* expression.cc (Expression::Expression_eval_info): Add
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49
50 // An abtract class for data which has to go into the output file.
51
52 class Output_data
53 {
54 public:
55 explicit Output_data()
56 : address_(0), data_size_(0), offset_(-1),
57 is_address_valid_(false), is_data_size_valid_(false),
58 is_offset_valid_(false), is_data_size_fixed_(false),
59 dynamic_reloc_count_(0)
60 { }
61
62 virtual
63 ~Output_data();
64
65 // Return the address. For allocated sections, this is only valid
66 // after Layout::finalize is finished.
67 uint64_t
68 address() const
69 {
70 gold_assert(this->is_address_valid_);
71 return this->address_;
72 }
73
74 // Return the size of the data. For allocated sections, this must
75 // be valid after Layout::finalize calls set_address, but need not
76 // be valid before then.
77 off_t
78 data_size() const
79 {
80 gold_assert(this->is_data_size_valid_);
81 return this->data_size_;
82 }
83
84 // Return true if data size is fixed.
85 bool
86 is_data_size_fixed() const
87 { return this->is_data_size_fixed_; }
88
89 // Return the file offset. This is only valid after
90 // Layout::finalize is finished. For some non-allocated sections,
91 // it may not be valid until near the end of the link.
92 off_t
93 offset() const
94 {
95 gold_assert(this->is_offset_valid_);
96 return this->offset_;
97 }
98
99 // Reset the address and file offset. This essentially disables the
100 // sanity testing about duplicate and unknown settings.
101 void
102 reset_address_and_file_offset()
103 {
104 this->is_address_valid_ = false;
105 this->is_offset_valid_ = false;
106 if (!this->is_data_size_fixed_)
107 this->is_data_size_valid_ = false;
108 this->do_reset_address_and_file_offset();
109 }
110
111 // Return true if address and file offset already have reset values. In
112 // other words, calling reset_address_and_file_offset will not change them.
113 bool
114 address_and_file_offset_have_reset_values() const
115 { return this->do_address_and_file_offset_have_reset_values(); }
116
117 // Return the required alignment.
118 uint64_t
119 addralign() const
120 { return this->do_addralign(); }
121
122 // Return whether this has a load address.
123 bool
124 has_load_address() const
125 { return this->do_has_load_address(); }
126
127 // Return the load address.
128 uint64_t
129 load_address() const
130 { return this->do_load_address(); }
131
132 // Return whether this is an Output_section.
133 bool
134 is_section() const
135 { return this->do_is_section(); }
136
137 // Return whether this is an Output_section of the specified type.
138 bool
139 is_section_type(elfcpp::Elf_Word stt) const
140 { return this->do_is_section_type(stt); }
141
142 // Return whether this is an Output_section with the specified flag
143 // set.
144 bool
145 is_section_flag_set(elfcpp::Elf_Xword shf) const
146 { return this->do_is_section_flag_set(shf); }
147
148 // Return the output section that this goes in, if there is one.
149 Output_section*
150 output_section()
151 { return this->do_output_section(); }
152
153 const Output_section*
154 output_section() const
155 { return this->do_output_section(); }
156
157 // Return the output section index, if there is an output section.
158 unsigned int
159 out_shndx() const
160 { return this->do_out_shndx(); }
161
162 // Set the output section index, if this is an output section.
163 void
164 set_out_shndx(unsigned int shndx)
165 { this->do_set_out_shndx(shndx); }
166
167 // Set the address and file offset of this data, and finalize the
168 // size of the data. This is called during Layout::finalize for
169 // allocated sections.
170 void
171 set_address_and_file_offset(uint64_t addr, off_t off)
172 {
173 this->set_address(addr);
174 this->set_file_offset(off);
175 this->finalize_data_size();
176 }
177
178 // Set the address.
179 void
180 set_address(uint64_t addr)
181 {
182 gold_assert(!this->is_address_valid_);
183 this->address_ = addr;
184 this->is_address_valid_ = true;
185 }
186
187 // Set the file offset.
188 void
189 set_file_offset(off_t off)
190 {
191 gold_assert(!this->is_offset_valid_);
192 this->offset_ = off;
193 this->is_offset_valid_ = true;
194 }
195
196 // Finalize the data size.
197 void
198 finalize_data_size()
199 {
200 if (!this->is_data_size_valid_)
201 {
202 // Tell the child class to set the data size.
203 this->set_final_data_size();
204 gold_assert(this->is_data_size_valid_);
205 }
206 }
207
208 // Set the TLS offset. Called only for SHT_TLS sections.
209 void
210 set_tls_offset(uint64_t tls_base)
211 { this->do_set_tls_offset(tls_base); }
212
213 // Return the TLS offset, relative to the base of the TLS segment.
214 // Valid only for SHT_TLS sections.
215 uint64_t
216 tls_offset() const
217 { return this->do_tls_offset(); }
218
219 // Write the data to the output file. This is called after
220 // Layout::finalize is complete.
221 void
222 write(Output_file* file)
223 { this->do_write(file); }
224
225 // This is called by Layout::finalize to note that the sizes of
226 // allocated sections must now be fixed.
227 static void
228 layout_complete()
229 { Output_data::allocated_sizes_are_fixed = true; }
230
231 // Used to check that layout has been done.
232 static bool
233 is_layout_complete()
234 { return Output_data::allocated_sizes_are_fixed; }
235
236 // Count the number of dynamic relocations applied to this section.
237 void
238 add_dynamic_reloc()
239 { ++this->dynamic_reloc_count_; }
240
241 // Return the number of dynamic relocations applied to this section.
242 unsigned int
243 dynamic_reloc_count() const
244 { return this->dynamic_reloc_count_; }
245
246 // Whether the address is valid.
247 bool
248 is_address_valid() const
249 { return this->is_address_valid_; }
250
251 // Whether the file offset is valid.
252 bool
253 is_offset_valid() const
254 { return this->is_offset_valid_; }
255
256 // Whether the data size is valid.
257 bool
258 is_data_size_valid() const
259 { return this->is_data_size_valid_; }
260
261 // Print information to the map file.
262 void
263 print_to_mapfile(Mapfile* mapfile) const
264 { return this->do_print_to_mapfile(mapfile); }
265
266 protected:
267 // Functions that child classes may or in some cases must implement.
268
269 // Write the data to the output file.
270 virtual void
271 do_write(Output_file*) = 0;
272
273 // Return the required alignment.
274 virtual uint64_t
275 do_addralign() const = 0;
276
277 // Return whether this has a load address.
278 virtual bool
279 do_has_load_address() const
280 { return false; }
281
282 // Return the load address.
283 virtual uint64_t
284 do_load_address() const
285 { gold_unreachable(); }
286
287 // Return whether this is an Output_section.
288 virtual bool
289 do_is_section() const
290 { return false; }
291
292 // Return whether this is an Output_section of the specified type.
293 // This only needs to be implement by Output_section.
294 virtual bool
295 do_is_section_type(elfcpp::Elf_Word) const
296 { return false; }
297
298 // Return whether this is an Output_section with the specific flag
299 // set. This only needs to be implemented by Output_section.
300 virtual bool
301 do_is_section_flag_set(elfcpp::Elf_Xword) const
302 { return false; }
303
304 // Return the output section, if there is one.
305 virtual Output_section*
306 do_output_section()
307 { return NULL; }
308
309 virtual const Output_section*
310 do_output_section() const
311 { return NULL; }
312
313 // Return the output section index, if there is an output section.
314 virtual unsigned int
315 do_out_shndx() const
316 { gold_unreachable(); }
317
318 // Set the output section index, if this is an output section.
319 virtual void
320 do_set_out_shndx(unsigned int)
321 { gold_unreachable(); }
322
323 // This is a hook for derived classes to set the data size. This is
324 // called by finalize_data_size, normally called during
325 // Layout::finalize, when the section address is set.
326 virtual void
327 set_final_data_size()
328 { gold_unreachable(); }
329
330 // A hook for resetting the address and file offset.
331 virtual void
332 do_reset_address_and_file_offset()
333 { }
334
335 // Return true if address and file offset already have reset values. In
336 // other words, calling reset_address_and_file_offset will not change them.
337 // A child class overriding do_reset_address_and_file_offset may need to
338 // also override this.
339 virtual bool
340 do_address_and_file_offset_have_reset_values() const
341 { return !this->is_address_valid_ && !this->is_offset_valid_; }
342
343 // Set the TLS offset. Called only for SHT_TLS sections.
344 virtual void
345 do_set_tls_offset(uint64_t)
346 { gold_unreachable(); }
347
348 // Return the TLS offset, relative to the base of the TLS segment.
349 // Valid only for SHT_TLS sections.
350 virtual uint64_t
351 do_tls_offset() const
352 { gold_unreachable(); }
353
354 // Print to the map file. This only needs to be implemented by
355 // classes which may appear in a PT_LOAD segment.
356 virtual void
357 do_print_to_mapfile(Mapfile*) const
358 { gold_unreachable(); }
359
360 // Functions that child classes may call.
361
362 // Reset the address. The Output_section class needs this when an
363 // SHF_ALLOC input section is added to an output section which was
364 // formerly not SHF_ALLOC.
365 void
366 mark_address_invalid()
367 { this->is_address_valid_ = false; }
368
369 // Set the size of the data.
370 void
371 set_data_size(off_t data_size)
372 {
373 gold_assert(!this->is_data_size_valid_
374 && !this->is_data_size_fixed_);
375 this->data_size_ = data_size;
376 this->is_data_size_valid_ = true;
377 }
378
379 // Fix the data size. Once it is fixed, it cannot be changed
380 // and the data size remains always valid.
381 void
382 fix_data_size()
383 {
384 gold_assert(this->is_data_size_valid_);
385 this->is_data_size_fixed_ = true;
386 }
387
388 // Get the current data size--this is for the convenience of
389 // sections which build up their size over time.
390 off_t
391 current_data_size_for_child() const
392 { return this->data_size_; }
393
394 // Set the current data size--this is for the convenience of
395 // sections which build up their size over time.
396 void
397 set_current_data_size_for_child(off_t data_size)
398 {
399 gold_assert(!this->is_data_size_valid_);
400 this->data_size_ = data_size;
401 }
402
403 // Return default alignment for the target size.
404 static uint64_t
405 default_alignment();
406
407 // Return default alignment for a specified size--32 or 64.
408 static uint64_t
409 default_alignment_for_size(int size);
410
411 private:
412 Output_data(const Output_data&);
413 Output_data& operator=(const Output_data&);
414
415 // This is used for verification, to make sure that we don't try to
416 // change any sizes of allocated sections after we set the section
417 // addresses.
418 static bool allocated_sizes_are_fixed;
419
420 // Memory address in output file.
421 uint64_t address_;
422 // Size of data in output file.
423 off_t data_size_;
424 // File offset of contents in output file.
425 off_t offset_;
426 // Whether address_ is valid.
427 bool is_address_valid_;
428 // Whether data_size_ is valid.
429 bool is_data_size_valid_;
430 // Whether offset_ is valid.
431 bool is_offset_valid_;
432 // Whether data size is fixed.
433 bool is_data_size_fixed_;
434 // Count of dynamic relocations applied to this section.
435 unsigned int dynamic_reloc_count_;
436 };
437
438 // Output the section headers.
439
440 class Output_section_headers : public Output_data
441 {
442 public:
443 Output_section_headers(const Layout*,
444 const Layout::Segment_list*,
445 const Layout::Section_list*,
446 const Layout::Section_list*,
447 const Stringpool*,
448 const Output_section*);
449
450 protected:
451 // Write the data to the file.
452 void
453 do_write(Output_file*);
454
455 // Return the required alignment.
456 uint64_t
457 do_addralign() const
458 { return Output_data::default_alignment(); }
459
460 // Write to a map file.
461 void
462 do_print_to_mapfile(Mapfile* mapfile) const
463 { mapfile->print_output_data(this, _("** section headers")); }
464
465 // Set final data size.
466 void
467 set_final_data_size()
468 { this->set_data_size(this->do_size()); }
469
470 private:
471 // Write the data to the file with the right size and endianness.
472 template<int size, bool big_endian>
473 void
474 do_sized_write(Output_file*);
475
476 // Compute data size.
477 off_t
478 do_size() const;
479
480 const Layout* layout_;
481 const Layout::Segment_list* segment_list_;
482 const Layout::Section_list* section_list_;
483 const Layout::Section_list* unattached_section_list_;
484 const Stringpool* secnamepool_;
485 const Output_section* shstrtab_section_;
486 };
487
488 // Output the segment headers.
489
490 class Output_segment_headers : public Output_data
491 {
492 public:
493 Output_segment_headers(const Layout::Segment_list& segment_list);
494
495 protected:
496 // Write the data to the file.
497 void
498 do_write(Output_file*);
499
500 // Return the required alignment.
501 uint64_t
502 do_addralign() const
503 { return Output_data::default_alignment(); }
504
505 // Write to a map file.
506 void
507 do_print_to_mapfile(Mapfile* mapfile) const
508 { mapfile->print_output_data(this, _("** segment headers")); }
509
510 // Set final data size.
511 void
512 set_final_data_size()
513 { this->set_data_size(this->do_size()); }
514
515 private:
516 // Write the data to the file with the right size and endianness.
517 template<int size, bool big_endian>
518 void
519 do_sized_write(Output_file*);
520
521 // Compute the current size.
522 off_t
523 do_size() const;
524
525 const Layout::Segment_list& segment_list_;
526 };
527
528 // Output the ELF file header.
529
530 class Output_file_header : public Output_data
531 {
532 public:
533 Output_file_header(const Target*,
534 const Symbol_table*,
535 const Output_segment_headers*,
536 const char* entry);
537
538 // Add information about the section headers. We lay out the ELF
539 // file header before we create the section headers.
540 void set_section_info(const Output_section_headers*,
541 const Output_section* shstrtab);
542
543 protected:
544 // Write the data to the file.
545 void
546 do_write(Output_file*);
547
548 // Return the required alignment.
549 uint64_t
550 do_addralign() const
551 { return Output_data::default_alignment(); }
552
553 // Write to a map file.
554 void
555 do_print_to_mapfile(Mapfile* mapfile) const
556 { mapfile->print_output_data(this, _("** file header")); }
557
558 // Set final data size.
559 void
560 set_final_data_size(void)
561 { this->set_data_size(this->do_size()); }
562
563 private:
564 // Write the data to the file with the right size and endianness.
565 template<int size, bool big_endian>
566 void
567 do_sized_write(Output_file*);
568
569 // Return the value to use for the entry address.
570 template<int size>
571 typename elfcpp::Elf_types<size>::Elf_Addr
572 entry();
573
574 // Compute the current data size.
575 off_t
576 do_size() const;
577
578 const Target* target_;
579 const Symbol_table* symtab_;
580 const Output_segment_headers* segment_header_;
581 const Output_section_headers* section_header_;
582 const Output_section* shstrtab_;
583 const char* entry_;
584 };
585
586 // Output sections are mainly comprised of input sections. However,
587 // there are cases where we have data to write out which is not in an
588 // input section. Output_section_data is used in such cases. This is
589 // an abstract base class.
590
591 class Output_section_data : public Output_data
592 {
593 public:
594 Output_section_data(off_t data_size, uint64_t addralign,
595 bool is_data_size_fixed)
596 : Output_data(), output_section_(NULL), addralign_(addralign)
597 {
598 this->set_data_size(data_size);
599 if (is_data_size_fixed)
600 this->fix_data_size();
601 }
602
603 Output_section_data(uint64_t addralign)
604 : Output_data(), output_section_(NULL), addralign_(addralign)
605 { }
606
607 // Return the output section.
