ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Target_powerpc;
67
68 struct Stub_table_owner
69 {
70 Output_section* output_section;
71 const Output_section::Input_section* owner;
72 };
73
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83 typedef Unordered_map<Address, Section_refs> Access_from;
84
85 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90 e_flags_(ehdr.get_e_flags()), st_other_()
91 {
92 this->set_abiversion(0);
93 }
94
95 ~Powerpc_relobj()
96 { }
97
98 // Read the symbols then set up st_other vector.
99 void
100 do_read_symbols(Read_symbols_data*);
101
102 // The .got2 section shndx.
103 unsigned int
104 got2_shndx() const
105 {
106 if (size == 32)
107 return this->special_;
108 else
109 return 0;
110 }
111
112 // The .opd section shndx.
113 unsigned int
114 opd_shndx() const
115 {
116 if (size == 32)
117 return 0;
118 else
119 return this->special_;
120 }
121
122 // Init OPD entry arrays.
123 void
124 init_opd(size_t opd_size)
125 {
126 size_t count = this->opd_ent_ndx(opd_size);
127 this->opd_ent_.resize(count);
128 }
129
130 // Return section and offset of function entry for .opd + R_OFF.
131 unsigned int
132 get_opd_ent(Address r_off, Address* value = NULL) const
133 {
134 size_t ndx = this->opd_ent_ndx(r_off);
135 gold_assert(ndx < this->opd_ent_.size());
136 gold_assert(this->opd_ent_[ndx].shndx != 0);
137 if (value != NULL)
138 *value = this->opd_ent_[ndx].off;
139 return this->opd_ent_[ndx].shndx;
140 }
141
142 // Set section and offset of function entry for .opd + R_OFF.
143 void
144 set_opd_ent(Address r_off, unsigned int shndx, Address value)
145 {
146 size_t ndx = this->opd_ent_ndx(r_off);
147 gold_assert(ndx < this->opd_ent_.size());
148 this->opd_ent_[ndx].shndx = shndx;
149 this->opd_ent_[ndx].off = value;
150 }
151
152 // Return discard flag for .opd + R_OFF.
153 bool
154 get_opd_discard(Address r_off) const
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 return this->opd_ent_[ndx].discard;
159 }
160
161 // Set discard flag for .opd + R_OFF.
162 void
163 set_opd_discard(Address r_off)
164 {
165 size_t ndx = this->opd_ent_ndx(r_off);
166 gold_assert(ndx < this->opd_ent_.size());
167 this->opd_ent_[ndx].discard = true;
168 }
169
170 bool
171 opd_valid() const
172 { return this->opd_valid_; }
173
174 void
175 set_opd_valid()
176 { this->opd_valid_ = true; }
177
178 // Examine .rela.opd to build info about function entry points.
179 void
180 scan_opd_relocs(size_t reloc_count,
181 const unsigned char* prelocs,
182 const unsigned char* plocal_syms);
183
184 // Perform the Sized_relobj_file method, then set up opd info from
185 // .opd relocs.
186 void
187 do_read_relocs(Read_relocs_data*);
188
189 bool
190 do_find_special_sections(Read_symbols_data* sd);
191
192 // Adjust this local symbol value. Return false if the symbol
193 // should be discarded from the output file.
194 bool
195 do_adjust_local_symbol(Symbol_value<size>* lv) const
196 {
197 if (size == 64 && this->opd_shndx() != 0)
198 {
199 bool is_ordinary;
200 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201 return true;
202 if (this->get_opd_discard(lv->input_value()))
203 return false;
204 }
205 return true;
206 }
207
208 Access_from*
209 access_from_map()
210 { return &this->access_from_map_; }
211
212 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213 // section at DST_OFF.
214 void
215 add_reference(Object* src_obj,
216 unsigned int src_indx,
217 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 Section_id src_id(src_obj, src_indx);
220 this->access_from_map_[dst_off].insert(src_id);
221 }
222
223 // Add a reference to the code section specified by the .opd entry
224 // at DST_OFF
225 void
226 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227 {
228 size_t ndx = this->opd_ent_ndx(dst_off);
229 if (ndx >= this->opd_ent_.size())
230 this->opd_ent_.resize(ndx + 1);
231 this->opd_ent_[ndx].gc_mark = true;
232 }
233
234 void
235 process_gc_mark(Symbol_table* symtab)
236 {
237 for (size_t i = 0; i < this->opd_ent_.size(); i++)
238 if (this->opd_ent_[i].gc_mark)
239 {
240 unsigned int shndx = this->opd_ent_[i].shndx;
241 symtab->gc()->worklist().push(Section_id(this, shndx));
242 }
243 }
244
245 // Return offset in output GOT section that this object will use
246 // as a TOC pointer. Won't be just a constant with multi-toc support.
247 Address
248 toc_base_offset() const
249 { return 0x8000; }
250
251 void
252 set_has_small_toc_reloc()
253 { has_small_toc_reloc_ = true; }
254
255 bool
256 has_small_toc_reloc() const
257 { return has_small_toc_reloc_; }
258
259 void
260 set_has_14bit_branch(unsigned int shndx)
261 {
262 if (shndx >= this->has14_.size())
263 this->has14_.resize(shndx + 1);
264 this->has14_[shndx] = true;
265 }
266
267 bool
268 has_14bit_branch(unsigned int shndx) const
269 { return shndx < this->has14_.size() && this->has14_[shndx]; }
270
271 void
272 set_stub_table(unsigned int shndx, unsigned int stub_index)
273 {
274 if (shndx >= this->stub_table_index_.size())
275 this->stub_table_index_.resize(shndx + 1);
276 this->stub_table_index_[shndx] = stub_index;
277 }
278
279 Stub_table<size, big_endian>*
280 stub_table(unsigned int shndx)
281 {
282 if (shndx < this->stub_table_index_.size())
283 {
284 Target_powerpc<size, big_endian>* target
285 = static_cast<Target_powerpc<size, big_endian>*>(
286 parameters->sized_target<size, big_endian>());
287 unsigned int indx = this->stub_table_index_[shndx];
288 gold_assert(indx < target->stub_tables().size());
289 return target->stub_tables()[indx];
290 }
291 return NULL;
292 }
293
294 void
295 clear_stub_table()
296 {
297 this->stub_table_index_.clear();
298 }
299
300 int
301 abiversion() const
302 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303
304 // Set ABI version for input and output
305 void
306 set_abiversion(int ver);
307
308 unsigned int
309 ppc64_local_entry_offset(const Symbol* sym) const
310 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311
312 unsigned int
313 ppc64_local_entry_offset(unsigned int symndx) const
314 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315
316 private:
317 struct Opd_ent
318 {
319 unsigned int shndx;
320 bool discard : 1;
321 bool gc_mark : 1;
322 Address off;
323 };
324
325 // Return index into opd_ent_ array for .opd entry at OFF.
326 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327 // apart when the language doesn't use the last 8-byte word, the
328 // environment pointer. Thus dividing the entry section offset by
329 // 16 will give an index into opd_ent_ that works for either layout
330 // of .opd. (It leaves some elements of the vector unused when .opd
331 // entries are spaced 24 bytes apart, but we don't know the spacing
332 // until relocations are processed, and in any case it is possible
333 // for an object to have some entries spaced 16 bytes apart and
334 // others 24 bytes apart.)
335 size_t
336 opd_ent_ndx(size_t off) const
337 { return off >> 4;}
338
339 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340 unsigned int special_;
341
342 // For 64-bit, whether this object uses small model relocs to access
343 // the toc.
344 bool has_small_toc_reloc_;
345
346 // Set at the start of gc_process_relocs, when we know opd_ent_
347 // vector is valid. The flag could be made atomic and set in
348 // do_read_relocs with memory_order_release and then tested with
349 // memory_order_acquire, potentially resulting in fewer entries in
350 // access_from_map_.
351 bool opd_valid_;
352
353 // The first 8-byte word of an OPD entry gives the address of the
354 // entry point of the function. Relocatable object files have a
355 // relocation on this word. The following vector records the
356 // section and offset specified by these relocations.
357 std::vector<Opd_ent> opd_ent_;
358
359 // References made to this object's .opd section when running
360 // gc_process_relocs for another object, before the opd_ent_ vector
361 // is valid for this object.
362 Access_from access_from_map_;
363
364 // Whether input section has a 14-bit branch reloc.
365 std::vector<bool> has14_;
366
367 // The stub table to use for a given input section.
368 std::vector<unsigned int> stub_table_index_;
369
370 // Header e_flags
371 elfcpp::Elf_Word e_flags_;
372
373 // ELF st_other field for local symbols.
374 std::vector<unsigned char> st_other_;
375 };
376
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382
383 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387 {
388 this->set_abiversion(0);
389 }
390
391 ~Powerpc_dynobj()
392 { }
393
394 // Call Sized_dynobj::do_read_symbols to read the symbols then
395 // read .opd from a dynamic object, filling in opd_ent_ vector,
396 void
397 do_read_symbols(Read_symbols_data*);
398
399 // The .opd section shndx.
400 unsigned int
401 opd_shndx() const
402 {
403 return this->opd_shndx_;
404 }
405
406 // The .opd section address.
407 Address
408 opd_address() const
409 {
410 return this->opd_address_;
411 }
412
413 // Init OPD entry arrays.
414 void
415 init_opd(size_t opd_size)
416 {
417 size_t count = this->opd_ent_ndx(opd_size);
418 this->opd_ent_.resize(count);
419 }
420
421 // Return section and offset of function entry for .opd + R_OFF.
422 unsigned int
423 get_opd_ent(Address r_off, Address* value = NULL) const
424 {
425 size_t ndx = this->opd_ent_ndx(r_off);
426 gold_assert(ndx < this->opd_ent_.size());
427 gold_assert(this->opd_ent_[ndx].shndx != 0);
428 if (value != NULL)
429 *value = this->opd_ent_[ndx].off;
430 return this->opd_ent_[ndx].shndx;
431 }
432
433 // Set section and offset of function entry for .opd + R_OFF.
434 void
435 set_opd_ent(Address r_off, unsigned int shndx, Address value)
436 {
437 size_t ndx = this->opd_ent_ndx(r_off);
438 gold_assert(ndx < this->opd_ent_.size());
439 this->opd_ent_[ndx].shndx = shndx;
440 this->opd_ent_[ndx].off = value;
441 }
442
443 int
444 abiversion() const
445 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446
447 // Set ABI version for input and output.
448 void
449 set_abiversion(int ver);
450
451 private:
452 // Used to specify extent of executable sections.
453 struct Sec_info
454 {
455 Sec_info(Address start_, Address len_, unsigned int shndx_)
456 : start(start_), len(len_), shndx(shndx_)
457 { }
458
459 bool
460 operator<(const Sec_info& that) const
461 { return this->start < that.start; }
462
463 Address start;
464 Address len;
465 unsigned int shndx;
466 };
467
468 struct Opd_ent
469 {
470 unsigned int shndx;
471 Address off;
472 };
473
474 // Return index into opd_ent_ array for .opd entry at OFF.
475 size_t
476 opd_ent_ndx(size_t off) const
477 { return off >> 4;}
478
479 // For 64-bit the .opd section shndx and address.
480 unsigned int opd_shndx_;
481 Address opd_address_;
482
483 // The first 8-byte word of an OPD entry gives the address of the
484 // entry point of the function. Records the section and offset
485 // corresponding to the address. Note that in dynamic objects,
486 // offset is *not* relative to the section.
487 std::vector<Opd_ent> opd_ent_;
488
489 // Header e_flags
490 elfcpp::Elf_Word e_flags_;
491 };
492
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496 public:
497 typedef
498 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501 static const Address invalid_address = static_cast<Address>(0) - 1;
502 // Offset of tp and dtp pointers from start of TLS block.
503 static const Address tp_offset = 0x7000;
504 static const Address dtp_offset = 0x8000;
505
506 Target_powerpc()
507 : Sized_target<size, big_endian>(&powerpc_info),
508 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510 tlsld_got_offset_(-1U),
511 stub_tables_(), branch_lookup_table_(), branch_info_(),
512 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513 stub_group_size_(0)
514 {
515 }
516
517 // Process the relocations to determine unreferenced sections for
518 // garbage collection.
519 void
520 gc_process_relocs(Symbol_table* symtab,
521 Layout* layout,
522 Sized_relobj_file<size, big_endian>* object,
523 unsigned int data_shndx,
524 unsigned int sh_type,
525 const unsigned char* prelocs,
526 size_t reloc_count,
527 Output_section* output_section,
528 bool needs_special_offset_handling,
529 size_t local_symbol_count,
530 const unsigned char* plocal_symbols);
531
532 // Scan the relocations to look for symbol adjustments.
533 void
534 scan_relocs(Symbol_table* symtab,
535 Layout* layout,
536 Sized_relobj_file<size, big_endian>* object,
537 unsigned int data_shndx,
538 unsigned int sh_type,
539 const unsigned char* prelocs,
540 size_t reloc_count,
541 Output_section* output_section,
542 bool needs_special_offset_handling,
543 size_t local_symbol_count,
544 const unsigned char* plocal_symbols);
545
546 // Map input .toc section to output .got section.
547 const char*
548 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549 {
550 if (size == 64 && strcmp(name, ".toc") == 0)
551 {
552 *plen = 4;
553 return ".got";
554 }
555 return NULL;
556 }
557
558 // Provide linker defined save/restore functions.
559 void
560 define_save_restore_funcs(Layout*, Symbol_table*);
561
562 // No stubs unless a final link.
563 bool
564 do_may_relax() const
565 { return !parameters->options().relocatable(); }
566
567 bool
568 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569
570 void
571 do_plt_fde_location(const Output_data*, unsigned char*,
572 uint64_t*, off_t*) const;
573
574 // Stash info about branches, for stub generation.
575 void
576 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577 unsigned int data_shndx, Address r_offset,
578 unsigned int r_type, unsigned int r_sym, Address addend)
579 {
580 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581 this->branch_info_.push_back(info);
582 if (r_type == elfcpp::R_POWERPC_REL14
583 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585 ppc_object->set_has_14bit_branch(data_shndx);
586 }
587
588 void
589 do_define_standard_symbols(Symbol_table*, Layout*);
590
591 // Finalize the sections.
592 void
593 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594
595 // Return the value to use for a dynamic which requires special
596 // treatment.
597 uint64_t
598 do_dynsym_value(const Symbol*) const;
599
600 // Return the PLT address to use for a local symbol.
601 uint64_t
602 do_plt_address_for_local(const Relobj*, unsigned int) const;
603
604 // Return the PLT address to use for a global symbol.
605 uint64_t
606 do_plt_address_for_global(const Symbol*) const;
607
608 // Return the offset to use for the GOT_INDX'th got entry which is
609 // for a local tls symbol specified by OBJECT, SYMNDX.
610 int64_t
611 do_tls_offset_for_local(const Relobj* object,
612 unsigned int symndx,
613 unsigned int got_indx) const;
614
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for global tls symbol GSYM.
617 int64_t
618 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619
620 void
621 do_function_location(Symbol_location*) const;
622
623 bool
624 do_can_check_for_function_pointers() const
625 { return true; }
626
627 // Relocate a section.
628 void
629 relocate_section(const Relocate_info<size, big_endian>*,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
632 size_t reloc_count,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
635 unsigned char* view,
636 Address view_address,
637 section_size_type view_size,
638 const Reloc_symbol_changes*);
639
640 // Scan the relocs during a relocatable link.
641 void
642 scan_relocatable_relocs(Symbol_table* symtab,
643 Layout* layout,
644 Sized_relobj_file<size, big_endian>* object,
645 unsigned int data_shndx,
646 unsigned int sh_type,
647 const unsigned char* prelocs,
648 size_t reloc_count,
649 Output_section* output_section,
650 bool needs_special_offset_handling,
651 size_t local_symbol_count,
652 const unsigned char* plocal_symbols,
653 Relocatable_relocs*);
654
655 // Emit relocations for a section.
656 void
657 relocate_relocs(const Relocate_info<size, big_endian>*,
658 unsigned int sh_type,
659 const unsigned char* prelocs,
660 size_t reloc_count,
661 Output_section* output_section,
662 typename elfcpp::Elf_types<size>::Elf_Off
663 offset_in_output_section,
664 const Relocatable_relocs*,
665 unsigned char*,
666 Address view_address,
667 section_size_type,
668 unsigned char* reloc_view,
669 section_size_type reloc_view_size);
670
671 // Return whether SYM is defined by the ABI.
672 bool
673 do_is_defined_by_abi(const Symbol* sym) const
674 {
675 return strcmp(sym->name(), "__tls_get_addr") == 0;
676 }
677
678 // Return the size of the GOT section.
679 section_size_type
680 got_size() const
681 {
682 gold_assert(this->got_ != NULL);
683 return this->got_->data_size();
684 }
685
686 // Get the PLT section.
687 const Output_data_plt_powerpc<size, big_endian>*
688 plt_section() const
689 {
690 gold_assert(this->plt_ != NULL);
691 return this->plt_;
692 }
693
694 // Get the IPLT section.
695 const Output_data_plt_powerpc<size, big_endian>*
696 iplt_section() const
697 {
698 gold_assert(this->iplt_ != NULL);
699 return this->iplt_;
700 }
701
702 // Get the .glink section.
703 const Output_data_glink<size, big_endian>*
704 glink_section() const
705 {
706 gold_assert(this->glink_ != NULL);
707 return this->glink_;
708 }
709
710 Output_data_glink<size, big_endian>*
711 glink_section()
712 {
713 gold_assert(this->glink_ != NULL);
714 return this->glink_;
715 }
716
717 bool has_glink() const
718 { return this->glink_ != NULL; }
719
720 // Get the GOT section.
721 const Output_data_got_powerpc<size, big_endian>*
722 got_section() const
723 {
724 gold_assert(this->got_ != NULL);
725 return this->got_;
726 }
727
728 // Get the GOT section, creating it if necessary.
729 Output_data_got_powerpc<size, big_endian>*
730 got_section(Symbol_table*, Layout*);
731
732 Object*
733 do_make_elf_object(const std::string&, Input_file*, off_t,
734 const elfcpp::Ehdr<size, big_endian>&);
735
736 // Return the number of entries in the GOT.
737 unsigned int
738 got_entry_count() const
739 {
740 if (this->got_ == NULL)
741 return 0;
742 return this->got_size() / (size / 8);
743 }
744
745 // Return the number of entries in the PLT.
746 unsigned int
747 plt_entry_count() const;
748
749 // Return the offset of the first non-reserved PLT entry.
750 unsigned int
751 first_plt_entry_offset() const
752 {
753 if (size == 32)
754 return 0;
755 if (this->abiversion() >= 2)
756 return 16;
757 return 24;
758 }
759
760 // Return the size of each PLT entry.
761 unsigned int
762 plt_entry_size() const
763 {
764 if (size == 32)
765 return 4;
766 if (this->abiversion() >= 2)
767 return 8;
768 return 24;
769 }
770
771 // Add any special sections for this symbol to the gc work list.
772 // For powerpc64, this adds the code section of a function
773 // descriptor.
774 void
775 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
776
777 // Handle target specific gc actions when adding a gc reference from
778 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779 // and DST_OFF. For powerpc64, this adds a referenc to the code
780 // section of a function descriptor.
781 void
782 do_gc_add_reference(Symbol_table* symtab,
783 Object* src_obj,
784 unsigned int src_shndx,
785 Object* dst_obj,
786 unsigned int dst_shndx,
787 Address dst_off) const;
788
789 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
790 const Stub_tables&
791 stub_tables() const
792 { return this->stub_tables_; }
793
794 const Output_data_brlt_powerpc<size, big_endian>*
795 brlt_section() const
796 { return this->brlt_section_; }
797
798 void
799 add_branch_lookup_table(Address to)
800 {
801 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802 this->branch_lookup_table_.insert(std::make_pair(to, off));
803 }
804
805 Address
806 find_branch_lookup_table(Address to)
807 {
808 typename Branch_lookup_table::const_iterator p
809 = this->branch_lookup_table_.find(to);
810 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
811 }
812
813 void
814 write_branch_lookup_table(unsigned char *oview)
815 {
816 for (typename Branch_lookup_table::const_iterator p
817 = this->branch_lookup_table_.begin();
818 p != this->branch_lookup_table_.end();
819 ++p)
820 {
821 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
822 }
823 }
824
825 bool
826 plt_thread_safe() const
827 { return this->plt_thread_safe_; }
828
829 int
830 abiversion () const
831 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
832
833 void
834 set_abiversion (int ver)
835 {
836 elfcpp::Elf_Word flags = this->processor_specific_flags();
837 flags &= ~elfcpp::EF_PPC64_ABI;
838 flags |= ver & elfcpp::EF_PPC64_ABI;
839 this->set_processor_specific_flags(flags);
840 }
841
842 // Offset to to save stack slot
843 int
844 stk_toc () const
845 { return this->abiversion() < 2 ? 40 : 24; }
846
847 private:
848
849 class Track_tls
850 {
851 public:
852 enum Tls_get_addr
853 {
854 NOT_EXPECTED = 0,
855 EXPECTED = 1,
856 SKIP = 2,
857 NORMAL = 3
858 };
859
860 Track_tls()
861 : tls_get_addr_(NOT_EXPECTED),
862 relinfo_(NULL), relnum_(0), r_offset_(0)
863 { }
864
865 ~Track_tls()
866 {
867 if (this->tls_get_addr_ != NOT_EXPECTED)
868 this->missing();
869 }
870
871 void
872 missing(void)
873 {
874 if (this->relinfo_ != NULL)
875 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876 _("missing expected __tls_get_addr call"));
877 }
878
879 void
880 expect_tls_get_addr_call(
881 const Relocate_info<size, big_endian>* relinfo,
882 size_t relnum,
883 Address r_offset)
884 {
885 this->tls_get_addr_ = EXPECTED;
886 this->relinfo_ = relinfo;
887 this->relnum_ = relnum;
888 this->r_offset_ = r_offset;
889 }
890
891 void
892 expect_tls_get_addr_call()
893 { this->tls_get_addr_ = EXPECTED; }
894
895 void
896 skip_next_tls_get_addr_call()
897 {this->tls_get_addr_ = SKIP; }
898
899 Tls_get_addr
900 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
901 {
902 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903 || r_type == elfcpp::R_PPC_PLTREL24)
904 && gsym != NULL
905 && strcmp(gsym->name(), "__tls_get_addr") == 0);
906 Tls_get_addr last_tls = this->tls_get_addr_;
907 this->tls_get_addr_ = NOT_EXPECTED;
908 if (is_tls_call && last_tls != EXPECTED)
909 return last_tls;
910 else if (!is_tls_call && last_tls != NOT_EXPECTED)
911 {
912 this->missing();
913 return EXPECTED;
914 }
915 return NORMAL;
916 }
917
918 private:
919 // What we're up to regarding calls to __tls_get_addr.
920 // On powerpc, the branch and link insn making a call to
921 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924 // The marker relocation always comes first, and has the same
925 // symbol as the reloc on the insn setting up the __tls_get_addr
926 // argument. This ties the arg setup insn with the call insn,
927 // allowing ld to safely optimize away the call. We check that
928 // every call to __tls_get_addr has a marker relocation, and that
929 // every marker relocation is on a call to __tls_get_addr.
930 Tls_get_addr tls_get_addr_;
931 // Info about the last reloc for error message.
932 const Relocate_info<size, big_endian>* relinfo_;
933 size_t relnum_;
934 Address r_offset_;
935 };
936
937 // The class which scans relocations.
938 class Scan : protected Track_tls
939 {
940 public:
941 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
942
943 Scan()
944 : Track_tls(), issued_non_pic_error_(false)
945 { }
946
947 static inline int
948 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
949
950 inline void
951 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952 Sized_relobj_file<size, big_endian>* object,
953 unsigned int data_shndx,
954 Output_section* output_section,
955 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956 const elfcpp::Sym<size, big_endian>& lsym,
957 bool is_discarded);
958
959 inline void
960 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961 Sized_relobj_file<size, big_endian>* object,
962 unsigned int data_shndx,
963 Output_section* output_section,
964 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
965 Symbol* gsym);
966
967 inline bool
968 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969 Target_powerpc* ,
970 Sized_relobj_file<size, big_endian>* relobj,
971 unsigned int ,
972 Output_section* ,
973 const elfcpp::Rela<size, big_endian>& ,
974 unsigned int r_type,
975 const elfcpp::Sym<size, big_endian>&)
976 {
977 // PowerPC64 .opd is not folded, so any identical function text
978 // may be folded and we'll still keep function addresses distinct.
979 // That means no reloc is of concern here.
980 if (size == 64)
981 {
982 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983 <Powerpc_relobj<size, big_endian>*>(relobj);
984 if (ppcobj->abiversion() == 1)
985 return false;
986 }
987 // For 32-bit and ELFv2, conservatively assume anything but calls to
988 // function code might be taking the address of the function.
989 return !is_branch_reloc(r_type);
990 }
991
992 inline bool
993 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
994 Target_powerpc* ,
995 Sized_relobj_file<size, big_endian>* relobj,
996 unsigned int ,
997 Output_section* ,
998 const elfcpp::Rela<size, big_endian>& ,
999 unsigned int r_type,
1000 Symbol*)
1001 {
1002 // As above.
1003 if (size == 64)
1004 {
1005 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006 <Powerpc_relobj<size, big_endian>*>(relobj);
1007 if (ppcobj->abiversion() == 1)
1008 return false;
1009 }
1010 return !is_branch_reloc(r_type);
1011 }
1012
1013 static bool
1014 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015 Sized_relobj_file<size, big_endian>* object,
1016 unsigned int r_type, bool report_err);
1017
1018 private:
1019 static void
1020 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021 unsigned int r_type);
1022
1023 static void
1024 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025 unsigned int r_type, Symbol*);
1026
1027 static void
1028 generate_tls_call(Symbol_table* symtab, Layout* layout,
1029 Target_powerpc* target);
1030
1031 void
1032 check_non_pic(Relobj*, unsigned int r_type);
1033
1034 // Whether we have issued an error about a non-PIC compilation.
1035 bool issued_non_pic_error_;
1036 };
1037
1038 bool
1039 symval_for_branch(const Symbol_table* symtab,
1040 const Sized_symbol<size>* gsym,
1041 Powerpc_relobj<size, big_endian>* object,
1042 Address *value, unsigned int *dest_shndx);
1043
1044 // The class which implements relocation.
1045 class Relocate : protected Track_tls
1046 {
1047 public:
1048 // Use 'at' branch hints when true, 'y' when false.
1049 // FIXME maybe: set this with an option.
1050 static const bool is_isa_v2 = true;
1051
1052 Relocate()
1053 : Track_tls()
1054 { }
1055
1056 // Do a relocation. Return false if the caller should not issue
1057 // any warnings about this relocation.
1058 inline bool
1059 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060 Output_section*, size_t relnum,
1061 const elfcpp::Rela<size, big_endian>&,
1062 unsigned int r_type, const Sized_symbol<size>*,
1063 const Symbol_value<size>*,
1064 unsigned char*,
1065 typename elfcpp::Elf_types<size>::Elf_Addr,
1066 section_size_type);
1067 };
1068
1069 class Relocate_comdat_behavior
1070 {
1071 public:
1072 // Decide what the linker should do for relocations that refer to
1073 // discarded comdat sections.
1074 inline Comdat_behavior
1075 get(const char* name)
1076 {
1077 gold::Default_comdat_behavior default_behavior;
1078 Comdat_behavior ret = default_behavior.get(name);
1079 if (ret == CB_WARNING)
1080 {
1081 if (size == 32
1082 && (strcmp(name, ".fixup") == 0
1083 || strcmp(name, ".got2") == 0))
1084 ret = CB_IGNORE;
1085 if (size == 64
1086 && (strcmp(name, ".opd") == 0
1087 || strcmp(name, ".toc") == 0
1088 || strcmp(name, ".toc1") == 0))
1089 ret = CB_IGNORE;
1090 }
1091 return ret;
1092 }
1093 };
1094
1095 // A class which returns the size required for a relocation type,
1096 // used while scanning relocs during a relocatable link.
1097 class Relocatable_size_for_reloc
1098 {
1099 public:
1100 unsigned int
1101 get_size_for_reloc(unsigned int, Relobj*)
1102 {
1103 gold_unreachable();
1104 return 0;
1105 }
1106 };
1107
1108 // Optimize the TLS relocation type based on what we know about the
1109 // symbol. IS_FINAL is true if the final address of this symbol is
1110 // known at link time.
1111
1112 tls::Tls_optimization
1113 optimize_tls_gd(bool is_final)
1114 {
1115 // If we are generating a shared library, then we can't do anything
1116 // in the linker.
1117 if (parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 if (!is_final)
1121 return tls::TLSOPT_TO_IE;
1122 return tls::TLSOPT_TO_LE;
1123 }
1124
1125 tls::Tls_optimization
1126 optimize_tls_ld()
1127 {
1128 if (parameters->options().shared())
1129 return tls::TLSOPT_NONE;
1130
1131 return tls::TLSOPT_TO_LE;
1132 }
1133
1134 tls::Tls_optimization
1135 optimize_tls_ie(bool is_final)
1136 {
1137 if (!is_final || parameters->options().shared())
1138 return tls::TLSOPT_NONE;
1139
1140 return tls::TLSOPT_TO_LE;
1141 }
1142
1143 // Create glink.
1144 void
1145 make_glink_section(Layout*);
1146
1147 // Create the PLT section.
1148 void
1149 make_plt_section(Symbol_table*, Layout*);
1150
1151 void
1152 make_iplt_section(Symbol_table*, Layout*);
1153
1154 void
1155 make_brlt_section(Layout*);
1156
1157 // Create a PLT entry for a global symbol.
1158 void
1159 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1160
1161 // Create a PLT entry for a local IFUNC symbol.
1162 void
1163 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164 Sized_relobj_file<size, big_endian>*,
1165 unsigned int);
1166
1167
1168 // Create a GOT entry for local dynamic __tls_get_addr.
1169 unsigned int
1170 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171 Sized_relobj_file<size, big_endian>* object);
1172
1173 unsigned int
1174 tlsld_got_offset() const
1175 {
1176 return this->tlsld_got_offset_;
1177 }
1178
1179 // Get the dynamic reloc section, creating it if necessary.
1180 Reloc_section*
1181 rela_dyn_section(Layout*);
1182
1183 // Similarly, but for ifunc symbols get the one for ifunc.
1184 Reloc_section*
1185 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1186
1187 // Copy a relocation against a global symbol.
1188 void
1189 copy_reloc(Symbol_table* symtab, Layout* layout,
1190 Sized_relobj_file<size, big_endian>* object,
1191 unsigned int shndx, Output_section* output_section,
1192 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1193 {
1194 this->copy_relocs_.copy_reloc(symtab, layout,
1195 symtab->get_sized_symbol<size>(sym),
1196 object, shndx, output_section,
1197 reloc, this->rela_dyn_section(layout));
1198 }
1199
1200 // Look over all the input sections, deciding where to place stubs.
1201 void
1202 group_sections(Layout*, const Task*, bool);
1203
1204 // Sort output sections by address.
1205 struct Sort_sections
1206 {
1207 bool
1208 operator()(const Output_section* sec1, const Output_section* sec2)
1209 { return sec1->address() < sec2->address(); }
1210 };
1211
1212 class Branch_info
1213 {
1214 public:
1215 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216 unsigned int data_shndx,
1217 Address r_offset,
1218 unsigned int r_type,
1219 unsigned int r_sym,
1220 Address addend)
1221 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1223 { }
1224
1225 ~Branch_info()
1226 { }
1227
1228 // If this branch needs a plt call stub, or a long branch stub, make one.
1229 bool
1230 make_stub(Stub_table<size, big_endian>*,
1231 Stub_table<size, big_endian>*,
1232 Symbol_table*) const;
1233
1234 private:
1235 // The branch location..
1236 Powerpc_relobj<size, big_endian>* object_;
1237 unsigned int shndx_;
1238 Address offset_;
1239 // ..and the branch type and destination.
