_address() const;
975
976 // Codes for local_sym_index_.
977 enum
978 {
979 // Global symbol.
980 GSYM_CODE = -1U,
981 // Output section.
982 SECTION_CODE = -2U,
983 // Invalid uninitialized entry.
984 INVALID_CODE = -3U
985 };
986
987 union
988 {
989 // For a local symbol or local section symbol
990 // (this->local_sym_index_ >= 0), the object. We will never
991 // generate a relocation against a local symbol in a dynamic
992 // object; that doesn't make sense. And our callers will always
993 // be templatized, so we use Sized_relobj here.
994 Sized_relobj<size, big_endian>* relobj;
995 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
996 // symbol. If this is NULL, it indicates a relocation against the
997 // undefined 0 symbol.
998 Symbol* gsym;
999 // For a relocation against an output section
1000 // (this->local_sym_index_ == SECTION_CODE), the output section.
1001 Output_section* os;
1002 } u1_;
1003 union
1004 {
1005 // If this->shndx_ is not INVALID CODE, the object which holds the
1006 // input section being used to specify the reloc address.
1007 Relobj* relobj;
1008 // If this->shndx_ is INVALID_CODE, the output data being used to
1009 // specify the reloc address. This may be NULL if the reloc
1010 // address is absolute.
1011 Output_data* od;
1012 } u2_;
1013 // The address offset within the input section or the Output_data.
1014 Address address_;
1015 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1016 // relocation against an output section, or INVALID_CODE for an
1017 // uninitialized value. Otherwise, for a local symbol
1018 // (this->is_section_symbol_ is false), the local symbol index. For
1019 // a local section symbol (this->is_section_symbol_ is true), the
1020 // section index in the input file.
1021 unsigned int local_sym_index_;
1022 // The reloc type--a processor specific code.
1023 unsigned int type_ : 30;
1024 // True if the relocation is a RELATIVE relocation.
1025 bool is_relative_ : 1;
1026 // True if the relocation is against a section symbol.
1027 bool is_section_symbol_ : 1;
1028 // If the reloc address is an input section in an object, the
1029 // section index. This is INVALID_CODE if the reloc address is
1030 // specified in some other way.
1031 unsigned int shndx_;
1032 };
1033
1034 // The SHT_RELA version of Output_reloc<>. This is just derived from
1035 // the SHT_REL version of Output_reloc, but it adds an addend.
1036
1037 template<bool dynamic, int size, bool big_endian>
1038 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1039 {
1040 public:
1041 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1042 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1043
1044 // An uninitialized entry.
1045 Output_reloc()
1046 : rel_()
1047 { }
1048
1049 // A reloc against a global symbol.
1050
1051 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1052 Address address, Addend addend, bool is_relative)
1053 : rel_(gsym, type, od, address, is_relative), addend_(addend)
1054 { }
1055
1056 Output_reloc(Symbol* gsym, unsigned int type, Relobj* relobj,
1057 unsigned int shndx, Address address, Addend addend,
1058 bool is_relative)
1059 : rel_(gsym, type, relobj, shndx, address, is_relative), addend_(addend)
1060 { }
1061
1062 // A reloc against a local symbol.
1063
1064 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1065 unsigned int local_sym_index, unsigned int type,
1066 Output_data* od, Address address,
1067 Addend addend, bool is_relative, bool is_section_symbol)
1068 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1069 is_section_symbol),
1070 addend_(addend)
1071 { }
1072
1073 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1074 unsigned int local_sym_index, unsigned int type,
1075 unsigned int shndx, Address address,
1076 Addend addend, bool is_relative, bool is_section_symbol)
1077 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1078 is_section_symbol),
1079 addend_(addend)
1080 { }
1081
1082 // A reloc against the STT_SECTION symbol of an output section.
1083
1084 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1085 Address address, Addend addend)
1086 : rel_(os, type, od, address), addend_(addend)
1087 { }
1088
1089 Output_reloc(Output_section* os, unsigned int type, Relobj* relobj,
1090 unsigned int shndx, Address address, Addend addend)
1091 : rel_(os, type, relobj, shndx, address), addend_(addend)
1092 { }
1093
1094 // Write the reloc entry to an output view.
1095 void
1096 write(unsigned char* pov) const;
1097
1098 // Return whether this reloc should be sorted before the argument
1099 // when sorting dynamic relocs.
1100 bool
1101 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1102 r2) const
1103 {
1104 int i = this->rel_.compare(r2.rel_);
1105 if (i < 0)
1106 return true;
1107 else if (i > 0)
1108 return false;
1109 else
1110 return this->addend_ < r2.addend_;
1111 }
1112
1113 private:
1114 // The basic reloc.
1115 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1116 // The addend.
1117 Addend addend_;
1118 };
1119
1120 // Output_data_reloc is used to manage a section containing relocs.
1121 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1122 // indicates whether this is a dynamic relocation or a normal
1123 // relocation. Output_data_reloc_base is a base class.
1124 // Output_data_reloc is the real class, which we specialize based on
1125 // the reloc type.
1126
1127 template<int sh_type, bool dynamic, int size, bool big_endian>
1128 class Output_data_reloc_base : public Output_section_data_build
1129 {
1130 public:
1131 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1132 typedef typename Output_reloc_type::Address Address;
1133 static const int reloc_size =
1134 Reloc_types<sh_type, size, big_endian>::reloc_size;
1135
1136 // Construct the section.
1137 Output_data_reloc_base(bool sort_relocs)
1138 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1139 sort_relocs_(sort_relocs)
1140 { }
1141
1142 protected:
1143 // Write out the data.
1144 void
1145 do_write(Output_file*);
1146
1147 // Set the entry size and the link.
1148 void
1149 do_adjust_output_section(Output_section *os);
1150
1151 // Write to a map file.
1152 void
1153 do_print_to_mapfile(Mapfile* mapfile) const
1154 {
1155 mapfile->print_output_data(this,
1156 (dynamic
1157 ? _("** dynamic relocs")
1158 : _("** relocs")));
1159 }
1160
1161 // Add a relocation entry.
1162 void
1163 add(Output_data *od, const Output_reloc_type& reloc)
1164 {
1165 this->relocs_.push_back(reloc);
1166 this->set_current_data_size(this->relocs_.size() * reloc_size);
1167 od->add_dynamic_reloc();
1168 }
1169
1170 private:
1171 typedef std::vector<Output_reloc_type> Relocs;
1172
1173 // The class used to sort the relocations.
1174 struct Sort_relocs_comparison
1175 {
1176 bool
1177 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1178 { return r1.sort_before(r2); }
1179 };
1180
1181 // The relocations in this section.
1182 Relocs relocs_;
1183 // Whether to sort the relocations when writing them out, to make
1184 // the dynamic linker more efficient.
1185 bool sort_relocs_;
1186 };
1187
1188 // The class which callers actually create.
1189
1190 template<int sh_type, bool dynamic, int size, bool big_endian>
1191 class Output_data_reloc;
1192
1193 // The SHT_REL version of Output_data_reloc.
1194
1195 template<bool dynamic, int size, bool big_endian>
1196 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1197 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1198 {
1199 private:
1200 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1201 big_endian> Base;
1202
1203 public:
1204 typedef typename Base::Output_reloc_type Output_reloc_type;
1205 typedef typename Output_reloc_type::Address Address;
1206
1207 Output_data_reloc(bool sr)
1208 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1209 { }
1210
1211 // Add a reloc against a global symbol.
1212
1213 void
1214 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1215 { this->add(od, Output_reloc_type(gsym, type, od, address, false)); }
1216
1217 void
1218 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1219 unsigned int shndx, Address address)
1220 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1221 false)); }
1222
1223 // These are to simplify the Copy_relocs class.
1224
1225 void
1226 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1227 Address addend)
1228 {
1229 gold_assert(addend == 0);
1230 this->add_global(gsym, type, od, address);
1231 }
1232
1233 void
1234 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1235 unsigned int shndx, Address address, Address addend)
1236 {
1237 gold_assert(addend == 0);
1238 this->add_global(gsym, type, od, relobj, shndx, address);
1239 }
1240
1241 // Add a RELATIVE reloc against a global symbol. The final relocation
1242 // will not reference the symbol.
1243
1244 void
1245 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1246 Address address)
1247 { this->add(od, Output_reloc_type(gsym, type, od, address, true)); }
1248
1249 void
1250 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1251 Relobj* relobj, unsigned int shndx, Address address)
1252 {
1253 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1254 true));
1255 }
1256
1257 // Add a reloc against a local symbol.