608 const Output_section*
609 output_section() const
610 { return this->output_section_; }
611
612 // Record the output section.
613 void
614 set_output_section(Output_section* os);
615
616 // Add an input section, for SHF_MERGE sections. This returns true
617 // if the section was handled.
618 bool
619 add_input_section(Relobj* object, unsigned int shndx)
620 { return this->do_add_input_section(object, shndx); }
621
622 // Given an input OBJECT, an input section index SHNDX within that
623 // object, and an OFFSET relative to the start of that input
624 // section, return whether or not the corresponding offset within
625 // the output section is known. If this function returns true, it
626 // sets *POUTPUT to the output offset. The value -1 indicates that
627 // this input offset is being discarded.
628 bool
629 output_offset(const Relobj* object, unsigned int shndx,
630 section_offset_type offset,
631 section_offset_type *poutput) const
632 { return this->do_output_offset(object, shndx, offset, poutput); }
633
634 // Return whether this is the merge section for the input section
635 // SHNDX in OBJECT. This should return true when output_offset
636 // would return true for some values of OFFSET.
637 bool
638 is_merge_section_for(const Relobj* object, unsigned int shndx) const
639 { return this->do_is_merge_section_for(object, shndx); }
640
641 // Write the contents to a buffer. This is used for sections which
642 // require postprocessing, such as compression.
643 void
644 write_to_buffer(unsigned char* buffer)
645 { this->do_write_to_buffer(buffer); }
646
647 // Print merge stats to stderr. This should only be called for
648 // SHF_MERGE sections.
649 void
650 print_merge_stats(const char* section_name)
651 { this->do_print_merge_stats(section_name); }
652
653 protected:
654 // The child class must implement do_write.
655
656 // The child class may implement specific adjustments to the output
657 // section.
658 virtual void
659 do_adjust_output_section(Output_section*)
660 { }
661
662 // May be implemented by child class. Return true if the section
663 // was handled.
664 virtual bool
665 do_add_input_section(Relobj*, unsigned int)
666 { gold_unreachable(); }
667
668 // The child class may implement output_offset.
669 virtual bool
670 do_output_offset(const Relobj*, unsigned int, section_offset_type,
671 section_offset_type*) const
672 { return false; }
673
674 // The child class may implement is_merge_section_for.
675 virtual bool
676 do_is_merge_section_for(const Relobj*, unsigned int) const
677 { return false; }
678
679 // The child class may implement write_to_buffer. Most child
680 // classes can not appear in a compressed section, and they do not
681 // implement this.
682 virtual void
683 do_write_to_buffer(unsigned char*)
684 { gold_unreachable(); }
685
686 // Print merge statistics.
687 virtual void
688 do_print_merge_stats(const char*)
689 { gold_unreachable(); }
690
691 // Return the required alignment.
692 uint64_t
693 do_addralign() const
694 { return this->addralign_; }
695
696 // Return the output section.
697 Output_section*
698 do_output_section()
699 { return this->output_section_; }
700
701 const Output_section*
702 do_output_section() const
703 { return this->output_section_; }
704
705 // Return the section index of the output section.
706 unsigned int
707 do_out_shndx() const;
708
709 // Set the alignment.
710 void
711 set_addralign(uint64_t addralign);
712
713 private:
714 // The output section for this section.
715 Output_section* output_section_;
716 // The required alignment.
717 uint64_t addralign_;
718 };
719
720 // Some Output_section_data classes build up their data step by step,
721 // rather than all at once. This class provides an interface for
722 // them.
723
724 class Output_section_data_build : public Output_section_data
725 {
726 public:
727 Output_section_data_build(uint64_t addralign)
728 : Output_section_data(addralign)
729 { }
730
731 // Get the current data size.
732 off_t
733 current_data_size() const
734 { return this->current_data_size_for_child(); }
735
736 // Set the current data size.
737 void
738 set_current_data_size(off_t data_size)
739 { this->set_current_data_size_for_child(data_size); }
740
741 protected:
742 // Set the final data size.
743 virtual void
744 set_final_data_size()
745 { this->set_data_size(this->current_data_size_for_child()); }
746 };
747
748 // A simple case of Output_data in which we have constant data to
749 // output.
750
751 class Output_data_const : public Output_section_data
752 {
753 public:
754 Output_data_const(const std::string& data, uint64_t addralign)
755 : Output_section_data(data.size(), addralign, true), data_(data)
756 { }
757
758 Output_data_const(const char* p, off_t len, uint64_t addralign)
759 : Output_section_data(len, addralign, true), data_(p, len)
760 { }
761
762 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
763 : Output_section_data(len, addralign, true),
764 data_(reinterpret_cast<const char*>(p), len)
765 { }
766
767 protected:
768 // Write the data to the output file.
769 void
770 do_write(Output_file*);
771
772 // Write the data to a buffer.
773 void
774 do_write_to_buffer(unsigned char* buffer)
775 { memcpy(buffer, this->data_.data(), this->data_.size()); }
776
777 // Write to a map file.
778 void
779 do_print_to_mapfile(Mapfile* mapfile) const
780 { mapfile->print_output_data(this, _("** fill")); }
781
782 private:
783 std::string data_;
784 };
785
786 // Another version of Output_data with constant data, in which the
787 // buffer is allocated by the caller.
788
789 class Output_data_const_buffer : public Output_section_data
790 {
791 public:
792 Output_data_const_buffer(const unsigned char* p, off_t len,
793 uint64_t addralign, const char* map_name)
794 : Output_section_data(len, addralign, true),
795 p_(p), map_name_(map_name)
796 { }
797
798 protected:
799 // Write the data the output file.
800 void
801 do_write(Output_file*);
802
803 // Write the data to a buffer.
804 void
805 do_write_to_buffer(unsigned char* buffer)
806 { memcpy(buffer, this->p_, this->data_size()); }
807
808 // Write to a map file.
809 void
810 do_print_to_mapfile(Mapfile* mapfile) const
811 { mapfile->print_output_data(this, _(this->map_name_)); }
812
813 private:
814 // The data to output.
815 const unsigned char* p_;
816 // Name to use in a map file. Maps are a rarely used feature, but
817 // the space usage is minor as aren't very many of these objects.
818 const char* map_name_;
819 };
820
821 // A place holder for a fixed amount of data written out via some
822 // other mechanism.
823
824 class Output_data_fixed_space : public Output_section_data
825 {
826 public:
827 Output_data_fixed_space(off_t data_size, uint64_t addralign,
828 const char* map_name)
829 : Output_section_data(data_size, addralign, true),
830 map_name_(map_name)
831 { }
832
833 protected:
834 // Write out the data--the actual data must be written out
835 // elsewhere.
836 void
837 do_write(Output_file*)
838 { }
839
840 // Write to a map file.
841 void
842 do_print_to_mapfile(Mapfile* mapfile) const
843 { mapfile->print_output_data(this, _(this->map_name_)); }
844
845 private:
846 // Name to use in a map file. Maps are a rarely used feature, but
847 // the space usage is minor as aren't very many of these objects.
848 const char* map_name_;
849 };
850
851 // A place holder for variable sized data written out via some other
852 // mechanism.
853
854 class Output_data_space : public Output_section_data_build
855 {
856 public:
857 explicit Output_data_space(uint64_t addralign, const char* map_name)
858 : Output_section_data_build(addralign),
859 map_name_(map_name)
860 { }
861
862 // Set the alignment.
863 void
864 set_space_alignment(uint64_t align)
865 { this->set_addralign(align); }
866
867 protected:
868 // Write out the data--the actual data must be written out
869 // elsewhere.
870 void
871 do_write(Output_file*)
872 { }
873
874 // Write to a map file.
875 void
876 do_print_to_mapfile(Mapfile* mapfile) const
877 { mapfile->print_output_data(this, _(this->map_name_)); }
878
879 private:
880 // Name to use in a map file. Maps are a rarely used feature, but
881 // the space usage is minor as aren't very many of these objects.
882 const char* map_name_;
883 };
884
885 // Fill fixed space with zeroes. This is just like
886 // Output_data_fixed_space, except that the map name is known.
887
888 class Output_data_zero_fill : public Output_section_data
889 {
890 public:
891 Output_data_zero_fill(off_t data_size, uint64_t addralign)
892 : Output_section_data(data_size, addralign, true)
893 { }
894
895 protected:
896 // There is no data to write out.
897 void
898 do_write(Output_file*)
899 { }
900
901 // Write to a map file.
902 void
903 do_print_to_mapfile(Mapfile* mapfile) const
904 { mapfile->print_output_data(this, "** zero fill"); }
905 };
906
907 // A string table which goes into an output section.
908
909 class Output_data_strtab : public Output_section_data
910 {
911 public:
912 Output_data_strtab(Stringpool* strtab)
913 : Output_section_data(1), strtab_(strtab)
914 { }
915
916 protected:
917 // This is called to set the address and file offset. Here we make
918 // sure that the Stringpool is finalized.
919 void
920 set_final_data_size();
921
922 // Write out the data.
923 void
924 do_write(Output_file*);
925
926 // Write the data to a buffer.
927 void
928 do_write_to_buffer(unsigned char* buffer)
929 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
930
931 // Write to a map file.
932 void
933 do_print_to_mapfile(Mapfile* mapfile) const
934 { mapfile->print_output_data(this, _("** string table")); }
935
936 private:
937 Stringpool* strtab_;
938 };
939
940 // This POD class is used to represent a single reloc in the output
941 // file. This could be a private class within Output_data_reloc, but
942 // the templatization is complex enough that I broke it out into a
943 // separate class. The class is templatized on either elfcpp::SHT_REL
944 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
945 // relocation or an ordinary relocation.
946
947 // A relocation can be against a global symbol, a local symbol, a
948 // local section symbol, an output section, or the undefined symbol at
949 // index 0. We represent the latter by using a NULL global symbol.
950
951 template<int sh_type, bool dynamic, int size, bool big_endian>
952 class Output_reloc;
953
954 template<bool dynamic, int size, bool big_endian>
955 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
956 {
957 public:
958 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
959 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
960
961 static const Address invalid_address = static_cast<Address>(0) - 1;
962
963 // An uninitialized entry. We need this because we want to put
964 // instances of this class into an STL container.
965 Output_reloc()
966 : local_sym_index_(INVALID_CODE)
967 { }
968
969 // We have a bunch of different constructors. They come in pairs
970 // depending on how the address of the relocation is specified. It
971 // can either be an offset in an Output_data or an offset in an
972 // input section.
973
974 // A reloc against a global symbol.
975
976 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
977 Address address, bool is_relative, bool is_symbolless);
978
979 Output_reloc(Symbol* gsym, unsigned int type,
980 Sized_relobj<size, big_endian>* relobj,
981 unsigned int shndx, Address address, bool is_relative,
982 bool is_symbolless);
983
984 // A reloc against a local symbol or local section symbol.
985
986 Output_reloc(Sized_relobj<size, big_endian>* relobj,
987 unsigned int local_sym_index, unsigned int type,
988 Output_data* od, Address address, bool is_relative,
989 bool is_symbolless, bool is_section_symbol);
990
991 Output_reloc(Sized_relobj<size, big_endian>* relobj,
992 unsigned int local_sym_index, unsigned int type,
993 unsigned int shndx, Address address, bool is_relative,
994 bool is_symbolless, bool is_section_symbol);
995
996 // A reloc against the STT_SECTION symbol of an output section.
997
998 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
999 Address address);
1000
1001 Output_reloc(Output_section* os, unsigned int type,
1002 Sized_relobj<size, big_endian>* relobj,
1003 unsigned int shndx, Address address);
1004
1005 // An absolute relocation with no symbol.
1006
1007 Output_reloc(unsigned int type, Output_data* od, Address address);
1008
1009 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1010 unsigned int shndx, Address address);
1011
1012 // A target specific relocation. The target will be called to get
1013 // the symbol index, passing ARG. The type and offset will be set
1014 // as for other relocation types.
1015
1016 Output_reloc(unsigned int type, void* arg, Output_data* od,
1017 Address address);
1018
1019 Output_reloc(unsigned int type, void* arg,
1020 Sized_relobj<size, big_endian>* relobj,
1021 unsigned int shndx, Address address);
1022
1023 // Return the reloc type.
1024 unsigned int
1025 type() const
1026 { return this->type_; }
1027
1028 // Return whether this is a RELATIVE relocation.
1029 bool
1030 is_relative() const
1031 { return this->is_relative_; }
1032
1033 // Return whether this is a relocation which should not use
1034 // a symbol, but which obtains its addend from a symbol.
1035 bool
1036 is_symbolless() const
1037 { return this->is_symbolless_; }
1038
1039 // Return whether this is against a local section symbol.
1040 bool
1041 is_local_section_symbol() const
1042 {
1043 return (this->local_sym_index_ != GSYM_CODE
1044 && this->local_sym_index_ != SECTION_CODE
1045 && this->local_sym_index_ != INVALID_CODE
1046 && this->local_sym_index_ != TARGET_CODE
1047 && this->is_section_symbol_);
1048 }
1049
1050 // Return whether this is a target specific relocation.
1051 bool
1052 is_target_specific() const
1053 { return this->local_sym_index_ == TARGET_CODE; }
1054
1055 // Return the argument to pass to the target for a target specific
1056 // relocation.
1057 void*
1058 target_arg() const
1059 {
1060 gold_assert(this->local_sym_index_ == TARGET_CODE);
1061 return this->u1_.arg;
1062 }
1063
1064 // For a local section symbol, return the offset of the input
1065 // section within the output section. ADDEND is the addend being
1066 // applied to the input section.
1067 Address
1068 local_section_offset(Addend addend) const;
1069
1070 // Get the value of the symbol referred to by a Rel relocation when
1071 // we are adding the given ADDEND.
1072 Address
1073 symbol_value(Addend addend) const;
1074
1075 // Write the reloc entry to an output view.
1076 void
1077 write(unsigned char* pov) const;
1078
1079 // Write the offset and info fields to Write_rel.
1080 template<typename Write_rel>
1081 void write_rel(Write_rel*) const;
1082
1083 // This is used when sorting dynamic relocs. Return -1 to sort this
1084 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1085 int
1086 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1087 const;
1088
1089 // Return whether this reloc should be sorted before the argument
1090 // when sorting dynamic relocs.
1091 bool
1092 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1093 r2) const
1094 { return this->compare(r2) < 0; }
1095
1096 private:
1097 // Record that we need a dynamic symbol index.
1098 void
1099 set_needs_dynsym_index();
1100
1101 // Return the symbol index.
1102 unsigned int
1103 get_symbol_index() const;
1104
1105 // Return the output address.
1106 Address
1107 get_address() const;
1108
1109 // Codes for local_sym_index_.
1110 enum
1111 {
1112 // Global symbol.
1113 GSYM_CODE = -1U,
1114 // Output section.
1115 SECTION_CODE = -2U,
1116 // Target specific.
1117 TARGET_CODE = -3U,
1118 // Invalid uninitialized entry.
1119 INVALID_CODE = -4U
1120 };
1121
1122 union
1123 {
1124 // For a local symbol or local section symbol
1125 // (this->local_sym_index_ >= 0), the object. We will never
1126 // generate a relocation against a local symbol in a dynamic
1127 // object; that doesn't make sense. And our callers will always
1128 // be templatized, so we use Sized_relobj here.
1129 Sized_relobj<size, big_endian>* relobj;
1130 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1131 // symbol. If this is NULL, it indicates a relocation against the
1132 // undefined 0 symbol.