1240 unsigned int r_type_;
1241 unsigned int r_sym_;
1242 Address addend_;
1243 };
1244
1245 // Information about this specific target which we pass to the
1246 // general Target structure.
1247 static Target::Target_info powerpc_info;
1248
1249 // The types of GOT entries needed for this platform.
1250 // These values are exposed to the ABI in an incremental link.
1251 // Do not renumber existing values without changing the version
1252 // number of the .gnu_incremental_inputs section.
1253 enum Got_type
1254 {
1255 GOT_TYPE_STANDARD,
1256 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1257 GOT_TYPE_DTPREL, // entry for @got@dtprel
1258 GOT_TYPE_TPREL // entry for @got@tprel
1259 };
1260
1261 // The GOT section.
1262 Output_data_got_powerpc<size, big_endian>* got_;
1263 // The PLT section. This is a container for a table of addresses,
1264 // and their relocations. Each address in the PLT has a dynamic
1265 // relocation (R_*_JMP_SLOT) and each address will have a
1266 // corresponding entry in .glink for lazy resolution of the PLT.
1267 // ppc32 initialises the PLT to point at the .glink entry, while
1268 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1269 // linker adds a stub that loads the PLT entry into ctr then
1270 // branches to ctr. There may be more than one stub for each PLT
1271 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1272 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273 Output_data_plt_powerpc<size, big_endian>* plt_;
1274 // The IPLT section. Like plt_, this is a container for a table of
1275 // addresses and their relocations, specifically for STT_GNU_IFUNC
1276 // functions that resolve locally (STT_GNU_IFUNC functions that
1277 // don't resolve locally go in PLT). Unlike plt_, these have no
1278 // entry in .glink for lazy resolution, and the relocation section
1279 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1280 // the relocation section may contain relocations against
1281 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1282 // relocation section will appear at the end of other dynamic
1283 // relocations, so that ld.so applies these relocations after other
1284 // dynamic relocations. In a static executable, the relocation
1285 // section is emitted and marked with __rela_iplt_start and
1286 // __rela_iplt_end symbols.
1287 Output_data_plt_powerpc<size, big_endian>* iplt_;
1288 // Section holding long branch destinations.
1289 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290 // The .glink section.
1291 Output_data_glink<size, big_endian>* glink_;
1292 // The dynamic reloc section.
1293 Reloc_section* rela_dyn_;
1294 // Relocs saved to avoid a COPY reloc.
1295 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297 unsigned int tlsld_got_offset_;
1298
1299 Stub_tables stub_tables_;
1300 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301 Branch_lookup_table branch_lookup_table_;
1302
1303 typedef std::vector<Branch_info> Branches;
1304 Branches branch_info_;
1305
1306 bool plt_thread_safe_;
1307
1308 bool relax_failed_;
1309 int relax_fail_count_;
1310 int32_t stub_group_size_;
1311 };
1312
1313 template<>
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1315 {
1316 32, // size
1317 true, // is_big_endian
1318 elfcpp::EM_PPC, // machine_code
1319 false, // has_make_symbol
1320 false, // has_resolve
1321 false, // has_code_fill
1322 true, // is_default_stack_executable
1323 false, // can_icf_inline_merge_sections
1324 '\0', // wrap_char
1325 "/usr/lib/ld.so.1", // dynamic_linker
1326 0x10000000, // default_text_segment_address
1327 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1328 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1329 false, // isolate_execinstr
1330 0, // rosegment_gap
1331 elfcpp::SHN_UNDEF, // small_common_shndx
1332 elfcpp::SHN_UNDEF, // large_common_shndx
1333 0, // small_common_section_flags
1334 0, // large_common_section_flags
1335 NULL, // attributes_section
1336 NULL, // attributes_vendor
1337 "_start" // entry_symbol_name
1338 };
1339
1340 template<>
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1342 {
1343 32, // size
1344 false, // is_big_endian
1345 elfcpp::EM_PPC, // machine_code
1346 false, // has_make_symbol
1347 false, // has_resolve
1348 false, // has_code_fill
1349 true, // is_default_stack_executable
1350 false, // can_icf_inline_merge_sections
1351 '\0', // wrap_char
1352 "/usr/lib/ld.so.1", // dynamic_linker
1353 0x10000000, // default_text_segment_address
1354 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1355 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1356 false, // isolate_execinstr
1357 0, // rosegment_gap
1358 elfcpp::SHN_UNDEF, // small_common_shndx
1359 elfcpp::SHN_UNDEF, // large_common_shndx
1360 0, // small_common_section_flags
1361 0, // large_common_section_flags
1362 NULL, // attributes_section
1363 NULL, // attributes_vendor
1364 "_start" // entry_symbol_name
1365 };
1366
1367 template<>
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1369 {
1370 64, // size
1371 true, // is_big_endian
1372 elfcpp::EM_PPC64, // machine_code
1373 false, // has_make_symbol
1374 false, // has_resolve
1375 false, // has_code_fill
1376 true, // is_default_stack_executable
1377 false, // can_icf_inline_merge_sections
1378 '\0', // wrap_char
1379 "/usr/lib/ld.so.1", // dynamic_linker
1380 0x10000000, // default_text_segment_address
1381 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1382 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1383 false, // isolate_execinstr
1384 0, // rosegment_gap
1385 elfcpp::SHN_UNDEF, // small_common_shndx
1386 elfcpp::SHN_UNDEF, // large_common_shndx
1387 0, // small_common_section_flags
1388 0, // large_common_section_flags
1389 NULL, // attributes_section
1390 NULL, // attributes_vendor
1391 "_start" // entry_symbol_name
1392 };
1393
1394 template<>
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1396 {
1397 64, // size
1398 false, // is_big_endian
1399 elfcpp::EM_PPC64, // machine_code
1400 false, // has_make_symbol
1401 false, // has_resolve
1402 false, // has_code_fill
1403 true, // is_default_stack_executable
1404 false, // can_icf_inline_merge_sections
1405 '\0', // wrap_char
1406 "/usr/lib/ld.so.1", // dynamic_linker
1407 0x10000000, // default_text_segment_address
1408 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1409 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1410 false, // isolate_execinstr
1411 0, // rosegment_gap
1412 elfcpp::SHN_UNDEF, // small_common_shndx
1413 elfcpp::SHN_UNDEF, // large_common_shndx
1414 0, // small_common_section_flags
1415 0, // large_common_section_flags
1416 NULL, // attributes_section
1417 NULL, // attributes_vendor
1418 "_start" // entry_symbol_name
1419 };
1420
1421 inline bool
1422 is_branch_reloc(unsigned int r_type)
1423 {
1424 return (r_type == elfcpp::R_POWERPC_REL24
1425 || r_type == elfcpp::R_PPC_PLTREL24
1426 || r_type == elfcpp::R_PPC_LOCAL24PC
1427 || r_type == elfcpp::R_POWERPC_REL14
1428 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430 || r_type == elfcpp::R_POWERPC_ADDR24
1431 || r_type == elfcpp::R_POWERPC_ADDR14
1432 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1434 }
1435
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0. If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1439 uint32_t
1440 at_tls_transform(uint32_t insn, unsigned int reg)
1441 {
1442 if ((insn & (0x3f << 26)) != 31 << 26)
1443 return 0;
1444
1445 unsigned int rtra;
1446 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447 rtra = insn & ((1 << 26) - (1 << 16));
1448 else if (((insn >> 16) & 0x1f) == reg)
1449 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1450 else
1451 return 0;
1452
1453 if ((insn & (0x3ff << 1)) == 266 << 1)
1454 // add -> addi
1455 insn = 14 << 26;
1456 else if ((insn & (0x1f << 1)) == 23 << 1
1457 && ((insn & (0x1f << 6)) < 14 << 6
1458 || ((insn & (0x1f << 6)) >= 16 << 6
1459 && (insn & (0x1f << 6)) < 24 << 6)))
1460 // load and store indexed -> dform
1461 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1466 // lwax -> lwa
1467 insn = (58 << 26) | 2;
1468 else
1469 return 0;
1470 insn |= rtra;
1471 return insn;
1472 }
1473
1474
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1477 {
1478 public:
1479 enum Overflow_check
1480 {
1481 CHECK_NONE,
1482 CHECK_SIGNED,
1483 CHECK_UNSIGNED,
1484 CHECK_BITFIELD,
1485 CHECK_LOW_INSN,
1486 CHECK_HIGH_INSN
1487 };
1488
1489 enum Status
1490 {
1491 STATUS_OK,
1492 STATUS_OVERFLOW
1493 };
1494
1495 private:
1496 typedef Powerpc_relocate_functions<size, big_endian> This;
1497 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1498
1499 template<int valsize>
1500 static inline bool
1501 has_overflow_signed(Address value)
1502 {
1503 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505 limit <<= ((valsize - 1) >> 1);
1506 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507 return value + limit > (limit << 1) - 1;
1508 }
1509
1510 template<int valsize>
1511 static inline bool
1512 has_overflow_unsigned(Address value)
1513 {
1514 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515 limit <<= ((valsize - 1) >> 1);
1516 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517 return value > (limit << 1) - 1;
1518 }
1519
1520 template<int valsize>
1521 static inline bool
1522 has_overflow_bitfield(Address value)
1523 {
1524 return (has_overflow_unsigned<valsize>(value)
1525 && has_overflow_signed<valsize>(value));
1526 }
1527
1528 template<int valsize>
1529 static inline Status
1530 overflowed(Address value, Overflow_check overflow)
1531 {
1532 if (overflow == CHECK_SIGNED)
1533 {
1534 if (has_overflow_signed<valsize>(value))
1535 return STATUS_OVERFLOW;
1536 }
1537 else if (overflow == CHECK_UNSIGNED)
1538 {
1539 if (has_overflow_unsigned<valsize>(value))
1540 return STATUS_OVERFLOW;
1541 }
1542 else if (overflow == CHECK_BITFIELD)
1543 {
1544 if (has_overflow_bitfield<valsize>(value))
1545 return STATUS_OVERFLOW;
1546 }
1547 return STATUS_OK;
1548 }
1549
1550 // Do a simple RELA relocation
1551 template<int fieldsize, int valsize>
1552 static inline Status
1553 rela(unsigned char* view, Address value, Overflow_check overflow)
1554 {
1555 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556 Valtype* wv = reinterpret_cast<Valtype*>(view);
1557 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558 return overflowed<valsize>(value, overflow);
1559 }
1560
1561 template<int fieldsize, int valsize>
1562 static inline Status
1563 rela(unsigned char* view,
1564 unsigned int right_shift,
1565 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1566 Address value,
1567 Overflow_check overflow)
1568 {
1569 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570 Valtype* wv = reinterpret_cast<Valtype*>(view);
1571 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572 Valtype reloc = value >> right_shift;
1573 val &= ~dst_mask;
1574 reloc &= dst_mask;
1575 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576 return overflowed<valsize>(value >> right_shift, overflow);
1577 }
1578
1579 // Do a simple RELA relocation, unaligned.
1580 template<int fieldsize, int valsize>
1581 static inline Status
1582 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1583 {
1584 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585 return overflowed<valsize>(value, overflow);
1586 }
1587
1588 template<int fieldsize, int valsize>
1589 static inline Status
1590 rela_ua(unsigned char* view,
1591 unsigned int right_shift,
1592 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1593 Address value,
1594 Overflow_check overflow)
1595 {
1596 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1597 Valtype;
1598 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599 Valtype reloc = value >> right_shift;
1600 val &= ~dst_mask;
1601 reloc &= dst_mask;
1602 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603 return overflowed<valsize>(value >> right_shift, overflow);
1604 }
1605
1606 public:
1607 // R_PPC64_ADDR64: (Symbol + Addend)
1608 static inline void
1609 addr64(unsigned char* view, Address value)
1610 { This::template rela<64,64>(view, value, CHECK_NONE); }
1611
1612 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1613 static inline void
1614 addr64_u(unsigned char* view, Address value)
1615 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1616
1617 // R_POWERPC_ADDR32: (Symbol + Addend)
1618 static inline Status
1619 addr32(unsigned char* view, Address value, Overflow_check overflow)
1620 { return This::template rela<32,32>(view, value, overflow); }
1621
1622 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623 static inline Status
1624 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625 { return This::template rela_ua<32,32>(view, value, overflow); }
1626
1627 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628 static inline Status
1629 addr24(unsigned char* view, Address value, Overflow_check overflow)
1630 {
1631 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1632 value, overflow);
1633 if (overflow != CHECK_NONE && (value & 3) != 0)
1634 stat = STATUS_OVERFLOW;
1635 return stat;
1636 }
1637
1638 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639 static inline Status
1640 addr16(unsigned char* view, Address value, Overflow_check overflow)
1641 { return This::template rela<16,16>(view, value, overflow); }
1642
1643 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644 static inline Status
1645 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646 { return This::template rela_ua<16,16>(view, value, overflow); }
1647
1648 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649 static inline Status
1650 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1651 {
1652 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653 if (overflow != CHECK_NONE && (value & 3) != 0)
1654 stat = STATUS_OVERFLOW;
1655 return stat;
1656 }
1657
1658 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1659 static inline void
1660 addr16_hi(unsigned char* view, Address value)
1661 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1662
1663 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1664 static inline void
1665 addr16_ha(unsigned char* view, Address value)
1666 { This::addr16_hi(view, value + 0x8000); }
1667
1668 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1669 static inline void
1670 addr16_hi2(unsigned char* view, Address value)
1671 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1672
1673 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1674 static inline void
1675 addr16_ha2(unsigned char* view, Address value)
1676 { This::addr16_hi2(view, value + 0x8000); }
1677
1678 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1679 static inline void
1680 addr16_hi3(unsigned char* view, Address value)
1681 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1682
1683 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1684 static inline void
1685 addr16_ha3(unsigned char* view, Address value)
1686 { This::addr16_hi3(view, value + 0x8000); }
1687
1688 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689 static inline Status
1690 addr14(unsigned char* view, Address value, Overflow_check overflow)
1691 {
1692 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693 if (overflow != CHECK_NONE && (value & 3) != 0)
1694 stat = STATUS_OVERFLOW;
1695 return stat;
1696 }
1697 };
1698
1699 // Set ABI version for input and output.
1700
1701 template<int size, bool big_endian>
1702 void
1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1704 {
1705 this->e_flags_ |= ver;
1706 if (this->abiversion() != 0)
1707 {
1708 Target_powerpc<size, big_endian>* target =
1709 static_cast<Target_powerpc<size, big_endian>*>(
1710 parameters->sized_target<size, big_endian>());
1711 if (target->abiversion() == 0)
1712 target->set_abiversion(this->abiversion());
1713 else if (target->abiversion() != this->abiversion())
1714 gold_error(_("%s: ABI version %d is not compatible "
1715 "with ABI version %d output"),
1716 this->name().c_str(),
1717 this->abiversion(), target->abiversion());
1718
1719 }
1720 }
1721
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1724
1725 template<int size, bool big_endian>
1726 bool
1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728 Read_symbols_data* sd)
1729 {
1730 const unsigned char* const pshdrs = sd->section_headers->data();
1731 const unsigned char* namesu = sd->section_names->data();
1732 const char* names = reinterpret_cast<const char*>(namesu);
1733 section_size_type names_size = sd->section_names_size;
1734 const unsigned char* s;
1735
1736 s = this->template find_shdr<size, big_endian>(pshdrs,
1737 size == 32 ? ".got2" : ".opd",
1738 names, names_size, NULL);
1739 if (s != NULL)
1740 {
1741 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742 this->special_ = ndx;
1743 if (size == 64)
1744 {
1745 if (this->abiversion() == 0)
1746 this->set_abiversion(1);
1747 else if (this->abiversion() > 1)
1748 gold_error(_("%s: .opd invalid in abiv%d"),
1749 this->name().c_str(), this->abiversion());
1750 }
1751 }
1752 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1753 }
1754
1755 // Examine .rela.opd to build info about function entry points.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1760 size_t reloc_count,
1761 const unsigned char* prelocs,
1762 const unsigned char* plocal_syms)
1763 {
1764 if (size == 64)
1765 {
1766 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1767 Reltype;
1768 const int reloc_size
1769 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771 Address expected_off = 0;
1772 bool regular = true;
1773 unsigned int opd_ent_size = 0;
1774
1775 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1776 {
1777 Reltype reloc(prelocs);
1778 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779 = reloc.get_r_info();
1780 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781 if (r_type == elfcpp::R_PPC64_ADDR64)
1782 {
1783 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784 typename elfcpp::Elf_types<size>::Elf_Addr value;
1785 bool is_ordinary;
1786 unsigned int shndx;
1787 if (r_sym < this->local_symbol_count())
1788 {
1789 typename elfcpp::Sym<size, big_endian>
1790 lsym(plocal_syms + r_sym * sym_size);
1791 shndx = lsym.get_st_shndx();
1792 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793 value = lsym.get_st_value();
1794 }
1795 else
1796 shndx = this->symbol_section_and_value(r_sym, &value,
1797 &is_ordinary);
1798 this->set_opd_ent(reloc.get_r_offset(), shndx,
1799 value + reloc.get_r_addend());
1800 if (i == 2)
1801 {
1802 expected_off = reloc.get_r_offset();
1803 opd_ent_size = expected_off;
1804 }
1805 else if (expected_off != reloc.get_r_offset())
1806 regular = false;
1807 expected_off += opd_ent_size;
1808 }
1809 else if (r_type == elfcpp::R_PPC64_TOC)
1810 {
1811 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1812 regular = false;
1813 }
1814 else
1815 {
1816 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817 this->name().c_str(), r_type);
1818 regular = false;
1819 }
1820 }
1821 if (reloc_count <= 2)
1822 opd_ent_size = this->section_size(this->opd_shndx());
1823 if (opd_ent_size != 24 && opd_ent_size != 16)
1824 regular = false;
1825 if (!regular)
1826 {
1827 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828 this->name().c_str());
1829 opd_ent_size = 0;
1830 }
1831 }
1832 }
1833
1834 template<int size, bool big_endian>
1835 void
1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1837 {
1838 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1839 if (size == 64)
1840 {
1841 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842 p != rd->relocs.end();
1843 ++p)
1844 {
1845 if (p->data_shndx == this->opd_shndx())
1846 {
1847 uint64_t opd_size = this->section_size(this->opd_shndx());
1848 gold_assert(opd_size == static_cast<size_t>(opd_size));
1849 if (opd_size != 0)
1850 {
1851 this->init_opd(opd_size);
1852 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853 rd->local_symbols->data());
1854 }
1855 break;
1856 }
1857 }
1858 }
1859 }
1860
1861 // Read the symbols then set up st_other vector.
1862
1863 template<int size, bool big_endian>
1864 void
1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1866 {
1867 this->base_read_symbols(sd);
1868 if (size == 64)
1869 {
1870 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871 const unsigned char* const pshdrs = sd->section_headers->data();
1872 const unsigned int loccount = this->do_local_symbol_count();
1873 if (loccount != 0)
1874 {
1875 this->st_other_.resize(loccount);
1876 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877 off_t locsize = loccount * sym_size;
1878 const unsigned int symtab_shndx = this->symtab_shndx();
1879 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882 locsize, true, false);
1883 psyms += sym_size;
1884 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1885 {
1886 elfcpp::Sym<size, big_endian> sym(psyms);
1887 unsigned char st_other = sym.get_st_other();
1888 this->st_other_[i] = st_other;
1889 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1890 {
1891 if (this->abiversion() == 0)
1892 this->set_abiversion(2);
1893 else if (this->abiversion() < 2)
1894 gold_error(_("%s: local symbol %d has invalid st_other"
1895 " for ABI version 1"),
1896 this->name().c_str(), i);
1897 }
1898 }
1899 }
1900 }
1901 }
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1906 {
1907 this->e_flags_ |= ver;
1908 if (this->abiversion() != 0)
1909 {
1910 Target_powerpc<size, big_endian>* target =
1911 static_cast<Target_powerpc<size, big_endian>*>(
1912 parameters->sized_target<size, big_endian>());
1913 if (target->abiversion() == 0)
1914 target->set_abiversion(this->abiversion());
1915 else if (target->abiversion() != this->abiversion())
1916 gold_error(_("%s: ABI version %d is not compatible "
1917 "with ABI version %d output"),
1918 this->name().c_str(),
1919 this->abiversion(), target->abiversion());
1920
1921 }
1922 }
1923
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1926
1927 template<int size, bool big_endian>
1928 void
1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1930 {
1931 this->base_read_symbols(sd);
1932 if (size == 64)
1933 {
1934 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935 const unsigned char* const pshdrs = sd->section_headers->data();
1936 const unsigned char* namesu = sd->section_names->data();
1937 const char* names = reinterpret_cast<const char*>(namesu);
1938 const unsigned char* s = NULL;
1939 const unsigned char* opd;
1940 section_size_type opd_size;
1941
1942 // Find and read .opd section.
1943 while (1)
1944 {
1945 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946 sd->section_names_size,
1947 s);
1948 if (s == NULL)
1949 return;
1950
1951 typename elfcpp::Shdr<size, big_endian> shdr(s);
1952 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1954 {
1955 if (this->abiversion() == 0)
1956 this->set_abiversion(1);
1957 else if (this->abiversion() > 1)
1958 gold_error(_("%s: .opd invalid in abiv%d"),
1959 this->name().c_str(), this->abiversion());
1960
1961 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962 this->opd_address_ = shdr.get_sh_addr();
1963 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1965 true, false);
1966 break;
1967 }
1968 }
1969
1970 // Build set of executable sections.
1971 // Using a set is probably overkill. There is likely to be only
1972 // a few executable sections, typically .init, .text and .fini,
1973 // and they are generally grouped together.
1974 typedef std::set<Sec_info> Exec_sections;
1975 Exec_sections exec_sections;
1976 s = pshdrs;
1977 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1978 {
1979 typename elfcpp::Shdr<size, big_endian> shdr(s);
1980 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981 && ((shdr.get_sh_flags()
1982 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984 && shdr.get_sh_size() != 0)
1985 {
1986 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987 shdr.get_sh_size(), i));
1988 }
1989 }
1990 if (exec_sections.empty())
1991 return;
1992
1993 // Look over the OPD entries. This is complicated by the fact
1994 // that some binaries will use two-word entries while others
1995 // will use the standard three-word entries. In most cases
1996 // the third word (the environment pointer for languages like
1997 // Pascal) is unused and will be zero. If the third word is
1998 // used it should not be pointing into executable sections,
1999 // I think.
2000 this->init_opd(opd_size);
2001 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2002 {
2003 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2006 if (val == 0)
2007 // Chances are that this is the third word of an OPD entry.
2008 continue;
2009 typename Exec_sections::const_iterator e
2010 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011 if (e != exec_sections.begin())
2012 {
2013 --e;
2014 if (e->start <= val && val < e->start + e->len)
2015 {
2016 // We have an address in an executable section.
2017 // VAL ought to be the function entry, set it up.
2018 this->set_opd_ent(p - opd, e->shndx, val);
2019 // Skip second word of OPD entry, the TOC pointer.
2020 p += 8;
2021 }
2022 }
2023 // If we didn't match any executable sections, we likely
2024 // have a non-zero third word in the OPD entry.
2025 }
2026 }
2027 }
2028
2029 // Set up some symbols.
2030
2031 template<int size, bool big_endian>
2032 void
2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034 Symbol_table* symtab,
2035 Layout* layout)
2036 {
2037 if (size == 32)
2038 {
2039 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040 // undefined when scanning relocs (and thus requires
2041 // non-relative dynamic relocs). The proper value will be
2042 // updated later.
2043 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044 if (gotsym != NULL && gotsym->is_undefined())
2045 {
2046 Target_powerpc<size, big_endian>* target =
2047 static_cast<Target_powerpc<size, big_endian>*>(
2048 parameters->sized_target<size, big_endian>());
2049 Output_data_got_powerpc<size, big_endian>* got
2050 = target->got_section(symtab, layout);
2051 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052 Symbol_table::PREDEFINED,
2053 got, 0, 0,
2054 elfcpp::STT_OBJECT,
2055 elfcpp::STB_LOCAL,
2056 elfcpp::STV_HIDDEN, 0,
2057 false, false);
2058 }
2059
2060 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062 if (sdasym != NULL && sdasym->is_undefined())
2063 {
2064 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2065 Output_section* os
2066 = layout->add_output_section_data(".sdata", 0,
2067 elfcpp::SHF_ALLOC
2068 | elfcpp::SHF_WRITE,
2069 sdata, ORDER_SMALL_DATA, false);
2070 symtab->define_in_output_data("_SDA_BASE_", NULL,
2071 Symbol_table::PREDEFINED,
2072 os, 32768, 0, elfcpp::STT_OBJECT,
2073 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2074 0, false, false);
2075 }
2076 }
2077 else
2078 {
2079 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081 if (gotsym != NULL && gotsym->is_undefined())
2082 {
2083 Target_powerpc<size, big_endian>* target =
2084 static_cast<Target_powerpc<size, big_endian>*>(
2085 parameters->sized_target<size, big_endian>());
2086 Output_data_got_powerpc<size, big_endian>* got
2087 = target->got_section(symtab, layout);
2088 symtab->define_in_output_data(".TOC.", NULL,
2089 Symbol_table::PREDEFINED,
2090 got, 0x8000, 0,
2091 elfcpp::STT_OBJECT,
2092 elfcpp::STB_LOCAL,
2093 elfcpp::STV_HIDDEN, 0,
2094 false, false);
2095 }
2096 }
2097 }
2098
2099 // Set up PowerPC target specific relobj.
2100
2101 template<int size, bool big_endian>
2102 Object*
2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104 const std::string& name,
2105 Input_file* input_file,
2106 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2107 {
2108 int et = ehdr.get_e_type();
2109 // ET_EXEC files are valid input for --just-symbols/-R,
2110 // and we treat them as relocatable objects.
2111 if (et == elfcpp::ET_REL
2112 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2113 {
2114 Powerpc_relobj<size, big_endian>* obj =
2115 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2116 obj->setup();
2117 return obj;
2118 }
2119 else if (et == elfcpp::ET_DYN)
2120 {
2121 Powerpc_dynobj<size, big_endian>* obj =
2122 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2123 obj->setup();
2124 return obj;
2125 }
2126 else
2127 {
2128 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2129 return NULL;
2130 }
2131 }
2132
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2135 {
2136 public:
2137 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2139
2140 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141 : Output_data_got<size, big_endian>(),
2142 symtab_(symtab), layout_(layout),
2143 header_ent_cnt_(size == 32 ? 3 : 1),
2144 header_index_(size == 32 ? 0x2000 : 0)
2145 { }
2146
2147 // Override all the Output_data_got methods we use so as to first call
2148 // reserve_ent().
2149 bool
2150 add_global(Symbol* gsym, unsigned int got_type)
2151 {
2152 this->reserve_ent();
2153 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2154 }
2155
2156 bool
2157 add_global_plt(Symbol* gsym, unsigned int got_type)
2158 {
2159 this->reserve_ent();
2160 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2161 }
2162
2163 bool
2164 add_global_tls(Symbol* gsym, unsigned int got_type)
2165 { return this->add_global_plt(gsym, got_type); }
2166
2167 void
2168 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2170 {
2171 this->reserve_ent();
2172 Output_data_got<size, big_endian>::
2173 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2174 }
2175
2176 void
2177 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178 Output_data_reloc_generic* rel_dyn,
2179 unsigned int r_type_1, unsigned int r_type_2)
2180 {
2181 this->reserve_ent(2);
2182 Output_data_got<size, big_endian>::
2183 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2184 }
2185
2186 bool
2187 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2188 {
2189 this->reserve_ent();
2190 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2191 got_type);
2192 }
2193
2194 bool
2195 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2196 {
2197 this->reserve_ent();
2198 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2199 got_type);
2200 }
2201
2202 bool
2203 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204 { return this->add_local_plt(object, sym_index, got_type); }
2205
2206 void
2207 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208 unsigned int got_type,
2209 Output_data_reloc_generic* rel_dyn,
2210 unsigned int r_type)
2211 {
2212 this->reserve_ent(2);
2213 Output_data_got<size, big_endian>::
2214 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2215 }
2216
2217 unsigned int
2218 add_constant(Valtype constant)
2219 {
2220 this->reserve_ent();
2221 return Output_data_got<size, big_endian>::add_constant(constant);
2222 }
2223
2224 unsigned int
2225 add_constant_pair(Valtype c1, Valtype c2)
2226 {
2227 this->reserve_ent(2);
2228 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2229 }
2230
2231 // Offset of _GLOBAL_OFFSET_TABLE_.
2232 unsigned int
2233 g_o_t() const
2234 {
2235 return this->got_offset(this->header_index_);
2236 }
2237
2238 // Offset of base used to access the GOT/TOC.
2239 // The got/toc pointer reg will be set to this value.
2240 Valtype
2241 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2242 {
2243 if (size == 32)
2244 return this->g_o_t();
2245 else
2246 return (this->output_section()->address()
2247 + object->toc_base_offset()
2248 - this->address());
2249 }
2250
2251 // Ensure our GOT has a header.
2252 void
2253 set_final_data_size()
2254 {
2255 if (this->header_ent_cnt_ != 0)
2256 this->make_header();
2257 Output_data_got<size, big_endian>::set_final_data_size();
2258 }
2259
2260 // First word of GOT header needs some values that are not
2261 // handled by Output_data_got so poke them in here.
2262 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2263 void
2264 do_write(Output_file* of)
2265 {
2266 Valtype val = 0;
2267 if (size == 32 && this->layout_->dynamic_data() != NULL)
2268 val = this->layout_->dynamic_section()->address();
2269 if (size == 64)
2270 val = this->output_section()->address() + 0x8000;
2271 this->replace_constant(this->header_index_, val);
2272 Output_data_got<size, big_endian>::do_write(of);
2273 }
2274
2275 private:
2276 void
2277 reserve_ent(unsigned int cnt = 1)
2278 {
2279 if (this->header_ent_cnt_ == 0)
2280 return;
2281 if (this->num_entries() + cnt > this->header_index_)
2282 this->make_header();
2283 }
2284
2285 void
2286 make_header()
2287 {
2288 this->header_ent_cnt_ = 0;
2289 this->header_index_ = this->num_entries();
2290 if (size == 32)
2291 {
2292 Output_data_got<size, big_endian>::add_constant(0);
2293 Output_data_got<size, big_endian>::add_constant(0);
2294 Output_data_got<size, big_endian>::add_constant(0);
2295
2296 // Define _GLOBAL_OFFSET_TABLE_ at the header
2297 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2298 if (gotsym != NULL)
2299 {
2300 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301 sym->set_value(this->g_o_t());
2302 }
2303 else
2304 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305 Symbol_table::PREDEFINED,
2306 this, this->g_o_t(), 0,
2307 elfcpp::STT_OBJECT,
2308 elfcpp::STB_LOCAL,
2309 elfcpp::STV_HIDDEN, 0,
2310 false, false);
2311 }
2312 else
2313 Output_data_got<size, big_endian>::add_constant(0);
2314 }
2315
2316 // Stashed pointers.
2317 Symbol_table* symtab_;
2318 Layout* layout_;
2319
2320 // GOT header size.
2321 unsigned int header_ent_cnt_;
2322 // GOT header index.
2323 unsigned int header_index_;
2324 };
2325
2326 // Get the GOT section, creating it if necessary.
2327
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2331 Layout* layout)
2332 {
2333 if (this->got_ == NULL)
2334 {
2335 gold_assert(symtab != NULL && layout != NULL);
2336
2337 this->got_
2338 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2339
2340 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342 this->got_, ORDER_DATA, false);
2343 }
2344
2345 return this->got_;
2346 }
2347
2348 // Get the dynamic reloc section, creating it if necessary.
