[GOLD] powerpc.cc tidies
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2017 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 template<int size, bool big_endian>
85 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
86 {
87 public:
88 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
89 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
90 typedef Unordered_map<Address, Section_refs> Access_from;
91
92 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
93 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
94 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
95 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
96 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
97 e_flags_(ehdr.get_e_flags()), st_other_()
98 {
99 this->set_abiversion(0);
100 }
101
102 ~Powerpc_relobj()
103 { }
104
105 // Read the symbols then set up st_other vector.
106 void
107 do_read_symbols(Read_symbols_data*);
108
109 // The .got2 section shndx.
110 unsigned int
111 got2_shndx() const
112 {
113 if (size == 32)
114 return this->special_;
115 else
116 return 0;
117 }
118
119 // The .opd section shndx.
120 unsigned int
121 opd_shndx() const
122 {
123 if (size == 32)
124 return 0;
125 else
126 return this->special_;
127 }
128
129 // Init OPD entry arrays.
130 void
131 init_opd(size_t opd_size)
132 {
133 size_t count = this->opd_ent_ndx(opd_size);
134 this->opd_ent_.resize(count);
135 }
136
137 // Return section and offset of function entry for .opd + R_OFF.
138 unsigned int
139 get_opd_ent(Address r_off, Address* value = NULL) const
140 {
141 size_t ndx = this->opd_ent_ndx(r_off);
142 gold_assert(ndx < this->opd_ent_.size());
143 gold_assert(this->opd_ent_[ndx].shndx != 0);
144 if (value != NULL)
145 *value = this->opd_ent_[ndx].off;
146 return this->opd_ent_[ndx].shndx;
147 }
148
149 // Set section and offset of function entry for .opd + R_OFF.
150 void
151 set_opd_ent(Address r_off, unsigned int shndx, Address value)
152 {
153 size_t ndx = this->opd_ent_ndx(r_off);
154 gold_assert(ndx < this->opd_ent_.size());
155 this->opd_ent_[ndx].shndx = shndx;
156 this->opd_ent_[ndx].off = value;
157 }
158
159 // Return discard flag for .opd + R_OFF.
160 bool
161 get_opd_discard(Address r_off) const
162 {
163 size_t ndx = this->opd_ent_ndx(r_off);
164 gold_assert(ndx < this->opd_ent_.size());
165 return this->opd_ent_[ndx].discard;
166 }
167
168 // Set discard flag for .opd + R_OFF.
169 void
170 set_opd_discard(Address r_off)
171 {
172 size_t ndx = this->opd_ent_ndx(r_off);
173 gold_assert(ndx < this->opd_ent_.size());
174 this->opd_ent_[ndx].discard = true;
175 }
176
177 bool
178 opd_valid() const
179 { return this->opd_valid_; }
180
181 void
182 set_opd_valid()
183 { this->opd_valid_ = true; }
184
185 // Examine .rela.opd to build info about function entry points.
186 void
187 scan_opd_relocs(size_t reloc_count,
188 const unsigned char* prelocs,
189 const unsigned char* plocal_syms);
190
191 // Perform the Sized_relobj_file method, then set up opd info from
192 // .opd relocs.
193 void
194 do_read_relocs(Read_relocs_data*);
195
196 bool
197 do_find_special_sections(Read_symbols_data* sd);
198
199 // Adjust this local symbol value. Return false if the symbol
200 // should be discarded from the output file.
201 bool
202 do_adjust_local_symbol(Symbol_value<size>* lv) const
203 {
204 if (size == 64 && this->opd_shndx() != 0)
205 {
206 bool is_ordinary;
207 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
208 return true;
209 if (this->get_opd_discard(lv->input_value()))
210 return false;
211 }
212 return true;
213 }
214
215 Access_from*
216 access_from_map()
217 { return &this->access_from_map_; }
218
219 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
220 // section at DST_OFF.
221 void
222 add_reference(Relobj* src_obj,
223 unsigned int src_indx,
224 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
225 {
226 Section_id src_id(src_obj, src_indx);
227 this->access_from_map_[dst_off].insert(src_id);
228 }
229
230 // Add a reference to the code section specified by the .opd entry
231 // at DST_OFF
232 void
233 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
234 {
235 size_t ndx = this->opd_ent_ndx(dst_off);
236 if (ndx >= this->opd_ent_.size())
237 this->opd_ent_.resize(ndx + 1);
238 this->opd_ent_[ndx].gc_mark = true;
239 }
240
241 void
242 process_gc_mark(Symbol_table* symtab)
243 {
244 for (size_t i = 0; i < this->opd_ent_.size(); i++)
245 if (this->opd_ent_[i].gc_mark)
246 {
247 unsigned int shndx = this->opd_ent_[i].shndx;
248 symtab->gc()->worklist().push_back(Section_id(this, shndx));
249 }
250 }
251
252 // Return offset in output GOT section that this object will use
253 // as a TOC pointer. Won't be just a constant with multi-toc support.
254 Address
255 toc_base_offset() const
256 { return 0x8000; }
257
258 void
259 set_has_small_toc_reloc()
260 { has_small_toc_reloc_ = true; }
261
262 bool
263 has_small_toc_reloc() const
264 { return has_small_toc_reloc_; }
265
266 void
267 set_has_14bit_branch(unsigned int shndx)
268 {
269 if (shndx >= this->has14_.size())
270 this->has14_.resize(shndx + 1);
271 this->has14_[shndx] = true;
272 }
273
274 bool
275 has_14bit_branch(unsigned int shndx) const
276 { return shndx < this->has14_.size() && this->has14_[shndx]; }
277
278 void
279 set_stub_table(unsigned int shndx, unsigned int stub_index)
280 {
281 if (shndx >= this->stub_table_index_.size())
282 this->stub_table_index_.resize(shndx + 1, -1);
283 this->stub_table_index_[shndx] = stub_index;
284 }
285
286 Stub_table<size, big_endian>*
287 stub_table(unsigned int shndx)
288 {
289 if (shndx < this->stub_table_index_.size())
290 {
291 Target_powerpc<size, big_endian>* target
292 = static_cast<Target_powerpc<size, big_endian>*>(
293 parameters->sized_target<size, big_endian>());
294 unsigned int indx = this->stub_table_index_[shndx];
295 if (indx < target->stub_tables().size())
296 return target->stub_tables()[indx];
297 }
298 return NULL;
299 }
300
301 void
302 clear_stub_table()
303 {
304 this->stub_table_index_.clear();
305 }
306
307 int
308 abiversion() const
309 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
310
311 // Set ABI version for input and output
312 void
313 set_abiversion(int ver);
314
315 unsigned int
316 ppc64_local_entry_offset(const Symbol* sym) const
317 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
318
319 unsigned int
320 ppc64_local_entry_offset(unsigned int symndx) const
321 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
322
323 private:
324 struct Opd_ent
325 {
326 unsigned int shndx;
327 bool discard : 1;
328 bool gc_mark : 1;
329 Address off;
330 };
331
332 // Return index into opd_ent_ array for .opd entry at OFF.
333 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
334 // apart when the language doesn't use the last 8-byte word, the
335 // environment pointer. Thus dividing the entry section offset by
336 // 16 will give an index into opd_ent_ that works for either layout
337 // of .opd. (It leaves some elements of the vector unused when .opd
338 // entries are spaced 24 bytes apart, but we don't know the spacing
339 // until relocations are processed, and in any case it is possible
340 // for an object to have some entries spaced 16 bytes apart and
341 // others 24 bytes apart.)
342 size_t
343 opd_ent_ndx(size_t off) const
344 { return off >> 4;}
345
346 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
347 unsigned int special_;
348
349 // For 64-bit, whether this object uses small model relocs to access
350 // the toc.
351 bool has_small_toc_reloc_;
352
353 // Set at the start of gc_process_relocs, when we know opd_ent_
354 // vector is valid. The flag could be made atomic and set in
355 // do_read_relocs with memory_order_release and then tested with
356 // memory_order_acquire, potentially resulting in fewer entries in
357 // access_from_map_.
358 bool opd_valid_;
359
360 // The first 8-byte word of an OPD entry gives the address of the
361 // entry point of the function. Relocatable object files have a
362 // relocation on this word. The following vector records the
363 // section and offset specified by these relocations.
364 std::vector<Opd_ent> opd_ent_;
365
366 // References made to this object's .opd section when running
367 // gc_process_relocs for another object, before the opd_ent_ vector
368 // is valid for this object.
369 Access_from access_from_map_;
370
371 // Whether input section has a 14-bit branch reloc.
372 std::vector<bool> has14_;
373
374 // The stub table to use for a given input section.
375 std::vector<unsigned int> stub_table_index_;
376
377 // Header e_flags
378 elfcpp::Elf_Word e_flags_;
379
380 // ELF st_other field for local symbols.
381 std::vector<unsigned char> st_other_;
382 };
383
384 template<int size, bool big_endian>
385 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
386 {
387 public:
388 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
389
390 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
391 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
392 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
393 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
394 {
395 this->set_abiversion(0);
396 }
397
398 ~Powerpc_dynobj()
399 { }
400
401 // Call Sized_dynobj::do_read_symbols to read the symbols then
402 // read .opd from a dynamic object, filling in opd_ent_ vector,
403 void
404 do_read_symbols(Read_symbols_data*);
405
406 // The .opd section shndx.
407 unsigned int
408 opd_shndx() const
409 {
410 return this->opd_shndx_;
411 }
412
413 // The .opd section address.
414 Address
415 opd_address() const
416 {
417 return this->opd_address_;
418 }
419
420 // Init OPD entry arrays.
421 void
422 init_opd(size_t opd_size)
423 {
424 size_t count = this->opd_ent_ndx(opd_size);
425 this->opd_ent_.resize(count);
426 }
427
428 // Return section and offset of function entry for .opd + R_OFF.
429 unsigned int
430 get_opd_ent(Address r_off, Address* value = NULL) const
431 {
432 size_t ndx = this->opd_ent_ndx(r_off);
433 gold_assert(ndx < this->opd_ent_.size());
434 gold_assert(this->opd_ent_[ndx].shndx != 0);
435 if (value != NULL)
436 *value = this->opd_ent_[ndx].off;
437 return this->opd_ent_[ndx].shndx;
438 }
439
440 // Set section and offset of function entry for .opd + R_OFF.
441 void
442 set_opd_ent(Address r_off, unsigned int shndx, Address value)
443 {
444 size_t ndx = this->opd_ent_ndx(r_off);
445 gold_assert(ndx < this->opd_ent_.size());
446 this->opd_ent_[ndx].shndx = shndx;
447 this->opd_ent_[ndx].off = value;
448 }
449
450 int
451 abiversion() const
452 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
453
454 // Set ABI version for input and output.
455 void
456 set_abiversion(int ver);
457
458 private:
459 // Used to specify extent of executable sections.
460 struct Sec_info
461 {
462 Sec_info(Address start_, Address len_, unsigned int shndx_)
463 : start(start_), len(len_), shndx(shndx_)
464 { }
465
466 bool
467 operator<(const Sec_info& that) const
468 { return this->start < that.start; }
469
470 Address start;
471 Address len;
472 unsigned int shndx;
473 };
474
475 struct Opd_ent
476 {
477 unsigned int shndx;
478 Address off;
479 };
480
481 // Return index into opd_ent_ array for .opd entry at OFF.
482 size_t
483 opd_ent_ndx(size_t off) const
484 { return off >> 4;}
485
486 // For 64-bit the .opd section shndx and address.
487 unsigned int opd_shndx_;
488 Address opd_address_;
489
490 // The first 8-byte word of an OPD entry gives the address of the
491 // entry point of the function. Records the section and offset
492 // corresponding to the address. Note that in dynamic objects,
493 // offset is *not* relative to the section.
494 std::vector<Opd_ent> opd_ent_;
495
496 // Header e_flags
497 elfcpp::Elf_Word e_flags_;
498 };
499
500 template<int size, bool big_endian>
501 class Target_powerpc : public Sized_target<size, big_endian>
502 {
503 public:
504 typedef
505 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
506 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
507 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
508 static const Address invalid_address = static_cast<Address>(0) - 1;
509 // Offset of tp and dtp pointers from start of TLS block.
510 static const Address tp_offset = 0x7000;
511 static const Address dtp_offset = 0x8000;
512
513 Target_powerpc()
514 : Sized_target<size, big_endian>(&powerpc_info),
515 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
516 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
517 tlsld_got_offset_(-1U),
518 stub_tables_(), branch_lookup_table_(), branch_info_(),
519 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
520 stub_group_size_(0), savres_section_(0)
521 {
522 }
523
524 // Process the relocations to determine unreferenced sections for
525 // garbage collection.
526 void
527 gc_process_relocs(Symbol_table* symtab,
528 Layout* layout,
529 Sized_relobj_file<size, big_endian>* object,
530 unsigned int data_shndx,
531 unsigned int sh_type,
532 const unsigned char* prelocs,
533 size_t reloc_count,
534 Output_section* output_section,
535 bool needs_special_offset_handling,
536 size_t local_symbol_count,
537 const unsigned char* plocal_symbols);
538
539 // Scan the relocations to look for symbol adjustments.
540 void
541 scan_relocs(Symbol_table* symtab,
542 Layout* layout,
543 Sized_relobj_file<size, big_endian>* object,
544 unsigned int data_shndx,
545 unsigned int sh_type,
546 const unsigned char* prelocs,
547 size_t reloc_count,
548 Output_section* output_section,
549 bool needs_special_offset_handling,
550 size_t local_symbol_count,
551 const unsigned char* plocal_symbols);
552
553 // Map input .toc section to output .got section.
554 const char*
555 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
556 {
557 if (size == 64 && strcmp(name, ".toc") == 0)
558 {
559 *plen = 4;
560 return ".got";
561 }
562 return NULL;
563 }
564
565 // Provide linker defined save/restore functions.
566 void
567 define_save_restore_funcs(Layout*, Symbol_table*);
568
569 // No stubs unless a final link.
570 bool
571 do_may_relax() const
572 { return !parameters->options().relocatable(); }
573
574 bool
575 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
576
577 void
578 do_plt_fde_location(const Output_data*, unsigned char*,
579 uint64_t*, off_t*) const;
580
581 // Stash info about branches, for stub generation.
582 void
583 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
584 unsigned int data_shndx, Address r_offset,
585 unsigned int r_type, unsigned int r_sym, Address addend)
586 {
587 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
588 this->branch_info_.push_back(info);
589 if (r_type == elfcpp::R_POWERPC_REL14
590 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
591 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
592 ppc_object->set_has_14bit_branch(data_shndx);
593 }
594
595 void
596 do_define_standard_symbols(Symbol_table*, Layout*);
597
598 // Finalize the sections.
599 void
600 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
601
602 // Return the value to use for a dynamic which requires special
603 // treatment.
604 uint64_t
605 do_dynsym_value(const Symbol*) const;
606
607 // Return the PLT address to use for a local symbol.
608 uint64_t
609 do_plt_address_for_local(const Relobj*, unsigned int) const;
610
611 // Return the PLT address to use for a global symbol.
612 uint64_t
613 do_plt_address_for_global(const Symbol*) const;
614
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for a local tls symbol specified by OBJECT, SYMNDX.
617 int64_t
618 do_tls_offset_for_local(const Relobj* object,
619 unsigned int symndx,
620 unsigned int got_indx) const;
621
622 // Return the offset to use for the GOT_INDX'th got entry which is
623 // for global tls symbol GSYM.
624 int64_t
625 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
626
627 void
628 do_function_location(Symbol_location*) const;
629
630 bool
631 do_can_check_for_function_pointers() const
632 { return true; }
633
634 // Adjust -fsplit-stack code which calls non-split-stack code.
635 void
636 do_calls_non_split(Relobj* object, unsigned int shndx,
637 section_offset_type fnoffset, section_size_type fnsize,
638 const unsigned char* prelocs, size_t reloc_count,
639 unsigned char* view, section_size_type view_size,
640 std::string* from, std::string* to) const;
641
642 // Relocate a section.
643 void
644 relocate_section(const Relocate_info<size, big_endian>*,
645 unsigned int sh_type,
646 const unsigned char* prelocs,
647 size_t reloc_count,
648 Output_section* output_section,
649 bool needs_special_offset_handling,
650 unsigned char* view,
651 Address view_address,
652 section_size_type view_size,
653 const Reloc_symbol_changes*);
654
655 // Scan the relocs during a relocatable link.
656 void
657 scan_relocatable_relocs(Symbol_table* symtab,
658 Layout* layout,
659 Sized_relobj_file<size, big_endian>* object,
660 unsigned int data_shndx,
661 unsigned int sh_type,
662 const unsigned char* prelocs,
663 size_t reloc_count,
664 Output_section* output_section,
665 bool needs_special_offset_handling,
666 size_t local_symbol_count,
667 const unsigned char* plocal_symbols,
668 Relocatable_relocs*);
669
670 // Scan the relocs for --emit-relocs.
671 void
672 emit_relocs_scan(Symbol_table* symtab,
673 Layout* layout,
674 Sized_relobj_file<size, big_endian>* object,
675 unsigned int data_shndx,
676 unsigned int sh_type,
677 const unsigned char* prelocs,
678 size_t reloc_count,
679 Output_section* output_section,
680 bool needs_special_offset_handling,
681 size_t local_symbol_count,
682 const unsigned char* plocal_syms,
683 Relocatable_relocs* rr);
684
685 // Emit relocations for a section.
686 void
687 relocate_relocs(const Relocate_info<size, big_endian>*,
688 unsigned int sh_type,
689 const unsigned char* prelocs,
690 size_t reloc_count,
691 Output_section* output_section,
692 typename elfcpp::Elf_types<size>::Elf_Off
693 offset_in_output_section,
694 unsigned char*,
695 Address view_address,
696 section_size_type,
697 unsigned char* reloc_view,
698 section_size_type reloc_view_size);
699
700 // Return whether SYM is defined by the ABI.
701 bool
702 do_is_defined_by_abi(const Symbol* sym) const
703 {
704 return strcmp(sym->name(), "__tls_get_addr") == 0;
705 }
706
707 // Return the size of the GOT section.
708 section_size_type
709 got_size() const
710 {
711 gold_assert(this->got_ != NULL);
712 return this->got_->data_size();
713 }
714
715 // Get the PLT section.
716 const Output_data_plt_powerpc<size, big_endian>*
717 plt_section() const
718 {
719 gold_assert(this->plt_ != NULL);
720 return this->plt_;
721 }
722
723 // Get the IPLT section.
724 const Output_data_plt_powerpc<size, big_endian>*
725 iplt_section() const
726 {
727 gold_assert(this->iplt_ != NULL);
728 return this->iplt_;
729 }
730
731 // Get the .glink section.
732 const Output_data_glink<size, big_endian>*
733 glink_section() const
734 {
735 gold_assert(this->glink_ != NULL);
736 return this->glink_;
737 }
738
739 Output_data_glink<size, big_endian>*
740 glink_section()
741 {
742 gold_assert(this->glink_ != NULL);
743 return this->glink_;
744 }
745
746 bool has_glink() const
747 { return this->glink_ != NULL; }
748
749 // Get the GOT section.
750 const Output_data_got_powerpc<size, big_endian>*
751 got_section() const
752 {
753 gold_assert(this->got_ != NULL);
754 return this->got_;
755 }
756
757 // Get the GOT section, creating it if necessary.
758 Output_data_got_powerpc<size, big_endian>*
759 got_section(Symbol_table*, Layout*);
760
761 Object*
762 do_make_elf_object(const std::string&, Input_file*, off_t,
763 const elfcpp::Ehdr<size, big_endian>&);
764
765 // Return the number of entries in the GOT.
766 unsigned int
767 got_entry_count() const
768 {
769 if (this->got_ == NULL)
770 return 0;
771 return this->got_size() / (size / 8);
772 }
773
774 // Return the number of entries in the PLT.
775 unsigned int
776 plt_entry_count() const;
777
778 // Return the offset of the first non-reserved PLT entry.
779 unsigned int
780 first_plt_entry_offset() const
781 {
782 if (size == 32)
783 return 0;
784 if (this->abiversion() >= 2)
785 return 16;
786 return 24;
787 }
788
789 // Return the size of each PLT entry.
790 unsigned int
791 plt_entry_size() const
792 {
793 if (size == 32)
794 return 4;
795 if (this->abiversion() >= 2)
796 return 8;
797 return 24;
798 }
799
800 Output_data_save_res<size, big_endian>*
801 savres_section() const
802 {
803 return this->savres_section_;
804 }
805
806 // Add any special sections for this symbol to the gc work list.
807 // For powerpc64, this adds the code section of a function
808 // descriptor.
809 void
810 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
811
812 // Handle target specific gc actions when adding a gc reference from
813 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
814 // and DST_OFF. For powerpc64, this adds a referenc to the code
815 // section of a function descriptor.
816 void
817 do_gc_add_reference(Symbol_table* symtab,
818 Relobj* src_obj,
819 unsigned int src_shndx,
820 Relobj* dst_obj,
821 unsigned int dst_shndx,
822 Address dst_off) const;
823
824 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
825 const Stub_tables&
826 stub_tables() const
827 { return this->stub_tables_; }
828
829 const Output_data_brlt_powerpc<size, big_endian>*
830 brlt_section() const
831 { return this->brlt_section_; }
832
833 void
834 add_branch_lookup_table(Address to)
835 {
836 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
837 this->branch_lookup_table_.insert(std::make_pair(to, off));
838 }
839
840 Address
841 find_branch_lookup_table(Address to)
842 {
843 typename Branch_lookup_table::const_iterator p
844 = this->branch_lookup_table_.find(to);
845 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
846 }
847
848 void
849 write_branch_lookup_table(unsigned char *oview)
850 {
851 for (typename Branch_lookup_table::const_iterator p
852 = this->branch_lookup_table_.begin();
853 p != this->branch_lookup_table_.end();
854 ++p)
855 {
856 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
857 }
858 }
859
860 bool
861 plt_thread_safe() const
862 { return this->plt_thread_safe_; }
863
864 int
865 abiversion () const
866 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
867
868 void
869 set_abiversion (int ver)
870 {
871 elfcpp::Elf_Word flags = this->processor_specific_flags();
872 flags &= ~elfcpp::EF_PPC64_ABI;
873 flags |= ver & elfcpp::EF_PPC64_ABI;
874 this->set_processor_specific_flags(flags);
875 }
876
877 // Offset to to save stack slot
878 int
879 stk_toc () const
880 { return this->abiversion() < 2 ? 40 : 24; }
881
882 private:
883
884 class Track_tls
885 {
886 public:
887 enum Tls_get_addr
888 {
889 NOT_EXPECTED = 0,
890 EXPECTED = 1,
891 SKIP = 2,
892 NORMAL = 3
893 };
894
895 Track_tls()
896 : tls_get_addr_(NOT_EXPECTED),
897 relinfo_(NULL), relnum_(0), r_offset_(0)
898 { }
899
900 ~Track_tls()
901 {
902 if (this->tls_get_addr_ != NOT_EXPECTED)
903 this->missing();
904 }
905
906 void
907 missing(void)
908 {
909 if (this->relinfo_ != NULL)
910 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
911 _("missing expected __tls_get_addr call"));
912 }
913
914 void
915 expect_tls_get_addr_call(
916 const Relocate_info<size, big_endian>* relinfo,
917 size_t relnum,
918 Address r_offset)
919 {
920 this->tls_get_addr_ = EXPECTED;
921 this->relinfo_ = relinfo;
922 this->relnum_ = relnum;
923 this->r_offset_ = r_offset;
924 }
925
926 void
927 expect_tls_get_addr_call()
928 { this->tls_get_addr_ = EXPECTED; }
929
930 void
931 skip_next_tls_get_addr_call()
932 {this->tls_get_addr_ = SKIP; }
933
934 Tls_get_addr
935 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
936 {
937 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
938 || r_type == elfcpp::R_PPC_PLTREL24)
939 && gsym != NULL
940 && strcmp(gsym->name(), "__tls_get_addr") == 0);
941 Tls_get_addr last_tls = this->tls_get_addr_;
942 this->tls_get_addr_ = NOT_EXPECTED;
943 if (is_tls_call && last_tls != EXPECTED)
944 return last_tls;
945 else if (!is_tls_call && last_tls != NOT_EXPECTED)
946 {
947 this->missing();
948 return EXPECTED;
949 }
950 return NORMAL;
951 }
952
953 private:
954 // What we're up to regarding calls to __tls_get_addr.
955 // On powerpc, the branch and link insn making a call to
956 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
957 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
958 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
959 // The marker relocation always comes first, and has the same
960 // symbol as the reloc on the insn setting up the __tls_get_addr
961 // argument. This ties the arg setup insn with the call insn,
962 // allowing ld to safely optimize away the call. We check that
963 // every call to __tls_get_addr has a marker relocation, and that
964 // every marker relocation is on a call to __tls_get_addr.
965 Tls_get_addr tls_get_addr_;
966 // Info about the last reloc for error message.
967 const Relocate_info<size, big_endian>* relinfo_;
968 size_t relnum_;
969 Address r_offset_;
970 };
971
972 // The class which scans relocations.
973 class Scan : protected Track_tls
974 {
975 public:
976 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
977
978 Scan()
979 : Track_tls(), issued_non_pic_error_(false)
980 { }
981
982 static inline int
983 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
984
985 inline void
986 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
987 Sized_relobj_file<size, big_endian>* object,
988 unsigned int data_shndx,
989 Output_section* output_section,
990 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
991 const elfcpp::Sym<size, big_endian>& lsym,
992 bool is_discarded);
993
994 inline void
995 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
996 Sized_relobj_file<size, big_endian>* object,
997 unsigned int data_shndx,
998 Output_section* output_section,
999 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1000 Symbol* gsym);
1001
1002 inline bool
1003 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1004 Target_powerpc* ,
1005 Sized_relobj_file<size, big_endian>* relobj,
1006 unsigned int ,
1007 Output_section* ,
1008 const elfcpp::Rela<size, big_endian>& ,
1009 unsigned int r_type,
1010 const elfcpp::Sym<size, big_endian>&)
1011 {
1012 // PowerPC64 .opd is not folded, so any identical function text
1013 // may be folded and we'll still keep function addresses distinct.
1014 // That means no reloc is of concern here.
1015 if (size == 64)
1016 {
1017 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1018 <Powerpc_relobj<size, big_endian>*>(relobj);
1019 if (ppcobj->abiversion() == 1)
1020 return false;
1021 }
1022 // For 32-bit and ELFv2, conservatively assume anything but calls to
1023 // function code might be taking the address of the function.
1024 return !is_branch_reloc(r_type);
1025 }
1026
1027 inline bool
1028 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1029 Target_powerpc* ,
1030 Sized_relobj_file<size, big_endian>* relobj,
1031 unsigned int ,
1032 Output_section* ,
1033 const elfcpp::Rela<size, big_endian>& ,
1034 unsigned int r_type,
1035 Symbol*)
1036 {
1037 // As above.
1038 if (size == 64)
1039 {
1040 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1041 <Powerpc_relobj<size, big_endian>*>(relobj);
1042 if (ppcobj->abiversion() == 1)
1043 return false;
1044 }
1045 return !is_branch_reloc(r_type);
1046 }
1047
1048 static bool
1049 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1050 Sized_relobj_file<size, big_endian>* object,
1051 unsigned int r_type, bool report_err);
1052
1053 private:
1054 static void
1055 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type);
1057
1058 static void
1059 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1060 unsigned int r_type, Symbol*);
1061
1062 static void
1063 generate_tls_call(Symbol_table* symtab, Layout* layout,
1064 Target_powerpc* target);
1065
1066 void
1067 check_non_pic(Relobj*, unsigned int r_type);
1068
1069 // Whether we have issued an error about a non-PIC compilation.
1070 bool issued_non_pic_error_;
1071 };
1072
1073 bool
1074 symval_for_branch(const Symbol_table* symtab,
1075 const Sized_symbol<size>* gsym,
1076 Powerpc_relobj<size, big_endian>* object,
1077 Address *value, unsigned int *dest_shndx);
1078
1079 // The class which implements relocation.
