This patch adds IFUNC support for arm gold backend.
[deliverable/binutils-gdb.git] / gold / output.h
1 // output.h -- manage the output file for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #ifndef GOLD_OUTPUT_H
24 #define GOLD_OUTPUT_H
25
26 #include <list>
27 #include <vector>
28
29 #include "elfcpp.h"
30 #include "mapfile.h"
31 #include "layout.h"
32 #include "reloc-types.h"
33
34 namespace gold
35 {
36
37 class General_options;
38 class Object;
39 class Symbol;
40 class Output_file;
41 class Output_merge_base;
42 class Output_section;
43 class Relocatable_relocs;
44 class Target;
45 template<int size, bool big_endian>
46 class Sized_target;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51
52 // An abtract class for data which has to go into the output file.
53
54 class Output_data
55 {
56 public:
57 explicit Output_data()
58 : address_(0), data_size_(0), offset_(-1),
59 is_address_valid_(false), is_data_size_valid_(false),
60 is_offset_valid_(false), is_data_size_fixed_(false),
61 has_dynamic_reloc_(false)
62 { }
63
64 virtual
65 ~Output_data();
66
67 // Return the address. For allocated sections, this is only valid
68 // after Layout::finalize is finished.
69 uint64_t
70 address() const
71 {
72 gold_assert(this->is_address_valid_);
73 return this->address_;
74 }
75
76 // Return the size of the data. For allocated sections, this must
77 // be valid after Layout::finalize calls set_address, but need not
78 // be valid before then.
79 off_t
80 data_size() const
81 {
82 gold_assert(this->is_data_size_valid_);
83 return this->data_size_;
84 }
85
86 // Get the current data size.
87 off_t
88 current_data_size() const
89 { return this->current_data_size_for_child(); }
90
91 // Return true if data size is fixed.
92 bool
93 is_data_size_fixed() const
94 { return this->is_data_size_fixed_; }
95
96 // Return the file offset. This is only valid after
97 // Layout::finalize is finished. For some non-allocated sections,
98 // it may not be valid until near the end of the link.
99 off_t
100 offset() const
101 {
102 gold_assert(this->is_offset_valid_);
103 return this->offset_;
104 }
105
106 // Reset the address, file offset and data size. This essentially
107 // disables the sanity testing about duplicate and unknown settings.
108 void
109 reset_address_and_file_offset()
110 {
111 this->is_address_valid_ = false;
112 this->is_offset_valid_ = false;
113 if (!this->is_data_size_fixed_)
114 this->is_data_size_valid_ = false;
115 this->do_reset_address_and_file_offset();
116 }
117
118 // As above, but just for data size.
119 void
120 reset_data_size()
121 {
122 if (!this->is_data_size_fixed_)
123 this->is_data_size_valid_ = false;
124 }
125
126 // Return true if address and file offset already have reset values. In
127 // other words, calling reset_address_and_file_offset will not change them.
128 bool
129 address_and_file_offset_have_reset_values() const
130 { return this->do_address_and_file_offset_have_reset_values(); }
131
132 // Return the required alignment.
133 uint64_t
134 addralign() const
135 { return this->do_addralign(); }
136
137 // Return whether this has a load address.
138 bool
139 has_load_address() const
140 { return this->do_has_load_address(); }
141
142 // Return the load address.
143 uint64_t
144 load_address() const
145 { return this->do_load_address(); }
146
147 // Return whether this is an Output_section.
148 bool
149 is_section() const
150 { return this->do_is_section(); }
151
152 // Return whether this is an Output_section of the specified type.
153 bool
154 is_section_type(elfcpp::Elf_Word stt) const
155 { return this->do_is_section_type(stt); }
156
157 // Return whether this is an Output_section with the specified flag
158 // set.
159 bool
160 is_section_flag_set(elfcpp::Elf_Xword shf) const
161 { return this->do_is_section_flag_set(shf); }
162
163 // Return the output section that this goes in, if there is one.
164 Output_section*
165 output_section()
166 { return this->do_output_section(); }
167
168 const Output_section*
169 output_section() const
170 { return this->do_output_section(); }
171
172 // Return the output section index, if there is an output section.
173 unsigned int
174 out_shndx() const
175 { return this->do_out_shndx(); }
176
177 // Set the output section index, if this is an output section.
178 void
179 set_out_shndx(unsigned int shndx)
180 { this->do_set_out_shndx(shndx); }
181
182 // Set the address and file offset of this data, and finalize the
183 // size of the data. This is called during Layout::finalize for
184 // allocated sections.
185 void
186 set_address_and_file_offset(uint64_t addr, off_t off)
187 {
188 this->set_address(addr);
189 this->set_file_offset(off);
190 this->finalize_data_size();
191 }
192
193 // Set the address.
194 void
195 set_address(uint64_t addr)
196 {
197 gold_assert(!this->is_address_valid_);
198 this->address_ = addr;
199 this->is_address_valid_ = true;
200 }
201
202 // Set the file offset.
203 void
204 set_file_offset(off_t off)
205 {
206 gold_assert(!this->is_offset_valid_);
207 this->offset_ = off;
208 this->is_offset_valid_ = true;
209 }
210
211 // Update the data size without finalizing it.
212 void
213 pre_finalize_data_size()
214 {
215 if (!this->is_data_size_valid_)
216 {
217 // Tell the child class to update the data size.
218 this->update_data_size();
219 }
220 }
221
222 // Finalize the data size.
223 void
224 finalize_data_size()
225 {
226 if (!this->is_data_size_valid_)
227 {
228 // Tell the child class to set the data size.
229 this->set_final_data_size();
230 gold_assert(this->is_data_size_valid_);
231 }
232 }
233
234 // Set the TLS offset. Called only for SHT_TLS sections.
235 void
236 set_tls_offset(uint64_t tls_base)
237 { this->do_set_tls_offset(tls_base); }
238
239 // Return the TLS offset, relative to the base of the TLS segment.
240 // Valid only for SHT_TLS sections.
241 uint64_t
242 tls_offset() const
243 { return this->do_tls_offset(); }
244
245 // Write the data to the output file. This is called after
246 // Layout::finalize is complete.
247 void
248 write(Output_file* file)
249 { this->do_write(file); }
250
251 // This is called by Layout::finalize to note that the sizes of
252 // allocated sections must now be fixed.
253 static void
254 layout_complete()
255 { Output_data::allocated_sizes_are_fixed = true; }
256
257 // Used to check that layout has been done.
258 static bool
259 is_layout_complete()
260 { return Output_data::allocated_sizes_are_fixed; }
261
262 // Note that a dynamic reloc has been applied to this data.
263 void
264 add_dynamic_reloc()
265 { this->has_dynamic_reloc_ = true; }
266
267 // Return whether a dynamic reloc has been applied.
268 bool
269 has_dynamic_reloc() const
270 { return this->has_dynamic_reloc_; }
271
272 // Whether the address is valid.
273 bool
274 is_address_valid() const
275 { return this->is_address_valid_; }
276
277 // Whether the file offset is valid.
278 bool
279 is_offset_valid() const
280 { return this->is_offset_valid_; }
281
282 // Whether the data size is valid.
283 bool
284 is_data_size_valid() const
285 { return this->is_data_size_valid_; }
286
287 // Print information to the map file.
288 void
289 print_to_mapfile(Mapfile* mapfile) const
290 { return this->do_print_to_mapfile(mapfile); }
291
292 protected:
293 // Functions that child classes may or in some cases must implement.
294
295 // Write the data to the output file.
296 virtual void
297 do_write(Output_file*) = 0;
298
299 // Return the required alignment.
300 virtual uint64_t
301 do_addralign() const = 0;
302
303 // Return whether this has a load address.
304 virtual bool
305 do_has_load_address() const
306 { return false; }
307
308 // Return the load address.
309 virtual uint64_t
310 do_load_address() const
311 { gold_unreachable(); }
312
313 // Return whether this is an Output_section.
314 virtual bool
315 do_is_section() const
316 { return false; }
317
318 // Return whether this is an Output_section of the specified type.
319 // This only needs to be implement by Output_section.
320 virtual bool
321 do_is_section_type(elfcpp::Elf_Word) const
322 { return false; }
323
324 // Return whether this is an Output_section with the specific flag
325 // set. This only needs to be implemented by Output_section.
326 virtual bool
327 do_is_section_flag_set(elfcpp::Elf_Xword) const
328 { return false; }
329
330 // Return the output section, if there is one.
331 virtual Output_section*
332 do_output_section()
333 { return NULL; }
334
335 virtual const Output_section*
336 do_output_section() const
337 { return NULL; }
338
339 // Return the output section index, if there is an output section.
340 virtual unsigned int
341 do_out_shndx() const
342 { gold_unreachable(); }
343
344 // Set the output section index, if this is an output section.
345 virtual void
346 do_set_out_shndx(unsigned int)
347 { gold_unreachable(); }
348
349 // This is a hook for derived classes to set the preliminary data size.
350 // This is called by pre_finalize_data_size, normally called during
351 // Layout::finalize, before the section address is set, and is used
352 // during an incremental update, when we need to know the size of a
353 // section before allocating space in the output file. For classes
354 // where the current data size is up to date, this default version of
355 // the method can be inherited.
356 virtual void
357 update_data_size()
358 { }
359
360 // This is a hook for derived classes to set the data size. This is
361 // called by finalize_data_size, normally called during
362 // Layout::finalize, when the section address is set.
363 virtual void
364 set_final_data_size()
365 { gold_unreachable(); }
366
367 // A hook for resetting the address and file offset.
368 virtual void
369 do_reset_address_and_file_offset()
370 { }
371
372 // Return true if address and file offset already have reset values. In
373 // other words, calling reset_address_and_file_offset will not change them.
374 // A child class overriding do_reset_address_and_file_offset may need to
375 // also override this.
376 virtual bool
377 do_address_and_file_offset_have_reset_values() const
378 { return !this->is_address_valid_ && !this->is_offset_valid_; }
379
380 // Set the TLS offset. Called only for SHT_TLS sections.
381 virtual void
382 do_set_tls_offset(uint64_t)
383 { gold_unreachable(); }
384
385 // Return the TLS offset, relative to the base of the TLS segment.
386 // Valid only for SHT_TLS sections.
387 virtual uint64_t
388 do_tls_offset() const
389 { gold_unreachable(); }
390
391 // Print to the map file. This only needs to be implemented by
392 // classes which may appear in a PT_LOAD segment.
393 virtual void
394 do_print_to_mapfile(Mapfile*) const
395 { gold_unreachable(); }
396
397 // Functions that child classes may call.
398
399 // Reset the address. The Output_section class needs this when an
400 // SHF_ALLOC input section is added to an output section which was
401 // formerly not SHF_ALLOC.
402 void
403 mark_address_invalid()
404 { this->is_address_valid_ = false; }
405
406 // Set the size of the data.
407 void
408 set_data_size(off_t data_size)
409 {
410 gold_assert(!this->is_data_size_valid_
411 && !this->is_data_size_fixed_);
412 this->data_size_ = data_size;
413 this->is_data_size_valid_ = true;
414 }
415
416 // Fix the data size. Once it is fixed, it cannot be changed
417 // and the data size remains always valid.
418 void
419 fix_data_size()
420 {
421 gold_assert(this->is_data_size_valid_);
422 this->is_data_size_fixed_ = true;
423 }
424
425 // Get the current data size--this is for the convenience of
426 // sections which build up their size over time.
427 off_t
428 current_data_size_for_child() const
429 { return this->data_size_; }
430
431 // Set the current data size--this is for the convenience of
432 // sections which build up their size over time.
433 void
434 set_current_data_size_for_child(off_t data_size)
435 {
436 gold_assert(!this->is_data_size_valid_);
437 this->data_size_ = data_size;
438 }
439
440 // Return default alignment for the target size.
441 static uint64_t
442 default_alignment();
443
444 // Return default alignment for a specified size--32 or 64.
445 static uint64_t
446 default_alignment_for_size(int size);
447
448 private:
449 Output_data(const Output_data&);
450 Output_data& operator=(const Output_data&);
451
452 // This is used for verification, to make sure that we don't try to
453 // change any sizes of allocated sections after we set the section
454 // addresses.
455 static bool allocated_sizes_are_fixed;
456
457 // Memory address in output file.
458 uint64_t address_;
459 // Size of data in output file.
460 off_t data_size_;
461 // File offset of contents in output file.
462 off_t offset_;
463 // Whether address_ is valid.
464 bool is_address_valid_ : 1;
465 // Whether data_size_ is valid.
466 bool is_data_size_valid_ : 1;
467 // Whether offset_ is valid.
468 bool is_offset_valid_ : 1;
469 // Whether data size is fixed.
470 bool is_data_size_fixed_ : 1;
471 // Whether any dynamic relocs have been applied to this section.
472 bool has_dynamic_reloc_ : 1;
473 };
474
475 // Output the section headers.
476
477 class Output_section_headers : public Output_data
478 {
479 public:
480 Output_section_headers(const Layout*,
481 const Layout::Segment_list*,
482 const Layout::Section_list*,
483 const Layout::Section_list*,
484 const Stringpool*,
485 const Output_section*);
486
487 protected:
488 // Write the data to the file.
489 void
490 do_write(Output_file*);
491
492 // Return the required alignment.
493 uint64_t
494 do_addralign() const
495 { return Output_data::default_alignment(); }
496
497 // Write to a map file.
498 void
499 do_print_to_mapfile(Mapfile* mapfile) const
500 { mapfile->print_output_data(this, _("** section headers")); }
501
502 // Update the data size.
503 void
504 update_data_size()
505 { this->set_data_size(this->do_size()); }
506
507 // Set final data size.
508 void
509 set_final_data_size()
510 { this->set_data_size(this->do_size()); }
511
512 private:
513 // Write the data to the file with the right size and endianness.
514 template<int size, bool big_endian>
515 void
516 do_sized_write(Output_file*);
517
518 // Compute data size.
519 off_t
520 do_size() const;
521
522 const Layout* layout_;
523 const Layout::Segment_list* segment_list_;
524 const Layout::Section_list* section_list_;
525 const Layout::Section_list* unattached_section_list_;
526 const Stringpool* secnamepool_;
527 const Output_section* shstrtab_section_;
528 };
529
530 // Output the segment headers.
531
532 class Output_segment_headers : public Output_data
533 {
534 public:
535 Output_segment_headers(const Layout::Segment_list& segment_list);
536
537 protected:
538 // Write the data to the file.
539 void
540 do_write(Output_file*);
541
542 // Return the required alignment.
543 uint64_t
544 do_addralign() const
545 { return Output_data::default_alignment(); }
546
547 // Write to a map file.
548 void
549 do_print_to_mapfile(Mapfile* mapfile) const
550 { mapfile->print_output_data(this, _("** segment headers")); }
551
552 // Set final data size.
553 void
554 set_final_data_size()
555 { this->set_data_size(this->do_size()); }
556
557 private:
558 // Write the data to the file with the right size and endianness.
559 template<int size, bool big_endian>
560 void
561 do_sized_write(Output_file*);
562
563 // Compute the current size.
564 off_t
565 do_size() const;
566
567 const Layout::Segment_list& segment_list_;
568 };
569
570 // Output the ELF file header.
571
572 class Output_file_header : public Output_data
573 {
574 public:
575 Output_file_header(Target*,
576 const Symbol_table*,
577 const Output_segment_headers*);
578
579 // Add information about the section headers. We lay out the ELF
580 // file header before we create the section headers.
581 void set_section_info(const Output_section_headers*,
582 const Output_section* shstrtab);
583
584 protected:
585 // Write the data to the file.
586 void
587 do_write(Output_file*);
588
589 // Return the required alignment.
590 uint64_t
591 do_addralign() const
592 { return Output_data::default_alignment(); }
593
594 // Write to a map file.
595 void
596 do_print_to_mapfile(Mapfile* mapfile) const
597 { mapfile->print_output_data(this, _("** file header")); }
598
599 // Set final data size.
600 void
601 set_final_data_size(void)
602 { this->set_data_size(this->do_size()); }
603
604 private:
605 // Write the data to the file with the right size and endianness.
606 template<int size, bool big_endian>
607 void
608 do_sized_write(Output_file*);
609
610 // Return the value to use for the entry address.
611 template<int size>
612 typename elfcpp::Elf_types<size>::Elf_Addr
613 entry();
614
615 // Compute the current data size.
616 off_t
617 do_size() const;
618
619 Target* target_;
620 const Symbol_table* symtab_;
621 const Output_segment_headers* segment_header_;
622 const Output_section_headers* section_header_;
623 const Output_section* shstrtab_;
624 };
625
626 // Output sections are mainly comprised of input sections. However,
627 // there are cases where we have data to write out which is not in an
628 // input section. Output_section_data is used in such cases. This is
629 // an abstract base class.
630
631 class Output_section_data : public Output_data
632 {
633 public:
634 Output_section_data(off_t data_size, uint64_t addralign,
635 bool is_data_size_fixed)
636 : Output_data(), output_section_(NULL), addralign_(addralign)
637 {
638 this->set_data_size(data_size);
639 if (is_data_size_fixed)
640 this->fix_data_size();
641 }
642
643 Output_section_data(uint64_t addralign)
644 : Output_data(), output_section_(NULL), addralign_(addralign)
645 { }
646
647 // Return the output section.
648 Output_section*
649 output_section()
650 { return this->output_section_; }
651
652 const Output_section*
653 output_section() const
654 { return this->output_section_; }
655
656 // Record the output section.
657 void
658 set_output_section(Output_section* os);
659
660 // Add an input section, for SHF_MERGE sections. This returns true
661 // if the section was handled.
662 bool
663 add_input_section(Relobj* object, unsigned int shndx)
664 { return this->do_add_input_section(object, shndx); }
665
666 // Given an input OBJECT, an input section index SHNDX within that
667 // object, and an OFFSET relative to the start of that input
668 // section, return whether or not the corresponding offset within
669 // the output section is known. If this function returns true, it
670 // sets *POUTPUT to the output offset. The value -1 indicates that
671 // this input offset is being discarded.
672 bool
673 output_offset(const Relobj* object, unsigned int shndx,
674 section_offset_type offset,
675 section_offset_type* poutput) const
676 { return this->do_output_offset(object, shndx, offset, poutput); }
677
678 // Return whether this is the merge section for the input section
679 // SHNDX in OBJECT. This should return true when output_offset
680 // would return true for some values of OFFSET.
681 bool
682 is_merge_section_for(const Relobj* object, unsigned int shndx) const
683 { return this->do_is_merge_section_for(object, shndx); }
684
685 // Write the contents to a buffer. This is used for sections which
686 // require postprocessing, such as compression.
687 void
688 write_to_buffer(unsigned char* buffer)
689 { this->do_write_to_buffer(buffer); }
690
691 // Print merge stats to stderr. This should only be called for
692 // SHF_MERGE sections.
693 void
694 print_merge_stats(const char* section_name)
695 { this->do_print_merge_stats(section_name); }
696
697 protected:
698 // The child class must implement do_write.