2349
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2353 {
2354 if (this->rela_dyn_ == NULL)
2355 {
2356 gold_assert(layout != NULL);
2357 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359 elfcpp::SHF_ALLOC, this->rela_dyn_,
2360 ORDER_DYNAMIC_RELOCS, false);
2361 }
2362 return this->rela_dyn_;
2363 }
2364
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2366
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2370 Layout* layout,
2371 bool for_ifunc)
2372 {
2373 if (!for_ifunc)
2374 return this->rela_dyn_section(layout);
2375
2376 if (this->iplt_ == NULL)
2377 this->make_iplt_section(symtab, layout);
2378 return this->iplt_->rel_plt();
2379 }
2380
2381 class Stub_control
2382 {
2383 public:
2384 // Determine the stub group size. The group size is the absolute
2385 // value of the parameter --stub-group-size. If --stub-group-size
2386 // is passed a negative value, we restrict stubs to be always before
2387 // the stubbed branches.
2388 Stub_control(int32_t size, bool no_size_errors)
2389 : state_(NO_GROUP), stub_group_size_(abs(size)),
2390 stub14_group_size_(abs(size) >> 10),
2391 stubs_always_before_branch_(size < 0),
2392 suppress_size_errors_(no_size_errors),
2393 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2394 {
2395 }
2396
2397 // Return true iff input section can be handled by current stub
2398 // group.
2399 bool
2400 can_add_to_stub_group(Output_section* o,
2401 const Output_section::Input_section* i,
2402 bool has14);
2403
2404 const Output_section::Input_section*
2405 owner()
2406 { return owner_; }
2407
2408 Output_section*
2409 output_section()
2410 { return output_section_; }
2411
2412 void
2413 set_output_and_owner(Output_section* o,
2414 const Output_section::Input_section* i)
2415 {
2416 this->output_section_ = o;
2417 this->owner_ = i;
2418 }
2419
2420 private:
2421 typedef enum
2422 {
2423 NO_GROUP,
2424 FINDING_STUB_SECTION,
2425 HAS_STUB_SECTION
2426 } State;
2427
2428 State state_;
2429 uint32_t stub_group_size_;
2430 uint32_t stub14_group_size_;
2431 bool stubs_always_before_branch_;
2432 bool suppress_size_errors_;
2433 uint64_t group_end_addr_;
2434 const Output_section::Input_section* owner_;
2435 Output_section* output_section_;
2436 };
2437
2438 // Return true iff input section can be handled by current stub
2439 // group.
2440
2441 bool
2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443 const Output_section::Input_section* i,
2444 bool has14)
2445 {
2446 uint32_t group_size
2447 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2449 uint64_t this_size;
2450 uint64_t start_addr = o->address();
2451
2452 if (whole_sec)
2453 // .init and .fini sections are pasted together to form a single
2454 // function. We can't be adding stubs in the middle of the function.
2455 this_size = o->data_size();
2456 else
2457 {
2458 start_addr += i->relobj()->output_section_offset(i->shndx());
2459 this_size = i->data_size();
2460 }
2461 uint64_t end_addr = start_addr + this_size;
2462 bool toobig = this_size > group_size;
2463
2464 if (toobig && !this->suppress_size_errors_)
2465 gold_warning(_("%s:%s exceeds group size"),
2466 i->relobj()->name().c_str(),
2467 i->relobj()->section_name(i->shndx()).c_str());
2468
2469 if (this->state_ != HAS_STUB_SECTION
2470 && (!whole_sec || this->output_section_ != o)
2471 && (this->state_ == NO_GROUP
2472 || this->group_end_addr_ - end_addr < group_size))
2473 {
2474 this->owner_ = i;
2475 this->output_section_ = o;
2476 }
2477
2478 if (this->state_ == NO_GROUP)
2479 {
2480 this->state_ = FINDING_STUB_SECTION;
2481 this->group_end_addr_ = end_addr;
2482 }
2483 else if (this->group_end_addr_ - start_addr < group_size)
2484 ;
2485 // Adding this section would make the group larger than GROUP_SIZE.
2486 else if (this->state_ == FINDING_STUB_SECTION
2487 && !this->stubs_always_before_branch_
2488 && !toobig)
2489 {
2490 // But wait, there's more! Input sections up to GROUP_SIZE
2491 // bytes before the stub table can be handled by it too.
2492 this->state_ = HAS_STUB_SECTION;
2493 this->group_end_addr_ = end_addr;
2494 }
2495 else
2496 {
2497 this->state_ = NO_GROUP;
2498 return false;
2499 }
2500 return true;
2501 }
2502
2503 // Look over all the input sections, deciding where to place stubs.
2504
2505 template<int size, bool big_endian>
2506 void
2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2508 const Task*,
2509 bool no_size_errors)
2510 {
2511 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2512
2513 // Group input sections and insert stub table
2514 Stub_table_owner* table_owner = NULL;
2515 std::vector<Stub_table_owner*> tables;
2516 Layout::Section_list section_list;
2517 layout->get_executable_sections(&section_list);
2518 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520 o != section_list.rend();
2521 ++o)
2522 {
2523 typedef Output_section::Input_section_list Input_section_list;
2524 for (Input_section_list::const_reverse_iterator i
2525 = (*o)->input_sections().rbegin();
2526 i != (*o)->input_sections().rend();
2527 ++i)
2528 {
2529 if (i->is_input_section()
2530 || i->is_relaxed_input_section())
2531 {
2532 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2534 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2536 {
2537 table_owner->output_section = stub_control.output_section();
2538 table_owner->owner = stub_control.owner();
2539 stub_control.set_output_and_owner(*o, &*i);
2540 table_owner = NULL;
2541 }
2542 if (table_owner == NULL)
2543 {
2544 table_owner = new Stub_table_owner;
2545 tables.push_back(table_owner);
2546 }
2547 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2548 }
2549 }
2550 }
2551 if (table_owner != NULL)
2552 {
2553 const Output_section::Input_section* i = stub_control.owner();
2554
2555 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2556 {
2557 // Corner case. A new stub group was made for the first
2558 // section (last one looked at here) for some reason, but
2559 // the first section is already being used as the owner for
2560 // a stub table for following sections. Force it into that
2561 // stub group.
2562 tables.pop_back();
2563 delete table_owner;
2564 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2567 }
2568 else
2569 {
2570 table_owner->output_section = stub_control.output_section();
2571 table_owner->owner = i;
2572 }
2573 }
2574 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2575 t != tables.end();
2576 ++t)
2577 {
2578 Stub_table<size, big_endian>* stub_table;
2579
2580 if ((*t)->owner->is_input_section())
2581 stub_table = new Stub_table<size, big_endian>(this,
2582 (*t)->output_section,
2583 (*t)->owner);
2584 else if ((*t)->owner->is_relaxed_input_section())
2585 stub_table = static_cast<Stub_table<size, big_endian>*>(
2586 (*t)->owner->relaxed_input_section());
2587 else
2588 gold_unreachable();
2589 this->stub_tables_.push_back(stub_table);
2590 delete *t;
2591 }
2592 }
2593
2594 static unsigned long
2595 max_branch_delta (unsigned int r_type)
2596 {
2597 if (r_type == elfcpp::R_POWERPC_REL14
2598 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2600 return 1L << 15;
2601 if (r_type == elfcpp::R_POWERPC_REL24
2602 || r_type == elfcpp::R_PPC_PLTREL24
2603 || r_type == elfcpp::R_PPC_LOCAL24PC)
2604 return 1L << 25;
2605 return 0;
2606 }
2607
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2609
2610 template<int size, bool big_endian>
2611 bool
2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613 Stub_table<size, big_endian>* stub_table,
2614 Stub_table<size, big_endian>* ifunc_stub_table,
2615 Symbol_table* symtab) const
2616 {
2617 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618 if (sym != NULL && sym->is_forwarder())
2619 sym = symtab->resolve_forwards(sym);
2620 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621 Target_powerpc<size, big_endian>* target =
2622 static_cast<Target_powerpc<size, big_endian>*>(
2623 parameters->sized_target<size, big_endian>());
2624 if (gsym != NULL
2625 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626 : this->object_->local_has_plt_offset(this->r_sym_))
2627 {
2628 if (size == 64
2629 && gsym != NULL
2630 && target->abiversion() >= 2
2631 && !parameters->options().output_is_position_independent()
2632 && !is_branch_reloc(this->r_type_))
2633 target->glink_section()->add_global_entry(gsym);
2634 else
2635 {
2636 if (stub_table == NULL)
2637 stub_table = this->object_->stub_table(this->shndx_);
2638 if (stub_table == NULL)
2639 {
2640 // This is a ref from a data section to an ifunc symbol.
2641 stub_table = ifunc_stub_table;
2642 }
2643 gold_assert(stub_table != NULL);
2644 Address from = this->object_->get_output_section_offset(this->shndx_);
2645 if (from != invalid_address)
2646 from += (this->object_->output_section(this->shndx_)->address()
2647 + this->offset_);
2648 if (gsym != NULL)
2649 return stub_table->add_plt_call_entry(from,
2650 this->object_, gsym,
2651 this->r_type_, this->addend_);
2652 else
2653 return stub_table->add_plt_call_entry(from,
2654 this->object_, this->r_sym_,
2655 this->r_type_, this->addend_);
2656 }
2657 }
2658 else
2659 {
2660 Address max_branch_offset = max_branch_delta(this->r_type_);
2661 if (max_branch_offset == 0)
2662 return true;
2663 Address from = this->object_->get_output_section_offset(this->shndx_);
2664 gold_assert(from != invalid_address);
2665 from += (this->object_->output_section(this->shndx_)->address()
2666 + this->offset_);
2667 Address to;
2668 if (gsym != NULL)
2669 {
2670 switch (gsym->source())
2671 {
2672 case Symbol::FROM_OBJECT:
2673 {
2674 Object* symobj = gsym->object();
2675 if (symobj->is_dynamic()
2676 || symobj->pluginobj() != NULL)
2677 return true;
2678 bool is_ordinary;
2679 unsigned int shndx = gsym->shndx(&is_ordinary);
2680 if (shndx == elfcpp::SHN_UNDEF)
2681 return true;
2682 }
2683 break;
2684
2685 case Symbol::IS_UNDEFINED:
2686 return true;
2687
2688 default:
2689 break;
2690 }
2691 Symbol_table::Compute_final_value_status status;
2692 to = symtab->compute_final_value<size>(gsym, &status);
2693 if (status != Symbol_table::CFVS_OK)
2694 return true;
2695 if (size == 64)
2696 to += this->object_->ppc64_local_entry_offset(gsym);
2697 }
2698 else
2699 {
2700 const Symbol_value<size>* psymval
2701 = this->object_->local_symbol(this->r_sym_);
2702 Symbol_value<size> symval;
2703 typedef Sized_relobj_file<size, big_endian> ObjType;
2704 typename ObjType::Compute_final_local_value_status status
2705 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2706 &symval, symtab);
2707 if (status != ObjType::CFLV_OK
2708 || !symval.has_output_value())
2709 return true;
2710 to = symval.value(this->object_, 0);
2711 if (size == 64)
2712 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2713 }
2714 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2715 to += this->addend_;
2716 if (stub_table == NULL)
2717 stub_table = this->object_->stub_table(this->shndx_);
2718 if (size == 64 && target->abiversion() < 2)
2719 {
2720 unsigned int dest_shndx;
2721 if (!target->symval_for_branch(symtab, gsym, this->object_,
2722 &to, &dest_shndx))
2723 return true;
2724 }
2725 Address delta = to - from;
2726 if (delta + max_branch_offset >= 2 * max_branch_offset)
2727 {
2728 if (stub_table == NULL)
2729 {
2730 gold_warning(_("%s:%s: branch in non-executable section,"
2731 " no long branch stub for you"),
2732 this->object_->name().c_str(),
2733 this->object_->section_name(this->shndx_).c_str());
2734 return true;
2735 }
2736 return stub_table->add_long_branch_entry(this->object_,
2737 this->r_type_, from, to);
2738 }
2739 }
2740 return true;
2741 }
2742
2743 // Relaxation hook. This is where we do stub generation.
2744
2745 template<int size, bool big_endian>
2746 bool
2747 Target_powerpc<size, big_endian>::do_relax(int pass,
2748 const Input_objects*,
2749 Symbol_table* symtab,
2750 Layout* layout,
2751 const Task* task)
2752 {
2753 unsigned int prev_brlt_size = 0;
2754 if (pass == 1)
2755 {
2756 bool thread_safe
2757 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2758 if (size == 64
2759 && this->abiversion() < 2
2760 && !thread_safe
2761 && !parameters->options().user_set_plt_thread_safe())
2762 {
2763 static const char* const thread_starter[] =
2764 {
2765 "pthread_create",
2766 /* libstdc++ */
2767 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2768 /* librt */
2769 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2770 "mq_notify", "create_timer",
2771 /* libanl */
2772 "getaddrinfo_a",
2773 /* libgomp */
2774 "GOMP_parallel",
2775 "GOMP_parallel_start",
2776 "GOMP_parallel_loop_static",
2777 "GOMP_parallel_loop_static_start",
2778 "GOMP_parallel_loop_dynamic",
2779 "GOMP_parallel_loop_dynamic_start",
2780 "GOMP_parallel_loop_guided",
2781 "GOMP_parallel_loop_guided_start",
2782 "GOMP_parallel_loop_runtime",
2783 "GOMP_parallel_loop_runtime_start",
2784 "GOMP_parallel_sections",
2785 "GOMP_parallel_sections_start",
2786 /* libgo */
2787 "__go_go",
2788 };
2789
2790 if (parameters->options().shared())
2791 thread_safe = true;
2792 else
2793 {
2794 for (unsigned int i = 0;
2795 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2796 i++)
2797 {
2798 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2799 thread_safe = (sym != NULL
2800 && sym->in_reg()
2801 && sym->in_real_elf());
2802 if (thread_safe)
2803 break;
2804 }
2805 }
2806 }
2807 this->plt_thread_safe_ = thread_safe;
2808 }
2809
2810 if (pass == 1)
2811 {
2812 this->stub_group_size_ = parameters->options().stub_group_size();
2813 bool no_size_errors = true;
2814 if (this->stub_group_size_ == 1)
2815 this->stub_group_size_ = 0x1c00000;
2816 else if (this->stub_group_size_ == -1)
2817 this->stub_group_size_ = -0x1e00000;
2818 else
2819 no_size_errors = false;
2820 this->group_sections(layout, task, no_size_errors);
2821 }
2822 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2823 {
2824 this->branch_lookup_table_.clear();
2825 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2826 p != this->stub_tables_.end();
2827 ++p)
2828 {
2829 (*p)->clear_stubs(true);
2830 }
2831 this->stub_tables_.clear();
2832 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2833 gold_info(_("%s: stub group size is too large; retrying with %d"),
2834 program_name, this->stub_group_size_);
2835 this->group_sections(layout, task, true);
2836 }
2837
2838 // We need address of stub tables valid for make_stub.
2839 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2840 p != this->stub_tables_.end();
2841 ++p)
2842 {
2843 const Powerpc_relobj<size, big_endian>* object
2844 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2845 Address off = object->get_output_section_offset((*p)->shndx());
2846 gold_assert(off != invalid_address);
2847 Output_section* os = (*p)->output_section();
2848 (*p)->set_address_and_size(os, off);
2849 }
2850
2851 if (pass != 1)
2852 {
2853 // Clear plt call stubs, long branch stubs and branch lookup table.
2854 prev_brlt_size = this->branch_lookup_table_.size();
2855 this->branch_lookup_table_.clear();
2856 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2857 p != this->stub_tables_.end();
2858 ++p)
2859 {
2860 (*p)->clear_stubs(false);
2861 }
2862 }
2863
2864 // Build all the stubs.
2865 this->relax_failed_ = false;
2866 Stub_table<size, big_endian>* ifunc_stub_table
2867 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2868 Stub_table<size, big_endian>* one_stub_table
2869 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2870 for (typename Branches::const_iterator b = this->branch_info_.begin();
2871 b != this->branch_info_.end();
2872 b++)
2873 {
2874 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2875 && !this->relax_failed_)
2876 {
2877 this->relax_failed_ = true;
2878 this->relax_fail_count_++;
2879 if (this->relax_fail_count_ < 3)
2880 return true;
2881 }
2882 }
2883
2884 // Did anything change size?
2885 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2886 bool again = num_huge_branches != prev_brlt_size;
2887 if (size == 64 && num_huge_branches != 0)
2888 this->make_brlt_section(layout);
2889 if (size == 64 && again)
2890 this->brlt_section_->set_current_size(num_huge_branches);
2891
2892 typedef Unordered_set<Output_section*> Output_sections;
2893 Output_sections os_need_update;
2894 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2895 p != this->stub_tables_.end();
2896 ++p)
2897 {
2898 if ((*p)->size_update())
2899 {
2900 again = true;
2901 (*p)->add_eh_frame(layout);
2902 os_need_update.insert((*p)->output_section());
2903 }
2904 }
2905
2906 // Set output section offsets for all input sections in an output
2907 // section that just changed size. Anything past the stubs will
2908 // need updating.
2909 for (typename Output_sections::iterator p = os_need_update.begin();
2910 p != os_need_update.end();
2911 p++)
2912 {
2913 Output_section* os = *p;
2914 Address off = 0;
2915 typedef Output_section::Input_section_list Input_section_list;
2916 for (Input_section_list::const_iterator i = os->input_sections().begin();
2917 i != os->input_sections().end();
2918 ++i)
2919 {
2920 off = align_address(off, i->addralign());
2921 if (i->is_input_section() || i->is_relaxed_input_section())
2922 i->relobj()->set_section_offset(i->shndx(), off);
2923 if (i->is_relaxed_input_section())
2924 {
2925 Stub_table<size, big_endian>* stub_table
2926 = static_cast<Stub_table<size, big_endian>*>(
2927 i->relaxed_input_section());
2928 off += stub_table->set_address_and_size(os, off);
2929 }
2930 else
2931 off += i->data_size();
2932 }
2933 // If .branch_lt is part of this output section, then we have
2934 // just done the offset adjustment.
2935 os->clear_section_offsets_need_adjustment();
2936 }
2937
2938 if (size == 64
2939 && !again
2940 && num_huge_branches != 0
2941 && parameters->options().output_is_position_independent())
2942 {
2943 // Fill in the BRLT relocs.
2944 this->brlt_section_->reset_brlt_sizes();
2945 for (typename Branch_lookup_table::const_iterator p
2946 = this->branch_lookup_table_.begin();
2947 p != this->branch_lookup_table_.end();
2948 ++p)
2949 {
2950 this->brlt_section_->add_reloc(p->first, p->second);
2951 }
2952 this->brlt_section_->finalize_brlt_sizes();
2953 }
2954 return again;
2955 }
2956
2957 template<int size, bool big_endian>
2958 void
2959 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2960 unsigned char* oview,
2961 uint64_t* paddress,
2962 off_t* plen) const
2963 {
2964 uint64_t address = plt->address();
2965 off_t len = plt->data_size();
2966
2967 if (plt == this->glink_)
2968 {
2969 // See Output_data_glink::do_write() for glink contents.
2970 if (len == 0)
2971 {
2972 gold_assert(parameters->doing_static_link());
2973 // Static linking may need stubs, to support ifunc and long
2974 // branches. We need to create an output section for
2975 // .eh_frame early in the link process, to have a place to
2976 // attach stub .eh_frame info. We also need to have
2977 // registered a CIE that matches the stub CIE. Both of
2978 // these requirements are satisfied by creating an FDE and
2979 // CIE for .glink, even though static linking will leave
2980 // .glink zero length.
2981 // ??? Hopefully generating an FDE with a zero address range
2982 // won't confuse anything that consumes .eh_frame info.
2983 }
2984 else if (size == 64)
2985 {
2986 // There is one word before __glink_PLTresolve
2987 address += 8;
2988 len -= 8;
2989 }
2990 else if (parameters->options().output_is_position_independent())
2991 {
2992 // There are two FDEs for a position independent glink.
2993 // The first covers the branch table, the second
2994 // __glink_PLTresolve at the end of glink.
2995 off_t resolve_size = this->glink_->pltresolve_size;
2996 if (oview[9] == elfcpp::DW_CFA_nop)
2997 len -= resolve_size;
2998 else
2999 {
3000 address += len - resolve_size;
3001 len = resolve_size;
3002 }
3003 }
3004 }
3005 else
3006 {
3007 // Must be a stub table.
3008 const Stub_table<size, big_endian>* stub_table
3009 = static_cast<const Stub_table<size, big_endian>*>(plt);
3010 uint64_t stub_address = stub_table->stub_address();
3011 len -= stub_address - address;
3012 address = stub_address;
3013 }
3014
3015 *paddress = address;
3016 *plen = len;
3017 }
3018
3019 // A class to handle the PLT data.
3020
3021 template<int size, bool big_endian>
3022 class Output_data_plt_powerpc : public Output_section_data_build
3023 {
3024 public:
3025 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3026 size, big_endian> Reloc_section;
3027
3028 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3029 Reloc_section* plt_rel,
3030 const char* name)
3031 : Output_section_data_build(size == 32 ? 4 : 8),
3032 rel_(plt_rel),
3033 targ_(targ),
3034 name_(name)
3035 { }
3036
3037 // Add an entry to the PLT.
3038 void
3039 add_entry(Symbol*);
3040
3041 void
3042 add_ifunc_entry(Symbol*);
3043
3044 void
3045 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3046
3047 // Return the .rela.plt section data.
3048 Reloc_section*
3049 rel_plt() const
3050 {
3051 return this->rel_;
3052 }
3053
3054 // Return the number of PLT entries.
3055 unsigned int
3056 entry_count() const
3057 {
3058 if (this->current_data_size() == 0)
3059 return 0;
3060 return ((this->current_data_size() - this->first_plt_entry_offset())
3061 / this->plt_entry_size());
3062 }
3063
3064 protected:
3065 void
3066 do_adjust_output_section(Output_section* os)
3067 {
3068 os->set_entsize(0);
3069 }
3070
3071 // Write to a map file.
3072 void
3073 do_print_to_mapfile(Mapfile* mapfile) const
3074 { mapfile->print_output_data(this, this->name_); }
3075
3076 private:
3077 // Return the offset of the first non-reserved PLT entry.
3078 unsigned int
3079 first_plt_entry_offset() const
3080 {
3081 // IPLT has no reserved entry.
3082 if (this->name_[3] == 'I')
3083 return 0;
3084 return this->targ_->first_plt_entry_offset();
3085 }
3086
3087 // Return the size of each PLT entry.
3088 unsigned int
3089 plt_entry_size() const
3090 {
3091 return this->targ_->plt_entry_size();
3092 }
3093
3094 // Write out the PLT data.
3095 void
3096 do_write(Output_file*);
3097
3098 // The reloc section.
3099 Reloc_section* rel_;
3100 // Allows access to .glink for do_write.
3101 Target_powerpc<size, big_endian>* targ_;
3102 // What to report in map file.
3103 const char *name_;
3104 };
3105
3106 // Add an entry to the PLT.
3107
3108 template<int size, bool big_endian>
3109 void
3110 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3111 {
3112 if (!gsym->has_plt_offset())
3113 {
3114 section_size_type off = this->current_data_size();
3115 if (off == 0)
3116 off += this->first_plt_entry_offset();
3117 gsym->set_plt_offset(off);
3118 gsym->set_needs_dynsym_entry();
3119 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3120 this->rel_->add_global(gsym, dynrel, this, off, 0);
3121 off += this->plt_entry_size();
3122 this->set_current_data_size(off);
3123 }
3124 }
3125
3126 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3127
3128 template<int size, bool big_endian>
3129 void
3130 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3131 {
3132 if (!gsym->has_plt_offset())
3133 {
3134 section_size_type off = this->current_data_size();
3135 gsym->set_plt_offset(off);
3136 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3137 if (size == 64 && this->targ_->abiversion() < 2)
3138 dynrel = elfcpp::R_PPC64_JMP_IREL;
3139 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3140 off += this->plt_entry_size();
3141 this->set_current_data_size(off);
3142 }
3143 }
3144
3145 // Add an entry for a local ifunc symbol to the IPLT.
3146
3147 template<int size, bool big_endian>
3148 void
3149 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3150 Sized_relobj_file<size, big_endian>* relobj,
3151 unsigned int local_sym_index)
3152 {
3153 if (!relobj->local_has_plt_offset(local_sym_index))
3154 {
3155 section_size_type off = this->current_data_size();
3156 relobj->set_local_plt_offset(local_sym_index, off);
3157 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3158 if (size == 64 && this->targ_->abiversion() < 2)
3159 dynrel = elfcpp::R_PPC64_JMP_IREL;
3160 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3161 this, off, 0);
3162 off += this->plt_entry_size();
3163 this->set_current_data_size(off);
3164 }
3165 }
3166
3167 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3168 static const uint32_t add_2_2_11 = 0x7c425a14;
3169 static const uint32_t add_3_3_2 = 0x7c631214;
3170 static const uint32_t add_3_3_13 = 0x7c636a14;
3171 static const uint32_t add_11_0_11 = 0x7d605a14;
3172 static const uint32_t add_11_2_11 = 0x7d625a14;
3173 static const uint32_t add_11_11_2 = 0x7d6b1214;
3174 static const uint32_t addi_0_12 = 0x380c0000;
3175 static const uint32_t addi_2_2 = 0x38420000;
3176 static const uint32_t addi_3_3 = 0x38630000;
3177 static const uint32_t addi_11_11 = 0x396b0000;
3178 static const uint32_t addi_12_12 = 0x398c0000;
3179 static const uint32_t addis_0_2 = 0x3c020000;
3180 static const uint32_t addis_0_13 = 0x3c0d0000;
3181 static const uint32_t addis_3_2 = 0x3c620000;
3182 static const uint32_t addis_3_13 = 0x3c6d0000;
3183 static const uint32_t addis_11_2 = 0x3d620000;
3184 static const uint32_t addis_11_11 = 0x3d6b0000;
3185 static const uint32_t addis_11_30 = 0x3d7e0000;
3186 static const uint32_t addis_12_2 = 0x3d820000;
3187 static const uint32_t addis_12_12 = 0x3d8c0000;
3188 static const uint32_t b = 0x48000000;
3189 static const uint32_t bcl_20_31 = 0x429f0005;
3190 static const uint32_t bctr = 0x4e800420;
3191 static const uint32_t blr = 0x4e800020;
3192 static const uint32_t bnectr_p4 = 0x4ce20420;
3193 static const uint32_t cmpldi_2_0 = 0x28220000;
3194 static const uint32_t cror_15_15_15 = 0x4def7b82;
3195 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3196 static const uint32_t ld_0_1 = 0xe8010000;
3197 static const uint32_t ld_0_12 = 0xe80c0000;
3198 static const uint32_t ld_2_1 = 0xe8410000;
3199 static const uint32_t ld_2_2 = 0xe8420000;
3200 static const uint32_t ld_2_11 = 0xe84b0000;
3201 static const uint32_t ld_11_2 = 0xe9620000;
3202 static const uint32_t ld_11_11 = 0xe96b0000;
3203 static const uint32_t ld_12_2 = 0xe9820000;
3204 static const uint32_t ld_12_11 = 0xe98b0000;
3205 static const uint32_t ld_12_12 = 0xe98c0000;
3206 static const uint32_t lfd_0_1 = 0xc8010000;
3207 static const uint32_t li_0_0 = 0x38000000;
3208 static const uint32_t li_12_0 = 0x39800000;
3209 static const uint32_t lis_0_0 = 0x3c000000;
3210 static const uint32_t lis_11 = 0x3d600000;
3211 static const uint32_t lis_12 = 0x3d800000;
3212 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3213 static const uint32_t lwz_0_12 = 0x800c0000;
3214 static const uint32_t lwz_11_11 = 0x816b0000;
3215 static const uint32_t lwz_11_30 = 0x817e0000;
3216 static const uint32_t lwz_12_12 = 0x818c0000;
3217 static const uint32_t lwzu_0_12 = 0x840c0000;
3218 static const uint32_t mflr_0 = 0x7c0802a6;
3219 static const uint32_t mflr_11 = 0x7d6802a6;
3220 static const uint32_t mflr_12 = 0x7d8802a6;
3221 static const uint32_t mtctr_0 = 0x7c0903a6;
3222 static const uint32_t mtctr_11 = 0x7d6903a6;
3223 static const uint32_t mtctr_12 = 0x7d8903a6;
3224 static const uint32_t mtlr_0 = 0x7c0803a6;
3225 static const uint32_t mtlr_12 = 0x7d8803a6;
3226 static const uint32_t nop = 0x60000000;
3227 static const uint32_t ori_0_0_0 = 0x60000000;
3228 static const uint32_t srdi_0_0_2 = 0x7800f082;
3229 static const uint32_t std_0_1 = 0xf8010000;
3230 static const uint32_t std_0_12 = 0xf80c0000;
3231 static const uint32_t std_2_1 = 0xf8410000;
3232 static const uint32_t stfd_0_1 = 0xd8010000;
3233 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3234 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3235 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3236 static const uint32_t xor_2_12_12 = 0x7d826278;
3237 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3238
3239 // Write out the PLT.
3240
3241 template<int size, bool big_endian>
3242 void
3243 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3244 {
3245 if (size == 32 && this->name_[3] != 'I')
3246 {
3247 const section_size_type offset = this->offset();
3248 const section_size_type oview_size
3249 = convert_to_section_size_type(this->data_size());
3250 unsigned char* const oview = of->get_output_view(offset, oview_size);
3251 unsigned char* pov = oview;
3252 unsigned char* endpov = oview + oview_size;
3253
3254 // The address of the .glink branch table
3255 const Output_data_glink<size, big_endian>* glink
3256 = this->targ_->glink_section();
3257 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3258
3259 while (pov < endpov)
3260 {
3261 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3262 pov += 4;
3263 branch_tab += 4;
3264 }
3265
3266 of->write_output_view(offset, oview_size, oview);
3267 }
3268 }
3269
3270 // Create the PLT section.
3271
3272 template<int size, bool big_endian>
3273 void
3274 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3275 Layout* layout)
3276 {
3277 if (this->plt_ == NULL)
3278 {
3279 if (this->got_ == NULL)
3280 this->got_section(symtab, layout);
3281
3282 if (this->glink_ == NULL)
3283 make_glink_section(layout);
3284
3285 // Ensure that .rela.dyn always appears before .rela.plt This is
3286 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3287 // needs to include .rela.plt in its range.
3288 this->rela_dyn_section(layout);
3289
3290 Reloc_section* plt_rel = new Reloc_section(false);
3291 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3292 elfcpp::SHF_ALLOC, plt_rel,
3293 ORDER_DYNAMIC_PLT_RELOCS, false);
3294 this->plt_
3295 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3296 "** PLT");
3297 layout->add_output_section_data(".plt",
3298 (size == 32
3299 ? elfcpp::SHT_PROGBITS
3300 : elfcpp::SHT_NOBITS),
3301 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3302 this->plt_,
3303 (size == 32
3304 ? ORDER_SMALL_DATA
3305 : ORDER_SMALL_BSS),
3306 false);
3307 }
3308 }
3309
3310 // Create the IPLT section.
3311
3312 template<int size, bool big_endian>
3313 void
3314 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3315 Layout* layout)
3316 {
3317 if (this->iplt_ == NULL)
3318 {
3319 this->make_plt_section(symtab, layout);
3320
3321 Reloc_section* iplt_rel = new Reloc_section(false);
3322 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3323 this->iplt_
3324 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3325 "** IPLT");
3326 this->plt_->output_section()->add_output_section_data(this->iplt_);
3327 }
3328 }
3329
3330 // A section for huge long branch addresses, similar to plt section.
3331
3332 template<int size, bool big_endian>
3333 class Output_data_brlt_powerpc : public Output_section_data_build
3334 {
3335 public:
3336 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3337 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3338 size, big_endian> Reloc_section;
3339
3340 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3341 Reloc_section* brlt_rel)
3342 : Output_section_data_build(size == 32 ? 4 : 8),
3343 rel_(brlt_rel),
3344 targ_(targ)
3345 { }
3346
3347 void
3348 reset_brlt_sizes()
3349 {
3350 this->reset_data_size();
3351 this->rel_->reset_data_size();
3352 }
3353
3354 void
3355 finalize_brlt_sizes()
3356 {
3357 this->finalize_data_size();
3358 this->rel_->finalize_data_size();
3359 }
3360
3361 // Add a reloc for an entry in the BRLT.