1133 Symbol* gsym;
1134 // For a relocation against an output section
1135 // (this->local_sym_index_ == SECTION_CODE), the output section.
1136 Output_section* os;
1137 // For a target specific relocation, an argument to pass to the
1138 // target.
1139 void* arg;
1140 } u1_;
1141 union
1142 {
1143 // If this->shndx_ is not INVALID CODE, the object which holds the
1144 // input section being used to specify the reloc address.
1145 Sized_relobj<size, big_endian>* relobj;
1146 // If this->shndx_ is INVALID_CODE, the output data being used to
1147 // specify the reloc address. This may be NULL if the reloc
1148 // address is absolute.
1149 Output_data* od;
1150 } u2_;
1151 // The address offset within the input section or the Output_data.
1152 Address address_;
1153 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1154 // relocation against an output section, or TARGET_CODE for a target
1155 // specific relocation, or INVALID_CODE for an uninitialized value.
1156 // Otherwise, for a local symbol (this->is_section_symbol_ is
1157 // false), the local symbol index. For a local section symbol
1158 // (this->is_section_symbol_ is true), the section index in the
1159 // input file.
1160 unsigned int local_sym_index_;
1161 // The reloc type--a processor specific code.
1162 unsigned int type_ : 29;
1163 // True if the relocation is a RELATIVE relocation.
1164 bool is_relative_ : 1;
1165 // True if the relocation is one which should not use
1166 // a symbol, but which obtains its addend from a symbol.
1167 bool is_symbolless_ : 1;
1168 // True if the relocation is against a section symbol.
1169 bool is_section_symbol_ : 1;
1170 // If the reloc address is an input section in an object, the
1171 // section index. This is INVALID_CODE if the reloc address is
1172 // specified in some other way.
1173 unsigned int shndx_;
1174 };
1175
1176 // The SHT_RELA version of Output_reloc<>. This is just derived from
1177 // the SHT_REL version of Output_reloc, but it adds an addend.
1178
1179 template<bool dynamic, int size, bool big_endian>
1180 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1181 {
1182 public:
1183 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1184 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1185
1186 // An uninitialized entry.
1187 Output_reloc()
1188 : rel_()
1189 { }
1190
1191 // A reloc against a global symbol.
1192
1193 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1194 Address address, Addend addend, bool is_relative,
1195 bool is_symbolless)
1196 : rel_(gsym, type, od, address, is_relative, is_symbolless),
1197 addend_(addend)
1198 { }
1199
1200 Output_reloc(Symbol* gsym, unsigned int type,
1201 Sized_relobj<size, big_endian>* relobj,
1202 unsigned int shndx, Address address, Addend addend,
1203 bool is_relative, bool is_symbolless)
1204 : rel_(gsym, type, relobj, shndx, address, is_relative,
1205 is_symbolless), addend_(addend)
1206 { }
1207
1208 // A reloc against a local symbol.
1209
1210 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1211 unsigned int local_sym_index, unsigned int type,
1212 Output_data* od, Address address,
1213 Addend addend, bool is_relative,
1214 bool is_symbolless, bool is_section_symbol)
1215 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1216 is_symbolless, is_section_symbol),
1217 addend_(addend)
1218 { }
1219
1220 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1221 unsigned int local_sym_index, unsigned int type,
1222 unsigned int shndx, Address address,
1223 Addend addend, bool is_relative,
1224 bool is_symbolless, bool is_section_symbol)
1225 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1226 is_symbolless, is_section_symbol),
1227 addend_(addend)
1228 { }
1229
1230 // A reloc against the STT_SECTION symbol of an output section.
1231
1232 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1233 Address address, Addend addend)
1234 : rel_(os, type, od, address), addend_(addend)
1235 { }
1236
1237 Output_reloc(Output_section* os, unsigned int type,
1238 Sized_relobj<size, big_endian>* relobj,
1239 unsigned int shndx, Address address, Addend addend)
1240 : rel_(os, type, relobj, shndx, address), addend_(addend)
1241 { }
1242
1243 // An absolute relocation with no symbol.
1244
1245 Output_reloc(unsigned int type, Output_data* od, Address address,
1246 Addend addend)
1247 : rel_(type, od, address), addend_(addend)
1248 { }
1249
1250 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1251 unsigned int shndx, Address address, Addend addend)
1252 : rel_(type, relobj, shndx, address), addend_(addend)
1253 { }
1254
1255 // A target specific relocation. The target will be called to get
1256 // the symbol index and the addend, passing ARG. The type and
1257 // offset will be set as for other relocation types.
1258
1259 Output_reloc(unsigned int type, void* arg, Output_data* od,
1260 Address address, Addend addend)
1261 : rel_(type, arg, od, address), addend_(addend)
1262 { }
1263
1264 Output_reloc(unsigned int type, void* arg,
1265 Sized_relobj<size, big_endian>* relobj,
1266 unsigned int shndx, Address address, Addend addend)
1267 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1268 { }
1269
1270 // Return whether this is a RELATIVE relocation.
1271 bool
1272 is_relative() const
1273 { return this->rel_.is_relative(); }
1274
1275 // Return whether this is a relocation which should not use
1276 // a symbol, but which obtains its addend from a symbol.
1277 bool
1278 is_symbolless() const
1279 { return this->rel_.is_symbolless(); }
1280
1281 // Write the reloc entry to an output view.
1282 void
1283 write(unsigned char* pov) const;
1284
1285 // Return whether this reloc should be sorted before the argument
1286 // when sorting dynamic relocs.
1287 bool
1288 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1289 r2) const
1290 {
1291 int i = this->rel_.compare(r2.rel_);
1292 if (i < 0)
1293 return true;
1294 else if (i > 0)
1295 return false;
1296 else
1297 return this->addend_ < r2.addend_;
1298 }
1299
1300 private:
1301 // The basic reloc.
1302 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1303 // The addend.
1304 Addend addend_;
1305 };
1306
1307 // Output_data_reloc_generic is a non-template base class for
1308 // Output_data_reloc_base. This gives the generic code a way to hold
1309 // a pointer to a reloc section.
1310
1311 class Output_data_reloc_generic : public Output_section_data_build
1312 {
1313 public:
1314 Output_data_reloc_generic(int size, bool sort_relocs)
1315 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1316 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1317 { }
1318
1319 // Return the number of relative relocs in this section.
1320 size_t
1321 relative_reloc_count() const
1322 { return this->relative_reloc_count_; }
1323
1324 // Whether we should sort the relocs.
1325 bool
1326 sort_relocs() const
1327 { return this->sort_relocs_; }
1328
1329 protected:
1330 // Note that we've added another relative reloc.
1331 void
1332 bump_relative_reloc_count()
1333 { ++this->relative_reloc_count_; }
1334
1335 private:
1336 // The number of relative relocs added to this section. This is to
1337 // support DT_RELCOUNT.
1338 size_t relative_reloc_count_;
1339 // Whether to sort the relocations when writing them out, to make
1340 // the dynamic linker more efficient.
1341 bool sort_relocs_;
1342 };
1343
1344 // Output_data_reloc is used to manage a section containing relocs.
1345 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1346 // indicates whether this is a dynamic relocation or a normal
1347 // relocation. Output_data_reloc_base is a base class.
1348 // Output_data_reloc is the real class, which we specialize based on
1349 // the reloc type.
1350
1351 template<int sh_type, bool dynamic, int size, bool big_endian>
1352 class Output_data_reloc_base : public Output_data_reloc_generic
1353 {
1354 public:
1355 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1356 typedef typename Output_reloc_type::Address Address;
1357 static const int reloc_size =
1358 Reloc_types<sh_type, size, big_endian>::reloc_size;
1359
1360 // Construct the section.
1361 Output_data_reloc_base(bool sort_relocs)
1362 : Output_data_reloc_generic(size, sort_relocs)
1363 { }
1364
1365 protected:
1366 // Write out the data.
1367 void
1368 do_write(Output_file*);
1369
1370 // Set the entry size and the link.
1371 void
1372 do_adjust_output_section(Output_section *os);
1373
1374 // Write to a map file.
1375 void
1376 do_print_to_mapfile(Mapfile* mapfile) const
1377 {
1378 mapfile->print_output_data(this,
1379 (dynamic
1380 ? _("** dynamic relocs")
1381 : _("** relocs")));
1382 }
1383
1384 // Add a relocation entry.
1385 void
1386 add(Output_data *od, const Output_reloc_type& reloc)
1387 {
1388 this->relocs_.push_back(reloc);
1389 this->set_current_data_size(this->relocs_.size() * reloc_size);
1390 od->add_dynamic_reloc();
1391 if (reloc.is_relative())
1392 this->bump_relative_reloc_count();
1393 }
1394
1395 private:
1396 typedef std::vector<Output_reloc_type> Relocs;
1397
1398 // The class used to sort the relocations.
1399 struct Sort_relocs_comparison
1400 {
1401 bool
1402 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1403 { return r1.sort_before(r2); }
1404 };
1405
1406 // The relocations in this section.
1407 Relocs relocs_;
1408 };
1409
1410 // The class which callers actually create.
1411
1412 template<int sh_type, bool dynamic, int size, bool big_endian>
1413 class Output_data_reloc;
1414
1415 // The SHT_REL version of Output_data_reloc.
1416
1417 template<bool dynamic, int size, bool big_endian>
1418 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1419 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1420 {
1421 private:
1422 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1423 big_endian> Base;
1424
1425 public:
1426 typedef typename Base::Output_reloc_type Output_reloc_type;
1427 typedef typename Output_reloc_type::Address Address;
1428
1429 Output_data_reloc(bool sr)
1430 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1431 { }
1432
1433 // Add a reloc against a global symbol.
1434
1435 void
1436 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1437 { this->add(od, Output_reloc_type(gsym, type, od, address, false, false)); }
1438
1439 void
1440 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1441 Sized_relobj<size, big_endian>* relobj,
1442 unsigned int shndx, Address address)
1443 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1444 false, false)); }
1445
1446 // These are to simplify the Copy_relocs class.
1447
1448 void
1449 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address,
1450 Address addend)
1451 {
1452 gold_assert(addend == 0);
1453 this->add_global(gsym, type, od, address);
1454 }
1455
1456 void
1457 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1458 Sized_relobj<size, big_endian>* relobj,
1459 unsigned int shndx, Address address, Address addend)
1460 {
1461 gold_assert(addend == 0);
1462 this->add_global(gsym, type, od, relobj, shndx, address);
1463 }
1464
1465 // Add a RELATIVE reloc against a global symbol. The final relocation
1466 // will not reference the symbol.
1467
1468 void
1469 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1470 Address address)
1471 { this->add(od, Output_reloc_type(gsym, type, od, address, true, true)); }
1472
1473 void
1474 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1475 Sized_relobj<size, big_endian>* relobj,
1476 unsigned int shndx, Address address)
1477 {
1478 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1479 true, true));
1480 }
1481
1482 // Add a global relocation which does not use a symbol for the relocation,
1483 // but which gets its addend from a symbol.
1484
1485 void
1486 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1487 Output_data* od, Address address)
1488 { this->add(od, Output_reloc_type(gsym, type, od, address, false, true)); }
1489
1490 void
1491 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1492 Output_data* od,
1493 Sized_relobj<size, big_endian>* relobj,
1494 unsigned int shndx, Address address)
1495 {
1496 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1497 false, true));
1498 }
1499
1500 // Add a reloc against a local symbol.
1501
1502 void
1503 add_local(Sized_relobj<size, big_endian>* relobj,
1504 unsigned int local_sym_index, unsigned int type,
1505 Output_data* od, Address address)
1506 {
1507 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1508 address, false, false, false));
1509 }
1510
1511 void
1512 add_local(Sized_relobj<size, big_endian>* relobj,
1513 unsigned int local_sym_index, unsigned int type,
1514 Output_data* od, unsigned int shndx, Address address)
1515 {
1516 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1517 address, false, false, false));
1518 }
1519
1520 // Add a RELATIVE reloc against a local symbol.
1521
1522 void
1523 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1524 unsigned int local_sym_index, unsigned int type,
1525 Output_data* od, Address address)
1526 {
1527 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1528 address, true, true, false));
1529 }
1530
1531 void
1532 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1533 unsigned int local_sym_index, unsigned int type,
1534 Output_data* od, unsigned int shndx, Address address)
1535 {
1536 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1537 address, true, true, false));
1538 }
1539
1540 // Add a local relocation which does not use a symbol for the relocation,
1541 // but which gets its addend from a symbol.
1542
1543 void
1544 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1545 unsigned int local_sym_index, unsigned int type,
1546 Output_data* od, Address address)
1547 {
1548 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1549 address, false, true, false));
1550 }
1551
1552 void
1553 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1554 unsigned int local_sym_index, unsigned int type,
1555 Output_data* od, unsigned int shndx,
1556 Address address)
1557 {
1558 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1559 address, false, true, false));
1560 }
1561
1562 // Add a reloc against a local section symbol. This will be
1563 // converted into a reloc against the STT_SECTION symbol of the
1564 // output section.
1565
1566 void
1567 add_local_section(Sized_relobj<size, big_endian>* relobj,
1568 unsigned int input_shndx, unsigned int type,
1569 Output_data* od, Address address)
1570 {
1571 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1572 address, false, false, true));
1573 }
1574
1575 void
1576 add_local_section(Sized_relobj<size, big_endian>* relobj,
1577 unsigned int input_shndx, unsigned int type,
1578 Output_data* od, unsigned int shndx, Address address)
1579 {
1580 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1581 address, false, false, true));
1582 }
1583
1584 // A reloc against the STT_SECTION symbol of an output section.
1585 // OS is the Output_section that the relocation refers to; OD is
1586 // the Output_data object being relocated.
1587
1588 void
1589 add_output_section(Output_section* os, unsigned int type,
1590 Output_data* od, Address address)
1591 { this->add(od, Output_reloc_type(os, type, od, address)); }
1592
1593 void
1594 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1595 Sized_relobj<size, big_endian>* relobj,
1596 unsigned int shndx, Address address)
1597 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address)); }
1598
1599 // Add an absolute relocation.
1600
1601 void
1602 add_absolute(unsigned int type, Output_data* od, Address address)
1603 { this->add(od, Output_reloc_type(type, od, address)); }
1604
1605 void
1606 add_absolute(unsigned int type, Output_data* od,
1607 Sized_relobj<size, big_endian>* relobj,
1608 unsigned int shndx, Address address)
1609 { this->add(od, Output_reloc_type(type, relobj, shndx, address)); }
1610
1611 // Add a target specific relocation. A target which calls this must
1612 // define the reloc_symbol_index and reloc_addend virtual functions.
1613
1614 void
1615 add_target_specific(unsigned int type, void* arg, Output_data* od,
1616 Address address)
1617 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1618
1619 void
1620 add_target_specific(unsigned int type, void* arg, Output_data* od,
1621 Sized_relobj<size, big_endian>* relobj,
1622 unsigned int shndx, Address address)
1623 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1624 };
1625
1626 // The SHT_RELA version of Output_data_reloc.
1627
1628 template<bool dynamic, int size, bool big_endian>
1629 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1630 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1631 {
1632 private:
1633 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1634 big_endian> Base;
1635
1636 public:
1637 typedef typename Base::Output_reloc_type Output_reloc_type;
1638 typedef typename Output_reloc_type::Address Address;
1639 typedef typename Output_reloc_type::Addend Addend;
1640
1641 Output_data_reloc(bool sr)
1642 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1643 { }
1644
1645 // Add a reloc against a global symbol.