1080 class Relocate : protected Track_tls
1081 {
1082 public:
1083 // Use 'at' branch hints when true, 'y' when false.
1084 // FIXME maybe: set this with an option.
1085 static const bool is_isa_v2 = true;
1086
1087 Relocate()
1088 : Track_tls()
1089 { }
1090
1091 // Do a relocation. Return false if the caller should not issue
1092 // any warnings about this relocation.
1093 inline bool
1094 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1095 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1096 const Sized_symbol<size>*, const Symbol_value<size>*,
1097 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1098 section_size_type);
1099 };
1100
1101 class Relocate_comdat_behavior
1102 {
1103 public:
1104 // Decide what the linker should do for relocations that refer to
1105 // discarded comdat sections.
1106 inline Comdat_behavior
1107 get(const char* name)
1108 {
1109 gold::Default_comdat_behavior default_behavior;
1110 Comdat_behavior ret = default_behavior.get(name);
1111 if (ret == CB_WARNING)
1112 {
1113 if (size == 32
1114 && (strcmp(name, ".fixup") == 0
1115 || strcmp(name, ".got2") == 0))
1116 ret = CB_IGNORE;
1117 if (size == 64
1118 && (strcmp(name, ".opd") == 0
1119 || strcmp(name, ".toc") == 0
1120 || strcmp(name, ".toc1") == 0))
1121 ret = CB_IGNORE;
1122 }
1123 return ret;
1124 }
1125 };
1126
1127 // Optimize the TLS relocation type based on what we know about the
1128 // symbol. IS_FINAL is true if the final address of this symbol is
1129 // known at link time.
1130
1131 tls::Tls_optimization
1132 optimize_tls_gd(bool is_final)
1133 {
1134 // If we are generating a shared library, then we can't do anything
1135 // in the linker.
1136 if (parameters->options().shared())
1137 return tls::TLSOPT_NONE;
1138
1139 if (!is_final)
1140 return tls::TLSOPT_TO_IE;
1141 return tls::TLSOPT_TO_LE;
1142 }
1143
1144 tls::Tls_optimization
1145 optimize_tls_ld()
1146 {
1147 if (parameters->options().shared())
1148 return tls::TLSOPT_NONE;
1149
1150 return tls::TLSOPT_TO_LE;
1151 }
1152
1153 tls::Tls_optimization
1154 optimize_tls_ie(bool is_final)
1155 {
1156 if (!is_final || parameters->options().shared())
1157 return tls::TLSOPT_NONE;
1158
1159 return tls::TLSOPT_TO_LE;
1160 }
1161
1162 // Create glink.
1163 void
1164 make_glink_section(Layout*);
1165
1166 // Create the PLT section.
1167 void
1168 make_plt_section(Symbol_table*, Layout*);
1169
1170 void
1171 make_iplt_section(Symbol_table*, Layout*);
1172
1173 void
1174 make_brlt_section(Layout*);
1175
1176 // Create a PLT entry for a global symbol.
1177 void
1178 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1179
1180 // Create a PLT entry for a local IFUNC symbol.
1181 void
1182 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1183 Sized_relobj_file<size, big_endian>*,
1184 unsigned int);
1185
1186
1187 // Create a GOT entry for local dynamic __tls_get_addr.
1188 unsigned int
1189 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1190 Sized_relobj_file<size, big_endian>* object);
1191
1192 unsigned int
1193 tlsld_got_offset() const
1194 {
1195 return this->tlsld_got_offset_;
1196 }
1197
1198 // Get the dynamic reloc section, creating it if necessary.
1199 Reloc_section*
1200 rela_dyn_section(Layout*);
1201
1202 // Similarly, but for ifunc symbols get the one for ifunc.
1203 Reloc_section*
1204 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1205
1206 // Copy a relocation against a global symbol.
1207 void
1208 copy_reloc(Symbol_table* symtab, Layout* layout,
1209 Sized_relobj_file<size, big_endian>* object,
1210 unsigned int shndx, Output_section* output_section,
1211 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1212 {
1213 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1214 this->copy_relocs_.copy_reloc(symtab, layout,
1215 symtab->get_sized_symbol<size>(sym),
1216 object, shndx, output_section,
1217 r_type, reloc.get_r_offset(),
1218 reloc.get_r_addend(),
1219 this->rela_dyn_section(layout));
1220 }
1221
1222 // Look over all the input sections, deciding where to place stubs.
1223 void
1224 group_sections(Layout*, const Task*, bool);
1225
1226 // Sort output sections by address.
1227 struct Sort_sections
1228 {
1229 bool
1230 operator()(const Output_section* sec1, const Output_section* sec2)
1231 { return sec1->address() < sec2->address(); }
1232 };
1233
1234 class Branch_info
1235 {
1236 public:
1237 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1238 unsigned int data_shndx,
1239 Address r_offset,
1240 unsigned int r_type,
1241 unsigned int r_sym,
1242 Address addend)
1243 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1244 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1245 { }
1246
1247 ~Branch_info()
1248 { }
1249
1250 // If this branch needs a plt call stub, or a long branch stub, make one.
1251 bool
1252 make_stub(Stub_table<size, big_endian>*,
1253 Stub_table<size, big_endian>*,
1254 Symbol_table*) const;
1255
1256 private:
1257 // The branch location..
1258 Powerpc_relobj<size, big_endian>* object_;
1259 unsigned int shndx_;
1260 Address offset_;
1261 // ..and the branch type and destination.
1262 unsigned int r_type_;
1263 unsigned int r_sym_;
1264 Address addend_;
1265 };
1266
1267 // Information about this specific target which we pass to the
1268 // general Target structure.
1269 static Target::Target_info powerpc_info;
1270
1271 // The types of GOT entries needed for this platform.
1272 // These values are exposed to the ABI in an incremental link.
1273 // Do not renumber existing values without changing the version
1274 // number of the .gnu_incremental_inputs section.
1275 enum Got_type
1276 {
1277 GOT_TYPE_STANDARD,
1278 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1279 GOT_TYPE_DTPREL, // entry for @got@dtprel
1280 GOT_TYPE_TPREL // entry for @got@tprel
1281 };
1282
1283 // The GOT section.
1284 Output_data_got_powerpc<size, big_endian>* got_;
1285 // The PLT section. This is a container for a table of addresses,
1286 // and their relocations. Each address in the PLT has a dynamic
1287 // relocation (R_*_JMP_SLOT) and each address will have a
1288 // corresponding entry in .glink for lazy resolution of the PLT.
1289 // ppc32 initialises the PLT to point at the .glink entry, while
1290 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1291 // linker adds a stub that loads the PLT entry into ctr then
1292 // branches to ctr. There may be more than one stub for each PLT
1293 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1294 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1295 Output_data_plt_powerpc<size, big_endian>* plt_;
1296 // The IPLT section. Like plt_, this is a container for a table of
1297 // addresses and their relocations, specifically for STT_GNU_IFUNC
1298 // functions that resolve locally (STT_GNU_IFUNC functions that
1299 // don't resolve locally go in PLT). Unlike plt_, these have no
1300 // entry in .glink for lazy resolution, and the relocation section
1301 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1302 // the relocation section may contain relocations against
1303 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1304 // relocation section will appear at the end of other dynamic
1305 // relocations, so that ld.so applies these relocations after other
1306 // dynamic relocations. In a static executable, the relocation
1307 // section is emitted and marked with __rela_iplt_start and
1308 // __rela_iplt_end symbols.
1309 Output_data_plt_powerpc<size, big_endian>* iplt_;
1310 // Section holding long branch destinations.
1311 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1312 // The .glink section.
1313 Output_data_glink<size, big_endian>* glink_;
1314 // The dynamic reloc section.
1315 Reloc_section* rela_dyn_;
1316 // Relocs saved to avoid a COPY reloc.
1317 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1318 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1319 unsigned int tlsld_got_offset_;
1320
1321 Stub_tables stub_tables_;
1322 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1323 Branch_lookup_table branch_lookup_table_;
1324
1325 typedef std::vector<Branch_info> Branches;
1326 Branches branch_info_;
1327
1328 bool plt_thread_safe_;
1329
1330 bool relax_failed_;
1331 int relax_fail_count_;
1332 int32_t stub_group_size_;
1333
1334 Output_data_save_res<size, big_endian> *savres_section_;
1335 };
1336
1337 template<>
1338 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1339 {
1340 32, // size
1341 true, // is_big_endian
1342 elfcpp::EM_PPC, // machine_code
1343 false, // has_make_symbol
1344 false, // has_resolve
1345 false, // has_code_fill
1346 true, // is_default_stack_executable
1347 false, // can_icf_inline_merge_sections
1348 '\0', // wrap_char
1349 "/usr/lib/ld.so.1", // dynamic_linker
1350 0x10000000, // default_text_segment_address
1351 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1352 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1353 false, // isolate_execinstr
1354 0, // rosegment_gap
1355 elfcpp::SHN_UNDEF, // small_common_shndx
1356 elfcpp::SHN_UNDEF, // large_common_shndx
1357 0, // small_common_section_flags
1358 0, // large_common_section_flags
1359 NULL, // attributes_section
1360 NULL, // attributes_vendor
1361 "_start", // entry_symbol_name
1362 32, // hash_entry_size
1363 };
1364
1365 template<>
1366 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1367 {
1368 32, // size
1369 false, // is_big_endian
1370 elfcpp::EM_PPC, // machine_code
1371 false, // has_make_symbol
1372 false, // has_resolve
1373 false, // has_code_fill
1374 true, // is_default_stack_executable
1375 false, // can_icf_inline_merge_sections
1376 '\0', // wrap_char
1377 "/usr/lib/ld.so.1", // dynamic_linker
1378 0x10000000, // default_text_segment_address
1379 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1380 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1381 false, // isolate_execinstr
1382 0, // rosegment_gap
1383 elfcpp::SHN_UNDEF, // small_common_shndx
1384 elfcpp::SHN_UNDEF, // large_common_shndx
1385 0, // small_common_section_flags
1386 0, // large_common_section_flags
1387 NULL, // attributes_section
1388 NULL, // attributes_vendor
1389 "_start", // entry_symbol_name
1390 32, // hash_entry_size
1391 };
1392
1393 template<>
1394 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1395 {
1396 64, // size
1397 true, // is_big_endian
1398 elfcpp::EM_PPC64, // machine_code
1399 false, // has_make_symbol
1400 false, // has_resolve
1401 false, // has_code_fill
1402 true, // is_default_stack_executable
1403 false, // can_icf_inline_merge_sections
1404 '\0', // wrap_char
1405 "/usr/lib/ld.so.1", // dynamic_linker
1406 0x10000000, // default_text_segment_address
1407 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1408 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1409 false, // isolate_execinstr
1410 0, // rosegment_gap
1411 elfcpp::SHN_UNDEF, // small_common_shndx
1412 elfcpp::SHN_UNDEF, // large_common_shndx
1413 0, // small_common_section_flags
1414 0, // large_common_section_flags
1415 NULL, // attributes_section
1416 NULL, // attributes_vendor
1417 "_start", // entry_symbol_name
1418 32, // hash_entry_size
1419 };
1420
1421 template<>
1422 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1423 {
1424 64, // size
1425 false, // is_big_endian
1426 elfcpp::EM_PPC64, // machine_code
1427 false, // has_make_symbol
1428 false, // has_resolve
1429 false, // has_code_fill
1430 true, // is_default_stack_executable
1431 false, // can_icf_inline_merge_sections
1432 '\0', // wrap_char
1433 "/usr/lib/ld.so.1", // dynamic_linker
1434 0x10000000, // default_text_segment_address
1435 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1436 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1437 false, // isolate_execinstr
1438 0, // rosegment_gap
1439 elfcpp::SHN_UNDEF, // small_common_shndx
1440 elfcpp::SHN_UNDEF, // large_common_shndx
1441 0, // small_common_section_flags
1442 0, // large_common_section_flags
1443 NULL, // attributes_section
1444 NULL, // attributes_vendor
1445 "_start", // entry_symbol_name
1446 32, // hash_entry_size
1447 };
1448
1449 inline bool
1450 is_branch_reloc(unsigned int r_type)
1451 {
1452 return (r_type == elfcpp::R_POWERPC_REL24
1453 || r_type == elfcpp::R_PPC_PLTREL24
1454 || r_type == elfcpp::R_PPC_LOCAL24PC
1455 || r_type == elfcpp::R_POWERPC_REL14
1456 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1458 || r_type == elfcpp::R_POWERPC_ADDR24
1459 || r_type == elfcpp::R_POWERPC_ADDR14
1460 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1461 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1462 }
1463
1464 // If INSN is an opcode that may be used with an @tls operand, return
1465 // the transformed insn for TLS optimisation, otherwise return 0. If
1466 // REG is non-zero only match an insn with RB or RA equal to REG.
1467 uint32_t
1468 at_tls_transform(uint32_t insn, unsigned int reg)
1469 {
1470 if ((insn & (0x3f << 26)) != 31 << 26)
1471 return 0;
1472
1473 unsigned int rtra;
1474 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1475 rtra = insn & ((1 << 26) - (1 << 16));
1476 else if (((insn >> 16) & 0x1f) == reg)
1477 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1478 else
1479 return 0;
1480
1481 if ((insn & (0x3ff << 1)) == 266 << 1)
1482 // add -> addi
1483 insn = 14 << 26;
1484 else if ((insn & (0x1f << 1)) == 23 << 1
1485 && ((insn & (0x1f << 6)) < 14 << 6
1486 || ((insn & (0x1f << 6)) >= 16 << 6
1487 && (insn & (0x1f << 6)) < 24 << 6)))
1488 // load and store indexed -> dform
1489 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1490 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1491 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1492 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1493 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1494 // lwax -> lwa
1495 insn = (58 << 26) | 2;
1496 else
1497 return 0;
1498 insn |= rtra;
1499 return insn;
1500 }
1501
1502
1503 template<int size, bool big_endian>
1504 class Powerpc_relocate_functions
1505 {
1506 public:
1507 enum Overflow_check
1508 {
1509 CHECK_NONE,
1510 CHECK_SIGNED,
1511 CHECK_UNSIGNED,
1512 CHECK_BITFIELD,
1513 CHECK_LOW_INSN,
1514 CHECK_HIGH_INSN
1515 };
1516
1517 enum Status
1518 {
1519 STATUS_OK,
1520 STATUS_OVERFLOW
1521 };
1522
1523 private:
1524 typedef Powerpc_relocate_functions<size, big_endian> This;
1525 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1526 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1527
1528 template<int valsize>
1529 static inline bool
1530 has_overflow_signed(Address value)
1531 {
1532 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1533 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1534 limit <<= ((valsize - 1) >> 1);
1535 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1536 return value + limit > (limit << 1) - 1;
1537 }
1538
1539 template<int valsize>
1540 static inline bool
1541 has_overflow_unsigned(Address value)
1542 {
1543 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1544 limit <<= ((valsize - 1) >> 1);
1545 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1546 return value > (limit << 1) - 1;
1547 }
1548
1549 template<int valsize>
1550 static inline bool
1551 has_overflow_bitfield(Address value)
1552 {
1553 return (has_overflow_unsigned<valsize>(value)
1554 && has_overflow_signed<valsize>(value));
1555 }
1556
1557 template<int valsize>
1558 static inline Status
1559 overflowed(Address value, Overflow_check overflow)
1560 {
1561 if (overflow == CHECK_SIGNED)
1562 {
1563 if (has_overflow_signed<valsize>(value))
1564 return STATUS_OVERFLOW;
1565 }
1566 else if (overflow == CHECK_UNSIGNED)
1567 {
1568 if (has_overflow_unsigned<valsize>(value))
1569 return STATUS_OVERFLOW;
1570 }
1571 else if (overflow == CHECK_BITFIELD)
1572 {
1573 if (has_overflow_bitfield<valsize>(value))
1574 return STATUS_OVERFLOW;
1575 }
1576 return STATUS_OK;
1577 }
1578
1579 // Do a simple RELA relocation
1580 template<int fieldsize, int valsize>
1581 static inline Status
1582 rela(unsigned char* view, Address value, Overflow_check overflow)
1583 {
1584 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1585 Valtype* wv = reinterpret_cast<Valtype*>(view);
1586 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1587 return overflowed<valsize>(value, overflow);
1588 }
1589
1590 template<int fieldsize, int valsize>
1591 static inline Status
1592 rela(unsigned char* view,
1593 unsigned int right_shift,
1594 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1595 Address value,
1596 Overflow_check overflow)
1597 {
1598 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1599 Valtype* wv = reinterpret_cast<Valtype*>(view);
1600 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1601 Valtype reloc = value >> right_shift;
1602 val &= ~dst_mask;
1603 reloc &= dst_mask;
1604 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1605 return overflowed<valsize>(value >> right_shift, overflow);
1606 }
1607
1608 // Do a simple RELA relocation, unaligned.
1609 template<int fieldsize, int valsize>
1610 static inline Status
1611 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1612 {
1613 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1614 return overflowed<valsize>(value, overflow);
1615 }
1616
1617 template<int fieldsize, int valsize>
1618 static inline Status
1619 rela_ua(unsigned char* view,
1620 unsigned int right_shift,
1621 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1622 Address value,
1623 Overflow_check overflow)
1624 {
1625 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1626 Valtype;
1627 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1628 Valtype reloc = value >> right_shift;
1629 val &= ~dst_mask;
1630 reloc &= dst_mask;
1631 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1632 return overflowed<valsize>(value >> right_shift, overflow);
1633 }
1634
1635 public:
1636 // R_PPC64_ADDR64: (Symbol + Addend)
1637 static inline void
1638 addr64(unsigned char* view, Address value)
1639 { This::template rela<64,64>(view, value, CHECK_NONE); }
1640
1641 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1642 static inline void
1643 addr64_u(unsigned char* view, Address value)
1644 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1645
1646 // R_POWERPC_ADDR32: (Symbol + Addend)
1647 static inline Status
1648 addr32(unsigned char* view, Address value, Overflow_check overflow)
1649 { return This::template rela<32,32>(view, value, overflow); }
1650
1651 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1652 static inline Status
1653 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1654 { return This::template rela_ua<32,32>(view, value, overflow); }
1655
1656 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1657 static inline Status
1658 addr24(unsigned char* view, Address value, Overflow_check overflow)
1659 {
1660 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1661 value, overflow);
1662 if (overflow != CHECK_NONE && (value & 3) != 0)
1663 stat = STATUS_OVERFLOW;
1664 return stat;
1665 }
1666
1667 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1668 static inline Status
1669 addr16(unsigned char* view, Address value, Overflow_check overflow)
1670 { return This::template rela<16,16>(view, value, overflow); }
1671
1672 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1673 static inline Status
1674 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1675 { return This::template rela_ua<16,16>(view, value, overflow); }
1676
1677 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1678 static inline Status
1679 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1680 {
1681 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1682 if ((value & 3) != 0)
1683 stat = STATUS_OVERFLOW;
1684 return stat;
1685 }
1686
1687 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1688 static inline Status
1689 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1690 {
1691 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1692 if ((value & 15) != 0)
1693 stat = STATUS_OVERFLOW;
1694 return stat;
1695 }
1696
1697 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1698 static inline void
1699 addr16_hi(unsigned char* view, Address value)
1700 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1701
1702 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1703 static inline void
1704 addr16_ha(unsigned char* view, Address value)
1705 { This::addr16_hi(view, value + 0x8000); }
1706
1707 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1708 static inline void
1709 addr16_hi2(unsigned char* view, Address value)
1710 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1711
1712 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1713 static inline void
1714 addr16_ha2(unsigned char* view, Address value)
1715 { This::addr16_hi2(view, value + 0x8000); }
1716
1717 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1718 static inline void
1719 addr16_hi3(unsigned char* view, Address value)
1720 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1721
1722 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1723 static inline void
1724 addr16_ha3(unsigned char* view, Address value)
1725 { This::addr16_hi3(view, value + 0x8000); }
1726
1727 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1728 static inline Status
1729 addr14(unsigned char* view, Address value, Overflow_check overflow)
1730 {
1731 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1732 if (overflow != CHECK_NONE && (value & 3) != 0)
1733 stat = STATUS_OVERFLOW;
1734 return stat;
1735 }
1736
1737 // R_POWERPC_REL16DX_HA
1738 static inline Status
1739 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1740 {
1741 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1742 Valtype* wv = reinterpret_cast<Valtype*>(view);
1743 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1744 value += 0x8000;
1745 value = static_cast<SignedAddress>(value) >> 16;
1746 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1747 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1748 return overflowed<16>(value, overflow);
1749 }
1750 };
1751
1752 // Set ABI version for input and output.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1757 {
1758 this->e_flags_ |= ver;
1759 if (this->abiversion() != 0)
1760 {
1761 Target_powerpc<size, big_endian>* target =
1762 static_cast<Target_powerpc<size, big_endian>*>(
1763 parameters->sized_target<size, big_endian>());
1764 if (target->abiversion() == 0)
1765 target->set_abiversion(this->abiversion());
1766 else if (target->abiversion() != this->abiversion())
1767 gold_error(_("%s: ABI version %d is not compatible "
1768 "with ABI version %d output"),
1769 this->name().c_str(),
1770 this->abiversion(), target->abiversion());
1771
1772 }
1773 }
1774
1775 // Stash away the index of .got2 or .opd in a relocatable object, if
1776 // such a section exists.
1777
1778 template<int size, bool big_endian>
1779 bool
1780 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1781 Read_symbols_data* sd)
1782 {
1783 const unsigned char* const pshdrs = sd->section_headers->data();
1784 const unsigned char* namesu = sd->section_names->data();
1785 const char* names = reinterpret_cast<const char*>(namesu);
1786 section_size_type names_size = sd->section_names_size;
1787 const unsigned char* s;
1788
1789 s = this->template find_shdr<size, big_endian>(pshdrs,
1790 size == 32 ? ".got2" : ".opd",
1791 names, names_size, NULL);
1792 if (s != NULL)
1793 {
1794 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1795 this->special_ = ndx;
1796 if (size == 64)
1797 {
1798 if (this->abiversion() == 0)
1799 this->set_abiversion(1);
1800 else if (this->abiversion() > 1)
1801 gold_error(_("%s: .opd invalid in abiv%d"),
1802 this->name().c_str(), this->abiversion());
1803 }
1804 }
1805 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1806 }
1807
1808 // Examine .rela.opd to build info about function entry points.
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1813 size_t reloc_count,
1814 const unsigned char* prelocs,
1815 const unsigned char* plocal_syms)
1816 {
1817 if (size == 64)
1818 {
1819 typedef typename elfcpp::Rela<size, big_endian> Reltype;
1820 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
1821 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1822 Address expected_off = 0;
1823 bool regular = true;
1824 unsigned int opd_ent_size = 0;
1825
1826 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1827 {
1828 Reltype reloc(prelocs);
1829 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1830 = reloc.get_r_info();
1831 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1832 if (r_type == elfcpp::R_PPC64_ADDR64)
1833 {
1834 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1835 typename elfcpp::Elf_types<size>::Elf_Addr value;
1836 bool is_ordinary;
1837 unsigned int shndx;
1838 if (r_sym < this->local_symbol_count())
1839 {
1840 typename elfcpp::Sym<size, big_endian>
1841 lsym(plocal_syms + r_sym * sym_size);
1842 shndx = lsym.get_st_shndx();
1843 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1844 value = lsym.get_st_value();
1845 }
1846 else
1847 shndx = this->symbol_section_and_value(r_sym, &value,
1848 &is_ordinary);
1849 this->set_opd_ent(reloc.get_r_offset(), shndx,
1850 value + reloc.get_r_addend());
1851 if (i == 2)
1852 {
1853 expected_off = reloc.get_r_offset();
1854 opd_ent_size = expected_off;
1855 }
1856 else if (expected_off != reloc.get_r_offset())
1857 regular = false;
1858 expected_off += opd_ent_size;
1859 }
1860 else if (r_type == elfcpp::R_PPC64_TOC)
1861 {
1862 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1863 regular = false;
1864 }
1865 else
1866 {
1867 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1868 this->name().c_str(), r_type);
1869 regular = false;
1870 }
1871 }
1872 if (reloc_count <= 2)
1873 opd_ent_size = this->section_size(this->opd_shndx());
1874 if (opd_ent_size != 24 && opd_ent_size != 16)
1875 regular = false;
1876 if (!regular)
1877 {
1878 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1879 this->name().c_str());
1880 opd_ent_size = 0;
1881 }
1882 }
1883 }
1884
1885 template<int size, bool big_endian>
1886 void
1887 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1888 {
1889 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1890 if (size == 64)
1891 {
1892 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1893 p != rd->relocs.end();
1894 ++p)
1895 {
1896 if (p->data_shndx == this->opd_shndx())
1897 {
1898 uint64_t opd_size = this->section_size(this->opd_shndx());
1899 gold_assert(opd_size == static_cast<size_t>(opd_size));
1900 if (opd_size != 0)
1901 {
1902 this->init_opd(opd_size);
1903 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1904 rd->local_symbols->data());
1905 }
1906 break;
1907 }
1908 }
1909 }
1910 }
1911
1912 // Read the symbols then set up st_other vector.
1913
1914 template<int size, bool big_endian>
1915 void
1916 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1917 {
1918 this->base_read_symbols(sd);
1919 if (size == 64)
1920 {
1921 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1922 const unsigned char* const pshdrs = sd->section_headers->data();
1923 const unsigned int loccount = this->do_local_symbol_count();
1924 if (loccount != 0)
1925 {
1926 this->st_other_.resize(loccount);
1927 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1928 off_t locsize = loccount * sym_size;
1929 const unsigned int symtab_shndx = this->symtab_shndx();
1930 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1931 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1932 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1933 locsize, true, false);
1934 psyms += sym_size;
1935 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1936 {
1937 elfcpp::Sym<size, big_endian> sym(psyms);
1938 unsigned char st_other = sym.get_st_other();
1939 this->st_other_[i] = st_other;
1940 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1941 {
1942 if (this->abiversion() == 0)
1943 this->set_abiversion(2);
1944 else if (this->abiversion() < 2)
1945 gold_error(_("%s: local symbol %d has invalid st_other"
1946 " for ABI version 1"),
1947 this->name().c_str(), i);
1948 }
1949 }
1950 }
1951 }
1952 }
1953
1954 template<int size, bool big_endian>
1955 void
1956 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1957 {
1958 this->e_flags_ |= ver;
1959 if (this->abiversion() != 0)
1960 {
1961 Target_powerpc<size, big_endian>* target =
1962 static_cast<Target_powerpc<size, big_endian>*>(
1963 parameters->sized_target<size, big_endian>());
1964 if (target->abiversion() == 0)
1965 target->set_abiversion(this->abiversion());
1966 else if (target->abiversion() != this->abiversion())
1967 gold_error(_("%s: ABI version %d is not compatible "
1968 "with ABI version %d output"),
1969 this->name().c_str(),
1970 this->abiversion(), target->abiversion());
1971
1972 }
1973 }
1974
1975 // Call Sized_dynobj::base_read_symbols to read the symbols then
1976 // read .opd from a dynamic object, filling in opd_ent_ vector,
1977
1978 template<int size, bool big_endian>
1979 void
1980 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1981 {
1982 this->base_read_symbols(sd);
1983 if (size == 64)
1984 {
1985 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1986 const unsigned char* const pshdrs = sd->section_headers->data();
1987 const unsigned char* namesu = sd->section_names->data();
1988 const char* names = reinterpret_cast<const char*>(namesu);
1989 const unsigned char* s = NULL;
1990 const unsigned char* opd;
1991 section_size_type opd_size;
1992
1993 // Find and read .opd section.
1994 while (1)
1995 {
1996 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1997 sd->section_names_size,
1998 s);
1999 if (s == NULL)
2000 return;
2001
2002 typename elfcpp::Shdr<size, big_endian> shdr(s);
2003 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2004 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2005 {
2006 if (this->abiversion() == 0)
2007 this->set_abiversion(1);
2008 else if (this->abiversion() > 1)
2009 gold_error(_("%s: .opd invalid in abiv%d"),
2010 this->name().c_str(), this->abiversion());
2011
2012 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2013 this->opd_address_ = shdr.get_sh_addr();
2014 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2015 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2016 true, false);
2017 break;
2018 }
2019 }
2020
2021 // Build set of executable sections.