3362 void
3363 add_reloc(Address to, unsigned int off)
3364 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3365
3366 // Update section and reloc section size.
3367 void
3368 set_current_size(unsigned int num_branches)
3369 {
3370 this->reset_address_and_file_offset();
3371 this->set_current_data_size(num_branches * 16);
3372 this->finalize_data_size();
3373 Output_section* os = this->output_section();
3374 os->set_section_offsets_need_adjustment();
3375 if (this->rel_ != NULL)
3376 {
3377 unsigned int reloc_size
3378 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3379 this->rel_->reset_address_and_file_offset();
3380 this->rel_->set_current_data_size(num_branches * reloc_size);
3381 this->rel_->finalize_data_size();
3382 Output_section* os = this->rel_->output_section();
3383 os->set_section_offsets_need_adjustment();
3384 }
3385 }
3386
3387 protected:
3388 void
3389 do_adjust_output_section(Output_section* os)
3390 {
3391 os->set_entsize(0);
3392 }
3393
3394 // Write to a map file.
3395 void
3396 do_print_to_mapfile(Mapfile* mapfile) const
3397 { mapfile->print_output_data(this, "** BRLT"); }
3398
3399 private:
3400 // Write out the BRLT data.
3401 void
3402 do_write(Output_file*);
3403
3404 // The reloc section.
3405 Reloc_section* rel_;
3406 Target_powerpc<size, big_endian>* targ_;
3407 };
3408
3409 // Make the branch lookup table section.
3410
3411 template<int size, bool big_endian>
3412 void
3413 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3414 {
3415 if (size == 64 && this->brlt_section_ == NULL)
3416 {
3417 Reloc_section* brlt_rel = NULL;
3418 bool is_pic = parameters->options().output_is_position_independent();
3419 if (is_pic)
3420 {
3421 // When PIC we can't fill in .branch_lt (like .plt it can be
3422 // a bss style section) but must initialise at runtime via
3423 // dynamic relocats.
3424 this->rela_dyn_section(layout);
3425 brlt_rel = new Reloc_section(false);
3426 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3427 }
3428 this->brlt_section_
3429 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3430 if (this->plt_ && is_pic)
3431 this->plt_->output_section()
3432 ->add_output_section_data(this->brlt_section_);
3433 else
3434 layout->add_output_section_data(".branch_lt",
3435 (is_pic ? elfcpp::SHT_NOBITS
3436 : elfcpp::SHT_PROGBITS),
3437 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3438 this->brlt_section_,
3439 (is_pic ? ORDER_SMALL_BSS
3440 : ORDER_SMALL_DATA),
3441 false);
3442 }
3443 }
3444
3445 // Write out .branch_lt when non-PIC.
3446
3447 template<int size, bool big_endian>
3448 void
3449 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3450 {
3451 if (size == 64 && !parameters->options().output_is_position_independent())
3452 {
3453 const section_size_type offset = this->offset();
3454 const section_size_type oview_size
3455 = convert_to_section_size_type(this->data_size());
3456 unsigned char* const oview = of->get_output_view(offset, oview_size);
3457
3458 this->targ_->write_branch_lookup_table(oview);
3459 of->write_output_view(offset, oview_size, oview);
3460 }
3461 }
3462
3463 static inline uint32_t
3464 l(uint32_t a)
3465 {
3466 return a & 0xffff;
3467 }
3468
3469 static inline uint32_t
3470 hi(uint32_t a)
3471 {
3472 return l(a >> 16);
3473 }
3474
3475 static inline uint32_t
3476 ha(uint32_t a)
3477 {
3478 return hi(a + 0x8000);
3479 }
3480
3481 template<int size>
3482 struct Eh_cie
3483 {
3484 static const unsigned char eh_frame_cie[12];
3485 };
3486
3487 template<int size>
3488 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3489 {
3490 1, // CIE version.
3491 'z', 'R', 0, // Augmentation string.
3492 4, // Code alignment.
3493 0x80 - size / 8 , // Data alignment.
3494 65, // RA reg.
3495 1, // Augmentation size.
3496 (elfcpp::DW_EH_PE_pcrel
3497 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3498 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3499 };
3500
3501 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3502 static const unsigned char glink_eh_frame_fde_64v1[] =
3503 {
3504 0, 0, 0, 0, // Replaced with offset to .glink.
3505 0, 0, 0, 0, // Replaced with size of .glink.
3506 0, // Augmentation size.
3507 elfcpp::DW_CFA_advance_loc + 1,
3508 elfcpp::DW_CFA_register, 65, 12,
3509 elfcpp::DW_CFA_advance_loc + 4,
3510 elfcpp::DW_CFA_restore_extended, 65
3511 };
3512
3513 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3514 static const unsigned char glink_eh_frame_fde_64v2[] =
3515 {
3516 0, 0, 0, 0, // Replaced with offset to .glink.
3517 0, 0, 0, 0, // Replaced with size of .glink.
3518 0, // Augmentation size.
3519 elfcpp::DW_CFA_advance_loc + 1,
3520 elfcpp::DW_CFA_register, 65, 0,
3521 elfcpp::DW_CFA_advance_loc + 4,
3522 elfcpp::DW_CFA_restore_extended, 65
3523 };
3524
3525 // Describe __glink_PLTresolve use of LR, 32-bit version.
3526 static const unsigned char glink_eh_frame_fde_32[] =
3527 {
3528 0, 0, 0, 0, // Replaced with offset to .glink.
3529 0, 0, 0, 0, // Replaced with size of .glink.
3530 0, // Augmentation size.
3531 elfcpp::DW_CFA_advance_loc + 2,
3532 elfcpp::DW_CFA_register, 65, 0,
3533 elfcpp::DW_CFA_advance_loc + 4,
3534 elfcpp::DW_CFA_restore_extended, 65
3535 };
3536
3537 static const unsigned char default_fde[] =
3538 {
3539 0, 0, 0, 0, // Replaced with offset to stubs.
3540 0, 0, 0, 0, // Replaced with size of stubs.
3541 0, // Augmentation size.
3542 elfcpp::DW_CFA_nop, // Pad.
3543 elfcpp::DW_CFA_nop,
3544 elfcpp::DW_CFA_nop
3545 };
3546
3547 template<bool big_endian>
3548 static inline void
3549 write_insn(unsigned char* p, uint32_t v)
3550 {
3551 elfcpp::Swap<32, big_endian>::writeval(p, v);
3552 }
3553
3554 // Stub_table holds information about plt and long branch stubs.
3555 // Stubs are built in an area following some input section determined
3556 // by group_sections(). This input section is converted to a relaxed
3557 // input section allowing it to be resized to accommodate the stubs
3558
3559 template<int size, bool big_endian>
3560 class Stub_table : public Output_relaxed_input_section
3561 {
3562 public:
3563 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3564 static const Address invalid_address = static_cast<Address>(0) - 1;
3565
3566 Stub_table(Target_powerpc<size, big_endian>* targ,
3567 Output_section* output_section,
3568 const Output_section::Input_section* owner)
3569 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3570 owner->relobj()
3571 ->section_addralign(owner->shndx())),
3572 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3573 orig_data_size_(owner->current_data_size()),
3574 plt_size_(0), last_plt_size_(0),
3575 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3576 {
3577 this->set_output_section(output_section);
3578
3579 std::vector<Output_relaxed_input_section*> new_relaxed;
3580 new_relaxed.push_back(this);
3581 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3582 }
3583
3584 // Add a plt call stub.
3585 bool
3586 add_plt_call_entry(Address,
3587 const Sized_relobj_file<size, big_endian>*,
3588 const Symbol*,
3589 unsigned int,
3590 Address);
3591
3592 bool
3593 add_plt_call_entry(Address,
3594 const Sized_relobj_file<size, big_endian>*,
3595 unsigned int,
3596 unsigned int,
3597 Address);
3598
3599 // Find a given plt call stub.
3600 Address
3601 find_plt_call_entry(const Symbol*) const;
3602
3603 Address
3604 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3605 unsigned int) const;
3606
3607 Address
3608 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3609 const Symbol*,
3610 unsigned int,
3611 Address) const;
3612
3613 Address
3614 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3615 unsigned int,
3616 unsigned int,
3617 Address) const;
3618
3619 // Add a long branch stub.
3620 bool
3621 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3622 unsigned int, Address, Address);
3623
3624 Address
3625 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3626 Address) const;
3627
3628 bool
3629 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3630 {
3631 Address max_branch_offset = max_branch_delta(r_type);
3632 if (max_branch_offset == 0)
3633 return true;
3634 gold_assert(from != invalid_address);
3635 Address loc = off + this->stub_address();
3636 return loc - from + max_branch_offset < 2 * max_branch_offset;
3637 }
3638
3639 void
3640 clear_stubs(bool all)
3641 {
3642 this->plt_call_stubs_.clear();
3643 this->plt_size_ = 0;
3644 this->long_branch_stubs_.clear();
3645 this->branch_size_ = 0;
3646 if (all)
3647 {
3648 this->last_plt_size_ = 0;
3649 this->last_branch_size_ = 0;
3650 }
3651 }
3652
3653 Address
3654 set_address_and_size(const Output_section* os, Address off)
3655 {
3656 Address start_off = off;
3657 off += this->orig_data_size_;
3658 Address my_size = this->plt_size_ + this->branch_size_;
3659 if (my_size != 0)
3660 off = align_address(off, this->stub_align());
3661 // Include original section size and alignment padding in size
3662 my_size += off - start_off;
3663 this->reset_address_and_file_offset();
3664 this->set_current_data_size(my_size);
3665 this->set_address_and_file_offset(os->address() + start_off,
3666 os->offset() + start_off);
3667 return my_size;
3668 }
3669
3670 Address
3671 stub_address() const
3672 {
3673 return align_address(this->address() + this->orig_data_size_,
3674 this->stub_align());
3675 }
3676
3677 Address
3678 stub_offset() const
3679 {
3680 return align_address(this->offset() + this->orig_data_size_,
3681 this->stub_align());
3682 }
3683
3684 section_size_type
3685 plt_size() const
3686 { return this->plt_size_; }
3687
3688 bool
3689 size_update()
3690 {
3691 Output_section* os = this->output_section();
3692 if (os->addralign() < this->stub_align())
3693 {
3694 os->set_addralign(this->stub_align());
3695 // FIXME: get rid of the insane checkpointing.
3696 // We can't increase alignment of the input section to which
3697 // stubs are attached; The input section may be .init which
3698 // is pasted together with other .init sections to form a
3699 // function. Aligning might insert zero padding resulting in
3700 // sigill. However we do need to increase alignment of the
3701 // output section so that the align_address() on offset in
3702 // set_address_and_size() adds the same padding as the
3703 // align_address() on address in stub_address().
3704 // What's more, we need this alignment for the layout done in
3705 // relaxation_loop_body() so that the output section starts at
3706 // a suitably aligned address.
3707 os->checkpoint_set_addralign(this->stub_align());
3708 }
3709 if (this->last_plt_size_ != this->plt_size_
3710 || this->last_branch_size_ != this->branch_size_)
3711 {
3712 this->last_plt_size_ = this->plt_size_;
3713 this->last_branch_size_ = this->branch_size_;
3714 return true;
3715 }
3716 return false;
3717 }
3718
3719 // Add .eh_frame info for this stub section. Unlike other linker
3720 // generated .eh_frame this is added late in the link, because we
3721 // only want the .eh_frame info if this particular stub section is
3722 // non-empty.
3723 void
3724 add_eh_frame(Layout* layout)
3725 {
3726 if (!this->eh_frame_added_)
3727 {
3728 if (!parameters->options().ld_generated_unwind_info())
3729 return;
3730
3731 // Since we add stub .eh_frame info late, it must be placed
3732 // after all other linker generated .eh_frame info so that
3733 // merge mapping need not be updated for input sections.
3734 // There is no provision to use a different CIE to that used
3735 // by .glink.
3736 if (!this->targ_->has_glink())
3737 return;
3738
3739 layout->add_eh_frame_for_plt(this,
3740 Eh_cie<size>::eh_frame_cie,
3741 sizeof (Eh_cie<size>::eh_frame_cie),
3742 default_fde,
3743 sizeof (default_fde));
3744 this->eh_frame_added_ = true;
3745 }
3746 }
3747
3748 Target_powerpc<size, big_endian>*
3749 targ() const
3750 { return targ_; }
3751
3752 private:
3753 class Plt_stub_ent;
3754 class Plt_stub_ent_hash;
3755 typedef Unordered_map<Plt_stub_ent, unsigned int,
3756 Plt_stub_ent_hash> Plt_stub_entries;
3757
3758 // Alignment of stub section.
3759 unsigned int
3760 stub_align() const
3761 {
3762 if (size == 32)
3763 return 16;
3764 unsigned int min_align = 32;
3765 unsigned int user_align = 1 << parameters->options().plt_align();
3766 return std::max(user_align, min_align);
3767 }
3768
3769 // Return the plt offset for the given call stub.
3770 Address
3771 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3772 {
3773 const Symbol* gsym = p->first.sym_;
3774 if (gsym != NULL)
3775 {
3776 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3777 && gsym->can_use_relative_reloc(false));
3778 return gsym->plt_offset();
3779 }
3780 else
3781 {
3782 *is_iplt = true;
3783 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3784 unsigned int local_sym_index = p->first.locsym_;
3785 return relobj->local_plt_offset(local_sym_index);
3786 }
3787 }
3788
3789 // Size of a given plt call stub.
3790 unsigned int
3791 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3792 {
3793 if (size == 32)
3794 return 16;
3795
3796 bool is_iplt;
3797 Address plt_addr = this->plt_off(p, &is_iplt);
3798 if (is_iplt)
3799 plt_addr += this->targ_->iplt_section()->address();
3800 else
3801 plt_addr += this->targ_->plt_section()->address();
3802 Address got_addr = this->targ_->got_section()->output_section()->address();
3803 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3804 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3805 got_addr += ppcobj->toc_base_offset();
3806 Address off = plt_addr - got_addr;
3807 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3808 if (this->targ_->abiversion() < 2)
3809 {
3810 bool static_chain = parameters->options().plt_static_chain();
3811 bool thread_safe = this->targ_->plt_thread_safe();
3812 bytes += (4
3813 + 4 * static_chain
3814 + 8 * thread_safe
3815 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3816 }
3817 unsigned int align = 1 << parameters->options().plt_align();
3818 if (align > 1)
3819 bytes = (bytes + align - 1) & -align;
3820 return bytes;
3821 }
3822
3823 // Return long branch stub size.
3824 unsigned int
3825 branch_stub_size(Address to)
3826 {
3827 Address loc
3828 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3829 if (to - loc + (1 << 25) < 2 << 25)
3830 return 4;
3831 if (size == 64 || !parameters->options().output_is_position_independent())
3832 return 16;
3833 return 32;
3834 }
3835
3836 // Write out stubs.
3837 void
3838 do_write(Output_file*);
3839
3840 // Plt call stub keys.
3841 class Plt_stub_ent
3842 {
3843 public:
3844 Plt_stub_ent(const Symbol* sym)
3845 : sym_(sym), object_(0), addend_(0), locsym_(0)
3846 { }
3847
3848 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3849 unsigned int locsym_index)
3850 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3851 { }
3852
3853 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3854 const Symbol* sym,
3855 unsigned int r_type,
3856 Address addend)
3857 : sym_(sym), object_(0), addend_(0), locsym_(0)
3858 {
3859 if (size != 32)
3860 this->addend_ = addend;
3861 else if (parameters->options().output_is_position_independent()
3862 && r_type == elfcpp::R_PPC_PLTREL24)
3863 {
3864 this->addend_ = addend;
3865 if (this->addend_ >= 32768)
3866 this->object_ = object;
3867 }
3868 }
3869
3870 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3871 unsigned int locsym_index,
3872 unsigned int r_type,
3873 Address addend)
3874 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3875 {
3876 if (size != 32)
3877 this->addend_ = addend;
3878 else if (parameters->options().output_is_position_independent()
3879 && r_type == elfcpp::R_PPC_PLTREL24)
3880 this->addend_ = addend;
3881 }
3882
3883 bool operator==(const Plt_stub_ent& that) const
3884 {
3885 return (this->sym_ == that.sym_
3886 && this->object_ == that.object_
3887 && this->addend_ == that.addend_
3888 && this->locsym_ == that.locsym_);
3889 }
3890
3891 const Symbol* sym_;
3892 const Sized_relobj_file<size, big_endian>* object_;
3893 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3894 unsigned int locsym_;
3895 };
3896
3897 class Plt_stub_ent_hash
3898 {
3899 public:
3900 size_t operator()(const Plt_stub_ent& ent) const
3901 {
3902 return (reinterpret_cast<uintptr_t>(ent.sym_)
3903 ^ reinterpret_cast<uintptr_t>(ent.object_)
3904 ^ ent.addend_
3905 ^ ent.locsym_);
3906 }
3907 };
3908
3909 // Long branch stub keys.
3910 class Branch_stub_ent
3911 {
3912 public:
3913 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3914 : dest_(to), toc_base_off_(0)
3915 {
3916 if (size == 64)
3917 toc_base_off_ = obj->toc_base_offset();
3918 }
3919
3920 bool operator==(const Branch_stub_ent& that) const
3921 {
3922 return (this->dest_ == that.dest_
3923 && (size == 32
3924 || this->toc_base_off_ == that.toc_base_off_));
3925 }
3926
3927 Address dest_;
3928 unsigned int toc_base_off_;
3929 };
3930
3931 class Branch_stub_ent_hash
3932 {
3933 public:
3934 size_t operator()(const Branch_stub_ent& ent) const
3935 { return ent.dest_ ^ ent.toc_base_off_; }
3936 };
3937
3938 // In a sane world this would be a global.
3939 Target_powerpc<size, big_endian>* targ_;
3940 // Map sym/object/addend to stub offset.
3941 Plt_stub_entries plt_call_stubs_;
3942 // Map destination address to stub offset.
3943 typedef Unordered_map<Branch_stub_ent, unsigned int,
3944 Branch_stub_ent_hash> Branch_stub_entries;
3945 Branch_stub_entries long_branch_stubs_;
3946 // size of input section
3947 section_size_type orig_data_size_;
3948 // size of stubs
3949 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3950 // Whether .eh_frame info has been created for this stub section.
3951 bool eh_frame_added_;
3952 };
3953
3954 // Add a plt call stub, if we do not already have one for this
3955 // sym/object/addend combo.
3956
3957 template<int size, bool big_endian>
3958 bool
3959 Stub_table<size, big_endian>::add_plt_call_entry(
3960 Address from,
3961 const Sized_relobj_file<size, big_endian>* object,
3962 const Symbol* gsym,
3963 unsigned int r_type,
3964 Address addend)
3965 {
3966 Plt_stub_ent ent(object, gsym, r_type, addend);
3967 unsigned int off = this->plt_size_;
3968 std::pair<typename Plt_stub_entries::iterator, bool> p
3969 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3970 if (p.second)
3971 this->plt_size_ = off + this->plt_call_size(p.first);
3972 return this->can_reach_stub(from, off, r_type);
3973 }
3974
3975 template<int size, bool big_endian>
3976 bool
3977 Stub_table<size, big_endian>::add_plt_call_entry(
3978 Address from,
3979 const Sized_relobj_file<size, big_endian>* object,
3980 unsigned int locsym_index,
3981 unsigned int r_type,
3982 Address addend)
3983 {
3984 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3985 unsigned int off = this->plt_size_;
3986 std::pair<typename Plt_stub_entries::iterator, bool> p
3987 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3988 if (p.second)
3989 this->plt_size_ = off + this->plt_call_size(p.first);
3990 return this->can_reach_stub(from, off, r_type);
3991 }
3992
3993 // Find a plt call stub.
3994
3995 template<int size, bool big_endian>
3996 typename Stub_table<size, big_endian>::Address
3997 Stub_table<size, big_endian>::find_plt_call_entry(
3998 const Sized_relobj_file<size, big_endian>* object,
3999 const Symbol* gsym,
4000 unsigned int r_type,
4001 Address addend) const
4002 {
4003 Plt_stub_ent ent(object, gsym, r_type, addend);
4004 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4005 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4006 }
4007
4008 template<int size, bool big_endian>
4009 typename Stub_table<size, big_endian>::Address
4010 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4011 {
4012 Plt_stub_ent ent(gsym);
4013 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4014 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4015 }
4016
4017 template<int size, bool big_endian>
4018 typename Stub_table<size, big_endian>::Address
4019 Stub_table<size, big_endian>::find_plt_call_entry(
4020 const Sized_relobj_file<size, big_endian>* object,
4021 unsigned int locsym_index,
4022 unsigned int r_type,
4023 Address addend) const
4024 {
4025 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4026 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4027 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4028 }
4029
4030 template<int size, bool big_endian>
4031 typename Stub_table<size, big_endian>::Address
4032 Stub_table<size, big_endian>::find_plt_call_entry(
4033 const Sized_relobj_file<size, big_endian>* object,
4034 unsigned int locsym_index) const
4035 {
4036 Plt_stub_ent ent(object, locsym_index);
4037 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4038 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4039 }
4040
4041 // Add a long branch stub if we don't already have one to given
4042 // destination.
4043
4044 template<int size, bool big_endian>
4045 bool
4046 Stub_table<size, big_endian>::add_long_branch_entry(
4047 const Powerpc_relobj<size, big_endian>* object,
4048 unsigned int r_type,
4049 Address from,
4050 Address to)
4051 {
4052 Branch_stub_ent ent(object, to);
4053 Address off = this->branch_size_;
4054 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4055 {
4056 unsigned int stub_size = this->branch_stub_size(to);
4057 this->branch_size_ = off + stub_size;
4058 if (size == 64 && stub_size != 4)
4059 this->targ_->add_branch_lookup_table(to);
4060 }
4061 return this->can_reach_stub(from, off, r_type);
4062 }
4063
4064 // Find long branch stub.
4065
4066 template<int size, bool big_endian>
4067 typename Stub_table<size, big_endian>::Address
4068 Stub_table<size, big_endian>::find_long_branch_entry(
4069 const Powerpc_relobj<size, big_endian>* object,
4070 Address to) const
4071 {
4072 Branch_stub_ent ent(object, to);
4073 typename Branch_stub_entries::const_iterator p
4074 = this->long_branch_stubs_.find(ent);
4075 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4076 }
4077
4078 // A class to handle .glink.
4079
4080 template<int size, bool big_endian>
4081 class Output_data_glink : public Output_section_data
4082 {
4083 public:
4084 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4085 static const Address invalid_address = static_cast<Address>(0) - 1;
4086 static const int pltresolve_size = 16*4;
4087
4088 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4089 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4090 end_branch_table_(), ge_size_(0)
4091 { }
4092
4093 void
4094 add_eh_frame(Layout* layout);
4095
4096 void
4097 add_global_entry(const Symbol*);
4098
4099 Address
4100 find_global_entry(const Symbol*) const;
4101
4102 Address
4103 global_entry_address() const
4104 {
4105 gold_assert(this->is_data_size_valid());
4106 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4107 return this->address() + global_entry_off;
4108 }
4109
4110 protected:
4111 // Write to a map file.
4112 void
4113 do_print_to_mapfile(Mapfile* mapfile) const
4114 { mapfile->print_output_data(this, _("** glink")); }
4115
4116 private:
4117 void
4118 set_final_data_size();
4119
4120 // Write out .glink
4121 void
4122 do_write(Output_file*);
4123
4124 // Allows access to .got and .plt for do_write.
4125 Target_powerpc<size, big_endian>* targ_;
4126
4127 // Map sym to stub offset.
4128 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4129 Global_entry_stub_entries global_entry_stubs_;
4130
4131 unsigned int end_branch_table_, ge_size_;
4132 };
4133
4134 template<int size, bool big_endian>
4135 void
4136 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4137 {
4138 if (!parameters->options().ld_generated_unwind_info())
4139 return;
4140
4141 if (size == 64)
4142 {
4143 if (this->targ_->abiversion() < 2)
4144 layout->add_eh_frame_for_plt(this,
4145 Eh_cie<64>::eh_frame_cie,
4146 sizeof (Eh_cie<64>::eh_frame_cie),
4147 glink_eh_frame_fde_64v1,
4148 sizeof (glink_eh_frame_fde_64v1));
4149 else
4150 layout->add_eh_frame_for_plt(this,
4151 Eh_cie<64>::eh_frame_cie,
4152 sizeof (Eh_cie<64>::eh_frame_cie),
4153 glink_eh_frame_fde_64v2,
4154 sizeof (glink_eh_frame_fde_64v2));
4155 }
4156 else
4157 {
4158 // 32-bit .glink can use the default since the CIE return
4159 // address reg, LR, is valid.
4160 layout->add_eh_frame_for_plt(this,
4161 Eh_cie<32>::eh_frame_cie,
4162 sizeof (Eh_cie<32>::eh_frame_cie),
4163 default_fde,
4164 sizeof (default_fde));
4165 // Except where LR is used in a PIC __glink_PLTresolve.
4166 if (parameters->options().output_is_position_independent())
4167 layout->add_eh_frame_for_plt(this,
4168 Eh_cie<32>::eh_frame_cie,
4169 sizeof (Eh_cie<32>::eh_frame_cie),
4170 glink_eh_frame_fde_32,
4171 sizeof (glink_eh_frame_fde_32));
4172 }
4173 }
4174
4175 template<int size, bool big_endian>
4176 void
4177 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4178 {
4179 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4180 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4181 if (p.second)
4182 this->ge_size_ += 16;
4183 }
4184
4185 template<int size, bool big_endian>
4186 typename Output_data_glink<size, big_endian>::Address
4187 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4188 {
4189 typename Global_entry_stub_entries::const_iterator p
4190 = this->global_entry_stubs_.find(gsym);
4191 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4192 }
4193
4194 template<int size, bool big_endian>
4195 void
4196 Output_data_glink<size, big_endian>::set_final_data_size()
4197 {
4198 unsigned int count = this->targ_->plt_entry_count();
4199 section_size_type total = 0;
4200
4201 if (count != 0)
4202 {
4203 if (size == 32)
4204 {
4205 // space for branch table
4206 total += 4 * (count - 1);
4207
4208 total += -total & 15;
4209 total += this->pltresolve_size;
4210 }
4211 else
4212 {
4213 total += this->pltresolve_size;
4214
4215 // space for branch table
4216 total += 4 * count;
4217 if (this->targ_->abiversion() < 2)
4218 {
4219 total += 4 * count;
4220 if (count > 0x8000)
4221 total += 4 * (count - 0x8000);
4222 }
4223 }
4224 }
4225 this->end_branch_table_ = total;
4226 total = (total + 15) & -16;
4227 total += this->ge_size_;
4228
4229 this->set_data_size(total);
4230 }
4231
4232 // Write out plt and long branch stub code.
4233
4234 template<int size, bool big_endian>
4235 void
4236 Stub_table<size, big_endian>::do_write(Output_file* of)
4237 {
4238 if (this->plt_call_stubs_.empty()
4239 && this->long_branch_stubs_.empty())
4240 return;
4241
4242 const section_size_type start_off = this->offset();
4243 const section_size_type off = this->stub_offset();
4244 const section_size_type oview_size =
4245 convert_to_section_size_type(this->data_size() - (off - start_off));
4246 unsigned char* const oview = of->get_output_view(off, oview_size);
4247 unsigned char* p;
4248
4249 if (size == 64)
4250 {
4251 const Output_data_got_powerpc<size, big_endian>* got
4252 = this->targ_->got_section();
4253 Address got_os_addr = got->output_section()->address();
4254
4255 if (!this->plt_call_stubs_.empty())
4256 {
4257 // The base address of the .plt section.
4258 Address plt_base = this->targ_->plt_section()->address();
4259 Address iplt_base = invalid_address;
4260
4261 // Write out plt call stubs.
4262 typename Plt_stub_entries::const_iterator cs;
4263 for (cs = this->plt_call_stubs_.begin();
4264 cs != this->plt_call_stubs_.end();
4265 ++cs)
4266 {
4267 bool is_iplt;
4268 Address pltoff = this->plt_off(cs, &is_iplt);
4269 Address plt_addr = pltoff;
4270 if (is_iplt)
4271 {
4272 if (iplt_base == invalid_address)
4273 iplt_base = this->targ_->iplt_section()->address();
4274 plt_addr += iplt_base;
4275 }
4276 else
4277 plt_addr += plt_base;
4278 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4279 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4280 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4281 Address off = plt_addr - got_addr;
4282
4283 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4284 gold_error(_("%s: linkage table error against `%s'"),
4285 cs->first.object_->name().c_str(),
4286 cs->first.sym_->demangled_name().c_str());
4287
4288 bool plt_load_toc = this->targ_->abiversion() < 2;
4289 bool static_chain
4290 = plt_load_toc && parameters->options().plt_static_chain();
4291 bool thread_safe
4292 = plt_load_toc && this->targ_->plt_thread_safe();
4293 bool use_fake_dep = false;
4294 Address cmp_branch_off = 0;
4295 if (thread_safe)
4296 {
4297 unsigned int pltindex
4298 = ((pltoff - this->targ_->first_plt_entry_offset())
4299 / this->targ_->plt_entry_size());
4300 Address glinkoff
4301 = (this->targ_->glink_section()->pltresolve_size
4302 + pltindex * 8);
4303 if (pltindex > 32768)
4304 glinkoff += (pltindex - 32768) * 4;
4305 Address to
4306 = this->targ_->glink_section()->address() + glinkoff;
4307 Address from
4308 = (this->stub_address() + cs->second + 24
4309 + 4 * (ha(off) != 0)
4310 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4311 + 4 * static_chain);
4312 cmp_branch_off = to - from;
4313 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4314 }
4315
4316 p = oview + cs->second;
4317 if (ha(off) != 0)
4318 {
4319 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4320 p += 4;
4321 if (plt_load_toc)
4322 {
4323 write_insn<big_endian>(p, addis_11_2 + ha(off));
4324 p += 4;
4325 write_insn<big_endian>(p, ld_12_11 + l(off));
4326 p += 4;
4327 }
4328 else
4329 {
4330 write_insn<big_endian>(p, addis_12_2 + ha(off));
4331 p += 4;
4332 write_insn<big_endian>(p, ld_12_12 + l(off));
4333 p += 4;
4334 }
4335 if (plt_load_toc
4336 && ha(off + 8 + 8 * static_chain) != ha(off))
4337 {
4338 write_insn<big_endian>(p, addi_11_11 + l(off));
4339 p += 4;
4340 off = 0;
4341 }
4342 write_insn<big_endian>(p, mtctr_12);
4343 p += 4;
4344 if (plt_load_toc)
4345 {
4346 if (use_fake_dep)
4347 {
4348 write_insn<big_endian>(p, xor_2_12_12);
4349 p += 4;
4350 write_insn<big_endian>(p, add_11_11_2);
4351 p += 4;
4352 }
4353 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4354 p += 4;
4355 if (static_chain)
4356 {
4357 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4358 p += 4;
4359 }
4360 }
4361 }
4362 else
4363 {
4364 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4365 p += 4;
4366 write_insn<big_endian>(p, ld_12_2 + l(off));
4367 p += 4;
4368 if (plt_load_toc
4369 && ha(off + 8 + 8 * static_chain) != ha(off))
4370 {
4371 write_insn<big_endian>(p, addi_2_2 + l(off));
4372 p += 4;
4373 off = 0;
4374 }
4375 write_insn<big_endian>(p, mtctr_12);
4376 p += 4;
4377 if (plt_load_toc)
4378 {
4379 if (use_fake_dep)
4380 {
4381 write_insn<big_endian>(p, xor_11_12_12);
4382 p += 4;
4383 write_insn<big_endian>(p, add_2_2_11);
4384 p += 4;
4385 }
4386 if (static_chain)
4387 {
4388 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4389 p += 4;
4390 }
4391 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4392 p += 4;
4393 }
4394 }
4395 if (thread_safe && !use_fake_dep)
4396 {
4397 write_insn<big_endian>(p, cmpldi_2_0);
4398 p += 4;
4399 write_insn<big_endian>(p, bnectr_p4);
4400 p += 4;
4401 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4402 }
4403 else
4404 write_insn<big_endian>(p, bctr);
4405 }
4406 }
4407
4408 // Write out long branch stubs.