699
700 // The child class may implement specific adjustments to the output
701 // section.
702 virtual void
703 do_adjust_output_section(Output_section*)
704 { }
705
706 // May be implemented by child class. Return true if the section
707 // was handled.
708 virtual bool
709 do_add_input_section(Relobj*, unsigned int)
710 { gold_unreachable(); }
711
712 // The child class may implement output_offset.
713 virtual bool
714 do_output_offset(const Relobj*, unsigned int, section_offset_type,
715 section_offset_type*) const
716 { return false; }
717
718 // The child class may implement is_merge_section_for.
719 virtual bool
720 do_is_merge_section_for(const Relobj*, unsigned int) const
721 { return false; }
722
723 // The child class may implement write_to_buffer. Most child
724 // classes can not appear in a compressed section, and they do not
725 // implement this.
726 virtual void
727 do_write_to_buffer(unsigned char*)
728 { gold_unreachable(); }
729
730 // Print merge statistics.
731 virtual void
732 do_print_merge_stats(const char*)
733 { gold_unreachable(); }
734
735 // Return the required alignment.
736 uint64_t
737 do_addralign() const
738 { return this->addralign_; }
739
740 // Return the output section.
741 Output_section*
742 do_output_section()
743 { return this->output_section_; }
744
745 const Output_section*
746 do_output_section() const
747 { return this->output_section_; }
748
749 // Return the section index of the output section.
750 unsigned int
751 do_out_shndx() const;
752
753 // Set the alignment.
754 void
755 set_addralign(uint64_t addralign);
756
757 private:
758 // The output section for this section.
759 Output_section* output_section_;
760 // The required alignment.
761 uint64_t addralign_;
762 };
763
764 // Some Output_section_data classes build up their data step by step,
765 // rather than all at once. This class provides an interface for
766 // them.
767
768 class Output_section_data_build : public Output_section_data
769 {
770 public:
771 Output_section_data_build(uint64_t addralign)
772 : Output_section_data(addralign)
773 { }
774
775 Output_section_data_build(off_t data_size, uint64_t addralign)
776 : Output_section_data(data_size, addralign, false)
777 { }
778
779 // Set the current data size.
780 void
781 set_current_data_size(off_t data_size)
782 { this->set_current_data_size_for_child(data_size); }
783
784 protected:
785 // Set the final data size.
786 virtual void
787 set_final_data_size()
788 { this->set_data_size(this->current_data_size_for_child()); }
789 };
790
791 // A simple case of Output_data in which we have constant data to
792 // output.
793
794 class Output_data_const : public Output_section_data
795 {
796 public:
797 Output_data_const(const std::string& data, uint64_t addralign)
798 : Output_section_data(data.size(), addralign, true), data_(data)
799 { }
800
801 Output_data_const(const char* p, off_t len, uint64_t addralign)
802 : Output_section_data(len, addralign, true), data_(p, len)
803 { }
804
805 Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
806 : Output_section_data(len, addralign, true),
807 data_(reinterpret_cast<const char*>(p), len)
808 { }
809
810 protected:
811 // Write the data to the output file.
812 void
813 do_write(Output_file*);
814
815 // Write the data to a buffer.
816 void
817 do_write_to_buffer(unsigned char* buffer)
818 { memcpy(buffer, this->data_.data(), this->data_.size()); }
819
820 // Write to a map file.
821 void
822 do_print_to_mapfile(Mapfile* mapfile) const
823 { mapfile->print_output_data(this, _("** fill")); }
824
825 private:
826 std::string data_;
827 };
828
829 // Another version of Output_data with constant data, in which the
830 // buffer is allocated by the caller.
831
832 class Output_data_const_buffer : public Output_section_data
833 {
834 public:
835 Output_data_const_buffer(const unsigned char* p, off_t len,
836 uint64_t addralign, const char* map_name)
837 : Output_section_data(len, addralign, true),
838 p_(p), map_name_(map_name)
839 { }
840
841 protected:
842 // Write the data the output file.
843 void
844 do_write(Output_file*);
845
846 // Write the data to a buffer.
847 void
848 do_write_to_buffer(unsigned char* buffer)
849 { memcpy(buffer, this->p_, this->data_size()); }
850
851 // Write to a map file.
852 void
853 do_print_to_mapfile(Mapfile* mapfile) const
854 { mapfile->print_output_data(this, _(this->map_name_)); }
855
856 private:
857 // The data to output.
858 const unsigned char* p_;
859 // Name to use in a map file. Maps are a rarely used feature, but
860 // the space usage is minor as aren't very many of these objects.
861 const char* map_name_;
862 };
863
864 // A place holder for a fixed amount of data written out via some
865 // other mechanism.
866
867 class Output_data_fixed_space : public Output_section_data
868 {
869 public:
870 Output_data_fixed_space(off_t data_size, uint64_t addralign,
871 const char* map_name)
872 : Output_section_data(data_size, addralign, true),
873 map_name_(map_name)
874 { }
875
876 protected:
877 // Write out the data--the actual data must be written out
878 // elsewhere.
879 void
880 do_write(Output_file*)
881 { }
882
883 // Write to a map file.
884 void
885 do_print_to_mapfile(Mapfile* mapfile) const
886 { mapfile->print_output_data(this, _(this->map_name_)); }
887
888 private:
889 // Name to use in a map file. Maps are a rarely used feature, but
890 // the space usage is minor as aren't very many of these objects.
891 const char* map_name_;
892 };
893
894 // A place holder for variable sized data written out via some other
895 // mechanism.
896
897 class Output_data_space : public Output_section_data_build
898 {
899 public:
900 explicit Output_data_space(uint64_t addralign, const char* map_name)
901 : Output_section_data_build(addralign),
902 map_name_(map_name)
903 { }
904
905 explicit Output_data_space(off_t data_size, uint64_t addralign,
906 const char* map_name)
907 : Output_section_data_build(data_size, addralign),
908 map_name_(map_name)
909 { }
910
911 // Set the alignment.
912 void
913 set_space_alignment(uint64_t align)
914 { this->set_addralign(align); }
915
916 protected:
917 // Write out the data--the actual data must be written out
918 // elsewhere.
919 void
920 do_write(Output_file*)
921 { }
922
923 // Write to a map file.
924 void
925 do_print_to_mapfile(Mapfile* mapfile) const
926 { mapfile->print_output_data(this, _(this->map_name_)); }
927
928 private:
929 // Name to use in a map file. Maps are a rarely used feature, but
930 // the space usage is minor as aren't very many of these objects.
931 const char* map_name_;
932 };
933
934 // Fill fixed space with zeroes. This is just like
935 // Output_data_fixed_space, except that the map name is known.
936
937 class Output_data_zero_fill : public Output_section_data
938 {
939 public:
940 Output_data_zero_fill(off_t data_size, uint64_t addralign)
941 : Output_section_data(data_size, addralign, true)
942 { }
943
944 protected:
945 // There is no data to write out.
946 void
947 do_write(Output_file*)
948 { }
949
950 // Write to a map file.
951 void
952 do_print_to_mapfile(Mapfile* mapfile) const
953 { mapfile->print_output_data(this, "** zero fill"); }
954 };
955
956 // A string table which goes into an output section.
957
958 class Output_data_strtab : public Output_section_data
959 {
960 public:
961 Output_data_strtab(Stringpool* strtab)
962 : Output_section_data(1), strtab_(strtab)
963 { }
964
965 protected:
966 // This is called to update the section size prior to assigning
967 // the address and file offset.
968 void
969 update_data_size()
970 { this->set_final_data_size(); }
971
972 // This is called to set the address and file offset. Here we make
973 // sure that the Stringpool is finalized.
974 void
975 set_final_data_size();
976
977 // Write out the data.
978 void
979 do_write(Output_file*);
980
981 // Write the data to a buffer.
982 void
983 do_write_to_buffer(unsigned char* buffer)
984 { this->strtab_->write_to_buffer(buffer, this->data_size()); }
985
986 // Write to a map file.
987 void
988 do_print_to_mapfile(Mapfile* mapfile) const
989 { mapfile->print_output_data(this, _("** string table")); }
990
991 private:
992 Stringpool* strtab_;
993 };
994
995 // This POD class is used to represent a single reloc in the output
996 // file. This could be a private class within Output_data_reloc, but
997 // the templatization is complex enough that I broke it out into a
998 // separate class. The class is templatized on either elfcpp::SHT_REL
999 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
1000 // relocation or an ordinary relocation.
1001
1002 // A relocation can be against a global symbol, a local symbol, a
1003 // local section symbol, an output section, or the undefined symbol at
1004 // index 0. We represent the latter by using a NULL global symbol.
1005
1006 template<int sh_type, bool dynamic, int size, bool big_endian>
1007 class Output_reloc;
1008
1009 template<bool dynamic, int size, bool big_endian>
1010 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1011 {
1012 public:
1013 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1014 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1015
1016 static const Address invalid_address = static_cast<Address>(0) - 1;
1017
1018 // An uninitialized entry. We need this because we want to put
1019 // instances of this class into an STL container.
1020 Output_reloc()
1021 : local_sym_index_(INVALID_CODE)
1022 { }
1023
1024 // We have a bunch of different constructors. They come in pairs
1025 // depending on how the address of the relocation is specified. It
1026 // can either be an offset in an Output_data or an offset in an
1027 // input section.
1028
1029 // A reloc against a global symbol.
1030
1031 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1032 Address address, bool is_relative, bool is_symbolless,
1033 bool use_plt_offset);
1034
1035 Output_reloc(Symbol* gsym, unsigned int type,
1036 Sized_relobj<size, big_endian>* relobj,
1037 unsigned int shndx, Address address, bool is_relative,
1038 bool is_symbolless, bool use_plt_offset);
1039
1040 // A reloc against a local symbol or local section symbol.
1041
1042 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1043 unsigned int local_sym_index, unsigned int type,
1044 Output_data* od, Address address, bool is_relative,
1045 bool is_symbolless, bool is_section_symbol,
1046 bool use_plt_offset);
1047
1048 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1049 unsigned int local_sym_index, unsigned int type,
1050 unsigned int shndx, Address address, bool is_relative,
1051 bool is_symbolless, bool is_section_symbol,
1052 bool use_plt_offset);
1053
1054 // A reloc against the STT_SECTION symbol of an output section.
1055
1056 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1057 Address address, bool is_relative);
1058
1059 Output_reloc(Output_section* os, unsigned int type,
1060 Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
1061 Address address, bool is_relative);
1062
1063 // An absolute or relative relocation with no symbol.
1064
1065 Output_reloc(unsigned int type, Output_data* od, Address address,
1066 bool is_relative);
1067
1068 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1069 unsigned int shndx, Address address, bool is_relative);
1070
1071 // A target specific relocation. The target will be called to get
1072 // the symbol index, passing ARG. The type and offset will be set
1073 // as for other relocation types.
1074
1075 Output_reloc(unsigned int type, void* arg, Output_data* od,
1076 Address address);
1077
1078 Output_reloc(unsigned int type, void* arg,
1079 Sized_relobj<size, big_endian>* relobj,
1080 unsigned int shndx, Address address);
1081
1082 // Return the reloc type.
1083 unsigned int
1084 type() const
1085 { return this->type_; }
1086
1087 // Return whether this is a RELATIVE relocation.
1088 bool
1089 is_relative() const
1090 { return this->is_relative_; }
1091
1092 // Return whether this is a relocation which should not use
1093 // a symbol, but which obtains its addend from a symbol.
1094 bool
1095 is_symbolless() const
1096 { return this->is_symbolless_; }
1097
1098 // Return whether this is against a local section symbol.
1099 bool
1100 is_local_section_symbol() const
1101 {
1102 return (this->local_sym_index_ != GSYM_CODE
1103 && this->local_sym_index_ != SECTION_CODE
1104 && this->local_sym_index_ != INVALID_CODE
1105 && this->local_sym_index_ != TARGET_CODE
1106 && this->is_section_symbol_);
1107 }
1108
1109 // Return whether this is a target specific relocation.
1110 bool
1111 is_target_specific() const
1112 { return this->local_sym_index_ == TARGET_CODE; }
1113
1114 // Return the argument to pass to the target for a target specific
1115 // relocation.
1116 void*
1117 target_arg() const
1118 {
1119 gold_assert(this->local_sym_index_ == TARGET_CODE);
1120 return this->u1_.arg;
1121 }
1122
1123 // For a local section symbol, return the offset of the input
1124 // section within the output section. ADDEND is the addend being
1125 // applied to the input section.
1126 Address
1127 local_section_offset(Addend addend) const;
1128
1129 // Get the value of the symbol referred to by a Rel relocation when
1130 // we are adding the given ADDEND.
1131 Address
1132 symbol_value(Addend addend) const;
1133
1134 // If this relocation is against an input section, return the
1135 // relocatable object containing the input section.
1136 Sized_relobj<size, big_endian>*
1137 get_relobj() const
1138 {
1139 if (this->shndx_ == INVALID_CODE)
1140 return NULL;
1141 return this->u2_.relobj;
1142 }
1143
1144 // Write the reloc entry to an output view.
1145 void
1146 write(unsigned char* pov) const;
1147
1148 // Write the offset and info fields to Write_rel.
1149 template<typename Write_rel>
1150 void write_rel(Write_rel*) const;
1151
1152 // This is used when sorting dynamic relocs. Return -1 to sort this
1153 // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
1154 int
1155 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1156 const;
1157
1158 // Return whether this reloc should be sorted before the argument
1159 // when sorting dynamic relocs.
1160 bool
1161 sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
1162 r2) const
1163 { return this->compare(r2) < 0; }
1164
1165 private:
1166 // Record that we need a dynamic symbol index.
1167 void
1168 set_needs_dynsym_index();
1169
1170 // Return the symbol index.
1171 unsigned int
1172 get_symbol_index() const;
1173
1174 // Return the output address.
1175 Address
1176 get_address() const;
1177
1178 // Codes for local_sym_index_.
1179 enum
1180 {
1181 // Global symbol.
1182 GSYM_CODE = -1U,
1183 // Output section.
1184 SECTION_CODE = -2U,
1185 // Target specific.
1186 TARGET_CODE = -3U,
1187 // Invalid uninitialized entry.
1188 INVALID_CODE = -4U
1189 };
1190
1191 union
1192 {
1193 // For a local symbol or local section symbol
1194 // (this->local_sym_index_ >= 0), the object. We will never
1195 // generate a relocation against a local symbol in a dynamic
1196 // object; that doesn't make sense. And our callers will always
1197 // be templatized, so we use Sized_relobj here.
1198 Sized_relobj<size, big_endian>* relobj;
1199 // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
1200 // symbol. If this is NULL, it indicates a relocation against the
1201 // undefined 0 symbol.
1202 Symbol* gsym;
1203 // For a relocation against an output section
1204 // (this->local_sym_index_ == SECTION_CODE), the output section.
1205 Output_section* os;
1206 // For a target specific relocation, an argument to pass to the
1207 // target.
1208 void* arg;
1209 } u1_;
1210 union
1211 {
1212 // If this->shndx_ is not INVALID CODE, the object which holds the
1213 // input section being used to specify the reloc address.
1214 Sized_relobj<size, big_endian>* relobj;
1215 // If this->shndx_ is INVALID_CODE, the output data being used to
1216 // specify the reloc address. This may be NULL if the reloc
1217 // address is absolute.
1218 Output_data* od;
1219 } u2_;
1220 // The address offset within the input section or the Output_data.
1221 Address address_;
1222 // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
1223 // relocation against an output section, or TARGET_CODE for a target
1224 // specific relocation, or INVALID_CODE for an uninitialized value.
1225 // Otherwise, for a local symbol (this->is_section_symbol_ is
1226 // false), the local symbol index. For a local section symbol
1227 // (this->is_section_symbol_ is true), the section index in the
1228 // input file.
1229 unsigned int local_sym_index_;
1230 // The reloc type--a processor specific code.
1231 unsigned int type_ : 28;
1232 // True if the relocation is a RELATIVE relocation.
1233 bool is_relative_ : 1;
1234 // True if the relocation is one which should not use
1235 // a symbol, but which obtains its addend from a symbol.
1236 bool is_symbolless_ : 1;
1237 // True if the relocation is against a section symbol.
1238 bool is_section_symbol_ : 1;
1239 // True if the addend should be the PLT offset.
1240 // (Used only for RELA, but stored here for space.)
1241 bool use_plt_offset_ : 1;
1242 // If the reloc address is an input section in an object, the
1243 // section index. This is INVALID_CODE if the reloc address is
1244 // specified in some other way.
1245 unsigned int shndx_;
1246 };
1247
1248 // The SHT_RELA version of Output_reloc<>. This is just derived from
1249 // the SHT_REL version of Output_reloc, but it adds an addend.
1250
1251 template<bool dynamic, int size, bool big_endian>
1252 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1253 {
1254 public:
1255 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1256 typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
1257
1258 // An uninitialized entry.
1259 Output_reloc()
1260 : rel_()
1261 { }
1262
1263 // A reloc against a global symbol.
1264
1265 Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
1266 Address address, Addend addend, bool is_relative,
1267 bool is_symbolless, bool use_plt_offset)
1268 : rel_(gsym, type, od, address, is_relative, is_symbolless,
1269 use_plt_offset),
1270 addend_(addend)
1271 { }
1272
1273 Output_reloc(Symbol* gsym, unsigned int type,
1274 Sized_relobj<size, big_endian>* relobj,
1275 unsigned int shndx, Address address, Addend addend,
1276 bool is_relative, bool is_symbolless, bool use_plt_offset)
1277 : rel_(gsym, type, relobj, shndx, address, is_relative,
1278 is_symbolless, use_plt_offset), addend_(addend)
1279 { }
1280
1281 // A reloc against a local symbol.
1282
1283 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1284 unsigned int local_sym_index, unsigned int type,
1285 Output_data* od, Address address,
1286 Addend addend, bool is_relative,
1287 bool is_symbolless, bool is_section_symbol,
1288 bool use_plt_offset)
1289 : rel_(relobj, local_sym_index, type, od, address, is_relative,
1290 is_symbolless, is_section_symbol, use_plt_offset),
1291 addend_(addend)
1292 { }
1293
1294 Output_reloc(Sized_relobj<size, big_endian>* relobj,
1295 unsigned int local_sym_index, unsigned int type,
1296 unsigned int shndx, Address address,
1297 Addend addend, bool is_relative,
1298 bool is_symbolless, bool is_section_symbol,
1299 bool use_plt_offset)
1300 : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
1301 is_symbolless, is_section_symbol, use_plt_offset),
1302 addend_(addend)
1303 { }
1304
1305 // A reloc against the STT_SECTION symbol of an output section.