2022 // Using a set is probably overkill. There is likely to be only
2023 // a few executable sections, typically .init, .text and .fini,
2024 // and they are generally grouped together.
2025 typedef std::set<Sec_info> Exec_sections;
2026 Exec_sections exec_sections;
2027 s = pshdrs;
2028 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2029 {
2030 typename elfcpp::Shdr<size, big_endian> shdr(s);
2031 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2032 && ((shdr.get_sh_flags()
2033 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2034 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2035 && shdr.get_sh_size() != 0)
2036 {
2037 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2038 shdr.get_sh_size(), i));
2039 }
2040 }
2041 if (exec_sections.empty())
2042 return;
2043
2044 // Look over the OPD entries. This is complicated by the fact
2045 // that some binaries will use two-word entries while others
2046 // will use the standard three-word entries. In most cases
2047 // the third word (the environment pointer for languages like
2048 // Pascal) is unused and will be zero. If the third word is
2049 // used it should not be pointing into executable sections,
2050 // I think.
2051 this->init_opd(opd_size);
2052 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2053 {
2054 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2055 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2056 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2057 if (val == 0)
2058 // Chances are that this is the third word of an OPD entry.
2059 continue;
2060 typename Exec_sections::const_iterator e
2061 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2062 if (e != exec_sections.begin())
2063 {
2064 --e;
2065 if (e->start <= val && val < e->start + e->len)
2066 {
2067 // We have an address in an executable section.
2068 // VAL ought to be the function entry, set it up.
2069 this->set_opd_ent(p - opd, e->shndx, val);
2070 // Skip second word of OPD entry, the TOC pointer.
2071 p += 8;
2072 }
2073 }
2074 // If we didn't match any executable sections, we likely
2075 // have a non-zero third word in the OPD entry.
2076 }
2077 }
2078 }
2079
2080 // Set up some symbols.
2081
2082 template<int size, bool big_endian>
2083 void
2084 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2085 Symbol_table* symtab,
2086 Layout* layout)
2087 {
2088 if (size == 32)
2089 {
2090 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2091 // undefined when scanning relocs (and thus requires
2092 // non-relative dynamic relocs). The proper value will be
2093 // updated later.
2094 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2095 if (gotsym != NULL && gotsym->is_undefined())
2096 {
2097 Target_powerpc<size, big_endian>* target =
2098 static_cast<Target_powerpc<size, big_endian>*>(
2099 parameters->sized_target<size, big_endian>());
2100 Output_data_got_powerpc<size, big_endian>* got
2101 = target->got_section(symtab, layout);
2102 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2103 Symbol_table::PREDEFINED,
2104 got, 0, 0,
2105 elfcpp::STT_OBJECT,
2106 elfcpp::STB_LOCAL,
2107 elfcpp::STV_HIDDEN, 0,
2108 false, false);
2109 }
2110
2111 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2112 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2113 if (sdasym != NULL && sdasym->is_undefined())
2114 {
2115 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2116 Output_section* os
2117 = layout->add_output_section_data(".sdata", 0,
2118 elfcpp::SHF_ALLOC
2119 | elfcpp::SHF_WRITE,
2120 sdata, ORDER_SMALL_DATA, false);
2121 symtab->define_in_output_data("_SDA_BASE_", NULL,
2122 Symbol_table::PREDEFINED,
2123 os, 32768, 0, elfcpp::STT_OBJECT,
2124 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2125 0, false, false);
2126 }
2127 }
2128 else
2129 {
2130 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2131 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2132 if (gotsym != NULL && gotsym->is_undefined())
2133 {
2134 Target_powerpc<size, big_endian>* target =
2135 static_cast<Target_powerpc<size, big_endian>*>(
2136 parameters->sized_target<size, big_endian>());
2137 Output_data_got_powerpc<size, big_endian>* got
2138 = target->got_section(symtab, layout);
2139 symtab->define_in_output_data(".TOC.", NULL,
2140 Symbol_table::PREDEFINED,
2141 got, 0x8000, 0,
2142 elfcpp::STT_OBJECT,
2143 elfcpp::STB_LOCAL,
2144 elfcpp::STV_HIDDEN, 0,
2145 false, false);
2146 }
2147 }
2148 }
2149
2150 // Set up PowerPC target specific relobj.
2151
2152 template<int size, bool big_endian>
2153 Object*
2154 Target_powerpc<size, big_endian>::do_make_elf_object(
2155 const std::string& name,
2156 Input_file* input_file,
2157 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2158 {
2159 int et = ehdr.get_e_type();
2160 // ET_EXEC files are valid input for --just-symbols/-R,
2161 // and we treat them as relocatable objects.
2162 if (et == elfcpp::ET_REL
2163 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2164 {
2165 Powerpc_relobj<size, big_endian>* obj =
2166 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2167 obj->setup();
2168 return obj;
2169 }
2170 else if (et == elfcpp::ET_DYN)
2171 {
2172 Powerpc_dynobj<size, big_endian>* obj =
2173 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2174 obj->setup();
2175 return obj;
2176 }
2177 else
2178 {
2179 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2180 return NULL;
2181 }
2182 }
2183
2184 template<int size, bool big_endian>
2185 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2186 {
2187 public:
2188 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2189 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2190
2191 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2192 : Output_data_got<size, big_endian>(),
2193 symtab_(symtab), layout_(layout),
2194 header_ent_cnt_(size == 32 ? 3 : 1),
2195 header_index_(size == 32 ? 0x2000 : 0)
2196 {
2197 if (size == 64)
2198 this->set_addralign(256);
2199 }
2200
2201 // Override all the Output_data_got methods we use so as to first call
2202 // reserve_ent().
2203 bool
2204 add_global(Symbol* gsym, unsigned int got_type)
2205 {
2206 this->reserve_ent();
2207 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2208 }
2209
2210 bool
2211 add_global_plt(Symbol* gsym, unsigned int got_type)
2212 {
2213 this->reserve_ent();
2214 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2215 }
2216
2217 bool
2218 add_global_tls(Symbol* gsym, unsigned int got_type)
2219 { return this->add_global_plt(gsym, got_type); }
2220
2221 void
2222 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2223 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2224 {
2225 this->reserve_ent();
2226 Output_data_got<size, big_endian>::
2227 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2228 }
2229
2230 void
2231 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2232 Output_data_reloc_generic* rel_dyn,
2233 unsigned int r_type_1, unsigned int r_type_2)
2234 {
2235 this->reserve_ent(2);
2236 Output_data_got<size, big_endian>::
2237 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2238 }
2239
2240 bool
2241 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2242 {
2243 this->reserve_ent();
2244 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2245 got_type);
2246 }
2247
2248 bool
2249 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2250 {
2251 this->reserve_ent();
2252 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2253 got_type);
2254 }
2255
2256 bool
2257 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2258 { return this->add_local_plt(object, sym_index, got_type); }
2259
2260 void
2261 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2262 unsigned int got_type,
2263 Output_data_reloc_generic* rel_dyn,
2264 unsigned int r_type)
2265 {
2266 this->reserve_ent(2);
2267 Output_data_got<size, big_endian>::
2268 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2269 }
2270
2271 unsigned int
2272 add_constant(Valtype constant)
2273 {
2274 this->reserve_ent();
2275 return Output_data_got<size, big_endian>::add_constant(constant);
2276 }
2277
2278 unsigned int
2279 add_constant_pair(Valtype c1, Valtype c2)
2280 {
2281 this->reserve_ent(2);
2282 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2283 }
2284
2285 // Offset of _GLOBAL_OFFSET_TABLE_.
2286 unsigned int
2287 g_o_t() const
2288 {
2289 return this->got_offset(this->header_index_);
2290 }
2291
2292 // Offset of base used to access the GOT/TOC.
2293 // The got/toc pointer reg will be set to this value.
2294 Valtype
2295 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2296 {
2297 if (size == 32)
2298 return this->g_o_t();
2299 else
2300 return (this->output_section()->address()
2301 + object->toc_base_offset()
2302 - this->address());
2303 }
2304
2305 // Ensure our GOT has a header.
2306 void
2307 set_final_data_size()
2308 {
2309 if (this->header_ent_cnt_ != 0)
2310 this->make_header();
2311 Output_data_got<size, big_endian>::set_final_data_size();
2312 }
2313
2314 // First word of GOT header needs some values that are not
2315 // handled by Output_data_got so poke them in here.
2316 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2317 void
2318 do_write(Output_file* of)
2319 {
2320 Valtype val = 0;
2321 if (size == 32 && this->layout_->dynamic_data() != NULL)
2322 val = this->layout_->dynamic_section()->address();
2323 if (size == 64)
2324 val = this->output_section()->address() + 0x8000;
2325 this->replace_constant(this->header_index_, val);
2326 Output_data_got<size, big_endian>::do_write(of);
2327 }
2328
2329 private:
2330 void
2331 reserve_ent(unsigned int cnt = 1)
2332 {
2333 if (this->header_ent_cnt_ == 0)
2334 return;
2335 if (this->num_entries() + cnt > this->header_index_)
2336 this->make_header();
2337 }
2338
2339 void
2340 make_header()
2341 {
2342 this->header_ent_cnt_ = 0;
2343 this->header_index_ = this->num_entries();
2344 if (size == 32)
2345 {
2346 Output_data_got<size, big_endian>::add_constant(0);
2347 Output_data_got<size, big_endian>::add_constant(0);
2348 Output_data_got<size, big_endian>::add_constant(0);
2349
2350 // Define _GLOBAL_OFFSET_TABLE_ at the header
2351 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2352 if (gotsym != NULL)
2353 {
2354 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2355 sym->set_value(this->g_o_t());
2356 }
2357 else
2358 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2359 Symbol_table::PREDEFINED,
2360 this, this->g_o_t(), 0,
2361 elfcpp::STT_OBJECT,
2362 elfcpp::STB_LOCAL,
2363 elfcpp::STV_HIDDEN, 0,
2364 false, false);
2365 }
2366 else
2367 Output_data_got<size, big_endian>::add_constant(0);
2368 }
2369
2370 // Stashed pointers.
2371 Symbol_table* symtab_;
2372 Layout* layout_;
2373
2374 // GOT header size.
2375 unsigned int header_ent_cnt_;
2376 // GOT header index.
2377 unsigned int header_index_;
2378 };
2379
2380 // Get the GOT section, creating it if necessary.
2381
2382 template<int size, bool big_endian>
2383 Output_data_got_powerpc<size, big_endian>*
2384 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2385 Layout* layout)
2386 {
2387 if (this->got_ == NULL)
2388 {
2389 gold_assert(symtab != NULL && layout != NULL);
2390
2391 this->got_
2392 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2393
2394 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2395 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2396 this->got_, ORDER_DATA, false);
2397 }
2398
2399 return this->got_;
2400 }
2401
2402 // Get the dynamic reloc section, creating it if necessary.
2403
2404 template<int size, bool big_endian>
2405 typename Target_powerpc<size, big_endian>::Reloc_section*
2406 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2407 {
2408 if (this->rela_dyn_ == NULL)
2409 {
2410 gold_assert(layout != NULL);
2411 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2412 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2413 elfcpp::SHF_ALLOC, this->rela_dyn_,
2414 ORDER_DYNAMIC_RELOCS, false);
2415 }
2416 return this->rela_dyn_;
2417 }
2418
2419 // Similarly, but for ifunc symbols get the one for ifunc.
2420
2421 template<int size, bool big_endian>
2422 typename Target_powerpc<size, big_endian>::Reloc_section*
2423 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2424 Layout* layout,
2425 bool for_ifunc)
2426 {
2427 if (!for_ifunc)
2428 return this->rela_dyn_section(layout);
2429
2430 if (this->iplt_ == NULL)
2431 this->make_iplt_section(symtab, layout);
2432 return this->iplt_->rel_plt();
2433 }
2434
2435 class Stub_control
2436 {
2437 public:
2438 // Determine the stub group size. The group size is the absolute
2439 // value of the parameter --stub-group-size. If --stub-group-size
2440 // is passed a negative value, we restrict stubs to be always after
2441 // the stubbed branches.
2442 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2443 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2444 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2445 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2446 owner_(NULL), output_section_(NULL)
2447 {
2448 }
2449
2450 // Return true iff input section can be handled by current stub
2451 // group.
2452 bool
2453 can_add_to_stub_group(Output_section* o,
2454 const Output_section::Input_section* i,
2455 bool has14);
2456
2457 const Output_section::Input_section*
2458 owner()
2459 { return owner_; }
2460
2461 Output_section*
2462 output_section()
2463 { return output_section_; }
2464
2465 void
2466 set_output_and_owner(Output_section* o,
2467 const Output_section::Input_section* i)
2468 {
2469 this->output_section_ = o;
2470 this->owner_ = i;
2471 }
2472
2473 private:
2474 typedef enum
2475 {
2476 // Initial state.
2477 NO_GROUP,
2478 // Adding group sections before the stubs.
2479 FINDING_STUB_SECTION,
2480 // Adding group sections after the stubs.
2481 HAS_STUB_SECTION
2482 } State;
2483
2484 uint32_t stub_group_size_;
2485 bool stubs_always_after_branch_;
2486 bool suppress_size_errors_;
2487 // True if a stub group can serve multiple output sections.
2488 bool multi_os_;
2489 State state_;
2490 // Current max size of group. Starts at stub_group_size_ but is
2491 // reduced to stub_group_size_/1024 on seeing a section with
2492 // external conditional branches.
2493 uint32_t group_size_;
2494 uint64_t group_start_addr_;
2495 // owner_ and output_section_ specify the section to which stubs are
2496 // attached. The stubs are placed at the end of this section.
2497 const Output_section::Input_section* owner_;
2498 Output_section* output_section_;
2499 };
2500
2501 // Return true iff input section can be handled by current stub
2502 // group. Sections are presented to this function in order,
2503 // so the first section is the head of the group.
2504
2505 bool
2506 Stub_control::can_add_to_stub_group(Output_section* o,
2507 const Output_section::Input_section* i,
2508 bool has14)
2509 {
2510 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2511 uint64_t this_size;
2512 uint64_t start_addr = o->address();
2513
2514 if (whole_sec)
2515 // .init and .fini sections are pasted together to form a single
2516 // function. We can't be adding stubs in the middle of the function.
2517 this_size = o->data_size();
2518 else
2519 {
2520 start_addr += i->relobj()->output_section_offset(i->shndx());
2521 this_size = i->data_size();
2522 }
2523
2524 uint64_t end_addr = start_addr + this_size;
2525 uint32_t group_size = this->stub_group_size_;
2526 if (has14)
2527 this->group_size_ = group_size = group_size >> 10;
2528
2529 if (this_size > group_size && !this->suppress_size_errors_)
2530 gold_warning(_("%s:%s exceeds group size"),
2531 i->relobj()->name().c_str(),
2532 i->relobj()->section_name(i->shndx()).c_str());
2533
2534 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2535 has14 ? " 14bit" : "",
2536 i->relobj()->name().c_str(),
2537 i->relobj()->section_name(i->shndx()).c_str(),
2538 (long long) this_size,
2539 (this->state_ == NO_GROUP
2540 ? this_size
2541 : (long long) end_addr - this->group_start_addr_));
2542
2543 if (this->state_ == NO_GROUP)
2544 {
2545 // Only here on very first use of Stub_control
2546 this->owner_ = i;
2547 this->output_section_ = o;
2548 this->state_ = FINDING_STUB_SECTION;
2549 this->group_size_ = group_size;
2550 this->group_start_addr_ = start_addr;
2551 return true;
2552 }
2553 else if (!this->multi_os_ && this->output_section_ != o)
2554 ;
2555 else if (this->state_ == HAS_STUB_SECTION)
2556 {
2557 // Can we add this section, which is after the stubs, to the
2558 // group?
2559 if (end_addr - this->group_start_addr_ <= this->group_size_)
2560 return true;
2561 }
2562 else if (this->state_ == FINDING_STUB_SECTION)
2563 {
2564 if ((whole_sec && this->output_section_ == o)
2565 || end_addr - this->group_start_addr_ <= this->group_size_)
2566 {
2567 // Stubs are added at the end of "owner_".
2568 this->owner_ = i;
2569 this->output_section_ = o;
2570 return true;
2571 }
2572 // The group before the stubs has reached maximum size.
2573 // Now see about adding sections after the stubs to the
2574 // group. If the current section has a 14-bit branch and
2575 // the group before the stubs exceeds group_size_ (because
2576 // they didn't have 14-bit branches), don't add sections
2577 // after the stubs: The size of stubs for such a large
2578 // group may exceed the reach of a 14-bit branch.
2579 if (!this->stubs_always_after_branch_
2580 && this_size <= this->group_size_
2581 && start_addr - this->group_start_addr_ <= this->group_size_)
2582 {
2583 gold_debug(DEBUG_TARGET, "adding after stubs");
2584 this->state_ = HAS_STUB_SECTION;
2585 this->group_start_addr_ = start_addr;
2586 return true;
2587 }
2588 }
2589 else
2590 gold_unreachable();
2591
2592 gold_debug(DEBUG_TARGET,
2593 !this->multi_os_ && this->output_section_ != o
2594 ? "nope, new output section\n"
2595 : "nope, didn't fit\n");
2596
2597 // The section fails to fit in the current group. Set up a few
2598 // things for the next group. owner_ and output_section_ will be
2599 // set later after we've retrieved those values for the current
2600 // group.
2601 this->state_ = FINDING_STUB_SECTION;
2602 this->group_size_ = group_size;
2603 this->group_start_addr_ = start_addr;
2604 return false;
2605 }
2606
2607 // Look over all the input sections, deciding where to place stubs.
2608
2609 template<int size, bool big_endian>
2610 void
2611 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2612 const Task*,
2613 bool no_size_errors)
2614 {
2615 Stub_control stub_control(this->stub_group_size_, no_size_errors,
2616 parameters->options().stub_group_multi());
2617
2618 // Group input sections and insert stub table
2619 Stub_table_owner* table_owner = NULL;
2620 std::vector<Stub_table_owner*> tables;
2621 Layout::Section_list section_list;
2622 layout->get_executable_sections(&section_list);
2623 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2624 for (Layout::Section_list::iterator o = section_list.begin();
2625 o != section_list.end();
2626 ++o)
2627 {
2628 typedef Output_section::Input_section_list Input_section_list;
2629 for (Input_section_list::const_iterator i
2630 = (*o)->input_sections().begin();
2631 i != (*o)->input_sections().end();
2632 ++i)
2633 {
2634 if (i->is_input_section()
2635 || i->is_relaxed_input_section())
2636 {
2637 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2638 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2639 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2640 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2641 {
2642 table_owner->output_section = stub_control.output_section();
2643 table_owner->owner = stub_control.owner();
2644 stub_control.set_output_and_owner(*o, &*i);
2645 table_owner = NULL;
2646 }
2647 if (table_owner == NULL)
2648 {
2649 table_owner = new Stub_table_owner;
2650 tables.push_back(table_owner);
2651 }
2652 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2653 }
2654 }
2655 }
2656 if (table_owner != NULL)
2657 {
2658 table_owner->output_section = stub_control.output_section();
2659 table_owner->owner = stub_control.owner();;
2660 }
2661 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2662 t != tables.end();
2663 ++t)
2664 {
2665 Stub_table<size, big_endian>* stub_table;
2666
2667 if ((*t)->owner->is_input_section())
2668 stub_table = new Stub_table<size, big_endian>(this,
2669 (*t)->output_section,
2670 (*t)->owner);
2671 else if ((*t)->owner->is_relaxed_input_section())
2672 stub_table = static_cast<Stub_table<size, big_endian>*>(
2673 (*t)->owner->relaxed_input_section());
2674 else
2675 gold_unreachable();
2676 this->stub_tables_.push_back(stub_table);
2677 delete *t;
2678 }
2679 }
2680
2681 static unsigned long
2682 max_branch_delta (unsigned int r_type)
2683 {
2684 if (r_type == elfcpp::R_POWERPC_REL14
2685 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2686 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2687 return 1L << 15;
2688 if (r_type == elfcpp::R_POWERPC_REL24
2689 || r_type == elfcpp::R_PPC_PLTREL24
2690 || r_type == elfcpp::R_PPC_LOCAL24PC)
2691 return 1L << 25;
2692 return 0;
2693 }
2694
2695 // If this branch needs a plt call stub, or a long branch stub, make one.
2696
2697 template<int size, bool big_endian>
2698 bool
2699 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2700 Stub_table<size, big_endian>* stub_table,
2701 Stub_table<size, big_endian>* ifunc_stub_table,
2702 Symbol_table* symtab) const
2703 {
2704 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2705 if (sym != NULL && sym->is_forwarder())
2706 sym = symtab->resolve_forwards(sym);
2707 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2708 Target_powerpc<size, big_endian>* target =
2709 static_cast<Target_powerpc<size, big_endian>*>(
2710 parameters->sized_target<size, big_endian>());
2711 bool ok = true;
2712
2713 if (gsym != NULL
2714 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2715 : this->object_->local_has_plt_offset(this->r_sym_))
2716 {
2717 if (size == 64
2718 && gsym != NULL
2719 && target->abiversion() >= 2
2720 && !parameters->options().output_is_position_independent()
2721 && !is_branch_reloc(this->r_type_))
2722 target->glink_section()->add_global_entry(gsym);
2723 else
2724 {
2725 if (stub_table == NULL)
2726 stub_table = this->object_->stub_table(this->shndx_);
2727 if (stub_table == NULL)
2728 {
2729 // This is a ref from a data section to an ifunc symbol.
2730 stub_table = ifunc_stub_table;
2731 }
2732 gold_assert(stub_table != NULL);
2733 Address from = this->object_->get_output_section_offset(this->shndx_);
2734 if (from != invalid_address)
2735 from += (this->object_->output_section(this->shndx_)->address()
2736 + this->offset_);
2737 if (gsym != NULL)
2738 ok = stub_table->add_plt_call_entry(from,
2739 this->object_, gsym,
2740 this->r_type_, this->addend_);
2741 else
2742 ok = stub_table->add_plt_call_entry(from,
2743 this->object_, this->r_sym_,
2744 this->r_type_, this->addend_);
2745 }
2746 }
2747 else
2748 {
2749 Address max_branch_offset = max_branch_delta(this->r_type_);
2750 if (max_branch_offset == 0)
2751 return true;
2752 Address from = this->object_->get_output_section_offset(this->shndx_);
2753 gold_assert(from != invalid_address);
2754 from += (this->object_->output_section(this->shndx_)->address()
2755 + this->offset_);
2756 Address to;
2757 if (gsym != NULL)
2758 {
2759 switch (gsym->source())
2760 {
2761 case Symbol::FROM_OBJECT:
2762 {
2763 Object* symobj = gsym->object();
2764 if (symobj->is_dynamic()
2765 || symobj->pluginobj() != NULL)
2766 return true;
2767 bool is_ordinary;
2768 unsigned int shndx = gsym->shndx(&is_ordinary);
2769 if (shndx == elfcpp::SHN_UNDEF)
2770 return true;
2771 }
2772 break;
2773
2774 case Symbol::IS_UNDEFINED:
2775 return true;
2776
2777 default:
2778 break;
2779 }
2780 Symbol_table::Compute_final_value_status status;
2781 to = symtab->compute_final_value<size>(gsym, &status);
2782 if (status != Symbol_table::CFVS_OK)
2783 return true;
2784 if (size == 64)
2785 to += this->object_->ppc64_local_entry_offset(gsym);
2786 }
2787 else
2788 {
2789 const Symbol_value<size>* psymval
2790 = this->object_->local_symbol(this->r_sym_);
2791 Symbol_value<size> symval;
2792 if (psymval->is_section_symbol())
2793 symval.set_is_section_symbol();
2794 typedef Sized_relobj_file<size, big_endian> ObjType;
2795 typename ObjType::Compute_final_local_value_status status
2796 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2797 &symval, symtab);
2798 if (status != ObjType::CFLV_OK
2799 || !symval.has_output_value())
2800 return true;
2801 to = symval.value(this->object_, 0);
2802 if (size == 64)
2803 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2804 }
2805 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2806 to += this->addend_;
2807 if (stub_table == NULL)
2808 stub_table = this->object_->stub_table(this->shndx_);
2809 if (size == 64 && target->abiversion() < 2)
2810 {
2811 unsigned int dest_shndx;
2812 if (!target->symval_for_branch(symtab, gsym, this->object_,
2813 &to, &dest_shndx))
2814 return true;
2815 }
2816 Address delta = to - from;
2817 if (delta + max_branch_offset >= 2 * max_branch_offset)
2818 {
2819 if (stub_table == NULL)
2820 {
2821 gold_warning(_("%s:%s: branch in non-executable section,"
2822 " no long branch stub for you"),
2823 this->object_->name().c_str(),
2824 this->object_->section_name(this->shndx_).c_str());
2825 return true;
2826 }
2827 bool save_res = (size == 64
2828 && gsym != NULL
2829 && gsym->source() == Symbol::IN_OUTPUT_DATA
2830 && gsym->output_data() == target->savres_section());
2831 ok = stub_table->add_long_branch_entry(this->object_,
2832 this->r_type_,
2833 from, to, save_res);
2834 }
2835 }
2836 if (!ok)
2837 gold_debug(DEBUG_TARGET,
2838 "branch at %s:%s+%#lx\n"
2839 "can't reach stub attached to %s:%s",
2840 this->object_->name().c_str(),
2841 this->object_->section_name(this->shndx_).c_str(),
2842 (unsigned long) this->offset_,
2843 stub_table->relobj()->name().c_str(),
2844 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
2845
2846 return ok;
2847 }
2848
2849 // Relaxation hook. This is where we do stub generation.
2850
2851 template<int size, bool big_endian>
2852 bool
2853 Target_powerpc<size, big_endian>::do_relax(int pass,
2854 const Input_objects*,
2855 Symbol_table* symtab,
2856 Layout* layout,
2857 const Task* task)
2858 {
2859 unsigned int prev_brlt_size = 0;
2860 if (pass == 1)
2861 {
2862 bool thread_safe
2863 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2864 if (size == 64
2865 && this->abiversion() < 2
2866 && !thread_safe
2867 && !parameters->options().user_set_plt_thread_safe())
2868 {
2869 static const char* const thread_starter[] =
2870 {
2871 "pthread_create",
2872 /* libstdc++ */
2873 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2874 /* librt */
2875 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2876 "mq_notify", "create_timer",
2877 /* libanl */
2878 "getaddrinfo_a",
2879 /* libgomp */
2880 "GOMP_parallel",
2881 "GOMP_parallel_start",
2882 "GOMP_parallel_loop_static",
2883 "GOMP_parallel_loop_static_start",
2884 "GOMP_parallel_loop_dynamic",
2885 "GOMP_parallel_loop_dynamic_start",
2886 "GOMP_parallel_loop_guided",
2887 "GOMP_parallel_loop_guided_start",
2888 "GOMP_parallel_loop_runtime",
2889 "GOMP_parallel_loop_runtime_start",
2890 "GOMP_parallel_sections",
2891 "GOMP_parallel_sections_start",
2892 /* libgo */
2893 "__go_go",
2894 };
2895
2896 if (parameters->options().shared())
2897 thread_safe = true;
2898 else
2899 {
2900 for (unsigned int i = 0;
2901 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2902 i++)
2903 {
2904 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2905 thread_safe = (sym != NULL
2906 && sym->in_reg()
2907 && sym->in_real_elf());
2908 if (thread_safe)
2909 break;
2910 }
2911 }
2912 }
2913 this->plt_thread_safe_ = thread_safe;
2914 }
2915
2916 if (pass == 1)
2917 {
2918 this->stub_group_size_ = parameters->options().stub_group_size();
2919 bool no_size_errors = true;
2920 if (this->stub_group_size_ == 1)
2921 this->stub_group_size_ = 0x1c00000;
2922 else if (this->stub_group_size_ == -1)
2923 this->stub_group_size_ = -0x1e00000;
2924 else
2925 no_size_errors = false;
2926 this->group_sections(layout, task, no_size_errors);
2927 }
2928 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2929 {
2930 this->branch_lookup_table_.clear();
2931 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2932 p != this->stub_tables_.end();
2933 ++p)
2934 {
2935 (*p)->clear_stubs(true);
2936 }
2937 this->stub_tables_.clear();
2938 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2939 gold_info(_("%s: stub group size is too large; retrying with %#x"),
2940 program_name, this->stub_group_size_);
2941 this->group_sections(layout, task, true);
2942 }
2943
2944 // We need address of stub tables valid for make_stub.