4409 typename Branch_stub_entries::const_iterator bs;
4410 for (bs = this->long_branch_stubs_.begin();
4411 bs != this->long_branch_stubs_.end();
4412 ++bs)
4413 {
4414 p = oview + this->plt_size_ + bs->second;
4415 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4416 Address delta = bs->first.dest_ - loc;
4417 if (delta + (1 << 25) < 2 << 25)
4418 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4419 else
4420 {
4421 Address brlt_addr
4422 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4423 gold_assert(brlt_addr != invalid_address);
4424 brlt_addr += this->targ_->brlt_section()->address();
4425 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4426 Address brltoff = brlt_addr - got_addr;
4427 if (ha(brltoff) == 0)
4428 {
4429 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4430 }
4431 else
4432 {
4433 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4434 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4435 }
4436 write_insn<big_endian>(p, mtctr_12), p += 4;
4437 write_insn<big_endian>(p, bctr);
4438 }
4439 }
4440 }
4441 else
4442 {
4443 if (!this->plt_call_stubs_.empty())
4444 {
4445 // The base address of the .plt section.
4446 Address plt_base = this->targ_->plt_section()->address();
4447 Address iplt_base = invalid_address;
4448 // The address of _GLOBAL_OFFSET_TABLE_.
4449 Address g_o_t = invalid_address;
4450
4451 // Write out plt call stubs.
4452 typename Plt_stub_entries::const_iterator cs;
4453 for (cs = this->plt_call_stubs_.begin();
4454 cs != this->plt_call_stubs_.end();
4455 ++cs)
4456 {
4457 bool is_iplt;
4458 Address plt_addr = this->plt_off(cs, &is_iplt);
4459 if (is_iplt)
4460 {
4461 if (iplt_base == invalid_address)
4462 iplt_base = this->targ_->iplt_section()->address();
4463 plt_addr += iplt_base;
4464 }
4465 else
4466 plt_addr += plt_base;
4467
4468 p = oview + cs->second;
4469 if (parameters->options().output_is_position_independent())
4470 {
4471 Address got_addr;
4472 const Powerpc_relobj<size, big_endian>* ppcobj
4473 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4474 (cs->first.object_));
4475 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4476 {
4477 unsigned int got2 = ppcobj->got2_shndx();
4478 got_addr = ppcobj->get_output_section_offset(got2);
4479 gold_assert(got_addr != invalid_address);
4480 got_addr += (ppcobj->output_section(got2)->address()
4481 + cs->first.addend_);
4482 }
4483 else
4484 {
4485 if (g_o_t == invalid_address)
4486 {
4487 const Output_data_got_powerpc<size, big_endian>* got
4488 = this->targ_->got_section();
4489 g_o_t = got->address() + got->g_o_t();
4490 }
4491 got_addr = g_o_t;
4492 }
4493
4494 Address off = plt_addr - got_addr;
4495 if (ha(off) == 0)
4496 {
4497 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4498 write_insn<big_endian>(p + 4, mtctr_11);
4499 write_insn<big_endian>(p + 8, bctr);
4500 }
4501 else
4502 {
4503 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4504 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4505 write_insn<big_endian>(p + 8, mtctr_11);
4506 write_insn<big_endian>(p + 12, bctr);
4507 }
4508 }
4509 else
4510 {
4511 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4512 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4513 write_insn<big_endian>(p + 8, mtctr_11);
4514 write_insn<big_endian>(p + 12, bctr);
4515 }
4516 }
4517 }
4518
4519 // Write out long branch stubs.
4520 typename Branch_stub_entries::const_iterator bs;
4521 for (bs = this->long_branch_stubs_.begin();
4522 bs != this->long_branch_stubs_.end();
4523 ++bs)
4524 {
4525 p = oview + this->plt_size_ + bs->second;
4526 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4527 Address delta = bs->first.dest_ - loc;
4528 if (delta + (1 << 25) < 2 << 25)
4529 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4530 else if (!parameters->options().output_is_position_independent())
4531 {
4532 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4533 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4534 write_insn<big_endian>(p + 8, mtctr_12);
4535 write_insn<big_endian>(p + 12, bctr);
4536 }
4537 else
4538 {
4539 delta -= 8;
4540 write_insn<big_endian>(p + 0, mflr_0);
4541 write_insn<big_endian>(p + 4, bcl_20_31);
4542 write_insn<big_endian>(p + 8, mflr_12);
4543 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4544 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4545 write_insn<big_endian>(p + 20, mtlr_0);
4546 write_insn<big_endian>(p + 24, mtctr_12);
4547 write_insn<big_endian>(p + 28, bctr);
4548 }
4549 }
4550 }
4551 }
4552
4553 // Write out .glink.
4554
4555 template<int size, bool big_endian>
4556 void
4557 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4558 {
4559 const section_size_type off = this->offset();
4560 const section_size_type oview_size =
4561 convert_to_section_size_type(this->data_size());
4562 unsigned char* const oview = of->get_output_view(off, oview_size);
4563 unsigned char* p;
4564
4565 // The base address of the .plt section.
4566 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4567 Address plt_base = this->targ_->plt_section()->address();
4568
4569 if (size == 64)
4570 {
4571 if (this->end_branch_table_ != 0)
4572 {
4573 // Write pltresolve stub.
4574 p = oview;
4575 Address after_bcl = this->address() + 16;
4576 Address pltoff = plt_base - after_bcl;
4577
4578 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4579
4580 if (this->targ_->abiversion() < 2)
4581 {
4582 write_insn<big_endian>(p, mflr_12), p += 4;
4583 write_insn<big_endian>(p, bcl_20_31), p += 4;
4584 write_insn<big_endian>(p, mflr_11), p += 4;
4585 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4586 write_insn<big_endian>(p, mtlr_12), p += 4;
4587 write_insn<big_endian>(p, add_11_2_11), p += 4;
4588 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4589 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4590 write_insn<big_endian>(p, mtctr_12), p += 4;
4591 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4592 }
4593 else
4594 {
4595 write_insn<big_endian>(p, mflr_0), p += 4;
4596 write_insn<big_endian>(p, bcl_20_31), p += 4;
4597 write_insn<big_endian>(p, mflr_11), p += 4;
4598 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4599 write_insn<big_endian>(p, mtlr_0), p += 4;
4600 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4601 write_insn<big_endian>(p, add_11_2_11), p += 4;
4602 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4603 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4604 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4605 write_insn<big_endian>(p, mtctr_12), p += 4;
4606 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4607 }
4608 write_insn<big_endian>(p, bctr), p += 4;
4609 while (p < oview + this->pltresolve_size)
4610 write_insn<big_endian>(p, nop), p += 4;
4611
4612 // Write lazy link call stubs.
4613 uint32_t indx = 0;
4614 while (p < oview + this->end_branch_table_)
4615 {
4616 if (this->targ_->abiversion() < 2)
4617 {
4618 if (indx < 0x8000)
4619 {
4620 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4621 }
4622 else
4623 {
4624 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4625 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4626 }
4627 }
4628 uint32_t branch_off = 8 - (p - oview);
4629 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4630 indx++;
4631 }
4632 }
4633
4634 Address plt_base = this->targ_->plt_section()->address();
4635 Address iplt_base = invalid_address;
4636 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4637 Address global_entry_base = this->address() + global_entry_off;
4638 typename Global_entry_stub_entries::const_iterator ge;
4639 for (ge = this->global_entry_stubs_.begin();
4640 ge != this->global_entry_stubs_.end();
4641 ++ge)
4642 {
4643 p = oview + global_entry_off + ge->second;
4644 Address plt_addr = ge->first->plt_offset();
4645 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4646 && ge->first->can_use_relative_reloc(false))
4647 {
4648 if (iplt_base == invalid_address)
4649 iplt_base = this->targ_->iplt_section()->address();
4650 plt_addr += iplt_base;
4651 }
4652 else
4653 plt_addr += plt_base;
4654 Address my_addr = global_entry_base + ge->second;
4655 Address off = plt_addr - my_addr;
4656
4657 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4658 gold_error(_("%s: linkage table error against `%s'"),
4659 ge->first->object()->name().c_str(),
4660 ge->first->demangled_name().c_str());
4661
4662 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4663 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4664 write_insn<big_endian>(p, mtctr_12), p += 4;
4665 write_insn<big_endian>(p, bctr);
4666 }
4667 }
4668 else
4669 {
4670 const Output_data_got_powerpc<size, big_endian>* got
4671 = this->targ_->got_section();
4672 // The address of _GLOBAL_OFFSET_TABLE_.
4673 Address g_o_t = got->address() + got->g_o_t();
4674
4675 // Write out pltresolve branch table.
4676 p = oview;
4677 unsigned int the_end = oview_size - this->pltresolve_size;
4678 unsigned char* end_p = oview + the_end;
4679 while (p < end_p - 8 * 4)
4680 write_insn<big_endian>(p, b + end_p - p), p += 4;
4681 while (p < end_p)
4682 write_insn<big_endian>(p, nop), p += 4;
4683
4684 // Write out pltresolve call stub.
4685 if (parameters->options().output_is_position_independent())
4686 {
4687 Address res0_off = 0;
4688 Address after_bcl_off = the_end + 12;
4689 Address bcl_res0 = after_bcl_off - res0_off;
4690
4691 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4692 write_insn<big_endian>(p + 4, mflr_0);
4693 write_insn<big_endian>(p + 8, bcl_20_31);
4694 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4695 write_insn<big_endian>(p + 16, mflr_12);
4696 write_insn<big_endian>(p + 20, mtlr_0);
4697 write_insn<big_endian>(p + 24, sub_11_11_12);
4698
4699 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4700
4701 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4702 if (ha(got_bcl) == ha(got_bcl + 4))
4703 {
4704 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4705 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4706 }
4707 else
4708 {
4709 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4710 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4711 }
4712 write_insn<big_endian>(p + 40, mtctr_0);
4713 write_insn<big_endian>(p + 44, add_0_11_11);
4714 write_insn<big_endian>(p + 48, add_11_0_11);
4715 write_insn<big_endian>(p + 52, bctr);
4716 write_insn<big_endian>(p + 56, nop);
4717 write_insn<big_endian>(p + 60, nop);
4718 }
4719 else
4720 {
4721 Address res0 = this->address();
4722
4723 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4724 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4725 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4726 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4727 else
4728 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4729 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4730 write_insn<big_endian>(p + 16, mtctr_0);
4731 write_insn<big_endian>(p + 20, add_0_11_11);
4732 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4733 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4734 else
4735 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4736 write_insn<big_endian>(p + 28, add_11_0_11);
4737 write_insn<big_endian>(p + 32, bctr);
4738 write_insn<big_endian>(p + 36, nop);
4739 write_insn<big_endian>(p + 40, nop);
4740 write_insn<big_endian>(p + 44, nop);
4741 write_insn<big_endian>(p + 48, nop);
4742 write_insn<big_endian>(p + 52, nop);
4743 write_insn<big_endian>(p + 56, nop);
4744 write_insn<big_endian>(p + 60, nop);
4745 }
4746 p += 64;
4747 }
4748
4749 of->write_output_view(off, oview_size, oview);
4750 }
4751
4752
4753 // A class to handle linker generated save/restore functions.
4754
4755 template<int size, bool big_endian>
4756 class Output_data_save_res : public Output_section_data_build
4757 {
4758 public:
4759 Output_data_save_res(Symbol_table* symtab);
4760
4761 protected:
4762 // Write to a map file.
4763 void
4764 do_print_to_mapfile(Mapfile* mapfile) const
4765 { mapfile->print_output_data(this, _("** save/restore")); }
4766
4767 void
4768 do_write(Output_file*);
4769
4770 private:
4771 // The maximum size of save/restore contents.
4772 static const unsigned int savres_max = 218*4;
4773
4774 void
4775 savres_define(Symbol_table* symtab,
4776 const char *name,
4777 unsigned int lo, unsigned int hi,
4778 unsigned char* write_ent(unsigned char*, int),
4779 unsigned char* write_tail(unsigned char*, int));
4780
4781 unsigned char *contents_;
4782 };
4783
4784 template<bool big_endian>
4785 static unsigned char*
4786 savegpr0(unsigned char* p, int r)
4787 {
4788 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4789 write_insn<big_endian>(p, insn);
4790 return p + 4;
4791 }
4792
4793 template<bool big_endian>
4794 static unsigned char*
4795 savegpr0_tail(unsigned char* p, int r)
4796 {
4797 p = savegpr0<big_endian>(p, r);
4798 uint32_t insn = std_0_1 + 16;
4799 write_insn<big_endian>(p, insn);
4800 p = p + 4;
4801 write_insn<big_endian>(p, blr);
4802 return p + 4;
4803 }
4804
4805 template<bool big_endian>
4806 static unsigned char*
4807 restgpr0(unsigned char* p, int r)
4808 {
4809 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4810 write_insn<big_endian>(p, insn);
4811 return p + 4;
4812 }
4813
4814 template<bool big_endian>
4815 static unsigned char*
4816 restgpr0_tail(unsigned char* p, int r)
4817 {
4818 uint32_t insn = ld_0_1 + 16;
4819 write_insn<big_endian>(p, insn);
4820 p = p + 4;
4821 p = restgpr0<big_endian>(p, r);
4822 write_insn<big_endian>(p, mtlr_0);
4823 p = p + 4;
4824 if (r == 29)
4825 {
4826 p = restgpr0<big_endian>(p, 30);
4827 p = restgpr0<big_endian>(p, 31);
4828 }
4829 write_insn<big_endian>(p, blr);
4830 return p + 4;
4831 }
4832
4833 template<bool big_endian>
4834 static unsigned char*
4835 savegpr1(unsigned char* p, int r)
4836 {
4837 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4838 write_insn<big_endian>(p, insn);
4839 return p + 4;
4840 }
4841
4842 template<bool big_endian>
4843 static unsigned char*
4844 savegpr1_tail(unsigned char* p, int r)
4845 {
4846 p = savegpr1<big_endian>(p, r);
4847 write_insn<big_endian>(p, blr);
4848 return p + 4;
4849 }
4850
4851 template<bool big_endian>
4852 static unsigned char*
4853 restgpr1(unsigned char* p, int r)
4854 {
4855 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4856 write_insn<big_endian>(p, insn);
4857 return p + 4;
4858 }
4859
4860 template<bool big_endian>
4861 static unsigned char*
4862 restgpr1_tail(unsigned char* p, int r)
4863 {
4864 p = restgpr1<big_endian>(p, r);
4865 write_insn<big_endian>(p, blr);
4866 return p + 4;
4867 }
4868
4869 template<bool big_endian>
4870 static unsigned char*
4871 savefpr(unsigned char* p, int r)
4872 {
4873 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4874 write_insn<big_endian>(p, insn);
4875 return p + 4;
4876 }
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 savefpr0_tail(unsigned char* p, int r)
4881 {
4882 p = savefpr<big_endian>(p, r);
4883 write_insn<big_endian>(p, std_0_1 + 16);
4884 p = p + 4;
4885 write_insn<big_endian>(p, blr);
4886 return p + 4;
4887 }
4888
4889 template<bool big_endian>
4890 static unsigned char*
4891 restfpr(unsigned char* p, int r)
4892 {
4893 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4894 write_insn<big_endian>(p, insn);
4895 return p + 4;
4896 }
4897
4898 template<bool big_endian>
4899 static unsigned char*
4900 restfpr0_tail(unsigned char* p, int r)
4901 {
4902 write_insn<big_endian>(p, ld_0_1 + 16);
4903 p = p + 4;
4904 p = restfpr<big_endian>(p, r);
4905 write_insn<big_endian>(p, mtlr_0);
4906 p = p + 4;
4907 if (r == 29)
4908 {
4909 p = restfpr<big_endian>(p, 30);
4910 p = restfpr<big_endian>(p, 31);
4911 }
4912 write_insn<big_endian>(p, blr);
4913 return p + 4;
4914 }
4915
4916 template<bool big_endian>
4917 static unsigned char*
4918 savefpr1_tail(unsigned char* p, int r)
4919 {
4920 p = savefpr<big_endian>(p, r);
4921 write_insn<big_endian>(p, blr);
4922 return p + 4;
4923 }
4924
4925 template<bool big_endian>
4926 static unsigned char*
4927 restfpr1_tail(unsigned char* p, int r)
4928 {
4929 p = restfpr<big_endian>(p, r);
4930 write_insn<big_endian>(p, blr);
4931 return p + 4;
4932 }
4933
4934 template<bool big_endian>
4935 static unsigned char*
4936 savevr(unsigned char* p, int r)
4937 {
4938 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4939 write_insn<big_endian>(p, insn);
4940 p = p + 4;
4941 insn = stvx_0_12_0 + (r << 21);
4942 write_insn<big_endian>(p, insn);
4943 return p + 4;
4944 }
4945
4946 template<bool big_endian>
4947 static unsigned char*
4948 savevr_tail(unsigned char* p, int r)
4949 {
4950 p = savevr<big_endian>(p, r);
4951 write_insn<big_endian>(p, blr);
4952 return p + 4;
4953 }
4954
4955 template<bool big_endian>
4956 static unsigned char*
4957 restvr(unsigned char* p, int r)
4958 {
4959 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4960 write_insn<big_endian>(p, insn);
4961 p = p + 4;
4962 insn = lvx_0_12_0 + (r << 21);
4963 write_insn<big_endian>(p, insn);
4964 return p + 4;
4965 }
4966
4967 template<bool big_endian>
4968 static unsigned char*
4969 restvr_tail(unsigned char* p, int r)
4970 {
4971 p = restvr<big_endian>(p, r);
4972 write_insn<big_endian>(p, blr);
4973 return p + 4;
4974 }
4975
4976
4977 template<int size, bool big_endian>
4978 Output_data_save_res<size, big_endian>::Output_data_save_res(
4979 Symbol_table* symtab)
4980 : Output_section_data_build(4),
4981 contents_(NULL)
4982 {
4983 this->savres_define(symtab,
4984 "_savegpr0_", 14, 31,
4985 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4986 this->savres_define(symtab,
4987 "_restgpr0_", 14, 29,
4988 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4989 this->savres_define(symtab,
4990 "_restgpr0_", 30, 31,
4991 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4992 this->savres_define(symtab,
4993 "_savegpr1_", 14, 31,
4994 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4995 this->savres_define(symtab,
4996 "_restgpr1_", 14, 31,
4997 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4998 this->savres_define(symtab,
4999 "_savefpr_", 14, 31,
5000 savefpr<big_endian>, savefpr0_tail<big_endian>);
5001 this->savres_define(symtab,
5002 "_restfpr_", 14, 29,
5003 restfpr<big_endian>, restfpr0_tail<big_endian>);
5004 this->savres_define(symtab,
5005 "_restfpr_", 30, 31,
5006 restfpr<big_endian>, restfpr0_tail<big_endian>);
5007 this->savres_define(symtab,
5008 "._savef", 14, 31,
5009 savefpr<big_endian>, savefpr1_tail<big_endian>);
5010 this->savres_define(symtab,
5011 "._restf", 14, 31,
5012 restfpr<big_endian>, restfpr1_tail<big_endian>);
5013 this->savres_define(symtab,
5014 "_savevr_", 20, 31,
5015 savevr<big_endian>, savevr_tail<big_endian>);
5016 this->savres_define(symtab,
5017 "_restvr_", 20, 31,
5018 restvr<big_endian>, restvr_tail<big_endian>);
5019 }
5020
5021 template<int size, bool big_endian>
5022 void
5023 Output_data_save_res<size, big_endian>::savres_define(
5024 Symbol_table* symtab,
5025 const char *name,
5026 unsigned int lo, unsigned int hi,
5027 unsigned char* write_ent(unsigned char*, int),
5028 unsigned char* write_tail(unsigned char*, int))
5029 {
5030 size_t len = strlen(name);
5031 bool writing = false;
5032 char sym[16];
5033
5034 memcpy(sym, name, len);
5035 sym[len + 2] = 0;
5036
5037 for (unsigned int i = lo; i <= hi; i++)
5038 {
5039 sym[len + 0] = i / 10 + '0';
5040 sym[len + 1] = i % 10 + '0';
5041 Symbol* gsym = symtab->lookup(sym);
5042 bool refd = gsym != NULL && gsym->is_undefined();
5043 writing = writing || refd;
5044 if (writing)
5045 {
5046 if (this->contents_ == NULL)
5047 this->contents_ = new unsigned char[this->savres_max];
5048
5049 section_size_type value = this->current_data_size();
5050 unsigned char* p = this->contents_ + value;
5051 if (i != hi)
5052 p = write_ent(p, i);
5053 else
5054 p = write_tail(p, i);
5055 section_size_type cur_size = p - this->contents_;
5056 this->set_current_data_size(cur_size);
5057 if (refd)
5058 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5059 this, value, cur_size - value,
5060 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5061 elfcpp::STV_HIDDEN, 0, false, false);
5062 }
5063 }
5064 }
5065
5066 // Write out save/restore.
5067
5068 template<int size, bool big_endian>
5069 void
5070 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5071 {
5072 const section_size_type off = this->offset();
5073 const section_size_type oview_size =
5074 convert_to_section_size_type(this->data_size());
5075 unsigned char* const oview = of->get_output_view(off, oview_size);
5076 memcpy(oview, this->contents_, oview_size);
5077 of->write_output_view(off, oview_size, oview);
5078 }
5079
5080
5081 // Create the glink section.
5082
5083 template<int size, bool big_endian>
5084 void
5085 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5086 {
5087 if (this->glink_ == NULL)
5088 {
5089 this->glink_ = new Output_data_glink<size, big_endian>(this);
5090 this->glink_->add_eh_frame(layout);
5091 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5092 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5093 this->glink_, ORDER_TEXT, false);
5094 }
5095 }
5096
5097 // Create a PLT entry for a global symbol.
5098
5099 template<int size, bool big_endian>
5100 void
5101 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5102 Layout* layout,
5103 Symbol* gsym)
5104 {
5105 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5106 && gsym->can_use_relative_reloc(false))
5107 {
5108 if (this->iplt_ == NULL)
5109 this->make_iplt_section(symtab, layout);
5110 this->iplt_->add_ifunc_entry(gsym);
5111 }
5112 else
5113 {
5114 if (this->plt_ == NULL)
5115 this->make_plt_section(symtab, layout);
5116 this->plt_->add_entry(gsym);
5117 }
5118 }
5119
5120 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5121
5122 template<int size, bool big_endian>
5123 void
5124 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5125 Symbol_table* symtab,
5126 Layout* layout,
5127 Sized_relobj_file<size, big_endian>* relobj,
5128 unsigned int r_sym)
5129 {
5130 if (this->iplt_ == NULL)
5131 this->make_iplt_section(symtab, layout);
5132 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5133 }
5134
5135 // Return the number of entries in the PLT.
5136
5137 template<int size, bool big_endian>
5138 unsigned int
5139 Target_powerpc<size, big_endian>::plt_entry_count() const
5140 {
5141 if (this->plt_ == NULL)
5142 return 0;
5143 return this->plt_->entry_count();
5144 }
5145
5146 // Create a GOT entry for local dynamic __tls_get_addr calls.
5147
5148 template<int size, bool big_endian>
5149 unsigned int
5150 Target_powerpc<size, big_endian>::tlsld_got_offset(
5151 Symbol_table* symtab,
5152 Layout* layout,
5153 Sized_relobj_file<size, big_endian>* object)
5154 {
5155 if (this->tlsld_got_offset_ == -1U)
5156 {
5157 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5158 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5159 Output_data_got_powerpc<size, big_endian>* got
5160 = this->got_section(symtab, layout);
5161 unsigned int got_offset = got->add_constant_pair(0, 0);
5162 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5163 got_offset, 0);
5164 this->tlsld_got_offset_ = got_offset;
5165 }
5166 return this->tlsld_got_offset_;
5167 }
5168
5169 // Get the Reference_flags for a particular relocation.
5170
5171 template<int size, bool big_endian>
5172 int
5173 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5174 unsigned int r_type,
5175 const Target_powerpc* target)
5176 {
5177 int ref = 0;
5178
5179 switch (r_type)
5180 {
5181 case elfcpp::R_POWERPC_NONE:
5182 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5183 case elfcpp::R_POWERPC_GNU_VTENTRY:
5184 case elfcpp::R_PPC64_TOC:
5185 // No symbol reference.
5186 break;
5187
5188 case elfcpp::R_PPC64_ADDR64:
5189 case elfcpp::R_PPC64_UADDR64:
5190 case elfcpp::R_POWERPC_ADDR32:
5191 case elfcpp::R_POWERPC_UADDR32:
5192 case elfcpp::R_POWERPC_ADDR16:
5193 case elfcpp::R_POWERPC_UADDR16:
5194 case elfcpp::R_POWERPC_ADDR16_LO:
5195 case elfcpp::R_POWERPC_ADDR16_HI:
5196 case elfcpp::R_POWERPC_ADDR16_HA:
5197 ref = Symbol::ABSOLUTE_REF;
5198 break;
5199
5200 case elfcpp::R_POWERPC_ADDR24:
5201 case elfcpp::R_POWERPC_ADDR14:
5202 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5203 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5204 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5205 break;
5206
5207 case elfcpp::R_PPC64_REL64:
5208 case elfcpp::R_POWERPC_REL32:
5209 case elfcpp::R_PPC_LOCAL24PC:
5210 case elfcpp::R_POWERPC_REL16:
5211 case elfcpp::R_POWERPC_REL16_LO:
5212 case elfcpp::R_POWERPC_REL16_HI:
5213 case elfcpp::R_POWERPC_REL16_HA:
5214 ref = Symbol::RELATIVE_REF;
5215 break;
5216
5217 case elfcpp::R_POWERPC_REL24:
5218 case elfcpp::R_PPC_PLTREL24:
5219 case elfcpp::R_POWERPC_REL14:
5220 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5221 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5222 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5223 break;
5224
5225 case elfcpp::R_POWERPC_GOT16:
5226 case elfcpp::R_POWERPC_GOT16_LO:
5227 case elfcpp::R_POWERPC_GOT16_HI:
5228 case elfcpp::R_POWERPC_GOT16_HA:
5229 case elfcpp::R_PPC64_GOT16_DS:
5230 case elfcpp::R_PPC64_GOT16_LO_DS:
5231 case elfcpp::R_PPC64_TOC16:
5232 case elfcpp::R_PPC64_TOC16_LO:
5233 case elfcpp::R_PPC64_TOC16_HI:
5234 case elfcpp::R_PPC64_TOC16_HA:
5235 case elfcpp::R_PPC64_TOC16_DS:
5236 case elfcpp::R_PPC64_TOC16_LO_DS:
5237 // Absolute in GOT.
5238 ref = Symbol::ABSOLUTE_REF;
5239 break;
5240
5241 case elfcpp::R_POWERPC_GOT_TPREL16:
5242 case elfcpp::R_POWERPC_TLS:
5243 ref = Symbol::TLS_REF;
5244 break;
5245
5246 case elfcpp::R_POWERPC_COPY:
5247 case elfcpp::R_POWERPC_GLOB_DAT:
5248 case elfcpp::R_POWERPC_JMP_SLOT:
5249 case elfcpp::R_POWERPC_RELATIVE:
5250 case elfcpp::R_POWERPC_DTPMOD:
5251 default:
5252 // Not expected. We will give an error later.
5253 break;
5254 }
5255
5256 if (size == 64 && target->abiversion() < 2)
5257 ref |= Symbol::FUNC_DESC_ABI;
5258 return ref;
5259 }
5260
5261 // Report an unsupported relocation against a local symbol.
5262
5263 template<int size, bool big_endian>
5264 void
5265 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5266 Sized_relobj_file<size, big_endian>* object,
5267 unsigned int r_type)
5268 {
5269 gold_error(_("%s: unsupported reloc %u against local symbol"),
5270 object->name().c_str(), r_type);
5271 }
5272
5273 // We are about to emit a dynamic relocation of type R_TYPE. If the
5274 // dynamic linker does not support it, issue an error.
5275
5276 template<int size, bool big_endian>
5277 void
5278 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5279 unsigned int r_type)
5280 {
5281 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5282
5283 // These are the relocation types supported by glibc for both 32-bit
5284 // and 64-bit powerpc.
5285 switch (r_type)
5286 {
5287 case elfcpp::R_POWERPC_NONE:
5288 case elfcpp::R_POWERPC_RELATIVE:
5289 case elfcpp::R_POWERPC_GLOB_DAT:
5290 case elfcpp::R_POWERPC_DTPMOD:
5291 case elfcpp::R_POWERPC_DTPREL:
5292 case elfcpp::R_POWERPC_TPREL:
5293 case elfcpp::R_POWERPC_JMP_SLOT:
5294 case elfcpp::R_POWERPC_COPY:
5295 case elfcpp::R_POWERPC_IRELATIVE:
5296 case elfcpp::R_POWERPC_ADDR32:
5297 case elfcpp::R_POWERPC_UADDR32:
5298 case elfcpp::R_POWERPC_ADDR24:
5299 case elfcpp::R_POWERPC_ADDR16:
5300 case elfcpp::R_POWERPC_UADDR16:
5301 case elfcpp::R_POWERPC_ADDR16_LO:
5302 case elfcpp::R_POWERPC_ADDR16_HI:
5303 case elfcpp::R_POWERPC_ADDR16_HA:
5304 case elfcpp::R_POWERPC_ADDR14:
5305 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5306 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5307 case elfcpp::R_POWERPC_REL32:
5308 case elfcpp::R_POWERPC_REL24:
5309 case elfcpp::R_POWERPC_TPREL16:
5310 case elfcpp::R_POWERPC_TPREL16_LO:
5311 case elfcpp::R_POWERPC_TPREL16_HI:
5312 case elfcpp::R_POWERPC_TPREL16_HA:
5313 return;
5314
5315 default:
5316 break;
5317 }
5318
5319 if (size == 64)
5320 {
5321 switch (r_type)
5322 {
5323 // These are the relocation types supported only on 64-bit.
5324 case elfcpp::R_PPC64_ADDR64:
5325 case elfcpp::R_PPC64_UADDR64:
5326 case elfcpp::R_PPC64_JMP_IREL:
5327 case elfcpp::R_PPC64_ADDR16_DS:
5328 case elfcpp::R_PPC64_ADDR16_LO_DS:
5329 case elfcpp::R_PPC64_ADDR16_HIGH:
5330 case elfcpp::R_PPC64_ADDR16_HIGHA:
5331 case elfcpp::R_PPC64_ADDR16_HIGHER:
5332 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5333 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5334 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5335 case elfcpp::R_PPC64_REL64:
5336 case elfcpp::R_POWERPC_ADDR30:
5337 case elfcpp::R_PPC64_TPREL16_DS:
5338 case elfcpp::R_PPC64_TPREL16_LO_DS:
5339 case elfcpp::R_PPC64_TPREL16_HIGH:
5340 case elfcpp::R_PPC64_TPREL16_HIGHA:
5341 case elfcpp::R_PPC64_TPREL16_HIGHER:
5342 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5343 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5344 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5345 return;
5346
5347 default:
5348 break;
5349 }
5350 }
5351 else
5352 {
5353 switch (r_type)
5354 {
5355 // These are the relocation types supported only on 32-bit.
5356 // ??? glibc ld.so doesn't need to support these.
5357 case elfcpp::R_POWERPC_DTPREL16:
5358 case elfcpp::R_POWERPC_DTPREL16_LO:
5359 case elfcpp::R_POWERPC_DTPREL16_HI:
5360 case elfcpp::R_POWERPC_DTPREL16_HA:
5361 return;
5362
5363 default:
5364 break;
5365 }
5366 }
5367
5368 // This prevents us from issuing more than one error per reloc
5369 // section. But we can still wind up issuing more than one
5370 // error per object file.