1646
1647 void
1648 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1649 Address address, Addend addend)
1650 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1651 false, false)); }
1652
1653 void
1654 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1655 Sized_relobj<size, big_endian>* relobj,
1656 unsigned int shndx, Address address,
1657 Addend addend)
1658 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1659 addend, false, false)); }
1660
1661 // Add a RELATIVE reloc against a global symbol. The final output
1662 // relocation will not reference the symbol, but we must keep the symbol
1663 // information long enough to set the addend of the relocation correctly
1664 // when it is written.
1665
1666 void
1667 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1668 Address address, Addend addend)
1669 { this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1670 true)); }
1671
1672 void
1673 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1674 Sized_relobj<size, big_endian>* relobj,
1675 unsigned int shndx, Address address, Addend addend)
1676 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1677 addend, true, true)); }
1678
1679 // Add a global relocation which does not use a symbol for the relocation,
1680 // but which gets its addend from a symbol.
1681
1682 void
1683 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1684 Address address, Addend addend)
1685 { this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1686 false, true)); }
1687
1688 void
1689 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1690 Output_data* od,
1691 Sized_relobj<size, big_endian>* relobj,
1692 unsigned int shndx, Address address, Addend addend)
1693 { this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1694 addend, false, true)); }
1695
1696 // Add a reloc against a local symbol.
1697
1698 void
1699 add_local(Sized_relobj<size, big_endian>* relobj,
1700 unsigned int local_sym_index, unsigned int type,
1701 Output_data* od, Address address, Addend addend)
1702 {
1703 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1704 addend, false, false, false));
1705 }
1706
1707 void
1708 add_local(Sized_relobj<size, big_endian>* relobj,
1709 unsigned int local_sym_index, unsigned int type,
1710 Output_data* od, unsigned int shndx, Address address,
1711 Addend addend)
1712 {
1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 address, addend, false, false, false));
1715 }
1716
1717 // Add a RELATIVE reloc against a local symbol.
1718
1719 void
1720 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1721 unsigned int local_sym_index, unsigned int type,
1722 Output_data* od, Address address, Addend addend)
1723 {
1724 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1725 addend, true, true, false));
1726 }
1727
1728 void
1729 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1730 unsigned int local_sym_index, unsigned int type,
1731 Output_data* od, unsigned int shndx, Address address,
1732 Addend addend)
1733 {
1734 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1735 address, addend, true, true, false));
1736 }
1737
1738 // Add a local relocation which does not use a symbol for the relocation,
1739 // but which gets it's addend from a symbol.
1740
1741 void
1742 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1743 unsigned int local_sym_index, unsigned int type,
1744 Output_data* od, Address address, Addend addend)
1745 {
1746 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1747 addend, false, true, false));
1748 }
1749
1750 void
1751 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1752 unsigned int local_sym_index, unsigned int type,
1753 Output_data* od, unsigned int shndx,
1754 Address address, Addend addend)
1755 {
1756 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1757 address, addend, false, true, false));
1758 }
1759
1760 // Add a reloc against a local section symbol. This will be
1761 // converted into a reloc against the STT_SECTION symbol of the
1762 // output section.
1763
1764 void
1765 add_local_section(Sized_relobj<size, big_endian>* relobj,
1766 unsigned int input_shndx, unsigned int type,
1767 Output_data* od, Address address, Addend addend)
1768 {
1769 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
1770 addend, false, false, true));
1771 }
1772
1773 void
1774 add_local_section(Sized_relobj<size, big_endian>* relobj,
1775 unsigned int input_shndx, unsigned int type,
1776 Output_data* od, unsigned int shndx, Address address,
1777 Addend addend)
1778 {
1779 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1780 address, addend, false, false, true));
1781 }
1782
1783 // A reloc against the STT_SECTION symbol of an output section.
1784
1785 void
1786 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1787 Address address, Addend addend)
1788 { this->add(os, Output_reloc_type(os, type, od, address, addend)); }
1789
1790 void
1791 add_output_section(Output_section* os, unsigned int type,
1792 Sized_relobj<size, big_endian>* relobj,
1793 unsigned int shndx, Address address, Addend addend)
1794 { this->add(os, Output_reloc_type(os, type, relobj, shndx, address,
1795 addend)); }
1796
1797 // Add an absolute relocation.
1798
1799 void
1800 add_absolute(unsigned int type, Output_data* od, Address address,
1801 Addend addend)
1802 { this->add(od, Output_reloc_type(type, od, address, addend)); }
1803
1804 void
1805 add_absolute(unsigned int type, Output_data* od,
1806 Sized_relobj<size, big_endian>* relobj,
1807 unsigned int shndx, Address address, Addend addend)
1808 { this->add(od, Output_reloc_type(type, relobj, shndx, address, addend)); }
1809
1810 // Add a target specific relocation. A target which calls this must
1811 // define the reloc_symbol_index and reloc_addend virtual functions.
1812
1813 void
1814 add_target_specific(unsigned int type, void* arg, Output_data* od,
1815 Address address, Addend addend)
1816 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
1817
1818 void
1819 add_target_specific(unsigned int type, void* arg, Output_data* od,
1820 Sized_relobj<size, big_endian>* relobj,
1821 unsigned int shndx, Address address, Addend addend)
1822 {
1823 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
1824 addend));
1825 }
1826 };
1827
1828 // Output_relocatable_relocs represents a relocation section in a
1829 // relocatable link. The actual data is written out in the target
1830 // hook relocate_for_relocatable. This just saves space for it.
1831
1832 template<int sh_type, int size, bool big_endian>
1833 class Output_relocatable_relocs : public Output_section_data
1834 {
1835 public:
1836 Output_relocatable_relocs(Relocatable_relocs* rr)
1837 : Output_section_data(Output_data::default_alignment_for_size(size)),
1838 rr_(rr)
1839 { }
1840
1841 void
1842 set_final_data_size();
1843
1844 // Write out the data. There is nothing to do here.
1845 void
1846 do_write(Output_file*)
1847 { }
1848
1849 // Write to a map file.
1850 void
1851 do_print_to_mapfile(Mapfile* mapfile) const
1852 { mapfile->print_output_data(this, _("** relocs")); }
1853
1854 private:
1855 // The relocs associated with this input section.
1856 Relocatable_relocs* rr_;
1857 };
1858
1859 // Handle a GROUP section.
1860
1861 template<int size, bool big_endian>
1862 class Output_data_group : public Output_section_data
1863 {
1864 public:
1865 // The constructor clears *INPUT_SHNDXES.
1866 Output_data_group(Sized_relobj<size, big_endian>* relobj,
1867 section_size_type entry_count,
1868 elfcpp::Elf_Word flags,
1869 std::vector<unsigned int>* input_shndxes);
1870
1871 void
1872 do_write(Output_file*);
1873
1874 // Write to a map file.
1875 void
1876 do_print_to_mapfile(Mapfile* mapfile) const
1877 { mapfile->print_output_data(this, _("** group")); }
1878
1879 // Set final data size.
1880 void
1881 set_final_data_size()
1882 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
1883
1884 private:
1885 // The input object.
1886 Sized_relobj<size, big_endian>* relobj_;
1887 // The group flag word.
1888 elfcpp::Elf_Word flags_;
1889 // The section indexes of the input sections in this group.
1890 std::vector<unsigned int> input_shndxes_;
1891 };
1892
1893 // Output_data_got is used to manage a GOT. Each entry in the GOT is
1894 // for one symbol--either a global symbol or a local symbol in an
1895 // object. The target specific code adds entries to the GOT as
1896 // needed.
1897
1898 template<int size, bool big_endian>
1899 class Output_data_got : public Output_section_data_build
1900 {
1901 public:
1902 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
1903 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian> Rel_dyn;
1904 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
1905
1906 Output_data_got()
1907 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1908 entries_()
1909 { }
1910
1911 // Add an entry for a global symbol to the GOT. Return true if this
1912 // is a new GOT entry, false if the symbol was already in the GOT.
1913 bool
1914 add_global(Symbol* gsym, unsigned int got_type);
1915
1916 // Add an entry for a global symbol to the GOT, and add a dynamic
1917 // relocation of type R_TYPE for the GOT entry.
1918 void
1919 add_global_with_rel(Symbol* gsym, unsigned int got_type,
1920 Rel_dyn* rel_dyn, unsigned int r_type);
1921
1922 void
1923 add_global_with_rela(Symbol* gsym, unsigned int got_type,
1924 Rela_dyn* rela_dyn, unsigned int r_type);
1925
1926 // Add a pair of entries for a global symbol to the GOT, and add
1927 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1928 void
1929 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
1930 Rel_dyn* rel_dyn, unsigned int r_type_1,
1931 unsigned int r_type_2);
1932
1933 void
1934 add_global_pair_with_rela(Symbol* gsym, unsigned int got_type,
1935 Rela_dyn* rela_dyn, unsigned int r_type_1,
1936 unsigned int r_type_2);
1937
1938 // Add an entry for a local symbol to the GOT. This returns true if
1939 // this is a new GOT entry, false if the symbol already has a GOT
1940 // entry.
1941 bool
1942 add_local(Sized_relobj<size, big_endian>* object, unsigned int sym_index,
1943 unsigned int got_type);
1944
1945 // Add an entry for a local symbol to the GOT, and add a dynamic
1946 // relocation of type R_TYPE for the GOT entry.
1947 void
1948 add_local_with_rel(Sized_relobj<size, big_endian>* object,
1949 unsigned int sym_index, unsigned int got_type,
1950 Rel_dyn* rel_dyn, unsigned int r_type);
1951
1952 void
1953 add_local_with_rela(Sized_relobj<size, big_endian>* object,
1954 unsigned int sym_index, unsigned int got_type,
1955 Rela_dyn* rela_dyn, unsigned int r_type);
1956
1957 // Add a pair of entries for a local symbol to the GOT, and add
1958 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1959 void
1960 add_local_pair_with_rel(Sized_relobj<size, big_endian>* object,
1961 unsigned int sym_index, unsigned int shndx,
1962 unsigned int got_type, Rel_dyn* rel_dyn,
1963 unsigned int r_type_1, unsigned int r_type_2);
1964
1965 void
1966 add_local_pair_with_rela(Sized_relobj<size, big_endian>* object,
1967 unsigned int sym_index, unsigned int shndx,
1968 unsigned int got_type, Rela_dyn* rela_dyn,
1969 unsigned int r_type_1, unsigned int r_type_2);
1970
1971 // Add a constant to the GOT. This returns the offset of the new
1972 // entry from the start of the GOT.
1973 unsigned int
1974 add_constant(Valtype constant)
1975 {
1976 this->entries_.push_back(Got_entry(constant));
1977 this->set_got_size();
1978 return this->last_got_offset();
1979 }
1980
1981 protected:
1982 // Write out the GOT table.
1983 void
1984 do_write(Output_file*);
1985
1986 // Write to a map file.
1987 void
1988 do_print_to_mapfile(Mapfile* mapfile) const
1989 { mapfile->print_output_data(this, _("** GOT")); }
1990
1991 private:
1992 // This POD class holds a single GOT entry.
1993 class Got_entry
1994 {
1995 public:
1996 // Create a zero entry.
1997 Got_entry()
1998 : local_sym_index_(CONSTANT_CODE)
1999 { this->u_.constant = 0; }
2000
2001 // Create a global symbol entry.
2002 explicit Got_entry(Symbol* gsym)
2003 : local_sym_index_(GSYM_CODE)
2004 { this->u_.gsym = gsym; }
2005
2006 // Create a local symbol entry.
2007 Got_entry(Sized_relobj<size, big_endian>* object,
2008 unsigned int local_sym_index)
2009 : local_sym_index_(local_sym_index)
2010 {
2011 gold_assert(local_sym_index != GSYM_CODE
2012 && local_sym_index != CONSTANT_CODE);
2013 this->u_.object = object;
2014 }
2015
2016 // Create a constant entry. The constant is a host value--it will
2017 // be swapped, if necessary, when it is written out.
2018 explicit Got_entry(Valtype constant)
2019 : local_sym_index_(CONSTANT_CODE)
2020 { this->u_.constant = constant; }
2021
2022 // Write the GOT entry to an output view.
2023 void
2024 write(unsigned char* pov) const;
2025
2026 private:
2027 enum
2028 {
2029 GSYM_CODE = -1U,
2030 CONSTANT_CODE = -2U
2031 };
2032
2033 union
2034 {
2035 // For a local symbol, the object.
2036 Sized_relobj<size, big_endian>* object;
2037 // For a global symbol, the symbol.
2038 Symbol* gsym;
2039 // For a constant, the constant.
2040 Valtype constant;
2041 } u_;
2042 // For a local symbol, the local symbol index. This is GSYM_CODE
2043 // for a global symbol, or CONSTANT_CODE for a constant.
2044 unsigned int local_sym_index_;
2045 };
2046
2047 typedef std::vector<Got_entry> Got_entries;
2048
2049 // Return the offset into the GOT of GOT entry I.
2050 unsigned int
2051 got_offset(unsigned int i) const
2052 { return i * (size / 8); }
2053
2054 // Return the offset into the GOT of the last entry added.
2055 unsigned int
2056 last_got_offset() const
2057 { return this->got_offset(this->entries_.size() - 1); }
2058
2059 // Set the size of the section.
2060 void
2061 set_got_size()
2062 { this->set_current_data_size(this->got_offset(this->entries_.size())); }
2063
2064 // The list of GOT entries.
2065 Got_entries entries_;
2066 };
2067
2068 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2069 // section.
2070
2071 class Output_data_dynamic : public Output_section_data
2072 {
2073 public:
2074 Output_data_dynamic(Stringpool* pool)
2075 : Output_section_data(Output_data::default_alignment()),
2076 entries_(), pool_(pool)
2077 { }
2078
2079 // Add a new dynamic entry with a fixed numeric value.
2080 void
2081 add_constant(elfcpp::DT tag, unsigned int val)
2082 { this->add_entry(Dynamic_entry(tag, val)); }
2083
2084 // Add a new dynamic entry with the address of output data.
2085 void
2086 add_section_address(elfcpp::DT tag, const Output_data* od)
2087 { this->add_entry(Dynamic_entry(tag, od, false)); }
2088
2089 // Add a new dynamic entry with the address of output data
2090 // plus a constant offset.
2091 void
2092 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2093 unsigned int offset)
2094 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2095
2096 // Add a new dynamic entry with the size of output data.
2097 void
2098 add_section_size(elfcpp::DT tag, const Output_data* od)
2099 { this->add_entry(Dynamic_entry(tag, od, true)); }
2100
2101 // Add a new dynamic entry with the total size of two output datas.
2102 void
2103 add_section_size(elfcpp::DT tag, const Output_data* od,
2104 const Output_data* od2)
2105 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2106
2107 // Add a new dynamic entry with the address of a symbol.
2108 void
2109 add_symbol(elfcpp::DT tag, const Symbol* sym)
2110 { this->add_entry(Dynamic_entry(tag, sym)); }
2111
2112 // Add a new dynamic entry with a string.
2113 void
2114 add_string(elfcpp::DT tag, const char* str)
2115 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2116
2117 void
2118 add_string(elfcpp::DT tag, const std::string& str)
2119 { this->add_string(tag, str.c_str()); }
2120
2121 protected:
2122 // Adjust the output section to set the entry size.
2123 void
2124 do_adjust_output_section(Output_section*);
2125
2126 // Set the final data size.
2127 void
2128 set_final_data_size();
2129
2130 // Write out the dynamic entries.