2945 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2946 p != this->stub_tables_.end();
2947 ++p)
2948 {
2949 const Powerpc_relobj<size, big_endian>* object
2950 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2951 Address off = object->get_output_section_offset((*p)->shndx());
2952 gold_assert(off != invalid_address);
2953 Output_section* os = (*p)->output_section();
2954 (*p)->set_address_and_size(os, off);
2955 }
2956
2957 if (pass != 1)
2958 {
2959 // Clear plt call stubs, long branch stubs and branch lookup table.
2960 prev_brlt_size = this->branch_lookup_table_.size();
2961 this->branch_lookup_table_.clear();
2962 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2963 p != this->stub_tables_.end();
2964 ++p)
2965 {
2966 (*p)->clear_stubs(false);
2967 }
2968 }
2969
2970 // Build all the stubs.
2971 this->relax_failed_ = false;
2972 Stub_table<size, big_endian>* ifunc_stub_table
2973 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2974 Stub_table<size, big_endian>* one_stub_table
2975 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2976 for (typename Branches::const_iterator b = this->branch_info_.begin();
2977 b != this->branch_info_.end();
2978 b++)
2979 {
2980 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2981 && !this->relax_failed_)
2982 {
2983 this->relax_failed_ = true;
2984 this->relax_fail_count_++;
2985 if (this->relax_fail_count_ < 3)
2986 return true;
2987 }
2988 }
2989
2990 // Did anything change size?
2991 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2992 bool again = num_huge_branches != prev_brlt_size;
2993 if (size == 64 && num_huge_branches != 0)
2994 this->make_brlt_section(layout);
2995 if (size == 64 && again)
2996 this->brlt_section_->set_current_size(num_huge_branches);
2997
2998 typedef Unordered_set<Output_section*> Output_sections;
2999 Output_sections os_need_update;
3000 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3001 p != this->stub_tables_.end();
3002 ++p)
3003 {
3004 if ((*p)->size_update())
3005 {
3006 again = true;
3007 (*p)->add_eh_frame(layout);
3008 os_need_update.insert((*p)->output_section());
3009 }
3010 }
3011
3012 // Set output section offsets for all input sections in an output
3013 // section that just changed size. Anything past the stubs will
3014 // need updating.
3015 for (typename Output_sections::iterator p = os_need_update.begin();
3016 p != os_need_update.end();
3017 p++)
3018 {
3019 Output_section* os = *p;
3020 Address off = 0;
3021 typedef Output_section::Input_section_list Input_section_list;
3022 for (Input_section_list::const_iterator i = os->input_sections().begin();
3023 i != os->input_sections().end();
3024 ++i)
3025 {
3026 off = align_address(off, i->addralign());
3027 if (i->is_input_section() || i->is_relaxed_input_section())
3028 i->relobj()->set_section_offset(i->shndx(), off);
3029 if (i->is_relaxed_input_section())
3030 {
3031 Stub_table<size, big_endian>* stub_table
3032 = static_cast<Stub_table<size, big_endian>*>(
3033 i->relaxed_input_section());
3034 Address stub_table_size = stub_table->set_address_and_size(os, off);
3035 off += stub_table_size;
3036 // After a few iterations, set current stub table size
3037 // as min size threshold, so later stub tables can only
3038 // grow in size.
3039 if (pass >= 4)
3040 stub_table->set_min_size_threshold(stub_table_size);
3041 }
3042 else
3043 off += i->data_size();
3044 }
3045 // If .branch_lt is part of this output section, then we have
3046 // just done the offset adjustment.
3047 os->clear_section_offsets_need_adjustment();
3048 }
3049
3050 if (size == 64
3051 && !again
3052 && num_huge_branches != 0
3053 && parameters->options().output_is_position_independent())
3054 {
3055 // Fill in the BRLT relocs.
3056 this->brlt_section_->reset_brlt_sizes();
3057 for (typename Branch_lookup_table::const_iterator p
3058 = this->branch_lookup_table_.begin();
3059 p != this->branch_lookup_table_.end();
3060 ++p)
3061 {
3062 this->brlt_section_->add_reloc(p->first, p->second);
3063 }
3064 this->brlt_section_->finalize_brlt_sizes();
3065 }
3066 return again;
3067 }
3068
3069 template<int size, bool big_endian>
3070 void
3071 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3072 unsigned char* oview,
3073 uint64_t* paddress,
3074 off_t* plen) const
3075 {
3076 uint64_t address = plt->address();
3077 off_t len = plt->data_size();
3078
3079 if (plt == this->glink_)
3080 {
3081 // See Output_data_glink::do_write() for glink contents.
3082 if (len == 0)
3083 {
3084 gold_assert(parameters->doing_static_link());
3085 // Static linking may need stubs, to support ifunc and long
3086 // branches. We need to create an output section for
3087 // .eh_frame early in the link process, to have a place to
3088 // attach stub .eh_frame info. We also need to have
3089 // registered a CIE that matches the stub CIE. Both of
3090 // these requirements are satisfied by creating an FDE and
3091 // CIE for .glink, even though static linking will leave
3092 // .glink zero length.
3093 // ??? Hopefully generating an FDE with a zero address range
3094 // won't confuse anything that consumes .eh_frame info.
3095 }
3096 else if (size == 64)
3097 {
3098 // There is one word before __glink_PLTresolve
3099 address += 8;
3100 len -= 8;
3101 }
3102 else if (parameters->options().output_is_position_independent())
3103 {
3104 // There are two FDEs for a position independent glink.
3105 // The first covers the branch table, the second
3106 // __glink_PLTresolve at the end of glink.
3107 off_t resolve_size = this->glink_->pltresolve_size;
3108 if (oview[9] == elfcpp::DW_CFA_nop)
3109 len -= resolve_size;
3110 else
3111 {
3112 address += len - resolve_size;
3113 len = resolve_size;
3114 }
3115 }
3116 }
3117 else
3118 {
3119 // Must be a stub table.
3120 const Stub_table<size, big_endian>* stub_table
3121 = static_cast<const Stub_table<size, big_endian>*>(plt);
3122 uint64_t stub_address = stub_table->stub_address();
3123 len -= stub_address - address;
3124 address = stub_address;
3125 }
3126
3127 *paddress = address;
3128 *plen = len;
3129 }
3130
3131 // A class to handle the PLT data.
3132
3133 template<int size, bool big_endian>
3134 class Output_data_plt_powerpc : public Output_section_data_build
3135 {
3136 public:
3137 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3138 size, big_endian> Reloc_section;
3139
3140 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3141 Reloc_section* plt_rel,
3142 const char* name)
3143 : Output_section_data_build(size == 32 ? 4 : 8),
3144 rel_(plt_rel),
3145 targ_(targ),
3146 name_(name)
3147 { }
3148
3149 // Add an entry to the PLT.
3150 void
3151 add_entry(Symbol*);
3152
3153 void
3154 add_ifunc_entry(Symbol*);
3155
3156 void
3157 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3158
3159 // Return the .rela.plt section data.
3160 Reloc_section*
3161 rel_plt() const
3162 {
3163 return this->rel_;
3164 }
3165
3166 // Return the number of PLT entries.
3167 unsigned int
3168 entry_count() const
3169 {
3170 if (this->current_data_size() == 0)
3171 return 0;
3172 return ((this->current_data_size() - this->first_plt_entry_offset())
3173 / this->plt_entry_size());
3174 }
3175
3176 protected:
3177 void
3178 do_adjust_output_section(Output_section* os)
3179 {
3180 os->set_entsize(0);
3181 }
3182
3183 // Write to a map file.
3184 void
3185 do_print_to_mapfile(Mapfile* mapfile) const
3186 { mapfile->print_output_data(this, this->name_); }
3187
3188 private:
3189 // Return the offset of the first non-reserved PLT entry.
3190 unsigned int
3191 first_plt_entry_offset() const
3192 {
3193 // IPLT has no reserved entry.
3194 if (this->name_[3] == 'I')
3195 return 0;
3196 return this->targ_->first_plt_entry_offset();
3197 }
3198
3199 // Return the size of each PLT entry.
3200 unsigned int
3201 plt_entry_size() const
3202 {
3203 return this->targ_->plt_entry_size();
3204 }
3205
3206 // Write out the PLT data.
3207 void
3208 do_write(Output_file*);
3209
3210 // The reloc section.
3211 Reloc_section* rel_;
3212 // Allows access to .glink for do_write.
3213 Target_powerpc<size, big_endian>* targ_;
3214 // What to report in map file.
3215 const char *name_;
3216 };
3217
3218 // Add an entry to the PLT.
3219
3220 template<int size, bool big_endian>
3221 void
3222 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3223 {
3224 if (!gsym->has_plt_offset())
3225 {
3226 section_size_type off = this->current_data_size();
3227 if (off == 0)
3228 off += this->first_plt_entry_offset();
3229 gsym->set_plt_offset(off);
3230 gsym->set_needs_dynsym_entry();
3231 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3232 this->rel_->add_global(gsym, dynrel, this, off, 0);
3233 off += this->plt_entry_size();
3234 this->set_current_data_size(off);
3235 }
3236 }
3237
3238 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3239
3240 template<int size, bool big_endian>
3241 void
3242 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3243 {
3244 if (!gsym->has_plt_offset())
3245 {
3246 section_size_type off = this->current_data_size();
3247 gsym->set_plt_offset(off);
3248 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3249 if (size == 64 && this->targ_->abiversion() < 2)
3250 dynrel = elfcpp::R_PPC64_JMP_IREL;
3251 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3252 off += this->plt_entry_size();
3253 this->set_current_data_size(off);
3254 }
3255 }
3256
3257 // Add an entry for a local ifunc symbol to the IPLT.
3258
3259 template<int size, bool big_endian>
3260 void
3261 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3262 Sized_relobj_file<size, big_endian>* relobj,
3263 unsigned int local_sym_index)
3264 {
3265 if (!relobj->local_has_plt_offset(local_sym_index))
3266 {
3267 section_size_type off = this->current_data_size();
3268 relobj->set_local_plt_offset(local_sym_index, off);
3269 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3270 if (size == 64 && this->targ_->abiversion() < 2)
3271 dynrel = elfcpp::R_PPC64_JMP_IREL;
3272 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3273 this, off, 0);
3274 off += this->plt_entry_size();
3275 this->set_current_data_size(off);
3276 }
3277 }
3278
3279 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3280 static const uint32_t add_2_2_11 = 0x7c425a14;
3281 static const uint32_t add_2_2_12 = 0x7c426214;
3282 static const uint32_t add_3_3_2 = 0x7c631214;
3283 static const uint32_t add_3_3_13 = 0x7c636a14;
3284 static const uint32_t add_11_0_11 = 0x7d605a14;
3285 static const uint32_t add_11_2_11 = 0x7d625a14;
3286 static const uint32_t add_11_11_2 = 0x7d6b1214;
3287 static const uint32_t addi_0_12 = 0x380c0000;
3288 static const uint32_t addi_2_2 = 0x38420000;
3289 static const uint32_t addi_3_3 = 0x38630000;
3290 static const uint32_t addi_11_11 = 0x396b0000;
3291 static const uint32_t addi_12_1 = 0x39810000;
3292 static const uint32_t addi_12_12 = 0x398c0000;
3293 static const uint32_t addis_0_2 = 0x3c020000;
3294 static const uint32_t addis_0_13 = 0x3c0d0000;
3295 static const uint32_t addis_2_12 = 0x3c4c0000;
3296 static const uint32_t addis_11_2 = 0x3d620000;
3297 static const uint32_t addis_11_11 = 0x3d6b0000;
3298 static const uint32_t addis_11_30 = 0x3d7e0000;
3299 static const uint32_t addis_12_1 = 0x3d810000;
3300 static const uint32_t addis_12_2 = 0x3d820000;
3301 static const uint32_t addis_12_12 = 0x3d8c0000;
3302 static const uint32_t b = 0x48000000;
3303 static const uint32_t bcl_20_31 = 0x429f0005;
3304 static const uint32_t bctr = 0x4e800420;
3305 static const uint32_t blr = 0x4e800020;
3306 static const uint32_t bnectr_p4 = 0x4ce20420;
3307 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3308 static const uint32_t cmpldi_2_0 = 0x28220000;
3309 static const uint32_t cror_15_15_15 = 0x4def7b82;
3310 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3311 static const uint32_t ld_0_1 = 0xe8010000;
3312 static const uint32_t ld_0_12 = 0xe80c0000;
3313 static const uint32_t ld_2_1 = 0xe8410000;
3314 static const uint32_t ld_2_2 = 0xe8420000;
3315 static const uint32_t ld_2_11 = 0xe84b0000;
3316 static const uint32_t ld_2_12 = 0xe84c0000;
3317 static const uint32_t ld_11_2 = 0xe9620000;
3318 static const uint32_t ld_11_11 = 0xe96b0000;
3319 static const uint32_t ld_12_2 = 0xe9820000;
3320 static const uint32_t ld_12_11 = 0xe98b0000;
3321 static const uint32_t ld_12_12 = 0xe98c0000;
3322 static const uint32_t lfd_0_1 = 0xc8010000;
3323 static const uint32_t li_0_0 = 0x38000000;
3324 static const uint32_t li_12_0 = 0x39800000;
3325 static const uint32_t lis_0 = 0x3c000000;
3326 static const uint32_t lis_2 = 0x3c400000;
3327 static const uint32_t lis_11 = 0x3d600000;
3328 static const uint32_t lis_12 = 0x3d800000;
3329 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3330 static const uint32_t lwz_0_12 = 0x800c0000;
3331 static const uint32_t lwz_11_11 = 0x816b0000;
3332 static const uint32_t lwz_11_30 = 0x817e0000;
3333 static const uint32_t lwz_12_12 = 0x818c0000;
3334 static const uint32_t lwzu_0_12 = 0x840c0000;
3335 static const uint32_t mflr_0 = 0x7c0802a6;
3336 static const uint32_t mflr_11 = 0x7d6802a6;
3337 static const uint32_t mflr_12 = 0x7d8802a6;
3338 static const uint32_t mtctr_0 = 0x7c0903a6;
3339 static const uint32_t mtctr_11 = 0x7d6903a6;
3340 static const uint32_t mtctr_12 = 0x7d8903a6;
3341 static const uint32_t mtlr_0 = 0x7c0803a6;
3342 static const uint32_t mtlr_12 = 0x7d8803a6;
3343 static const uint32_t nop = 0x60000000;
3344 static const uint32_t ori_0_0_0 = 0x60000000;
3345 static const uint32_t srdi_0_0_2 = 0x7800f082;
3346 static const uint32_t std_0_1 = 0xf8010000;
3347 static const uint32_t std_0_12 = 0xf80c0000;
3348 static const uint32_t std_2_1 = 0xf8410000;
3349 static const uint32_t stfd_0_1 = 0xd8010000;
3350 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3351 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3352 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3353 static const uint32_t xor_2_12_12 = 0x7d826278;
3354 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3355
3356 // Write out the PLT.
3357
3358 template<int size, bool big_endian>
3359 void
3360 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3361 {
3362 if (size == 32 && this->name_[3] != 'I')
3363 {
3364 const section_size_type offset = this->offset();
3365 const section_size_type oview_size
3366 = convert_to_section_size_type(this->data_size());
3367 unsigned char* const oview = of->get_output_view(offset, oview_size);
3368 unsigned char* pov = oview;
3369 unsigned char* endpov = oview + oview_size;
3370
3371 // The address of the .glink branch table
3372 const Output_data_glink<size, big_endian>* glink
3373 = this->targ_->glink_section();
3374 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3375
3376 while (pov < endpov)
3377 {
3378 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3379 pov += 4;
3380 branch_tab += 4;
3381 }
3382
3383 of->write_output_view(offset, oview_size, oview);
3384 }
3385 }
3386
3387 // Create the PLT section.
3388
3389 template<int size, bool big_endian>
3390 void
3391 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3392 Layout* layout)
3393 {
3394 if (this->plt_ == NULL)
3395 {
3396 if (this->got_ == NULL)
3397 this->got_section(symtab, layout);
3398
3399 if (this->glink_ == NULL)
3400 make_glink_section(layout);
3401
3402 // Ensure that .rela.dyn always appears before .rela.plt This is
3403 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3404 // needs to include .rela.plt in its range.
3405 this->rela_dyn_section(layout);
3406
3407 Reloc_section* plt_rel = new Reloc_section(false);
3408 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3409 elfcpp::SHF_ALLOC, plt_rel,
3410 ORDER_DYNAMIC_PLT_RELOCS, false);
3411 this->plt_
3412 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3413 "** PLT");
3414 layout->add_output_section_data(".plt",
3415 (size == 32
3416 ? elfcpp::SHT_PROGBITS
3417 : elfcpp::SHT_NOBITS),
3418 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3419 this->plt_,
3420 (size == 32
3421 ? ORDER_SMALL_DATA
3422 : ORDER_SMALL_BSS),
3423 false);
3424 }
3425 }
3426
3427 // Create the IPLT section.
3428
3429 template<int size, bool big_endian>
3430 void
3431 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3432 Layout* layout)
3433 {
3434 if (this->iplt_ == NULL)
3435 {
3436 this->make_plt_section(symtab, layout);
3437
3438 Reloc_section* iplt_rel = new Reloc_section(false);
3439 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3440 this->iplt_
3441 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3442 "** IPLT");
3443 this->plt_->output_section()->add_output_section_data(this->iplt_);
3444 }
3445 }
3446
3447 // A section for huge long branch addresses, similar to plt section.
3448
3449 template<int size, bool big_endian>
3450 class Output_data_brlt_powerpc : public Output_section_data_build
3451 {
3452 public:
3453 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3454 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3455 size, big_endian> Reloc_section;
3456
3457 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3458 Reloc_section* brlt_rel)
3459 : Output_section_data_build(size == 32 ? 4 : 8),
3460 rel_(brlt_rel),
3461 targ_(targ)
3462 { }
3463
3464 void
3465 reset_brlt_sizes()
3466 {
3467 this->reset_data_size();
3468 this->rel_->reset_data_size();
3469 }
3470
3471 void
3472 finalize_brlt_sizes()
3473 {
3474 this->finalize_data_size();
3475 this->rel_->finalize_data_size();
3476 }
3477
3478 // Add a reloc for an entry in the BRLT.
3479 void
3480 add_reloc(Address to, unsigned int off)
3481 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3482
3483 // Update section and reloc section size.
3484 void
3485 set_current_size(unsigned int num_branches)
3486 {
3487 this->reset_address_and_file_offset();
3488 this->set_current_data_size(num_branches * 16);
3489 this->finalize_data_size();
3490 Output_section* os = this->output_section();
3491 os->set_section_offsets_need_adjustment();
3492 if (this->rel_ != NULL)
3493 {
3494 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3495 this->rel_->reset_address_and_file_offset();
3496 this->rel_->set_current_data_size(num_branches * reloc_size);
3497 this->rel_->finalize_data_size();
3498 Output_section* os = this->rel_->output_section();
3499 os->set_section_offsets_need_adjustment();
3500 }
3501 }
3502
3503 protected:
3504 void
3505 do_adjust_output_section(Output_section* os)
3506 {
3507 os->set_entsize(0);
3508 }
3509
3510 // Write to a map file.
3511 void
3512 do_print_to_mapfile(Mapfile* mapfile) const
3513 { mapfile->print_output_data(this, "** BRLT"); }
3514
3515 private:
3516 // Write out the BRLT data.
3517 void
3518 do_write(Output_file*);
3519
3520 // The reloc section.
3521 Reloc_section* rel_;
3522 Target_powerpc<size, big_endian>* targ_;
3523 };
3524
3525 // Make the branch lookup table section.
3526
3527 template<int size, bool big_endian>
3528 void
3529 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3530 {
3531 if (size == 64 && this->brlt_section_ == NULL)
3532 {
3533 Reloc_section* brlt_rel = NULL;
3534 bool is_pic = parameters->options().output_is_position_independent();
3535 if (is_pic)
3536 {
3537 // When PIC we can't fill in .branch_lt (like .plt it can be
3538 // a bss style section) but must initialise at runtime via
3539 // dynamic relocats.
3540 this->rela_dyn_section(layout);
3541 brlt_rel = new Reloc_section(false);
3542 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3543 }
3544 this->brlt_section_
3545 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3546 if (this->plt_ && is_pic)
3547 this->plt_->output_section()
3548 ->add_output_section_data(this->brlt_section_);
3549 else
3550 layout->add_output_section_data(".branch_lt",
3551 (is_pic ? elfcpp::SHT_NOBITS
3552 : elfcpp::SHT_PROGBITS),
3553 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3554 this->brlt_section_,
3555 (is_pic ? ORDER_SMALL_BSS
3556 : ORDER_SMALL_DATA),
3557 false);
3558 }
3559 }
3560
3561 // Write out .branch_lt when non-PIC.
3562
3563 template<int size, bool big_endian>
3564 void
3565 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3566 {
3567 if (size == 64 && !parameters->options().output_is_position_independent())
3568 {
3569 const section_size_type offset = this->offset();
3570 const section_size_type oview_size
3571 = convert_to_section_size_type(this->data_size());
3572 unsigned char* const oview = of->get_output_view(offset, oview_size);
3573
3574 this->targ_->write_branch_lookup_table(oview);
3575 of->write_output_view(offset, oview_size, oview);
3576 }
3577 }
3578
3579 static inline uint32_t
3580 l(uint32_t a)
3581 {
3582 return a & 0xffff;
3583 }
3584
3585 static inline uint32_t
3586 hi(uint32_t a)
3587 {
3588 return l(a >> 16);
3589 }
3590
3591 static inline uint32_t
3592 ha(uint32_t a)
3593 {
3594 return hi(a + 0x8000);
3595 }
3596
3597 template<int size>
3598 struct Eh_cie
3599 {
3600 static const unsigned char eh_frame_cie[12];
3601 };
3602
3603 template<int size>
3604 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3605 {
3606 1, // CIE version.
3607 'z', 'R', 0, // Augmentation string.
3608 4, // Code alignment.
3609 0x80 - size / 8 , // Data alignment.
3610 65, // RA reg.
3611 1, // Augmentation size.
3612 (elfcpp::DW_EH_PE_pcrel
3613 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3614 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3615 };
3616
3617 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3618 static const unsigned char glink_eh_frame_fde_64v1[] =
3619 {
3620 0, 0, 0, 0, // Replaced with offset to .glink.
3621 0, 0, 0, 0, // Replaced with size of .glink.
3622 0, // Augmentation size.
3623 elfcpp::DW_CFA_advance_loc + 1,
3624 elfcpp::DW_CFA_register, 65, 12,
3625 elfcpp::DW_CFA_advance_loc + 4,
3626 elfcpp::DW_CFA_restore_extended, 65
3627 };
3628
3629 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3630 static const unsigned char glink_eh_frame_fde_64v2[] =
3631 {
3632 0, 0, 0, 0, // Replaced with offset to .glink.
3633 0, 0, 0, 0, // Replaced with size of .glink.
3634 0, // Augmentation size.
3635 elfcpp::DW_CFA_advance_loc + 1,
3636 elfcpp::DW_CFA_register, 65, 0,
3637 elfcpp::DW_CFA_advance_loc + 4,
3638 elfcpp::DW_CFA_restore_extended, 65
3639 };
3640
3641 // Describe __glink_PLTresolve use of LR, 32-bit version.
3642 static const unsigned char glink_eh_frame_fde_32[] =
3643 {
3644 0, 0, 0, 0, // Replaced with offset to .glink.
3645 0, 0, 0, 0, // Replaced with size of .glink.
3646 0, // Augmentation size.
3647 elfcpp::DW_CFA_advance_loc + 2,
3648 elfcpp::DW_CFA_register, 65, 0,
3649 elfcpp::DW_CFA_advance_loc + 4,
3650 elfcpp::DW_CFA_restore_extended, 65
3651 };
3652
3653 static const unsigned char default_fde[] =
3654 {
3655 0, 0, 0, 0, // Replaced with offset to stubs.
3656 0, 0, 0, 0, // Replaced with size of stubs.
3657 0, // Augmentation size.
3658 elfcpp::DW_CFA_nop, // Pad.
3659 elfcpp::DW_CFA_nop,
3660 elfcpp::DW_CFA_nop
3661 };
3662
3663 template<bool big_endian>
3664 static inline void
3665 write_insn(unsigned char* p, uint32_t v)
3666 {
3667 elfcpp::Swap<32, big_endian>::writeval(p, v);
3668 }
3669
3670 // Stub_table holds information about plt and long branch stubs.
3671 // Stubs are built in an area following some input section determined
3672 // by group_sections(). This input section is converted to a relaxed
3673 // input section allowing it to be resized to accommodate the stubs
3674
3675 template<int size, bool big_endian>
3676 class Stub_table : public Output_relaxed_input_section
3677 {
3678 public:
3679 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3680 static const Address invalid_address = static_cast<Address>(0) - 1;
3681
3682 Stub_table(Target_powerpc<size, big_endian>* targ,
3683 Output_section* output_section,
3684 const Output_section::Input_section* owner)
3685 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3686 owner->relobj()
3687 ->section_addralign(owner->shndx())),
3688 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3689 orig_data_size_(owner->current_data_size()),
3690 plt_size_(0), last_plt_size_(0),
3691 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3692 eh_frame_added_(false), need_save_res_(false)
3693 {
3694 this->set_output_section(output_section);
3695
3696 std::vector<Output_relaxed_input_section*> new_relaxed;
3697 new_relaxed.push_back(this);
3698 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3699 }
3700
3701 // Add a plt call stub.
3702 bool
3703 add_plt_call_entry(Address,
3704 const Sized_relobj_file<size, big_endian>*,
3705 const Symbol*,
3706 unsigned int,
3707 Address);
3708
3709 bool
3710 add_plt_call_entry(Address,
3711 const Sized_relobj_file<size, big_endian>*,
3712 unsigned int,
3713 unsigned int,
3714 Address);
3715
3716 // Find a given plt call stub.
3717 Address
3718 find_plt_call_entry(const Symbol*) const;
3719
3720 Address
3721 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3722 unsigned int) const;
3723
3724 Address
3725 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3726 const Symbol*,
3727 unsigned int,
3728 Address) const;
3729
3730 Address
3731 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3732 unsigned int,
3733 unsigned int,
3734 Address) const;
3735
3736 // Add a long branch stub.
3737 bool
3738 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3739 unsigned int, Address, Address, bool);
3740
3741 Address
3742 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3743 Address) const;
3744
3745 bool
3746 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3747 {
3748 Address max_branch_offset = max_branch_delta(r_type);
3749 if (max_branch_offset == 0)
3750 return true;
3751 gold_assert(from != invalid_address);
3752 Address loc = off + this->stub_address();
3753 return loc - from + max_branch_offset < 2 * max_branch_offset;
3754 }
3755
3756 void
3757 clear_stubs(bool all)
3758 {
3759 this->plt_call_stubs_.clear();
3760 this->plt_size_ = 0;
3761 this->long_branch_stubs_.clear();
3762 this->branch_size_ = 0;
3763 this->need_save_res_ = false;
3764 if (all)
3765 {
3766 this->last_plt_size_ = 0;
3767 this->last_branch_size_ = 0;
3768 }
3769 }
3770
3771 Address
3772 set_address_and_size(const Output_section* os, Address off)
3773 {
3774 Address start_off = off;
3775 off += this->orig_data_size_;
3776 Address my_size = this->plt_size_ + this->branch_size_;
3777 if (this->need_save_res_)
3778 my_size += this->targ_->savres_section()->data_size();
3779 if (my_size != 0)
3780 off = align_address(off, this->stub_align());
3781 // Include original section size and alignment padding in size
3782 my_size += off - start_off;
3783 // Ensure new size is always larger than min size
3784 // threshold. Alignment requirement is included in "my_size", so
3785 // increase "my_size" does not invalidate alignment.