5371 if (this->issued_non_pic_error_)
5372 return;
5373 gold_assert(parameters->options().output_is_position_independent());
5374 object->error(_("requires unsupported dynamic reloc; "
5375 "recompile with -fPIC"));
5376 this->issued_non_pic_error_ = true;
5377 return;
5378 }
5379
5380 // Return whether we need to make a PLT entry for a relocation of the
5381 // given type against a STT_GNU_IFUNC symbol.
5382
5383 template<int size, bool big_endian>
5384 bool
5385 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5386 Target_powerpc<size, big_endian>* target,
5387 Sized_relobj_file<size, big_endian>* object,
5388 unsigned int r_type,
5389 bool report_err)
5390 {
5391 // In non-pic code any reference will resolve to the plt call stub
5392 // for the ifunc symbol.
5393 if ((size == 32 || target->abiversion() >= 2)
5394 && !parameters->options().output_is_position_independent())
5395 return true;
5396
5397 switch (r_type)
5398 {
5399 // Word size refs from data sections are OK, but don't need a PLT entry.
5400 case elfcpp::R_POWERPC_ADDR32:
5401 case elfcpp::R_POWERPC_UADDR32:
5402 if (size == 32)
5403 return false;
5404 break;
5405
5406 case elfcpp::R_PPC64_ADDR64:
5407 case elfcpp::R_PPC64_UADDR64:
5408 if (size == 64)
5409 return false;
5410 break;
5411
5412 // GOT refs are good, but also don't need a PLT entry.
5413 case elfcpp::R_POWERPC_GOT16:
5414 case elfcpp::R_POWERPC_GOT16_LO:
5415 case elfcpp::R_POWERPC_GOT16_HI:
5416 case elfcpp::R_POWERPC_GOT16_HA:
5417 case elfcpp::R_PPC64_GOT16_DS:
5418 case elfcpp::R_PPC64_GOT16_LO_DS:
5419 return false;
5420
5421 // Function calls are good, and these do need a PLT entry.
5422 case elfcpp::R_POWERPC_ADDR24:
5423 case elfcpp::R_POWERPC_ADDR14:
5424 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5425 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5426 case elfcpp::R_POWERPC_REL24:
5427 case elfcpp::R_PPC_PLTREL24:
5428 case elfcpp::R_POWERPC_REL14:
5429 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5430 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5431 return true;
5432
5433 default:
5434 break;
5435 }
5436
5437 // Anything else is a problem.
5438 // If we are building a static executable, the libc startup function
5439 // responsible for applying indirect function relocations is going
5440 // to complain about the reloc type.
5441 // If we are building a dynamic executable, we will have a text
5442 // relocation. The dynamic loader will set the text segment
5443 // writable and non-executable to apply text relocations. So we'll
5444 // segfault when trying to run the indirection function to resolve
5445 // the reloc.
5446 if (report_err)
5447 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5448 object->name().c_str(), r_type);
5449 return false;
5450 }
5451
5452 // Scan a relocation for a local symbol.
5453
5454 template<int size, bool big_endian>
5455 inline void
5456 Target_powerpc<size, big_endian>::Scan::local(
5457 Symbol_table* symtab,
5458 Layout* layout,
5459 Target_powerpc<size, big_endian>* target,
5460 Sized_relobj_file<size, big_endian>* object,
5461 unsigned int data_shndx,
5462 Output_section* output_section,
5463 const elfcpp::Rela<size, big_endian>& reloc,
5464 unsigned int r_type,
5465 const elfcpp::Sym<size, big_endian>& lsym,
5466 bool is_discarded)
5467 {
5468 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5469
5470 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5471 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5472 {
5473 this->expect_tls_get_addr_call();
5474 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5475 if (tls_type != tls::TLSOPT_NONE)
5476 this->skip_next_tls_get_addr_call();
5477 }
5478 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5479 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5480 {
5481 this->expect_tls_get_addr_call();
5482 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5483 if (tls_type != tls::TLSOPT_NONE)
5484 this->skip_next_tls_get_addr_call();
5485 }
5486
5487 Powerpc_relobj<size, big_endian>* ppc_object
5488 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5489
5490 if (is_discarded)
5491 {
5492 if (size == 64
5493 && data_shndx == ppc_object->opd_shndx()
5494 && r_type == elfcpp::R_PPC64_ADDR64)
5495 ppc_object->set_opd_discard(reloc.get_r_offset());
5496 return;
5497 }
5498
5499 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5500 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5501 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5502 {
5503 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5504 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5505 r_type, r_sym, reloc.get_r_addend());
5506 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5507 }
5508
5509 switch (r_type)
5510 {
5511 case elfcpp::R_POWERPC_NONE:
5512 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5513 case elfcpp::R_POWERPC_GNU_VTENTRY:
5514 case elfcpp::R_PPC64_TOCSAVE:
5515 case elfcpp::R_POWERPC_TLS:
5516 break;
5517
5518 case elfcpp::R_PPC64_TOC:
5519 {
5520 Output_data_got_powerpc<size, big_endian>* got
5521 = target->got_section(symtab, layout);
5522 if (parameters->options().output_is_position_independent())
5523 {
5524 Address off = reloc.get_r_offset();
5525 if (size == 64
5526 && target->abiversion() < 2
5527 && data_shndx == ppc_object->opd_shndx()
5528 && ppc_object->get_opd_discard(off - 8))
5529 break;
5530
5531 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5532 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5533 rela_dyn->add_output_section_relative(got->output_section(),
5534 elfcpp::R_POWERPC_RELATIVE,
5535 output_section,
5536 object, data_shndx, off,
5537 symobj->toc_base_offset());
5538 }
5539 }
5540 break;
5541
5542 case elfcpp::R_PPC64_ADDR64:
5543 case elfcpp::R_PPC64_UADDR64:
5544 case elfcpp::R_POWERPC_ADDR32:
5545 case elfcpp::R_POWERPC_UADDR32:
5546 case elfcpp::R_POWERPC_ADDR24:
5547 case elfcpp::R_POWERPC_ADDR16:
5548 case elfcpp::R_POWERPC_ADDR16_LO:
5549 case elfcpp::R_POWERPC_ADDR16_HI:
5550 case elfcpp::R_POWERPC_ADDR16_HA:
5551 case elfcpp::R_POWERPC_UADDR16:
5552 case elfcpp::R_PPC64_ADDR16_HIGH:
5553 case elfcpp::R_PPC64_ADDR16_HIGHA:
5554 case elfcpp::R_PPC64_ADDR16_HIGHER:
5555 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5556 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5557 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5558 case elfcpp::R_PPC64_ADDR16_DS:
5559 case elfcpp::R_PPC64_ADDR16_LO_DS:
5560 case elfcpp::R_POWERPC_ADDR14:
5561 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5562 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5563 // If building a shared library (or a position-independent
5564 // executable), we need to create a dynamic relocation for
5565 // this location.
5566 if (parameters->options().output_is_position_independent()
5567 || (size == 64 && is_ifunc && target->abiversion() < 2))
5568 {
5569 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5570 is_ifunc);
5571 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5572 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5573 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5574 {
5575 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5576 : elfcpp::R_POWERPC_RELATIVE);
5577 rela_dyn->add_local_relative(object, r_sym, dynrel,
5578 output_section, data_shndx,
5579 reloc.get_r_offset(),
5580 reloc.get_r_addend(), false);
5581 }
5582 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5583 {
5584 check_non_pic(object, r_type);
5585 rela_dyn->add_local(object, r_sym, r_type, output_section,
5586 data_shndx, reloc.get_r_offset(),
5587 reloc.get_r_addend());
5588 }
5589 else
5590 {
5591 gold_assert(lsym.get_st_value() == 0);
5592 unsigned int shndx = lsym.get_st_shndx();
5593 bool is_ordinary;
5594 shndx = object->adjust_sym_shndx(r_sym, shndx,
5595 &is_ordinary);
5596 if (!is_ordinary)
5597 object->error(_("section symbol %u has bad shndx %u"),
5598 r_sym, shndx);
5599 else
5600 rela_dyn->add_local_section(object, shndx, r_type,
5601 output_section, data_shndx,
5602 reloc.get_r_offset());
5603 }
5604 }
5605 break;
5606
5607 case elfcpp::R_POWERPC_REL24:
5608 case elfcpp::R_PPC_PLTREL24:
5609 case elfcpp::R_PPC_LOCAL24PC:
5610 case elfcpp::R_POWERPC_REL14:
5611 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5612 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5613 if (!is_ifunc)
5614 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5615 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5616 reloc.get_r_addend());
5617 break;
5618
5619 case elfcpp::R_PPC64_REL64:
5620 case elfcpp::R_POWERPC_REL32:
5621 case elfcpp::R_POWERPC_REL16:
5622 case elfcpp::R_POWERPC_REL16_LO:
5623 case elfcpp::R_POWERPC_REL16_HI:
5624 case elfcpp::R_POWERPC_REL16_HA:
5625 case elfcpp::R_POWERPC_SECTOFF:
5626 case elfcpp::R_POWERPC_SECTOFF_LO:
5627 case elfcpp::R_POWERPC_SECTOFF_HI:
5628 case elfcpp::R_POWERPC_SECTOFF_HA:
5629 case elfcpp::R_PPC64_SECTOFF_DS:
5630 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5631 case elfcpp::R_POWERPC_TPREL16:
5632 case elfcpp::R_POWERPC_TPREL16_LO:
5633 case elfcpp::R_POWERPC_TPREL16_HI:
5634 case elfcpp::R_POWERPC_TPREL16_HA:
5635 case elfcpp::R_PPC64_TPREL16_DS:
5636 case elfcpp::R_PPC64_TPREL16_LO_DS:
5637 case elfcpp::R_PPC64_TPREL16_HIGH:
5638 case elfcpp::R_PPC64_TPREL16_HIGHA:
5639 case elfcpp::R_PPC64_TPREL16_HIGHER:
5640 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5641 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5642 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5643 case elfcpp::R_POWERPC_DTPREL16:
5644 case elfcpp::R_POWERPC_DTPREL16_LO:
5645 case elfcpp::R_POWERPC_DTPREL16_HI:
5646 case elfcpp::R_POWERPC_DTPREL16_HA:
5647 case elfcpp::R_PPC64_DTPREL16_DS:
5648 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5649 case elfcpp::R_PPC64_DTPREL16_HIGH:
5650 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5651 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5652 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5653 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5654 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5655 case elfcpp::R_PPC64_TLSGD:
5656 case elfcpp::R_PPC64_TLSLD:
5657 case elfcpp::R_PPC64_ADDR64_LOCAL:
5658 break;
5659
5660 case elfcpp::R_POWERPC_GOT16:
5661 case elfcpp::R_POWERPC_GOT16_LO:
5662 case elfcpp::R_POWERPC_GOT16_HI:
5663 case elfcpp::R_POWERPC_GOT16_HA:
5664 case elfcpp::R_PPC64_GOT16_DS:
5665 case elfcpp::R_PPC64_GOT16_LO_DS:
5666 {
5667 // The symbol requires a GOT entry.
5668 Output_data_got_powerpc<size, big_endian>* got
5669 = target->got_section(symtab, layout);
5670 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5671
5672 if (!parameters->options().output_is_position_independent())
5673 {
5674 if ((size == 32 && is_ifunc)
5675 || (size == 64 && target->abiversion() >= 2))
5676 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5677 else
5678 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5679 }
5680 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5681 {
5682 // If we are generating a shared object or a pie, this
5683 // symbol's GOT entry will be set by a dynamic relocation.
5684 unsigned int off;
5685 off = got->add_constant(0);
5686 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5687
5688 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5689 is_ifunc);
5690 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5691 : elfcpp::R_POWERPC_RELATIVE);
5692 rela_dyn->add_local_relative(object, r_sym, dynrel,
5693 got, off, 0, false);
5694 }
5695 }
5696 break;
5697
5698 case elfcpp::R_PPC64_TOC16:
5699 case elfcpp::R_PPC64_TOC16_LO:
5700 case elfcpp::R_PPC64_TOC16_HI:
5701 case elfcpp::R_PPC64_TOC16_HA:
5702 case elfcpp::R_PPC64_TOC16_DS:
5703 case elfcpp::R_PPC64_TOC16_LO_DS:
5704 // We need a GOT section.
5705 target->got_section(symtab, layout);
5706 break;
5707
5708 case elfcpp::R_POWERPC_GOT_TLSGD16:
5709 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5710 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5711 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5712 {
5713 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5714 if (tls_type == tls::TLSOPT_NONE)
5715 {
5716 Output_data_got_powerpc<size, big_endian>* got
5717 = target->got_section(symtab, layout);
5718 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5719 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5720 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5721 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5722 }
5723 else if (tls_type == tls::TLSOPT_TO_LE)
5724 {
5725 // no GOT relocs needed for Local Exec.
5726 }
5727 else
5728 gold_unreachable();
5729 }
5730 break;
5731
5732 case elfcpp::R_POWERPC_GOT_TLSLD16:
5733 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5734 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5735 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5736 {
5737 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5738 if (tls_type == tls::TLSOPT_NONE)
5739 target->tlsld_got_offset(symtab, layout, object);
5740 else if (tls_type == tls::TLSOPT_TO_LE)
5741 {
5742 // no GOT relocs needed for Local Exec.
5743 if (parameters->options().emit_relocs())
5744 {
5745 Output_section* os = layout->tls_segment()->first_section();
5746 gold_assert(os != NULL);
5747 os->set_needs_symtab_index();
5748 }
5749 }
5750 else
5751 gold_unreachable();
5752 }
5753 break;
5754
5755 case elfcpp::R_POWERPC_GOT_DTPREL16:
5756 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5757 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5758 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5759 {
5760 Output_data_got_powerpc<size, big_endian>* got
5761 = target->got_section(symtab, layout);
5762 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5763 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5764 }
5765 break;
5766
5767 case elfcpp::R_POWERPC_GOT_TPREL16:
5768 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5769 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5770 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5771 {
5772 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5773 if (tls_type == tls::TLSOPT_NONE)
5774 {
5775 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5776 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5777 {
5778 Output_data_got_powerpc<size, big_endian>* got
5779 = target->got_section(symtab, layout);
5780 unsigned int off = got->add_constant(0);
5781 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5782
5783 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5784 rela_dyn->add_symbolless_local_addend(object, r_sym,
5785 elfcpp::R_POWERPC_TPREL,
5786 got, off, 0);
5787 }
5788 }
5789 else if (tls_type == tls::TLSOPT_TO_LE)
5790 {
5791 // no GOT relocs needed for Local Exec.
5792 }
5793 else
5794 gold_unreachable();
5795 }
5796 break;
5797
5798 default:
5799 unsupported_reloc_local(object, r_type);
5800 break;
5801 }
5802
5803 switch (r_type)
5804 {
5805 case elfcpp::R_POWERPC_GOT_TLSLD16:
5806 case elfcpp::R_POWERPC_GOT_TLSGD16:
5807 case elfcpp::R_POWERPC_GOT_TPREL16:
5808 case elfcpp::R_POWERPC_GOT_DTPREL16:
5809 case elfcpp::R_POWERPC_GOT16:
5810 case elfcpp::R_PPC64_GOT16_DS:
5811 case elfcpp::R_PPC64_TOC16:
5812 case elfcpp::R_PPC64_TOC16_DS:
5813 ppc_object->set_has_small_toc_reloc();
5814 default:
5815 break;
5816 }
5817 }
5818
5819 // Report an unsupported relocation against a global symbol.
5820
5821 template<int size, bool big_endian>
5822 void
5823 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5824 Sized_relobj_file<size, big_endian>* object,
5825 unsigned int r_type,
5826 Symbol* gsym)
5827 {
5828 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5829 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5830 }
5831
5832 // Scan a relocation for a global symbol.
5833
5834 template<int size, bool big_endian>
5835 inline void
5836 Target_powerpc<size, big_endian>::Scan::global(
5837 Symbol_table* symtab,
5838 Layout* layout,
5839 Target_powerpc<size, big_endian>* target,
5840 Sized_relobj_file<size, big_endian>* object,
5841 unsigned int data_shndx,
5842 Output_section* output_section,
5843 const elfcpp::Rela<size, big_endian>& reloc,
5844 unsigned int r_type,
5845 Symbol* gsym)
5846 {
5847 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5848 return;
5849
5850 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5851 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5852 {
5853 this->expect_tls_get_addr_call();
5854 const bool final = gsym->final_value_is_known();
5855 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5856 if (tls_type != tls::TLSOPT_NONE)
5857 this->skip_next_tls_get_addr_call();
5858 }
5859 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5860 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5861 {
5862 this->expect_tls_get_addr_call();
5863 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5864 if (tls_type != tls::TLSOPT_NONE)
5865 this->skip_next_tls_get_addr_call();
5866 }
5867
5868 Powerpc_relobj<size, big_endian>* ppc_object
5869 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5870
5871 // A STT_GNU_IFUNC symbol may require a PLT entry.
5872 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5873 bool pushed_ifunc = false;
5874 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5875 {
5876 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5877 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5878 reloc.get_r_addend());
5879 target->make_plt_entry(symtab, layout, gsym);
5880 pushed_ifunc = true;
5881 }
5882
5883 switch (r_type)
5884 {
5885 case elfcpp::R_POWERPC_NONE:
5886 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5887 case elfcpp::R_POWERPC_GNU_VTENTRY:
5888 case elfcpp::R_PPC_LOCAL24PC:
5889 case elfcpp::R_POWERPC_TLS:
5890 break;
5891
5892 case elfcpp::R_PPC64_TOC:
5893 {
5894 Output_data_got_powerpc<size, big_endian>* got
5895 = target->got_section(symtab, layout);
5896 if (parameters->options().output_is_position_independent())
5897 {
5898 Address off = reloc.get_r_offset();
5899 if (size == 64
5900 && data_shndx == ppc_object->opd_shndx()
5901 && ppc_object->get_opd_discard(off - 8))
5902 break;
5903
5904 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5905 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5906 if (data_shndx != ppc_object->opd_shndx())
5907 symobj = static_cast
5908 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5909 rela_dyn->add_output_section_relative(got->output_section(),
5910 elfcpp::R_POWERPC_RELATIVE,
5911 output_section,
5912 object, data_shndx, off,
5913 symobj->toc_base_offset());
5914 }
5915 }
5916 break;
5917
5918 case elfcpp::R_PPC64_ADDR64:
5919 if (size == 64
5920 && target->abiversion() < 2
5921 && data_shndx == ppc_object->opd_shndx()
5922 && (gsym->is_defined_in_discarded_section()
5923 || gsym->object() != object))
5924 {
5925 ppc_object->set_opd_discard(reloc.get_r_offset());
5926 break;
5927 }
5928 // Fall thru
5929 case elfcpp::R_PPC64_UADDR64:
5930 case elfcpp::R_POWERPC_ADDR32:
5931 case elfcpp::R_POWERPC_UADDR32:
5932 case elfcpp::R_POWERPC_ADDR24:
5933 case elfcpp::R_POWERPC_ADDR16:
5934 case elfcpp::R_POWERPC_ADDR16_LO:
5935 case elfcpp::R_POWERPC_ADDR16_HI:
5936 case elfcpp::R_POWERPC_ADDR16_HA:
5937 case elfcpp::R_POWERPC_UADDR16:
5938 case elfcpp::R_PPC64_ADDR16_HIGH:
5939 case elfcpp::R_PPC64_ADDR16_HIGHA:
5940 case elfcpp::R_PPC64_ADDR16_HIGHER:
5941 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5942 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5943 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5944 case elfcpp::R_PPC64_ADDR16_DS:
5945 case elfcpp::R_PPC64_ADDR16_LO_DS:
5946 case elfcpp::R_POWERPC_ADDR14:
5947 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5948 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5949 {
5950 // Make a PLT entry if necessary.
5951 if (gsym->needs_plt_entry())
5952 {
5953 // Since this is not a PC-relative relocation, we may be
5954 // taking the address of a function. In that case we need to
5955 // set the entry in the dynamic symbol table to the address of
5956 // the PLT call stub.
5957 bool need_ifunc_plt = false;
5958 if ((size == 32 || target->abiversion() >= 2)
5959 && gsym->is_from_dynobj()
5960 && !parameters->options().output_is_position_independent())
5961 {
5962 gsym->set_needs_dynsym_value();
5963 need_ifunc_plt = true;
5964 }
5965 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5966 {
5967 target->push_branch(ppc_object, data_shndx,
5968 reloc.get_r_offset(), r_type,
5969 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5970 reloc.get_r_addend());
5971 target->make_plt_entry(symtab, layout, gsym);
5972 }
5973 }
5974 // Make a dynamic relocation if necessary.
5975 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5976 || (size == 64 && is_ifunc && target->abiversion() < 2))
5977 {
5978 if (!parameters->options().output_is_position_independent()
5979 && gsym->may_need_copy_reloc())
5980 {
5981 target->copy_reloc(symtab, layout, object,
5982 data_shndx, output_section, gsym, reloc);
5983 }
5984 else if ((((size == 32
5985 && r_type == elfcpp::R_POWERPC_ADDR32)
5986 || (size == 64
5987 && r_type == elfcpp::R_PPC64_ADDR64
5988 && target->abiversion() >= 2))
5989 && gsym->can_use_relative_reloc(false)
5990 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5991 && parameters->options().shared()))
5992 || (size == 64
5993 && r_type == elfcpp::R_PPC64_ADDR64
5994 && target->abiversion() < 2
5995 && (gsym->can_use_relative_reloc(false)
5996 || data_shndx == ppc_object->opd_shndx())))
5997 {
5998 Reloc_section* rela_dyn
5999 = target->rela_dyn_section(symtab, layout, is_ifunc);
6000 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6001 : elfcpp::R_POWERPC_RELATIVE);
6002 rela_dyn->add_symbolless_global_addend(
6003 gsym, dynrel, output_section, object, data_shndx,
6004 reloc.get_r_offset(), reloc.get_r_addend());
6005 }
6006 else
6007 {
6008 Reloc_section* rela_dyn
6009 = target->rela_dyn_section(symtab, layout, is_ifunc);
6010 check_non_pic(object, r_type);
6011 rela_dyn->add_global(gsym, r_type, output_section,
6012 object, data_shndx,
6013 reloc.get_r_offset(),
6014 reloc.get_r_addend());
6015 }
6016 }
6017 }
6018 break;
6019
6020 case elfcpp::R_PPC_PLTREL24:
6021 case elfcpp::R_POWERPC_REL24:
6022 if (!is_ifunc)
6023 {
6024 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6025 r_type,
6026 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6027 reloc.get_r_addend());
6028 if (gsym->needs_plt_entry()
6029 || (!gsym->final_value_is_known()
6030 && (gsym->is_undefined()
6031 || gsym->is_from_dynobj()
6032 || gsym->is_preemptible())))
6033 target->make_plt_entry(symtab, layout, gsym);
6034 }
6035 // Fall thru
6036
6037 case elfcpp::R_PPC64_REL64:
6038 case elfcpp::R_POWERPC_REL32:
6039 // Make a dynamic relocation if necessary.
6040 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6041 {
6042 if (!parameters->options().output_is_position_independent()
6043 && gsym->may_need_copy_reloc())
6044 {
6045 target->copy_reloc(symtab, layout, object,
6046 data_shndx, output_section, gsym,
6047 reloc);
6048 }
6049 else
6050 {
6051 Reloc_section* rela_dyn
6052 = target->rela_dyn_section(symtab, layout, is_ifunc);
6053 check_non_pic(object, r_type);
6054 rela_dyn->add_global(gsym, r_type, output_section, object,
6055 data_shndx, reloc.get_r_offset(),
6056 reloc.get_r_addend());
6057 }
6058 }
6059 break;
6060
6061 case elfcpp::R_POWERPC_REL14:
6062 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6063 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6064 if (!is_ifunc)
6065 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6066 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6067 reloc.get_r_addend());
6068 break;
6069
6070 case elfcpp::R_POWERPC_REL16:
6071 case elfcpp::R_POWERPC_REL16_LO:
6072 case elfcpp::R_POWERPC_REL16_HI:
6073 case elfcpp::R_POWERPC_REL16_HA:
6074 case elfcpp::R_POWERPC_SECTOFF:
6075 case elfcpp::R_POWERPC_SECTOFF_LO:
6076 case elfcpp::R_POWERPC_SECTOFF_HI:
6077 case elfcpp::R_POWERPC_SECTOFF_HA:
6078 case elfcpp::R_PPC64_SECTOFF_DS:
6079 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6080 case elfcpp::R_POWERPC_TPREL16:
6081 case elfcpp::R_POWERPC_TPREL16_LO:
6082 case elfcpp::R_POWERPC_TPREL16_HI:
6083 case elfcpp::R_POWERPC_TPREL16_HA:
6084 case elfcpp::R_PPC64_TPREL16_DS:
6085 case elfcpp::R_PPC64_TPREL16_LO_DS:
6086 case elfcpp::R_PPC64_TPREL16_HIGH:
6087 case elfcpp::R_PPC64_TPREL16_HIGHA:
6088 case elfcpp::R_PPC64_TPREL16_HIGHER:
6089 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6090 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6091 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6092 case elfcpp::R_POWERPC_DTPREL16:
6093 case elfcpp::R_POWERPC_DTPREL16_LO:
6094 case elfcpp::R_POWERPC_DTPREL16_HI:
6095 case elfcpp::R_POWERPC_DTPREL16_HA:
6096 case elfcpp::R_PPC64_DTPREL16_DS:
6097 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6098 case elfcpp::R_PPC64_DTPREL16_HIGH:
6099 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6100 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6101 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6102 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6103 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6104 case elfcpp::R_PPC64_TLSGD:
6105 case elfcpp::R_PPC64_TLSLD:
6106 case elfcpp::R_PPC64_ADDR64_LOCAL:
6107 break;
6108
6109 case elfcpp::R_POWERPC_GOT16:
6110 case elfcpp::R_POWERPC_GOT16_LO:
6111 case elfcpp::R_POWERPC_GOT16_HI:
6112 case elfcpp::R_POWERPC_GOT16_HA:
6113 case elfcpp::R_PPC64_GOT16_DS:
6114 case elfcpp::R_PPC64_GOT16_LO_DS:
6115 {
6116 // The symbol requires a GOT entry.
6117 Output_data_got_powerpc<size, big_endian>* got;
6118
6119 got = target->got_section(symtab, layout);
6120 if (gsym->final_value_is_known())
6121 {
6122 if ((size == 32 && is_ifunc)
6123 || (size == 64 && target->abiversion() >= 2))
6124 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6125 else
6126 got->add_global(gsym, GOT_TYPE_STANDARD);
6127 }
6128 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6129 {
6130 // If we are generating a shared object or a pie, this
6131 // symbol's GOT entry will be set by a dynamic relocation.
6132 unsigned int off = got->add_constant(0);
6133 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6134
6135 Reloc_section* rela_dyn
6136 = target->rela_dyn_section(symtab, layout, is_ifunc);
6137
6138 if (gsym->can_use_relative_reloc(false)
6139 && !((size == 32
6140 || target->abiversion() >= 2)
6141 && gsym->visibility() == elfcpp::STV_PROTECTED
6142 && parameters->options().shared()))
6143 {
6144 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6145 : elfcpp::R_POWERPC_RELATIVE);
6146 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6147 }
6148 else
6149 {
6150 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6151 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6152 }
6153 }
6154 }
6155 break;
6156
6157 case elfcpp::R_PPC64_TOC16:
6158 case elfcpp::R_PPC64_TOC16_LO:
6159 case elfcpp::R_PPC64_TOC16_HI:
6160 case elfcpp::R_PPC64_TOC16_HA:
6161 case elfcpp::R_PPC64_TOC16_DS:
6162 case elfcpp::R_PPC64_TOC16_LO_DS:
6163 // We need a GOT section.
6164 target->got_section(symtab, layout);
6165 break;
6166
6167 case elfcpp::R_POWERPC_GOT_TLSGD16:
6168 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6169 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6170 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6171 {
6172 const bool final = gsym->final_value_is_known();
6173 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6174 if (tls_type == tls::TLSOPT_NONE)
6175 {
6176 Output_data_got_powerpc<size, big_endian>* got
6177 = target->got_section(symtab, layout);
6178 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6179 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6180 elfcpp::R_POWERPC_DTPMOD,
6181 elfcpp::R_POWERPC_DTPREL);
6182 }
6183 else if (tls_type == tls::TLSOPT_TO_IE)
6184 {
6185 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6186 {
6187 Output_data_got_powerpc<size, big_endian>* got
6188 = target->got_section(symtab, layout);
6189 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6190 if (gsym->is_undefined()
6191 || gsym->is_from_dynobj())
6192 {
6193 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6194 elfcpp::R_POWERPC_TPREL);
6195 }
6196 else
6197 {
6198 unsigned int off = got->add_constant(0);
6199 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6200 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6201 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6202 got, off, 0);
6203 }
6204 }
6205 }
6206 else if (tls_type == tls::TLSOPT_TO_LE)
6207 {
6208 // no GOT relocs needed for Local Exec.
6209 }
6210 else
6211 gold_unreachable();
6212 }
6213 break;
6214
6215 case elfcpp::R_POWERPC_GOT_TLSLD16:
6216 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6217 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6218 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6219 {
6220 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6221 if (tls_type == tls::TLSOPT_NONE)
6222 target->tlsld_got_offset(symtab, layout, object);
6223 else if (tls_type == tls::TLSOPT_TO_LE)
6224 {
6225 // no GOT relocs needed for Local Exec.
6226 if (parameters->options().emit_relocs())
6227 {
6228 Output_section* os = layout->tls_segment()->first_section();
6229 gold_assert(os != NULL);
6230 os->set_needs_symtab_index();
6231 }
6232 }
6233 else
6234 gold_unreachable();
6235 }
6236 break;
6237
6238 case elfcpp::R_POWERPC_GOT_DTPREL16:
6239 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6240 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6241 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6242 {
6243 Output_data_got_powerpc<size, big_endian>* got
6244 = target->got_section(symtab, layout);
6245 if (!gsym->final_value_is_known()
6246 && (gsym->is_from_dynobj()
6247 || gsym->is_undefined()
6248 || gsym->is_preemptible()))
6249 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6250 target->rela_dyn_section(layout),
6251 elfcpp::R_POWERPC_DTPREL);
6252 else
6253 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6254 }
6255 break;
6256
6257 case elfcpp::R_POWERPC_GOT_TPREL16:
6258 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6259 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6260 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6261 {
6262 const bool final = gsym->final_value_is_known();
6263 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6264 if (tls_type == tls::TLSOPT_NONE)
6265 {
6266 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6267 {
6268 Output_data_got_powerpc<size, big_endian>* got
6269 = target->got_section(symtab, layout);
6270 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6271 if (gsym->is_undefined()
6272 || gsym->is_from_dynobj())
6273 {
6274 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6275 elfcpp::R_POWERPC_TPREL);
6276 }
6277 else
6278 {
6279 unsigned int off = got->add_constant(0);
6280 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6281 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6282 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6283 got, off, 0);
6284 }
6285 }
6286 }
6287 else if (tls_type == tls::TLSOPT_TO_LE)
6288 {
6289 // no GOT relocs needed for Local Exec.
6290 }
6291 else
6292 gold_unreachable();
6293 }
6294 break;
6295
6296 default:
6297 unsupported_reloc_global(object, r_type, gsym);
6298 break;
6299 }
6300
6301 switch (r_type)
6302 {
6303 case elfcpp::R_POWERPC_GOT_TLSLD16:
6304 case elfcpp::R_POWERPC_GOT_TLSGD16:
6305 case elfcpp::R_POWERPC_GOT_TPREL16:
6306 case elfcpp::R_POWERPC_GOT_DTPREL16:
6307 case elfcpp::R_POWERPC_GOT16:
6308 case elfcpp::R_PPC64_GOT16_DS:
6309 case elfcpp::R_PPC64_TOC16:
6310 case elfcpp::R_PPC64_TOC16_DS:
6311 ppc_object->set_has_small_toc_reloc();
6312 default:
6313 break;
6314 }
6315 }
6316
6317 // Process relocations for gc.