2131 void
2132 do_write(Output_file*);
2133
2134 // Write to a map file.
2135 void
2136 do_print_to_mapfile(Mapfile* mapfile) const
2137 { mapfile->print_output_data(this, _("** dynamic")); }
2138
2139 private:
2140 // This POD class holds a single dynamic entry.
2141 class Dynamic_entry
2142 {
2143 public:
2144 // Create an entry with a fixed numeric value.
2145 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2146 : tag_(tag), offset_(DYNAMIC_NUMBER)
2147 { this->u_.val = val; }
2148
2149 // Create an entry with the size or address of a section.
2150 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2151 : tag_(tag),
2152 offset_(section_size
2153 ? DYNAMIC_SECTION_SIZE
2154 : DYNAMIC_SECTION_ADDRESS)
2155 {
2156 this->u_.od = od;
2157 this->od2 = NULL;
2158 }
2159
2160 // Create an entry with the size of two sections.
2161 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2162 : tag_(tag),
2163 offset_(DYNAMIC_SECTION_SIZE)
2164 {
2165 this->u_.od = od;
2166 this->od2 = od2;
2167 }
2168
2169 // Create an entry with the address of a section plus a constant offset.
2170 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2171 : tag_(tag),
2172 offset_(offset)
2173 { this->u_.od = od; }
2174
2175 // Create an entry with the address of a symbol.
2176 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2177 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2178 { this->u_.sym = sym; }
2179
2180 // Create an entry with a string.
2181 Dynamic_entry(elfcpp::DT tag, const char* str)
2182 : tag_(tag), offset_(DYNAMIC_STRING)
2183 { this->u_.str = str; }
2184
2185 // Return the tag of this entry.
2186 elfcpp::DT
2187 tag() const
2188 { return this->tag_; }
2189
2190 // Write the dynamic entry to an output view.
2191 template<int size, bool big_endian>
2192 void
2193 write(unsigned char* pov, const Stringpool*) const;
2194
2195 private:
2196 // Classification is encoded in the OFFSET field.
2197 enum Classification
2198 {
2199 // Section address.
2200 DYNAMIC_SECTION_ADDRESS = 0,
2201 // Number.
2202 DYNAMIC_NUMBER = -1U,
2203 // Section size.
2204 DYNAMIC_SECTION_SIZE = -2U,
2205 // Symbol adress.
2206 DYNAMIC_SYMBOL = -3U,
2207 // String.
2208 DYNAMIC_STRING = -4U
2209 // Any other value indicates a section address plus OFFSET.
2210 };
2211
2212 union
2213 {
2214 // For DYNAMIC_NUMBER.
2215 unsigned int val;
2216 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2217 const Output_data* od;
2218 // For DYNAMIC_SYMBOL.
2219 const Symbol* sym;
2220 // For DYNAMIC_STRING.
2221 const char* str;
2222 } u_;
2223 // For DYNAMIC_SYMBOL with two sections.
2224 const Output_data* od2;
2225 // The dynamic tag.
2226 elfcpp::DT tag_;
2227 // The type of entry (Classification) or offset within a section.
2228 unsigned int offset_;
2229 };
2230
2231 // Add an entry to the list.
2232 void
2233 add_entry(const Dynamic_entry& entry)
2234 { this->entries_.push_back(entry); }
2235
2236 // Sized version of write function.
2237 template<int size, bool big_endian>
2238 void
2239 sized_write(Output_file* of);
2240
2241 // The type of the list of entries.
2242 typedef std::vector<Dynamic_entry> Dynamic_entries;
2243
2244 // The entries.
2245 Dynamic_entries entries_;
2246 // The pool used for strings.
2247 Stringpool* pool_;
2248 };
2249
2250 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2251 // which may be required if the object file has more than
2252 // SHN_LORESERVE sections.
2253
2254 class Output_symtab_xindex : public Output_section_data
2255 {
2256 public:
2257 Output_symtab_xindex(size_t symcount)
2258 : Output_section_data(symcount * 4, 4, true),
2259 entries_()
2260 { }
2261
2262 // Add an entry: symbol number SYMNDX has section SHNDX.
2263 void
2264 add(unsigned int symndx, unsigned int shndx)
2265 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2266
2267 protected:
2268 void
2269 do_write(Output_file*);
2270
2271 // Write to a map file.
2272 void
2273 do_print_to_mapfile(Mapfile* mapfile) const
2274 { mapfile->print_output_data(this, _("** symtab xindex")); }
2275
2276 private:
2277 template<bool big_endian>
2278 void
2279 endian_do_write(unsigned char*);
2280
2281 // It is likely that most symbols will not require entries. Rather
2282 // than keep a vector for all symbols, we keep pairs of symbol index
2283 // and section index.
2284 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2285
2286 // The entries we need.
2287 Xindex_entries entries_;
2288 };
2289
2290 // A relaxed input section.
2291 class Output_relaxed_input_section : public Output_section_data_build
2292 {
2293 public:
2294 // We would like to call relobj->section_addralign(shndx) to get the
2295 // alignment but we do not want the constructor to fail. So callers
2296 // are repsonsible for ensuring that.
2297 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2298 uint64_t addralign)
2299 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2300 { }
2301
2302 // Return the Relobj of this relaxed input section.
2303 Relobj*
2304 relobj() const
2305 { return this->relobj_; }
2306
2307 // Return the section index of this relaxed input section.
2308 unsigned int
2309 shndx() const
2310 { return this->shndx_; }
2311
2312 private:
2313 Relobj* relobj_;
2314 unsigned int shndx_;
2315 };
2316
2317 // An output section. We don't expect to have too many output
2318 // sections, so we don't bother to do a template on the size.
2319
2320 class Output_section : public Output_data
2321 {
2322 public:
2323 // Create an output section, giving the name, type, and flags.
2324 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
2325 virtual ~Output_section();
2326
2327 // Add a new input section SHNDX, named NAME, with header SHDR, from
2328 // object OBJECT. RELOC_SHNDX is the index of a relocation section
2329 // which applies to this section, or 0 if none, or -1 if more than
2330 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
2331 // in a linker script; in that case we need to keep track of input
2332 // sections associated with an output section. Return the offset
2333 // within the output section.
2334 template<int size, bool big_endian>
2335 off_t
2336 add_input_section(Sized_relobj<size, big_endian>* object, unsigned int shndx,
2337 const char *name,
2338 const elfcpp::Shdr<size, big_endian>& shdr,
2339 unsigned int reloc_shndx, bool have_sections_script);
2340
2341 // Add generated data POSD to this output section.
2342 void
2343 add_output_section_data(Output_section_data* posd);
2344
2345 // Add a relaxed input section PORIS to this output section.
2346 void
2347 add_relaxed_input_section(Output_relaxed_input_section* poris);
2348
2349 // Return the section name.
2350 const char*
2351 name() const
2352 { return this->name_; }
2353
2354 // Return the section type.
2355 elfcpp::Elf_Word
2356 type() const
2357 { return this->type_; }
2358
2359 // Return the section flags.
2360 elfcpp::Elf_Xword
2361 flags() const
2362 { return this->flags_; }
2363
2364 // Update the output section flags based on input section flags.
2365 void
2366 update_flags_for_input_section(elfcpp::Elf_Xword flags);
2367
2368 // Return the entsize field.
2369 uint64_t
2370 entsize() const
2371 { return this->entsize_; }
2372
2373 // Set the entsize field.
2374 void
2375 set_entsize(uint64_t v);
2376
2377 // Set the load address.
2378 void
2379 set_load_address(uint64_t load_address)
2380 {
2381 this->load_address_ = load_address;
2382 this->has_load_address_ = true;
2383 }
2384
2385 // Set the link field to the output section index of a section.
2386 void
2387 set_link_section(const Output_data* od)
2388 {
2389 gold_assert(this->link_ == 0
2390 && !this->should_link_to_symtab_
2391 && !this->should_link_to_dynsym_);
2392 this->link_section_ = od;
2393 }
2394
2395 // Set the link field to a constant.
2396 void
2397 set_link(unsigned int v)
2398 {
2399 gold_assert(this->link_section_ == NULL
2400 && !this->should_link_to_symtab_
2401 && !this->should_link_to_dynsym_);
2402 this->link_ = v;
2403 }
2404
2405 // Record that this section should link to the normal symbol table.
2406 void
2407 set_should_link_to_symtab()
2408 {
2409 gold_assert(this->link_section_ == NULL
2410 && this->link_ == 0
2411 && !this->should_link_to_dynsym_);
2412 this->should_link_to_symtab_ = true;
2413 }
2414
2415 // Record that this section should link to the dynamic symbol table.
2416 void
2417 set_should_link_to_dynsym()
2418 {
2419 gold_assert(this->link_section_ == NULL
2420 && this->link_ == 0
2421 && !this->should_link_to_symtab_);
2422 this->should_link_to_dynsym_ = true;
2423 }
2424
2425 // Return the info field.
2426 unsigned int
2427 info() const
2428 {
2429 gold_assert(this->info_section_ == NULL
2430 && this->info_symndx_ == NULL);
2431 return this->info_;
2432 }
2433
2434 // Set the info field to the output section index of a section.
2435 void
2436 set_info_section(const Output_section* os)
2437 {
2438 gold_assert((this->info_section_ == NULL
2439 || (this->info_section_ == os
2440 && this->info_uses_section_index_))
2441 && this->info_symndx_ == NULL
2442 && this->info_ == 0);
2443 this->info_section_ = os;
2444 this->info_uses_section_index_= true;
2445 }
2446
2447 // Set the info field to the symbol table index of a symbol.
2448 void
2449 set_info_symndx(const Symbol* sym)
2450 {
2451 gold_assert(this->info_section_ == NULL
2452 && (this->info_symndx_ == NULL
2453 || this->info_symndx_ == sym)
2454 && this->info_ == 0);
2455 this->info_symndx_ = sym;
2456 }
2457
2458 // Set the info field to the symbol table index of a section symbol.
2459 void
2460 set_info_section_symndx(const Output_section* os)
2461 {
2462 gold_assert((this->info_section_ == NULL
2463 || (this->info_section_ == os
2464 && !this->info_uses_section_index_))
2465 && this->info_symndx_ == NULL
2466 && this->info_ == 0);
2467 this->info_section_ = os;
2468 this->info_uses_section_index_ = false;
2469 }
2470
2471 // Set the info field to a constant.
2472 void
2473 set_info(unsigned int v)
2474 {
2475 gold_assert(this->info_section_ == NULL
2476 && this->info_symndx_ == NULL
2477 && (this->info_ == 0
2478 || this->info_ == v));
2479 this->info_ = v;
2480 }
2481
2482 // Set the addralign field.
2483 void
2484 set_addralign(uint64_t v)
2485 { this->addralign_ = v; }
2486
2487 // Whether the output section index has been set.
2488 bool
2489 has_out_shndx() const
2490 { return this->out_shndx_ != -1U; }
2491
2492 // Indicate that we need a symtab index.
2493 void
2494 set_needs_symtab_index()
2495 { this->needs_symtab_index_ = true; }
2496
2497 // Return whether we need a symtab index.
2498 bool
2499 needs_symtab_index() const
2500 { return this->needs_symtab_index_; }
2501
2502 // Get the symtab index.
2503 unsigned int
2504 symtab_index() const
2505 {
2506 gold_assert(this->symtab_index_ != 0);
2507 return this->symtab_index_;
2508 }
2509
2510 // Set the symtab index.
2511 void
2512 set_symtab_index(unsigned int index)
2513 {
2514 gold_assert(index != 0);
2515 this->symtab_index_ = index;
2516 }
2517
2518 // Indicate that we need a dynsym index.
2519 void
2520 set_needs_dynsym_index()
2521 { this->needs_dynsym_index_ = true; }
2522
2523 // Return whether we need a dynsym index.
2524 bool
2525 needs_dynsym_index() const
2526 { return this->needs_dynsym_index_; }
2527
2528 // Get the dynsym index.
2529 unsigned int
2530 dynsym_index() const
2531 {
2532 gold_assert(this->dynsym_index_ != 0);
2533 return this->dynsym_index_;
2534 }
2535
2536 // Set the dynsym index.
2537 void
2538 set_dynsym_index(unsigned int index)
2539 {
2540 gold_assert(index != 0);
2541 this->dynsym_index_ = index;
2542 }
2543
2544 // Return whether the input sections sections attachd to this output
2545 // section may require sorting. This is used to handle constructor
2546 // priorities compatibly with GNU ld.
2547 bool
2548 may_sort_attached_input_sections() const
2549 { return this->may_sort_attached_input_sections_; }
2550
2551 // Record that the input sections attached to this output section
2552 // may require sorting.
2553 void
2554 set_may_sort_attached_input_sections()
2555 { this->may_sort_attached_input_sections_ = true; }
2556
2557 // Return whether the input sections attached to this output section
2558 // require sorting. This is used to handle constructor priorities
2559 // compatibly with GNU ld.
2560 bool
2561 must_sort_attached_input_sections() const
2562 { return this->must_sort_attached_input_sections_; }
2563
2564 // Record that the input sections attached to this output section
2565 // require sorting.
2566 void
2567 set_must_sort_attached_input_sections()
2568 { this->must_sort_attached_input_sections_ = true; }
2569
2570 // Return whether this section holds relro data--data which has
2571 // dynamic relocations but which may be marked read-only after the
2572 // dynamic relocations have been completed.
2573 bool
2574 is_relro() const
2575 { return this->is_relro_; }
2576
2577 // Record that this section holds relro data.
2578 void
2579 set_is_relro()
2580 { this->is_relro_ = true; }
2581
2582 // Record that this section does not hold relro data.
2583 void
2584 clear_is_relro()
2585 { this->is_relro_ = false; }
2586
2587 // True if this section holds relro local data--relro data for which
2588 // the dynamic relocations are all RELATIVE relocations.
2589 bool
2590 is_relro_local() const
2591 { return this->is_relro_local_; }
2592
2593 // Record that this section holds relro local data.
2594 void
2595 set_is_relro_local()
2596 { this->is_relro_local_ = true; }
2597
2598 // True if this must be the last relro section.
2599 bool
2600 is_last_relro() const
2601 { return this->is_last_relro_; }
2602
2603 // Record that this must be the last relro section.
2604 void
2605 set_is_last_relro()
2606 {
2607 gold_assert(this->is_relro_);
2608 this->is_last_relro_ = true;
2609 }
2610
2611 // True if this must be the first section following the relro sections.
2612 bool
2613 is_first_non_relro() const
2614 {
2615 gold_assert(!this->is_relro_);
2616 return this->is_first_non_relro_;
2617 }
2618
2619 // Record that this must be the first non-relro section.
2620 void
2621 set_is_first_non_relro()
2622 {
2623 gold_assert(!this->is_relro_);
2624 this->is_first_non_relro_ = true;
2625 }
2626
2627 // True if this is a small section: a section which holds small
2628 // variables.
2629 bool
2630 is_small_section() const
2631 { return this->is_small_section_; }
2632
2633 // Record that this is a small section.
2634 void
2635 set_is_small_section()
2636 { this->is_small_section_ = true; }
2637
2638 // True if this is a large section: a section which holds large
2639 // variables.
2640 bool
2641 is_large_section() const
2642 { return this->is_large_section_; }
2643
2644 // Record that this is a large section.
2645 void
2646 set_is_large_section()
2647 { this->is_large_section_ = true; }
2648
2649 // True if this is a large data (not BSS) section.
2650 bool
2651 is_large_data_section()
2652 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
2653
2654 // True if this is the .interp section which goes into the PT_INTERP
2655 // segment.