1306
1307 Output_reloc(Output_section* os, unsigned int type, Output_data* od,
1308 Address address, Addend addend, bool is_relative)
1309 : rel_(os, type, od, address, is_relative), addend_(addend)
1310 { }
1311
1312 Output_reloc(Output_section* os, unsigned int type,
1313 Sized_relobj<size, big_endian>* relobj,
1314 unsigned int shndx, Address address, Addend addend,
1315 bool is_relative)
1316 : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
1317 { }
1318
1319 // An absolute or relative relocation with no symbol.
1320
1321 Output_reloc(unsigned int type, Output_data* od, Address address,
1322 Addend addend, bool is_relative)
1323 : rel_(type, od, address, is_relative), addend_(addend)
1324 { }
1325
1326 Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
1327 unsigned int shndx, Address address, Addend addend,
1328 bool is_relative)
1329 : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
1330 { }
1331
1332 // A target specific relocation. The target will be called to get
1333 // the symbol index and the addend, passing ARG. The type and
1334 // offset will be set as for other relocation types.
1335
1336 Output_reloc(unsigned int type, void* arg, Output_data* od,
1337 Address address, Addend addend)
1338 : rel_(type, arg, od, address), addend_(addend)
1339 { }
1340
1341 Output_reloc(unsigned int type, void* arg,
1342 Sized_relobj<size, big_endian>* relobj,
1343 unsigned int shndx, Address address, Addend addend)
1344 : rel_(type, arg, relobj, shndx, address), addend_(addend)
1345 { }
1346
1347 // Return whether this is a RELATIVE relocation.
1348 bool
1349 is_relative() const
1350 { return this->rel_.is_relative(); }
1351
1352 // Return whether this is a relocation which should not use
1353 // a symbol, but which obtains its addend from a symbol.
1354 bool
1355 is_symbolless() const
1356 { return this->rel_.is_symbolless(); }
1357
1358 // If this relocation is against an input section, return the
1359 // relocatable object containing the input section.
1360 Sized_relobj<size, big_endian>*
1361 get_relobj() const
1362 { return this->rel_.get_relobj(); }
1363
1364 // Write the reloc entry to an output view.
1365 void
1366 write(unsigned char* pov) const;
1367
1368 // Return whether this reloc should be sorted before the argument
1369 // when sorting dynamic relocs.
1370 bool
1371 sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
1372 r2) const
1373 {
1374 int i = this->rel_.compare(r2.rel_);
1375 if (i < 0)
1376 return true;
1377 else if (i > 0)
1378 return false;
1379 else
1380 return this->addend_ < r2.addend_;
1381 }
1382
1383 private:
1384 // The basic reloc.
1385 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
1386 // The addend.
1387 Addend addend_;
1388 };
1389
1390 // Output_data_reloc_generic is a non-template base class for
1391 // Output_data_reloc_base. This gives the generic code a way to hold
1392 // a pointer to a reloc section.
1393
1394 class Output_data_reloc_generic : public Output_section_data_build
1395 {
1396 public:
1397 Output_data_reloc_generic(int size, bool sort_relocs)
1398 : Output_section_data_build(Output_data::default_alignment_for_size(size)),
1399 relative_reloc_count_(0), sort_relocs_(sort_relocs)
1400 { }
1401
1402 // Return the number of relative relocs in this section.
1403 size_t
1404 relative_reloc_count() const
1405 { return this->relative_reloc_count_; }
1406
1407 // Whether we should sort the relocs.
1408 bool
1409 sort_relocs() const
1410 { return this->sort_relocs_; }
1411
1412 // Add a reloc of type TYPE against the global symbol GSYM. The
1413 // relocation applies to the data at offset ADDRESS within OD.
1414 virtual void
1415 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1416 uint64_t address, uint64_t addend) = 0;
1417
1418 // Add a reloc of type TYPE against the global symbol GSYM. The
1419 // relocation applies to data at offset ADDRESS within section SHNDX
1420 // of object file RELOBJ. OD is the associated output section.
1421 virtual void
1422 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1423 Relobj* relobj, unsigned int shndx, uint64_t address,
1424 uint64_t addend) = 0;
1425
1426 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1427 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1428 // within OD.
1429 virtual void
1430 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1431 unsigned int type, Output_data* od, uint64_t address,
1432 uint64_t addend) = 0;
1433
1434 // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
1435 // in RELOBJ. The relocation applies to the data at offset ADDRESS
1436 // within section SHNDX of RELOBJ. OD is the associated output
1437 // section.
1438 virtual void
1439 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1440 unsigned int type, Output_data* od, unsigned int shndx,
1441 uint64_t address, uint64_t addend) = 0;
1442
1443 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1444 // output section OS. The relocation applies to the data at offset
1445 // ADDRESS within OD.
1446 virtual void
1447 add_output_section_generic(Output_section *os, unsigned int type,
1448 Output_data* od, uint64_t address,
1449 uint64_t addend) = 0;
1450
1451 // Add a reloc of type TYPE against the STT_SECTION symbol of the
1452 // output section OS. The relocation applies to the data at offset
1453 // ADDRESS within section SHNDX of RELOBJ. OD is the associated
1454 // output section.
1455 virtual void
1456 add_output_section_generic(Output_section* os, unsigned int type,
1457 Output_data* od, Relobj* relobj,
1458 unsigned int shndx, uint64_t address,
1459 uint64_t addend) = 0;
1460
1461 protected:
1462 // Note that we've added another relative reloc.
1463 void
1464 bump_relative_reloc_count()
1465 { ++this->relative_reloc_count_; }
1466
1467 private:
1468 // The number of relative relocs added to this section. This is to
1469 // support DT_RELCOUNT.
1470 size_t relative_reloc_count_;
1471 // Whether to sort the relocations when writing them out, to make
1472 // the dynamic linker more efficient.
1473 bool sort_relocs_;
1474 };
1475
1476 // Output_data_reloc is used to manage a section containing relocs.
1477 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA. DYNAMIC
1478 // indicates whether this is a dynamic relocation or a normal
1479 // relocation. Output_data_reloc_base is a base class.
1480 // Output_data_reloc is the real class, which we specialize based on
1481 // the reloc type.
1482
1483 template<int sh_type, bool dynamic, int size, bool big_endian>
1484 class Output_data_reloc_base : public Output_data_reloc_generic
1485 {
1486 public:
1487 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1488 typedef typename Output_reloc_type::Address Address;
1489 static const int reloc_size =
1490 Reloc_types<sh_type, size, big_endian>::reloc_size;
1491
1492 // Construct the section.
1493 Output_data_reloc_base(bool sort_relocs)
1494 : Output_data_reloc_generic(size, sort_relocs)
1495 { }
1496
1497 protected:
1498 // Write out the data.
1499 void
1500 do_write(Output_file*);
1501
1502 // Set the entry size and the link.
1503 void
1504 do_adjust_output_section(Output_section* os);
1505
1506 // Write to a map file.
1507 void
1508 do_print_to_mapfile(Mapfile* mapfile) const
1509 {
1510 mapfile->print_output_data(this,
1511 (dynamic
1512 ? _("** dynamic relocs")
1513 : _("** relocs")));
1514 }
1515
1516 // Add a relocation entry.
1517 void
1518 add(Output_data* od, const Output_reloc_type& reloc)
1519 {
1520 this->relocs_.push_back(reloc);
1521 this->set_current_data_size(this->relocs_.size() * reloc_size);
1522 if (dynamic)
1523 od->add_dynamic_reloc();
1524 if (reloc.is_relative())
1525 this->bump_relative_reloc_count();
1526 Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
1527 if (relobj != NULL)
1528 relobj->add_dyn_reloc(this->relocs_.size() - 1);
1529 }
1530
1531 private:
1532 typedef std::vector<Output_reloc_type> Relocs;
1533
1534 // The class used to sort the relocations.
1535 struct Sort_relocs_comparison
1536 {
1537 bool
1538 operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
1539 { return r1.sort_before(r2); }
1540 };
1541
1542 // The relocations in this section.
1543 Relocs relocs_;
1544 };
1545
1546 // The class which callers actually create.
1547
1548 template<int sh_type, bool dynamic, int size, bool big_endian>
1549 class Output_data_reloc;
1550
1551 // The SHT_REL version of Output_data_reloc.
1552
1553 template<bool dynamic, int size, bool big_endian>
1554 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
1555 : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
1556 {
1557 private:
1558 typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
1559 big_endian> Base;
1560
1561 public:
1562 typedef typename Base::Output_reloc_type Output_reloc_type;
1563 typedef typename Output_reloc_type::Address Address;
1564
1565 Output_data_reloc(bool sr)
1566 : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
1567 { }
1568
1569 // Add a reloc against a global symbol.
1570
1571 void
1572 add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
1573 {
1574 this->add(od, Output_reloc_type(gsym, type, od, address,
1575 false, false, false));
1576 }
1577
1578 void
1579 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1580 Sized_relobj<size, big_endian>* relobj,
1581 unsigned int shndx, Address address)
1582 {
1583 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1584 false, false, false));
1585 }
1586
1587 void
1588 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1589 uint64_t address, uint64_t addend)
1590 {
1591 gold_assert(addend == 0);
1592 this->add(od, Output_reloc_type(gsym, type, od,
1593 convert_types<Address, uint64_t>(address),
1594 false, false, false));
1595 }
1596
1597 void
1598 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1599 Relobj* relobj, unsigned int shndx, uint64_t address,
1600 uint64_t addend)
1601 {
1602 gold_assert(addend == 0);
1603 Sized_relobj<size, big_endian>* sized_relobj =
1604 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1605 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1606 convert_types<Address, uint64_t>(address),
1607 false, false, false));
1608 }
1609
1610 // Add a RELATIVE reloc against a global symbol. The final relocation
1611 // will not reference the symbol.
1612
1613 void
1614 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1615 Address address)
1616 {
1617 this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
1618 false));
1619 }
1620
1621 void
1622 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1623 Sized_relobj<size, big_endian>* relobj,
1624 unsigned int shndx, Address address)
1625 {
1626 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1627 true, true, false));
1628 }
1629
1630 // Add a global relocation which does not use a symbol for the relocation,
1631 // but which gets its addend from a symbol.
1632
1633 void
1634 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1635 Output_data* od, Address address)
1636 {
1637 this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
1638 false));
1639 }
1640
1641 void
1642 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1643 Output_data* od,
1644 Sized_relobj<size, big_endian>* relobj,
1645 unsigned int shndx, Address address)
1646 {
1647 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1648 false, true, false));
1649 }
1650
1651 // Add a reloc against a local symbol.
1652
1653 void
1654 add_local(Sized_relobj<size, big_endian>* relobj,
1655 unsigned int local_sym_index, unsigned int type,
1656 Output_data* od, Address address)
1657 {
1658 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1659 address, false, false, false, false));
1660 }
1661
1662 void
1663 add_local(Sized_relobj<size, big_endian>* relobj,
1664 unsigned int local_sym_index, unsigned int type,
1665 Output_data* od, unsigned int shndx, Address address)
1666 {
1667 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1668 address, false, false, false, false));
1669 }
1670
1671 void
1672 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1673 unsigned int type, Output_data* od, uint64_t address,
1674 uint64_t addend)
1675 {
1676 gold_assert(addend == 0);
1677 Sized_relobj<size, big_endian>* sized_relobj =
1678 static_cast<Sized_relobj<size, big_endian> *>(relobj);
1679 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
1680 convert_types<Address, uint64_t>(address),
1681 false, false, false, false));
1682 }
1683
1684 void
1685 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1686 unsigned int type, Output_data* od, unsigned int shndx,
1687 uint64_t address, uint64_t addend)
1688 {
1689 gold_assert(addend == 0);
1690 Sized_relobj<size, big_endian>* sized_relobj =
1691 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1692 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
1693 convert_types<Address, uint64_t>(address),
1694 false, false, false, false));
1695 }
1696
1697 // Add a RELATIVE reloc against a local symbol.
1698
1699 void
1700 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1701 unsigned int local_sym_index, unsigned int type,
1702 Output_data* od, Address address)
1703 {
1704 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1705 address, true, true, false, false));
1706 }
1707
1708 void
1709 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1710 unsigned int local_sym_index, unsigned int type,
1711 Output_data* od, unsigned int shndx, Address address)
1712 {
1713 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1714 address, true, true, false, false));
1715 }
1716
1717 void
1718 add_local_relative(Sized_relobj<size, big_endian>* relobj,
1719 unsigned int local_sym_index, unsigned int type,
1720 Output_data* od, unsigned int shndx, Address address,
1721 bool use_plt_offset)
1722 {
1723 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1724 address, true, true, false,
1725 use_plt_offset));
1726 }
1727
1728 // Add a local relocation which does not use a symbol for the relocation,
1729 // but which gets its addend from a symbol.
1730
1731 void
1732 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1733 unsigned int local_sym_index, unsigned int type,
1734 Output_data* od, Address address)
1735 {
1736 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
1737 address, false, true, false, false));
1738 }
1739
1740 void
1741 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
1742 unsigned int local_sym_index, unsigned int type,
1743 Output_data* od, unsigned int shndx,
1744 Address address)
1745 {
1746 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1747 address, false, true, false, false));
1748 }
1749
1750 // Add a reloc against a local section symbol. This will be
1751 // converted into a reloc against the STT_SECTION symbol of the
1752 // output section.
1753
1754 void
1755 add_local_section(Sized_relobj<size, big_endian>* relobj,
1756 unsigned int input_shndx, unsigned int type,
1757 Output_data* od, Address address)
1758 {
1759 this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
1760 address, false, false, true, false));
1761 }
1762
1763 void
1764 add_local_section(Sized_relobj<size, big_endian>* relobj,
1765 unsigned int input_shndx, unsigned int type,
1766 Output_data* od, unsigned int shndx, Address address)
1767 {
1768 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
1769 address, false, false, true, false));
1770 }
1771
1772 // A reloc against the STT_SECTION symbol of an output section.
1773 // OS is the Output_section that the relocation refers to; OD is
1774 // the Output_data object being relocated.
1775
1776 void
1777 add_output_section(Output_section* os, unsigned int type,
1778 Output_data* od, Address address)
1779 { this->add(od, Output_reloc_type(os, type, od, address, false)); }
1780
1781 void
1782 add_output_section(Output_section* os, unsigned int type, Output_data* od,
1783 Sized_relobj<size, big_endian>* relobj,
1784 unsigned int shndx, Address address)
1785 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
1786
1787 void
1788 add_output_section_generic(Output_section* os, unsigned int type,
1789 Output_data* od, uint64_t address,
1790 uint64_t addend)
1791 {
1792 gold_assert(addend == 0);
1793 this->add(od, Output_reloc_type(os, type, od,
1794 convert_types<Address, uint64_t>(address),
1795 false));
1796 }
1797
1798 void
1799 add_output_section_generic(Output_section* os, unsigned int type,
1800 Output_data* od, Relobj* relobj,
1801 unsigned int shndx, uint64_t address,
1802 uint64_t addend)
1803 {
1804 gold_assert(addend == 0);
1805 Sized_relobj<size, big_endian>* sized_relobj =
1806 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1807 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
1808 convert_types<Address, uint64_t>(address),
1809 false));
1810 }
1811
1812 // As above, but the reloc TYPE is relative
1813
1814 void
1815 add_output_section_relative(Output_section* os, unsigned int type,
1816 Output_data* od, Address address)
1817 { this->add(od, Output_reloc_type(os, type, od, address, true)); }
1818
1819 void
1820 add_output_section_relative(Output_section* os, unsigned int type,
1821 Output_data* od,
1822 Sized_relobj<size, big_endian>* relobj,
1823 unsigned int shndx, Address address)
1824 { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
1825
1826 // Add an absolute relocation.
1827
1828 void
1829 add_absolute(unsigned int type, Output_data* od, Address address)
1830 { this->add(od, Output_reloc_type(type, od, address, false)); }
1831
1832 void
1833 add_absolute(unsigned int type, Output_data* od,
1834 Sized_relobj<size, big_endian>* relobj,
1835 unsigned int shndx, Address address)
1836 { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
1837
1838 // Add a relative relocation
1839
1840 void
1841 add_relative(unsigned int type, Output_data* od, Address address)
1842 { this->add(od, Output_reloc_type(type, od, address, true)); }
1843
1844 void
1845 add_relative(unsigned int type, Output_data* od,
1846 Sized_relobj<size, big_endian>* relobj,
1847 unsigned int shndx, Address address)
1848 { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
1849
1850 // Add a target specific relocation. A target which calls this must
1851 // define the reloc_symbol_index and reloc_addend virtual functions.
1852
1853 void
1854 add_target_specific(unsigned int type, void* arg, Output_data* od,
1855 Address address)
1856 { this->add(od, Output_reloc_type(type, arg, od, address)); }
1857
1858 void
1859 add_target_specific(unsigned int type, void* arg, Output_data* od,
1860 Sized_relobj<size, big_endian>* relobj,
1861 unsigned int shndx, Address address)
1862 { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
1863 };
1864
1865 // The SHT_RELA version of Output_data_reloc.
1866
1867 template<bool dynamic, int size, bool big_endian>
1868 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
1869 : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
1870 {
1871 private:
1872 typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
1873 big_endian> Base;
1874
1875 public:
1876 typedef typename Base::Output_reloc_type Output_reloc_type;
1877 typedef typename Output_reloc_type::Address Address;
1878 typedef typename Output_reloc_type::Addend Addend;
1879
1880 Output_data_reloc(bool sr)
1881 : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
1882 { }
1883
1884 // Add a reloc against a global symbol.
1885
1886 void
1887 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1888 Address address, Addend addend)
1889 {
1890 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1891 false, false, false));
1892 }
1893
1894 void
1895 add_global(Symbol* gsym, unsigned int type, Output_data* od,
1896 Sized_relobj<size, big_endian>* relobj,
1897 unsigned int shndx, Address address,
1898 Addend addend)
1899 {
1900 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1901 addend, false, false, false));
1902 }
1903
1904 void
1905 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1906 uint64_t address, uint64_t addend)
1907 {
1908 this->add(od, Output_reloc_type(gsym, type, od,
1909 convert_types<Address, uint64_t>(address),
1910 convert_types<Addend, uint64_t>(addend),
1911 false, false, false));
1912 }
1913
1914 void
1915 add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
1916 Relobj* relobj, unsigned int shndx, uint64_t address,
1917 uint64_t addend)
1918 {
1919 Sized_relobj<size, big_endian>* sized_relobj =
1920 static_cast<Sized_relobj<size, big_endian>*>(relobj);
1921 this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
1922 convert_types<Address, uint64_t>(address),
1923 convert_types<Addend, uint64_t>(addend),
1924 false, false, false));
1925 }
1926
1927 // Add a RELATIVE reloc against a global symbol. The final output
1928 // relocation will not reference the symbol, but we must keep the symbol
1929 // information long enough to set the addend of the relocation correctly
1930 // when it is written.