6318
6319 template<int size, bool big_endian>
6320 void
6321 Target_powerpc<size, big_endian>::gc_process_relocs(
6322 Symbol_table* symtab,
6323 Layout* layout,
6324 Sized_relobj_file<size, big_endian>* object,
6325 unsigned int data_shndx,
6326 unsigned int,
6327 const unsigned char* prelocs,
6328 size_t reloc_count,
6329 Output_section* output_section,
6330 bool needs_special_offset_handling,
6331 size_t local_symbol_count,
6332 const unsigned char* plocal_symbols)
6333 {
6334 typedef Target_powerpc<size, big_endian> Powerpc;
6335 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6336 Powerpc_relobj<size, big_endian>* ppc_object
6337 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6338 if (size == 64)
6339 ppc_object->set_opd_valid();
6340 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6341 {
6342 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6343 for (p = ppc_object->access_from_map()->begin();
6344 p != ppc_object->access_from_map()->end();
6345 ++p)
6346 {
6347 Address dst_off = p->first;
6348 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6349 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6350 for (s = p->second.begin(); s != p->second.end(); ++s)
6351 {
6352 Object* src_obj = s->first;
6353 unsigned int src_indx = s->second;
6354 symtab->gc()->add_reference(src_obj, src_indx,
6355 ppc_object, dst_indx);
6356 }
6357 p->second.clear();
6358 }
6359 ppc_object->access_from_map()->clear();
6360 ppc_object->process_gc_mark(symtab);
6361 // Don't look at .opd relocs as .opd will reference everything.
6362 return;
6363 }
6364
6365 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6366 typename Target_powerpc::Relocatable_size_for_reloc>(
6367 symtab,
6368 layout,
6369 this,
6370 object,
6371 data_shndx,
6372 prelocs,
6373 reloc_count,
6374 output_section,
6375 needs_special_offset_handling,
6376 local_symbol_count,
6377 plocal_symbols);
6378 }
6379
6380 // Handle target specific gc actions when adding a gc reference from
6381 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6382 // and DST_OFF. For powerpc64, this adds a referenc to the code
6383 // section of a function descriptor.
6384
6385 template<int size, bool big_endian>
6386 void
6387 Target_powerpc<size, big_endian>::do_gc_add_reference(
6388 Symbol_table* symtab,
6389 Object* src_obj,
6390 unsigned int src_shndx,
6391 Object* dst_obj,
6392 unsigned int dst_shndx,
6393 Address dst_off) const
6394 {
6395 if (size != 64 || dst_obj->is_dynamic())
6396 return;
6397
6398 Powerpc_relobj<size, big_endian>* ppc_object
6399 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6400 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6401 {
6402 if (ppc_object->opd_valid())
6403 {
6404 dst_shndx = ppc_object->get_opd_ent(dst_off);
6405 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6406 }
6407 else
6408 {
6409 // If we haven't run scan_opd_relocs, we must delay
6410 // processing this function descriptor reference.
6411 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6412 }
6413 }
6414 }
6415
6416 // Add any special sections for this symbol to the gc work list.
6417 // For powerpc64, this adds the code section of a function
6418 // descriptor.
6419
6420 template<int size, bool big_endian>
6421 void
6422 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6423 Symbol_table* symtab,
6424 Symbol* sym) const
6425 {
6426 if (size == 64)
6427 {
6428 Powerpc_relobj<size, big_endian>* ppc_object
6429 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6430 bool is_ordinary;
6431 unsigned int shndx = sym->shndx(&is_ordinary);
6432 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6433 {
6434 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6435 Address dst_off = gsym->value();
6436 if (ppc_object->opd_valid())
6437 {
6438 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6439 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6440 }
6441 else
6442 ppc_object->add_gc_mark(dst_off);
6443 }
6444 }
6445 }
6446
6447 // For a symbol location in .opd, set LOC to the location of the
6448 // function entry.
6449
6450 template<int size, bool big_endian>
6451 void
6452 Target_powerpc<size, big_endian>::do_function_location(
6453 Symbol_location* loc) const
6454 {
6455 if (size == 64 && loc->shndx != 0)
6456 {
6457 if (loc->object->is_dynamic())
6458 {
6459 Powerpc_dynobj<size, big_endian>* ppc_object
6460 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6461 if (loc->shndx == ppc_object->opd_shndx())
6462 {
6463 Address dest_off;
6464 Address off = loc->offset - ppc_object->opd_address();
6465 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6466 loc->offset = dest_off;
6467 }
6468 }
6469 else
6470 {
6471 const Powerpc_relobj<size, big_endian>* ppc_object
6472 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6473 if (loc->shndx == ppc_object->opd_shndx())
6474 {
6475 Address dest_off;
6476 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6477 loc->offset = dest_off;
6478 }
6479 }
6480 }
6481 }
6482
6483 // Scan relocations for a section.
6484
6485 template<int size, bool big_endian>
6486 void
6487 Target_powerpc<size, big_endian>::scan_relocs(
6488 Symbol_table* symtab,
6489 Layout* layout,
6490 Sized_relobj_file<size, big_endian>* object,
6491 unsigned int data_shndx,
6492 unsigned int sh_type,
6493 const unsigned char* prelocs,
6494 size_t reloc_count,
6495 Output_section* output_section,
6496 bool needs_special_offset_handling,
6497 size_t local_symbol_count,
6498 const unsigned char* plocal_symbols)
6499 {
6500 typedef Target_powerpc<size, big_endian> Powerpc;
6501 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6502
6503 if (sh_type == elfcpp::SHT_REL)
6504 {
6505 gold_error(_("%s: unsupported REL reloc section"),
6506 object->name().c_str());
6507 return;
6508 }
6509
6510 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6511 symtab,
6512 layout,
6513 this,
6514 object,
6515 data_shndx,
6516 prelocs,
6517 reloc_count,
6518 output_section,
6519 needs_special_offset_handling,
6520 local_symbol_count,
6521 plocal_symbols);
6522 }
6523
6524 // Functor class for processing the global symbol table.
6525 // Removes symbols defined on discarded opd entries.
6526
6527 template<bool big_endian>
6528 class Global_symbol_visitor_opd
6529 {
6530 public:
6531 Global_symbol_visitor_opd()
6532 { }
6533
6534 void
6535 operator()(Sized_symbol<64>* sym)
6536 {
6537 if (sym->has_symtab_index()
6538 || sym->source() != Symbol::FROM_OBJECT
6539 || !sym->in_real_elf())
6540 return;
6541
6542 if (sym->object()->is_dynamic())
6543 return;
6544
6545 Powerpc_relobj<64, big_endian>* symobj
6546 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6547 if (symobj->opd_shndx() == 0)
6548 return;
6549
6550 bool is_ordinary;
6551 unsigned int shndx = sym->shndx(&is_ordinary);
6552 if (shndx == symobj->opd_shndx()
6553 && symobj->get_opd_discard(sym->value()))
6554 {
6555 sym->set_undefined();
6556 sym->set_is_defined_in_discarded_section();
6557 sym->set_symtab_index(-1U);
6558 }
6559 }
6560 };
6561
6562 template<int size, bool big_endian>
6563 void
6564 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6565 Layout* layout,
6566 Symbol_table* symtab)
6567 {
6568 if (size == 64)
6569 {
6570 Output_data_save_res<64, big_endian>* savres
6571 = new Output_data_save_res<64, big_endian>(symtab);
6572 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6573 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6574 savres, ORDER_TEXT, false);
6575 }
6576 }
6577
6578 // Sort linker created .got section first (for the header), then input
6579 // sections belonging to files using small model code.
6580
6581 template<bool big_endian>
6582 class Sort_toc_sections
6583 {
6584 public:
6585 bool
6586 operator()(const Output_section::Input_section& is1,
6587 const Output_section::Input_section& is2) const
6588 {
6589 if (!is1.is_input_section() && is2.is_input_section())
6590 return true;
6591 bool small1
6592 = (is1.is_input_section()
6593 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6594 ->has_small_toc_reloc()));
6595 bool small2
6596 = (is2.is_input_section()
6597 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6598 ->has_small_toc_reloc()));
6599 return small1 && !small2;
6600 }
6601 };
6602
6603 // Finalize the sections.
6604
6605 template<int size, bool big_endian>
6606 void
6607 Target_powerpc<size, big_endian>::do_finalize_sections(
6608 Layout* layout,
6609 const Input_objects*,
6610 Symbol_table* symtab)
6611 {
6612 if (parameters->doing_static_link())
6613 {
6614 // At least some versions of glibc elf-init.o have a strong
6615 // reference to __rela_iplt marker syms. A weak ref would be
6616 // better..
6617 if (this->iplt_ != NULL)
6618 {
6619 Reloc_section* rel = this->iplt_->rel_plt();
6620 symtab->define_in_output_data("__rela_iplt_start", NULL,
6621 Symbol_table::PREDEFINED, rel, 0, 0,
6622 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6623 elfcpp::STV_HIDDEN, 0, false, true);
6624 symtab->define_in_output_data("__rela_iplt_end", NULL,
6625 Symbol_table::PREDEFINED, rel, 0, 0,
6626 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6627 elfcpp::STV_HIDDEN, 0, true, true);
6628 }
6629 else
6630 {
6631 symtab->define_as_constant("__rela_iplt_start", NULL,
6632 Symbol_table::PREDEFINED, 0, 0,
6633 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6634 elfcpp::STV_HIDDEN, 0, true, false);
6635 symtab->define_as_constant("__rela_iplt_end", NULL,
6636 Symbol_table::PREDEFINED, 0, 0,
6637 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6638 elfcpp::STV_HIDDEN, 0, true, false);
6639 }
6640 }
6641
6642 if (size == 64)
6643 {
6644 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6645 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6646
6647 if (!parameters->options().relocatable())
6648 {
6649 this->define_save_restore_funcs(layout, symtab);
6650
6651 // Annoyingly, we need to make these sections now whether or
6652 // not we need them. If we delay until do_relax then we
6653 // need to mess with the relaxation machinery checkpointing.
6654 this->got_section(symtab, layout);
6655 this->make_brlt_section(layout);
6656
6657 if (parameters->options().toc_sort())
6658 {
6659 Output_section* os = this->got_->output_section();
6660 if (os != NULL && os->input_sections().size() > 1)
6661 std::stable_sort(os->input_sections().begin(),
6662 os->input_sections().end(),
6663 Sort_toc_sections<big_endian>());
6664 }
6665 }
6666 }
6667
6668 // Fill in some more dynamic tags.
6669 Output_data_dynamic* odyn = layout->dynamic_data();
6670 if (odyn != NULL)
6671 {
6672 const Reloc_section* rel_plt = (this->plt_ == NULL
6673 ? NULL
6674 : this->plt_->rel_plt());
6675 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6676 this->rela_dyn_, true, size == 32);
6677
6678 if (size == 32)
6679 {
6680 if (this->got_ != NULL)
6681 {
6682 this->got_->finalize_data_size();
6683 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6684 this->got_, this->got_->g_o_t());
6685 }
6686 }
6687 else
6688 {
6689 if (this->glink_ != NULL)
6690 {
6691 this->glink_->finalize_data_size();
6692 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6693 this->glink_,
6694 (this->glink_->pltresolve_size
6695 - 32));
6696 }
6697 }
6698 }
6699
6700 // Emit any relocs we saved in an attempt to avoid generating COPY
6701 // relocs.
6702 if (this->copy_relocs_.any_saved_relocs())
6703 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6704 }
6705
6706 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6707 // reloc.
6708
6709 static bool
6710 ok_lo_toc_insn(uint32_t insn)
6711 {
6712 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6713 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6714 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6715 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6716 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6717 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6718 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6719 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6720 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6721 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6722 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6723 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6724 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6725 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6726 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6727 && (insn & 3) != 1)
6728 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6729 && ((insn & 3) == 0 || (insn & 3) == 3))
6730 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6731 }
6732
6733 // Return the value to use for a branch relocation.
6734
6735 template<int size, bool big_endian>
6736 bool
6737 Target_powerpc<size, big_endian>::symval_for_branch(
6738 const Symbol_table* symtab,
6739 const Sized_symbol<size>* gsym,
6740 Powerpc_relobj<size, big_endian>* object,
6741 Address *value,
6742 unsigned int *dest_shndx)
6743 {
6744 if (size == 32 || this->abiversion() >= 2)
6745 gold_unreachable();
6746 *dest_shndx = 0;
6747
6748 // If the symbol is defined in an opd section, ie. is a function
6749 // descriptor, use the function descriptor code entry address
6750 Powerpc_relobj<size, big_endian>* symobj = object;
6751 if (gsym != NULL
6752 && gsym->source() != Symbol::FROM_OBJECT)
6753 return true;
6754 if (gsym != NULL)
6755 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6756 unsigned int shndx = symobj->opd_shndx();
6757 if (shndx == 0)
6758 return true;
6759 Address opd_addr = symobj->get_output_section_offset(shndx);
6760 if (opd_addr == invalid_address)
6761 return true;
6762 opd_addr += symobj->output_section_address(shndx);
6763 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6764 {
6765 Address sec_off;
6766 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6767 if (symtab->is_section_folded(symobj, *dest_shndx))
6768 {
6769 Section_id folded
6770 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6771 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6772 *dest_shndx = folded.second;
6773 }
6774 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6775 if (sec_addr == invalid_address)
6776 return false;
6777
6778 sec_addr += symobj->output_section(*dest_shndx)->address();
6779 *value = sec_addr + sec_off;
6780 }
6781 return true;
6782 }
6783
6784 // Perform a relocation.
6785
6786 template<int size, bool big_endian>
6787 inline bool
6788 Target_powerpc<size, big_endian>::Relocate::relocate(
6789 const Relocate_info<size, big_endian>* relinfo,
6790 Target_powerpc* target,
6791 Output_section* os,
6792 size_t relnum,
6793 const elfcpp::Rela<size, big_endian>& rela,
6794 unsigned int r_type,
6795 const Sized_symbol<size>* gsym,
6796 const Symbol_value<size>* psymval,
6797 unsigned char* view,
6798 Address address,
6799 section_size_type view_size)
6800 {
6801 if (view == NULL)
6802 return true;
6803
6804 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6805 {
6806 case Track_tls::NOT_EXPECTED:
6807 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6808 _("__tls_get_addr call lacks marker reloc"));
6809 break;
6810 case Track_tls::EXPECTED:
6811 // We have already complained.
6812 break;
6813 case Track_tls::SKIP:
6814 return true;
6815 case Track_tls::NORMAL:
6816 break;
6817 }
6818
6819 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6820 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6821 Powerpc_relobj<size, big_endian>* const object
6822 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6823 Address value = 0;
6824 bool has_stub_value = false;
6825 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6826 if ((gsym != NULL
6827 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6828 : object->local_has_plt_offset(r_sym))
6829 && (!psymval->is_ifunc_symbol()
6830 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6831 {
6832 if (size == 64
6833 && gsym != NULL
6834 && target->abiversion() >= 2
6835 && !parameters->options().output_is_position_independent()
6836 && !is_branch_reloc(r_type))
6837 {
6838 unsigned int off = target->glink_section()->find_global_entry(gsym);
6839 gold_assert(off != (unsigned int)-1);
6840 value = target->glink_section()->global_entry_address() + off;
6841 }
6842 else
6843 {
6844 Stub_table<size, big_endian>* stub_table
6845 = object->stub_table(relinfo->data_shndx);
6846 if (stub_table == NULL)
6847 {
6848 // This is a ref from a data section to an ifunc symbol.
6849 if (target->stub_tables().size() != 0)
6850 stub_table = target->stub_tables()[0];
6851 }
6852 gold_assert(stub_table != NULL);
6853 Address off;
6854 if (gsym != NULL)
6855 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6856 rela.get_r_addend());
6857 else
6858 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6859 rela.get_r_addend());
6860 gold_assert(off != invalid_address);
6861 value = stub_table->stub_address() + off;
6862 }
6863 has_stub_value = true;
6864 }
6865
6866 if (r_type == elfcpp::R_POWERPC_GOT16
6867 || r_type == elfcpp::R_POWERPC_GOT16_LO
6868 || r_type == elfcpp::R_POWERPC_GOT16_HI
6869 || r_type == elfcpp::R_POWERPC_GOT16_HA
6870 || r_type == elfcpp::R_PPC64_GOT16_DS
6871 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6872 {
6873 if (gsym != NULL)
6874 {
6875 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6876 value = gsym->got_offset(GOT_TYPE_STANDARD);
6877 }
6878 else
6879 {
6880 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6881 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6882 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6883 }
6884 value -= target->got_section()->got_base_offset(object);
6885 }
6886 else if (r_type == elfcpp::R_PPC64_TOC)
6887 {
6888 value = (target->got_section()->output_section()->address()
6889 + object->toc_base_offset());
6890 }
6891 else if (gsym != NULL
6892 && (r_type == elfcpp::R_POWERPC_REL24
6893 || r_type == elfcpp::R_PPC_PLTREL24)
6894 && has_stub_value)
6895 {
6896 if (size == 64)
6897 {
6898 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6899 Valtype* wv = reinterpret_cast<Valtype*>(view);
6900 bool can_plt_call = false;
6901 if (rela.get_r_offset() + 8 <= view_size)
6902 {
6903 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6904 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6905 if ((insn & 1) != 0
6906 && (insn2 == nop
6907 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6908 {
6909 elfcpp::Swap<32, big_endian>::
6910 writeval(wv + 1, ld_2_1 + target->stk_toc());
6911 can_plt_call = true;
6912 }
6913 }
6914 if (!can_plt_call)
6915 {
6916 // If we don't have a branch and link followed by a nop,
6917 // we can't go via the plt because there is no place to
6918 // put a toc restoring instruction.
6919 // Unless we know we won't be returning.
6920 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6921 can_plt_call = true;
6922 }
6923 if (!can_plt_call)
6924 {
6925 // g++ as of 20130507 emits self-calls without a
6926 // following nop. This is arguably wrong since we have
6927 // conflicting information. On the one hand a global
6928 // symbol and on the other a local call sequence, but
6929 // don't error for this special case.
6930 // It isn't possible to cheaply verify we have exactly
6931 // such a call. Allow all calls to the same section.
6932 bool ok = false;
6933 Address code = value;
6934 if (gsym->source() == Symbol::FROM_OBJECT
6935 && gsym->object() == object)
6936 {
6937 unsigned int dest_shndx = 0;
6938 if (target->abiversion() < 2)
6939 {
6940 Address addend = rela.get_r_addend();
6941 code = psymval->value(object, addend);
6942 target->symval_for_branch(relinfo->symtab, gsym, object,
6943 &code, &dest_shndx);
6944 }
6945 bool is_ordinary;
6946 if (dest_shndx == 0)
6947 dest_shndx = gsym->shndx(&is_ordinary);
6948 ok = dest_shndx == relinfo->data_shndx;
6949 }
6950 if (!ok)
6951 {
6952 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6953 _("call lacks nop, can't restore toc; "
6954 "recompile with -fPIC"));
6955 value = code;
6956 }
6957 }
6958 }
6959 }
6960 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6961 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6962 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6963 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6964 {
6965 // First instruction of a global dynamic sequence, arg setup insn.
6966 const bool final = gsym == NULL || gsym->final_value_is_known();
6967 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6968 enum Got_type got_type = GOT_TYPE_STANDARD;
6969 if (tls_type == tls::TLSOPT_NONE)
6970 got_type = GOT_TYPE_TLSGD;
6971 else if (tls_type == tls::TLSOPT_TO_IE)
6972 got_type = GOT_TYPE_TPREL;
6973 if (got_type != GOT_TYPE_STANDARD)
6974 {
6975 if (gsym != NULL)
6976 {
6977 gold_assert(gsym->has_got_offset(got_type));
6978 value = gsym->got_offset(got_type);
6979 }
6980 else
6981 {
6982 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6983 gold_assert(object->local_has_got_offset(r_sym, got_type));
6984 value = object->local_got_offset(r_sym, got_type);
6985 }
6986 value -= target->got_section()->got_base_offset(object);
6987 }
6988 if (tls_type == tls::TLSOPT_TO_IE)
6989 {
6990 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6991 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6992 {
6993 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6994 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6995 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6996 if (size == 32)
6997 insn |= 32 << 26; // lwz
6998 else
6999 insn |= 58 << 26; // ld
7000 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7001 }
7002 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7003 - elfcpp::R_POWERPC_GOT_TLSGD16);
7004 }
7005 else if (tls_type == tls::TLSOPT_TO_LE)
7006 {
7007 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7008 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7009 {
7010 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7011 Insn insn = addis_3_13;
7012 if (size == 32)
7013 insn = addis_3_2;
7014 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7015 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7016 value = psymval->value(object, rela.get_r_addend());
7017 }
7018 else
7019 {
7020 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7021 Insn insn = nop;
7022 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7023 r_type = elfcpp::R_POWERPC_NONE;
7024 }
7025 }
7026 }
7027 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7028 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7029 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7030 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7031 {
7032 // First instruction of a local dynamic sequence, arg setup insn.
7033 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7034 if (tls_type == tls::TLSOPT_NONE)
7035 {
7036 value = target->tlsld_got_offset();
7037 value -= target->got_section()->got_base_offset(object);
7038 }
7039 else
7040 {
7041 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7042 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7043 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7044 {
7045 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7046 Insn insn = addis_3_13;
7047 if (size == 32)
7048 insn = addis_3_2;
7049 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7050 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7051 value = dtp_offset;
7052 }
7053 else
7054 {
7055 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7056 Insn insn = nop;
7057 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7058 r_type = elfcpp::R_POWERPC_NONE;
7059 }
7060 }
7061 }
7062 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7063 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7064 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7065 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7066 {
7067 // Accesses relative to a local dynamic sequence address,
7068 // no optimisation here.
7069 if (gsym != NULL)
7070 {
7071 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7072 value = gsym->got_offset(GOT_TYPE_DTPREL);
7073 }
7074 else
7075 {
7076 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7077 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7078 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7079 }
7080 value -= target->got_section()->got_base_offset(object);
7081 }
7082 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7083 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7084 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7085 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7086 {
7087 // First instruction of initial exec sequence.
7088 const bool final = gsym == NULL || gsym->final_value_is_known();
7089 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7090 if (tls_type == tls::TLSOPT_NONE)
7091 {
7092 if (gsym != NULL)
7093 {
7094 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7095 value = gsym->got_offset(GOT_TYPE_TPREL);
7096 }
7097 else
7098 {
7099 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7100 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7101 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7102 }
7103 value -= target->got_section()->got_base_offset(object);
7104 }
7105 else
7106 {
7107 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7108 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7109 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7110 {
7111 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7112 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7113 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7114 if (size == 32)
7115 insn |= addis_0_2;
7116 else
7117 insn |= addis_0_13;
7118 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7119 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7120 value = psymval->value(object, rela.get_r_addend());
7121 }
7122 else
7123 {
7124 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7125 Insn insn = nop;
7126 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7127 r_type = elfcpp::R_POWERPC_NONE;
7128 }
7129 }
7130 }
7131 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7132 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7133 {
7134 // Second instruction of a global dynamic sequence,
7135 // the __tls_get_addr call
7136 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7137 const bool final = gsym == NULL || gsym->final_value_is_known();
7138 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7139 if (tls_type != tls::TLSOPT_NONE)
7140 {
7141 if (tls_type == tls::TLSOPT_TO_IE)
7142 {
7143 Insn* iview = reinterpret_cast<Insn*>(view);
7144 Insn insn = add_3_3_13;
7145 if (size == 32)
7146 insn = add_3_3_2;
7147 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7148 r_type = elfcpp::R_POWERPC_NONE;
7149 }
7150 else
7151 {
7152 Insn* iview = reinterpret_cast<Insn*>(view);
7153 Insn insn = addi_3_3;
7154 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7155 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7156 view += 2 * big_endian;
7157 value = psymval->value(object, rela.get_r_addend());
7158 }
7159 this->skip_next_tls_get_addr_call();
7160 }
7161 }
7162 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7163 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7164 {
7165 // Second instruction of a local dynamic sequence,
7166 // the __tls_get_addr call
7167 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7168 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7169 if (tls_type == tls::TLSOPT_TO_LE)
7170 {
7171 Insn* iview = reinterpret_cast<Insn*>(view);
7172 Insn insn = addi_3_3;
7173 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7174 this->skip_next_tls_get_addr_call();
7175 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7176 view += 2 * big_endian;
7177 value = dtp_offset;
7178 }
7179 }
7180 else if (r_type == elfcpp::R_POWERPC_TLS)
7181 {
7182 // Second instruction of an initial exec sequence
7183 const bool final = gsym == NULL || gsym->final_value_is_known();
7184 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7185 if (tls_type == tls::TLSOPT_TO_LE)
7186 {
7187 Insn* iview = reinterpret_cast<Insn*>(view);
7188 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7189 unsigned int reg = size == 32 ? 2 : 13;
7190 insn = at_tls_transform(insn, reg);
7191 gold_assert(insn != 0);
7192 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7193 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7194 view += 2 * big_endian;
7195 value = psymval->value(object, rela.get_r_addend());
7196 }
7197 }
7198 else if (!has_stub_value)
7199 {
7200 Address addend = 0;
7201 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7202 addend = rela.get_r_addend();
7203 value = psymval->value(object, addend);
7204 if (size == 64 && is_branch_reloc(r_type))
7205 {
7206 if (target->abiversion() >= 2)
7207 {
7208 if (gsym != NULL)
7209 value += object->ppc64_local_entry_offset(gsym);
7210 else
7211 value += object->ppc64_local_entry_offset(r_sym);
7212 }
7213 else
7214 {
7215 unsigned int dest_shndx;
7216 target->symval_for_branch(relinfo->symtab, gsym, object,
7217 &value, &dest_shndx);
7218 }
7219 }
7220 Address max_branch_offset = max_branch_delta(r_type);
7221 if (max_branch_offset != 0
7222 && value - address + max_branch_offset >= 2 * max_branch_offset)
7223 {
7224 Stub_table<size, big_endian>* stub_table
7225 = object->stub_table(relinfo->data_shndx);
7226 if (stub_table != NULL)
7227 {
7228 Address off = stub_table->find_long_branch_entry(object, value);
7229 if (off != invalid_address)
7230 {
7231 value = (stub_table->stub_address() + stub_table->plt_size()
7232 + off);
7233 has_stub_value = true;
7234 }
7235 }
7236 }
7237 }
7238
7239 switch (r_type)
7240 {
7241 case elfcpp::R_PPC64_REL64:
7242 case elfcpp::R_POWERPC_REL32:
7243 case elfcpp::R_POWERPC_REL24:
7244 case elfcpp::R_PPC_PLTREL24:
7245 case elfcpp::R_PPC_LOCAL24PC:
7246 case elfcpp::R_POWERPC_REL16:
7247 case elfcpp::R_POWERPC_REL16_LO:
7248 case elfcpp::R_POWERPC_REL16_HI:
7249 case elfcpp::R_POWERPC_REL16_HA:
7250 case elfcpp::R_POWERPC_REL14:
7251 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7252 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7253 value -= address;
7254 break;
7255
7256 case elfcpp::R_PPC64_TOC16:
7257 case elfcpp::R_PPC64_TOC16_LO:
7258 case elfcpp::R_PPC64_TOC16_HI:
7259 case elfcpp::R_PPC64_TOC16_HA:
7260 case elfcpp::R_PPC64_TOC16_DS:
7261 case elfcpp::R_PPC64_TOC16_LO_DS:
7262 // Subtract the TOC base address.
7263 value -= (target->got_section()->output_section()->address()
7264 + object->toc_base_offset());
7265 break;
7266
7267 case elfcpp::R_POWERPC_SECTOFF:
7268 case elfcpp::R_POWERPC_SECTOFF_LO:
7269 case elfcpp::R_POWERPC_SECTOFF_HI:
7270 case elfcpp::R_POWERPC_SECTOFF_HA:
7271 case elfcpp::R_PPC64_SECTOFF_DS:
7272 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7273 if (os != NULL)
7274 value -= os->address();
7275 break;
7276
7277 case elfcpp::R_PPC64_TPREL16_DS:
7278 case elfcpp::R_PPC64_TPREL16_LO_DS:
7279 case elfcpp::R_PPC64_TPREL16_HIGH:
7280 case elfcpp::R_PPC64_TPREL16_HIGHA:
7281 if (size != 64)
7282 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7283 break;
7284 case elfcpp::R_POWERPC_TPREL16:
7285 case elfcpp::R_POWERPC_TPREL16_LO:
7286 case elfcpp::R_POWERPC_TPREL16_HI:
7287 case elfcpp::R_POWERPC_TPREL16_HA:
7288 case elfcpp::R_POWERPC_TPREL:
7289 case elfcpp::R_PPC64_TPREL16_HIGHER:
7290 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7291 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7292 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7293 // tls symbol values are relative to tls_segment()->vaddr()
7294 value -= tp_offset;
7295 break;
7296
7297 case elfcpp::R_PPC64_DTPREL16_DS:
7298 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7299 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7300 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7301 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7302 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7303 if (size != 64)
7304 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7305 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7306 break;
7307 case elfcpp::R_POWERPC_DTPREL16:
7308 case elfcpp::R_POWERPC_DTPREL16_LO:
7309 case elfcpp::R_POWERPC_DTPREL16_HI:
7310 case elfcpp::R_POWERPC_DTPREL16_HA:
7311 case elfcpp::R_POWERPC_DTPREL:
7312 case elfcpp::R_PPC64_DTPREL16_HIGH:
7313 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7314 // tls symbol values are relative to tls_segment()->vaddr()
7315 value -= dtp_offset;
7316 break;
7317
7318 case elfcpp::R_PPC64_ADDR64_LOCAL:
7319 if (gsym != NULL)
7320 value += object->ppc64_local_entry_offset(gsym);
7321 else
7322 value += object->ppc64_local_entry_offset(r_sym);
7323 break;
7324
7325 default:
7326 break;
7327 }
7328
7329 Insn branch_bit = 0;
7330 switch (r_type)
7331 {
7332 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7333 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7334 branch_bit = 1 << 21;
7335 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7336 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7337 {
7338 Insn* iview = reinterpret_cast<Insn*>(view);
7339 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7340 insn &= ~(1 << 21);
7341 insn |= branch_bit;
7342 if (this->is_isa_v2)
7343 {
7344 // Set 'a' bit. This is 0b00010 in BO field for branch
7345 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7346 // for branch on CTR insns (BO == 1a00t or 1a01t).
7347 if ((insn & (0x14 << 21)) == (0x04 << 21))
7348 insn |= 0x02 << 21;
7349 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7350 insn |= 0x08 << 21;
7351 else
7352 break;
7353 }
7354 else
7355 {
7356 // Invert 'y' bit if not the default.
7357 if (static_cast<Signed_address>(value) < 0)
7358 insn ^= 1 << 21;
7359 }
7360 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7361 }
7362 break;
7363
7364 default:
7365 break;
7366 }
7367
7368 if (size == 64)
7369 {
7370 // Multi-instruction sequences that access the TOC can be
7371 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7372 // to nop; addi rb,r2,x;
7373 switch (r_type)
7374 {
7375 default:
7376 break;
7377
7378 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7379 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7380 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7381 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7382 case elfcpp::R_POWERPC_GOT16_HA:
7383 case elfcpp::R_PPC64_TOC16_HA:
7384 if (parameters->options().toc_optimize())
7385 {
7386 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7387 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7388 if ((insn & ((0x3f << 26) | 0x1f << 16))
7389 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7390 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7391 _("toc optimization is not supported "
7392 "for %#08x instruction"), insn);
7393 else if (value + 0x8000 < 0x10000)
7394 {
7395 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7396 return true;
7397 }
7398 }
7399 break;
7400
7401 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7402 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7403 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7404 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7405 case elfcpp::R_POWERPC_GOT16_LO:
7406 case elfcpp::R_PPC64_GOT16_LO_DS:
7407 case elfcpp::R_PPC64_TOC16_LO:
7408 case elfcpp::R_PPC64_TOC16_LO_DS:
7409 if (parameters->options().toc_optimize())
7410 {
7411 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7412 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7413 if (!ok_lo_toc_insn(insn))
7414 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7415 _("toc optimization is not supported "
7416 "for %#08x instruction"), insn);
7417 else if (value + 0x8000 < 0x10000)
7418 {
7419 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7420 {
7421 // Transform addic to addi when we change reg.