2656 bool
2657 is_interp() const
2658 { return this->is_interp_; }
2659
2660 // Record that this is the interp section.
2661 void
2662 set_is_interp()
2663 { this->is_interp_ = true; }
2664
2665 // True if this is a section used by the dynamic linker.
2666 bool
2667 is_dynamic_linker_section() const
2668 { return this->is_dynamic_linker_section_; }
2669
2670 // Record that this is a section used by the dynamic linker.
2671 void
2672 set_is_dynamic_linker_section()
2673 { this->is_dynamic_linker_section_ = true; }
2674
2675 // Return whether this section should be written after all the input
2676 // sections are complete.
2677 bool
2678 after_input_sections() const
2679 { return this->after_input_sections_; }
2680
2681 // Record that this section should be written after all the input
2682 // sections are complete.
2683 void
2684 set_after_input_sections()
2685 { this->after_input_sections_ = true; }
2686
2687 // Return whether this section requires postprocessing after all
2688 // relocations have been applied.
2689 bool
2690 requires_postprocessing() const
2691 { return this->requires_postprocessing_; }
2692
2693 // If a section requires postprocessing, return the buffer to use.
2694 unsigned char*
2695 postprocessing_buffer() const
2696 {
2697 gold_assert(this->postprocessing_buffer_ != NULL);
2698 return this->postprocessing_buffer_;
2699 }
2700
2701 // If a section requires postprocessing, create the buffer to use.
2702 void
2703 create_postprocessing_buffer();
2704
2705 // If a section requires postprocessing, this is the size of the
2706 // buffer to which relocations should be applied.
2707 off_t
2708 postprocessing_buffer_size() const
2709 { return this->current_data_size_for_child(); }
2710
2711 // Modify the section name. This is only permitted for an
2712 // unallocated section, and only before the size has been finalized.
2713 // Otherwise the name will not get into Layout::namepool_.
2714 void
2715 set_name(const char* newname)
2716 {
2717 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
2718 gold_assert(!this->is_data_size_valid());
2719 this->name_ = newname;
2720 }
2721
2722 // Return whether the offset OFFSET in the input section SHNDX in
2723 // object OBJECT is being included in the link.
2724 bool
2725 is_input_address_mapped(const Relobj* object, unsigned int shndx,
2726 off_t offset) const;
2727
2728 // Return the offset within the output section of OFFSET relative to
2729 // the start of input section SHNDX in object OBJECT.
2730 section_offset_type
2731 output_offset(const Relobj* object, unsigned int shndx,
2732 section_offset_type offset) const;
2733
2734 // Return the output virtual address of OFFSET relative to the start
2735 // of input section SHNDX in object OBJECT.
2736 uint64_t
2737 output_address(const Relobj* object, unsigned int shndx,
2738 off_t offset) const;
2739
2740 // Look for the merged section for input section SHNDX in object
2741 // OBJECT. If found, return true, and set *ADDR to the address of
2742 // the start of the merged section. This is not necessary the
2743 // output offset corresponding to input offset 0 in the section,
2744 // since the section may be mapped arbitrarily.
2745 bool
2746 find_starting_output_address(const Relobj* object, unsigned int shndx,
2747 uint64_t* addr) const;
2748
2749 // Record that this output section was found in the SECTIONS clause
2750 // of a linker script.
2751 void
2752 set_found_in_sections_clause()
2753 { this->found_in_sections_clause_ = true; }
2754
2755 // Return whether this output section was found in the SECTIONS
2756 // clause of a linker script.
2757 bool
2758 found_in_sections_clause() const
2759 { return this->found_in_sections_clause_; }
2760
2761 // Write the section header into *OPHDR.
2762 template<int size, bool big_endian>
2763 void
2764 write_header(const Layout*, const Stringpool*,
2765 elfcpp::Shdr_write<size, big_endian>*) const;
2766
2767 // The next few calls are for linker script support.
2768
2769 // We need to export the input sections to linker scripts. Previously
2770 // we export a pair of Relobj pointer and section index. We now need to
2771 // handle relaxed input sections as well. So we use this class.
2772 class Simple_input_section
2773 {
2774 private:
2775 static const unsigned int invalid_shndx = static_cast<unsigned int>(-1);
2776
2777 public:
2778 Simple_input_section(Relobj *relobj, unsigned int shndx)
2779 : shndx_(shndx)
2780 {
2781 gold_assert(shndx != invalid_shndx);
2782 this->u_.relobj = relobj;
2783 }
2784
2785 Simple_input_section(Output_relaxed_input_section* section)
2786 : shndx_(invalid_shndx)
2787 { this->u_.relaxed_input_section = section; }
2788
2789 // Whether this is a relaxed section.
2790 bool
2791 is_relaxed_input_section() const
2792 { return this->shndx_ == invalid_shndx; }
2793
2794 // Return object of an input section.
2795 Relobj*
2796 relobj() const
2797 {
2798 return ((this->shndx_ != invalid_shndx)
2799 ? this->u_.relobj
2800 : this->u_.relaxed_input_section->relobj());
2801 }
2802
2803 // Return index of an input section.
2804 unsigned int
2805 shndx() const
2806 {
2807 return ((this->shndx_ != invalid_shndx)
2808 ? this->shndx_
2809 : this->u_.relaxed_input_section->shndx());
2810 }
2811
2812 // Return the Output_relaxed_input_section object of a relaxed section.
2813 Output_relaxed_input_section*
2814 relaxed_input_section() const
2815 {
2816 gold_assert(this->shndx_ == invalid_shndx);
2817 return this->u_.relaxed_input_section;
2818 }
2819
2820 private:
2821 // Pointer to either an Relobj or an Output_relaxed_input_section.
2822 union
2823 {
2824 Relobj* relobj;
2825 Output_relaxed_input_section* relaxed_input_section;
2826 } u_;
2827 // Section index for an non-relaxed section or invalid_shndx for
2828 // a relaxed section.
2829 unsigned int shndx_;
2830 };
2831
2832 // Store the list of input sections for this Output_section into the
2833 // list passed in. This removes the input sections, leaving only
2834 // any Output_section_data elements. This returns the size of those
2835 // Output_section_data elements. ADDRESS is the address of this
2836 // output section. FILL is the fill value to use, in case there are
2837 // any spaces between the remaining Output_section_data elements.
2838 uint64_t
2839 get_input_sections(uint64_t address, const std::string& fill,
2840 std::list<Simple_input_section>*);
2841
2842 // Add a simple input section.
2843 void
2844 add_simple_input_section(const Simple_input_section& input_section,
2845 off_t data_size, uint64_t addralign);
2846
2847 // Set the current size of the output section.
2848 void
2849 set_current_data_size(off_t size)
2850 { this->set_current_data_size_for_child(size); }
2851
2852 // Get the current size of the output section.
2853 off_t
2854 current_data_size() const
2855 { return this->current_data_size_for_child(); }
2856
2857 // End of linker script support.
2858
2859 // Save states before doing section layout.
2860 // This is used for relaxation.
2861 void
2862 save_states();
2863
2864 // Restore states prior to section layout.
2865 void
2866 restore_states();
2867
2868 // Discard states.
2869 void
2870 discard_states();
2871
2872 // Convert existing input sections to relaxed input sections.
2873 void
2874 convert_input_sections_to_relaxed_sections(
2875 const std::vector<Output_relaxed_input_section*>& sections);
2876
2877 // Find a relaxed input section to an input section in OBJECT
2878 // with index SHNDX. Return NULL if none is found.
2879 const Output_relaxed_input_section*
2880 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
2881
2882 // Whether section offsets need adjustment due to relaxation.
2883 bool
2884 section_offsets_need_adjustment() const
2885 { return this->section_offsets_need_adjustment_; }
2886
2887 // Set section_offsets_need_adjustment to be true.
2888 void
2889 set_section_offsets_need_adjustment()
2890 { this->section_offsets_need_adjustment_ = true; }
2891
2892 // Adjust section offsets of input sections in this. This is
2893 // requires if relaxation caused some input sections to change sizes.
2894 void
2895 adjust_section_offsets();
2896
2897 // Whether this is a NOLOAD section.
2898 bool
2899 is_noload() const
2900 { return this->is_noload_; }
2901
2902 // Set NOLOAD flag.
2903 void
2904 set_is_noload()
2905 { this->is_noload_ = true; }
2906
2907 // Print merge statistics to stderr.
2908 void
2909 print_merge_stats();
2910
2911 protected:
2912 // Return the output section--i.e., the object itself.
2913 Output_section*
2914 do_output_section()
2915 { return this; }
2916
2917 const Output_section*
2918 do_output_section() const
2919 { return this; }
2920
2921 // Return the section index in the output file.
2922 unsigned int
2923 do_out_shndx() const
2924 {
2925 gold_assert(this->out_shndx_ != -1U);
2926 return this->out_shndx_;
2927 }
2928
2929 // Set the output section index.
2930 void
2931 do_set_out_shndx(unsigned int shndx)
2932 {
2933 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
2934 this->out_shndx_ = shndx;
2935 }
2936
2937 // Set the final data size of the Output_section. For a typical
2938 // Output_section, there is nothing to do, but if there are any
2939 // Output_section_data objects we need to set their final addresses
2940 // here.
2941 virtual void
2942 set_final_data_size();
2943
2944 // Reset the address and file offset.
2945 void
2946 do_reset_address_and_file_offset();
2947
2948 // Return true if address and file offset already have reset values. In
2949 // other words, calling reset_address_and_file_offset will not change them.
2950 bool
2951 do_address_and_file_offset_have_reset_values() const;
2952
2953 // Write the data to the file. For a typical Output_section, this
2954 // does nothing: the data is written out by calling Object::Relocate
2955 // on each input object. But if there are any Output_section_data
2956 // objects we do need to write them out here.
2957 virtual void
2958 do_write(Output_file*);
2959
2960 // Return the address alignment--function required by parent class.
2961 uint64_t
2962 do_addralign() const
2963 { return this->addralign_; }
2964
2965 // Return whether there is a load address.
2966 bool
2967 do_has_load_address() const
2968 { return this->has_load_address_; }
2969
2970 // Return the load address.
2971 uint64_t
2972 do_load_address() const
2973 {
2974 gold_assert(this->has_load_address_);
2975 return this->load_address_;
2976 }
2977
2978 // Return whether this is an Output_section.
2979 bool
2980 do_is_section() const
2981 { return true; }
2982
2983 // Return whether this is a section of the specified type.
2984 bool
2985 do_is_section_type(elfcpp::Elf_Word type) const
2986 { return this->type_ == type; }
2987
2988 // Return whether the specified section flag is set.
2989 bool
2990 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
2991 { return (this->flags_ & flag) != 0; }
2992
2993 // Set the TLS offset. Called only for SHT_TLS sections.
2994 void
2995 do_set_tls_offset(uint64_t tls_base);
2996
2997 // Return the TLS offset, relative to the base of the TLS segment.
2998 // Valid only for SHT_TLS sections.
2999 uint64_t
3000 do_tls_offset() const
3001 { return this->tls_offset_; }
3002
3003 // This may be implemented by a child class.
3004 virtual void
3005 do_finalize_name(Layout*)
3006 { }
3007
3008 // Print to the map file.
3009 virtual void
3010 do_print_to_mapfile(Mapfile*) const;
3011
3012 // Record that this section requires postprocessing after all
3013 // relocations have been applied. This is called by a child class.
3014 void
3015 set_requires_postprocessing()
3016 {
3017 this->requires_postprocessing_ = true;
3018 this->after_input_sections_ = true;
3019 }
3020
3021 // Write all the data of an Output_section into the postprocessing
3022 // buffer.
3023 void
3024 write_to_postprocessing_buffer();
3025
3026 // In some cases we need to keep a list of the input sections
3027 // associated with this output section. We only need the list if we
3028 // might have to change the offsets of the input section within the
3029 // output section after we add the input section. The ordinary
3030 // input sections will be written out when we process the object
3031 // file, and as such we don't need to track them here. We do need
3032 // to track Output_section_data objects here. We store instances of
3033 // this structure in a std::vector, so it must be a POD. There can
3034 // be many instances of this structure, so we use a union to save
3035 // some space.
3036 class Input_section
3037 {
3038 public:
3039 Input_section()
3040 : shndx_(0), p2align_(0)
3041 {
3042 this->u1_.data_size = 0;
3043 this->u2_.object = NULL;
3044 }
3045
3046 // For an ordinary input section.
3047 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3048 uint64_t addralign)
3049 : shndx_(shndx),
3050 p2align_(ffsll(static_cast<long long>(addralign)))
3051 {
3052 gold_assert(shndx != OUTPUT_SECTION_CODE
3053 && shndx != MERGE_DATA_SECTION_CODE
3054 && shndx != MERGE_STRING_SECTION_CODE
3055 && shndx != RELAXED_INPUT_SECTION_CODE);
3056 this->u1_.data_size = data_size;
3057 this->u2_.object = object;
3058 }
3059
3060 // For a non-merge output section.
3061 Input_section(Output_section_data* posd)
3062 : shndx_(OUTPUT_SECTION_CODE), p2align_(0)
3063 {
3064 this->u1_.data_size = 0;
3065 this->u2_.posd = posd;
3066 }
3067
3068 // For a merge section.
3069 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3070 : shndx_(is_string
3071 ? MERGE_STRING_SECTION_CODE
3072 : MERGE_DATA_SECTION_CODE),
3073 p2align_(0)
3074 {
3075 this->u1_.entsize = entsize;
3076 this->u2_.posd = posd;
3077 }
3078
3079 // For a relaxed input section.
3080 Input_section(Output_relaxed_input_section *psection)
3081 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0)
3082 {
3083 this->u1_.data_size = 0;
3084 this->u2_.poris = psection;
3085 }
3086
3087 // The required alignment.
3088 uint64_t
3089 addralign() const
3090 {
3091 if (!this->is_input_section())
3092 return this->u2_.posd->addralign();
3093 return (this->p2align_ == 0
3094 ? 0
3095 : static_cast<uint64_t>(1) << (this->p2align_ - 1));
3096 }
3097
3098 // Return the required size.
3099 off_t
3100 data_size() const;
3101
3102 // Whether this is an input section.
3103 bool
3104 is_input_section() const
3105 {
3106 return (this->shndx_ != OUTPUT_SECTION_CODE
3107 && this->shndx_ != MERGE_DATA_SECTION_CODE
3108 && this->shndx_ != MERGE_STRING_SECTION_CODE
3109 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3110 }
3111
3112 // Return whether this is a merge section which matches the
3113 // parameters.
3114 bool
3115 is_merge_section(bool is_string, uint64_t entsize,
3116 uint64_t addralign) const
3117 {
3118 return (this->shndx_ == (is_string
3119 ? MERGE_STRING_SECTION_CODE
3120 : MERGE_DATA_SECTION_CODE)
3121 && this->u1_.entsize == entsize
3122 && this->addralign() == addralign);
3123 }
3124
3125 // Return whether this is a relaxed input section.
3126 bool
3127 is_relaxed_input_section() const
3128 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3129
3130 // Return whether this is a generic Output_section_data.
3131 bool
3132 is_output_section_data() const
3133 {
3134 return this->shndx_ == OUTPUT_SECTION_CODE;
3135 }
3136
3137 // Return the object for an input section.
3138 Relobj*
3139 relobj() const
3140 {
3141 if (this->is_input_section())
3142 return this->u2_.object;
3143 else if (this->is_relaxed_input_section())
3144 return this->u2_.poris->relobj();
3145 else
3146 gold_unreachable();
3147 }
3148
3149 // Return the input section index for an input section.