1931
1932 void
1933 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1934 Address address, Addend addend, bool use_plt_offset)
1935 {
1936 this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
1937 true, use_plt_offset));
1938 }
1939
1940 void
1941 add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
1942 Sized_relobj<size, big_endian>* relobj,
1943 unsigned int shndx, Address address, Addend addend,
1944 bool use_plt_offset)
1945 {
1946 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1947 addend, true, true, use_plt_offset));
1948 }
1949
1950 // Add a global relocation which does not use a symbol for the relocation,
1951 // but which gets its addend from a symbol.
1952
1953 void
1954 add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
1955 Address address, Addend addend)
1956 {
1957 this->add(od, Output_reloc_type(gsym, type, od, address, addend,
1958 false, true, false));
1959 }
1960
1961 void
1962 add_symbolless_global_addend(Symbol* gsym, unsigned int type,
1963 Output_data* od,
1964 Sized_relobj<size, big_endian>* relobj,
1965 unsigned int shndx, Address address,
1966 Addend addend)
1967 {
1968 this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
1969 addend, false, true, false));
1970 }
1971
1972 // Add a reloc against a local symbol.
1973
1974 void
1975 add_local(Sized_relobj<size, big_endian>* relobj,
1976 unsigned int local_sym_index, unsigned int type,
1977 Output_data* od, Address address, Addend addend)
1978 {
1979 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
1980 addend, false, false, false, false));
1981 }
1982
1983 void
1984 add_local(Sized_relobj<size, big_endian>* relobj,
1985 unsigned int local_sym_index, unsigned int type,
1986 Output_data* od, unsigned int shndx, Address address,
1987 Addend addend)
1988 {
1989 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
1990 address, addend, false, false, false,
1991 false));
1992 }
1993
1994 void
1995 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
1996 unsigned int type, Output_data* od, uint64_t address,
1997 uint64_t addend)
1998 {
1999 Sized_relobj<size, big_endian>* sized_relobj =
2000 static_cast<Sized_relobj<size, big_endian> *>(relobj);
2001 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
2002 convert_types<Address, uint64_t>(address),
2003 convert_types<Addend, uint64_t>(addend),
2004 false, false, false, false));
2005 }
2006
2007 void
2008 add_local_generic(Relobj* relobj, unsigned int local_sym_index,
2009 unsigned int type, Output_data* od, unsigned int shndx,
2010 uint64_t address, uint64_t addend)
2011 {
2012 Sized_relobj<size, big_endian>* sized_relobj =
2013 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2014 this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
2015 convert_types<Address, uint64_t>(address),
2016 convert_types<Addend, uint64_t>(addend),
2017 false, false, false, false));
2018 }
2019
2020 // Add a RELATIVE reloc against a local symbol.
2021
2022 void
2023 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2024 unsigned int local_sym_index, unsigned int type,
2025 Output_data* od, Address address, Addend addend,
2026 bool use_plt_offset)
2027 {
2028 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2029 addend, true, true, false,
2030 use_plt_offset));
2031 }
2032
2033 void
2034 add_local_relative(Sized_relobj<size, big_endian>* relobj,
2035 unsigned int local_sym_index, unsigned int type,
2036 Output_data* od, unsigned int shndx, Address address,
2037 Addend addend, bool use_plt_offset)
2038 {
2039 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2040 address, addend, true, true, false,
2041 use_plt_offset));
2042 }
2043
2044 // Add a local relocation which does not use a symbol for the relocation,
2045 // but which gets it's addend from a symbol.
2046
2047 void
2048 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2049 unsigned int local_sym_index, unsigned int type,
2050 Output_data* od, Address address, Addend addend)
2051 {
2052 this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
2053 addend, false, true, false, false));
2054 }
2055
2056 void
2057 add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
2058 unsigned int local_sym_index, unsigned int type,
2059 Output_data* od, unsigned int shndx,
2060 Address address, Addend addend)
2061 {
2062 this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
2063 address, addend, false, true, false,
2064 false));
2065 }
2066
2067 // Add a reloc against a local section symbol. This will be
2068 // converted into a reloc against the STT_SECTION symbol of the
2069 // output section.
2070
2071 void
2072 add_local_section(Sized_relobj<size, big_endian>* relobj,
2073 unsigned int input_shndx, unsigned int type,
2074 Output_data* od, Address address, Addend addend)
2075 {
2076 this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
2077 addend, false, false, true, false));
2078 }
2079
2080 void
2081 add_local_section(Sized_relobj<size, big_endian>* relobj,
2082 unsigned int input_shndx, unsigned int type,
2083 Output_data* od, unsigned int shndx, Address address,
2084 Addend addend)
2085 {
2086 this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
2087 address, addend, false, false, true,
2088 false));
2089 }
2090
2091 // A reloc against the STT_SECTION symbol of an output section.
2092
2093 void
2094 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2095 Address address, Addend addend)
2096 { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
2097
2098 void
2099 add_output_section(Output_section* os, unsigned int type, Output_data* od,
2100 Sized_relobj<size, big_endian>* relobj,
2101 unsigned int shndx, Address address, Addend addend)
2102 {
2103 this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
2104 addend, false));
2105 }
2106
2107 void
2108 add_output_section_generic(Output_section* os, unsigned int type,
2109 Output_data* od, uint64_t address,
2110 uint64_t addend)
2111 {
2112 this->add(od, Output_reloc_type(os, type, od,
2113 convert_types<Address, uint64_t>(address),
2114 convert_types<Addend, uint64_t>(addend),
2115 false));
2116 }
2117
2118 void
2119 add_output_section_generic(Output_section* os, unsigned int type,
2120 Output_data* od, Relobj* relobj,
2121 unsigned int shndx, uint64_t address,
2122 uint64_t addend)
2123 {
2124 Sized_relobj<size, big_endian>* sized_relobj =
2125 static_cast<Sized_relobj<size, big_endian>*>(relobj);
2126 this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
2127 convert_types<Address, uint64_t>(address),
2128 convert_types<Addend, uint64_t>(addend),
2129 false));
2130 }
2131
2132 // As above, but the reloc TYPE is relative
2133
2134 void
2135 add_output_section_relative(Output_section* os, unsigned int type,
2136 Output_data* od, Address address, Addend addend)
2137 { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
2138
2139 void
2140 add_output_section_relative(Output_section* os, unsigned int type,
2141 Output_data* od,
2142 Sized_relobj<size, big_endian>* relobj,
2143 unsigned int shndx, Address address,
2144 Addend addend)
2145 {
2146 this->add(od, Output_reloc_type(os, type, relobj, shndx,
2147 address, addend, true));
2148 }
2149
2150 // Add an absolute relocation.
2151
2152 void
2153 add_absolute(unsigned int type, Output_data* od, Address address,
2154 Addend addend)
2155 { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
2156
2157 void
2158 add_absolute(unsigned int type, Output_data* od,
2159 Sized_relobj<size, big_endian>* relobj,
2160 unsigned int shndx, Address address, Addend addend)
2161 {
2162 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2163 false));
2164 }
2165
2166 // Add a relative relocation
2167
2168 void
2169 add_relative(unsigned int type, Output_data* od, Address address,
2170 Addend addend)
2171 { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
2172
2173 void
2174 add_relative(unsigned int type, Output_data* od,
2175 Sized_relobj<size, big_endian>* relobj,
2176 unsigned int shndx, Address address, Addend addend)
2177 {
2178 this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
2179 true));
2180 }
2181
2182 // Add a target specific relocation. A target which calls this must
2183 // define the reloc_symbol_index and reloc_addend virtual functions.
2184
2185 void
2186 add_target_specific(unsigned int type, void* arg, Output_data* od,
2187 Address address, Addend addend)
2188 { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
2189
2190 void
2191 add_target_specific(unsigned int type, void* arg, Output_data* od,
2192 Sized_relobj<size, big_endian>* relobj,
2193 unsigned int shndx, Address address, Addend addend)
2194 {
2195 this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
2196 addend));
2197 }
2198 };
2199
2200 // Output_relocatable_relocs represents a relocation section in a
2201 // relocatable link. The actual data is written out in the target
2202 // hook relocate_relocs. This just saves space for it.
2203
2204 template<int sh_type, int size, bool big_endian>
2205 class Output_relocatable_relocs : public Output_section_data
2206 {
2207 public:
2208 Output_relocatable_relocs(Relocatable_relocs* rr)
2209 : Output_section_data(Output_data::default_alignment_for_size(size)),
2210 rr_(rr)
2211 { }
2212
2213 void
2214 set_final_data_size();
2215
2216 // Write out the data. There is nothing to do here.
2217 void
2218 do_write(Output_file*)
2219 { }
2220
2221 // Write to a map file.
2222 void
2223 do_print_to_mapfile(Mapfile* mapfile) const
2224 { mapfile->print_output_data(this, _("** relocs")); }
2225
2226 private:
2227 // The relocs associated with this input section.
2228 Relocatable_relocs* rr_;
2229 };
2230
2231 // Handle a GROUP section.
2232
2233 template<int size, bool big_endian>
2234 class Output_data_group : public Output_section_data
2235 {
2236 public:
2237 // The constructor clears *INPUT_SHNDXES.
2238 Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
2239 section_size_type entry_count,
2240 elfcpp::Elf_Word flags,
2241 std::vector<unsigned int>* input_shndxes);
2242
2243 void
2244 do_write(Output_file*);
2245
2246 // Write to a map file.
2247 void
2248 do_print_to_mapfile(Mapfile* mapfile) const
2249 { mapfile->print_output_data(this, _("** group")); }
2250
2251 // Set final data size.
2252 void
2253 set_final_data_size()
2254 { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
2255
2256 private:
2257 // The input object.
2258 Sized_relobj_file<size, big_endian>* relobj_;
2259 // The group flag word.
2260 elfcpp::Elf_Word flags_;
2261 // The section indexes of the input sections in this group.
2262 std::vector<unsigned int> input_shndxes_;
2263 };
2264
2265 // Output_data_got is used to manage a GOT. Each entry in the GOT is
2266 // for one symbol--either a global symbol or a local symbol in an
2267 // object. The target specific code adds entries to the GOT as
2268 // needed. The GOT_SIZE template parameter is the size in bits of a
2269 // GOT entry, typically 32 or 64.
2270
2271 class Output_data_got_base : public Output_section_data_build
2272 {
2273 public:
2274 Output_data_got_base(uint64_t align)
2275 : Output_section_data_build(align)
2276 { }
2277
2278 Output_data_got_base(off_t data_size, uint64_t align)
2279 : Output_section_data_build(data_size, align)
2280 { }
2281
2282 // Reserve the slot at index I in the GOT.
2283 void
2284 reserve_slot(unsigned int i)
2285 { this->do_reserve_slot(i); }
2286
2287 protected:
2288 // Reserve the slot at index I in the GOT.
2289 virtual void
2290 do_reserve_slot(unsigned int i) = 0;
2291 };
2292
2293 template<int got_size, bool big_endian>
2294 class Output_data_got : public Output_data_got_base
2295 {
2296 public:
2297 typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
2298
2299 Output_data_got()
2300 : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
2301 entries_(), free_list_()
2302 { }
2303
2304 Output_data_got(off_t data_size)
2305 : Output_data_got_base(data_size,
2306 Output_data::default_alignment_for_size(got_size)),
2307 entries_(), free_list_()
2308 {
2309 // For an incremental update, we have an existing GOT section.
2310 // Initialize the list of entries and the free list.
2311 this->entries_.resize(data_size / (got_size / 8));
2312 this->free_list_.init(data_size, false);
2313 }
2314
2315 // Add an entry for a global symbol to the GOT. Return true if this
2316 // is a new GOT entry, false if the symbol was already in the GOT.
2317 bool
2318 add_global(Symbol* gsym, unsigned int got_type);
2319
2320 // Like add_global, but use the PLT offset of the global symbol if
2321 // it has one.
2322 bool
2323 add_global_plt(Symbol* gsym, unsigned int got_type);
2324
2325 // Like add_global, but for a TLS symbol where the value will be
2326 // offset using Target::tls_offset_for_global.
2327 bool
2328 add_global_tls(Symbol* gsym, unsigned int got_type)
2329 { return add_global_plt(gsym, got_type); }
2330
2331 // Add an entry for a global symbol to the GOT, and add a dynamic
2332 // relocation of type R_TYPE for the GOT entry.
2333 void
2334 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2335 Output_data_reloc_generic* rel_dyn, unsigned int r_type);
2336
2337 // Add a pair of entries for a global symbol to the GOT, and add
2338 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
2339 void
2340 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2341 Output_data_reloc_generic* rel_dyn,
2342 unsigned int r_type_1, unsigned int r_type_2);
2343
2344 // Add an entry for a local symbol to the GOT. This returns true if
2345 // this is a new GOT entry, false if the symbol already has a GOT
2346 // entry.
2347 bool
2348 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
2349
2350 // Like add_local, but use the PLT offset of the local symbol if it
2351 // has one.
2352 bool
2353 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
2354
2355 // Like add_local, but for a TLS symbol where the value will be
2356 // offset using Target::tls_offset_for_local.
2357 bool
2358 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2359 { return add_local_plt(object, sym_index, got_type); }
2360
2361 // Add an entry for a local symbol to the GOT, and add a dynamic
2362 // relocation of type R_TYPE for the GOT entry.
2363 void
2364 add_local_with_rel(Relobj* object, unsigned int sym_index,
2365 unsigned int got_type, Output_data_reloc_generic* rel_dyn,
2366 unsigned int r_type);
2367
2368 // Add a pair of entries for a local symbol to the GOT, and add
2369 // a dynamic relocation of type R_TYPE using the section symbol of
2370 // the output section to which input section SHNDX maps, on the first.
2371 // The first got entry will have a value of zero, the second the
2372 // value of the local symbol.
2373 void
2374 add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
2375 unsigned int shndx, unsigned int got_type,
2376 Output_data_reloc_generic* rel_dyn,
2377 unsigned int r_type);
2378
2379 // Add a pair of entries for a local symbol to the GOT, and add
2380 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
2381 // The first got entry will have a value of zero, the second the
2382 // value of the local symbol offset by Target::tls_offset_for_local.
2383 void
2384 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2385 unsigned int got_type,
2386 Output_data_reloc_generic* rel_dyn,
2387 unsigned int r_type);
2388
2389 // Add a constant to the GOT. This returns the offset of the new
2390 // entry from the start of the GOT.
2391 unsigned int
2392 add_constant(Valtype constant)
2393 { return this->add_got_entry(Got_entry(constant)); }
2394
2395 // Add a pair of constants to the GOT. This returns the offset of
2396 // the new entry from the start of the GOT.
2397 unsigned int
2398 add_constant_pair(Valtype c1, Valtype c2)
2399 { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
2400
2401 // Replace GOT entry I with a new constant.
2402 void
2403 replace_constant(unsigned int i, Valtype constant)
2404 {
2405 this->replace_got_entry(i, Got_entry(constant));
2406 }
2407
2408 // Reserve a slot in the GOT for a local symbol.
2409 void
2410 reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
2411 unsigned int got_type);
2412
2413 // Reserve a slot in the GOT for a global symbol.
2414 void
2415 reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
2416
2417 protected:
2418 // Write out the GOT table.
2419 void
2420 do_write(Output_file*);
2421
2422 // Write to a map file.
2423 void
2424 do_print_to_mapfile(Mapfile* mapfile) const
2425 { mapfile->print_output_data(this, _("** GOT")); }
2426
2427 // Reserve the slot at index I in the GOT.
2428 virtual void
2429 do_reserve_slot(unsigned int i)
2430 { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
2431
2432 // Return the number of words in the GOT.
2433 unsigned int
2434 num_entries () const
2435 { return this->entries_.size(); }
2436
2437 // Return the offset into the GOT of GOT entry I.
2438 unsigned int
2439 got_offset(unsigned int i) const
2440 { return i * (got_size / 8); }
2441
2442 private:
2443 // This POD class holds a single GOT entry.
2444 class Got_entry
2445 {
2446 public:
2447 // Create a zero entry.
2448 Got_entry()
2449 : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false)
2450 { this->u_.constant = 0; }
2451
2452 // Create a global symbol entry.
2453 Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
2454 : local_sym_index_(GSYM_CODE),
2455 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2456 { this->u_.gsym = gsym; }
2457
2458 // Create a local symbol entry.
2459 Got_entry(Relobj* object, unsigned int local_sym_index,
2460 bool use_plt_or_tls_offset)
2461 : local_sym_index_(local_sym_index),
2462 use_plt_or_tls_offset_(use_plt_or_tls_offset)
2463 {
2464 gold_assert(local_sym_index != GSYM_CODE
2465 && local_sym_index != CONSTANT_CODE
2466 && local_sym_index != RESERVED_CODE
2467 && local_sym_index == this->local_sym_index_);
2468 this->u_.object = object;
2469 }
2470
2471 // Create a constant entry. The constant is a host value--it will
2472 // be swapped, if necessary, when it is written out.
2473 explicit Got_entry(Valtype constant)
2474 : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
2475 { this->u_.constant = constant; }
2476
2477 // Write the GOT entry to an output view.
2478 void
2479 write(unsigned int got_indx, unsigned char* pov) const;
2480
2481 private:
2482 enum
2483 {
2484 GSYM_CODE = 0x7fffffff,
2485 CONSTANT_CODE = 0x7ffffffe,
2486 RESERVED_CODE = 0x7ffffffd
2487 };
2488
2489 union
2490 {
2491 // For a local symbol, the object.
2492 Relobj* object;
2493 // For a global symbol, the symbol.
2494 Symbol* gsym;
2495 // For a constant, the constant.
2496 Valtype constant;
2497 } u_;
2498 // For a local symbol, the local symbol index. This is GSYM_CODE
2499 // for a global symbol, or CONSTANT_CODE for a constant.
2500 unsigned int local_sym_index_ : 31;
2501 // Whether to use the PLT offset of the symbol if it has one.
2502 // For TLS symbols, whether to offset the symbol value.
2503 bool use_plt_or_tls_offset_ : 1;
2504 };
2505
2506 typedef std::vector<Got_entry> Got_entries;
2507
2508 // Create a new GOT entry and return its offset.
2509 unsigned int
2510 add_got_entry(Got_entry got_entry);
2511
2512 // Create a pair of new GOT entries and return the offset of the first.
2513 unsigned int
2514 add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
2515
2516 // Replace GOT entry I with a new value.
2517 void
2518 replace_got_entry(unsigned int i, Got_entry got_entry);
2519
2520 // Return the offset into the GOT of the last entry added.
2521 unsigned int
2522 last_got_offset() const
2523 { return this->got_offset(this->num_entries() - 1); }
2524
2525 // Set the size of the section.
2526 void
2527 set_got_size()
2528 { this->set_current_data_size(this->got_offset(this->num_entries())); }
2529
2530 // The list of GOT entries.
2531 Got_entries entries_;
2532
2533 // List of available regions within the section, for incremental
2534 // update links.
2535 Free_list free_list_;
2536 };
2537
2538 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
2539 // section.