3786 if (my_size < this->min_size_threshold_)
3787 my_size = this->min_size_threshold_;
3788 this->reset_address_and_file_offset();
3789 this->set_current_data_size(my_size);
3790 this->set_address_and_file_offset(os->address() + start_off,
3791 os->offset() + start_off);
3792 return my_size;
3793 }
3794
3795 Address
3796 stub_address() const
3797 {
3798 return align_address(this->address() + this->orig_data_size_,
3799 this->stub_align());
3800 }
3801
3802 Address
3803 stub_offset() const
3804 {
3805 return align_address(this->offset() + this->orig_data_size_,
3806 this->stub_align());
3807 }
3808
3809 section_size_type
3810 plt_size() const
3811 { return this->plt_size_; }
3812
3813 void set_min_size_threshold(Address min_size)
3814 { this->min_size_threshold_ = min_size; }
3815
3816 bool
3817 size_update()
3818 {
3819 Output_section* os = this->output_section();
3820 if (os->addralign() < this->stub_align())
3821 {
3822 os->set_addralign(this->stub_align());
3823 // FIXME: get rid of the insane checkpointing.
3824 // We can't increase alignment of the input section to which
3825 // stubs are attached; The input section may be .init which
3826 // is pasted together with other .init sections to form a
3827 // function. Aligning might insert zero padding resulting in
3828 // sigill. However we do need to increase alignment of the
3829 // output section so that the align_address() on offset in
3830 // set_address_and_size() adds the same padding as the
3831 // align_address() on address in stub_address().
3832 // What's more, we need this alignment for the layout done in
3833 // relaxation_loop_body() so that the output section starts at
3834 // a suitably aligned address.
3835 os->checkpoint_set_addralign(this->stub_align());
3836 }
3837 if (this->last_plt_size_ != this->plt_size_
3838 || this->last_branch_size_ != this->branch_size_)
3839 {
3840 this->last_plt_size_ = this->plt_size_;
3841 this->last_branch_size_ = this->branch_size_;
3842 return true;
3843 }
3844 return false;
3845 }
3846
3847 // Add .eh_frame info for this stub section. Unlike other linker
3848 // generated .eh_frame this is added late in the link, because we
3849 // only want the .eh_frame info if this particular stub section is
3850 // non-empty.
3851 void
3852 add_eh_frame(Layout* layout)
3853 {
3854 if (!this->eh_frame_added_)
3855 {
3856 if (!parameters->options().ld_generated_unwind_info())
3857 return;
3858
3859 // Since we add stub .eh_frame info late, it must be placed
3860 // after all other linker generated .eh_frame info so that
3861 // merge mapping need not be updated for input sections.
3862 // There is no provision to use a different CIE to that used
3863 // by .glink.
3864 if (!this->targ_->has_glink())
3865 return;
3866
3867 layout->add_eh_frame_for_plt(this,
3868 Eh_cie<size>::eh_frame_cie,
3869 sizeof (Eh_cie<size>::eh_frame_cie),
3870 default_fde,
3871 sizeof (default_fde));
3872 this->eh_frame_added_ = true;
3873 }
3874 }
3875
3876 Target_powerpc<size, big_endian>*
3877 targ() const
3878 { return targ_; }
3879
3880 private:
3881 class Plt_stub_ent;
3882 class Plt_stub_ent_hash;
3883 typedef Unordered_map<Plt_stub_ent, unsigned int,
3884 Plt_stub_ent_hash> Plt_stub_entries;
3885
3886 // Alignment of stub section.
3887 unsigned int
3888 stub_align() const
3889 {
3890 if (size == 32)
3891 return 16;
3892 unsigned int min_align = 32;
3893 unsigned int user_align = 1 << parameters->options().plt_align();
3894 return std::max(user_align, min_align);
3895 }
3896
3897 // Return the plt offset for the given call stub.
3898 Address
3899 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3900 {
3901 const Symbol* gsym = p->first.sym_;
3902 if (gsym != NULL)
3903 {
3904 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3905 && gsym->can_use_relative_reloc(false));
3906 return gsym->plt_offset();
3907 }
3908 else
3909 {
3910 *is_iplt = true;
3911 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3912 unsigned int local_sym_index = p->first.locsym_;
3913 return relobj->local_plt_offset(local_sym_index);
3914 }
3915 }
3916
3917 // Size of a given plt call stub.
3918 unsigned int
3919 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3920 {
3921 if (size == 32)
3922 return 16;
3923
3924 bool is_iplt;
3925 Address plt_addr = this->plt_off(p, &is_iplt);
3926 if (is_iplt)
3927 plt_addr += this->targ_->iplt_section()->address();
3928 else
3929 plt_addr += this->targ_->plt_section()->address();
3930 Address got_addr = this->targ_->got_section()->output_section()->address();
3931 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3932 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3933 got_addr += ppcobj->toc_base_offset();
3934 Address off = plt_addr - got_addr;
3935 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3936 if (this->targ_->abiversion() < 2)
3937 {
3938 bool static_chain = parameters->options().plt_static_chain();
3939 bool thread_safe = this->targ_->plt_thread_safe();
3940 bytes += (4
3941 + 4 * static_chain
3942 + 8 * thread_safe
3943 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3944 }
3945 unsigned int align = 1 << parameters->options().plt_align();
3946 if (align > 1)
3947 bytes = (bytes + align - 1) & -align;
3948 return bytes;
3949 }
3950
3951 // Return long branch stub size.
3952 unsigned int
3953 branch_stub_size(Address to)
3954 {
3955 Address loc
3956 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3957 if (to - loc + (1 << 25) < 2 << 25)
3958 return 4;
3959 if (size == 64 || !parameters->options().output_is_position_independent())
3960 return 16;
3961 return 32;
3962 }
3963
3964 // Write out stubs.
3965 void
3966 do_write(Output_file*);
3967
3968 // Plt call stub keys.
3969 class Plt_stub_ent
3970 {
3971 public:
3972 Plt_stub_ent(const Symbol* sym)
3973 : sym_(sym), object_(0), addend_(0), locsym_(0)
3974 { }
3975
3976 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3977 unsigned int locsym_index)
3978 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3979 { }
3980
3981 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3982 const Symbol* sym,
3983 unsigned int r_type,
3984 Address addend)
3985 : sym_(sym), object_(0), addend_(0), locsym_(0)
3986 {
3987 if (size != 32)
3988 this->addend_ = addend;
3989 else if (parameters->options().output_is_position_independent()
3990 && r_type == elfcpp::R_PPC_PLTREL24)
3991 {
3992 this->addend_ = addend;
3993 if (this->addend_ >= 32768)
3994 this->object_ = object;
3995 }
3996 }
3997
3998 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3999 unsigned int locsym_index,
4000 unsigned int r_type,
4001 Address addend)
4002 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4003 {
4004 if (size != 32)
4005 this->addend_ = addend;
4006 else if (parameters->options().output_is_position_independent()
4007 && r_type == elfcpp::R_PPC_PLTREL24)
4008 this->addend_ = addend;
4009 }
4010
4011 bool operator==(const Plt_stub_ent& that) const
4012 {
4013 return (this->sym_ == that.sym_
4014 && this->object_ == that.object_
4015 && this->addend_ == that.addend_
4016 && this->locsym_ == that.locsym_);
4017 }
4018
4019 const Symbol* sym_;
4020 const Sized_relobj_file<size, big_endian>* object_;
4021 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4022 unsigned int locsym_;
4023 };
4024
4025 class Plt_stub_ent_hash
4026 {
4027 public:
4028 size_t operator()(const Plt_stub_ent& ent) const
4029 {
4030 return (reinterpret_cast<uintptr_t>(ent.sym_)
4031 ^ reinterpret_cast<uintptr_t>(ent.object_)
4032 ^ ent.addend_
4033 ^ ent.locsym_);
4034 }
4035 };
4036
4037 // Long branch stub keys.
4038 class Branch_stub_ent
4039 {
4040 public:
4041 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4042 Address to, bool save_res)
4043 : dest_(to), toc_base_off_(0), save_res_(save_res)
4044 {
4045 if (size == 64)
4046 toc_base_off_ = obj->toc_base_offset();
4047 }
4048
4049 bool operator==(const Branch_stub_ent& that) const
4050 {
4051 return (this->dest_ == that.dest_
4052 && (size == 32
4053 || this->toc_base_off_ == that.toc_base_off_));
4054 }
4055
4056 Address dest_;
4057 unsigned int toc_base_off_;
4058 bool save_res_;
4059 };
4060
4061 class Branch_stub_ent_hash
4062 {
4063 public:
4064 size_t operator()(const Branch_stub_ent& ent) const
4065 { return ent.dest_ ^ ent.toc_base_off_; }
4066 };
4067
4068 // In a sane world this would be a global.
4069 Target_powerpc<size, big_endian>* targ_;
4070 // Map sym/object/addend to stub offset.
4071 Plt_stub_entries plt_call_stubs_;
4072 // Map destination address to stub offset.
4073 typedef Unordered_map<Branch_stub_ent, unsigned int,
4074 Branch_stub_ent_hash> Branch_stub_entries;
4075 Branch_stub_entries long_branch_stubs_;
4076 // size of input section
4077 section_size_type orig_data_size_;
4078 // size of stubs
4079 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4080 // Some rare cases cause (PR/20529) fluctuation in stub table
4081 // size, which leads to an endless relax loop. This is to be fixed
4082 // by, after the first few iterations, allowing only increase of
4083 // stub table size. This variable sets the minimal possible size of
4084 // a stub table, it is zero for the first few iterations, then
4085 // increases monotonically.
4086 Address min_size_threshold_;
4087 // Whether .eh_frame info has been created for this stub section.
4088 bool eh_frame_added_;
4089 // Set if this stub group needs a copy of out-of-line register
4090 // save/restore functions.
4091 bool need_save_res_;
4092 };
4093
4094 // Add a plt call stub, if we do not already have one for this
4095 // sym/object/addend combo.
4096
4097 template<int size, bool big_endian>
4098 bool
4099 Stub_table<size, big_endian>::add_plt_call_entry(
4100 Address from,
4101 const Sized_relobj_file<size, big_endian>* object,
4102 const Symbol* gsym,
4103 unsigned int r_type,
4104 Address addend)
4105 {
4106 Plt_stub_ent ent(object, gsym, r_type, addend);
4107 unsigned int off = this->plt_size_;
4108 std::pair<typename Plt_stub_entries::iterator, bool> p
4109 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4110 if (p.second)
4111 this->plt_size_ = off + this->plt_call_size(p.first);
4112 return this->can_reach_stub(from, off, r_type);
4113 }
4114
4115 template<int size, bool big_endian>
4116 bool
4117 Stub_table<size, big_endian>::add_plt_call_entry(
4118 Address from,
4119 const Sized_relobj_file<size, big_endian>* object,
4120 unsigned int locsym_index,
4121 unsigned int r_type,
4122 Address addend)
4123 {
4124 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4125 unsigned int off = this->plt_size_;
4126 std::pair<typename Plt_stub_entries::iterator, bool> p
4127 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4128 if (p.second)
4129 this->plt_size_ = off + this->plt_call_size(p.first);
4130 return this->can_reach_stub(from, off, r_type);
4131 }
4132
4133 // Find a plt call stub.
4134
4135 template<int size, bool big_endian>
4136 typename Stub_table<size, big_endian>::Address
4137 Stub_table<size, big_endian>::find_plt_call_entry(
4138 const Sized_relobj_file<size, big_endian>* object,
4139 const Symbol* gsym,
4140 unsigned int r_type,
4141 Address addend) const
4142 {
4143 Plt_stub_ent ent(object, gsym, r_type, addend);
4144 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4145 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4146 }
4147
4148 template<int size, bool big_endian>
4149 typename Stub_table<size, big_endian>::Address
4150 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4151 {
4152 Plt_stub_ent ent(gsym);
4153 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4154 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4155 }
4156
4157 template<int size, bool big_endian>
4158 typename Stub_table<size, big_endian>::Address
4159 Stub_table<size, big_endian>::find_plt_call_entry(
4160 const Sized_relobj_file<size, big_endian>* object,
4161 unsigned int locsym_index,
4162 unsigned int r_type,
4163 Address addend) const
4164 {
4165 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4166 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4167 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4168 }
4169
4170 template<int size, bool big_endian>
4171 typename Stub_table<size, big_endian>::Address
4172 Stub_table<size, big_endian>::find_plt_call_entry(
4173 const Sized_relobj_file<size, big_endian>* object,
4174 unsigned int locsym_index) const
4175 {
4176 Plt_stub_ent ent(object, locsym_index);
4177 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4178 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4179 }
4180
4181 // Add a long branch stub if we don't already have one to given
4182 // destination.
4183
4184 template<int size, bool big_endian>
4185 bool
4186 Stub_table<size, big_endian>::add_long_branch_entry(
4187 const Powerpc_relobj<size, big_endian>* object,
4188 unsigned int r_type,
4189 Address from,
4190 Address to,
4191 bool save_res)
4192 {
4193 Branch_stub_ent ent(object, to, save_res);
4194 Address off = this->branch_size_;
4195 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4196 {
4197 if (save_res)
4198 this->need_save_res_ = true;
4199 else
4200 {
4201 unsigned int stub_size = this->branch_stub_size(to);
4202 this->branch_size_ = off + stub_size;
4203 if (size == 64 && stub_size != 4)
4204 this->targ_->add_branch_lookup_table(to);
4205 }
4206 }
4207 return this->can_reach_stub(from, off, r_type);
4208 }
4209
4210 // Find long branch stub offset.
4211
4212 template<int size, bool big_endian>
4213 typename Stub_table<size, big_endian>::Address
4214 Stub_table<size, big_endian>::find_long_branch_entry(
4215 const Powerpc_relobj<size, big_endian>* object,
4216 Address to) const
4217 {
4218 Branch_stub_ent ent(object, to, false);
4219 typename Branch_stub_entries::const_iterator p
4220 = this->long_branch_stubs_.find(ent);
4221 if (p == this->long_branch_stubs_.end())
4222 return invalid_address;
4223 if (p->first.save_res_)
4224 return to - this->targ_->savres_section()->address() + this->branch_size_;
4225 return p->second;
4226 }
4227
4228 // A class to handle .glink.
4229
4230 template<int size, bool big_endian>
4231 class Output_data_glink : public Output_section_data
4232 {
4233 public:
4234 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4235 static const Address invalid_address = static_cast<Address>(0) - 1;
4236 static const int pltresolve_size = 16*4;
4237
4238 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4239 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4240 end_branch_table_(), ge_size_(0)
4241 { }
4242
4243 void
4244 add_eh_frame(Layout* layout);
4245
4246 void
4247 add_global_entry(const Symbol*);
4248
4249 Address
4250 find_global_entry(const Symbol*) const;
4251
4252 Address
4253 global_entry_address() const
4254 {
4255 gold_assert(this->is_data_size_valid());
4256 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4257 return this->address() + global_entry_off;
4258 }
4259
4260 protected:
4261 // Write to a map file.
4262 void
4263 do_print_to_mapfile(Mapfile* mapfile) const
4264 { mapfile->print_output_data(this, _("** glink")); }
4265
4266 private:
4267 void
4268 set_final_data_size();
4269
4270 // Write out .glink
4271 void
4272 do_write(Output_file*);
4273
4274 // Allows access to .got and .plt for do_write.
4275 Target_powerpc<size, big_endian>* targ_;
4276
4277 // Map sym to stub offset.
4278 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4279 Global_entry_stub_entries global_entry_stubs_;
4280
4281 unsigned int end_branch_table_, ge_size_;
4282 };
4283
4284 template<int size, bool big_endian>
4285 void
4286 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4287 {
4288 if (!parameters->options().ld_generated_unwind_info())
4289 return;
4290
4291 if (size == 64)
4292 {
4293 if (this->targ_->abiversion() < 2)
4294 layout->add_eh_frame_for_plt(this,
4295 Eh_cie<64>::eh_frame_cie,
4296 sizeof (Eh_cie<64>::eh_frame_cie),
4297 glink_eh_frame_fde_64v1,
4298 sizeof (glink_eh_frame_fde_64v1));
4299 else
4300 layout->add_eh_frame_for_plt(this,
4301 Eh_cie<64>::eh_frame_cie,
4302 sizeof (Eh_cie<64>::eh_frame_cie),
4303 glink_eh_frame_fde_64v2,
4304 sizeof (glink_eh_frame_fde_64v2));
4305 }
4306 else
4307 {
4308 // 32-bit .glink can use the default since the CIE return
4309 // address reg, LR, is valid.
4310 layout->add_eh_frame_for_plt(this,
4311 Eh_cie<32>::eh_frame_cie,
4312 sizeof (Eh_cie<32>::eh_frame_cie),
4313 default_fde,
4314 sizeof (default_fde));
4315 // Except where LR is used in a PIC __glink_PLTresolve.
4316 if (parameters->options().output_is_position_independent())
4317 layout->add_eh_frame_for_plt(this,
4318 Eh_cie<32>::eh_frame_cie,
4319 sizeof (Eh_cie<32>::eh_frame_cie),
4320 glink_eh_frame_fde_32,
4321 sizeof (glink_eh_frame_fde_32));
4322 }
4323 }
4324
4325 template<int size, bool big_endian>
4326 void
4327 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4328 {
4329 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4330 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4331 if (p.second)
4332 this->ge_size_ += 16;
4333 }
4334
4335 template<int size, bool big_endian>
4336 typename Output_data_glink<size, big_endian>::Address
4337 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4338 {
4339 typename Global_entry_stub_entries::const_iterator p
4340 = this->global_entry_stubs_.find(gsym);
4341 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4342 }
4343
4344 template<int size, bool big_endian>
4345 void
4346 Output_data_glink<size, big_endian>::set_final_data_size()
4347 {
4348 unsigned int count = this->targ_->plt_entry_count();
4349 section_size_type total = 0;
4350
4351 if (count != 0)
4352 {
4353 if (size == 32)
4354 {
4355 // space for branch table
4356 total += 4 * (count - 1);
4357
4358 total += -total & 15;
4359 total += this->pltresolve_size;
4360 }
4361 else
4362 {
4363 total += this->pltresolve_size;
4364
4365 // space for branch table
4366 total += 4 * count;
4367 if (this->targ_->abiversion() < 2)
4368 {
4369 total += 4 * count;
4370 if (count > 0x8000)
4371 total += 4 * (count - 0x8000);
4372 }
4373 }
4374 }
4375 this->end_branch_table_ = total;
4376 total = (total + 15) & -16;
4377 total += this->ge_size_;
4378
4379 this->set_data_size(total);
4380 }
4381
4382 // Write out plt and long branch stub code.
4383
4384 template<int size, bool big_endian>
4385 void
4386 Stub_table<size, big_endian>::do_write(Output_file* of)
4387 {
4388 if (this->plt_call_stubs_.empty()
4389 && this->long_branch_stubs_.empty())
4390 return;
4391
4392 const section_size_type start_off = this->offset();
4393 const section_size_type off = this->stub_offset();
4394 const section_size_type oview_size =
4395 convert_to_section_size_type(this->data_size() - (off - start_off));
4396 unsigned char* const oview = of->get_output_view(off, oview_size);
4397 unsigned char* p;
4398
4399 if (size == 64)
4400 {
4401 const Output_data_got_powerpc<size, big_endian>* got
4402 = this->targ_->got_section();
4403 Address got_os_addr = got->output_section()->address();
4404
4405 if (!this->plt_call_stubs_.empty())
4406 {
4407 // The base address of the .plt section.
4408 Address plt_base = this->targ_->plt_section()->address();
4409 Address iplt_base = invalid_address;
4410
4411 // Write out plt call stubs.
4412 typename Plt_stub_entries::const_iterator cs;
4413 for (cs = this->plt_call_stubs_.begin();
4414 cs != this->plt_call_stubs_.end();
4415 ++cs)
4416 {
4417 bool is_iplt;
4418 Address pltoff = this->plt_off(cs, &is_iplt);
4419 Address plt_addr = pltoff;
4420 if (is_iplt)
4421 {
4422 if (iplt_base == invalid_address)
4423 iplt_base = this->targ_->iplt_section()->address();
4424 plt_addr += iplt_base;
4425 }
4426 else
4427 plt_addr += plt_base;
4428 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4429 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4430 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4431 Address off = plt_addr - got_addr;
4432
4433 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4434 gold_error(_("%s: linkage table error against `%s'"),
4435 cs->first.object_->name().c_str(),
4436 cs->first.sym_->demangled_name().c_str());
4437
4438 bool plt_load_toc = this->targ_->abiversion() < 2;
4439 bool static_chain
4440 = plt_load_toc && parameters->options().plt_static_chain();
4441 bool thread_safe
4442 = plt_load_toc && this->targ_->plt_thread_safe();
4443 bool use_fake_dep = false;
4444 Address cmp_branch_off = 0;
4445 if (thread_safe)
4446 {
4447 unsigned int pltindex
4448 = ((pltoff - this->targ_->first_plt_entry_offset())
4449 / this->targ_->plt_entry_size());
4450 Address glinkoff
4451 = (this->targ_->glink_section()->pltresolve_size
4452 + pltindex * 8);
4453 if (pltindex > 32768)
4454 glinkoff += (pltindex - 32768) * 4;
4455 Address to
4456 = this->targ_->glink_section()->address() + glinkoff;
4457 Address from
4458 = (this->stub_address() + cs->second + 24
4459 + 4 * (ha(off) != 0)
4460 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4461 + 4 * static_chain);
4462 cmp_branch_off = to - from;
4463 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4464 }
4465
4466 p = oview + cs->second;
4467 if (ha(off) != 0)
4468 {
4469 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4470 p += 4;
4471 if (plt_load_toc)
4472 {
4473 write_insn<big_endian>(p, addis_11_2 + ha(off));
4474 p += 4;
4475 write_insn<big_endian>(p, ld_12_11 + l(off));
4476 p += 4;
4477 }
4478 else
4479 {
4480 write_insn<big_endian>(p, addis_12_2 + ha(off));
4481 p += 4;
4482 write_insn<big_endian>(p, ld_12_12 + l(off));
4483 p += 4;
4484 }
4485 if (plt_load_toc
4486 && ha(off + 8 + 8 * static_chain) != ha(off))
4487 {
4488 write_insn<big_endian>(p, addi_11_11 + l(off));
4489 p += 4;
4490 off = 0;
4491 }
4492 write_insn<big_endian>(p, mtctr_12);
4493 p += 4;
4494 if (plt_load_toc)
4495 {
4496 if (use_fake_dep)
4497 {
4498 write_insn<big_endian>(p, xor_2_12_12);
4499 p += 4;
4500 write_insn<big_endian>(p, add_11_11_2);
4501 p += 4;
4502 }
4503 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4504 p += 4;
4505 if (static_chain)
4506 {
4507 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4508 p += 4;
4509 }
4510 }
4511 }
4512 else
4513 {
4514 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4515 p += 4;
4516 write_insn<big_endian>(p, ld_12_2 + l(off));
4517 p += 4;
4518 if (plt_load_toc
4519 && ha(off + 8 + 8 * static_chain) != ha(off))
4520 {
4521 write_insn<big_endian>(p, addi_2_2 + l(off));
4522 p += 4;
4523 off = 0;
4524 }
4525 write_insn<big_endian>(p, mtctr_12);
4526 p += 4;
4527 if (plt_load_toc)
4528 {
4529 if (use_fake_dep)
4530 {
4531 write_insn<big_endian>(p, xor_11_12_12);
4532 p += 4;
4533 write_insn<big_endian>(p, add_2_2_11);
4534 p += 4;
4535 }
4536 if (static_chain)
4537 {
4538 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4539 p += 4;
4540 }
4541 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4542 p += 4;
4543 }
4544 }
4545 if (thread_safe && !use_fake_dep)
4546 {
4547 write_insn<big_endian>(p, cmpldi_2_0);
4548 p += 4;
4549 write_insn<big_endian>(p, bnectr_p4);
4550 p += 4;
4551 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4552 }
4553 else
4554 write_insn<big_endian>(p, bctr);
4555 }
4556 }
4557
4558 // Write out long branch stubs.
4559 typename Branch_stub_entries::const_iterator bs;
4560 for (bs = this->long_branch_stubs_.begin();
4561 bs != this->long_branch_stubs_.end();
4562 ++bs)
4563 {
4564 if (bs->first.save_res_)
4565 continue;
4566 p = oview + this->plt_size_ + bs->second;
4567 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4568 Address delta = bs->first.dest_ - loc;
4569 if (delta + (1 << 25) < 2 << 25)
4570 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4571 else
4572 {
4573 Address brlt_addr
4574 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4575 gold_assert(brlt_addr != invalid_address);
4576 brlt_addr += this->targ_->brlt_section()->address();
4577 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4578 Address brltoff = brlt_addr - got_addr;
4579 if (ha(brltoff) == 0)
4580 {
4581 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4582 }
4583 else
4584 {
4585 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4586 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4587 }
4588 write_insn<big_endian>(p, mtctr_12), p += 4;
4589 write_insn<big_endian>(p, bctr);
4590 }
4591 }
4592 }
4593 else
4594 {
4595 if (!this->plt_call_stubs_.empty())
4596 {
4597 // The base address of the .plt section.
4598 Address plt_base = this->targ_->plt_section()->address();
4599 Address iplt_base = invalid_address;
4600 // The address of _GLOBAL_OFFSET_TABLE_.
4601 Address g_o_t = invalid_address;
4602
4603 // Write out plt call stubs.
4604 typename Plt_stub_entries::const_iterator cs;
4605 for (cs = this->plt_call_stubs_.begin();
4606 cs != this->plt_call_stubs_.end();
4607 ++cs)
4608 {
4609 bool is_iplt;
4610 Address plt_addr = this->plt_off(cs, &is_iplt);
4611 if (is_iplt)
4612 {
4613 if (iplt_base == invalid_address)
4614 iplt_base = this->targ_->iplt_section()->address();
4615 plt_addr += iplt_base;
4616 }
4617 else
4618 plt_addr += plt_base;
4619
4620 p = oview + cs->second;
4621 if (parameters->options().output_is_position_independent())
4622 {
4623 Address got_addr;
4624 const Powerpc_relobj<size, big_endian>* ppcobj
4625 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4626 (cs->first.object_));
4627 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4628 {
4629 unsigned int got2 = ppcobj->got2_shndx();
4630 got_addr = ppcobj->get_output_section_offset(got2);
4631 gold_assert(got_addr != invalid_address);
4632 got_addr += (ppcobj->output_section(got2)->address()
4633 + cs->first.addend_);
4634 }
4635 else
4636 {
4637 if (g_o_t == invalid_address)
4638 {
4639 const Output_data_got_powerpc<size, big_endian>* got
4640 = this->targ_->got_section();
4641 g_o_t = got->address() + got->g_o_t();
4642 }
4643 got_addr = g_o_t;
4644 }
4645
4646 Address off = plt_addr - got_addr;
4647 if (ha(off) == 0)
4648 {
4649 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4650 write_insn<big_endian>(p + 4, mtctr_11);
4651 write_insn<big_endian>(p + 8, bctr);
4652 }
4653 else
4654 {
4655 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4656 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4657 write_insn<big_endian>(p + 8, mtctr_11);
4658 write_insn<big_endian>(p + 12, bctr);
4659 }
4660 }
4661 else
4662 {
4663 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4664 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4665 write_insn<big_endian>(p + 8, mtctr_11);
4666 write_insn<big_endian>(p + 12, bctr);
4667 }
4668 }
4669 }
4670
4671 // Write out long branch stubs.