1258
1259 void
1260 add_local(Sized_relobj<size, big_endian>* relobj,
1261 unsigned int local_sym_index, unsigned int type,
1262 Output_data* od, Address address)
1263 {
1264 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1265 address, false, false));
1266 }
1267
1268 void
1269 add_local(Sized_relobj<size, big_endian>* relobj,
1270 unsigned int local_sym_index, unsigned int type,
1271 Output_data* od, unsigned int shndx, Address address)
1272 {
1273 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1274 address, false, false));
1275 }
1276
1277 // Add a RELATIVE reloc against a local symbol.
1278
1279 void
1280 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1281 unsigned int local_sym_index, unsigned int type,
1282 Output_data* od, Address address)
1283 {
1284 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1285 address, true, false));
1286 }
1287
1288 void
1289 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1290 unsigned int local_sym_index, unsigned int type,
1291 Output_data* od, unsigned int shndx, Address address)
1292 {
1293 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1294 address, true, false));
1295 }
1296
1297 // Add a reloc against a local section symbol. This will be
1298 // converted into a reloc against the STT_SECTION symbol of the
1299 // output section.
1300
1301 void
1302 add_local_section(Sized_relobj<size, big_endian>* relobj,
1303 unsigned int input_shndx, unsigned int type,
1304 Output_data* od, Address address)
1305 {
1306 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1307 address, false, true));
1308 }
1309
1310 void
1311 add_local_section(Sized_relobj<size, big_endian>* relobj,
1312 unsigned int input_shndx, unsigned int type,
1313 Output_data* od, unsigned int shndx, Address address)
1314 {
1315 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1316 address, false, true));
1317 }
1318
1319 // A reloc against the STT_SECTION symbol of an output section.
1320 // OS is the Output_section that the relocation refers to; OD is
1321 // the Output_data object being relocated.
1322
1323 void
1324 add_output_section(Output_section* os, unsigned int type,
1325 Output_data* od, Address address)
1326 { this->add(od, Output_reloc_type(os, type, od, address)); }
1327
1328 void
1329 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1330 Relobj* relobj, unsigned int shndx, Address address)
1331 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1332 };
1333
1334 // The SHT_RELA version of Output_data_reloc.
1335
1336 template<bool dynamic, int size, bool big_endian>
1337 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1338 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1339 {
1340 private:
1341 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1342 big_endian> Base;
1343
1344 public:
1345 typedef typename Base::Output_reloc_type Output_reloc_type;
1346 typedef typename Output_reloc_type::Address Address;
1347 typedef typename Output_reloc_type::Addend Addend;
1348
1349 Output_data_reloc(bool sr)
1350 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1351 { }
1352
1353 // Add a reloc against a global symbol.
1354
1355 void
1356 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1357 Address address, Addend addend)
1358 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1359 false)); }
1360
1361 void
1362 add_global(Symbol* gsym, unsigned int type, Output_data* od, Relobj* relobj,
1363 unsigned int shndx, Address address,
1364 Addend addend)
1365 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1366 addend, false)); }
1367
1368 // Add a RELATIVE reloc against a global symbol. The final output
1369 // relocation will not reference the symbol, but we must keep the symbol
1370 // information long enough to set the addend of the relocation correctly
1371 // when it is written.
1372
1373 void
1374 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1375 Address address, Addend addend)
1376 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true)); }
1377
1378 void
1379 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1380 Relobj* relobj, unsigned int shndx, Address address,
1381 Addend addend)
1382 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1383 addend, true)); }
1384
1385 // Add a reloc against a local symbol.
1386
1387 void
1388 add_local(Sized_relobj<size, big_endian>* relobj,
1389 unsigned int local_sym_index, unsigned int type,
1390 Output_data* od, Address address, Addend addend)
1391 {
1392 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1393 addend, false, false));
1394 }
1395
1396 void
1397 add_local(Sized_relobj<size, big_endian>* relobj,
1398 unsigned int local_sym_index, unsigned int type,
1399 Output_data* od, unsigned int shndx, Address address,
1400 Addend addend)
1401 {
1402 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1403 address, addend, false, false));
1404 }
1405
1406 // Add a RELATIVE reloc against a local symbol.
1407
1408 void
1409 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1410 unsigned int local_sym_index, unsigned int type,
1411 Output_data* od, Address address, Addend addend)
1412 {
1413 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1414 addend, true, false));
1415 }
1416
1417 void
1418 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1419 unsigned int local_sym_index, unsigned int type,
1420 Output_data* od, unsigned int shndx, Address address,
1421 Addend addend)
1422 {
1423 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1424 address, addend, true, false));
1425 }
1426
1427 // Add a reloc against a local section symbol. This will be
1428 // converted into a reloc against the STT_SECTION symbol of the
1429 // output section.
1430
1431 void
1432 add_local_section(Sized_relobj<size, big_endian>* relobj,
1433 unsigned int input_shndx, unsigned int type,
1434 Output_data* od, Address address, Addend addend)
1435 {
1436 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1437 addend, false, true));
1438 }
1439
1440 void
1441 add_local_section(Sized_relobj<size, big_endian>* relobj,
1442 unsigned int input_shndx, unsigned int type,
1443 Output_data* od, unsigned int shndx, Address address,
1444 Addend addend)
1445 {
1446 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1447 address, addend, false, true));
1448 }
1449
1450 // A reloc against the STT_SECTION symbol of an output section.
1451
1452 void
1453 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1454 Address address, Addend addend)
1455 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1456
1457 void
1458 add_output_section(Output_section* os, unsigned int type, Relobj* relobj,
1459 unsigned int shndx, Address address, Addend addend)
1460 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1461 addend)); }
1462 };
1463
1464 // Output_relocatable_relocs represents a relocation section in a
1465 // relocatable link. The actual data is written out in the target
1466 // hook relocate_for_relocatable. This just saves space for it.
1467
1468 template<int sh_type, int size, bool big_endian>
1469 class Output_relocatable_relocs : public Output_section_data
1470 {
1471 public:
1472 Output_relocatable_relocs(Relocatable_relocs* rr)
1473 : Output_section_data(Output_data::default_alignment_for_size(size)),
1474 rr_(rr)
1475 { }
1476
1477 void
1478 set_final_data_size();
1479
1480 // Write out the data. There is nothing to do here.
1481 void
1482 do_write(Output_file*)
1483 { }
1484
1485 // Write to a map file.
1486 void
1487 do_print_to_mapfile(Mapfile* mapfile) const
1488 { mapfile->print_output_data(this, _("** relocs")); }
1489
1490 private:
1491 // The relocs associated with this input section.
1492 Relocatable_relocs* rr_;
1493 };
1494
1495 // Handle a GROUP section.
1496
1497 template<int size, bool big_endian>
1498 class Output_data_group : public Output_section_data
1499 {
1500 public:
1501 // The constructor clears *INPUT_SHNDXES.
1502 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1503 section_size_type entry_count,
1504 elfcpp::Elf_Word flags,
1505 std::vector<unsigned int>* input_shndxes);
1506
1507 void
1508 do_write(Output_file*);
1509
1510 // Write to a map file.
1511 void
1512 do_print_to_mapfile(Mapfile* mapfile) const
1513 { mapfile->print_output_data(this, _("** group")); }
1514
1515 private:
1516 // The input object.
1517 Sized_relobj<size, big_endian>* relobj_;
1518 // The group flag word.
1519 elfcpp::Elf_Word flags_;
1520 // The section indexes of the input sections in this group.
1521 std::vector<unsigned int> input_shndxes_;
1522 };
1523
1524 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1525 // for one symbol--either a global symbol or a local symbol in an
1526 // object. The target specific code adds entries to the GOT as
1527 // needed.
1528
1529 template<int size, bool big_endian>
1530 class Output_data_got : public Output_section_data_build
1531 {
1532 public:
1533 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1534 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1535 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1536
1537 Output_data_got()
1538 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1539 entries_()
1540 { }
1541
1542 // Add an entry for a global symbol to the GOT. Return true if this
1543 // is a new GOT entry, false if the symbol was already in the GOT.
1544 bool
1545 add_global(Symbol* gsym, unsigned int got_type);
1546
1547 // Add an entry for a global symbol to the GOT, and add a dynamic
1548 // relocation of type R_TYPE for the GOT entry.