2540
2541 class Output_data_dynamic : public Output_section_data
2542 {
2543 public:
2544 Output_data_dynamic(Stringpool* pool)
2545 : Output_section_data(Output_data::default_alignment()),
2546 entries_(), pool_(pool)
2547 { }
2548
2549 // Add a new dynamic entry with a fixed numeric value.
2550 void
2551 add_constant(elfcpp::DT tag, unsigned int val)
2552 { this->add_entry(Dynamic_entry(tag, val)); }
2553
2554 // Add a new dynamic entry with the address of output data.
2555 void
2556 add_section_address(elfcpp::DT tag, const Output_data* od)
2557 { this->add_entry(Dynamic_entry(tag, od, false)); }
2558
2559 // Add a new dynamic entry with the address of output data
2560 // plus a constant offset.
2561 void
2562 add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
2563 unsigned int offset)
2564 { this->add_entry(Dynamic_entry(tag, od, offset)); }
2565
2566 // Add a new dynamic entry with the size of output data.
2567 void
2568 add_section_size(elfcpp::DT tag, const Output_data* od)
2569 { this->add_entry(Dynamic_entry(tag, od, true)); }
2570
2571 // Add a new dynamic entry with the total size of two output datas.
2572 void
2573 add_section_size(elfcpp::DT tag, const Output_data* od,
2574 const Output_data* od2)
2575 { this->add_entry(Dynamic_entry(tag, od, od2)); }
2576
2577 // Add a new dynamic entry with the address of a symbol.
2578 void
2579 add_symbol(elfcpp::DT tag, const Symbol* sym)
2580 { this->add_entry(Dynamic_entry(tag, sym)); }
2581
2582 // Add a new dynamic entry with a string.
2583 void
2584 add_string(elfcpp::DT tag, const char* str)
2585 { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
2586
2587 void
2588 add_string(elfcpp::DT tag, const std::string& str)
2589 { this->add_string(tag, str.c_str()); }
2590
2591 // Add a new dynamic entry with custom value.
2592 void
2593 add_custom(elfcpp::DT tag)
2594 { this->add_entry(Dynamic_entry(tag)); }
2595
2596 protected:
2597 // Adjust the output section to set the entry size.
2598 void
2599 do_adjust_output_section(Output_section*);
2600
2601 // Set the final data size.
2602 void
2603 set_final_data_size();
2604
2605 // Write out the dynamic entries.
2606 void
2607 do_write(Output_file*);
2608
2609 // Write to a map file.
2610 void
2611 do_print_to_mapfile(Mapfile* mapfile) const
2612 { mapfile->print_output_data(this, _("** dynamic")); }
2613
2614 private:
2615 // This POD class holds a single dynamic entry.
2616 class Dynamic_entry
2617 {
2618 public:
2619 // Create an entry with a fixed numeric value.
2620 Dynamic_entry(elfcpp::DT tag, unsigned int val)
2621 : tag_(tag), offset_(DYNAMIC_NUMBER)
2622 { this->u_.val = val; }
2623
2624 // Create an entry with the size or address of a section.
2625 Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
2626 : tag_(tag),
2627 offset_(section_size
2628 ? DYNAMIC_SECTION_SIZE
2629 : DYNAMIC_SECTION_ADDRESS)
2630 {
2631 this->u_.od = od;
2632 this->od2 = NULL;
2633 }
2634
2635 // Create an entry with the size of two sections.
2636 Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
2637 : tag_(tag),
2638 offset_(DYNAMIC_SECTION_SIZE)
2639 {
2640 this->u_.od = od;
2641 this->od2 = od2;
2642 }
2643
2644 // Create an entry with the address of a section plus a constant offset.
2645 Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
2646 : tag_(tag),
2647 offset_(offset)
2648 { this->u_.od = od; }
2649
2650 // Create an entry with the address of a symbol.
2651 Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
2652 : tag_(tag), offset_(DYNAMIC_SYMBOL)
2653 { this->u_.sym = sym; }
2654
2655 // Create an entry with a string.
2656 Dynamic_entry(elfcpp::DT tag, const char* str)
2657 : tag_(tag), offset_(DYNAMIC_STRING)
2658 { this->u_.str = str; }
2659
2660 // Create an entry with a custom value.
2661 Dynamic_entry(elfcpp::DT tag)
2662 : tag_(tag), offset_(DYNAMIC_CUSTOM)
2663 { }
2664
2665 // Return the tag of this entry.
2666 elfcpp::DT
2667 tag() const
2668 { return this->tag_; }
2669
2670 // Write the dynamic entry to an output view.
2671 template<int size, bool big_endian>
2672 void
2673 write(unsigned char* pov, const Stringpool*) const;
2674
2675 private:
2676 // Classification is encoded in the OFFSET field.
2677 enum Classification
2678 {
2679 // Section address.
2680 DYNAMIC_SECTION_ADDRESS = 0,
2681 // Number.
2682 DYNAMIC_NUMBER = -1U,
2683 // Section size.
2684 DYNAMIC_SECTION_SIZE = -2U,
2685 // Symbol adress.
2686 DYNAMIC_SYMBOL = -3U,
2687 // String.
2688 DYNAMIC_STRING = -4U,
2689 // Custom value.
2690 DYNAMIC_CUSTOM = -5U
2691 // Any other value indicates a section address plus OFFSET.
2692 };
2693
2694 union
2695 {
2696 // For DYNAMIC_NUMBER.
2697 unsigned int val;
2698 // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
2699 const Output_data* od;
2700 // For DYNAMIC_SYMBOL.
2701 const Symbol* sym;
2702 // For DYNAMIC_STRING.
2703 const char* str;
2704 } u_;
2705 // For DYNAMIC_SYMBOL with two sections.
2706 const Output_data* od2;
2707 // The dynamic tag.
2708 elfcpp::DT tag_;
2709 // The type of entry (Classification) or offset within a section.
2710 unsigned int offset_;
2711 };
2712
2713 // Add an entry to the list.
2714 void
2715 add_entry(const Dynamic_entry& entry)
2716 { this->entries_.push_back(entry); }
2717
2718 // Sized version of write function.
2719 template<int size, bool big_endian>
2720 void
2721 sized_write(Output_file* of);
2722
2723 // The type of the list of entries.
2724 typedef std::vector<Dynamic_entry> Dynamic_entries;
2725
2726 // The entries.
2727 Dynamic_entries entries_;
2728 // The pool used for strings.
2729 Stringpool* pool_;
2730 };
2731
2732 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
2733 // which may be required if the object file has more than
2734 // SHN_LORESERVE sections.
2735
2736 class Output_symtab_xindex : public Output_section_data
2737 {
2738 public:
2739 Output_symtab_xindex(size_t symcount)
2740 : Output_section_data(symcount * 4, 4, true),
2741 entries_()
2742 { }
2743
2744 // Add an entry: symbol number SYMNDX has section SHNDX.
2745 void
2746 add(unsigned int symndx, unsigned int shndx)
2747 { this->entries_.push_back(std::make_pair(symndx, shndx)); }
2748
2749 protected:
2750 void
2751 do_write(Output_file*);
2752
2753 // Write to a map file.
2754 void
2755 do_print_to_mapfile(Mapfile* mapfile) const
2756 { mapfile->print_output_data(this, _("** symtab xindex")); }
2757
2758 private:
2759 template<bool big_endian>
2760 void
2761 endian_do_write(unsigned char*);
2762
2763 // It is likely that most symbols will not require entries. Rather
2764 // than keep a vector for all symbols, we keep pairs of symbol index
2765 // and section index.
2766 typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
2767
2768 // The entries we need.
2769 Xindex_entries entries_;
2770 };
2771
2772 // A relaxed input section.
2773 class Output_relaxed_input_section : public Output_section_data_build
2774 {
2775 public:
2776 // We would like to call relobj->section_addralign(shndx) to get the
2777 // alignment but we do not want the constructor to fail. So callers
2778 // are repsonsible for ensuring that.
2779 Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
2780 uint64_t addralign)
2781 : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
2782 { }
2783
2784 // Return the Relobj of this relaxed input section.
2785 Relobj*
2786 relobj() const
2787 { return this->relobj_; }
2788
2789 // Return the section index of this relaxed input section.
2790 unsigned int
2791 shndx() const
2792 { return this->shndx_; }
2793
2794 protected:
2795 void
2796 set_relobj(Relobj* relobj)
2797 { this->relobj_ = relobj; }
2798
2799 void
2800 set_shndx(unsigned int shndx)
2801 { this->shndx_ = shndx; }
2802
2803 private:
2804 Relobj* relobj_;
2805 unsigned int shndx_;
2806 };
2807
2808 // This class describes properties of merge data sections. It is used
2809 // as a key type for maps.
2810 class Merge_section_properties
2811 {
2812 public:
2813 Merge_section_properties(bool is_string, uint64_t entsize,
2814 uint64_t addralign)
2815 : is_string_(is_string), entsize_(entsize), addralign_(addralign)
2816 { }
2817
2818 // Whether this equals to another Merge_section_properties MSP.
2819 bool
2820 eq(const Merge_section_properties& msp) const
2821 {
2822 return ((this->is_string_ == msp.is_string_)
2823 && (this->entsize_ == msp.entsize_)
2824 && (this->addralign_ == msp.addralign_));
2825 }
2826
2827 // Compute a hash value for this using 64-bit FNV-1a hash.
2828 size_t
2829 hash_value() const
2830 {
2831 uint64_t h = 14695981039346656037ULL; // FNV offset basis.
2832 uint64_t prime = 1099511628211ULL;
2833 h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
2834 h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
2835 h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
2836 return h;
2837 }
2838
2839 // Functors for associative containers.
2840 struct equal_to
2841 {
2842 bool
2843 operator()(const Merge_section_properties& msp1,
2844 const Merge_section_properties& msp2) const
2845 { return msp1.eq(msp2); }
2846 };
2847
2848 struct hash
2849 {
2850 size_t
2851 operator()(const Merge_section_properties& msp) const
2852 { return msp.hash_value(); }
2853 };
2854
2855 private:
2856 // Whether this merge data section is for strings.
2857 bool is_string_;
2858 // Entsize of this merge data section.
2859 uint64_t entsize_;
2860 // Address alignment.
2861 uint64_t addralign_;
2862 };
2863
2864 // This class is used to speed up look up of special input sections in an
2865 // Output_section.
2866
2867 class Output_section_lookup_maps
2868 {
2869 public:
2870 Output_section_lookup_maps()
2871 : is_valid_(true), merge_sections_by_properties_(),
2872 merge_sections_by_id_(), relaxed_input_sections_by_id_()
2873 { }
2874
2875 // Whether the maps are valid.
2876 bool
2877 is_valid() const
2878 { return this->is_valid_; }
2879
2880 // Invalidate the maps.
2881 void
2882 invalidate()
2883 { this->is_valid_ = false; }
2884
2885 // Clear the maps.
2886 void
2887 clear()
2888 {
2889 this->merge_sections_by_properties_.clear();
2890 this->merge_sections_by_id_.clear();
2891 this->relaxed_input_sections_by_id_.clear();
2892 // A cleared map is valid.
2893 this->is_valid_ = true;
2894 }
2895
2896 // Find a merge section by merge section properties. Return NULL if none
2897 // is found.
2898 Output_merge_base*
2899 find_merge_section(const Merge_section_properties& msp) const
2900 {
2901 gold_assert(this->is_valid_);
2902 Merge_sections_by_properties::const_iterator p =
2903 this->merge_sections_by_properties_.find(msp);
2904 return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
2905 }
2906
2907 // Find a merge section by section ID of a merge input section. Return NULL
2908 // if none is found.
2909 Output_merge_base*
2910 find_merge_section(const Object* object, unsigned int shndx) const
2911 {
2912 gold_assert(this->is_valid_);
2913 Merge_sections_by_id::const_iterator p =
2914 this->merge_sections_by_id_.find(Const_section_id(object, shndx));
2915 return p != this->merge_sections_by_id_.end() ? p->second : NULL;
2916 }
2917
2918 // Add a merge section pointed by POMB with properties MSP.
2919 void
2920 add_merge_section(const Merge_section_properties& msp,
2921 Output_merge_base* pomb)
2922 {
2923 std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
2924 std::pair<Merge_sections_by_properties::iterator, bool> result =
2925 this->merge_sections_by_properties_.insert(value);
2926 gold_assert(result.second);
2927 }
2928
2929 // Add a mapping from a merged input section in OBJECT with index SHNDX
2930 // to a merge output section pointed by POMB.
2931 void
2932 add_merge_input_section(const Object* object, unsigned int shndx,
2933 Output_merge_base* pomb)
2934 {
2935 Const_section_id csid(object, shndx);
2936 std::pair<Const_section_id, Output_merge_base*> value(csid, pomb);
2937 std::pair<Merge_sections_by_id::iterator, bool> result =
2938 this->merge_sections_by_id_.insert(value);
2939 gold_assert(result.second);
2940 }
2941
2942 // Find a relaxed input section of OBJECT with index SHNDX.
2943 Output_relaxed_input_section*
2944 find_relaxed_input_section(const Object* object, unsigned int shndx) const
2945 {
2946 gold_assert(this->is_valid_);
2947 Relaxed_input_sections_by_id::const_iterator p =
2948 this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
2949 return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
2950 }
2951
2952 // Add a relaxed input section pointed by POMB and whose original input
2953 // section is in OBJECT with index SHNDX.
2954 void
2955 add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
2956 Output_relaxed_input_section* poris)
2957 {
2958 Const_section_id csid(relobj, shndx);
2959 std::pair<Const_section_id, Output_relaxed_input_section*>
2960 value(csid, poris);
2961 std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
2962 this->relaxed_input_sections_by_id_.insert(value);
2963 gold_assert(result.second);
2964 }
2965
2966 private:
2967 typedef Unordered_map<Const_section_id, Output_merge_base*,
2968 Const_section_id_hash>
2969 Merge_sections_by_id;
2970
2971 typedef Unordered_map<Merge_section_properties, Output_merge_base*,
2972 Merge_section_properties::hash,
2973 Merge_section_properties::equal_to>
2974 Merge_sections_by_properties;
2975
2976 typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
2977 Const_section_id_hash>
2978 Relaxed_input_sections_by_id;
2979
2980 // Whether this is valid
2981 bool is_valid_;
2982 // Merge sections by merge section properties.
2983 Merge_sections_by_properties merge_sections_by_properties_;
2984 // Merge sections by section IDs.
2985 Merge_sections_by_id merge_sections_by_id_;
2986 // Relaxed sections by section IDs.
2987 Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
2988 };
2989
2990 // This abstract base class defines the interface for the
2991 // types of methods used to fill free space left in an output
2992 // section during an incremental link. These methods are used
2993 // to insert dummy compilation units into debug info so that
2994 // debug info consumers can scan the debug info serially.
2995
2996 class Output_fill
2997 {
2998 public:
2999 Output_fill()
3000 : is_big_endian_(parameters->target().is_big_endian())
3001 { }
3002
3003 virtual
3004 ~Output_fill()
3005 { }
3006
3007 // Return the smallest size chunk of free space that can be
3008 // filled with a dummy compilation unit.
3009 size_t
3010 minimum_hole_size() const
3011 { return this->do_minimum_hole_size(); }
3012
3013 // Write a fill pattern of length LEN at offset OFF in the file.
3014 void
3015 write(Output_file* of, off_t off, size_t len) const
3016 { this->do_write(of, off, len); }
3017
3018 protected:
3019 virtual size_t
3020 do_minimum_hole_size() const = 0;
3021
3022 virtual void
3023 do_write(Output_file* of, off_t off, size_t len) const = 0;
3024
3025 bool
3026 is_big_endian() const
3027 { return this->is_big_endian_; }
3028
3029 private:
3030 bool is_big_endian_;
3031 };
3032
3033 // Fill method that introduces a dummy compilation unit in
3034 // a .debug_info or .debug_types section.
3035
3036 class Output_fill_debug_info : public Output_fill
3037 {
3038 public:
3039 Output_fill_debug_info(bool is_debug_types)
3040 : is_debug_types_(is_debug_types)
3041 { }
3042
3043 protected:
3044 virtual size_t
3045 do_minimum_hole_size() const;
3046
3047 virtual void
3048 do_write(Output_file* of, off_t off, size_t len) const;
3049
3050 private:
3051 // Version of the header.
3052 static const int version = 4;
3053 // True if this is a .debug_types section.
3054 bool is_debug_types_;
3055 };
3056
3057 // Fill method that introduces a dummy compilation unit in
3058 // a .debug_line section.
3059
3060 class Output_fill_debug_line : public Output_fill
3061 {
3062 public:
3063 Output_fill_debug_line()
3064 { }
3065
3066 protected:
3067 virtual size_t
3068 do_minimum_hole_size() const;
3069
3070 virtual void
3071 do_write(Output_file* of, off_t off, size_t len) const;
3072
3073 private:
3074 // Version of the header. We write a DWARF-3 header because it's smaller
3075 // and many tools have not yet been updated to understand the DWARF-4 header.
3076 static const int version = 3;
3077 // Length of the portion of the header that follows the header_length
3078 // field. This includes the following fields:
3079 // minimum_instruction_length, default_is_stmt, line_base, line_range,
3080 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
3081 // The standard_opcode_lengths array is 12 bytes long, and the
3082 // include_directories and filenames fields each contain only a single
3083 // null byte.
3084 static const size_t header_length = 19;
3085 };
3086
3087 // An output section. We don't expect to have too many output
3088 // sections, so we don't bother to do a template on the size.
3089
3090 class Output_section : public Output_data
3091 {
3092 public:
3093 // Create an output section, giving the name, type, and flags.
3094 Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
3095 virtual ~Output_section();
3096
3097 // Add a new input section SHNDX, named NAME, with header SHDR, from
3098 // object OBJECT. RELOC_SHNDX is the index of a relocation section
3099 // which applies to this section, or 0 if none, or -1 if more than
3100 // one. HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
3101 // in a linker script; in that case we need to keep track of input
3102 // sections associated with an output section. Return the offset
3103 // within the output section.
3104 template<int size, bool big_endian>
3105 off_t
3106 add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
3107 unsigned int shndx, const char* name,
3108 const elfcpp::Shdr<size, big_endian>& shdr,
3109 unsigned int reloc_shndx, bool have_sections_script);
3110
3111 // Add generated data POSD to this output section.
3112 void
3113 add_output_section_data(Output_section_data* posd);
3114
3115 // Add a relaxed input section PORIS called NAME to this output section
3116 // with LAYOUT.
3117 void
3118 add_relaxed_input_section(Layout* layout,
3119 Output_relaxed_input_section* poris,
3120 const std::string& name);
3121
3122 // Return the section name.
3123 const char*
3124 name() const
3125 { return this->name_; }
3126
3127 // Return the section type.
3128 elfcpp::Elf_Word
3129 type() const
3130 { return this->type_; }
3131
3132 // Return the section flags.