4672 typename Branch_stub_entries::const_iterator bs;
4673 for (bs = this->long_branch_stubs_.begin();
4674 bs != this->long_branch_stubs_.end();
4675 ++bs)
4676 {
4677 if (bs->first.save_res_)
4678 continue;
4679 p = oview + this->plt_size_ + bs->second;
4680 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4681 Address delta = bs->first.dest_ - loc;
4682 if (delta + (1 << 25) < 2 << 25)
4683 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4684 else if (!parameters->options().output_is_position_independent())
4685 {
4686 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4687 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4688 write_insn<big_endian>(p + 8, mtctr_12);
4689 write_insn<big_endian>(p + 12, bctr);
4690 }
4691 else
4692 {
4693 delta -= 8;
4694 write_insn<big_endian>(p + 0, mflr_0);
4695 write_insn<big_endian>(p + 4, bcl_20_31);
4696 write_insn<big_endian>(p + 8, mflr_12);
4697 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4698 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4699 write_insn<big_endian>(p + 20, mtlr_0);
4700 write_insn<big_endian>(p + 24, mtctr_12);
4701 write_insn<big_endian>(p + 28, bctr);
4702 }
4703 }
4704 }
4705 if (this->need_save_res_)
4706 {
4707 p = oview + this->plt_size_ + this->branch_size_;
4708 memcpy (p, this->targ_->savres_section()->contents(),
4709 this->targ_->savres_section()->data_size());
4710 }
4711 }
4712
4713 // Write out .glink.
4714
4715 template<int size, bool big_endian>
4716 void
4717 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4718 {
4719 const section_size_type off = this->offset();
4720 const section_size_type oview_size =
4721 convert_to_section_size_type(this->data_size());
4722 unsigned char* const oview = of->get_output_view(off, oview_size);
4723 unsigned char* p;
4724
4725 // The base address of the .plt section.
4726 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4727 Address plt_base = this->targ_->plt_section()->address();
4728
4729 if (size == 64)
4730 {
4731 if (this->end_branch_table_ != 0)
4732 {
4733 // Write pltresolve stub.
4734 p = oview;
4735 Address after_bcl = this->address() + 16;
4736 Address pltoff = plt_base - after_bcl;
4737
4738 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4739
4740 if (this->targ_->abiversion() < 2)
4741 {
4742 write_insn<big_endian>(p, mflr_12), p += 4;
4743 write_insn<big_endian>(p, bcl_20_31), p += 4;
4744 write_insn<big_endian>(p, mflr_11), p += 4;
4745 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4746 write_insn<big_endian>(p, mtlr_12), p += 4;
4747 write_insn<big_endian>(p, add_11_2_11), p += 4;
4748 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4749 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4750 write_insn<big_endian>(p, mtctr_12), p += 4;
4751 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4752 }
4753 else
4754 {
4755 write_insn<big_endian>(p, mflr_0), p += 4;
4756 write_insn<big_endian>(p, bcl_20_31), p += 4;
4757 write_insn<big_endian>(p, mflr_11), p += 4;
4758 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4759 write_insn<big_endian>(p, mtlr_0), p += 4;
4760 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4761 write_insn<big_endian>(p, add_11_2_11), p += 4;
4762 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4763 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4764 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4765 write_insn<big_endian>(p, mtctr_12), p += 4;
4766 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4767 }
4768 write_insn<big_endian>(p, bctr), p += 4;
4769 while (p < oview + this->pltresolve_size)
4770 write_insn<big_endian>(p, nop), p += 4;
4771
4772 // Write lazy link call stubs.
4773 uint32_t indx = 0;
4774 while (p < oview + this->end_branch_table_)
4775 {
4776 if (this->targ_->abiversion() < 2)
4777 {
4778 if (indx < 0x8000)
4779 {
4780 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4781 }
4782 else
4783 {
4784 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4785 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4786 }
4787 }
4788 uint32_t branch_off = 8 - (p - oview);
4789 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4790 indx++;
4791 }
4792 }
4793
4794 Address plt_base = this->targ_->plt_section()->address();
4795 Address iplt_base = invalid_address;
4796 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4797 Address global_entry_base = this->address() + global_entry_off;
4798 typename Global_entry_stub_entries::const_iterator ge;
4799 for (ge = this->global_entry_stubs_.begin();
4800 ge != this->global_entry_stubs_.end();
4801 ++ge)
4802 {
4803 p = oview + global_entry_off + ge->second;
4804 Address plt_addr = ge->first->plt_offset();
4805 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4806 && ge->first->can_use_relative_reloc(false))
4807 {
4808 if (iplt_base == invalid_address)
4809 iplt_base = this->targ_->iplt_section()->address();
4810 plt_addr += iplt_base;
4811 }
4812 else
4813 plt_addr += plt_base;
4814 Address my_addr = global_entry_base + ge->second;
4815 Address off = plt_addr - my_addr;
4816
4817 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4818 gold_error(_("%s: linkage table error against `%s'"),
4819 ge->first->object()->name().c_str(),
4820 ge->first->demangled_name().c_str());
4821
4822 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4823 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4824 write_insn<big_endian>(p, mtctr_12), p += 4;
4825 write_insn<big_endian>(p, bctr);
4826 }
4827 }
4828 else
4829 {
4830 const Output_data_got_powerpc<size, big_endian>* got
4831 = this->targ_->got_section();
4832 // The address of _GLOBAL_OFFSET_TABLE_.
4833 Address g_o_t = got->address() + got->g_o_t();
4834
4835 // Write out pltresolve branch table.
4836 p = oview;
4837 unsigned int the_end = oview_size - this->pltresolve_size;
4838 unsigned char* end_p = oview + the_end;
4839 while (p < end_p - 8 * 4)
4840 write_insn<big_endian>(p, b + end_p - p), p += 4;
4841 while (p < end_p)
4842 write_insn<big_endian>(p, nop), p += 4;
4843
4844 // Write out pltresolve call stub.
4845 if (parameters->options().output_is_position_independent())
4846 {
4847 Address res0_off = 0;
4848 Address after_bcl_off = the_end + 12;
4849 Address bcl_res0 = after_bcl_off - res0_off;
4850
4851 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4852 write_insn<big_endian>(p + 4, mflr_0);
4853 write_insn<big_endian>(p + 8, bcl_20_31);
4854 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4855 write_insn<big_endian>(p + 16, mflr_12);
4856 write_insn<big_endian>(p + 20, mtlr_0);
4857 write_insn<big_endian>(p + 24, sub_11_11_12);
4858
4859 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4860
4861 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4862 if (ha(got_bcl) == ha(got_bcl + 4))
4863 {
4864 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4865 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4866 }
4867 else
4868 {
4869 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4870 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4871 }
4872 write_insn<big_endian>(p + 40, mtctr_0);
4873 write_insn<big_endian>(p + 44, add_0_11_11);
4874 write_insn<big_endian>(p + 48, add_11_0_11);
4875 write_insn<big_endian>(p + 52, bctr);
4876 write_insn<big_endian>(p + 56, nop);
4877 write_insn<big_endian>(p + 60, nop);
4878 }
4879 else
4880 {
4881 Address res0 = this->address();
4882
4883 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4884 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4885 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4886 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4887 else
4888 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4889 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4890 write_insn<big_endian>(p + 16, mtctr_0);
4891 write_insn<big_endian>(p + 20, add_0_11_11);
4892 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4893 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4894 else
4895 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4896 write_insn<big_endian>(p + 28, add_11_0_11);
4897 write_insn<big_endian>(p + 32, bctr);
4898 write_insn<big_endian>(p + 36, nop);
4899 write_insn<big_endian>(p + 40, nop);
4900 write_insn<big_endian>(p + 44, nop);
4901 write_insn<big_endian>(p + 48, nop);
4902 write_insn<big_endian>(p + 52, nop);
4903 write_insn<big_endian>(p + 56, nop);
4904 write_insn<big_endian>(p + 60, nop);
4905 }
4906 p += 64;
4907 }
4908
4909 of->write_output_view(off, oview_size, oview);
4910 }
4911
4912
4913 // A class to handle linker generated save/restore functions.
4914
4915 template<int size, bool big_endian>
4916 class Output_data_save_res : public Output_section_data_build
4917 {
4918 public:
4919 Output_data_save_res(Symbol_table* symtab);
4920
4921 const unsigned char*
4922 contents() const
4923 {
4924 return contents_;
4925 }
4926
4927 protected:
4928 // Write to a map file.
4929 void
4930 do_print_to_mapfile(Mapfile* mapfile) const
4931 { mapfile->print_output_data(this, _("** save/restore")); }
4932
4933 void
4934 do_write(Output_file*);
4935
4936 private:
4937 // The maximum size of save/restore contents.
4938 static const unsigned int savres_max = 218*4;
4939
4940 void
4941 savres_define(Symbol_table* symtab,
4942 const char *name,
4943 unsigned int lo, unsigned int hi,
4944 unsigned char* write_ent(unsigned char*, int),
4945 unsigned char* write_tail(unsigned char*, int));
4946
4947 unsigned char *contents_;
4948 };
4949
4950 template<bool big_endian>
4951 static unsigned char*
4952 savegpr0(unsigned char* p, int r)
4953 {
4954 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4955 write_insn<big_endian>(p, insn);
4956 return p + 4;
4957 }
4958
4959 template<bool big_endian>
4960 static unsigned char*
4961 savegpr0_tail(unsigned char* p, int r)
4962 {
4963 p = savegpr0<big_endian>(p, r);
4964 uint32_t insn = std_0_1 + 16;
4965 write_insn<big_endian>(p, insn);
4966 p = p + 4;
4967 write_insn<big_endian>(p, blr);
4968 return p + 4;
4969 }
4970
4971 template<bool big_endian>
4972 static unsigned char*
4973 restgpr0(unsigned char* p, int r)
4974 {
4975 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4976 write_insn<big_endian>(p, insn);
4977 return p + 4;
4978 }
4979
4980 template<bool big_endian>
4981 static unsigned char*
4982 restgpr0_tail(unsigned char* p, int r)
4983 {
4984 uint32_t insn = ld_0_1 + 16;
4985 write_insn<big_endian>(p, insn);
4986 p = p + 4;
4987 p = restgpr0<big_endian>(p, r);
4988 write_insn<big_endian>(p, mtlr_0);
4989 p = p + 4;
4990 if (r == 29)
4991 {
4992 p = restgpr0<big_endian>(p, 30);
4993 p = restgpr0<big_endian>(p, 31);
4994 }
4995 write_insn<big_endian>(p, blr);
4996 return p + 4;
4997 }
4998
4999 template<bool big_endian>
5000 static unsigned char*
5001 savegpr1(unsigned char* p, int r)
5002 {
5003 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5004 write_insn<big_endian>(p, insn);
5005 return p + 4;
5006 }
5007
5008 template<bool big_endian>
5009 static unsigned char*
5010 savegpr1_tail(unsigned char* p, int r)
5011 {
5012 p = savegpr1<big_endian>(p, r);
5013 write_insn<big_endian>(p, blr);
5014 return p + 4;
5015 }
5016
5017 template<bool big_endian>
5018 static unsigned char*
5019 restgpr1(unsigned char* p, int r)
5020 {
5021 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5022 write_insn<big_endian>(p, insn);
5023 return p + 4;
5024 }
5025
5026 template<bool big_endian>
5027 static unsigned char*
5028 restgpr1_tail(unsigned char* p, int r)
5029 {
5030 p = restgpr1<big_endian>(p, r);
5031 write_insn<big_endian>(p, blr);
5032 return p + 4;
5033 }
5034
5035 template<bool big_endian>
5036 static unsigned char*
5037 savefpr(unsigned char* p, int r)
5038 {
5039 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5040 write_insn<big_endian>(p, insn);
5041 return p + 4;
5042 }
5043
5044 template<bool big_endian>
5045 static unsigned char*
5046 savefpr0_tail(unsigned char* p, int r)
5047 {
5048 p = savefpr<big_endian>(p, r);
5049 write_insn<big_endian>(p, std_0_1 + 16);
5050 p = p + 4;
5051 write_insn<big_endian>(p, blr);
5052 return p + 4;
5053 }
5054
5055 template<bool big_endian>
5056 static unsigned char*
5057 restfpr(unsigned char* p, int r)
5058 {
5059 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5060 write_insn<big_endian>(p, insn);
5061 return p + 4;
5062 }
5063
5064 template<bool big_endian>
5065 static unsigned char*
5066 restfpr0_tail(unsigned char* p, int r)
5067 {
5068 write_insn<big_endian>(p, ld_0_1 + 16);
5069 p = p + 4;
5070 p = restfpr<big_endian>(p, r);
5071 write_insn<big_endian>(p, mtlr_0);
5072 p = p + 4;
5073 if (r == 29)
5074 {
5075 p = restfpr<big_endian>(p, 30);
5076 p = restfpr<big_endian>(p, 31);
5077 }
5078 write_insn<big_endian>(p, blr);
5079 return p + 4;
5080 }
5081
5082 template<bool big_endian>
5083 static unsigned char*
5084 savefpr1_tail(unsigned char* p, int r)
5085 {
5086 p = savefpr<big_endian>(p, r);
5087 write_insn<big_endian>(p, blr);
5088 return p + 4;
5089 }
5090
5091 template<bool big_endian>
5092 static unsigned char*
5093 restfpr1_tail(unsigned char* p, int r)
5094 {
5095 p = restfpr<big_endian>(p, r);
5096 write_insn<big_endian>(p, blr);
5097 return p + 4;
5098 }
5099
5100 template<bool big_endian>
5101 static unsigned char*
5102 savevr(unsigned char* p, int r)
5103 {
5104 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5105 write_insn<big_endian>(p, insn);
5106 p = p + 4;
5107 insn = stvx_0_12_0 + (r << 21);
5108 write_insn<big_endian>(p, insn);
5109 return p + 4;
5110 }
5111
5112 template<bool big_endian>
5113 static unsigned char*
5114 savevr_tail(unsigned char* p, int r)
5115 {
5116 p = savevr<big_endian>(p, r);
5117 write_insn<big_endian>(p, blr);
5118 return p + 4;
5119 }
5120
5121 template<bool big_endian>
5122 static unsigned char*
5123 restvr(unsigned char* p, int r)
5124 {
5125 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5126 write_insn<big_endian>(p, insn);
5127 p = p + 4;
5128 insn = lvx_0_12_0 + (r << 21);
5129 write_insn<big_endian>(p, insn);
5130 return p + 4;
5131 }
5132
5133 template<bool big_endian>
5134 static unsigned char*
5135 restvr_tail(unsigned char* p, int r)
5136 {
5137 p = restvr<big_endian>(p, r);
5138 write_insn<big_endian>(p, blr);
5139 return p + 4;
5140 }
5141
5142
5143 template<int size, bool big_endian>
5144 Output_data_save_res<size, big_endian>::Output_data_save_res(
5145 Symbol_table* symtab)
5146 : Output_section_data_build(4),
5147 contents_(NULL)
5148 {
5149 this->savres_define(symtab,
5150 "_savegpr0_", 14, 31,
5151 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5152 this->savres_define(symtab,
5153 "_restgpr0_", 14, 29,
5154 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5155 this->savres_define(symtab,
5156 "_restgpr0_", 30, 31,
5157 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5158 this->savres_define(symtab,
5159 "_savegpr1_", 14, 31,
5160 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5161 this->savres_define(symtab,
5162 "_restgpr1_", 14, 31,
5163 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5164 this->savres_define(symtab,
5165 "_savefpr_", 14, 31,
5166 savefpr<big_endian>, savefpr0_tail<big_endian>);
5167 this->savres_define(symtab,
5168 "_restfpr_", 14, 29,
5169 restfpr<big_endian>, restfpr0_tail<big_endian>);
5170 this->savres_define(symtab,
5171 "_restfpr_", 30, 31,
5172 restfpr<big_endian>, restfpr0_tail<big_endian>);
5173 this->savres_define(symtab,
5174 "._savef", 14, 31,
5175 savefpr<big_endian>, savefpr1_tail<big_endian>);
5176 this->savres_define(symtab,
5177 "._restf", 14, 31,
5178 restfpr<big_endian>, restfpr1_tail<big_endian>);
5179 this->savres_define(symtab,
5180 "_savevr_", 20, 31,
5181 savevr<big_endian>, savevr_tail<big_endian>);
5182 this->savres_define(symtab,
5183 "_restvr_", 20, 31,
5184 restvr<big_endian>, restvr_tail<big_endian>);
5185 }
5186
5187 template<int size, bool big_endian>
5188 void
5189 Output_data_save_res<size, big_endian>::savres_define(
5190 Symbol_table* symtab,
5191 const char *name,
5192 unsigned int lo, unsigned int hi,
5193 unsigned char* write_ent(unsigned char*, int),
5194 unsigned char* write_tail(unsigned char*, int))
5195 {
5196 size_t len = strlen(name);
5197 bool writing = false;
5198 char sym[16];
5199
5200 memcpy(sym, name, len);
5201 sym[len + 2] = 0;
5202
5203 for (unsigned int i = lo; i <= hi; i++)
5204 {
5205 sym[len + 0] = i / 10 + '0';
5206 sym[len + 1] = i % 10 + '0';
5207 Symbol* gsym = symtab->lookup(sym);
5208 bool refd = gsym != NULL && gsym->is_undefined();
5209 writing = writing || refd;
5210 if (writing)
5211 {
5212 if (this->contents_ == NULL)
5213 this->contents_ = new unsigned char[this->savres_max];
5214
5215 section_size_type value = this->current_data_size();
5216 unsigned char* p = this->contents_ + value;
5217 if (i != hi)
5218 p = write_ent(p, i);
5219 else
5220 p = write_tail(p, i);
5221 section_size_type cur_size = p - this->contents_;
5222 this->set_current_data_size(cur_size);
5223 if (refd)
5224 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5225 this, value, cur_size - value,
5226 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5227 elfcpp::STV_HIDDEN, 0, false, false);
5228 }
5229 }
5230 }
5231
5232 // Write out save/restore.
5233
5234 template<int size, bool big_endian>
5235 void
5236 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5237 {
5238 const section_size_type off = this->offset();
5239 const section_size_type oview_size =
5240 convert_to_section_size_type(this->data_size());
5241 unsigned char* const oview = of->get_output_view(off, oview_size);
5242 memcpy(oview, this->contents_, oview_size);
5243 of->write_output_view(off, oview_size, oview);
5244 }
5245
5246
5247 // Create the glink section.
5248
5249 template<int size, bool big_endian>
5250 void
5251 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5252 {
5253 if (this->glink_ == NULL)
5254 {
5255 this->glink_ = new Output_data_glink<size, big_endian>(this);
5256 this->glink_->add_eh_frame(layout);
5257 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5258 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5259 this->glink_, ORDER_TEXT, false);
5260 }
5261 }
5262
5263 // Create a PLT entry for a global symbol.
5264
5265 template<int size, bool big_endian>
5266 void
5267 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5268 Layout* layout,
5269 Symbol* gsym)
5270 {
5271 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5272 && gsym->can_use_relative_reloc(false))
5273 {
5274 if (this->iplt_ == NULL)
5275 this->make_iplt_section(symtab, layout);
5276 this->iplt_->add_ifunc_entry(gsym);
5277 }
5278 else
5279 {
5280 if (this->plt_ == NULL)
5281 this->make_plt_section(symtab, layout);
5282 this->plt_->add_entry(gsym);
5283 }
5284 }
5285
5286 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5287
5288 template<int size, bool big_endian>
5289 void
5290 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5291 Symbol_table* symtab,
5292 Layout* layout,
5293 Sized_relobj_file<size, big_endian>* relobj,
5294 unsigned int r_sym)
5295 {
5296 if (this->iplt_ == NULL)
5297 this->make_iplt_section(symtab, layout);
5298 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5299 }
5300
5301 // Return the number of entries in the PLT.
5302
5303 template<int size, bool big_endian>
5304 unsigned int
5305 Target_powerpc<size, big_endian>::plt_entry_count() const
5306 {
5307 if (this->plt_ == NULL)
5308 return 0;
5309 return this->plt_->entry_count();
5310 }
5311
5312 // Create a GOT entry for local dynamic __tls_get_addr calls.
5313
5314 template<int size, bool big_endian>
5315 unsigned int
5316 Target_powerpc<size, big_endian>::tlsld_got_offset(
5317 Symbol_table* symtab,
5318 Layout* layout,
5319 Sized_relobj_file<size, big_endian>* object)
5320 {
5321 if (this->tlsld_got_offset_ == -1U)
5322 {
5323 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5324 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5325 Output_data_got_powerpc<size, big_endian>* got
5326 = this->got_section(symtab, layout);
5327 unsigned int got_offset = got->add_constant_pair(0, 0);
5328 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5329 got_offset, 0);
5330 this->tlsld_got_offset_ = got_offset;
5331 }
5332 return this->tlsld_got_offset_;
5333 }
5334
5335 // Get the Reference_flags for a particular relocation.
5336
5337 template<int size, bool big_endian>
5338 int
5339 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5340 unsigned int r_type,
5341 const Target_powerpc* target)
5342 {
5343 int ref = 0;
5344
5345 switch (r_type)
5346 {
5347 case elfcpp::R_POWERPC_NONE:
5348 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5349 case elfcpp::R_POWERPC_GNU_VTENTRY:
5350 case elfcpp::R_PPC64_TOC:
5351 // No symbol reference.
5352 break;
5353
5354 case elfcpp::R_PPC64_ADDR64:
5355 case elfcpp::R_PPC64_UADDR64:
5356 case elfcpp::R_POWERPC_ADDR32:
5357 case elfcpp::R_POWERPC_UADDR32:
5358 case elfcpp::R_POWERPC_ADDR16:
5359 case elfcpp::R_POWERPC_UADDR16:
5360 case elfcpp::R_POWERPC_ADDR16_LO:
5361 case elfcpp::R_POWERPC_ADDR16_HI:
5362 case elfcpp::R_POWERPC_ADDR16_HA:
5363 ref = Symbol::ABSOLUTE_REF;
5364 break;
5365
5366 case elfcpp::R_POWERPC_ADDR24:
5367 case elfcpp::R_POWERPC_ADDR14:
5368 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5369 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5370 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5371 break;
5372
5373 case elfcpp::R_PPC64_REL64:
5374 case elfcpp::R_POWERPC_REL32:
5375 case elfcpp::R_PPC_LOCAL24PC:
5376 case elfcpp::R_POWERPC_REL16:
5377 case elfcpp::R_POWERPC_REL16_LO:
5378 case elfcpp::R_POWERPC_REL16_HI:
5379 case elfcpp::R_POWERPC_REL16_HA:
5380 ref = Symbol::RELATIVE_REF;
5381 break;
5382
5383 case elfcpp::R_POWERPC_REL24:
5384 case elfcpp::R_PPC_PLTREL24:
5385 case elfcpp::R_POWERPC_REL14:
5386 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5387 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5388 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5389 break;
5390
5391 case elfcpp::R_POWERPC_GOT16:
5392 case elfcpp::R_POWERPC_GOT16_LO:
5393 case elfcpp::R_POWERPC_GOT16_HI:
5394 case elfcpp::R_POWERPC_GOT16_HA:
5395 case elfcpp::R_PPC64_GOT16_DS:
5396 case elfcpp::R_PPC64_GOT16_LO_DS:
5397 case elfcpp::R_PPC64_TOC16:
5398 case elfcpp::R_PPC64_TOC16_LO:
5399 case elfcpp::R_PPC64_TOC16_HI:
5400 case elfcpp::R_PPC64_TOC16_HA:
5401 case elfcpp::R_PPC64_TOC16_DS:
5402 case elfcpp::R_PPC64_TOC16_LO_DS:
5403 ref = Symbol::RELATIVE_REF;
5404 break;
5405
5406 case elfcpp::R_POWERPC_GOT_TPREL16:
5407 case elfcpp::R_POWERPC_TLS:
5408 ref = Symbol::TLS_REF;
5409 break;
5410
5411 case elfcpp::R_POWERPC_COPY:
5412 case elfcpp::R_POWERPC_GLOB_DAT:
5413 case elfcpp::R_POWERPC_JMP_SLOT:
5414 case elfcpp::R_POWERPC_RELATIVE:
5415 case elfcpp::R_POWERPC_DTPMOD:
5416 default:
5417 // Not expected. We will give an error later.
5418 break;
5419 }
5420
5421 if (size == 64 && target->abiversion() < 2)
5422 ref |= Symbol::FUNC_DESC_ABI;
5423 return ref;
5424 }
5425
5426 // Report an unsupported relocation against a local symbol.
5427
5428 template<int size, bool big_endian>
5429 void
5430 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5431 Sized_relobj_file<size, big_endian>* object,
5432 unsigned int r_type)
5433 {
5434 gold_error(_("%s: unsupported reloc %u against local symbol"),
5435 object->name().c_str(), r_type);
5436 }
5437
5438 // We are about to emit a dynamic relocation of type R_TYPE. If the
5439 // dynamic linker does not support it, issue an error.
5440
5441 template<int size, bool big_endian>
5442 void
5443 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5444 unsigned int r_type)
5445 {
5446 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5447
5448 // These are the relocation types supported by glibc for both 32-bit
5449 // and 64-bit powerpc.
5450 switch (r_type)
5451 {
5452 case elfcpp::R_POWERPC_NONE:
5453 case elfcpp::R_POWERPC_RELATIVE:
5454 case elfcpp::R_POWERPC_GLOB_DAT:
5455 case elfcpp::R_POWERPC_DTPMOD:
5456 case elfcpp::R_POWERPC_DTPREL:
5457 case elfcpp::R_POWERPC_TPREL:
5458 case elfcpp::R_POWERPC_JMP_SLOT:
5459 case elfcpp::R_POWERPC_COPY:
5460 case elfcpp::R_POWERPC_IRELATIVE:
5461 case elfcpp::R_POWERPC_ADDR32:
5462 case elfcpp::R_POWERPC_UADDR32:
5463 case elfcpp::R_POWERPC_ADDR24:
5464 case elfcpp::R_POWERPC_ADDR16:
5465 case elfcpp::R_POWERPC_UADDR16:
5466 case elfcpp::R_POWERPC_ADDR16_LO:
5467 case elfcpp::R_POWERPC_ADDR16_HI:
5468 case elfcpp::R_POWERPC_ADDR16_HA:
5469 case elfcpp::R_POWERPC_ADDR14:
5470 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5471 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5472 case elfcpp::R_POWERPC_REL32:
5473 case elfcpp::R_POWERPC_REL24:
5474 case elfcpp::R_POWERPC_TPREL16:
5475 case elfcpp::R_POWERPC_TPREL16_LO:
5476 case elfcpp::R_POWERPC_TPREL16_HI:
5477 case elfcpp::R_POWERPC_TPREL16_HA:
5478 return;
5479
5480 default:
5481 break;
5482 }
5483
5484 if (size == 64)
5485 {
5486 switch (r_type)
5487 {
5488 // These are the relocation types supported only on 64-bit.
5489 case elfcpp::R_PPC64_ADDR64:
5490 case elfcpp::R_PPC64_UADDR64:
5491 case elfcpp::R_PPC64_JMP_IREL:
5492 case elfcpp::R_PPC64_ADDR16_DS:
5493 case elfcpp::R_PPC64_ADDR16_LO_DS:
5494 case elfcpp::R_PPC64_ADDR16_HIGH:
5495 case elfcpp::R_PPC64_ADDR16_HIGHA:
5496 case elfcpp::R_PPC64_ADDR16_HIGHER:
5497 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5498 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5499 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5500 case elfcpp::R_PPC64_REL64:
5501 case elfcpp::R_POWERPC_ADDR30:
5502 case elfcpp::R_PPC64_TPREL16_DS:
5503 case elfcpp::R_PPC64_TPREL16_LO_DS:
5504 case elfcpp::R_PPC64_TPREL16_HIGH:
5505 case elfcpp::R_PPC64_TPREL16_HIGHA:
5506 case elfcpp::R_PPC64_TPREL16_HIGHER:
5507 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5508 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5509 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5510 return;
5511
5512 default:
5513 break;
5514 }
5515 }
5516 else
5517 {
5518 switch (r_type)
5519 {
5520 // These are the relocation types supported only on 32-bit.