7422 insn &= ~((0x3f << 26) | (0x1f << 16));
7423 insn |= (14u << 26) | (2 << 16);
7424 }
7425 else
7426 {
7427 insn &= ~(0x1f << 16);
7428 insn |= 2 << 16;
7429 }
7430 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7431 }
7432 }
7433 break;
7434 }
7435 }
7436
7437 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7438 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7439 switch (r_type)
7440 {
7441 case elfcpp::R_POWERPC_ADDR32:
7442 case elfcpp::R_POWERPC_UADDR32:
7443 if (size == 64)
7444 overflow = Reloc::CHECK_BITFIELD;
7445 break;
7446
7447 case elfcpp::R_POWERPC_REL32:
7448 if (size == 64)
7449 overflow = Reloc::CHECK_SIGNED;
7450 break;
7451
7452 case elfcpp::R_POWERPC_UADDR16:
7453 overflow = Reloc::CHECK_BITFIELD;
7454 break;
7455
7456 case elfcpp::R_POWERPC_ADDR16:
7457 // We really should have three separate relocations,
7458 // one for 16-bit data, one for insns with 16-bit signed fields,
7459 // and one for insns with 16-bit unsigned fields.
7460 overflow = Reloc::CHECK_BITFIELD;
7461 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7462 overflow = Reloc::CHECK_LOW_INSN;
7463 break;
7464
7465 case elfcpp::R_POWERPC_ADDR16_HI:
7466 case elfcpp::R_POWERPC_ADDR16_HA:
7467 case elfcpp::R_POWERPC_GOT16_HI:
7468 case elfcpp::R_POWERPC_GOT16_HA:
7469 case elfcpp::R_POWERPC_PLT16_HI:
7470 case elfcpp::R_POWERPC_PLT16_HA:
7471 case elfcpp::R_POWERPC_SECTOFF_HI:
7472 case elfcpp::R_POWERPC_SECTOFF_HA:
7473 case elfcpp::R_PPC64_TOC16_HI:
7474 case elfcpp::R_PPC64_TOC16_HA:
7475 case elfcpp::R_PPC64_PLTGOT16_HI:
7476 case elfcpp::R_PPC64_PLTGOT16_HA:
7477 case elfcpp::R_POWERPC_TPREL16_HI:
7478 case elfcpp::R_POWERPC_TPREL16_HA:
7479 case elfcpp::R_POWERPC_DTPREL16_HI:
7480 case elfcpp::R_POWERPC_DTPREL16_HA:
7481 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7482 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7483 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7484 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7485 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7486 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7487 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7488 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7489 case elfcpp::R_POWERPC_REL16_HI:
7490 case elfcpp::R_POWERPC_REL16_HA:
7491 if (size != 32)
7492 overflow = Reloc::CHECK_HIGH_INSN;
7493 break;
7494
7495 case elfcpp::R_POWERPC_REL16:
7496 case elfcpp::R_PPC64_TOC16:
7497 case elfcpp::R_POWERPC_GOT16:
7498 case elfcpp::R_POWERPC_SECTOFF:
7499 case elfcpp::R_POWERPC_TPREL16:
7500 case elfcpp::R_POWERPC_DTPREL16:
7501 case elfcpp::R_POWERPC_GOT_TLSGD16:
7502 case elfcpp::R_POWERPC_GOT_TLSLD16:
7503 case elfcpp::R_POWERPC_GOT_TPREL16:
7504 case elfcpp::R_POWERPC_GOT_DTPREL16:
7505 overflow = Reloc::CHECK_LOW_INSN;
7506 break;
7507
7508 case elfcpp::R_POWERPC_ADDR24:
7509 case elfcpp::R_POWERPC_ADDR14:
7510 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7511 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7512 case elfcpp::R_PPC64_ADDR16_DS:
7513 case elfcpp::R_POWERPC_REL24:
7514 case elfcpp::R_PPC_PLTREL24:
7515 case elfcpp::R_PPC_LOCAL24PC:
7516 case elfcpp::R_PPC64_TPREL16_DS:
7517 case elfcpp::R_PPC64_DTPREL16_DS:
7518 case elfcpp::R_PPC64_TOC16_DS:
7519 case elfcpp::R_PPC64_GOT16_DS:
7520 case elfcpp::R_PPC64_SECTOFF_DS:
7521 case elfcpp::R_POWERPC_REL14:
7522 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7523 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7524 overflow = Reloc::CHECK_SIGNED;
7525 break;
7526 }
7527
7528 if (overflow == Reloc::CHECK_LOW_INSN
7529 || overflow == Reloc::CHECK_HIGH_INSN)
7530 {
7531 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7532 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7533
7534 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7535 overflow = Reloc::CHECK_BITFIELD;
7536 else if (overflow == Reloc::CHECK_LOW_INSN
7537 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7538 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7539 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7540 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7541 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7542 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7543 overflow = Reloc::CHECK_UNSIGNED;
7544 else
7545 overflow = Reloc::CHECK_SIGNED;
7546 }
7547
7548 typename Powerpc_relocate_functions<size, big_endian>::Status status
7549 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7550 switch (r_type)
7551 {
7552 case elfcpp::R_POWERPC_NONE:
7553 case elfcpp::R_POWERPC_TLS:
7554 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7555 case elfcpp::R_POWERPC_GNU_VTENTRY:
7556 break;
7557
7558 case elfcpp::R_PPC64_ADDR64:
7559 case elfcpp::R_PPC64_REL64:
7560 case elfcpp::R_PPC64_TOC:
7561 case elfcpp::R_PPC64_ADDR64_LOCAL:
7562 Reloc::addr64(view, value);
7563 break;
7564
7565 case elfcpp::R_POWERPC_TPREL:
7566 case elfcpp::R_POWERPC_DTPREL:
7567 if (size == 64)
7568 Reloc::addr64(view, value);
7569 else
7570 status = Reloc::addr32(view, value, overflow);
7571 break;
7572
7573 case elfcpp::R_PPC64_UADDR64:
7574 Reloc::addr64_u(view, value);
7575 break;
7576
7577 case elfcpp::R_POWERPC_ADDR32:
7578 status = Reloc::addr32(view, value, overflow);
7579 break;
7580
7581 case elfcpp::R_POWERPC_REL32:
7582 case elfcpp::R_POWERPC_UADDR32:
7583 status = Reloc::addr32_u(view, value, overflow);
7584 break;
7585
7586 case elfcpp::R_POWERPC_ADDR24:
7587 case elfcpp::R_POWERPC_REL24:
7588 case elfcpp::R_PPC_PLTREL24:
7589 case elfcpp::R_PPC_LOCAL24PC:
7590 status = Reloc::addr24(view, value, overflow);
7591 break;
7592
7593 case elfcpp::R_POWERPC_GOT_DTPREL16:
7594 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7595 if (size == 64)
7596 {
7597 status = Reloc::addr16_ds(view, value, overflow);
7598 break;
7599 }
7600 case elfcpp::R_POWERPC_ADDR16:
7601 case elfcpp::R_POWERPC_REL16:
7602 case elfcpp::R_PPC64_TOC16:
7603 case elfcpp::R_POWERPC_GOT16:
7604 case elfcpp::R_POWERPC_SECTOFF:
7605 case elfcpp::R_POWERPC_TPREL16:
7606 case elfcpp::R_POWERPC_DTPREL16:
7607 case elfcpp::R_POWERPC_GOT_TLSGD16:
7608 case elfcpp::R_POWERPC_GOT_TLSLD16:
7609 case elfcpp::R_POWERPC_GOT_TPREL16:
7610 case elfcpp::R_POWERPC_ADDR16_LO:
7611 case elfcpp::R_POWERPC_REL16_LO:
7612 case elfcpp::R_PPC64_TOC16_LO:
7613 case elfcpp::R_POWERPC_GOT16_LO:
7614 case elfcpp::R_POWERPC_SECTOFF_LO:
7615 case elfcpp::R_POWERPC_TPREL16_LO:
7616 case elfcpp::R_POWERPC_DTPREL16_LO:
7617 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7618 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7619 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7620 status = Reloc::addr16(view, value, overflow);
7621 break;
7622
7623 case elfcpp::R_POWERPC_UADDR16:
7624 status = Reloc::addr16_u(view, value, overflow);
7625 break;
7626
7627 case elfcpp::R_PPC64_ADDR16_HIGH:
7628 case elfcpp::R_PPC64_TPREL16_HIGH:
7629 case elfcpp::R_PPC64_DTPREL16_HIGH:
7630 if (size == 32)
7631 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7632 goto unsupp;
7633 case elfcpp::R_POWERPC_ADDR16_HI:
7634 case elfcpp::R_POWERPC_REL16_HI:
7635 case elfcpp::R_PPC64_TOC16_HI:
7636 case elfcpp::R_POWERPC_GOT16_HI:
7637 case elfcpp::R_POWERPC_SECTOFF_HI:
7638 case elfcpp::R_POWERPC_TPREL16_HI:
7639 case elfcpp::R_POWERPC_DTPREL16_HI:
7640 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7641 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7642 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7643 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7644 Reloc::addr16_hi(view, value);
7645 break;
7646
7647 case elfcpp::R_PPC64_ADDR16_HIGHA:
7648 case elfcpp::R_PPC64_TPREL16_HIGHA:
7649 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7650 if (size == 32)
7651 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7652 goto unsupp;
7653 case elfcpp::R_POWERPC_ADDR16_HA:
7654 case elfcpp::R_POWERPC_REL16_HA:
7655 case elfcpp::R_PPC64_TOC16_HA:
7656 case elfcpp::R_POWERPC_GOT16_HA:
7657 case elfcpp::R_POWERPC_SECTOFF_HA:
7658 case elfcpp::R_POWERPC_TPREL16_HA:
7659 case elfcpp::R_POWERPC_DTPREL16_HA:
7660 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7661 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7662 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7663 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7664 Reloc::addr16_ha(view, value);
7665 break;
7666
7667 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7668 if (size == 32)
7669 // R_PPC_EMB_NADDR16_LO
7670 goto unsupp;
7671 case elfcpp::R_PPC64_ADDR16_HIGHER:
7672 case elfcpp::R_PPC64_TPREL16_HIGHER:
7673 Reloc::addr16_hi2(view, value);
7674 break;
7675
7676 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7677 if (size == 32)
7678 // R_PPC_EMB_NADDR16_HI
7679 goto unsupp;
7680 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7681 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7682 Reloc::addr16_ha2(view, value);
7683 break;
7684
7685 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7686 if (size == 32)
7687 // R_PPC_EMB_NADDR16_HA
7688 goto unsupp;
7689 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7690 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7691 Reloc::addr16_hi3(view, value);
7692 break;
7693
7694 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7695 if (size == 32)
7696 // R_PPC_EMB_SDAI16
7697 goto unsupp;
7698 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7699 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7700 Reloc::addr16_ha3(view, value);
7701 break;
7702
7703 case elfcpp::R_PPC64_DTPREL16_DS:
7704 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7705 if (size == 32)
7706 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7707 goto unsupp;
7708 case elfcpp::R_PPC64_TPREL16_DS:
7709 case elfcpp::R_PPC64_TPREL16_LO_DS:
7710 if (size == 32)
7711 // R_PPC_TLSGD, R_PPC_TLSLD
7712 break;
7713 case elfcpp::R_PPC64_ADDR16_DS:
7714 case elfcpp::R_PPC64_ADDR16_LO_DS:
7715 case elfcpp::R_PPC64_TOC16_DS:
7716 case elfcpp::R_PPC64_TOC16_LO_DS:
7717 case elfcpp::R_PPC64_GOT16_DS:
7718 case elfcpp::R_PPC64_GOT16_LO_DS:
7719 case elfcpp::R_PPC64_SECTOFF_DS:
7720 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7721 status = Reloc::addr16_ds(view, value, overflow);
7722 break;
7723
7724 case elfcpp::R_POWERPC_ADDR14:
7725 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7726 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7727 case elfcpp::R_POWERPC_REL14:
7728 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7729 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7730 status = Reloc::addr14(view, value, overflow);
7731 break;
7732
7733 case elfcpp::R_POWERPC_COPY:
7734 case elfcpp::R_POWERPC_GLOB_DAT:
7735 case elfcpp::R_POWERPC_JMP_SLOT:
7736 case elfcpp::R_POWERPC_RELATIVE:
7737 case elfcpp::R_POWERPC_DTPMOD:
7738 case elfcpp::R_PPC64_JMP_IREL:
7739 case elfcpp::R_POWERPC_IRELATIVE:
7740 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7741 _("unexpected reloc %u in object file"),
7742 r_type);
7743 break;
7744
7745 case elfcpp::R_PPC_EMB_SDA21:
7746 if (size == 32)
7747 goto unsupp;
7748 else
7749 {
7750 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7751 }
7752 break;
7753
7754 case elfcpp::R_PPC_EMB_SDA2I16:
7755 case elfcpp::R_PPC_EMB_SDA2REL:
7756 if (size == 32)
7757 goto unsupp;
7758 // R_PPC64_TLSGD, R_PPC64_TLSLD
7759 break;
7760
7761 case elfcpp::R_POWERPC_PLT32:
7762 case elfcpp::R_POWERPC_PLTREL32:
7763 case elfcpp::R_POWERPC_PLT16_LO:
7764 case elfcpp::R_POWERPC_PLT16_HI:
7765 case elfcpp::R_POWERPC_PLT16_HA:
7766 case elfcpp::R_PPC_SDAREL16:
7767 case elfcpp::R_POWERPC_ADDR30:
7768 case elfcpp::R_PPC64_PLT64:
7769 case elfcpp::R_PPC64_PLTREL64:
7770 case elfcpp::R_PPC64_PLTGOT16:
7771 case elfcpp::R_PPC64_PLTGOT16_LO:
7772 case elfcpp::R_PPC64_PLTGOT16_HI:
7773 case elfcpp::R_PPC64_PLTGOT16_HA:
7774 case elfcpp::R_PPC64_PLT16_LO_DS:
7775 case elfcpp::R_PPC64_PLTGOT16_DS:
7776 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7777 case elfcpp::R_PPC_EMB_RELSDA:
7778 case elfcpp::R_PPC_TOC16:
7779 default:
7780 unsupp:
7781 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7782 _("unsupported reloc %u"),
7783 r_type);
7784 break;
7785 }
7786 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7787 && (has_stub_value
7788 || !(gsym != NULL
7789 && gsym->is_weak_undefined()
7790 && is_branch_reloc(r_type))))
7791 {
7792 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7793 _("relocation overflow"));
7794 if (has_stub_value)
7795 gold_info(_("try relinking with a smaller --stub-group-size"));
7796 }
7797
7798 return true;
7799 }
7800
7801 // Relocate section data.
7802
7803 template<int size, bool big_endian>
7804 void
7805 Target_powerpc<size, big_endian>::relocate_section(
7806 const Relocate_info<size, big_endian>* relinfo,
7807 unsigned int sh_type,
7808 const unsigned char* prelocs,
7809 size_t reloc_count,
7810 Output_section* output_section,
7811 bool needs_special_offset_handling,
7812 unsigned char* view,
7813 Address address,
7814 section_size_type view_size,
7815 const Reloc_symbol_changes* reloc_symbol_changes)
7816 {
7817 typedef Target_powerpc<size, big_endian> Powerpc;
7818 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7819 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7820 Powerpc_comdat_behavior;
7821
7822 gold_assert(sh_type == elfcpp::SHT_RELA);
7823
7824 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7825 Powerpc_relocate, Powerpc_comdat_behavior>(
7826 relinfo,
7827 this,
7828 prelocs,
7829 reloc_count,
7830 output_section,
7831 needs_special_offset_handling,
7832 view,
7833 address,
7834 view_size,
7835 reloc_symbol_changes);
7836 }
7837
7838 class Powerpc_scan_relocatable_reloc
7839 {
7840 public:
7841 // Return the strategy to use for a local symbol which is not a
7842 // section symbol, given the relocation type.
7843 inline Relocatable_relocs::Reloc_strategy
7844 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7845 {
7846 if (r_type == 0 && r_sym == 0)
7847 return Relocatable_relocs::RELOC_DISCARD;
7848 return Relocatable_relocs::RELOC_COPY;
7849 }
7850
7851 // Return the strategy to use for a local symbol which is a section
7852 // symbol, given the relocation type.
7853 inline Relocatable_relocs::Reloc_strategy
7854 local_section_strategy(unsigned int, Relobj*)
7855 {
7856 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7857 }
7858
7859 // Return the strategy to use for a global symbol, given the
7860 // relocation type, the object, and the symbol index.
7861 inline Relocatable_relocs::Reloc_strategy
7862 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7863 {
7864 if (r_type == elfcpp::R_PPC_PLTREL24)
7865 return Relocatable_relocs::RELOC_SPECIAL;
7866 return Relocatable_relocs::RELOC_COPY;
7867 }
7868 };
7869
7870 // Scan the relocs during a relocatable link.
7871
7872 template<int size, bool big_endian>
7873 void
7874 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7875 Symbol_table* symtab,
7876 Layout* layout,
7877 Sized_relobj_file<size, big_endian>* object,
7878 unsigned int data_shndx,
7879 unsigned int sh_type,
7880 const unsigned char* prelocs,
7881 size_t reloc_count,
7882 Output_section* output_section,
7883 bool needs_special_offset_handling,
7884 size_t local_symbol_count,
7885 const unsigned char* plocal_symbols,
7886 Relocatable_relocs* rr)
7887 {
7888 gold_assert(sh_type == elfcpp::SHT_RELA);
7889
7890 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7891 Powerpc_scan_relocatable_reloc>(
7892 symtab,
7893 layout,
7894 object,
7895 data_shndx,
7896 prelocs,
7897 reloc_count,
7898 output_section,
7899 needs_special_offset_handling,
7900 local_symbol_count,
7901 plocal_symbols,
7902 rr);
7903 }
7904
7905 // Emit relocations for a section.
7906 // This is a modified version of the function by the same name in
7907 // target-reloc.h. Using relocate_special_relocatable for
7908 // R_PPC_PLTREL24 would require duplication of the entire body of the
7909 // loop, so we may as well duplicate the whole thing.
7910
7911 template<int size, bool big_endian>
7912 void
7913 Target_powerpc<size, big_endian>::relocate_relocs(
7914 const Relocate_info<size, big_endian>* relinfo,
7915 unsigned int sh_type,
7916 const unsigned char* prelocs,
7917 size_t reloc_count,
7918 Output_section* output_section,
7919 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7920 const Relocatable_relocs* rr,
7921 unsigned char*,
7922 Address view_address,
7923 section_size_type,
7924 unsigned char* reloc_view,
7925 section_size_type reloc_view_size)
7926 {
7927 gold_assert(sh_type == elfcpp::SHT_RELA);
7928
7929 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7930 Reltype;
7931 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7932 Reltype_write;
7933 const int reloc_size
7934 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7935
7936 Powerpc_relobj<size, big_endian>* const object
7937 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7938 const unsigned int local_count = object->local_symbol_count();
7939 unsigned int got2_shndx = object->got2_shndx();
7940 Address got2_addend = 0;
7941 if (got2_shndx != 0)
7942 {
7943 got2_addend = object->get_output_section_offset(got2_shndx);
7944 gold_assert(got2_addend != invalid_address);
7945 }
7946
7947 unsigned char* pwrite = reloc_view;
7948 bool zap_next = false;
7949 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7950 {
7951 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7952 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7953 continue;
7954
7955 Reltype reloc(prelocs);
7956 Reltype_write reloc_write(pwrite);
7957
7958 Address offset = reloc.get_r_offset();
7959 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7960 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7961 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7962 const unsigned int orig_r_sym = r_sym;
7963 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7964 = reloc.get_r_addend();
7965 const Symbol* gsym = NULL;
7966
7967 if (zap_next)
7968 {
7969 // We could arrange to discard these and other relocs for
7970 // tls optimised sequences in the strategy methods, but for
7971 // now do as BFD ld does.
7972 r_type = elfcpp::R_POWERPC_NONE;
7973 zap_next = false;
7974 }
7975
7976 // Get the new symbol index.
7977 if (r_sym < local_count)
7978 {
7979 switch (strategy)
7980 {
7981 case Relocatable_relocs::RELOC_COPY:
7982 case Relocatable_relocs::RELOC_SPECIAL:
7983 if (r_sym != 0)
7984 {
7985 r_sym = object->symtab_index(r_sym);
7986 gold_assert(r_sym != -1U);
7987 }
7988 break;
7989
7990 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7991 {
7992 // We are adjusting a section symbol. We need to find
7993 // the symbol table index of the section symbol for
7994 // the output section corresponding to input section
7995 // in which this symbol is defined.
7996 gold_assert(r_sym < local_count);
7997 bool is_ordinary;
7998 unsigned int shndx =
7999 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8000 gold_assert(is_ordinary);
8001 Output_section* os = object->output_section(shndx);
8002 gold_assert(os != NULL);
8003 gold_assert(os->needs_symtab_index());
8004 r_sym = os->symtab_index();
8005 }
8006 break;
8007
8008 default:
8009 gold_unreachable();
8010 }
8011 }
8012 else
8013 {
8014 gsym = object->global_symbol(r_sym);
8015 gold_assert(gsym != NULL);
8016 if (gsym->is_forwarder())
8017 gsym = relinfo->symtab->resolve_forwards(gsym);
8018
8019 gold_assert(gsym->has_symtab_index());
8020 r_sym = gsym->symtab_index();
8021 }
8022
8023 // Get the new offset--the location in the output section where
8024 // this relocation should be applied.
8025 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8026 offset += offset_in_output_section;
8027 else
8028 {
8029 section_offset_type sot_offset =
8030 convert_types<section_offset_type, Address>(offset);
8031 section_offset_type new_sot_offset =
8032 output_section->output_offset(object, relinfo->data_shndx,
8033 sot_offset);
8034 gold_assert(new_sot_offset != -1);
8035 offset = new_sot_offset;
8036 }
8037
8038 // In an object file, r_offset is an offset within the section.
8039 // In an executable or dynamic object, generated by
8040 // --emit-relocs, r_offset is an absolute address.
8041 if (!parameters->options().relocatable())
8042 {
8043 offset += view_address;
8044 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8045 offset -= offset_in_output_section;
8046 }
8047
8048 // Handle the reloc addend based on the strategy.
8049 if (strategy == Relocatable_relocs::RELOC_COPY)
8050 ;
8051 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8052 {
8053 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8054 addend = psymval->value(object, addend);
8055 }
8056 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8057 {
8058 if (addend >= 32768)
8059 addend += got2_addend;
8060 }
8061 else
8062 gold_unreachable();
8063
8064 if (!parameters->options().relocatable())
8065 {
8066 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8067 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8068 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8069 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8070 {
8071 // First instruction of a global dynamic sequence,
8072 // arg setup insn.
8073 const bool final = gsym == NULL || gsym->final_value_is_known();
8074 switch (this->optimize_tls_gd(final))
8075 {
8076 case tls::TLSOPT_TO_IE:
8077 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8078 - elfcpp::R_POWERPC_GOT_TLSGD16);
8079 break;
8080 case tls::TLSOPT_TO_LE:
8081 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8082 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8083 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8084 else
8085 {
8086 r_type = elfcpp::R_POWERPC_NONE;
8087 offset -= 2 * big_endian;
8088 }
8089 break;
8090 default:
8091 break;
8092 }
8093 }
8094 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8095 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8096 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8097 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8098 {
8099 // First instruction of a local dynamic sequence,
8100 // arg setup insn.
8101 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8102 {
8103 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8104 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8105 {
8106 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8107 const Output_section* os = relinfo->layout->tls_segment()
8108 ->first_section();
8109 gold_assert(os != NULL);
8110 gold_assert(os->needs_symtab_index());
8111 r_sym = os->symtab_index();
8112 addend = dtp_offset;
8113 }
8114 else
8115 {
8116 r_type = elfcpp::R_POWERPC_NONE;
8117 offset -= 2 * big_endian;
8118 }
8119 }
8120 }
8121 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8122 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8123 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8124 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8125 {
8126 // First instruction of initial exec sequence.
8127 const bool final = gsym == NULL || gsym->final_value_is_known();
8128 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8129 {
8130 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8131 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8132 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8133 else
8134 {
8135 r_type = elfcpp::R_POWERPC_NONE;
8136 offset -= 2 * big_endian;
8137 }
8138 }
8139 }
8140 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8141 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8142 {
8143 // Second instruction of a global dynamic sequence,
8144 // the __tls_get_addr call
8145 const bool final = gsym == NULL || gsym->final_value_is_known();
8146 switch (this->optimize_tls_gd(final))
8147 {
8148 case tls::TLSOPT_TO_IE:
8149 r_type = elfcpp::R_POWERPC_NONE;
8150 zap_next = true;
8151 break;
8152 case tls::TLSOPT_TO_LE:
8153 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8154 offset += 2 * big_endian;
8155 zap_next = true;
8156 break;
8157 default:
8158 break;
8159 }
8160 }
8161 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8162 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8163 {
8164 // Second instruction of a local dynamic sequence,
8165 // the __tls_get_addr call
8166 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8167 {
8168 const Output_section* os = relinfo->layout->tls_segment()
8169 ->first_section();
8170 gold_assert(os != NULL);
8171 gold_assert(os->needs_symtab_index());
8172 r_sym = os->symtab_index();
8173 addend = dtp_offset;
8174 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8175 offset += 2 * big_endian;
8176 zap_next = true;
8177 }
8178 }
8179 else if (r_type == elfcpp::R_POWERPC_TLS)
8180 {
8181 // Second instruction of an initial exec sequence
8182 const bool final = gsym == NULL || gsym->final_value_is_known();
8183 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8184 {
8185 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8186 offset += 2 * big_endian;
8187 }
8188 }
8189 }
8190
8191 reloc_write.put_r_offset(offset);
8192 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8193 reloc_write.put_r_addend(addend);
8194
8195 pwrite += reloc_size;
8196 }
8197
8198 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8199 == reloc_view_size);
8200 }
8201
8202 // Return the value to use for a dynamic symbol which requires special
8203 // treatment. This is how we support equality comparisons of function
8204 // pointers across shared library boundaries, as described in the
8205 // processor specific ABI supplement.
8206
8207 template<int size, bool big_endian>
8208 uint64_t
8209 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8210 {
8211 if (size == 32)
8212 {
8213 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8214 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8215 p != this->stub_tables_.end();
8216 ++p)
8217 {
8218 Address off = (*p)->find_plt_call_entry(gsym);
8219 if (off != invalid_address)
8220 return (*p)->stub_address() + off;
8221 }
8222 }
8223 else if (this->abiversion() >= 2)
8224 {
8225 unsigned int off = this->glink_section()->find_global_entry(gsym);
8226 if (off != (unsigned int)-1)
8227 return this->glink_section()->global_entry_address() + off;
8228 }
8229 gold_unreachable();
8230 }
8231
8232 // Return the PLT address to use for a local symbol.
8233 template<int size, bool big_endian>
8234 uint64_t
8235 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8236 const Relobj* object,
8237 unsigned int symndx) const
8238 {
8239 if (size == 32)
8240 {
8241 const Sized_relobj<size, big_endian>* relobj
8242 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8243 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8244 p != this->stub_tables_.end();
8245 ++p)
8246 {
8247 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8248 symndx);
8249 if (off != invalid_address)
8250 return (*p)->stub_address() + off;
8251 }
8252 }
8253 gold_unreachable();
8254 }
8255
8256 // Return the PLT address to use for a global symbol.
8257 template<int size, bool big_endian>
8258 uint64_t
8259 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8260 const Symbol* gsym) const
8261 {
8262 if (size == 32)
8263 {
8264 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8265 p != this->stub_tables_.end();
8266 ++p)
8267 {
8268 Address off = (*p)->find_plt_call_entry(gsym);
8269 if (off != invalid_address)
8270 return (*p)->stub_address() + off;
8271 }
8272 }
8273 else if (this->abiversion() >= 2)
8274 {
8275 unsigned int off = this->glink_section()->find_global_entry(gsym);
8276 if (off != (unsigned int)-1)
8277 return this->glink_section()->global_entry_address() + off;
8278 }
8279 gold_unreachable();
8280 }
8281
8282 // Return the offset to use for the GOT_INDX'th got entry which is
8283 // for a local tls symbol specified by OBJECT, SYMNDX.
8284 template<int size, bool big_endian>
8285 int64_t
8286 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8287 const Relobj* object,
8288 unsigned int symndx,
8289 unsigned int got_indx) const
8290 {
8291 const Powerpc_relobj<size, big_endian>* ppc_object
8292 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8293 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8294 {
8295 for (Got_type got_type = GOT_TYPE_TLSGD;
8296 got_type <= GOT_TYPE_TPREL;
8297 got_type = Got_type(got_type + 1))
8298 if (ppc_object->local_has_got_offset(symndx, got_type))
8299 {
8300 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8301 if (got_type == GOT_TYPE_TLSGD)
8302 off += size / 8;
8303 if (off == got_indx * (size / 8))
8304 {
8305 if (got_type == GOT_TYPE_TPREL)
8306 return -tp_offset;
8307 else
8308 return -dtp_offset;
8309 }
8310 }
8311 }
8312 gold_unreachable();
8313 }
8314
8315 // Return the offset to use for the GOT_INDX'th got entry which is
8316 // for global tls symbol GSYM.
8317 template<int size, bool big_endian>
8318 int64_t
8319 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8320 Symbol* gsym,
8321 unsigned int got_indx) const
8322 {
8323 if (gsym->type() == elfcpp::STT_TLS)
8324 {
8325 for (Got_type got_type = GOT_TYPE_TLSGD;
8326 got_type <= GOT_TYPE_TPREL;
8327 got_type = Got_type(got_type + 1))
8328 if (gsym->has_got_offset(got_type))
8329 {
8330 unsigned int off = gsym->got_offset(got_type);
8331 if (got_type == GOT_TYPE_TLSGD)
8332 off += size / 8;
8333 if (off == got_indx * (size / 8))
8334 {
8335 if (got_type == GOT_TYPE_TPREL)
8336 return -tp_offset;
8337 else
8338 return -dtp_offset;
8339 }
8340 }
8341 }
8342 gold_unreachable();
8343 }
8344
8345 // The selector for powerpc object files.
8346
8347 template<int size, bool big_endian>
8348 class Target_selector_powerpc : public Target_selector
8349 {
8350 public:
8351 Target_selector_powerpc()
8352 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8353 size, big_endian,
8354 (size == 64
8355 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8356 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8357 (size == 64
8358 ? (big_endian ? "elf64ppc" : "elf64lppc")
8359 : (big_endian ? "elf32ppc" : "elf32lppc")))
8360 { }
8361
8362 virtual Target*
8363 do_instantiate_target()
8364 { return new Target_powerpc<size, big_endian>(); }
8365 };
8366
8367 Target_selector_powerpc<32, true> target_selector_ppc32;
8368 Target_selector_powerpc<32, false> target_selector_ppc32le;
8369 Target_selector_powerpc<64, true> target_selector_ppc64;
8370 Target_selector_powerpc<64, false> target_selector_ppc64le;
8371
8372 // Instantiate these constants for -O0
8373 template<int size, bool big_endian>
8374 const int Output_data_glink<size, big_endian>::pltresolve_size;
8375 template<int size, bool big_endian>
8376 const typename Output_data_glink<size, big_endian>::Address
8377 Output_data_glink<size, big_endian>::invalid_address;
8378 template<int size, bool big_endian>
8379 const typename Stub_table<size, big_endian>::Address
8380 Stub_table<size, big_endian>::invalid_address;
8381 template<int size, bool big_endian>
8382 const typename Target_powerpc<size, big_endian>::Address
8383 Target_powerpc<size, big_endian>::invalid_address;
8384
8385 } // End anonymous namespace.
This page took 0.339597 seconds and 4 git commands to generate.