3133 elfcpp::Elf_Xword
3134 flags() const
3135 { return this->flags_; }
3136
3137 typedef std::map<Section_id, unsigned int> Section_layout_order;
3138
3139 void
3140 update_section_layout(const Section_layout_order* order_map);
3141
3142 // Update the output section flags based on input section flags.
3143 void
3144 update_flags_for_input_section(elfcpp::Elf_Xword flags);
3145
3146 // Return the entsize field.
3147 uint64_t
3148 entsize() const
3149 { return this->entsize_; }
3150
3151 // Set the entsize field.
3152 void
3153 set_entsize(uint64_t v);
3154
3155 // Set the load address.
3156 void
3157 set_load_address(uint64_t load_address)
3158 {
3159 this->load_address_ = load_address;
3160 this->has_load_address_ = true;
3161 }
3162
3163 // Set the link field to the output section index of a section.
3164 void
3165 set_link_section(const Output_data* od)
3166 {
3167 gold_assert(this->link_ == 0
3168 && !this->should_link_to_symtab_
3169 && !this->should_link_to_dynsym_);
3170 this->link_section_ = od;
3171 }
3172
3173 // Set the link field to a constant.
3174 void
3175 set_link(unsigned int v)
3176 {
3177 gold_assert(this->link_section_ == NULL
3178 && !this->should_link_to_symtab_
3179 && !this->should_link_to_dynsym_);
3180 this->link_ = v;
3181 }
3182
3183 // Record that this section should link to the normal symbol table.
3184 void
3185 set_should_link_to_symtab()
3186 {
3187 gold_assert(this->link_section_ == NULL
3188 && this->link_ == 0
3189 && !this->should_link_to_dynsym_);
3190 this->should_link_to_symtab_ = true;
3191 }
3192
3193 // Record that this section should link to the dynamic symbol table.
3194 void
3195 set_should_link_to_dynsym()
3196 {
3197 gold_assert(this->link_section_ == NULL
3198 && this->link_ == 0
3199 && !this->should_link_to_symtab_);
3200 this->should_link_to_dynsym_ = true;
3201 }
3202
3203 // Return the info field.
3204 unsigned int
3205 info() const
3206 {
3207 gold_assert(this->info_section_ == NULL
3208 && this->info_symndx_ == NULL);
3209 return this->info_;
3210 }
3211
3212 // Set the info field to the output section index of a section.
3213 void
3214 set_info_section(const Output_section* os)
3215 {
3216 gold_assert((this->info_section_ == NULL
3217 || (this->info_section_ == os
3218 && this->info_uses_section_index_))
3219 && this->info_symndx_ == NULL
3220 && this->info_ == 0);
3221 this->info_section_ = os;
3222 this->info_uses_section_index_= true;
3223 }
3224
3225 // Set the info field to the symbol table index of a symbol.
3226 void
3227 set_info_symndx(const Symbol* sym)
3228 {
3229 gold_assert(this->info_section_ == NULL
3230 && (this->info_symndx_ == NULL
3231 || this->info_symndx_ == sym)
3232 && this->info_ == 0);
3233 this->info_symndx_ = sym;
3234 }
3235
3236 // Set the info field to the symbol table index of a section symbol.
3237 void
3238 set_info_section_symndx(const Output_section* os)
3239 {
3240 gold_assert((this->info_section_ == NULL
3241 || (this->info_section_ == os
3242 && !this->info_uses_section_index_))
3243 && this->info_symndx_ == NULL
3244 && this->info_ == 0);
3245 this->info_section_ = os;
3246 this->info_uses_section_index_ = false;
3247 }
3248
3249 // Set the info field to a constant.
3250 void
3251 set_info(unsigned int v)
3252 {
3253 gold_assert(this->info_section_ == NULL
3254 && this->info_symndx_ == NULL
3255 && (this->info_ == 0
3256 || this->info_ == v));
3257 this->info_ = v;
3258 }
3259
3260 // Set the addralign field.
3261 void
3262 set_addralign(uint64_t v)
3263 { this->addralign_ = v; }
3264
3265 void
3266 checkpoint_set_addralign(uint64_t val)
3267 {
3268 if (this->checkpoint_ != NULL)
3269 this->checkpoint_->set_addralign(val);
3270 }
3271
3272 // Whether the output section index has been set.
3273 bool
3274 has_out_shndx() const
3275 { return this->out_shndx_ != -1U; }
3276
3277 // Indicate that we need a symtab index.
3278 void
3279 set_needs_symtab_index()
3280 { this->needs_symtab_index_ = true; }
3281
3282 // Return whether we need a symtab index.
3283 bool
3284 needs_symtab_index() const
3285 { return this->needs_symtab_index_; }
3286
3287 // Get the symtab index.
3288 unsigned int
3289 symtab_index() const
3290 {
3291 gold_assert(this->symtab_index_ != 0);
3292 return this->symtab_index_;
3293 }
3294
3295 // Set the symtab index.
3296 void
3297 set_symtab_index(unsigned int index)
3298 {
3299 gold_assert(index != 0);
3300 this->symtab_index_ = index;
3301 }
3302
3303 // Indicate that we need a dynsym index.
3304 void
3305 set_needs_dynsym_index()
3306 { this->needs_dynsym_index_ = true; }
3307
3308 // Return whether we need a dynsym index.
3309 bool
3310 needs_dynsym_index() const
3311 { return this->needs_dynsym_index_; }
3312
3313 // Get the dynsym index.
3314 unsigned int
3315 dynsym_index() const
3316 {
3317 gold_assert(this->dynsym_index_ != 0);
3318 return this->dynsym_index_;
3319 }
3320
3321 // Set the dynsym index.
3322 void
3323 set_dynsym_index(unsigned int index)
3324 {
3325 gold_assert(index != 0);
3326 this->dynsym_index_ = index;
3327 }
3328
3329 // Sort the attached input sections.
3330 void
3331 sort_attached_input_sections();
3332
3333 // Return whether the input sections sections attachd to this output
3334 // section may require sorting. This is used to handle constructor
3335 // priorities compatibly with GNU ld.
3336 bool
3337 may_sort_attached_input_sections() const
3338 { return this->may_sort_attached_input_sections_; }
3339
3340 // Record that the input sections attached to this output section
3341 // may require sorting.
3342 void
3343 set_may_sort_attached_input_sections()
3344 { this->may_sort_attached_input_sections_ = true; }
3345
3346 // Returns true if input sections must be sorted according to the
3347 // order in which their name appear in the --section-ordering-file.
3348 bool
3349 input_section_order_specified()
3350 { return this->input_section_order_specified_; }
3351
3352 // Record that input sections must be sorted as some of their names
3353 // match the patterns specified through --section-ordering-file.
3354 void
3355 set_input_section_order_specified()
3356 { this->input_section_order_specified_ = true; }
3357
3358 // Return whether the input sections attached to this output section
3359 // require sorting. This is used to handle constructor priorities
3360 // compatibly with GNU ld.
3361 bool
3362 must_sort_attached_input_sections() const
3363 { return this->must_sort_attached_input_sections_; }
3364
3365 // Record that the input sections attached to this output section
3366 // require sorting.
3367 void
3368 set_must_sort_attached_input_sections()
3369 { this->must_sort_attached_input_sections_ = true; }
3370
3371 // Get the order in which this section appears in the PT_LOAD output
3372 // segment.
3373 Output_section_order
3374 order() const
3375 { return this->order_; }
3376
3377 // Set the order for this section.
3378 void
3379 set_order(Output_section_order order)
3380 { this->order_ = order; }
3381
3382 // Return whether this section holds relro data--data which has
3383 // dynamic relocations but which may be marked read-only after the
3384 // dynamic relocations have been completed.
3385 bool
3386 is_relro() const
3387 { return this->is_relro_; }
3388
3389 // Record that this section holds relro data.
3390 void
3391 set_is_relro()
3392 { this->is_relro_ = true; }
3393
3394 // Record that this section does not hold relro data.
3395 void
3396 clear_is_relro()
3397 { this->is_relro_ = false; }
3398
3399 // True if this is a small section: a section which holds small
3400 // variables.
3401 bool
3402 is_small_section() const
3403 { return this->is_small_section_; }
3404
3405 // Record that this is a small section.
3406 void
3407 set_is_small_section()
3408 { this->is_small_section_ = true; }
3409
3410 // True if this is a large section: a section which holds large
3411 // variables.
3412 bool
3413 is_large_section() const
3414 { return this->is_large_section_; }
3415
3416 // Record that this is a large section.
3417 void
3418 set_is_large_section()
3419 { this->is_large_section_ = true; }
3420
3421 // True if this is a large data (not BSS) section.
3422 bool
3423 is_large_data_section()
3424 { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
3425
3426 // Return whether this section should be written after all the input
3427 // sections are complete.
3428 bool
3429 after_input_sections() const
3430 { return this->after_input_sections_; }
3431
3432 // Record that this section should be written after all the input
3433 // sections are complete.
3434 void
3435 set_after_input_sections()
3436 { this->after_input_sections_ = true; }
3437
3438 // Return whether this section requires postprocessing after all
3439 // relocations have been applied.
3440 bool
3441 requires_postprocessing() const
3442 { return this->requires_postprocessing_; }
3443
3444 bool
3445 is_unique_segment() const
3446 { return this->is_unique_segment_; }
3447
3448 void
3449 set_is_unique_segment()
3450 { this->is_unique_segment_ = true; }
3451
3452 uint64_t extra_segment_flags() const
3453 { return this->extra_segment_flags_; }
3454
3455 void
3456 set_extra_segment_flags(uint64_t flags)
3457 { this->extra_segment_flags_ = flags; }
3458
3459 uint64_t segment_alignment() const
3460 { return this->segment_alignment_; }
3461
3462 void
3463 set_segment_alignment(uint64_t align)
3464 { this->segment_alignment_ = align; }
3465
3466 // If a section requires postprocessing, return the buffer to use.
3467 unsigned char*
3468 postprocessing_buffer() const
3469 {
3470 gold_assert(this->postprocessing_buffer_ != NULL);
3471 return this->postprocessing_buffer_;
3472 }
3473
3474 // If a section requires postprocessing, create the buffer to use.
3475 void
3476 create_postprocessing_buffer();
3477
3478 // If a section requires postprocessing, this is the size of the
3479 // buffer to which relocations should be applied.
3480 off_t
3481 postprocessing_buffer_size() const
3482 { return this->current_data_size_for_child(); }
3483
3484 // Modify the section name. This is only permitted for an
3485 // unallocated section, and only before the size has been finalized.
3486 // Otherwise the name will not get into Layout::namepool_.
3487 void
3488 set_name(const char* newname)
3489 {
3490 gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
3491 gold_assert(!this->is_data_size_valid());
3492 this->name_ = newname;
3493 }
3494
3495 // Return whether the offset OFFSET in the input section SHNDX in
3496 // object OBJECT is being included in the link.
3497 bool
3498 is_input_address_mapped(const Relobj* object, unsigned int shndx,
3499 off_t offset) const;
3500
3501 // Return the offset within the output section of OFFSET relative to
3502 // the start of input section SHNDX in object OBJECT.
3503 section_offset_type
3504 output_offset(const Relobj* object, unsigned int shndx,
3505 section_offset_type offset) const;
3506
3507 // Return the output virtual address of OFFSET relative to the start
3508 // of input section SHNDX in object OBJECT.
3509 uint64_t
3510 output_address(const Relobj* object, unsigned int shndx,
3511 off_t offset) const;
3512
3513 // Look for the merged section for input section SHNDX in object
3514 // OBJECT. If found, return true, and set *ADDR to the address of
3515 // the start of the merged section. This is not necessary the
3516 // output offset corresponding to input offset 0 in the section,
3517 // since the section may be mapped arbitrarily.
3518 bool
3519 find_starting_output_address(const Relobj* object, unsigned int shndx,
3520 uint64_t* addr) const;
3521
3522 // Record that this output section was found in the SECTIONS clause
3523 // of a linker script.
3524 void
3525 set_found_in_sections_clause()
3526 { this->found_in_sections_clause_ = true; }
3527
3528 // Return whether this output section was found in the SECTIONS
3529 // clause of a linker script.
3530 bool
3531 found_in_sections_clause() const
3532 { return this->found_in_sections_clause_; }
3533
3534 // Write the section header into *OPHDR.
3535 template<int size, bool big_endian>
3536 void
3537 write_header(const Layout*, const Stringpool*,
3538 elfcpp::Shdr_write<size, big_endian>*) const;
3539
3540 // The next few calls are for linker script support.
3541
3542 // In some cases we need to keep a list of the input sections
3543 // associated with this output section. We only need the list if we
3544 // might have to change the offsets of the input section within the
3545 // output section after we add the input section. The ordinary
3546 // input sections will be written out when we process the object
3547 // file, and as such we don't need to track them here. We do need
3548 // to track Output_section_data objects here. We store instances of
3549 // this structure in a std::vector, so it must be a POD. There can
3550 // be many instances of this structure, so we use a union to save
3551 // some space.
3552 class Input_section
3553 {
3554 public:
3555 Input_section()
3556 : shndx_(0), p2align_(0)
3557 {
3558 this->u1_.data_size = 0;
3559 this->u2_.object = NULL;
3560 }
3561
3562 // For an ordinary input section.
3563 Input_section(Relobj* object, unsigned int shndx, off_t data_size,
3564 uint64_t addralign)
3565 : shndx_(shndx),
3566 p2align_(ffsll(static_cast<long long>(addralign))),
3567 section_order_index_(0)
3568 {
3569 gold_assert(shndx != OUTPUT_SECTION_CODE
3570 && shndx != MERGE_DATA_SECTION_CODE
3571 && shndx != MERGE_STRING_SECTION_CODE
3572 && shndx != RELAXED_INPUT_SECTION_CODE);
3573 this->u1_.data_size = data_size;
3574 this->u2_.object = object;
3575 }
3576
3577 // For a non-merge output section.
3578 Input_section(Output_section_data* posd)
3579 : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
3580 section_order_index_(0)
3581 {
3582 this->u1_.data_size = 0;
3583 this->u2_.posd = posd;
3584 }
3585
3586 // For a merge section.
3587 Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
3588 : shndx_(is_string
3589 ? MERGE_STRING_SECTION_CODE
3590 : MERGE_DATA_SECTION_CODE),
3591 p2align_(0),
3592 section_order_index_(0)
3593 {
3594 this->u1_.entsize = entsize;
3595 this->u2_.posd = posd;
3596 }
3597
3598 // For a relaxed input section.
3599 Input_section(Output_relaxed_input_section* psection)
3600 : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
3601 section_order_index_(0)
3602 {
3603 this->u1_.data_size = 0;
3604 this->u2_.poris = psection;
3605 }
3606
3607 unsigned int
3608 section_order_index() const
3609 {
3610 return this->section_order_index_;
3611 }
3612
3613 void
3614 set_section_order_index(unsigned int number)
3615 {
3616 this->section_order_index_ = number;
3617 }
3618
3619 // The required alignment.
3620 uint64_t
3621 addralign() const
3622 {
3623 if (this->p2align_ != 0)
3624 return static_cast<uint64_t>(1) << (this->p2align_ - 1);
3625 else if (!this->is_input_section())
3626 return this->u2_.posd->addralign();
3627 else
3628 return 0;
3629 }
3630
3631 // Set the required alignment, which must be either 0 or a power of 2.
3632 // For input sections that are sub-classes of Output_section_data, a
3633 // alignment of zero means asking the underlying object for alignment.
3634 void
3635 set_addralign(uint64_t addralign)
3636 {
3637 if (addralign == 0)
3638 this->p2align_ = 0;
3639 else
3640 {
3641 gold_assert((addralign & (addralign - 1)) == 0);
3642 this->p2align_ = ffsll(static_cast<long long>(addralign));
3643 }
3644 }
3645
3646 // Return the current required size, without finalization.
3647 off_t
3648 current_data_size() const;
3649
3650 // Return the required size.
3651 off_t
3652 data_size() const;
3653
3654 // Whether this is an input section.
3655 bool
3656 is_input_section() const
3657 {
3658 return (this->shndx_ != OUTPUT_SECTION_CODE
3659 && this->shndx_ != MERGE_DATA_SECTION_CODE
3660 && this->shndx_ != MERGE_STRING_SECTION_CODE
3661 && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
3662 }
3663
3664 // Return whether this is a merge section which matches the
3665 // parameters.
3666 bool
3667 is_merge_section(bool is_string, uint64_t entsize,
3668 uint64_t addralign) const
3669 {
3670 return (this->shndx_ == (is_string
3671 ? MERGE_STRING_SECTION_CODE
3672 : MERGE_DATA_SECTION_CODE)
3673 && this->u1_.entsize == entsize
3674 && this->addralign() == addralign);
3675 }
3676
3677 // Return whether this is a merge section for some input section.
3678 bool
3679 is_merge_section() const
3680 {
3681 return (this->shndx_ == MERGE_DATA_SECTION_CODE
3682 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3683 }
3684
3685 // Return whether this is a relaxed input section.
3686 bool
3687 is_relaxed_input_section() const
3688 { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
3689
3690 // Return whether this is a generic Output_section_data.
3691 bool
3692 is_output_section_data() const
3693 {
3694 return this->shndx_ == OUTPUT_SECTION_CODE;
3695 }
3696
3697 // Return the object for an input section.
3698 Relobj*
3699 relobj() const;
3700
3701 // Return the input section index for an input section.
3702 unsigned int
3703 shndx() const;
3704
3705 // For non-input-sections, return the associated Output_section_data
3706 // object.
3707 Output_section_data*
3708 output_section_data() const
3709 {
3710 gold_assert(!this->is_input_section());
3711 return this->u2_.posd;
3712 }
3713
3714 // For a merge section, return the Output_merge_base pointer.
3715 Output_merge_base*
3716 output_merge_base() const
3717 {
3718 gold_assert(this->is_merge_section());
3719 return this->u2_.pomb;
3720 }
3721
3722 // Return the Output_relaxed_input_section object.
3723 Output_relaxed_input_section*
3724 relaxed_input_section() const
3725 {
3726 gold_assert(this->is_relaxed_input_section());
3727 return this->u2_.poris;
3728 }
3729
3730 // Set the output section.
3731 void
3732 set_output_section(Output_section* os)
3733 {
3734 gold_assert(!this->is_input_section());
3735 Output_section_data* posd =
3736 this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
3737 posd->set_output_section(os);
3738 }
3739
3740 // Set the address and file offset. This is called during
3741 // Layout::finalize. SECTION_FILE_OFFSET is the file offset of
3742 // the enclosing section.
3743 void
3744 set_address_and_file_offset(uint64_t address, off_t file_offset,
3745 off_t section_file_offset);
3746
3747 // Reset the address and file offset.
3748 void
3749 reset_address_and_file_offset();
3750
3751 // Finalize the data size.
3752 void
3753 finalize_data_size();
3754
3755 // Add an input section, for SHF_MERGE sections.