1549 void
1550 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1551 Rel_dyn* rel_dyn, unsigned int r_type);
1552
1553 void
1554 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1555 Rela_dyn* rela_dyn, unsigned int r_type);
1556
1557 // Add a pair of entries for a global symbol to the GOT, and add
1558 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1559 void
1560 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1561 Rel_dyn* rel_dyn, unsigned int r_type_1,
1562 unsigned int r_type_2);
1563
1564 void
1565 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1566 Rela_dyn* rela_dyn, unsigned int r_type_1,
1567 unsigned int r_type_2);
1568
1569 // Add an entry for a local symbol to the GOT. This returns true if
1570 // this is a new GOT entry, false if the symbol already has a GOT
1571 // entry.
1572 bool
1573 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1574 unsigned int got_type);
1575
1576 // Add an entry for a local symbol to the GOT, and add a dynamic
1577 // relocation of type R_TYPE for the GOT entry.
1578 void
1579 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1580 unsigned int sym_index, unsigned int got_type,
1581 Rel_dyn* rel_dyn, unsigned int r_type);
1582
1583 void
1584 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1585 unsigned int sym_index, unsigned int got_type,
1586 Rela_dyn* rela_dyn, unsigned int r_type);
1587
1588 // Add a pair of entries for a local symbol to the GOT, and add
1589 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1590 void
1591 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1592 unsigned int sym_index, unsigned int shndx,
1593 unsigned int got_type, Rel_dyn* rel_dyn,
1594 unsigned int r_type_1, unsigned int r_type_2);
1595
1596 void
1597 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1598 unsigned int sym_index, unsigned int shndx,
1599 unsigned int got_type, Rela_dyn* rela_dyn,
1600 unsigned int r_type_1, unsigned int r_type_2);
1601
1602 // Add a constant to the GOT. This returns the offset of the new
1603 // entry from the start of the GOT.
1604 unsigned int
1605 add_constant(Valtype constant)
1606 {
1607 this->entries_.push_back(Got_entry(constant));
1608 this->set_got_size();
1609 return this->last_got_offset();
1610 }
1611
1612 protected:
1613 // Write out the GOT table.
1614 void
1615 do_write(Output_file*);
1616
1617 // Write to a map file.
1618 void
1619 do_print_to_mapfile(Mapfile* mapfile) const
1620 { mapfile->print_output_data(this, _("** GOT")); }
1621
1622 private:
1623 // This POD class holds a single GOT entry.
1624 class Got_entry
1625 {
1626 public:
1627 // Create a zero entry.
1628 Got_entry()
1629 : local_sym_index_(CONSTANT_CODE)
1630 { this->u_.constant = 0; }
1631
1632 // Create a global symbol entry.
1633 explicit Got_entry(Symbol* gsym)
1634 : local_sym_index_(GSYM_CODE)
1635 { this->u_.gsym = gsym; }
1636
1637 // Create a local symbol entry.
1638 Got_entry(Sized_relobj<size, big_endian>* object,
1639 unsigned int local_sym_index)
1640 : local_sym_index_(local_sym_index)
1641 {
1642 gold_assert(local_sym_index != GSYM_CODE
1643 && local_sym_index != CONSTANT_CODE);
1644 this->u_.object = object;
1645 }
1646
1647 // Create a constant entry. The constant is a host value--it will
1648 // be swapped, if necessary, when it is written out.
1649 explicit Got_entry(Valtype constant)
1650 : local_sym_index_(CONSTANT_CODE)
1651 { this->u_.constant = constant; }
1652
1653 // Write the GOT entry to an output view.
1654 void
1655 write(unsigned char* pov) const;
1656
1657 private:
1658 enum
1659 {
1660 GSYM_CODE = -1U,
1661 CONSTANT_CODE = -2U
1662 };
1663
1664 union
1665 {
1666 // For a local symbol, the object.
1667 Sized_relobj<size, big_endian>* object;
1668 // For a global symbol, the symbol.
1669 Symbol* gsym;
1670 // For a constant, the constant.
1671 Valtype constant;
1672 } u_;
1673 // For a local symbol, the local symbol index. This is GSYM_CODE
1674 // for a global symbol, or CONSTANT_CODE for a constant.
1675 unsigned int local_sym_index_;
1676 };
1677
1678 typedef std::vector<Got_entry> Got_entries;
1679
1680 // Return the offset into the GOT of GOT entry I.
1681 unsigned int
1682 got_offset(unsigned int i) const
1683 { return i * (size / 8); }
1684
1685 // Return the offset into the GOT of the last entry added.
1686 unsigned int
1687 last_got_offset() const
1688 { return this->got_offset(this->entries_.size() - 1); }
1689
1690 // Set the size of the section.
1691 void
1692 set_got_size()
1693 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
1694
1695 // The list of GOT entries.
1696 Got_entries entries_;
1697 };
1698
1699 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
1700 // section.
1701
1702 class Output_data_dynamic : public Output_section_data
1703 {
1704 public:
1705 Output_data_dynamic(Stringpool* pool)
1706 : Output_section_data(Output_data::default_alignment()),
1707 entries_(), pool_(pool)
1708 { }
1709
1710 // Add a new dynamic entry with a fixed numeric value.
1711 void
1712 add_constant(elfcpp::DT tag, unsigned int val)
1713 { this->add_entry(Dynamic_entry(tag, val)); }
1714
1715 // Add a new dynamic entry with the address of output data.
1716 void
1717 add_section_address(elfcpp::DT tag, const Output_data* od)
1718 { this->add_entry(Dynamic_entry(tag, od, false)); }
1719
1720 // Add a new dynamic entry with the address of output data
1721 // plus a constant offset.
1722 void
1723 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
1724 unsigned int offset)
1725 { this->add_entry(Dynamic_entry(tag, od, offset)); }
1726
1727 // Add a new dynamic entry with the size of output data.
1728 void
1729 add_section_size(elfcpp::DT tag, const Output_data* od)
1730 { this->add_entry(Dynamic_entry(tag, od, true)); }
1731
1732 // Add a new dynamic entry with the address of a symbol.
1733 void
1734 add_symbol(elfcpp::DT tag, const Symbol* sym)
1735 { this->add_entry(Dynamic_entry(tag, sym)); }
1736
1737 // Add a new dynamic entry with a string.
1738 void
1739 add_string(elfcpp::DT tag, const char* str)
1740 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
1741
1742 void
1743 add_string(elfcpp::DT tag, const std::string& str)
1744 { this->add_string(tag, str.c_str()); }
1745
1746 protected:
1747 // Adjust the output section to set the entry size.
1748 void
1749 do_adjust_output_section(Output_section*);
1750
1751 // Set the final data size.
1752 void
1753 set_final_data_size();
1754
1755 // Write out the dynamic entries.
1756 void
1757 do_write(Output_file*);
1758
1759 // Write to a map file.
1760 void
1761 do_print_to_mapfile(Mapfile* mapfile) const
1762 { mapfile->print_output_data(this, _("** dynamic")); }
1763
1764 private:
1765 // This POD class holds a single dynamic entry.
1766 class Dynamic_entry
1767 {
1768 public:
1769 // Create an entry with a fixed numeric value.
1770 Dynamic_entry(elfcpp::DT tag, unsigned int val)
1771 : tag_(tag), offset_(DYNAMIC_NUMBER)
1772 { this->u_.val = val; }
1773
1774 // Create an entry with the size or address of a section.
1775 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
1776 : tag_(tag),
1777 offset_(section_size
1778 ? DYNAMIC_SECTION_SIZE
1779 : DYNAMIC_SECTION_ADDRESS)
1780 { this->u_.od = od; }
1781
1782 // Create an entry with the address of a section plus a constant offset.
1783 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
1784 : tag_(tag),
1785 offset_(offset)
1786 { this->u_.od = od; }
1787
1788 // Create an entry with the address of a symbol.
1789 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
1790 : tag_(tag), offset_(DYNAMIC_SYMBOL)
1791 { this->u_.sym = sym; }
1792
1793 // Create an entry with a string.
1794 Dynamic_entry(elfcpp::DT tag, const char* str)
1795 : tag_(tag), offset_(DYNAMIC_STRING)
1796 { this->u_.str = str; }
1797
1798 // Write the dynamic entry to an output view.
1799 template<int size, bool big_endian>
1800 void
1801 write(unsigned char* pov, const Stringpool*) const;
1802
1803 private:
1804 // Classification is encoded in the OFFSET field.
1805 enum Classification
1806 {
1807 // Section address.
1808 DYNAMIC_SECTION_ADDRESS = 0,
1809 // Number.
1810 DYNAMIC_NUMBER = -1U,
1811 // Section size.