5521 // ??? glibc ld.so doesn't need to support these.
5522 case elfcpp::R_POWERPC_DTPREL16:
5523 case elfcpp::R_POWERPC_DTPREL16_LO:
5524 case elfcpp::R_POWERPC_DTPREL16_HI:
5525 case elfcpp::R_POWERPC_DTPREL16_HA:
5526 return;
5527
5528 default:
5529 break;
5530 }
5531 }
5532
5533 // This prevents us from issuing more than one error per reloc
5534 // section. But we can still wind up issuing more than one
5535 // error per object file.
5536 if (this->issued_non_pic_error_)
5537 return;
5538 gold_assert(parameters->options().output_is_position_independent());
5539 object->error(_("requires unsupported dynamic reloc; "
5540 "recompile with -fPIC"));
5541 this->issued_non_pic_error_ = true;
5542 return;
5543 }
5544
5545 // Return whether we need to make a PLT entry for a relocation of the
5546 // given type against a STT_GNU_IFUNC symbol.
5547
5548 template<int size, bool big_endian>
5549 bool
5550 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5551 Target_powerpc<size, big_endian>* target,
5552 Sized_relobj_file<size, big_endian>* object,
5553 unsigned int r_type,
5554 bool report_err)
5555 {
5556 // In non-pic code any reference will resolve to the plt call stub
5557 // for the ifunc symbol.
5558 if ((size == 32 || target->abiversion() >= 2)
5559 && !parameters->options().output_is_position_independent())
5560 return true;
5561
5562 switch (r_type)
5563 {
5564 // Word size refs from data sections are OK, but don't need a PLT entry.
5565 case elfcpp::R_POWERPC_ADDR32:
5566 case elfcpp::R_POWERPC_UADDR32:
5567 if (size == 32)
5568 return false;
5569 break;
5570
5571 case elfcpp::R_PPC64_ADDR64:
5572 case elfcpp::R_PPC64_UADDR64:
5573 if (size == 64)
5574 return false;
5575 break;
5576
5577 // GOT refs are good, but also don't need a PLT entry.
5578 case elfcpp::R_POWERPC_GOT16:
5579 case elfcpp::R_POWERPC_GOT16_LO:
5580 case elfcpp::R_POWERPC_GOT16_HI:
5581 case elfcpp::R_POWERPC_GOT16_HA:
5582 case elfcpp::R_PPC64_GOT16_DS:
5583 case elfcpp::R_PPC64_GOT16_LO_DS:
5584 return false;
5585
5586 // Function calls are good, and these do need a PLT entry.
5587 case elfcpp::R_POWERPC_ADDR24:
5588 case elfcpp::R_POWERPC_ADDR14:
5589 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5590 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5591 case elfcpp::R_POWERPC_REL24:
5592 case elfcpp::R_PPC_PLTREL24:
5593 case elfcpp::R_POWERPC_REL14:
5594 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5595 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5596 return true;
5597
5598 default:
5599 break;
5600 }
5601
5602 // Anything else is a problem.
5603 // If we are building a static executable, the libc startup function
5604 // responsible for applying indirect function relocations is going
5605 // to complain about the reloc type.
5606 // If we are building a dynamic executable, we will have a text
5607 // relocation. The dynamic loader will set the text segment
5608 // writable and non-executable to apply text relocations. So we'll
5609 // segfault when trying to run the indirection function to resolve
5610 // the reloc.
5611 if (report_err)
5612 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5613 object->name().c_str(), r_type);
5614 return false;
5615 }
5616
5617 // Scan a relocation for a local symbol.
5618
5619 template<int size, bool big_endian>
5620 inline void
5621 Target_powerpc<size, big_endian>::Scan::local(
5622 Symbol_table* symtab,
5623 Layout* layout,
5624 Target_powerpc<size, big_endian>* target,
5625 Sized_relobj_file<size, big_endian>* object,
5626 unsigned int data_shndx,
5627 Output_section* output_section,
5628 const elfcpp::Rela<size, big_endian>& reloc,
5629 unsigned int r_type,
5630 const elfcpp::Sym<size, big_endian>& lsym,
5631 bool is_discarded)
5632 {
5633 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5634
5635 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5636 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5637 {
5638 this->expect_tls_get_addr_call();
5639 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5640 if (tls_type != tls::TLSOPT_NONE)
5641 this->skip_next_tls_get_addr_call();
5642 }
5643 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5644 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5645 {
5646 this->expect_tls_get_addr_call();
5647 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5648 if (tls_type != tls::TLSOPT_NONE)
5649 this->skip_next_tls_get_addr_call();
5650 }
5651
5652 Powerpc_relobj<size, big_endian>* ppc_object
5653 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5654
5655 if (is_discarded)
5656 {
5657 if (size == 64
5658 && data_shndx == ppc_object->opd_shndx()
5659 && r_type == elfcpp::R_PPC64_ADDR64)
5660 ppc_object->set_opd_discard(reloc.get_r_offset());
5661 return;
5662 }
5663
5664 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5665 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5666 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5667 {
5668 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5669 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5670 r_type, r_sym, reloc.get_r_addend());
5671 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5672 }
5673
5674 switch (r_type)
5675 {
5676 case elfcpp::R_POWERPC_NONE:
5677 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5678 case elfcpp::R_POWERPC_GNU_VTENTRY:
5679 case elfcpp::R_PPC64_TOCSAVE:
5680 case elfcpp::R_POWERPC_TLS:
5681 case elfcpp::R_PPC64_ENTRY:
5682 break;
5683
5684 case elfcpp::R_PPC64_TOC:
5685 {
5686 Output_data_got_powerpc<size, big_endian>* got
5687 = target->got_section(symtab, layout);
5688 if (parameters->options().output_is_position_independent())
5689 {
5690 Address off = reloc.get_r_offset();
5691 if (size == 64
5692 && target->abiversion() < 2
5693 && data_shndx == ppc_object->opd_shndx()
5694 && ppc_object->get_opd_discard(off - 8))
5695 break;
5696
5697 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5698 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5699 rela_dyn->add_output_section_relative(got->output_section(),
5700 elfcpp::R_POWERPC_RELATIVE,
5701 output_section,
5702 object, data_shndx, off,
5703 symobj->toc_base_offset());
5704 }
5705 }
5706 break;
5707
5708 case elfcpp::R_PPC64_ADDR64:
5709 case elfcpp::R_PPC64_UADDR64:
5710 case elfcpp::R_POWERPC_ADDR32:
5711 case elfcpp::R_POWERPC_UADDR32:
5712 case elfcpp::R_POWERPC_ADDR24:
5713 case elfcpp::R_POWERPC_ADDR16:
5714 case elfcpp::R_POWERPC_ADDR16_LO:
5715 case elfcpp::R_POWERPC_ADDR16_HI:
5716 case elfcpp::R_POWERPC_ADDR16_HA:
5717 case elfcpp::R_POWERPC_UADDR16:
5718 case elfcpp::R_PPC64_ADDR16_HIGH:
5719 case elfcpp::R_PPC64_ADDR16_HIGHA:
5720 case elfcpp::R_PPC64_ADDR16_HIGHER:
5721 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5722 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5723 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5724 case elfcpp::R_PPC64_ADDR16_DS:
5725 case elfcpp::R_PPC64_ADDR16_LO_DS:
5726 case elfcpp::R_POWERPC_ADDR14:
5727 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5728 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5729 // If building a shared library (or a position-independent
5730 // executable), we need to create a dynamic relocation for
5731 // this location.
5732 if (parameters->options().output_is_position_independent()
5733 || (size == 64 && is_ifunc && target->abiversion() < 2))
5734 {
5735 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5736 is_ifunc);
5737 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5738 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5739 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5740 {
5741 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5742 : elfcpp::R_POWERPC_RELATIVE);
5743 rela_dyn->add_local_relative(object, r_sym, dynrel,
5744 output_section, data_shndx,
5745 reloc.get_r_offset(),
5746 reloc.get_r_addend(), false);
5747 }
5748 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5749 {
5750 check_non_pic(object, r_type);
5751 rela_dyn->add_local(object, r_sym, r_type, output_section,
5752 data_shndx, reloc.get_r_offset(),
5753 reloc.get_r_addend());
5754 }
5755 else
5756 {
5757 gold_assert(lsym.get_st_value() == 0);
5758 unsigned int shndx = lsym.get_st_shndx();
5759 bool is_ordinary;
5760 shndx = object->adjust_sym_shndx(r_sym, shndx,
5761 &is_ordinary);
5762 if (!is_ordinary)
5763 object->error(_("section symbol %u has bad shndx %u"),
5764 r_sym, shndx);
5765 else
5766 rela_dyn->add_local_section(object, shndx, r_type,
5767 output_section, data_shndx,
5768 reloc.get_r_offset());
5769 }
5770 }
5771 break;
5772
5773 case elfcpp::R_POWERPC_REL24:
5774 case elfcpp::R_PPC_PLTREL24:
5775 case elfcpp::R_PPC_LOCAL24PC:
5776 case elfcpp::R_POWERPC_REL14:
5777 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5778 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5779 if (!is_ifunc)
5780 {
5781 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5782 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5783 r_type, r_sym, reloc.get_r_addend());
5784 }
5785 break;
5786
5787 case elfcpp::R_PPC64_REL64:
5788 case elfcpp::R_POWERPC_REL32:
5789 case elfcpp::R_POWERPC_REL16:
5790 case elfcpp::R_POWERPC_REL16_LO:
5791 case elfcpp::R_POWERPC_REL16_HI:
5792 case elfcpp::R_POWERPC_REL16_HA:
5793 case elfcpp::R_POWERPC_REL16DX_HA:
5794 case elfcpp::R_POWERPC_SECTOFF:
5795 case elfcpp::R_POWERPC_SECTOFF_LO:
5796 case elfcpp::R_POWERPC_SECTOFF_HI:
5797 case elfcpp::R_POWERPC_SECTOFF_HA:
5798 case elfcpp::R_PPC64_SECTOFF_DS:
5799 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5800 case elfcpp::R_POWERPC_TPREL16:
5801 case elfcpp::R_POWERPC_TPREL16_LO:
5802 case elfcpp::R_POWERPC_TPREL16_HI:
5803 case elfcpp::R_POWERPC_TPREL16_HA:
5804 case elfcpp::R_PPC64_TPREL16_DS:
5805 case elfcpp::R_PPC64_TPREL16_LO_DS:
5806 case elfcpp::R_PPC64_TPREL16_HIGH:
5807 case elfcpp::R_PPC64_TPREL16_HIGHA:
5808 case elfcpp::R_PPC64_TPREL16_HIGHER:
5809 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5810 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5811 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5812 case elfcpp::R_POWERPC_DTPREL16:
5813 case elfcpp::R_POWERPC_DTPREL16_LO:
5814 case elfcpp::R_POWERPC_DTPREL16_HI:
5815 case elfcpp::R_POWERPC_DTPREL16_HA:
5816 case elfcpp::R_PPC64_DTPREL16_DS:
5817 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5818 case elfcpp::R_PPC64_DTPREL16_HIGH:
5819 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5820 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5821 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5822 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5823 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5824 case elfcpp::R_PPC64_TLSGD:
5825 case elfcpp::R_PPC64_TLSLD:
5826 case elfcpp::R_PPC64_ADDR64_LOCAL:
5827 break;
5828
5829 case elfcpp::R_POWERPC_GOT16:
5830 case elfcpp::R_POWERPC_GOT16_LO:
5831 case elfcpp::R_POWERPC_GOT16_HI:
5832 case elfcpp::R_POWERPC_GOT16_HA:
5833 case elfcpp::R_PPC64_GOT16_DS:
5834 case elfcpp::R_PPC64_GOT16_LO_DS:
5835 {
5836 // The symbol requires a GOT entry.
5837 Output_data_got_powerpc<size, big_endian>* got
5838 = target->got_section(symtab, layout);
5839 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5840
5841 if (!parameters->options().output_is_position_independent())
5842 {
5843 if (is_ifunc
5844 && (size == 32 || target->abiversion() >= 2))
5845 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5846 else
5847 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5848 }
5849 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5850 {
5851 // If we are generating a shared object or a pie, this
5852 // symbol's GOT entry will be set by a dynamic relocation.
5853 unsigned int off;
5854 off = got->add_constant(0);
5855 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5856
5857 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5858 is_ifunc);
5859 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5860 : elfcpp::R_POWERPC_RELATIVE);
5861 rela_dyn->add_local_relative(object, r_sym, dynrel,
5862 got, off, 0, false);
5863 }
5864 }
5865 break;
5866
5867 case elfcpp::R_PPC64_TOC16:
5868 case elfcpp::R_PPC64_TOC16_LO:
5869 case elfcpp::R_PPC64_TOC16_HI:
5870 case elfcpp::R_PPC64_TOC16_HA:
5871 case elfcpp::R_PPC64_TOC16_DS:
5872 case elfcpp::R_PPC64_TOC16_LO_DS:
5873 // We need a GOT section.
5874 target->got_section(symtab, layout);
5875 break;
5876
5877 case elfcpp::R_POWERPC_GOT_TLSGD16:
5878 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5879 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5880 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5881 {
5882 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5883 if (tls_type == tls::TLSOPT_NONE)
5884 {
5885 Output_data_got_powerpc<size, big_endian>* got
5886 = target->got_section(symtab, layout);
5887 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5888 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5889 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5890 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5891 }
5892 else if (tls_type == tls::TLSOPT_TO_LE)
5893 {
5894 // no GOT relocs needed for Local Exec.
5895 }
5896 else
5897 gold_unreachable();
5898 }
5899 break;
5900
5901 case elfcpp::R_POWERPC_GOT_TLSLD16:
5902 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5903 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5904 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5905 {
5906 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5907 if (tls_type == tls::TLSOPT_NONE)
5908 target->tlsld_got_offset(symtab, layout, object);
5909 else if (tls_type == tls::TLSOPT_TO_LE)
5910 {
5911 // no GOT relocs needed for Local Exec.
5912 if (parameters->options().emit_relocs())
5913 {
5914 Output_section* os = layout->tls_segment()->first_section();
5915 gold_assert(os != NULL);
5916 os->set_needs_symtab_index();
5917 }
5918 }
5919 else
5920 gold_unreachable();
5921 }
5922 break;
5923
5924 case elfcpp::R_POWERPC_GOT_DTPREL16:
5925 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5926 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5927 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5928 {
5929 Output_data_got_powerpc<size, big_endian>* got
5930 = target->got_section(symtab, layout);
5931 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5932 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5933 }
5934 break;
5935
5936 case elfcpp::R_POWERPC_GOT_TPREL16:
5937 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5938 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5939 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5940 {
5941 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5942 if (tls_type == tls::TLSOPT_NONE)
5943 {
5944 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5945 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5946 {
5947 Output_data_got_powerpc<size, big_endian>* got
5948 = target->got_section(symtab, layout);
5949 unsigned int off = got->add_constant(0);
5950 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5951
5952 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5953 rela_dyn->add_symbolless_local_addend(object, r_sym,
5954 elfcpp::R_POWERPC_TPREL,
5955 got, off, 0);
5956 }
5957 }
5958 else if (tls_type == tls::TLSOPT_TO_LE)
5959 {
5960 // no GOT relocs needed for Local Exec.
5961 }
5962 else
5963 gold_unreachable();
5964 }
5965 break;
5966
5967 default:
5968 unsupported_reloc_local(object, r_type);
5969 break;
5970 }
5971
5972 switch (r_type)
5973 {
5974 case elfcpp::R_POWERPC_GOT_TLSLD16:
5975 case elfcpp::R_POWERPC_GOT_TLSGD16:
5976 case elfcpp::R_POWERPC_GOT_TPREL16:
5977 case elfcpp::R_POWERPC_GOT_DTPREL16:
5978 case elfcpp::R_POWERPC_GOT16:
5979 case elfcpp::R_PPC64_GOT16_DS:
5980 case elfcpp::R_PPC64_TOC16:
5981 case elfcpp::R_PPC64_TOC16_DS:
5982 ppc_object->set_has_small_toc_reloc();
5983 default:
5984 break;
5985 }
5986 }
5987
5988 // Report an unsupported relocation against a global symbol.
5989
5990 template<int size, bool big_endian>
5991 void
5992 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5993 Sized_relobj_file<size, big_endian>* object,
5994 unsigned int r_type,
5995 Symbol* gsym)
5996 {
5997 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5998 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5999 }
6000
6001 // Scan a relocation for a global symbol.
6002
6003 template<int size, bool big_endian>
6004 inline void
6005 Target_powerpc<size, big_endian>::Scan::global(
6006 Symbol_table* symtab,
6007 Layout* layout,
6008 Target_powerpc<size, big_endian>* target,
6009 Sized_relobj_file<size, big_endian>* object,
6010 unsigned int data_shndx,
6011 Output_section* output_section,
6012 const elfcpp::Rela<size, big_endian>& reloc,
6013 unsigned int r_type,
6014 Symbol* gsym)
6015 {
6016 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6017 return;
6018
6019 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6020 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6021 {
6022 this->expect_tls_get_addr_call();
6023 const bool final = gsym->final_value_is_known();
6024 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6025 if (tls_type != tls::TLSOPT_NONE)
6026 this->skip_next_tls_get_addr_call();
6027 }
6028 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6029 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6030 {
6031 this->expect_tls_get_addr_call();
6032 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6033 if (tls_type != tls::TLSOPT_NONE)
6034 this->skip_next_tls_get_addr_call();
6035 }
6036
6037 Powerpc_relobj<size, big_endian>* ppc_object
6038 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6039
6040 // A STT_GNU_IFUNC symbol may require a PLT entry.
6041 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6042 bool pushed_ifunc = false;
6043 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6044 {
6045 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6046 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6047 r_type, r_sym, reloc.get_r_addend());
6048 target->make_plt_entry(symtab, layout, gsym);
6049 pushed_ifunc = true;
6050 }
6051
6052 switch (r_type)
6053 {
6054 case elfcpp::R_POWERPC_NONE:
6055 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6056 case elfcpp::R_POWERPC_GNU_VTENTRY:
6057 case elfcpp::R_PPC_LOCAL24PC:
6058 case elfcpp::R_POWERPC_TLS:
6059 case elfcpp::R_PPC64_ENTRY:
6060 break;
6061
6062 case elfcpp::R_PPC64_TOC:
6063 {
6064 Output_data_got_powerpc<size, big_endian>* got
6065 = target->got_section(symtab, layout);
6066 if (parameters->options().output_is_position_independent())
6067 {
6068 Address off = reloc.get_r_offset();
6069 if (size == 64
6070 && data_shndx == ppc_object->opd_shndx()
6071 && ppc_object->get_opd_discard(off - 8))
6072 break;
6073
6074 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6075 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6076 if (data_shndx != ppc_object->opd_shndx())
6077 symobj = static_cast
6078 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6079 rela_dyn->add_output_section_relative(got->output_section(),
6080 elfcpp::R_POWERPC_RELATIVE,
6081 output_section,
6082 object, data_shndx, off,
6083 symobj->toc_base_offset());
6084 }
6085 }
6086 break;
6087
6088 case elfcpp::R_PPC64_ADDR64:
6089 if (size == 64
6090 && target->abiversion() < 2
6091 && data_shndx == ppc_object->opd_shndx()
6092 && (gsym->is_defined_in_discarded_section()
6093 || gsym->object() != object))
6094 {
6095 ppc_object->set_opd_discard(reloc.get_r_offset());
6096 break;
6097 }
6098 // Fall through.
6099 case elfcpp::R_PPC64_UADDR64:
6100 case elfcpp::R_POWERPC_ADDR32:
6101 case elfcpp::R_POWERPC_UADDR32:
6102 case elfcpp::R_POWERPC_ADDR24:
6103 case elfcpp::R_POWERPC_ADDR16:
6104 case elfcpp::R_POWERPC_ADDR16_LO:
6105 case elfcpp::R_POWERPC_ADDR16_HI:
6106 case elfcpp::R_POWERPC_ADDR16_HA:
6107 case elfcpp::R_POWERPC_UADDR16:
6108 case elfcpp::R_PPC64_ADDR16_HIGH:
6109 case elfcpp::R_PPC64_ADDR16_HIGHA:
6110 case elfcpp::R_PPC64_ADDR16_HIGHER:
6111 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6112 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6113 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6114 case elfcpp::R_PPC64_ADDR16_DS:
6115 case elfcpp::R_PPC64_ADDR16_LO_DS:
6116 case elfcpp::R_POWERPC_ADDR14:
6117 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6118 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6119 {
6120 // Make a PLT entry if necessary.
6121 if (gsym->needs_plt_entry())
6122 {
6123 // Since this is not a PC-relative relocation, we may be
6124 // taking the address of a function. In that case we need to
6125 // set the entry in the dynamic symbol table to the address of
6126 // the PLT call stub.
6127 bool need_ifunc_plt = false;
6128 if ((size == 32 || target->abiversion() >= 2)
6129 && gsym->is_from_dynobj()
6130 && !parameters->options().output_is_position_independent())
6131 {
6132 gsym->set_needs_dynsym_value();
6133 need_ifunc_plt = true;
6134 }
6135 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6136 {
6137 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6138 target->push_branch(ppc_object, data_shndx,
6139 reloc.get_r_offset(), r_type, r_sym,
6140 reloc.get_r_addend());
6141 target->make_plt_entry(symtab, layout, gsym);
6142 }
6143 }
6144 // Make a dynamic relocation if necessary.
6145 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6146 || (size == 64 && is_ifunc && target->abiversion() < 2))
6147 {
6148 if (!parameters->options().output_is_position_independent()
6149 && gsym->may_need_copy_reloc())
6150 {
6151 target->copy_reloc(symtab, layout, object,
6152 data_shndx, output_section, gsym, reloc);
6153 }
6154 else if ((((size == 32
6155 && r_type == elfcpp::R_POWERPC_ADDR32)
6156 || (size == 64
6157 && r_type == elfcpp::R_PPC64_ADDR64
6158 && target->abiversion() >= 2))
6159 && gsym->can_use_relative_reloc(false)
6160 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6161 && parameters->options().shared()))
6162 || (size == 64
6163 && r_type == elfcpp::R_PPC64_ADDR64
6164 && target->abiversion() < 2
6165 && (gsym->can_use_relative_reloc(false)
6166 || data_shndx == ppc_object->opd_shndx())))
6167 {
6168 Reloc_section* rela_dyn
6169 = target->rela_dyn_section(symtab, layout, is_ifunc);
6170 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6171 : elfcpp::R_POWERPC_RELATIVE);
6172 rela_dyn->add_symbolless_global_addend(
6173 gsym, dynrel, output_section, object, data_shndx,
6174 reloc.get_r_offset(), reloc.get_r_addend());
6175 }
6176 else
6177 {
6178 Reloc_section* rela_dyn
6179 = target->rela_dyn_section(symtab, layout, is_ifunc);
6180 check_non_pic(object, r_type);
6181 rela_dyn->add_global(gsym, r_type, output_section,
6182 object, data_shndx,
6183 reloc.get_r_offset(),
6184 reloc.get_r_addend());
6185 }
6186 }
6187 }
6188 break;
6189
6190 case elfcpp::R_PPC_PLTREL24:
6191 case elfcpp::R_POWERPC_REL24:
6192 if (!is_ifunc)
6193 {
6194 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6195 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6196 r_type, r_sym, reloc.get_r_addend());
6197 if (gsym->needs_plt_entry()
6198 || (!gsym->final_value_is_known()
6199 && (gsym->is_undefined()
6200 || gsym->is_from_dynobj()
6201 || gsym->is_preemptible())))
6202 target->make_plt_entry(symtab, layout, gsym);
6203 }
6204 // Fall through.
6205
6206 case elfcpp::R_PPC64_REL64:
6207 case elfcpp::R_POWERPC_REL32:
6208 // Make a dynamic relocation if necessary.
6209 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6210 {
6211 if (!parameters->options().output_is_position_independent()
6212 && gsym->may_need_copy_reloc())
6213 {
6214 target->copy_reloc(symtab, layout, object,
6215 data_shndx, output_section, gsym,
6216 reloc);
6217 }
6218 else
6219 {
6220 Reloc_section* rela_dyn
6221 = target->rela_dyn_section(symtab, layout, is_ifunc);
6222 check_non_pic(object, r_type);
6223 rela_dyn->add_global(gsym, r_type, output_section, object,
6224 data_shndx, reloc.get_r_offset(),
6225 reloc.get_r_addend());
6226 }
6227 }
6228 break;
6229
6230 case elfcpp::R_POWERPC_REL14:
6231 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6232 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6233 if (!is_ifunc)
6234 {
6235 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6236 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6237 r_type, r_sym, reloc.get_r_addend());
6238 }
6239 break;
6240
6241 case elfcpp::R_POWERPC_REL16:
6242 case elfcpp::R_POWERPC_REL16_LO:
6243 case elfcpp::R_POWERPC_REL16_HI:
6244 case elfcpp::R_POWERPC_REL16_HA:
6245 case elfcpp::R_POWERPC_REL16DX_HA:
6246 case elfcpp::R_POWERPC_SECTOFF:
6247 case elfcpp::R_POWERPC_SECTOFF_LO:
6248 case elfcpp::R_POWERPC_SECTOFF_HI:
6249 case elfcpp::R_POWERPC_SECTOFF_HA:
6250 case elfcpp::R_PPC64_SECTOFF_DS:
6251 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6252 case elfcpp::R_POWERPC_TPREL16:
6253 case elfcpp::R_POWERPC_TPREL16_LO:
6254 case elfcpp::R_POWERPC_TPREL16_HI:
6255 case elfcpp::R_POWERPC_TPREL16_HA:
6256 case elfcpp::R_PPC64_TPREL16_DS:
6257 case elfcpp::R_PPC64_TPREL16_LO_DS:
6258 case elfcpp::R_PPC64_TPREL16_HIGH:
6259 case elfcpp::R_PPC64_TPREL16_HIGHA:
6260 case elfcpp::R_PPC64_TPREL16_HIGHER:
6261 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6262 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6263 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6264 case elfcpp::R_POWERPC_DTPREL16:
6265 case elfcpp::R_POWERPC_DTPREL16_LO:
6266 case elfcpp::R_POWERPC_DTPREL16_HI:
6267 case elfcpp::R_POWERPC_DTPREL16_HA:
6268 case elfcpp::R_PPC64_DTPREL16_DS:
6269 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6270 case elfcpp::R_PPC64_DTPREL16_HIGH:
6271 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6272 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6273 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6274 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6275 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6276 case elfcpp::R_PPC64_TLSGD:
6277 case elfcpp::R_PPC64_TLSLD:
6278 case elfcpp::R_PPC64_ADDR64_LOCAL:
6279 break;
6280
6281 case elfcpp::R_POWERPC_GOT16:
6282 case elfcpp::R_POWERPC_GOT16_LO:
6283 case elfcpp::R_POWERPC_GOT16_HI:
6284 case elfcpp::R_POWERPC_GOT16_HA:
6285 case elfcpp::R_PPC64_GOT16_DS:
6286 case elfcpp::R_PPC64_GOT16_LO_DS:
6287 {
6288 // The symbol requires a GOT entry.
6289 Output_data_got_powerpc<size, big_endian>* got;
6290
6291 got = target->got_section(symtab, layout);
6292 if (gsym->final_value_is_known())
6293 {
6294 if (is_ifunc
6295 && (size == 32 || target->abiversion() >= 2))
6296 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6297 else
6298 got->add_global(gsym, GOT_TYPE_STANDARD);
6299 }
6300 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6301 {
6302 // If we are generating a shared object or a pie, this
6303 // symbol's GOT entry will be set by a dynamic relocation.