3756 bool
3757 add_input_section(Relobj* object, unsigned int shndx)
3758 {
3759 gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
3760 || this->shndx_ == MERGE_STRING_SECTION_CODE);
3761 return this->u2_.posd->add_input_section(object, shndx);
3762 }
3763
3764 // Given an input OBJECT, an input section index SHNDX within that
3765 // object, and an OFFSET relative to the start of that input
3766 // section, return whether or not the output offset is known. If
3767 // this function returns true, it sets *POUTPUT to the offset in
3768 // the output section, relative to the start of the input section
3769 // in the output section. *POUTPUT may be different from OFFSET
3770 // for a merged section.
3771 bool
3772 output_offset(const Relobj* object, unsigned int shndx,
3773 section_offset_type offset,
3774 section_offset_type* poutput) const;
3775
3776 // Return whether this is the merge section for the input section
3777 // SHNDX in OBJECT.
3778 bool
3779 is_merge_section_for(const Relobj* object, unsigned int shndx) const;
3780
3781 // Write out the data. This does nothing for an input section.
3782 void
3783 write(Output_file*);
3784
3785 // Write the data to a buffer. This does nothing for an input
3786 // section.
3787 void
3788 write_to_buffer(unsigned char*);
3789
3790 // Print to a map file.
3791 void
3792 print_to_mapfile(Mapfile*) const;
3793
3794 // Print statistics about merge sections to stderr.
3795 void
3796 print_merge_stats(const char* section_name)
3797 {
3798 if (this->shndx_ == MERGE_DATA_SECTION_CODE
3799 || this->shndx_ == MERGE_STRING_SECTION_CODE)
3800 this->u2_.posd->print_merge_stats(section_name);
3801 }
3802
3803 private:
3804 // Code values which appear in shndx_. If the value is not one of
3805 // these codes, it is the input section index in the object file.
3806 enum
3807 {
3808 // An Output_section_data.
3809 OUTPUT_SECTION_CODE = -1U,
3810 // An Output_section_data for an SHF_MERGE section with
3811 // SHF_STRINGS not set.
3812 MERGE_DATA_SECTION_CODE = -2U,
3813 // An Output_section_data for an SHF_MERGE section with
3814 // SHF_STRINGS set.
3815 MERGE_STRING_SECTION_CODE = -3U,
3816 // An Output_section_data for a relaxed input section.
3817 RELAXED_INPUT_SECTION_CODE = -4U
3818 };
3819
3820 // For an ordinary input section, this is the section index in the
3821 // input file. For an Output_section_data, this is
3822 // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3823 // MERGE_STRING_SECTION_CODE.
3824 unsigned int shndx_;
3825 // The required alignment, stored as a power of 2.
3826 unsigned int p2align_;
3827 union
3828 {
3829 // For an ordinary input section, the section size.
3830 off_t data_size;
3831 // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
3832 // used. For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
3833 // entity size.
3834 uint64_t entsize;
3835 } u1_;
3836 union
3837 {
3838 // For an ordinary input section, the object which holds the
3839 // input section.
3840 Relobj* object;
3841 // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
3842 // MERGE_STRING_SECTION_CODE, the data.
3843 Output_section_data* posd;
3844 Output_merge_base* pomb;
3845 // For RELAXED_INPUT_SECTION_CODE, the data.
3846 Output_relaxed_input_section* poris;
3847 } u2_;
3848 // The line number of the pattern it matches in the --section-ordering-file
3849 // file. It is 0 if does not match any pattern.
3850 unsigned int section_order_index_;
3851 };
3852
3853 // Store the list of input sections for this Output_section into the
3854 // list passed in. This removes the input sections, leaving only
3855 // any Output_section_data elements. This returns the size of those
3856 // Output_section_data elements. ADDRESS is the address of this
3857 // output section. FILL is the fill value to use, in case there are
3858 // any spaces between the remaining Output_section_data elements.
3859 uint64_t
3860 get_input_sections(uint64_t address, const std::string& fill,
3861 std::list<Input_section>*);
3862
3863 // Add a script input section. A script input section can either be
3864 // a plain input section or a sub-class of Output_section_data.
3865 void
3866 add_script_input_section(const Input_section& input_section);
3867
3868 // Set the current size of the output section.
3869 void
3870 set_current_data_size(off_t size)
3871 { this->set_current_data_size_for_child(size); }
3872
3873 // End of linker script support.
3874
3875 // Save states before doing section layout.
3876 // This is used for relaxation.
3877 void
3878 save_states();
3879
3880 // Restore states prior to section layout.
3881 void
3882 restore_states();
3883
3884 // Discard states.
3885 void
3886 discard_states();
3887
3888 // Convert existing input sections to relaxed input sections.
3889 void
3890 convert_input_sections_to_relaxed_sections(
3891 const std::vector<Output_relaxed_input_section*>& sections);
3892
3893 // Find a relaxed input section to an input section in OBJECT
3894 // with index SHNDX. Return NULL if none is found.
3895 const Output_relaxed_input_section*
3896 find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
3897
3898 // Whether section offsets need adjustment due to relaxation.
3899 bool
3900 section_offsets_need_adjustment() const
3901 { return this->section_offsets_need_adjustment_; }
3902
3903 // Set section_offsets_need_adjustment to be true.
3904 void
3905 set_section_offsets_need_adjustment()
3906 { this->section_offsets_need_adjustment_ = true; }
3907
3908 // Set section_offsets_need_adjustment to be false.
3909 void
3910 clear_section_offsets_need_adjustment()
3911 { this->section_offsets_need_adjustment_ = false; }
3912
3913 // Adjust section offsets of input sections in this. This is
3914 // requires if relaxation caused some input sections to change sizes.
3915 void
3916 adjust_section_offsets();
3917
3918 // Whether this is a NOLOAD section.
3919 bool
3920 is_noload() const
3921 { return this->is_noload_; }
3922
3923 // Set NOLOAD flag.
3924 void
3925 set_is_noload()
3926 { this->is_noload_ = true; }
3927
3928 // Print merge statistics to stderr.
3929 void
3930 print_merge_stats();
3931
3932 // Set a fixed layout for the section. Used for incremental update links.
3933 void
3934 set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
3935 uint64_t sh_addralign);
3936
3937 // Return TRUE if the section has a fixed layout.
3938 bool
3939 has_fixed_layout() const
3940 { return this->has_fixed_layout_; }
3941
3942 // Set flag to allow patch space for this section. Used for full
3943 // incremental links.
3944 void
3945 set_is_patch_space_allowed()
3946 { this->is_patch_space_allowed_ = true; }
3947
3948 // Set a fill method to use for free space left in the output section
3949 // during incremental links.
3950 void
3951 set_free_space_fill(Output_fill* free_space_fill)
3952 {
3953 this->free_space_fill_ = free_space_fill;
3954 this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
3955 }
3956
3957 // Reserve space within the fixed layout for the section. Used for
3958 // incremental update links.
3959 void
3960 reserve(uint64_t sh_offset, uint64_t sh_size);
3961
3962 // Allocate space from the free list for the section. Used for
3963 // incremental update links.
3964 off_t
3965 allocate(off_t len, uint64_t addralign);
3966
3967 typedef std::vector<Input_section> Input_section_list;
3968
3969 // Allow access to the input sections.
3970 const Input_section_list&
3971 input_sections() const
3972 { return this->input_sections_; }
3973
3974 Input_section_list&
3975 input_sections()
3976 { return this->input_sections_; }
3977
3978 protected:
3979 // Return the output section--i.e., the object itself.
3980 Output_section*
3981 do_output_section()
3982 { return this; }
3983
3984 const Output_section*
3985 do_output_section() const
3986 { return this; }
3987
3988 // Return the section index in the output file.
3989 unsigned int
3990 do_out_shndx() const
3991 {
3992 gold_assert(this->out_shndx_ != -1U);
3993 return this->out_shndx_;
3994 }
3995
3996 // Set the output section index.
3997 void
3998 do_set_out_shndx(unsigned int shndx)
3999 {
4000 gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
4001 this->out_shndx_ = shndx;
4002 }
4003
4004 // Update the data size of the Output_section. For a typical
4005 // Output_section, there is nothing to do, but if there are any
4006 // Output_section_data objects we need to do a trial layout
4007 // here.
4008 virtual void
4009 update_data_size();
4010
4011 // Set the final data size of the Output_section. For a typical
4012 // Output_section, there is nothing to do, but if there are any
4013 // Output_section_data objects we need to set their final addresses
4014 // here.
4015 virtual void
4016 set_final_data_size();
4017
4018 // Reset the address and file offset.
4019 void
4020 do_reset_address_and_file_offset();
4021
4022 // Return true if address and file offset already have reset values. In
4023 // other words, calling reset_address_and_file_offset will not change them.
4024 bool
4025 do_address_and_file_offset_have_reset_values() const;
4026
4027 // Write the data to the file. For a typical Output_section, this
4028 // does nothing: the data is written out by calling Object::Relocate
4029 // on each input object. But if there are any Output_section_data
4030 // objects we do need to write them out here.
4031 virtual void
4032 do_write(Output_file*);
4033
4034 // Return the address alignment--function required by parent class.
4035 uint64_t
4036 do_addralign() const
4037 { return this->addralign_; }
4038
4039 // Return whether there is a load address.
4040 bool
4041 do_has_load_address() const
4042 { return this->has_load_address_; }
4043
4044 // Return the load address.
4045 uint64_t
4046 do_load_address() const
4047 {
4048 gold_assert(this->has_load_address_);
4049 return this->load_address_;
4050 }
4051
4052 // Return whether this is an Output_section.
4053 bool
4054 do_is_section() const
4055 { return true; }
4056
4057 // Return whether this is a section of the specified type.
4058 bool
4059 do_is_section_type(elfcpp::Elf_Word type) const
4060 { return this->type_ == type; }
4061
4062 // Return whether the specified section flag is set.
4063 bool
4064 do_is_section_flag_set(elfcpp::Elf_Xword flag) const
4065 { return (this->flags_ & flag) != 0; }
4066
4067 // Set the TLS offset. Called only for SHT_TLS sections.
4068 void
4069 do_set_tls_offset(uint64_t tls_base);
4070
4071 // Return the TLS offset, relative to the base of the TLS segment.
4072 // Valid only for SHT_TLS sections.
4073 uint64_t
4074 do_tls_offset() const
4075 { return this->tls_offset_; }
4076
4077 // This may be implemented by a child class.
4078 virtual void
4079 do_finalize_name(Layout*)
4080 { }
4081
4082 // Print to the map file.
4083 virtual void
4084 do_print_to_mapfile(Mapfile*) const;
4085
4086 // Record that this section requires postprocessing after all
4087 // relocations have been applied. This is called by a child class.
4088 void
4089 set_requires_postprocessing()
4090 {
4091 this->requires_postprocessing_ = true;
4092 this->after_input_sections_ = true;
4093 }
4094
4095 // Write all the data of an Output_section into the postprocessing
4096 // buffer.
4097 void
4098 write_to_postprocessing_buffer();
4099
4100 // Whether this always keeps an input section list
4101 bool
4102 always_keeps_input_sections() const
4103 { return this->always_keeps_input_sections_; }
4104
4105 // Always keep an input section list.
4106 void
4107 set_always_keeps_input_sections()
4108 {
4109 gold_assert(this->current_data_size_for_child() == 0);
4110 this->always_keeps_input_sections_ = true;
4111 }
4112
4113 private:
4114 // We only save enough information to undo the effects of section layout.
4115 class Checkpoint_output_section
4116 {
4117 public:
4118 Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
4119 const Input_section_list& input_sections,
4120 off_t first_input_offset,
4121 bool attached_input_sections_are_sorted)
4122 : addralign_(addralign), flags_(flags),
4123 input_sections_(input_sections),
4124 input_sections_size_(input_sections_.size()),
4125 input_sections_copy_(), first_input_offset_(first_input_offset),
4126 attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
4127 { }
4128
4129 virtual
4130 ~Checkpoint_output_section()
4131 { }
4132
4133 // Return the address alignment.
4134 uint64_t
4135 addralign() const
4136 { return this->addralign_; }
4137
4138 void
4139 set_addralign(uint64_t val)
4140 { this->addralign_ = val; }
4141
4142 // Return the section flags.
4143 elfcpp::Elf_Xword
4144 flags() const
4145 { return this->flags_; }
4146
4147 // Return a reference to the input section list copy.
4148 Input_section_list*
4149 input_sections()
4150 { return &this->input_sections_copy_; }
4151
4152 // Return the size of input_sections at the time when checkpoint is
4153 // taken.
4154 size_t
4155 input_sections_size() const
4156 { return this->input_sections_size_; }
4157
4158 // Whether input sections are copied.
4159 bool
4160 input_sections_saved() const
4161 { return this->input_sections_copy_.size() == this->input_sections_size_; }
4162
4163 off_t
4164 first_input_offset() const
4165 { return this->first_input_offset_; }
4166
4167 bool
4168 attached_input_sections_are_sorted() const
4169 { return this->attached_input_sections_are_sorted_; }
4170
4171 // Save input sections.
4172 void
4173 save_input_sections()
4174 {
4175 this->input_sections_copy_.reserve(this->input_sections_size_);
4176 this->input_sections_copy_.clear();
4177 Input_section_list::const_iterator p = this->input_sections_.begin();
4178 gold_assert(this->input_sections_size_ >= this->input_sections_.size());
4179 for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
4180 this->input_sections_copy_.push_back(*p);
4181 }
4182
4183 private:
4184 // The section alignment.
4185 uint64_t addralign_;
4186 // The section flags.
4187 elfcpp::Elf_Xword flags_;
4188 // Reference to the input sections to be checkpointed.
4189 const Input_section_list& input_sections_;
4190 // Size of the checkpointed portion of input_sections_;
4191 size_t input_sections_size_;
4192 // Copy of input sections.
4193 Input_section_list input_sections_copy_;
4194 // The offset of the first entry in input_sections_.
4195 off_t first_input_offset_;
4196 // True if the input sections attached to this output section have
4197 // already been sorted.
4198 bool attached_input_sections_are_sorted_;
4199 };
4200
4201 // This class is used to sort the input sections.
4202 class Input_section_sort_entry;
4203
4204 // This is the sort comparison function for ctors and dtors.
4205 struct Input_section_sort_compare
4206 {
4207 bool
4208 operator()(const Input_section_sort_entry&,
4209 const Input_section_sort_entry&) const;
4210 };
4211
4212 // This is the sort comparison function for .init_array and .fini_array.
4213 struct Input_section_sort_init_fini_compare
4214 {
4215 bool
4216 operator()(const Input_section_sort_entry&,
4217 const Input_section_sort_entry&) const;
4218 };
4219
4220 // This is the sort comparison function when a section order is specified
4221 // from an input file.
4222 struct Input_section_sort_section_order_index_compare
4223 {
4224 bool
4225 operator()(const Input_section_sort_entry&,
4226 const Input_section_sort_entry&) const;
4227 };
4228
4229 // This is the sort comparison function for .text to sort sections with
4230 // prefixes .text.{unlikely,exit,startup,hot} before other sections.
4231 struct Input_section_sort_section_prefix_special_ordering_compare
4232 {
4233 bool
4234 operator()(const Input_section_sort_entry&,
4235 const Input_section_sort_entry&) const;
4236 };
4237
4238 // This is the sort comparison function for sorting sections by name.
4239 struct Input_section_sort_section_name_compare
4240 {
4241 bool
4242 operator()(const Input_section_sort_entry&,
4243 const Input_section_sort_entry&) const;
4244 };
4245
4246 // Fill data. This is used to fill in data between input sections.
4247 // It is also used for data statements (BYTE, WORD, etc.) in linker
4248 // scripts. When we have to keep track of the input sections, we
4249 // can use an Output_data_const, but we don't want to have to keep
4250 // track of input sections just to implement fills.
4251 class Fill
4252 {
4253 public:
4254 Fill(off_t section_offset, off_t length)
4255 : section_offset_(section_offset),
4256 length_(convert_to_section_size_type(length))
4257 { }
4258
4259 // Return section offset.
4260 off_t
4261 section_offset() const
4262 { return this->section_offset_; }
4263
4264 // Return fill length.
4265 section_size_type
4266 length() const
4267 { return this->length_; }
4268
4269 private:
4270 // The offset within the output section.
4271 off_t section_offset_;
4272 // The length of the space to fill.
4273 section_size_type length_;
4274 };
4275
4276 typedef std::vector<Fill> Fill_list;
4277
4278 // Map used during relaxation of existing sections. This map
4279 // a section id an input section list index. We assume that
4280 // Input_section_list is a vector.
4281 typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
4282
4283 // Add a new output section by Input_section.
4284 void
4285 add_output_section_data(Input_section*);
4286
4287 // Add an SHF_MERGE input section. Returns true if the section was
4288 // handled. If KEEPS_INPUT_SECTIONS is true, the output merge section
4289 // stores information about the merged input sections.
4290 bool
4291 add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
4292 uint64_t entsize, uint64_t addralign,
4293 bool keeps_input_sections);
4294
4295 // Add an output SHF_MERGE section POSD to this output section.
4296 // IS_STRING indicates whether it is a SHF_STRINGS section, and
4297 // ENTSIZE is the entity size. This returns the entry added to
4298 // input_sections_.
4299 void
4300 add_output_merge_section(Output_section_data* posd, bool is_string,
4301 uint64_t entsize);
4302
4303 // Find the merge section into which an input section with index SHNDX in
4304 // OBJECT has been added. Return NULL if none found.
4305 Output_section_data*
4306 find_merge_section(const Relobj* object, unsigned int shndx) const;
4307
4308 // Build a relaxation map.
4309 void
4310 build_relaxation_map(
4311 const Input_section_list& input_sections,
4312 size_t limit,
4313 Relaxation_map* map) const;
4314
4315 // Convert input sections in an input section list into relaxed sections.
4316 void
4317 convert_input_sections_in_list_to_relaxed_sections(
4318 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
4319 const Relaxation_map& map,
4320 Input_section_list* input_sections);
4321
4322 // Build the lookup maps for merge and relaxed input sections.
4323 void
4324 build_lookup_maps() const;
4325
4326 // Most of these fields are only valid after layout.
4327
4328 // The name of the section. This will point into a Stringpool.
4329 const char* name_;
4330 // The section address is in the parent class.
4331 // The section alignment.
4332 uint64_t addralign_;
4333 // The section entry size.
4334 uint64_t entsize_;
4335 // The load address. This is only used when using a linker script
4336 // with a SECTIONS clause. The has_load_address_ field indicates
4337 // whether this field is valid.
4338 uint64_t load_address_;
4339 // The file offset is in the parent class.
4340 // Set the section link field to the index of this section.
4341 const Output_data* link_section_;
4342 // If link_section_ is NULL, this is the link field.
4343 unsigned int link_;
4344 // Set the section info field to the index of this section.
4345 const Output_section* info_section_;
4346 // If info_section_ is NULL, set the info field to the symbol table
4347 // index of this symbol.
4348 const Symbol* info_symndx_;
4349 // If info_section_ and info_symndx_ are NULL, this is the section
4350 // info field.