1812 DYNAMIC_SECTION_SIZE = -2U,
1813 // Symbol adress.
1814 DYNAMIC_SYMBOL = -3U,
1815 // String.
1816 DYNAMIC_STRING = -4U
1817 // Any other value indicates a section address plus OFFSET.
1818 };
1819
1820 union
1821 {
1822 // For DYNAMIC_NUMBER.
1823 unsigned int val;
1824 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
1825 const Output_data* od;
1826 // For DYNAMIC_SYMBOL.
1827 const Symbol* sym;
1828 // For DYNAMIC_STRING.
1829 const char* str;
1830 } u_;
1831 // The dynamic tag.
1832 elfcpp::DT tag_;
1833 // The type of entry (Classification) or offset within a section.
1834 unsigned int offset_;
1835 };
1836
1837 // Add an entry to the list.
1838 void
1839 add_entry(const Dynamic_entry& entry)
1840 { this->entries_.push_back(entry); }
1841
1842 // Sized version of write function.
1843 template<int size, bool big_endian>
1844 void
1845 sized_write(Output_file* of);
1846
1847 // The type of the list of entries.
1848 typedef std::vector<Dynamic_entry> Dynamic_entries;
1849
1850 // The entries.
1851 Dynamic_entries entries_;
1852 // The pool used for strings.
1853 Stringpool* pool_;
1854 };
1855
1856 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
1857 // which may be required if the object file has more than
1858 // SHN_LORESERVE sections.
1859
1860 class Output_symtab_xindex : public Output_section_data
1861 {
1862 public:
1863 Output_symtab_xindex(size_t symcount)
1864 : Output_section_data(symcount * 4, 4),
1865 entries_()
1866 { }
1867
1868 // Add an entry: symbol number SYMNDX has section SHNDX.
1869 void
1870 add(unsigned int symndx, unsigned int shndx)
1871 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
1872
1873 protected:
1874 void
1875 do_write(Output_file*);
1876
1877 // Write to a map file.
1878 void
1879 do_print_to_mapfile(Mapfile* mapfile) const
1880 { mapfile->print_output_data(this, _("** symtab xindex")); }
1881
1882 private:
1883 template<bool big_endian>
1884 void
1885 endian_do_write(unsigned char*);
1886
1887 // It is likely that most symbols will not require entries. Rather
1888 // than keep a vector for all symbols, we keep pairs of symbol index
1889 // and section index.
1890 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
1891
1892 // The entries we need.
1893 Xindex_entries entries_;
1894 };
1895
1896 // An output section. We don't expect to have too many output
1897 // sections, so we don't bother to do a template on the size.
1898
1899 class Output_section : public Output_data
1900 {
1901 public:
1902 // Create an output section, giving the name, type, and flags.
1903 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
1904 virtual ~Output_section();
1905
1906 // Add a new input section SHNDX, named NAME, with header SHDR, from
1907 // object OBJECT. RELOC_SHNDX is the index of a relocation section
1908 // which applies to this section, or 0 if none, or -1U if more than
1909 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
1910 // in a linker script; in that case we need to keep track of input
1911 // sections associated with an output section. Return the offset
1912 // within the output section.
1913 template<int size, bool big_endian>
1914 off_t
1915 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
1916 const char *name,
1917 const elfcpp::Shdr<size, big_endian>& shdr,
1918 unsigned int reloc_shndx, bool have_sections_script);
1919
1920 // Add generated data POSD to this output section.
1921 void
1922 add_output_section_data(Output_section_data* posd);
1923
1924 // Return the section name.
1925 const char*
1926 name() const
1927 { return this->name_; }
1928
1929 // Return the section type.
1930 elfcpp::Elf_Word
1931 type() const
1932 { return this->type_; }
1933
1934 // Return the section flags.
1935 elfcpp::Elf_Xword
1936 flags() const
1937 { return this->flags_; }
1938
1939 // Set the section flags. This may only be used with the Layout
1940 // code when it is prepared to move the section to a different
1941 // segment.
1942 void
1943 set_flags(elfcpp::Elf_Xword flags)
1944 { this->flags_ = flags; }
1945
1946 // Update the output section flags based on input section flags.
1947 void
1948 update_flags_for_input_section(elfcpp::Elf_Xword flags)
1949 {
1950 this->flags_ |= (flags
1951 & (elfcpp::SHF_WRITE
1952 | elfcpp::SHF_ALLOC
1953 | elfcpp::SHF_EXECINSTR));
1954 }
1955
1956 // Return the entsize field.
1957 uint64_t
1958 entsize() const
1959 { return this->entsize_; }
1960
1961 // Set the entsize field.
1962 void
1963 set_entsize(uint64_t v);
1964
1965 // Set the load address.
1966 void
1967 set_load_address(uint64_t load_address)
1968 {
1969 this->load_address_ = load_address;
1970 this->has_load_address_ = true;
1971 }
1972
1973 // Set the link field to the output section index of a section.
1974 void
1975 set_link_section(const Output_data* od)
1976 {
1977 gold_assert(this->link_ == 0
1978 && !this->should_link_to_symtab_
1979 && !this->should_link_to_dynsym_);
1980 this->link_section_ = od;
1981 }
1982
1983 // Set the link field to a constant.
1984 void
1985 set_link(unsigned int v)
1986 {
1987 gold_assert(this->link_section_ == NULL
1988 && !this->should_link_to_symtab_
1989 && !this->should_link_to_dynsym_);
1990 this->link_ = v;
1991 }
1992
1993 // Record that this section should link to the normal symbol table.
1994 void
1995 set_should_link_to_symtab()
1996 {
1997 gold_assert(this->link_section_ == NULL
1998 && this->link_ == 0
1999 && !this->should_link_to_dynsym_);
2000 this->should_link_to_symtab_ = true;
2001 }
2002
2003 // Record that this section should link to the dynamic symbol table.
2004 void
2005 set_should_link_to_dynsym()
2006 {
2007 gold_assert(this->link_section_ == NULL
2008 && this->link_ == 0
2009 && !this->should_link_to_symtab_);
2010 this->should_link_to_dynsym_ = true;
2011 }
2012
2013 // Return the info field.
2014 unsigned int
2015 info() const
2016 {
2017 gold_assert(this->info_section_ == NULL
2018 && this->info_symndx_ == NULL);
2019 return this->info_;
2020 }
2021
2022 // Set the info field to the output section index of a section.
2023 void
2024 set_info_section(const Output_section* os)
2025 {
2026 gold_assert((this->info_section_ == NULL
2027 || (this->info_section_ == os
2028 && this->info_uses_section_index_))
2029 && this->info_symndx_ == NULL
2030 && this->info_ == 0);
2031 this->info_section_ = os;
2032 this->info_uses_section_index_= true;
2033 }
2034
2035 // Set the info field to the symbol table index of a symbol.
2036 void
2037 set_info_symndx(const Symbol* sym)
2038 {
2039 gold_assert(this->info_section_ == NULL
2040 && (this->info_symndx_ == NULL
2041 || this->info_symndx_ == sym)
2042 && this->info_ == 0);
2043 this->info_symndx_ = sym;
2044 }
2045
2046 // Set the info field to the symbol table index of a section symbol.
2047 void
2048 set_info_section_symndx(const Output_section* os)
2049 {
2050 gold_assert((this->info_section_ == NULL
2051 || (this->info_section_ == os
2052 && !this->info_uses_section_index_))
2053 && this->info_symndx_ == NULL
2054 && this->info_ == 0);
2055 this->info_section_ = os;
2056 this->info_uses_section_index_ = false;
2057 }
2058
2059 // Set the info field to a constant.
2060 void
2061 set_info(unsigned int v)
2062 {
2063 gold_assert(this->info_section_ == NULL
2064 && this->info_symndx_ == NULL
2065 && (this->info_ == 0
2066 || this->info_ == v));
2067 this->info_ = v;
2068 }
2069
2070 // Set the addralign field.
2071 void
2072 set_addralign(uint64_t v)
2073 { this->addralign_ = v; }
2074
2075 // Whether the output section index has been set.
2076 bool
2077 has_out_shndx() const
2078 { return this->out_shndx_ != -1U; }
2079
2080 // Indicate that we need a symtab index.
2081 void
2082 set_needs_symtab_index()
2083 { this->needs_symtab_index_ = true; }
2084
2085 // Return whether we need a symtab index.
2086 bool
2087 needs_symtab_index() const
2088 { return this->needs_symtab_index_; }
2089
2090 // Get the symtab index.