3150 unsigned int
3151 shndx() const
3152 {
3153 if (this->is_input_section())
3154 return this->shndx_;
3155 else if (this->is_relaxed_input_section())
3156 return this->u2_.poris->shndx();
3157 else
3158 gold_unreachable();
3159 }
3160
3161 // For non-input-sections, return the associated Output_section_data
3162 // object.
3163 Output_section_data*
3164 output_section_data() const
3165 {
3166 gold_assert(!this->is_input_section());
3167 return this->u2_.posd;
3168 }
3169
3170 // Return the Output_relaxed_input_section object.
3171 Output_relaxed_input_section*
3172 relaxed_input_section() const
3173 {
3174 gold_assert(this->is_relaxed_input_section());
3175 return this->u2_.poris;
3176 }
3177
3178 // Set the output section.
3179 void
3180 set_output_section(Output_section* os)
3181 {
3182 gold_assert(!this->is_input_section());
3183 Output_section_data *posd =
3184 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3185 posd->set_output_section(os);
3186 }
3187
3188 // Set the address and file offset. This is called during
3189 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3190 // the enclosing section.
3191 void
3192 set_address_and_file_offset(uint64_t address, off_t file_offset,
3193 off_t section_file_offset);
3194
3195 // Reset the address and file offset.
3196 void
3197 reset_address_and_file_offset();
3198
3199 // Finalize the data size.
3200 void
3201 finalize_data_size();
3202
3203 // Add an input section, for SHF_MERGE sections.
3204 bool
3205 add_input_section(Relobj* object, unsigned int shndx)
3206 {
3207 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3208 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3209 return this->u2_.posd->add_input_section(object, shndx);
3210 }
3211
3212 // Given an input OBJECT, an input section index SHNDX within that
3213 // object, and an OFFSET relative to the start of that input
3214 // section, return whether or not the output offset is known. If
3215 // this function returns true, it sets *POUTPUT to the offset in
3216 // the output section, relative to the start of the input section
3217 // in the output section. *POUTPUT may be different from OFFSET
3218 // for a merged section.
3219 bool
3220 output_offset(const Relobj* object, unsigned int shndx,
3221 section_offset_type offset,
3222 section_offset_type *poutput) const;
3223
3224 // Return whether this is the merge section for the input section
3225 // SHNDX in OBJECT.
3226 bool
3227 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3228
3229 // Write out the data. This does nothing for an input section.
3230 void
3231 write(Output_file*);
3232
3233 // Write the data to a buffer. This does nothing for an input
3234 // section.
3235 void
3236 write_to_buffer(unsigned char*);
3237
3238 // Print to a map file.
3239 void
3240 print_to_mapfile(Mapfile*) const;
3241
3242 // Print statistics about merge sections to stderr.
3243 void
3244 print_merge_stats(const char* section_name)
3245 {
3246 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3247 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3248 this->u2_.posd->print_merge_stats(section_name);
3249 }
3250
3251 private:
3252 // Code values which appear in shndx_. If the value is not one of
3253 // these codes, it is the input section index in the object file.
3254 enum
3255 {
3256 // An Output_section_data.
3257 OUTPUT_SECTION_CODE = -1U,
3258 // An Output_section_data for an SHF_MERGE section with
3259 // SHF_STRINGS not set.
3260 MERGE_DATA_SECTION_CODE = -2U,
3261 // An Output_section_data for an SHF_MERGE section with
3262 // SHF_STRINGS set.
3263 MERGE_STRING_SECTION_CODE = -3U,
3264 // An Output_section_data for a relaxed input section.
3265 RELAXED_INPUT_SECTION_CODE = -4U
3266 };
3267
3268 // For an ordinary input section, this is the section index in the
3269 // input file. For an Output_section_data, this is
3270 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3271 // MERGE_STRING_SECTION_CODE.
3272 unsigned int shndx_;
3273 // The required alignment, stored as a power of 2.
3274 unsigned int p2align_;
3275 union
3276 {
3277 // For an ordinary input section, the section size.
3278 off_t data_size;
3279 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3280 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3281 // entity size.
3282 uint64_t entsize;
3283 } u1_;
3284 union
3285 {
3286 // For an ordinary input section, the object which holds the
3287 // input section.
3288 Relobj* object;
3289 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3290 // MERGE_STRING_SECTION_CODE, the data.
3291 Output_section_data* posd;
3292 // For RELAXED_INPUT_SECTION_CODE, the data.
3293 Output_relaxed_input_section* poris;
3294 } u2_;
3295 };
3296
3297 typedef std::vector<Input_section> Input_section_list;
3298
3299 // Allow a child class to access the input sections.
3300 const Input_section_list&
3301 input_sections() const
3302 { return this->input_sections_; }
3303
3304 private:
3305 // We only save enough information to undo the effects of section layout.
3306 class Checkpoint_output_section
3307 {
3308 public:
3309 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
3310 const Input_section_list& input_sections,
3311 off_t first_input_offset,
3312 bool attached_input_sections_are_sorted)
3313 : addralign_(addralign), flags_(flags),
3314 input_sections_(input_sections),
3315 input_sections_size_(input_sections_.size()),
3316 input_sections_copy_(), first_input_offset_(first_input_offset),
3317 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
3318 { }
3319
3320 virtual
3321 ~Checkpoint_output_section()
3322 { }
3323
3324 // Return the address alignment.
3325 uint64_t
3326 addralign() const
3327 { return this->addralign_; }
3328
3329 // Return the section flags.
3330 elfcpp::Elf_Xword
3331 flags() const
3332 { return this->flags_; }
3333
3334 // Return a reference to the input section list copy.
3335 Input_section_list*
3336 input_sections()
3337 { return &this->input_sections_copy_; }
3338
3339 // Return the size of input_sections at the time when checkpoint is
3340 // taken.
3341 size_t
3342 input_sections_size() const
3343 { return this->input_sections_size_; }
3344
3345 // Whether input sections are copied.
3346 bool
3347 input_sections_saved() const
3348 { return this->input_sections_copy_.size() == this->input_sections_size_; }
3349
3350 off_t
3351 first_input_offset() const
3352 { return this->first_input_offset_; }
3353
3354 bool
3355 attached_input_sections_are_sorted() const
3356 { return this->attached_input_sections_are_sorted_; }
3357
3358 // Save input sections.
3359 void
3360 save_input_sections()
3361 {
3362 this->input_sections_copy_.reserve(this->input_sections_size_);
3363 this->input_sections_copy_.clear();
3364 Input_section_list::const_iterator p = this->input_sections_.begin();
3365 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
3366 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
3367 this->input_sections_copy_.push_back(*p);
3368 }
3369
3370 private:
3371 // The section alignment.
3372 uint64_t addralign_;
3373 // The section flags.
3374 elfcpp::Elf_Xword flags_;
3375 // Reference to the input sections to be checkpointed.
3376 const Input_section_list& input_sections_;
3377 // Size of the checkpointed portion of input_sections_;
3378 size_t input_sections_size_;
3379 // Copy of input sections.
3380 Input_section_list input_sections_copy_;
3381 // The offset of the first entry in input_sections_.
3382 off_t first_input_offset_;
3383 // True if the input sections attached to this output section have
3384 // already been sorted.
3385 bool attached_input_sections_are_sorted_;
3386 };
3387
3388 // This class is used to sort the input sections.
3389 class Input_section_sort_entry;
3390
3391 // This is the sort comparison function for ctors and dtors.
3392 struct Input_section_sort_compare
3393 {
3394 bool
3395 operator()(const Input_section_sort_entry&,
3396 const Input_section_sort_entry&) const;
3397 };
3398
3399 // This is the sort comparison function for .init_array and .fini_array.
3400 struct Input_section_sort_init_fini_compare
3401 {
3402 bool
3403 operator()(const Input_section_sort_entry&,
3404 const Input_section_sort_entry&) const;
3405 };
3406
3407 // Fill data. This is used to fill in data between input sections.
3408 // It is also used for data statements (BYTE, WORD, etc.) in linker
3409 // scripts. When we have to keep track of the input sections, we
3410 // can use an Output_data_const, but we don't want to have to keep
3411 // track of input sections just to implement fills.
3412 class Fill
3413 {
3414 public:
3415 Fill(off_t section_offset, off_t length)
3416 : section_offset_(section_offset),
3417 length_(convert_to_section_size_type(length))
3418 { }
3419
3420 // Return section offset.
3421 off_t
3422 section_offset() const
3423 { return this->section_offset_; }
3424
3425 // Return fill length.
3426 section_size_type
3427 length() const
3428 { return this->length_; }
3429
3430 private:
3431 // The offset within the output section.
3432 off_t section_offset_;
3433 // The length of the space to fill.
3434 section_size_type length_;
3435 };
3436
3437 typedef std::vector<Fill> Fill_list;
3438
3439 // This class describes properties of merge data sections. It is used
3440 // as a key type for maps.
3441 class Merge_section_properties
3442 {
3443 public:
3444 Merge_section_properties(bool is_string, uint64_t entsize,
3445 uint64_t addralign)
3446 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
3447 { }
3448
3449 // Whether this equals to another Merge_section_properties MSP.
3450 bool
3451 eq(const Merge_section_properties& msp) const
3452 {
3453 return ((this->is_string_ == msp.is_string_)
3454 && (this->entsize_ == msp.entsize_)
3455 && (this->addralign_ == msp.addralign_));
3456 }
3457
3458 // Compute a hash value for this using 64-bit FNV-1a hash.
3459 size_t
3460 hash_value() const
3461 {
3462 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
3463 uint64_t prime = 1099511628211ULL;
3464 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
3465 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
3466 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
3467 return h;
3468 }
3469
3470 // Functors for associative containers.
3471 struct equal_to
3472 {
3473 bool
3474 operator()(const Merge_section_properties& msp1,
3475 const Merge_section_properties& msp2) const
3476 { return msp1.eq(msp2); }
3477 };
3478
3479 struct hash
3480 {
3481 size_t
3482 operator()(const Merge_section_properties& msp) const
3483 { return msp.hash_value(); }
3484 };
3485
3486 private:
3487 // Whether this merge data section is for strings.
3488 bool is_string_;
3489 // Entsize of this merge data section.
3490 uint64_t entsize_;
3491 // Address alignment.
3492 uint64_t addralign_;
3493 };
3494
3495 // Map that link Merge_section_properties to Output_merge_base.
3496 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
3497 Merge_section_properties::hash,
3498 Merge_section_properties::equal_to>
3499 Merge_section_by_properties_map;
3500
3501 // Map that link Const_section_id to Output_section_data.
3502 typedef Unordered_map<Const_section_id, Output_section_data*,
3503 Const_section_id_hash>
3504 Output_section_data_by_input_section_map;
3505
3506 // Map that link Const_section_id to Output_relaxed_input_section.
3507 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
3508 Const_section_id_hash>
3509 Output_relaxed_input_section_by_input_section_map;
3510
3511 // Map used during relaxation of existing sections. This map
3512 // a section id an input section list index. We assume that
3513 // Input_section_list is a vector.
3514 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
3515
3516 // Add a new output section by Input_section.
3517 void
3518 add_output_section_data(Input_section*);
3519
3520 // Add an SHF_MERGE input section. Returns true if the section was
3521 // handled.
3522 bool
3523 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
3524 uint64_t entsize, uint64_t addralign);
3525
3526 // Add an output SHF_MERGE section POSD to this output section.
3527 // IS_STRING indicates whether it is a SHF_STRINGS section, and
3528 // ENTSIZE is the entity size. This returns the entry added to
3529 // input_sections_.
3530 void
3531 add_output_merge_section(Output_section_data* posd, bool is_string,
3532 uint64_t entsize);
3533
3534 // Sort the attached input sections.
3535 void
3536 sort_attached_input_sections();
3537
3538 // Find the merge section into which an input section with index SHNDX in
3539 // OBJECT has been added. Return NULL if none found.
3540 Output_section_data*
3541 find_merge_section(const Relobj* object, unsigned int shndx) const;
3542
3543 // Build a relaxation map.
3544 void
3545 build_relaxation_map(
3546 const Input_section_list& input_sections,
3547 size_t limit,
3548 Relaxation_map* map) const;
3549
3550 // Convert input sections in an input section list into relaxed sections.
3551 void
3552 convert_input_sections_in_list_to_relaxed_sections(
3553 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
3554 const Relaxation_map& map,
3555 Input_section_list* input_sections);
3556
3557 // Most of these fields are only valid after layout.
3558
3559 // The name of the section. This will point into a Stringpool.
3560 const char* name_;
3561 // The section address is in the parent class.
3562 // The section alignment.
3563 uint64_t addralign_;
3564 // The section entry size.
3565 uint64_t entsize_;
3566 // The load address. This is only used when using a linker script
3567 // with a SECTIONS clause. The has_load_address_ field indicates
3568 // whether this field is valid.
3569 uint64_t load_address_;
3570 // The file offset is in the parent class.
3571 // Set the section link field to the index of this section.
3572 const Output_data* link_section_;
3573 // If link_section_ is NULL, this is the link field.
3574 unsigned int link_;
3575 // Set the section info field to the index of this section.
3576 const Output_section* info_section_;
3577 // If info_section_ is NULL, set the info field to the symbol table
3578 // index of this symbol.
3579 const Symbol* info_symndx_;
3580 // If info_section_ and info_symndx_ are NULL, this is the section
3581 // info field.
3582 unsigned int info_;
3583 // The section type.
3584 const elfcpp::Elf_Word type_;
3585 // The section flags.
3586 elfcpp::Elf_Xword flags_;
3587 // The section index.
3588 unsigned int out_shndx_;
3589 // If there is a STT_SECTION for this output section in the normal
3590 // symbol table, this is the symbol index. This starts out as zero.
3591 // It is initialized in Layout::finalize() to be the index, or -1U
3592 // if there isn't one.
3593 unsigned int symtab_index_;
3594 // If there is a STT_SECTION for this output section in the dynamic
3595 // symbol table, this is the symbol index. This starts out as zero.
3596 // It is initialized in Layout::finalize() to be the index, or -1U
3597 // if there isn't one.
3598 unsigned int dynsym_index_;
3599 // The input sections. This will be empty in cases where we don't
3600 // need to keep track of them.
3601 Input_section_list input_sections_;
3602 // The offset of the first entry in input_sections_.
3603 off_t first_input_offset_;
3604 // The fill data. This is separate from input_sections_ because we
3605 // often will need fill sections without needing to keep track of
3606 // input sections.
3607 Fill_list fills_;
3608 // If the section requires postprocessing, this buffer holds the
3609 // section contents during relocation.
3610 unsigned char* postprocessing_buffer_;
3611 // Whether this output section needs a STT_SECTION symbol in the
3612 // normal symbol table. This will be true if there is a relocation
3613 // which needs it.
3614 bool needs_symtab_index_ : 1;
3615 // Whether this output section needs a STT_SECTION symbol in the
3616 // dynamic symbol table. This will be true if there is a dynamic
3617 // relocation which needs it.
3618 bool needs_dynsym_index_ : 1;
3619 // Whether the link field of this output section should point to the
3620 // normal symbol table.
3621 bool should_link_to_symtab_ : 1;
3622 // Whether the link field of this output section should point to the
3623 // dynamic symbol table.
3624 bool should_link_to_dynsym_ : 1;
3625 // Whether this section should be written after all the input
3626 // sections are complete.
3627 bool after_input_sections_ : 1;
3628 // Whether this section requires post processing after all
3629 // relocations have been applied.