4351 unsigned int info_;
4352 // The section type.
4353 const elfcpp::Elf_Word type_;
4354 // The section flags.
4355 elfcpp::Elf_Xword flags_;
4356 // The order of this section in the output segment.
4357 Output_section_order order_;
4358 // The section index.
4359 unsigned int out_shndx_;
4360 // If there is a STT_SECTION for this output section in the normal
4361 // symbol table, this is the symbol index. This starts out as zero.
4362 // It is initialized in Layout::finalize() to be the index, or -1U
4363 // if there isn't one.
4364 unsigned int symtab_index_;
4365 // If there is a STT_SECTION for this output section in the dynamic
4366 // symbol table, this is the symbol index. This starts out as zero.
4367 // It is initialized in Layout::finalize() to be the index, or -1U
4368 // if there isn't one.
4369 unsigned int dynsym_index_;
4370 // The input sections. This will be empty in cases where we don't
4371 // need to keep track of them.
4372 Input_section_list input_sections_;
4373 // The offset of the first entry in input_sections_.
4374 off_t first_input_offset_;
4375 // The fill data. This is separate from input_sections_ because we
4376 // often will need fill sections without needing to keep track of
4377 // input sections.
4378 Fill_list fills_;
4379 // If the section requires postprocessing, this buffer holds the
4380 // section contents during relocation.
4381 unsigned char* postprocessing_buffer_;
4382 // Whether this output section needs a STT_SECTION symbol in the
4383 // normal symbol table. This will be true if there is a relocation
4384 // which needs it.
4385 bool needs_symtab_index_ : 1;
4386 // Whether this output section needs a STT_SECTION symbol in the
4387 // dynamic symbol table. This will be true if there is a dynamic
4388 // relocation which needs it.
4389 bool needs_dynsym_index_ : 1;
4390 // Whether the link field of this output section should point to the
4391 // normal symbol table.
4392 bool should_link_to_symtab_ : 1;
4393 // Whether the link field of this output section should point to the
4394 // dynamic symbol table.
4395 bool should_link_to_dynsym_ : 1;
4396 // Whether this section should be written after all the input
4397 // sections are complete.
4398 bool after_input_sections_ : 1;
4399 // Whether this section requires post processing after all
4400 // relocations have been applied.
4401 bool requires_postprocessing_ : 1;
4402 // Whether an input section was mapped to this output section
4403 // because of a SECTIONS clause in a linker script.
4404 bool found_in_sections_clause_ : 1;
4405 // Whether this section has an explicitly specified load address.
4406 bool has_load_address_ : 1;
4407 // True if the info_section_ field means the section index of the
4408 // section, false if it means the symbol index of the corresponding
4409 // section symbol.
4410 bool info_uses_section_index_ : 1;
4411 // True if input sections attached to this output section have to be
4412 // sorted according to a specified order.
4413 bool input_section_order_specified_ : 1;
4414 // True if the input sections attached to this output section may
4415 // need sorting.
4416 bool may_sort_attached_input_sections_ : 1;
4417 // True if the input sections attached to this output section must
4418 // be sorted.
4419 bool must_sort_attached_input_sections_ : 1;
4420 // True if the input sections attached to this output section have
4421 // already been sorted.
4422 bool attached_input_sections_are_sorted_ : 1;
4423 // True if this section holds relro data.
4424 bool is_relro_ : 1;
4425 // True if this is a small section.
4426 bool is_small_section_ : 1;
4427 // True if this is a large section.
4428 bool is_large_section_ : 1;
4429 // Whether code-fills are generated at write.
4430 bool generate_code_fills_at_write_ : 1;
4431 // Whether the entry size field should be zero.
4432 bool is_entsize_zero_ : 1;
4433 // Whether section offsets need adjustment due to relaxation.
4434 bool section_offsets_need_adjustment_ : 1;
4435 // Whether this is a NOLOAD section.
4436 bool is_noload_ : 1;
4437 // Whether this always keeps input section.
4438 bool always_keeps_input_sections_ : 1;
4439 // Whether this section has a fixed layout, for incremental update links.
4440 bool has_fixed_layout_ : 1;
4441 // True if we can add patch space to this section.
4442 bool is_patch_space_allowed_ : 1;
4443 // True if this output section goes into a unique segment.
4444 bool is_unique_segment_ : 1;
4445 // For SHT_TLS sections, the offset of this section relative to the base
4446 // of the TLS segment.
4447 uint64_t tls_offset_;
4448 // Additional segment flags, specified via linker plugin, when mapping some
4449 // input sections to unique segments.
4450 uint64_t extra_segment_flags_;
4451 // Segment alignment specified via linker plugin, when mapping some
4452 // input sections to unique segments.
4453 uint64_t segment_alignment_;
4454 // Saved checkpoint.
4455 Checkpoint_output_section* checkpoint_;
4456 // Fast lookup maps for merged and relaxed input sections.
4457 Output_section_lookup_maps* lookup_maps_;
4458 // List of available regions within the section, for incremental
4459 // update links.
4460 Free_list free_list_;
4461 // Method for filling chunks of free space.
4462 Output_fill* free_space_fill_;
4463 // Amount added as patch space for incremental linking.
4464 off_t patch_space_;
4465 };
4466
4467 // An output segment. PT_LOAD segments are built from collections of
4468 // output sections. Other segments typically point within PT_LOAD
4469 // segments, and are built directly as needed.
4470 //
4471 // NOTE: We want to use the copy constructor for this class. During
4472 // relaxation, we may try built the segments multiple times. We do
4473 // that by copying the original segment list before lay-out, doing
4474 // a trial lay-out and roll-back to the saved copied if we need to
4475 // to the lay-out again.
4476
4477 class Output_segment
4478 {
4479 public:
4480 // Create an output segment, specifying the type and flags.
4481 Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
4482
4483 // Return the virtual address.
4484 uint64_t
4485 vaddr() const
4486 { return this->vaddr_; }
4487
4488 // Return the physical address.
4489 uint64_t
4490 paddr() const
4491 { return this->paddr_; }
4492
4493 // Return the segment type.
4494 elfcpp::Elf_Word
4495 type() const
4496 { return this->type_; }
4497
4498 // Return the segment flags.
4499 elfcpp::Elf_Word
4500 flags() const
4501 { return this->flags_; }
4502
4503 // Return the memory size.
4504 uint64_t
4505 memsz() const
4506 { return this->memsz_; }
4507
4508 // Return the file size.
4509 off_t
4510 filesz() const
4511 { return this->filesz_; }
4512
4513 // Return the file offset.
4514 off_t
4515 offset() const
4516 { return this->offset_; }
4517
4518 // Whether this is a segment created to hold large data sections.
4519 bool
4520 is_large_data_segment() const
4521 { return this->is_large_data_segment_; }
4522
4523 // Record that this is a segment created to hold large data
4524 // sections.
4525 void
4526 set_is_large_data_segment()
4527 { this->is_large_data_segment_ = true; }
4528
4529 bool
4530 is_unique_segment() const
4531 { return this->is_unique_segment_; }
4532
4533 // Mark segment as unique, happens when linker plugins request that
4534 // certain input sections be mapped to unique segments.
4535 void
4536 set_is_unique_segment()
4537 { this->is_unique_segment_ = true; }
4538
4539 // Return the maximum alignment of the Output_data.
4540 uint64_t
4541 maximum_alignment();
4542
4543 // Add the Output_section OS to this PT_LOAD segment. SEG_FLAGS is
4544 // the segment flags to use.
4545 void
4546 add_output_section_to_load(Layout* layout, Output_section* os,
4547 elfcpp::Elf_Word seg_flags);
4548
4549 // Add the Output_section OS to this non-PT_LOAD segment. SEG_FLAGS
4550 // is the segment flags to use.
4551 void
4552 add_output_section_to_nonload(Output_section* os,
4553 elfcpp::Elf_Word seg_flags);
4554
4555 // Remove an Output_section from this segment. It is an error if it
4556 // is not present.
4557 void
4558 remove_output_section(Output_section* os);
4559
4560 // Add an Output_data (which need not be an Output_section) to the
4561 // start of this segment.
4562 void
4563 add_initial_output_data(Output_data*);
4564
4565 // Return true if this segment has any sections which hold actual
4566 // data, rather than being a BSS section.
4567 bool
4568 has_any_data_sections() const;
4569
4570 // Whether this segment has a dynamic relocs.
4571 bool
4572 has_dynamic_reloc() const;
4573
4574 // Return the first section.
4575 Output_section*
4576 first_section() const;
4577
4578 // Return the address of the first section.
4579 uint64_t
4580 first_section_load_address() const
4581 {
4582 const Output_section* os = this->first_section();
4583 return os->has_load_address() ? os->load_address() : os->address();
4584 }
4585
4586 // Return whether the addresses have been set already.
4587 bool
4588 are_addresses_set() const
4589 { return this->are_addresses_set_; }
4590
4591 // Set the addresses.
4592 void
4593 set_addresses(uint64_t vaddr, uint64_t paddr)
4594 {
4595 this->vaddr_ = vaddr;
4596 this->paddr_ = paddr;
4597 this->are_addresses_set_ = true;
4598 }
4599
4600 // Update the flags for the flags of an output section added to this
4601 // segment.
4602 void
4603 update_flags_for_output_section(elfcpp::Elf_Xword flags)
4604 {
4605 // The ELF ABI specifies that a PT_TLS segment should always have
4606 // PF_R as the flags.
4607 if (this->type() != elfcpp::PT_TLS)
4608 this->flags_ |= flags;
4609 }
4610
4611 // Set the segment flags. This is only used if we have a PHDRS
4612 // clause which explicitly specifies the flags.
4613 void
4614 set_flags(elfcpp::Elf_Word flags)
4615 { this->flags_ = flags; }
4616
4617 // Set the address of the segment to ADDR and the offset to *POFF
4618 // and set the addresses and offsets of all contained output
4619 // sections accordingly. Set the section indexes of all contained
4620 // output sections starting with *PSHNDX. If RESET is true, first
4621 // reset the addresses of the contained sections. Return the
4622 // address of the immediately following segment. Update *POFF and
4623 // *PSHNDX. This should only be called for a PT_LOAD segment.
4624 uint64_t
4625 set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
4626 unsigned int* increase_relro, bool* has_relro,
4627 off_t* poff, unsigned int* pshndx);
4628
4629 // Set the minimum alignment of this segment. This may be adjusted
4630 // upward based on the section alignments.
4631 void
4632 set_minimum_p_align(uint64_t align)
4633 {
4634 if (align > this->min_p_align_)
4635 this->min_p_align_ = align;
4636 }
4637
4638 // Set the offset of this segment based on the section. This should
4639 // only be called for a non-PT_LOAD segment.
4640 void
4641 set_offset(unsigned int increase);
4642
4643 // Set the TLS offsets of the sections contained in the PT_TLS segment.
4644 void
4645 set_tls_offsets();
4646
4647 // Return the number of output sections.
4648 unsigned int
4649 output_section_count() const;
4650
4651 // Return the section attached to the list segment with the lowest
4652 // load address. This is used when handling a PHDRS clause in a
4653 // linker script.
4654 Output_section*
4655 section_with_lowest_load_address() const;
4656
4657 // Write the segment header into *OPHDR.
4658 template<int size, bool big_endian>
4659 void
4660 write_header(elfcpp::Phdr_write<size, big_endian>*);
4661
4662 // Write the section headers of associated sections into V.
4663 template<int size, bool big_endian>
4664 unsigned char*
4665 write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
4666 unsigned int* pshndx) const;
4667
4668 // Print the output sections in the map file.
4669 void
4670 print_sections_to_mapfile(Mapfile*) const;
4671
4672 private:
4673 typedef std::vector<Output_data*> Output_data_list;
4674
4675 // Find the maximum alignment in an Output_data_list.
4676 static uint64_t
4677 maximum_alignment_list(const Output_data_list*);
4678
4679 // Return whether the first data section is a relro section.
4680 bool
4681 is_first_section_relro() const;
4682
4683 // Set the section addresses in an Output_data_list.
4684 uint64_t
4685 set_section_list_addresses(Layout*, bool reset, Output_data_list*,
4686 uint64_t addr, off_t* poff, unsigned int* pshndx,
4687 bool* in_tls);
4688
4689 // Return the number of Output_sections in an Output_data_list.
4690 unsigned int
4691 output_section_count_list(const Output_data_list*) const;
4692
4693 // Return whether an Output_data_list has a dynamic reloc.
4694 bool
4695 has_dynamic_reloc_list(const Output_data_list*) const;
4696
4697 // Find the section with the lowest load address in an
4698 // Output_data_list.
4699 void
4700 lowest_load_address_in_list(const Output_data_list* pdl,
4701 Output_section** found,
4702 uint64_t* found_lma) const;
4703
4704 // Find the first and last entries by address.
4705 void
4706 find_first_and_last_list(const Output_data_list* pdl,
4707 const Output_data** pfirst,
4708 const Output_data** plast) const;
4709
4710 // Write the section headers in the list into V.
4711 template<int size, bool big_endian>
4712 unsigned char*
4713 write_section_headers_list(const Layout*, const Stringpool*,
4714 const Output_data_list*, unsigned char* v,
4715 unsigned int* pshdx) const;
4716
4717 // Print a section list to the mapfile.
4718 void
4719 print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
4720
4721 // NOTE: We want to use the copy constructor. Currently, shallow copy
4722 // works for us so we do not need to write our own copy constructor.
4723
4724 // The list of output data attached to this segment.
4725 Output_data_list output_lists_[ORDER_MAX];
4726 // The segment virtual address.
4727 uint64_t vaddr_;
4728 // The segment physical address.
4729 uint64_t paddr_;
4730 // The size of the segment in memory.
4731 uint64_t memsz_;
4732 // The maximum section alignment. The is_max_align_known_ field
4733 // indicates whether this has been finalized.
4734 uint64_t max_align_;
4735 // The required minimum value for the p_align field. This is used
4736 // for PT_LOAD segments. Note that this does not mean that
4737 // addresses should be aligned to this value; it means the p_paddr
4738 // and p_vaddr fields must be congruent modulo this value. For
4739 // non-PT_LOAD segments, the dynamic linker works more efficiently
4740 // if the p_align field has the more conventional value, although it
4741 // can align as needed.
4742 uint64_t min_p_align_;
4743 // The offset of the segment data within the file.
4744 off_t offset_;
4745 // The size of the segment data in the file.
4746 off_t filesz_;
4747 // The segment type;
4748 elfcpp::Elf_Word type_;
4749 // The segment flags.
4750 elfcpp::Elf_Word flags_;
4751 // Whether we have finalized max_align_.
4752 bool is_max_align_known_ : 1;
4753 // Whether vaddr and paddr were set by a linker script.
4754 bool are_addresses_set_ : 1;
4755 // Whether this segment holds large data sections.
4756 bool is_large_data_segment_ : 1;
4757 // Whether this was marked as a unique segment via a linker plugin.
4758 bool is_unique_segment_ : 1;
4759 };
4760
4761 // This class represents the output file.
4762
4763 class Output_file
4764 {
4765 public:
4766 Output_file(const char* name);
4767
4768 // Indicate that this is a temporary file which should not be
4769 // output.
4770 void
4771 set_is_temporary()
4772 { this->is_temporary_ = true; }
4773
4774 // Try to open an existing file. Returns false if the file doesn't
4775 // exist, has a size of 0 or can't be mmaped. This method is
4776 // thread-unsafe. If BASE_NAME is not NULL, use the contents of
4777 // that file as the base for incremental linking.
4778 bool
4779 open_base_file(const char* base_name, bool writable);
4780
4781 // Open the output file. FILE_SIZE is the final size of the file.
4782 // If the file already exists, it is deleted/truncated. This method
4783 // is thread-unsafe.
4784 void
4785 open(off_t file_size);
4786
4787 // Resize the output file. This method is thread-unsafe.
4788 void
4789 resize(off_t file_size);
4790
4791 // Close the output file (flushing all buffered data) and make sure
4792 // there are no errors. This method is thread-unsafe.
4793 void
4794 close();
4795
4796 // Return the size of this file.
4797 off_t
4798 filesize()
4799 { return this->file_size_; }
4800
4801 // Return the name of this file.
4802 const char*
4803 filename()
4804 { return this->name_; }
4805
4806 // We currently always use mmap which makes the view handling quite
4807 // simple. In the future we may support other approaches.
4808
4809 // Write data to the output file.
4810 void
4811 write(off_t offset, const void* data, size_t len)
4812 { memcpy(this->base_ + offset, data, len); }
4813
4814 // Get a buffer to use to write to the file, given the offset into
4815 // the file and the size.
4816 unsigned char*
4817 get_output_view(off_t start, size_t size)
4818 {
4819 gold_assert(start >= 0
4820 && start + static_cast<off_t>(size) <= this->file_size_);
4821 return this->base_ + start;
4822 }
4823
4824 // VIEW must have been returned by get_output_view. Write the
4825 // buffer to the file, passing in the offset and the size.
4826 void
4827 write_output_view(off_t, size_t, unsigned char*)
4828 { }
4829
4830 // Get a read/write buffer. This is used when we want to write part
4831 // of the file, read it in, and write it again.
4832 unsigned char*
4833 get_input_output_view(off_t start, size_t size)
4834 { return this->get_output_view(start, size); }
4835
4836 // Write a read/write buffer back to the file.
4837 void
4838 write_input_output_view(off_t, size_t, unsigned char*)
4839 { }
4840
4841 // Get a read buffer. This is used when we just want to read part
4842 // of the file back it in.
4843 const unsigned char*
4844 get_input_view(off_t start, size_t size)
4845 { return this->get_output_view(start, size); }
4846
4847 // Release a read bfufer.
4848 void
4849 free_input_view(off_t, size_t, const unsigned char*)
4850 { }
4851
4852 private:
4853 // Map the file into memory or, if that fails, allocate anonymous
4854 // memory.
4855 void
4856 map();
4857
4858 // Allocate anonymous memory for the file.
4859 bool
4860 map_anonymous();
4861
4862 // Map the file into memory.
4863 bool
4864 map_no_anonymous(bool);
4865
4866 // Unmap the file from memory (and flush to disk buffers).
4867 void
4868 unmap();
4869
4870 // File name.
4871 const char* name_;
4872 // File descriptor.
4873 int o_;
4874 // File size.
4875 off_t file_size_;
4876 // Base of file mapped into memory.
4877 unsigned char* base_;
4878 // True iff base_ points to a memory buffer rather than an output file.
4879 bool map_is_anonymous_;
4880 // True if base_ was allocated using new rather than mmap.
4881 bool map_is_allocated_;
4882 // True if this is a temporary file which should not be output.
4883 bool is_temporary_;
4884 };
4885
4886 } // End namespace gold.
4887
4888 #endif // !defined(GOLD_OUTPUT_H)
This page took 0.208176 seconds and 5 git commands to generate.