2091 unsigned int
2092 symtab_index() const
2093 {
2094 gold_assert(this->symtab_index_ != 0);
2095 return this->symtab_index_;
2096 }
2097
2098 // Set the symtab index.
2099 void
2100 set_symtab_index(unsigned int index)
2101 {
2102 gold_assert(index != 0);
2103 this->symtab_index_ = index;
2104 }
2105
2106 // Indicate that we need a dynsym index.
2107 void
2108 set_needs_dynsym_index()
2109 { this->needs_dynsym_index_ = true; }
2110
2111 // Return whether we need a dynsym index.
2112 bool
2113 needs_dynsym_index() const
2114 { return this->needs_dynsym_index_; }
2115
2116 // Get the dynsym index.
2117 unsigned int
2118 dynsym_index() const
2119 {
2120 gold_assert(this->dynsym_index_ != 0);
2121 return this->dynsym_index_;
2122 }
2123
2124 // Set the dynsym index.
2125 void
2126 set_dynsym_index(unsigned int index)
2127 {
2128 gold_assert(index != 0);
2129 this->dynsym_index_ = index;
2130 }
2131
2132 // Return whether the input sections sections attachd to this output
2133 // section may require sorting. This is used to handle constructor
2134 // priorities compatibly with GNU ld.
2135 bool
2136 may_sort_attached_input_sections() const
2137 { return this->may_sort_attached_input_sections_; }
2138
2139 // Record that the input sections attached to this output section
2140 // may require sorting.
2141 void
2142 set_may_sort_attached_input_sections()
2143 { this->may_sort_attached_input_sections_ = true; }
2144
2145 // Return whether the input sections attached to this output section
2146 // require sorting. This is used to handle constructor priorities
2147 // compatibly with GNU ld.
2148 bool
2149 must_sort_attached_input_sections() const
2150 { return this->must_sort_attached_input_sections_; }
2151
2152 // Record that the input sections attached to this output section
2153 // require sorting.
2154 void
2155 set_must_sort_attached_input_sections()
2156 { this->must_sort_attached_input_sections_ = true; }
2157
2158 // Return whether this section holds relro data--data which has
2159 // dynamic relocations but which may be marked read-only after the
2160 // dynamic relocations have been completed.
2161 bool
2162 is_relro() const
2163 { return this->is_relro_; }
2164
2165 // Record that this section holds relro data.
2166 void
2167 set_is_relro()
2168 { this->is_relro_ = true; }
2169
2170 // True if this section holds relro local data--relro data for which
2171 // the dynamic relocations are all RELATIVE relocations.
2172 bool
2173 is_relro_local() const
2174 { return this->is_relro_local_; }
2175
2176 // Record that this section holds relro local data.
2177 void
2178 set_is_relro_local()
2179 { this->is_relro_local_ = true; }
2180
2181 // Return whether this section should be written after all the input
2182 // sections are complete.
2183 bool
2184 after_input_sections() const
2185 { return this->after_input_sections_; }
2186
2187 // Record that this section should be written after all the input
2188 // sections are complete.
2189 void
2190 set_after_input_sections()
2191 { this->after_input_sections_ = true; }
2192
2193 // Return whether this section requires postprocessing after all
2194 // relocations have been applied.
2195 bool
2196 requires_postprocessing() const
2197 { return this->requires_postprocessing_; }
2198
2199 // If a section requires postprocessing, return the buffer to use.
2200 unsigned char*
2201 postprocessing_buffer() const
2202 {
2203 gold_assert(this->postprocessing_buffer_ != NULL);
2204 return this->postprocessing_buffer_;
2205 }
2206
2207 // If a section requires postprocessing, create the buffer to use.
2208 void
2209 create_postprocessing_buffer();
2210
2211 // If a section requires postprocessing, this is the size of the
2212 // buffer to which relocations should be applied.
2213 off_t
2214 postprocessing_buffer_size() const
2215 { return this->current_data_size_for_child(); }
2216
2217 // Modify the section name. This is only permitted for an
2218 // unallocated section, and only before the size has been finalized.
2219 // Otherwise the name will not get into Layout::namepool_.
2220 void
2221 set_name(const char* newname)
2222 {
2223 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2224 gold_assert(!this->is_data_size_valid());
2225 this->name_ = newname;
2226 }
2227
2228 // Return whether the offset OFFSET in the input section SHNDX in
2229 // object OBJECT is being included in the link.
2230 bool
2231 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2232 off_t offset) const;
2233
2234 // Return the offset within the output section of OFFSET relative to
2235 // the start of input section SHNDX in object OBJECT.
2236 section_offset_type
2237 output_offset(const Relobj* object, unsigned int shndx,
2238 section_offset_type offset) const;
2239
2240 // Return the output virtual address of OFFSET relative to the start
2241 // of input section SHNDX in object OBJECT.
2242 uint64_t
2243 output_address(const Relobj* object, unsigned int shndx,
2244 off_t offset) const;
2245
2246 // Return the output address of the start of the merged section for
2247 // input section SHNDX in object OBJECT. This is not necessarily
2248 // the offset corresponding to input offset 0 in the section, since
2249 // the section may be mapped arbitrarily.
2250 uint64_t
2251 starting_output_address(const Relobj* object, unsigned int shndx) const;
2252
2253 // Record that this output section was found in the SECTIONS clause
2254 // of a linker script.
2255 void
2256 set_found_in_sections_clause()
2257 { this->found_in_sections_clause_ = true; }
2258
2259 // Return whether this output section was found in the SECTIONS
2260 // clause of a linker script.
2261 bool
2262 found_in_sections_clause() const
2263 { return this->found_in_sections_clause_; }
2264
2265 // Write the section header into *OPHDR.
2266 template<int size, bool big_endian>
2267 void
2268 write_header(const Layout*, const Stringpool*,
2269 elfcpp::Shdr_write<size, big_endian>*) const;
2270
2271 // The next few calls are for linker script support.
2272
2273 // Store the list of input sections for this Output_section into the
2274 // list passed in. This removes the input sections, leaving only
2275 // any Output_section_data elements. This returns the size of those
2276 // Output_section_data elements. ADDRESS is the address of this
2277 // output section. FILL is the fill value to use, in case there are
2278 // any spaces between the remaining Output_section_data elements.
2279 uint64_t
2280 get_input_sections(uint64_t address, const std::string& fill,
2281 std::list<std::pair<Relobj*, unsigned int > >*);
2282
2283 // Add an input section from a script.
2284 void
2285 add_input_section_for_script(Relobj* object, unsigned int shndx,
2286 off_t data_size, uint64_t addralign);
2287
2288 // Set the current size of the output section.
2289 void
2290 set_current_data_size(off_t size)
2291 { this->set_current_data_size_for_child(size); }
2292
2293 // Get the current size of the output section.
2294 off_t
2295 current_data_size() const
2296 { return this->current_data_size_for_child(); }
2297
2298 // End of linker script support.
2299
2300 // Print merge statistics to stderr.
2301 void
2302 print_merge_stats();
2303
2304 protected:
2305 // Return the output section--i.e., the object itself.
2306 Output_section*
2307 do_output_section()
2308 { return this; }
2309
2310 // Return the section index in the output file.
2311 unsigned int
2312 do_out_shndx() const
2313 {
2314 gold_assert(this->out_shndx_ != -1U);
2315 return this->out_shndx_;
2316 }
2317
2318 // Set the output section index.
2319 void
2320 do_set_out_shndx(unsigned int shndx)
2321 {
2322 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2323 this->out_shndx_ = shndx;
2324 }
2325
2326 // Set the final data size of the Output_section. For a typical
2327 // Output_section, there is nothing to do, but if there are any
2328 // Output_section_data objects we need to set their final addresses
2329 // here.
2330 virtual void
2331 set_final_data_size();
2332
2333 // Reset the address and file offset.
2334 void
2335 do_reset_address_and_file_offset();
2336
2337 // Write the data to the file. For a typical Output_section, this
2338 // does nothing: the data is written out by calling Object::Relocate
2339 // on each input object. But if there are any Output_section_data
2340 // objects we do need to write them out here.
2341 virtual void
2342 do_write(Output_file*);
2343
2344 // Return the address alignment--function required by parent class.
2345 uint64_t
2346 do_addralign() const
2347 { return this->addralign_; }
2348
2349 // Return whether there is a load address.
2350 bool
2351 do_has_load_address() const
2352 { return this->has_load_address_; }
2353
2354 // Return the load address.