3630 bool requires_postprocessing_ : 1;
3631 // Whether an input section was mapped to this output section
3632 // because of a SECTIONS clause in a linker script.
3633 bool found_in_sections_clause_ : 1;
3634 // Whether this section has an explicitly specified load address.
3635 bool has_load_address_ : 1;
3636 // True if the info_section_ field means the section index of the
3637 // section, false if it means the symbol index of the corresponding
3638 // section symbol.
3639 bool info_uses_section_index_ : 1;
3640 // True if the input sections attached to this output section may
3641 // need sorting.
3642 bool may_sort_attached_input_sections_ : 1;
3643 // True if the input sections attached to this output section must
3644 // be sorted.
3645 bool must_sort_attached_input_sections_ : 1;
3646 // True if the input sections attached to this output section have
3647 // already been sorted.
3648 bool attached_input_sections_are_sorted_ : 1;
3649 // True if this section holds relro data.
3650 bool is_relro_ : 1;
3651 // True if this section holds relro local data.
3652 bool is_relro_local_ : 1;
3653 // True if this must be the last relro section.
3654 bool is_last_relro_ : 1;
3655 // True if this must be the first section after the relro sections.
3656 bool is_first_non_relro_ : 1;
3657 // True if this is a small section.
3658 bool is_small_section_ : 1;
3659 // True if this is a large section.
3660 bool is_large_section_ : 1;
3661 // True if this is the .interp section going into the PT_INTERP
3662 // segment.
3663 bool is_interp_ : 1;
3664 // True if this is section is read by the dynamic linker.
3665 bool is_dynamic_linker_section_ : 1;
3666 // Whether code-fills are generated at write.
3667 bool generate_code_fills_at_write_ : 1;
3668 // Whether the entry size field should be zero.
3669 bool is_entsize_zero_ : 1;
3670 // Whether section offsets need adjustment due to relaxation.
3671 bool section_offsets_need_adjustment_ : 1;
3672 // Whether this is a NOLOAD section.
3673 bool is_noload_ : 1;
3674 // For SHT_TLS sections, the offset of this section relative to the base
3675 // of the TLS segment.
3676 uint64_t tls_offset_;
3677 // Saved checkpoint.
3678 Checkpoint_output_section* checkpoint_;
3679 // Map from input sections to merge sections.
3680 Output_section_data_by_input_section_map merge_section_map_;
3681 // Map from merge section properties to merge_sections;
3682 Merge_section_by_properties_map merge_section_by_properties_map_;
3683 // Map from input sections to relaxed input sections. This is mutable
3684 // because it is updated lazily. We may need to update it in a
3685 // const qualified method.
3686 mutable Output_relaxed_input_section_by_input_section_map
3687 relaxed_input_section_map_;
3688 // Whether relaxed_input_section_map_ is valid.
3689 mutable bool is_relaxed_input_section_map_valid_;
3690 };
3691
3692 // An output segment. PT_LOAD segments are built from collections of
3693 // output sections. Other segments typically point within PT_LOAD
3694 // segments, and are built directly as needed.
3695 //
3696 // NOTE: We want to use the copy constructor for this class. During
3697 // relaxation, we may try built the segments multiple times. We do
3698 // that by copying the original segment list before lay-out, doing
3699 // a trial lay-out and roll-back to the saved copied if we need to
3700 // to the lay-out again.
3701
3702 class Output_segment
3703 {
3704 public:
3705 // Create an output segment, specifying the type and flags.
3706 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
3707
3708 // Return the virtual address.
3709 uint64_t
3710 vaddr() const
3711 { return this->vaddr_; }
3712
3713 // Return the physical address.
3714 uint64_t
3715 paddr() const
3716 { return this->paddr_; }
3717
3718 // Return the segment type.
3719 elfcpp::Elf_Word
3720 type() const
3721 { return this->type_; }
3722
3723 // Return the segment flags.
3724 elfcpp::Elf_Word
3725 flags() const
3726 { return this->flags_; }
3727
3728 // Return the memory size.
3729 uint64_t
3730 memsz() const
3731 { return this->memsz_; }
3732
3733 // Return the file size.
3734 off_t
3735 filesz() const
3736 { return this->filesz_; }
3737
3738 // Return the file offset.
3739 off_t
3740 offset() const
3741 { return this->offset_; }
3742
3743 // Whether this is a segment created to hold large data sections.
3744 bool
3745 is_large_data_segment() const
3746 { return this->is_large_data_segment_; }
3747
3748 // Record that this is a segment created to hold large data
3749 // sections.
3750 void
3751 set_is_large_data_segment()
3752 { this->is_large_data_segment_ = true; }
3753
3754 // Return the maximum alignment of the Output_data.
3755 uint64_t
3756 maximum_alignment();
3757
3758 // Add the Output_section OS to this segment. SEG_FLAGS is the
3759 // segment flags to use. DO_SORT is true if we should sort the
3760 // placement of the input section for more efficient generated code.
3761 void
3762 add_output_section(Output_section* os, elfcpp::Elf_Word seg_flags,
3763 bool do_sort);
3764
3765 // Remove an Output_section from this segment. It is an error if it
3766 // is not present.
3767 void
3768 remove_output_section(Output_section* os);
3769
3770 // Add an Output_data (which need not be an Output_section) to the
3771 // start of this segment.
3772 void
3773 add_initial_output_data(Output_data*);
3774
3775 // Return true if this segment has any sections which hold actual
3776 // data, rather than being a BSS section.
3777 bool
3778 has_any_data_sections() const
3779 { return !this->output_data_.empty(); }
3780
3781 // Return the number of dynamic relocations applied to this segment.
3782 unsigned int
3783 dynamic_reloc_count() const;
3784
3785 // Return the address of the first section.
3786 uint64_t
3787 first_section_load_address() const;
3788
3789 // Return whether the addresses have been set already.
3790 bool
3791 are_addresses_set() const
3792 { return this->are_addresses_set_; }
3793
3794 // Set the addresses.
3795 void
3796 set_addresses(uint64_t vaddr, uint64_t paddr)
3797 {
3798 this->vaddr_ = vaddr;
3799 this->paddr_ = paddr;
3800 this->are_addresses_set_ = true;
3801 }
3802
3803 // Update the flags for the flags of an output section added to this
3804 // segment.
3805 void
3806 update_flags_for_output_section(elfcpp::Elf_Xword flags)
3807 {
3808 // The ELF ABI specifies that a PT_TLS segment should always have
3809 // PF_R as the flags.
3810 if (this->type() != elfcpp::PT_TLS)
3811 this->flags_ |= flags;
3812 }
3813
3814 // Set the segment flags. This is only used if we have a PHDRS
3815 // clause which explicitly specifies the flags.
3816 void
3817 set_flags(elfcpp::Elf_Word flags)
3818 { this->flags_ = flags; }
3819
3820 // Set the address of the segment to ADDR and the offset to *POFF
3821 // and set the addresses and offsets of all contained output
3822 // sections accordingly. Set the section indexes of all contained
3823 // output sections starting with *PSHNDX. If RESET is true, first
3824 // reset the addresses of the contained sections. Return the
3825 // address of the immediately following segment. Update *POFF and
3826 // *PSHNDX. This should only be called for a PT_LOAD segment.
3827 uint64_t
3828 set_section_addresses(const Layout*, bool reset, uint64_t addr,
3829 unsigned int increase_relro, off_t* poff,
3830 unsigned int* pshndx);
3831
3832 // Set the minimum alignment of this segment. This may be adjusted
3833 // upward based on the section alignments.
3834 void
3835 set_minimum_p_align(uint64_t align)
3836 {
3837 if (align > this->min_p_align_)
3838 this->min_p_align_ = align;
3839 }
3840
3841 // Set the offset of this segment based on the section. This should
3842 // only be called for a non-PT_LOAD segment.
3843 void
3844 set_offset(unsigned int increase);
3845
3846 // Set the TLS offsets of the sections contained in the PT_TLS segment.
3847 void
3848 set_tls_offsets();
3849
3850 // Return the number of output sections.
3851 unsigned int
3852 output_section_count() const;
3853
3854 // Return the section attached to the list segment with the lowest
3855 // load address. This is used when handling a PHDRS clause in a
3856 // linker script.
3857 Output_section*
3858 section_with_lowest_load_address() const;
3859
3860 // Write the segment header into *OPHDR.
3861 template<int size, bool big_endian>
3862 void
3863 write_header(elfcpp::Phdr_write<size, big_endian>*);
3864
3865 // Write the section headers of associated sections into V.
3866 template<int size, bool big_endian>
3867 unsigned char*
3868 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
3869 unsigned int* pshndx) const;
3870
3871 // Print the output sections in the map file.
3872 void
3873 print_sections_to_mapfile(Mapfile*) const;
3874
3875 private:
3876 typedef std::list<Output_data*> Output_data_list;
3877
3878 // Find the maximum alignment in an Output_data_list.
3879 static uint64_t
3880 maximum_alignment_list(const Output_data_list*);
3881
3882 // Return whether the first data section is a relro section.
3883 bool
3884 is_first_section_relro() const;
3885
3886 // Set the section addresses in an Output_data_list.
3887 uint64_t
3888 set_section_list_addresses(const Layout*, bool reset, Output_data_list*,
3889 uint64_t addr, off_t* poff, unsigned int* pshndx,
3890 bool* in_tls);
3891
3892 // Return the number of Output_sections in an Output_data_list.
3893 unsigned int
3894 output_section_count_list(const Output_data_list*) const;
3895
3896 // Return the number of dynamic relocs in an Output_data_list.
3897 unsigned int
3898 dynamic_reloc_count_list(const Output_data_list*) const;
3899
3900 // Find the section with the lowest load address in an
3901 // Output_data_list.
3902 void
3903 lowest_load_address_in_list(const Output_data_list* pdl,
3904 Output_section** found,
3905 uint64_t* found_lma) const;
3906
3907 // Write the section headers in the list into V.
3908 template<int size, bool big_endian>
3909 unsigned char*
3910 write_section_headers_list(const Layout*, const Stringpool*,
3911 const Output_data_list*, unsigned char* v,
3912 unsigned int* pshdx) const;
3913
3914 // Print a section list to the mapfile.
3915 void
3916 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
3917
3918 // NOTE: We want to use the copy constructor. Currently, shallow copy
3919 // works for us so we do not need to write our own copy constructor.
3920
3921 // The list of output data with contents attached to this segment.
3922 Output_data_list output_data_;
3923 // The list of output data without contents attached to this segment.
3924 Output_data_list output_bss_;
3925 // The segment virtual address.
3926 uint64_t vaddr_;
3927 // The segment physical address.
3928 uint64_t paddr_;
3929 // The size of the segment in memory.
3930 uint64_t memsz_;
3931 // The maximum section alignment. The is_max_align_known_ field
3932 // indicates whether this has been finalized.
3933 uint64_t max_align_;
3934 // The required minimum value for the p_align field. This is used
3935 // for PT_LOAD segments. Note that this does not mean that
3936 // addresses should be aligned to this value; it means the p_paddr
3937 // and p_vaddr fields must be congruent modulo this value. For
3938 // non-PT_LOAD segments, the dynamic linker works more efficiently
3939 // if the p_align field has the more conventional value, although it
3940 // can align as needed.
3941 uint64_t min_p_align_;
3942 // The offset of the segment data within the file.
3943 off_t offset_;
3944 // The size of the segment data in the file.
3945 off_t filesz_;
3946 // The segment type;
3947 elfcpp::Elf_Word type_;
3948 // The segment flags.
3949 elfcpp::Elf_Word flags_;
3950 // Whether we have finalized max_align_.
3951 bool is_max_align_known_ : 1;
3952 // Whether vaddr and paddr were set by a linker script.
3953 bool are_addresses_set_ : 1;
3954 // Whether this segment holds large data sections.
3955 bool is_large_data_segment_ : 1;
3956 };
3957
3958 // This class represents the output file.
3959
3960 class Output_file
3961 {
3962 public:
3963 Output_file(const char* name);
3964
3965 // Indicate that this is a temporary file which should not be
3966 // output.
3967 void
3968 set_is_temporary()
3969 { this->is_temporary_ = true; }
3970
3971 // Try to open an existing file. Returns false if the file doesn't
3972 // exist, has a size of 0 or can't be mmaped. This method is
3973 // thread-unsafe.
3974 bool
3975 open_for_modification();
3976
3977 // Open the output file. FILE_SIZE is the final size of the file.
3978 // If the file already exists, it is deleted/truncated. This method
3979 // is thread-unsafe.
3980 void
3981 open(off_t file_size);
3982
3983 // Resize the output file. This method is thread-unsafe.
3984 void
3985 resize(off_t file_size);
3986
3987 // Close the output file (flushing all buffered data) and make sure
3988 // there are no errors. This method is thread-unsafe.
3989 void
3990 close();
3991
3992 // Return the size of this file.
3993 off_t
3994 filesize()
3995 { return this->file_size_; }
3996
3997 // Return the name of this file.
3998 const char*
3999 filename()
4000 { return this->name_; }
4001
4002 // We currently always use mmap which makes the view handling quite
4003 // simple. In the future we may support other approaches.
4004
4005 // Write data to the output file.
4006 void
4007 write(off_t offset, const void* data, size_t len)
4008 { memcpy(this->base_ + offset, data, len); }
4009
4010 // Get a buffer to use to write to the file, given the offset into
4011 // the file and the size.
4012 unsigned char*
4013 get_output_view(off_t start, size_t size)
4014 {
4015 gold_assert(start >= 0
4016 && start + static_cast<off_t>(size) <= this->file_size_);
4017 return this->base_ + start;
4018 }
4019
4020 // VIEW must have been returned by get_output_view. Write the
4021 // buffer to the file, passing in the offset and the size.
4022 void
4023 write_output_view(off_t, size_t, unsigned char*)
4024 { }
4025
4026 // Get a read/write buffer. This is used when we want to write part
4027 // of the file, read it in, and write it again.
4028 unsigned char*
4029 get_input_output_view(off_t start, size_t size)
4030 { return this->get_output_view(start, size); }
4031
4032 // Write a read/write buffer back to the file.
4033 void
4034 write_input_output_view(off_t, size_t, unsigned char*)
4035 { }
4036
4037 // Get a read buffer. This is used when we just want to read part
4038 // of the file back it in.
4039 const unsigned char*
4040 get_input_view(off_t start, size_t size)
4041 { return this->get_output_view(start, size); }
4042
4043 // Release a read bfufer.
4044 void
4045 free_input_view(off_t, size_t, const unsigned char*)
4046 { }
4047
4048 private:
4049 // Map the file into memory or, if that fails, allocate anonymous
4050 // memory.
4051 void
4052 map();
4053
4054 // Allocate anonymous memory for the file.
4055 bool
4056 map_anonymous();
4057
4058 // Map the file into memory.
4059 bool
4060 map_no_anonymous();
4061
4062 // Unmap the file from memory (and flush to disk buffers).
4063 void
4064 unmap();
4065
4066 // File name.
4067 const char* name_;
4068 // File descriptor.
4069 int o_;
4070 // File size.
4071 off_t file_size_;
4072 // Base of file mapped into memory.
4073 unsigned char* base_;
4074 // True iff base_ points to a memory buffer rather than an output file.
4075 bool map_is_anonymous_;
4076 // True if this is a temporary file which should not be output.
4077 bool is_temporary_;
4078 };
4079
4080 } // End namespace gold.
4081
4082 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.107618 seconds and 5 git commands to generate.