2355 uint64_t
2356 do_load_address() const
2357 {
2358 gold_assert(this->has_load_address_);
2359 return this->load_address_;
2360 }
2361
2362 // Return whether this is an Output_section.
2363 bool
2364 do_is_section() const
2365 { return true; }
2366
2367 // Return whether this is a section of the specified type.
2368 bool
2369 do_is_section_type(elfcpp::Elf_Word type) const
2370 { return this->type_ == type; }
2371
2372 // Return whether the specified section flag is set.
2373 bool
2374 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2375 { return (this->flags_ & flag) != 0; }
2376
2377 // Set the TLS offset. Called only for SHT_TLS sections.
2378 void
2379 do_set_tls_offset(uint64_t tls_base);
2380
2381 // Return the TLS offset, relative to the base of the TLS segment.
2382 // Valid only for SHT_TLS sections.
2383 uint64_t
2384 do_tls_offset() const
2385 { return this->tls_offset_; }
2386
2387 // This may be implemented by a child class.
2388 virtual void
2389 do_finalize_name(Layout*)
2390 { }
2391
2392 // Print to the map file.
2393 virtual void
2394 do_print_to_mapfile(Mapfile*) const;
2395
2396 // Record that this section requires postprocessing after all
2397 // relocations have been applied. This is called by a child class.
2398 void
2399 set_requires_postprocessing()
2400 {
2401 this->requires_postprocessing_ = true;
2402 this->after_input_sections_ = true;
2403 }
2404
2405 // Write all the data of an Output_section into the postprocessing
2406 // buffer.
2407 void
2408 write_to_postprocessing_buffer();
2409
2410 private:
2411 // In some cases we need to keep a list of the input sections
2412 // associated with this output section. We only need the list if we
2413 // might have to change the offsets of the input section within the
2414 // output section after we add the input section. The ordinary
2415 // input sections will be written out when we process the object
2416 // file, and as such we don't need to track them here. We do need
2417 // to track Output_section_data objects here. We store instances of
2418 // this structure in a std::vector, so it must be a POD. There can
2419 // be many instances of this structure, so we use a union to save
2420 // some space.
2421 class Input_section
2422 {
2423 public:
2424 Input_section()
2425 : shndx_(0), p2align_(0)
2426 {
2427 this->u1_.data_size = 0;
2428 this->u2_.object = NULL;
2429 }
2430
2431 // For an ordinary input section.
2432 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
2433 uint64_t addralign)
2434 : shndx_(shndx),
2435 p2align_(ffsll(static_cast<long long>(addralign)))
2436 {
2437 gold_assert(shndx != OUTPUT_SECTION_CODE
2438 && shndx != MERGE_DATA_SECTION_CODE
2439 && shndx != MERGE_STRING_SECTION_CODE);
2440 this->u1_.data_size = data_size;
2441 this->u2_.object = object;
2442 }
2443
2444 // For a non-merge output section.
2445 Input_section(Output_section_data* posd)
2446 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
2447 {
2448 this->u1_.data_size = 0;
2449 this->u2_.posd = posd;
2450 }
2451
2452 // For a merge section.
2453 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
2454 : shndx_(is_string
2455 ? MERGE_STRING_SECTION_CODE
2456 : MERGE_DATA_SECTION_CODE),
2457 p2align_(0)
2458 {
2459 this->u1_.entsize = entsize;
2460 this->u2_.posd = posd;
2461 }
2462
2463 // The required alignment.
2464 uint64_t
2465 addralign() const
2466 {
2467 if (!this->is_input_section())
2468 return this->u2_.posd->addralign();
2469 return (this->p2align_ == 0
2470 ? 0
2471 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
2472 }
2473
2474 // Return the required size.
2475 off_t
2476 data_size() const;
2477
2478 // Whether this is an input section.
2479 bool
2480 is_input_section() const
2481 {
2482 return (this->shndx_ != OUTPUT_SECTION_CODE
2483 && this->shndx_ != MERGE_DATA_SECTION_CODE
2484 && this->shndx_ != MERGE_STRING_SECTION_CODE);
2485 }
2486
2487 // Return whether this is a merge section which matches the
2488 // parameters.
2489 bool
2490 is_merge_section(bool is_string, uint64_t entsize,
2491 uint64_t addralign) const
2492 {
2493 return (this->shndx_ == (is_string
2494 ? MERGE_STRING_SECTION_CODE
2495 : MERGE_DATA_SECTION_CODE)
2496 && this->u1_.entsize == entsize
2497 && this->addralign() == addralign);
2498 }
2499
2500 // Return the object for an input section.
2501 Relobj*
2502 relobj() const
2503 {
2504 gold_assert(this->is_input_section());
2505 return this->u2_.object;
2506 }
2507
2508 // Return the input section index for an input section.
2509 unsigned int
2510 shndx() const
2511 {
2512 gold_assert(this->is_input_section());
2513 return this->shndx_;
2514 }
2515
2516 // Set the output section.
2517 void
2518 set_output_section(Output_section* os)
2519 {
2520 gold_assert(!this->is_input_section());
2521 this->u2_.posd->set_output_section(os);
2522 }
2523
2524 // Set the address and file offset. This is called during
2525 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
2526 // the enclosing section.
2527 void
2528 set_address_and_file_offset(uint64_t address, off_t file_offset,
2529 off_t section_file_offset);
2530
2531 // Reset the address and file offset.
2532 void
2533 reset_address_and_file_offset();
2534
2535 // Finalize the data size.
2536 void
2537 finalize_data_size();
2538
2539 // Add an input section, for SHF_MERGE sections.
2540 bool
2541 add_input_section(Relobj* object, unsigned int shndx)
2542 {
2543 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
2544 || this->shndx_ == MERGE_STRING_SECTION_CODE);
2545 return this->u2_.posd->add_input_section(object, shndx);
2546 }
2547
2548 // Given an input OBJECT, an input section index SHNDX within that
2549 // object, and an OFFSET relative to the start of that input
2550 // section, return whether or not the output offset is known. If
2551 // this function returns true, it sets *POUTPUT to the offset in
2552 // the output section, relative to the start of the input section
2553 // in the output section. *POUTPUT may be different from OFFSET
2554 // for a merged section.
2555 bool
2556 output_offset(const Relobj* object, unsigned int shndx,
2557 section_offset_type offset,
2558 section_offset_type *poutput) const;
2559
2560 // Return whether this is the merge section for the input section
2561 // SHNDX in OBJECT.
2562 bool
2563 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
2564
2565 // Write out the data. This does nothing for an input section.
2566 void
2567 write(Output_file*);
2568
2569 // Write the data to a buffer. This does nothing for an input
2570 // section.
2571 void
2572 write_to_buffer(unsigned char*);
2573
2574 // Print to a map file.
2575 void
2576 print_to_mapfile(Mapfile*) const;
2577
2578 // Print statistics about merge sections to stderr.
2579 void
2580 print_merge_stats(const char* section_name)
2581 {
2582 if (this->shndx_ == MERGE_DATA_SECTION_CODE
2583 || this->shndx_ == MERGE_STRING_SECTION_CODE)
2584 this->u2_.posd->print_merge_stats(section_name);
2585 }
2586
2587 private:
2588 // Code values which appear in shndx_. If the value is not one of
2589 // these codes, it is the input section index in the object file.
2590 enum
2591 {
2592 // An Output_section_data.
2593 OUTPUT_SECTION_CODE = -1U,
2594 // An Output_section_data for an SHF_MERGE section with
2595 // SHF_STRINGS not set.
2596 MERGE_DATA_SECTION_CODE = -2U,
2597 // An Output_section_data for an SHF_MERGE section with
2598 // SHF_STRINGS set.
2599 MERGE_STRING_SECTION_CODE = -3U
2600 };
2601
2602 // For an ordinary input section, this is the section index in the
2603 // input file. For an Output_section_data, this is
2604 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2605 // MERGE_STRING_SECTION_CODE.
2606 unsigned int shndx_;
2607 // The required alignment, stored as a power of 2.
2608 unsigned int p2align_;
2609 union
2610 {
2611 // For an ordinary input section, the section size.
2612 off_t data_size;
2613 // For OUTPUT_SECTION_CODE, this is not used. For
2614 // MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
2615 // entity size.
2616 uint64_t entsize;
2617 } u1_;
2618 union
2619 {
2620 // For an ordinary input section, the object which holds the
2621 // input section.
2622 Relobj* object;
2623 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
2624 // MERGE_STRING_SECTION_CODE, the data.
2625 Output_section_data* posd;
2626 } u2_;
2627 };
2628
2629 typedef std::vector<Input_section> Input_section_list;
2630
2631 // This class is used to sort the input sections.
2632 class Input_section_sort_entry;
2633
2634 // This is the sort comparison function.
2635 struct Input_section_sort_compare
2636 {
2637 bool
2638 operator()(const Input_section_sort_entry&,
2639 const Input_section_sort_entry&) const;
2640 };
2641
2642 // Fill data. This is used to fill in data between input sections.
2643 // It is also used for data statements (BYTE, WORD, etc.) in linker
2644 // scripts. When we have to keep track of the input sections, we
2645 // can use an Output_data_const, but we don't want to have to keep
2646 // track of input sections just to implement fills.
2647 class Fill
2648 {
2649 public:
2650 Fill(off_t section_offset, off_t length)
2651 : section_offset_(section_offset),
2652 length_(convert_to_section_size_type(length))
2653 { }
2654
2655 // Return section offset.
2656 off_t
2657 section_offset() const
2658 { return this->section_offset_; }
2659
2660 // Return fill length.
2661 section_size_type
2662 length() const
2663 { return this->length_; }
2664
2665 private:
2666 // The offset within the output section.
2667 off_t section_offset_;
2668 // The length of the space to fill.
2669 section_size_type length_;
2670 };
2671
2672 typedef std::vector<Fill> Fill_list;
2673
2674 // Add a new output section by Input_section.
2675 void
2676 add_output_section_data(Input_section*);
2677
2678 // Add an SHF_MERGE input section. Returns true if the section was
2679 // handled.
2680 bool
2681 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
2682 uint64_t entsize, uint64_t addralign);
2683
2684 // Add an output SHF_MERGE section POSD to this output section.
2685 // IS_STRING indicates whether it is a SHF_STRINGS section, and
2686 // ENTSIZE is the entity size. This returns the entry added to
2687 // input_sections_.
2688 void
2689 add_output_merge_section(Output_section_data* posd, bool is_string,
2690 uint64_t entsize);
2691
2692 // Sort the attached input sections.
2693 void
2694 sort_attached_input_sections();
2695
2696 // Most of these fields are only valid after layout.
2697
2698 // The name of the section. This will point into a Stringpool.
2699 const char* name_;
2700 // The section address is in the parent class.
2701 // The section alignment.
2702 uint64_t addralign_;
2703 // The section entry size.
2704 uint64_t entsize_;
2705 // The load address. This is only used when using a linker script
2706 // with a SECTIONS clause. The has_load_address_ field indicates
2707 // whether this field is valid.
2708 uint64_t load_address_;
2709 // The file offset is in the parent class.
2710 // Set the section link field to the index of this section.
2711 const Output_data* link_section_;
2712 // If link_section_ is NULL, this is the link field.
2713 unsigned int link_;
2714 // Set the section info field to the index of this section.
2715 const Output_section* info_section_;
2716 // If info_section_ is NULL, set the info field to the symbol table
2717 // index of this symbol.
2718 const Symbol* info_symndx_;
2719 // If info_section_ and info_symndx_ are NULL, this is the section
2720 // info field.
2721 unsigned int info_;
2722 // The section type.
2723 const elfcpp::Elf_Word type_;
2724 // The section flags.
2725 elfcpp::Elf_Xword flags_;
2726 // The section index.
2727 unsigned int out_shndx_;
2728 // If there is a STT_SECTION for this output section in the normal
2729 // symbol table, this is the symbol index. This starts out as zero.
2730 // It is initialized in Layout::finalize() to be the index, or -1U
2731 // if there isn't one.
2732 unsigned int symtab_index_;
2733 // If there is a STT_SECTION for this output section in the dynamic
2734 // symbol table, this is the symbol index. This starts out as zero.
2735 // It is initialized in Layout::finalize() to be the index, or -1U
2736 // if there isn't one.
2737 unsigned int dynsym_index_;
2738 // The input sections. This will be empty in cases where we don't
2739 // need to keep track of them.
2740 Input_section_list input_sections_;
2741 // The offset of the first entry in input_sections_.
2742 off_t first_input_offset_;
2743 // The fill data. This is separate from input_sections_ because we
2744 // often will need fill sections without needing to keep track of
2745 // input sections.
2746 Fill_list fills_;
2747 // If the section requires postprocessing, this buffer holds the
2748 // section contents during relocation.
2749 unsigned char* postprocessing_buffer_;
2750 // Whether this output section needs a STT_SECTION symbol in the
2751 // normal symbol table. This will be true if there is a relocation
2752 // which needs it.
2753 bool needs_symtab_index_ : 1;
2754 // Whether this output section needs a STT_SECTION symbol in the
2755 // dynamic symbol table. This will be true if there is a dynamic
2756 // relocation which needs it.
2757 bool needs_dynsym_index_ : 1;
2758 // Whether the link field of this output section should point to the
2759 // normal symbol table.
2760 bool should_link_to_symtab_ : 1;
2761 // Whether the link field of this output section should point to the
2762 // dynamic symbol table.
2763 bool should_link_to_dynsym_ : 1;
2764 // Whether this section should be written after all the input
2765 // sections are complete.
2766 bool after_input_sections_ : 1;
2767 // Whether this section requires post processing after all
2768 // relocations have been applied.
2769 bool requires_postprocessing_ : 1;
2770 // Whether an input section was mapped to this output section
2771 // because of a SECTIONS clause in a linker script.
2772 bool found_in_sections_clause_ : 1;
2773 // Whether this section has an explicitly specified load address.
2774 bool has_load_address_ : 1;
2775 // True if the info_section_ field means the section index of the
2776 // section, false if it means the symbol index of the corresponding
2777 // section symbol.
2778 bool info_uses_section_index_ : 1;
2779 // True if the input sections attached to this output section may
2780 // need sorting.
2781 bool may_sort_attached_input_sections_ : 1;
2782 // True if the input sections attached to this output section must
2783 // be sorted.
2784 bool must_sort_attached_input_sections_ : 1;
2785 // True if the input sections attached to this output section have
2786 // already been sorted.
2787 bool attached_input_sections_are_sorted_ : 1;
2788 // True if this section holds relro data.
2789 bool is_relro_ : 1;
2790 // True if this section holds relro local data.
2791 bool is_relro_local_ : 1;
2792 // For SHT_TLS sections, the offset of this section relative to the base
2793 // of the TLS segment.
2794 uint64_t tls_offset_;
2795 };
2796
2797 // An output segment. PT_LOAD segments are built from collections of
2798 // output sections. Other segments typically point within PT_LOAD
2799 // segments, and are built directly as needed.
2800
2801 class Output_segment
2802 {
2803 public:
2804 // Create an output segment, specifying the type and flags.
2805 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
2806
2807 // Return the virtual address.
2808 uint64_t
2809 vaddr() const
2810 { return this->vaddr_; }
2811
2812 // Return the physical address.
2813 uint64_t
2814 paddr() const
2815 { return this->paddr_; }
2816
2817 // Return the segment type.
2818 elfcpp::Elf_Word
2819 type() const
2820 { return this->type_; }
2821
2822 // Return the segment flags.
2823 elfcpp::Elf_Word
2824 flags() const
2825 { return this->flags_; }
2826
2827 // Return the memory size.
2828 uint64_t
2829 memsz() const
2830 { return this->memsz_; }
2831
2832 // Return the file size.
2833 off_t
2834 filesz() const
2835 { return this->filesz_; }
2836
2837 // Return the file offset.
2838 off_t
2839 offset() const
2840 { return this->offset_; }
2841
2842 // Return the maximum alignment of the Output_data.
2843 uint64_t
2844 maximum_alignment();
2845
2846 // Add an Output_section to this segment.
2847 void
2848 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags);
2849
2850 // Remove an Output_section from this segment. It is an error if it
2851 // is not present.
2852 void
2853 remove_output_section(Output_section* os);
2854
2855 // Add an Output_data (which is not an Output_section) to the start
2856 // of this segment.
2857 void
2858 add_initial_output_data(Output_data*);
2859
2860 // Return true if this segment has any sections which hold actual
2861 // data, rather than being a BSS section.
2862 bool
2863 has_any_data_sections() const
2864 { return !this->output_data_.empty(); }
2865
2866 // Return the number of dynamic relocations applied to this segment.
2867 unsigned int
2868 dynamic_reloc_count() const;
2869
2870 // Return the address of the first section.
2871 uint64_t
2872 first_section_load_address() const;
2873
2874 // Return whether the addresses have been set already.
2875 bool
2876 are_addresses_set() const
2877 { return this->are_addresses_set_; }
2878
2879 // Set the addresses.
2880 void
2881 set_addresses(uint64_t vaddr, uint64_t paddr)
2882 {
2883 this->vaddr_ = vaddr;
2884 this->paddr_ = paddr;
2885 this->are_addresses_set_ = true;
2886 }
2887
2888 // Set the segment flags. This is only used if we have a PHDRS
2889 // clause which explicitly specifies the flags.
2890 void
2891 set_flags(elfcpp::Elf_Word flags)
2892 { this->flags_ = flags; }
2893
2894 // Set the address of the segment to ADDR and the offset to *POFF
2895 // and set the addresses and offsets of all contained output
2896 // sections accordingly. Set the section indexes of all contained
2897 // output sections starting with *PSHNDX. If RESET is true, first
2898 // reset the addresses of the contained sections. Return the
2899 // address of the immediately following segment. Update *POFF and
2900 // *PSHNDX. This should only be called for a PT_LOAD segment.
2901 uint64_t
2902 set_section_addresses(const Layout*, bool reset, uint64_t addr, off_t* poff,
2903 unsigned int* pshndx);
2904
2905 // Set the minimum alignment of this segment. This may be adjusted
2906 // upward based on the section alignments.
2907 void
2908 set_minimum_p_align(uint64_t align)
2909 { this->min_p_align_ = align; }
2910
2911 // Set the offset of this segment based on the section. This should
2912 // only be called for a non-PT_LOAD segment.
2913 void
2914 set_offset();
2915
2916 // Set the TLS offsets of the sections contained in the PT_TLS segment.
2917 void
2918 set_tls_offsets();
2919
2920 // Return the number of output sections.
2921 unsigned int
2922 output_section_count() const;
2923
2924 // Return the section attached to the list segment with the lowest
2925 // load address. This is used when handling a PHDRS clause in a
2926 // linker script.
2927 Output_section*
2928 section_with_lowest_load_address() const;
2929
2930 // Write the segment header into *OPHDR.
2931 template<int size, bool big_endian>
2932 void
2933 write_header(elfcpp::Phdr_write<size, big_endian>*);
2934
2935 // Write the section headers of associated sections into V.
2936 template<int size, bool big_endian>
2937 unsigned char*
2938 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
2939 unsigned int* pshndx) const;
2940
2941 // Print the output sections in the map file.
2942 void
2943 print_sections_to_mapfile(Mapfile*) const;
2944
2945 private:
2946 Output_segment(const Output_segment&);
2947 Output_segment& operator=(const Output_segment&);
2948
2949 typedef std::list<Output_data*> Output_data_list;
2950
2951 // Find the maximum alignment in an Output_data_list.
2952 static uint64_t
2953 maximum_alignment_list(const Output_data_list*);
2954
2955 // Return whether the first data section is a relro section.
2956 bool
2957 is_first_section_relro() const;
2958
2959 // Set the section addresses in an Output_data_list.
2960 uint64_t
2961 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
2962 uint64_t addr, off_t* poff, unsigned int* pshndx,
2963 bool* in_tls, bool* in_relro);
2964
2965 // Return the number of Output_sections in an Output_data_list.
2966 unsigned int
2967 output_section_count_list(const Output_data_list*) const;
2968
2969 // Return the number of dynamic relocs in an Output_data_list.
2970 unsigned int
2971 dynamic_reloc_count_list(const Output_data_list*) const;
2972
2973 // Find the section with the lowest load address in an
2974 // Output_data_list.
2975 void
2976 lowest_load_address_in_list(const Output_data_list* pdl,
2977 Output_section** found,
2978 uint64_t* found_lma) const;
2979
2980 // Write the section headers in the list into V.
2981 template<int size, bool big_endian>
2982 unsigned char*
2983 write_section_headers_list(const Layout*, const Stringpool*,
2984 const Output_data_list*, unsigned char* v,
2985 unsigned int* pshdx) const;
2986
2987 // Print a section list to the mapfile.
2988 void
2989 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
2990
2991 // The list of output data with contents attached to this segment.
2992 Output_data_list output_data_;
2993 // The list of output data without contents attached to this segment.
2994 Output_data_list output_bss_;
2995 // The segment virtual address.
2996 uint64_t vaddr_;
2997 // The segment physical address.
2998 uint64_t paddr_;
2999 // The size of the segment in memory.
3000 uint64_t memsz_;
3001 // The maximum section alignment. The is_max_align_known_ field
3002 // indicates whether this has been finalized.
3003 uint64_t max_align_;
3004 // The required minimum value for the p_align field. This is used
3005 // for PT_LOAD segments. Note that this does not mean that
3006 // addresses should be aligned to this value; it means the p_paddr
3007 // and p_vaddr fields must be congruent modulo this value. For
3008 // non-PT_LOAD segments, the dynamic linker works more efficiently
3009 // if the p_align field has the more conventional value, although it
3010 // can align as needed.
3011 uint64_t min_p_align_;
3012 // The offset of the segment data within the file.
3013 off_t offset_;
3014 // The size of the segment data in the file.
3015 off_t filesz_;
3016 // The segment type;
3017 elfcpp::Elf_Word type_;
3018 // The segment flags.
3019 elfcpp::Elf_Word flags_;
3020 // Whether we have finalized max_align_.
3021 bool is_max_align_known_ : 1;
3022 // Whether vaddr and paddr were set by a linker script.
3023 bool are_addresses_set_ : 1;
3024 };
3025
3026 // This class represents the output file.
3027
3028 class Output_file
3029 {
3030 public:
3031 Output_file(const char* name);
3032
3033 // Indicate that this is a temporary file which should not be
3034 // output.
3035 void
3036 set_is_temporary()
3037 { this->is_temporary_ = true; }
3038
3039 // Open the output file. FILE_SIZE is the final size of the file.
3040 void
3041 open(off_t file_size);
3042
3043 // Resize the output file.
3044 void
3045 resize(off_t file_size);
3046
3047 // Close the output file (flushing all buffered data) and make sure
3048 // there are no errors.
3049 void
3050 close();
3051
3052 // We currently always use mmap which makes the view handling quite
3053 // simple. In the future we may support other approaches.
3054
3055 // Write data to the output file.
3056 void
3057 write(off_t offset, const void* data, size_t len)
3058 { memcpy(this->base_ + offset, data, len); }
3059
3060 // Get a buffer to use to write to the file, given the offset into
3061 // the file and the size.
3062 unsigned char*
3063 get_output_view(off_t start, size_t size)
3064 {
3065 gold_assert(start >= 0
3066 && start + static_cast<off_t>(size) <= this->file_size_);
3067 return this->base_ + start;
3068 }
3069
3070 // VIEW must have been returned by get_output_view. Write the
3071 // buffer to the file, passing in the offset and the size.
3072 void
3073 write_output_view(off_t, size_t, unsigned char*)
3074 { }
3075
3076 // Get a read/write buffer. This is used when we want to write part
3077 // of the file, read it in, and write it again.
3078 unsigned char*
3079 get_input_output_view(off_t start, size_t size)
3080 { return this->get_output_view(start, size); }
3081
3082 // Write a read/write buffer back to the file.
3083 void
3084 write_input_output_view(off_t, size_t, unsigned char*)
3085 { }
3086
3087 // Get a read buffer. This is used when we just want to read part
3088 // of the file back it in.
3089 const unsigned char*
3090 get_input_view(off_t start, size_t size)
3091 { return this->get_output_view(start, size); }
3092
3093 // Release a read bfufer.
3094 void
3095 free_input_view(off_t, size_t, const unsigned char*)
3096 { }
3097
3098 private:
3099 // Map the file into memory and return a pointer to the map.
3100 void
3101 map();
3102
3103 // Unmap the file from memory (and flush to disk buffers).
3104 void
3105 unmap();
3106
3107 // File name.
3108 const char* name_;
3109 // File descriptor.
3110 int o_;
3111 // File size.
3112 off_t file_size_;
3113 // Base of file mapped into memory.
3114 unsigned char* base_;
3115 // True iff base_ points to a memory buffer rather than an output file.
3116 bool map_is_anonymous_;
3117 // True if this is a temporary file which should not be output.
3118 bool is_temporary_;
3119 };
3120
3121 } // End namespace gold.
3122
3123 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.119854 seconds and 5 git commands to generate.