6304 unsigned int off = got->add_constant(0);
6305 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6306
6307 Reloc_section* rela_dyn
6308 = target->rela_dyn_section(symtab, layout, is_ifunc);
6309
6310 if (gsym->can_use_relative_reloc(false)
6311 && !((size == 32
6312 || target->abiversion() >= 2)
6313 && gsym->visibility() == elfcpp::STV_PROTECTED
6314 && parameters->options().shared()))
6315 {
6316 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6317 : elfcpp::R_POWERPC_RELATIVE);
6318 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6319 }
6320 else
6321 {
6322 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6323 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6324 }
6325 }
6326 }
6327 break;
6328
6329 case elfcpp::R_PPC64_TOC16:
6330 case elfcpp::R_PPC64_TOC16_LO:
6331 case elfcpp::R_PPC64_TOC16_HI:
6332 case elfcpp::R_PPC64_TOC16_HA:
6333 case elfcpp::R_PPC64_TOC16_DS:
6334 case elfcpp::R_PPC64_TOC16_LO_DS:
6335 // We need a GOT section.
6336 target->got_section(symtab, layout);
6337 break;
6338
6339 case elfcpp::R_POWERPC_GOT_TLSGD16:
6340 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6341 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6342 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6343 {
6344 const bool final = gsym->final_value_is_known();
6345 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6346 if (tls_type == tls::TLSOPT_NONE)
6347 {
6348 Output_data_got_powerpc<size, big_endian>* got
6349 = target->got_section(symtab, layout);
6350 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6351 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6352 elfcpp::R_POWERPC_DTPMOD,
6353 elfcpp::R_POWERPC_DTPREL);
6354 }
6355 else if (tls_type == tls::TLSOPT_TO_IE)
6356 {
6357 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6358 {
6359 Output_data_got_powerpc<size, big_endian>* got
6360 = target->got_section(symtab, layout);
6361 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6362 if (gsym->is_undefined()
6363 || gsym->is_from_dynobj())
6364 {
6365 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6366 elfcpp::R_POWERPC_TPREL);
6367 }
6368 else
6369 {
6370 unsigned int off = got->add_constant(0);
6371 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6372 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6373 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6374 got, off, 0);
6375 }
6376 }
6377 }
6378 else if (tls_type == tls::TLSOPT_TO_LE)
6379 {
6380 // no GOT relocs needed for Local Exec.
6381 }
6382 else
6383 gold_unreachable();
6384 }
6385 break;
6386
6387 case elfcpp::R_POWERPC_GOT_TLSLD16:
6388 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6389 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6390 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6391 {
6392 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6393 if (tls_type == tls::TLSOPT_NONE)
6394 target->tlsld_got_offset(symtab, layout, object);
6395 else if (tls_type == tls::TLSOPT_TO_LE)
6396 {
6397 // no GOT relocs needed for Local Exec.
6398 if (parameters->options().emit_relocs())
6399 {
6400 Output_section* os = layout->tls_segment()->first_section();
6401 gold_assert(os != NULL);
6402 os->set_needs_symtab_index();
6403 }
6404 }
6405 else
6406 gold_unreachable();
6407 }
6408 break;
6409
6410 case elfcpp::R_POWERPC_GOT_DTPREL16:
6411 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6412 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6413 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6414 {
6415 Output_data_got_powerpc<size, big_endian>* got
6416 = target->got_section(symtab, layout);
6417 if (!gsym->final_value_is_known()
6418 && (gsym->is_from_dynobj()
6419 || gsym->is_undefined()
6420 || gsym->is_preemptible()))
6421 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6422 target->rela_dyn_section(layout),
6423 elfcpp::R_POWERPC_DTPREL);
6424 else
6425 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6426 }
6427 break;
6428
6429 case elfcpp::R_POWERPC_GOT_TPREL16:
6430 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6431 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6432 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6433 {
6434 const bool final = gsym->final_value_is_known();
6435 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6436 if (tls_type == tls::TLSOPT_NONE)
6437 {
6438 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6439 {
6440 Output_data_got_powerpc<size, big_endian>* got
6441 = target->got_section(symtab, layout);
6442 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6443 if (gsym->is_undefined()
6444 || gsym->is_from_dynobj())
6445 {
6446 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6447 elfcpp::R_POWERPC_TPREL);
6448 }
6449 else
6450 {
6451 unsigned int off = got->add_constant(0);
6452 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6453 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6454 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6455 got, off, 0);
6456 }
6457 }
6458 }
6459 else if (tls_type == tls::TLSOPT_TO_LE)
6460 {
6461 // no GOT relocs needed for Local Exec.
6462 }
6463 else
6464 gold_unreachable();
6465 }
6466 break;
6467
6468 default:
6469 unsupported_reloc_global(object, r_type, gsym);
6470 break;
6471 }
6472
6473 switch (r_type)
6474 {
6475 case elfcpp::R_POWERPC_GOT_TLSLD16:
6476 case elfcpp::R_POWERPC_GOT_TLSGD16:
6477 case elfcpp::R_POWERPC_GOT_TPREL16:
6478 case elfcpp::R_POWERPC_GOT_DTPREL16:
6479 case elfcpp::R_POWERPC_GOT16:
6480 case elfcpp::R_PPC64_GOT16_DS:
6481 case elfcpp::R_PPC64_TOC16:
6482 case elfcpp::R_PPC64_TOC16_DS:
6483 ppc_object->set_has_small_toc_reloc();
6484 default:
6485 break;
6486 }
6487 }
6488
6489 // Process relocations for gc.
6490
6491 template<int size, bool big_endian>
6492 void
6493 Target_powerpc<size, big_endian>::gc_process_relocs(
6494 Symbol_table* symtab,
6495 Layout* layout,
6496 Sized_relobj_file<size, big_endian>* object,
6497 unsigned int data_shndx,
6498 unsigned int,
6499 const unsigned char* prelocs,
6500 size_t reloc_count,
6501 Output_section* output_section,
6502 bool needs_special_offset_handling,
6503 size_t local_symbol_count,
6504 const unsigned char* plocal_symbols)
6505 {
6506 typedef Target_powerpc<size, big_endian> Powerpc;
6507 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6508 Classify_reloc;
6509
6510 Powerpc_relobj<size, big_endian>* ppc_object
6511 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6512 if (size == 64)
6513 ppc_object->set_opd_valid();
6514 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6515 {
6516 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6517 for (p = ppc_object->access_from_map()->begin();
6518 p != ppc_object->access_from_map()->end();
6519 ++p)
6520 {
6521 Address dst_off = p->first;
6522 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6523 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6524 for (s = p->second.begin(); s != p->second.end(); ++s)
6525 {
6526 Relobj* src_obj = s->first;
6527 unsigned int src_indx = s->second;
6528 symtab->gc()->add_reference(src_obj, src_indx,
6529 ppc_object, dst_indx);
6530 }
6531 p->second.clear();
6532 }
6533 ppc_object->access_from_map()->clear();
6534 ppc_object->process_gc_mark(symtab);
6535 // Don't look at .opd relocs as .opd will reference everything.
6536 return;
6537 }
6538
6539 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6540 symtab,
6541 layout,
6542 this,
6543 object,
6544 data_shndx,
6545 prelocs,
6546 reloc_count,
6547 output_section,
6548 needs_special_offset_handling,
6549 local_symbol_count,
6550 plocal_symbols);
6551 }
6552
6553 // Handle target specific gc actions when adding a gc reference from
6554 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6555 // and DST_OFF. For powerpc64, this adds a referenc to the code
6556 // section of a function descriptor.
6557
6558 template<int size, bool big_endian>
6559 void
6560 Target_powerpc<size, big_endian>::do_gc_add_reference(
6561 Symbol_table* symtab,
6562 Relobj* src_obj,
6563 unsigned int src_shndx,
6564 Relobj* dst_obj,
6565 unsigned int dst_shndx,
6566 Address dst_off) const
6567 {
6568 if (size != 64 || dst_obj->is_dynamic())
6569 return;
6570
6571 Powerpc_relobj<size, big_endian>* ppc_object
6572 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6573 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6574 {
6575 if (ppc_object->opd_valid())
6576 {
6577 dst_shndx = ppc_object->get_opd_ent(dst_off);
6578 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6579 }
6580 else
6581 {
6582 // If we haven't run scan_opd_relocs, we must delay
6583 // processing this function descriptor reference.
6584 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6585 }
6586 }
6587 }
6588
6589 // Add any special sections for this symbol to the gc work list.
6590 // For powerpc64, this adds the code section of a function
6591 // descriptor.
6592
6593 template<int size, bool big_endian>
6594 void
6595 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6596 Symbol_table* symtab,
6597 Symbol* sym) const
6598 {
6599 if (size == 64)
6600 {
6601 Powerpc_relobj<size, big_endian>* ppc_object
6602 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6603 bool is_ordinary;
6604 unsigned int shndx = sym->shndx(&is_ordinary);
6605 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6606 {
6607 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6608 Address dst_off = gsym->value();
6609 if (ppc_object->opd_valid())
6610 {
6611 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6612 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6613 dst_indx));
6614 }
6615 else
6616 ppc_object->add_gc_mark(dst_off);
6617 }
6618 }
6619 }
6620
6621 // For a symbol location in .opd, set LOC to the location of the
6622 // function entry.
6623
6624 template<int size, bool big_endian>
6625 void
6626 Target_powerpc<size, big_endian>::do_function_location(
6627 Symbol_location* loc) const
6628 {
6629 if (size == 64 && loc->shndx != 0)
6630 {
6631 if (loc->object->is_dynamic())
6632 {
6633 Powerpc_dynobj<size, big_endian>* ppc_object
6634 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6635 if (loc->shndx == ppc_object->opd_shndx())
6636 {
6637 Address dest_off;
6638 Address off = loc->offset - ppc_object->opd_address();
6639 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6640 loc->offset = dest_off;
6641 }
6642 }
6643 else
6644 {
6645 const Powerpc_relobj<size, big_endian>* ppc_object
6646 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6647 if (loc->shndx == ppc_object->opd_shndx())
6648 {
6649 Address dest_off;
6650 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6651 loc->offset = dest_off;
6652 }
6653 }
6654 }
6655 }
6656
6657 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6658 // compiled with -fsplit-stack. The function calls non-split-stack
6659 // code. Change the function to ensure it has enough stack space to
6660 // call some random function.
6661
6662 template<int size, bool big_endian>
6663 void
6664 Target_powerpc<size, big_endian>::do_calls_non_split(
6665 Relobj* object,
6666 unsigned int shndx,
6667 section_offset_type fnoffset,
6668 section_size_type fnsize,
6669 const unsigned char* prelocs,
6670 size_t reloc_count,
6671 unsigned char* view,
6672 section_size_type view_size,
6673 std::string* from,
6674 std::string* to) const
6675 {
6676 // 32-bit not supported.
6677 if (size == 32)
6678 {
6679 // warn
6680 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6681 prelocs, reloc_count, view, view_size,
6682 from, to);
6683 return;
6684 }
6685
6686 // The function always starts with
6687 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6688 // addis %r12,%r1,-allocate@ha
6689 // addi %r12,%r12,-allocate@l
6690 // cmpld %r12,%r0
6691 // but note that the addis or addi may be replaced with a nop
6692
6693 unsigned char *entry = view + fnoffset;
6694 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6695
6696 if ((insn & 0xffff0000) == addis_2_12)
6697 {
6698 /* Skip ELFv2 global entry code. */
6699 entry += 8;
6700 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6701 }
6702
6703 unsigned char *pinsn = entry;
6704 bool ok = false;
6705 const uint32_t ld_private_ss = 0xe80d8fc0;
6706 if (insn == ld_private_ss)
6707 {
6708 int32_t allocate = 0;
6709 while (1)
6710 {
6711 pinsn += 4;
6712 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6713 if ((insn & 0xffff0000) == addis_12_1)
6714 allocate += (insn & 0xffff) << 16;
6715 else if ((insn & 0xffff0000) == addi_12_1
6716 || (insn & 0xffff0000) == addi_12_12)
6717 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6718 else if (insn != nop)
6719 break;
6720 }
6721 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6722 {
6723 int extra = parameters->options().split_stack_adjust_size();
6724 allocate -= extra;
6725 if (allocate >= 0 || extra < 0)
6726 {
6727 object->error(_("split-stack stack size overflow at "
6728 "section %u offset %0zx"),
6729 shndx, static_cast<size_t>(fnoffset));
6730 return;
6731 }
6732 pinsn = entry + 4;
6733 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6734 if (insn != addis_12_1)
6735 {
6736 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6737 pinsn += 4;
6738 insn = addi_12_12 | (allocate & 0xffff);
6739 if (insn != addi_12_12)
6740 {
6741 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6742 pinsn += 4;
6743 }
6744 }
6745 else
6746 {
6747 insn = addi_12_1 | (allocate & 0xffff);
6748 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6749 pinsn += 4;
6750 }
6751 if (pinsn != entry + 12)
6752 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6753
6754 ok = true;
6755 }
6756 }
6757
6758 if (!ok)
6759 {
6760 if (!object->has_no_split_stack())
6761 object->error(_("failed to match split-stack sequence at "
6762 "section %u offset %0zx"),
6763 shndx, static_cast<size_t>(fnoffset));
6764 }
6765 }
6766
6767 // Scan relocations for a section.
6768
6769 template<int size, bool big_endian>
6770 void
6771 Target_powerpc<size, big_endian>::scan_relocs(
6772 Symbol_table* symtab,
6773 Layout* layout,
6774 Sized_relobj_file<size, big_endian>* object,
6775 unsigned int data_shndx,
6776 unsigned int sh_type,
6777 const unsigned char* prelocs,
6778 size_t reloc_count,
6779 Output_section* output_section,
6780 bool needs_special_offset_handling,
6781 size_t local_symbol_count,
6782 const unsigned char* plocal_symbols)
6783 {
6784 typedef Target_powerpc<size, big_endian> Powerpc;
6785 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6786 Classify_reloc;
6787
6788 if (sh_type == elfcpp::SHT_REL)
6789 {
6790 gold_error(_("%s: unsupported REL reloc section"),
6791 object->name().c_str());
6792 return;
6793 }
6794
6795 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6796 symtab,
6797 layout,
6798 this,
6799 object,
6800 data_shndx,
6801 prelocs,
6802 reloc_count,
6803 output_section,
6804 needs_special_offset_handling,
6805 local_symbol_count,
6806 plocal_symbols);
6807 }
6808
6809 // Functor class for processing the global symbol table.
6810 // Removes symbols defined on discarded opd entries.
6811
6812 template<bool big_endian>
6813 class Global_symbol_visitor_opd
6814 {
6815 public:
6816 Global_symbol_visitor_opd()
6817 { }
6818
6819 void
6820 operator()(Sized_symbol<64>* sym)
6821 {
6822 if (sym->has_symtab_index()
6823 || sym->source() != Symbol::FROM_OBJECT
6824 || !sym->in_real_elf())
6825 return;
6826
6827 if (sym->object()->is_dynamic())
6828 return;
6829
6830 Powerpc_relobj<64, big_endian>* symobj
6831 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6832 if (symobj->opd_shndx() == 0)
6833 return;
6834
6835 bool is_ordinary;
6836 unsigned int shndx = sym->shndx(&is_ordinary);
6837 if (shndx == symobj->opd_shndx()
6838 && symobj->get_opd_discard(sym->value()))
6839 {
6840 sym->set_undefined();
6841 sym->set_visibility(elfcpp::STV_DEFAULT);
6842 sym->set_is_defined_in_discarded_section();
6843 sym->set_symtab_index(-1U);
6844 }
6845 }
6846 };
6847
6848 template<int size, bool big_endian>
6849 void
6850 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6851 Layout* layout,
6852 Symbol_table* symtab)
6853 {
6854 if (size == 64)
6855 {
6856 Output_data_save_res<size, big_endian>* savres
6857 = new Output_data_save_res<size, big_endian>(symtab);
6858 this->savres_section_ = savres;
6859 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6860 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6861 savres, ORDER_TEXT, false);
6862 }
6863 }
6864
6865 // Sort linker created .got section first (for the header), then input
6866 // sections belonging to files using small model code.
6867
6868 template<bool big_endian>
6869 class Sort_toc_sections
6870 {
6871 public:
6872 bool
6873 operator()(const Output_section::Input_section& is1,
6874 const Output_section::Input_section& is2) const
6875 {
6876 if (!is1.is_input_section() && is2.is_input_section())
6877 return true;
6878 bool small1
6879 = (is1.is_input_section()
6880 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6881 ->has_small_toc_reloc()));
6882 bool small2
6883 = (is2.is_input_section()
6884 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6885 ->has_small_toc_reloc()));
6886 return small1 && !small2;
6887 }
6888 };
6889
6890 // Finalize the sections.
6891
6892 template<int size, bool big_endian>
6893 void
6894 Target_powerpc<size, big_endian>::do_finalize_sections(
6895 Layout* layout,
6896 const Input_objects*,
6897 Symbol_table* symtab)
6898 {
6899 if (parameters->doing_static_link())
6900 {
6901 // At least some versions of glibc elf-init.o have a strong
6902 // reference to __rela_iplt marker syms. A weak ref would be
6903 // better..
6904 if (this->iplt_ != NULL)
6905 {
6906 Reloc_section* rel = this->iplt_->rel_plt();
6907 symtab->define_in_output_data("__rela_iplt_start", NULL,
6908 Symbol_table::PREDEFINED, rel, 0, 0,
6909 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6910 elfcpp::STV_HIDDEN, 0, false, true);
6911 symtab->define_in_output_data("__rela_iplt_end", NULL,
6912 Symbol_table::PREDEFINED, rel, 0, 0,
6913 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6914 elfcpp::STV_HIDDEN, 0, true, true);
6915 }
6916 else
6917 {
6918 symtab->define_as_constant("__rela_iplt_start", NULL,
6919 Symbol_table::PREDEFINED, 0, 0,
6920 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6921 elfcpp::STV_HIDDEN, 0, true, false);
6922 symtab->define_as_constant("__rela_iplt_end", NULL,
6923 Symbol_table::PREDEFINED, 0, 0,
6924 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6925 elfcpp::STV_HIDDEN, 0, true, false);
6926 }
6927 }
6928
6929 if (size == 64)
6930 {
6931 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6932 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6933
6934 if (!parameters->options().relocatable())
6935 {
6936 this->define_save_restore_funcs(layout, symtab);
6937
6938 // Annoyingly, we need to make these sections now whether or
6939 // not we need them. If we delay until do_relax then we
6940 // need to mess with the relaxation machinery checkpointing.
6941 this->got_section(symtab, layout);
6942 this->make_brlt_section(layout);
6943
6944 if (parameters->options().toc_sort())
6945 {
6946 Output_section* os = this->got_->output_section();
6947 if (os != NULL && os->input_sections().size() > 1)
6948 std::stable_sort(os->input_sections().begin(),
6949 os->input_sections().end(),
6950 Sort_toc_sections<big_endian>());
6951 }
6952 }
6953 }
6954
6955 // Fill in some more dynamic tags.
6956 Output_data_dynamic* odyn = layout->dynamic_data();
6957 if (odyn != NULL)
6958 {
6959 const Reloc_section* rel_plt = (this->plt_ == NULL
6960 ? NULL
6961 : this->plt_->rel_plt());
6962 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6963 this->rela_dyn_, true, size == 32);
6964
6965 if (size == 32)
6966 {
6967 if (this->got_ != NULL)
6968 {
6969 this->got_->finalize_data_size();
6970 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6971 this->got_, this->got_->g_o_t());
6972 }
6973 }
6974 else
6975 {
6976 if (this->glink_ != NULL)
6977 {
6978 this->glink_->finalize_data_size();
6979 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6980 this->glink_,
6981 (this->glink_->pltresolve_size
6982 - 32));
6983 }
6984 }
6985 }
6986
6987 // Emit any relocs we saved in an attempt to avoid generating COPY
6988 // relocs.
6989 if (this->copy_relocs_.any_saved_relocs())
6990 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6991 }
6992
6993 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6994 // reloc.
6995
6996 static bool
6997 ok_lo_toc_insn(uint32_t insn)
6998 {
6999 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
7000 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
7001 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
7002 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
7003 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7004 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7005 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7006 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7007 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7008 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7009 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7010 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7011 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7012 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7013 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7014 && (insn & 3) != 1)
7015 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7016 && ((insn & 3) == 0 || (insn & 3) == 3))
7017 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7018 }
7019
7020 // Return the value to use for a branch relocation.
7021
7022 template<int size, bool big_endian>
7023 bool
7024 Target_powerpc<size, big_endian>::symval_for_branch(
7025 const Symbol_table* symtab,
7026 const Sized_symbol<size>* gsym,
7027 Powerpc_relobj<size, big_endian>* object,
7028 Address *value,
7029 unsigned int *dest_shndx)
7030 {
7031 if (size == 32 || this->abiversion() >= 2)
7032 gold_unreachable();
7033 *dest_shndx = 0;
7034
7035 // If the symbol is defined in an opd section, ie. is a function
7036 // descriptor, use the function descriptor code entry address
7037 Powerpc_relobj<size, big_endian>* symobj = object;
7038 if (gsym != NULL
7039 && (gsym->source() != Symbol::FROM_OBJECT
7040 || gsym->object()->is_dynamic()))
7041 return true;
7042 if (gsym != NULL)
7043 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7044 unsigned int shndx = symobj->opd_shndx();
7045 if (shndx == 0)
7046 return true;
7047 Address opd_addr = symobj->get_output_section_offset(shndx);
7048 if (opd_addr == invalid_address)
7049 return true;
7050 opd_addr += symobj->output_section_address(shndx);
7051 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7052 {
7053 Address sec_off;
7054 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7055 if (symtab->is_section_folded(symobj, *dest_shndx))
7056 {
7057 Section_id folded
7058 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7059 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7060 *dest_shndx = folded.second;
7061 }
7062 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7063 if (sec_addr == invalid_address)
7064 return false;
7065
7066 sec_addr += symobj->output_section(*dest_shndx)->address();
7067 *value = sec_addr + sec_off;
7068 }
7069 return true;
7070 }
7071
7072 // Perform a relocation.
7073
7074 template<int size, bool big_endian>
7075 inline bool
7076 Target_powerpc<size, big_endian>::Relocate::relocate(
7077 const Relocate_info<size, big_endian>* relinfo,
7078 unsigned int,
7079 Target_powerpc* target,
7080 Output_section* os,
7081 size_t relnum,
7082 const unsigned char* preloc,
7083 const Sized_symbol<size>* gsym,
7084 const Symbol_value<size>* psymval,
7085 unsigned char* view,
7086 Address address,
7087 section_size_type view_size)
7088 {
7089 if (view == NULL)
7090 return true;
7091
7092 const elfcpp::Rela<size, big_endian> rela(preloc);
7093 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7094 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7095 {
7096 case Track_tls::NOT_EXPECTED:
7097 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7098 _("__tls_get_addr call lacks marker reloc"));
7099 break;
7100 case Track_tls::EXPECTED:
7101 // We have already complained.
7102 break;
7103 case Track_tls::SKIP:
7104 return true;
7105 case Track_tls::NORMAL:
7106 break;
7107 }
7108
7109 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7110 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7111 typedef typename elfcpp::Rela<size, big_endian> Reltype;
7112 // Offset from start of insn to d-field reloc.
7113 const int d_offset = big_endian ? 2 : 0;
7114
7115 Powerpc_relobj<size, big_endian>* const object
7116 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7117 Address value = 0;
7118 bool has_stub_value = false;
7119 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7120 if ((gsym != NULL
7121 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7122 : object->local_has_plt_offset(r_sym))
7123 && (!psymval->is_ifunc_symbol()
7124 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7125 {
7126 if (size == 64
7127 && gsym != NULL
7128 && target->abiversion() >= 2
7129 && !parameters->options().output_is_position_independent()
7130 && !is_branch_reloc(r_type))
7131 {
7132 Address off = target->glink_section()->find_global_entry(gsym);
7133 if (off != invalid_address)
7134 {
7135 value = target->glink_section()->global_entry_address() + off;
7136 has_stub_value = true;
7137 }
7138 }
7139 else
7140 {
7141 Stub_table<size, big_endian>* stub_table
7142 = object->stub_table(relinfo->data_shndx);
7143 if (stub_table == NULL)
7144 {
7145 // This is a ref from a data section to an ifunc symbol.
7146 if (target->stub_tables().size() != 0)
7147 stub_table = target->stub_tables()[0];
7148 }
7149 if (stub_table != NULL)
7150 {
7151 Address off;
7152 if (gsym != NULL)
7153 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7154 rela.get_r_addend());
7155 else
7156 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7157 rela.get_r_addend());
7158 if (off != invalid_address)
7159 {
7160 value = stub_table->stub_address() + off;
7161 has_stub_value = true;
7162 }
7163 }
7164 }
7165 // We don't care too much about bogus debug references to
7166 // non-local functions, but otherwise there had better be a plt
7167 // call stub or global entry stub as appropriate.
7168 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7169 }
7170
7171 if (r_type == elfcpp::R_POWERPC_GOT16
7172 || r_type == elfcpp::R_POWERPC_GOT16_LO
7173 || r_type == elfcpp::R_POWERPC_GOT16_HI
7174 || r_type == elfcpp::R_POWERPC_GOT16_HA
7175 || r_type == elfcpp::R_PPC64_GOT16_DS
7176 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7177 {
7178 if (gsym != NULL)
7179 {
7180 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7181 value = gsym->got_offset(GOT_TYPE_STANDARD);
7182 }
7183 else
7184 {
7185 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7186 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7187 }
7188 value -= target->got_section()->got_base_offset(object);
7189 }
7190 else if (r_type == elfcpp::R_PPC64_TOC)
7191 {
7192 value = (target->got_section()->output_section()->address()
7193 + object->toc_base_offset());
7194 }
7195 else if (gsym != NULL
7196 && (r_type == elfcpp::R_POWERPC_REL24
7197 || r_type == elfcpp::R_PPC_PLTREL24)
7198 && has_stub_value)
7199 {
7200 if (size == 64)
7201 {
7202 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7203 Valtype* wv = reinterpret_cast<Valtype*>(view);
7204 bool can_plt_call = false;
7205 if (rela.get_r_offset() + 8 <= view_size)
7206 {
7207 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7208 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7209 if ((insn & 1) != 0
7210 && (insn2 == nop
7211 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7212 {
7213 elfcpp::Swap<32, big_endian>::
7214 writeval(wv + 1, ld_2_1 + target->stk_toc());
7215 can_plt_call = true;
7216 }
7217 }
7218 if (!can_plt_call)
7219 {
7220 // If we don't have a branch and link followed by a nop,
7221 // we can't go via the plt because there is no place to
7222 // put a toc restoring instruction.
7223 // Unless we know we won't be returning.
7224 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7225 can_plt_call = true;
7226 }
7227 if (!can_plt_call)
7228 {
7229 // g++ as of 20130507 emits self-calls without a
7230 // following nop. This is arguably wrong since we have
7231 // conflicting information. On the one hand a global
7232 // symbol and on the other a local call sequence, but
7233 // don't error for this special case.
7234 // It isn't possible to cheaply verify we have exactly
7235 // such a call. Allow all calls to the same section.
7236 bool ok = false;
7237 Address code = value;
7238 if (gsym->source() == Symbol::FROM_OBJECT
7239 && gsym->object() == object)
7240 {
7241 unsigned int dest_shndx = 0;
7242 if (target->abiversion() < 2)
7243 {
7244 Address addend = rela.get_r_addend();
7245 code = psymval->value(object, addend);
7246 target->symval_for_branch(relinfo->symtab, gsym, object,
7247 &code, &dest_shndx);
7248 }
7249 bool is_ordinary;
7250 if (dest_shndx == 0)
7251 dest_shndx = gsym->shndx(&is_ordinary);
7252 ok = dest_shndx == relinfo->data_shndx;
7253 }
7254 if (!ok)
7255 {
7256 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7257 _("call lacks nop, can't restore toc; "
7258 "recompile with -fPIC"));
7259 value = code;
7260 }
7261 }
7262 }
7263 }
7264 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7265 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7266 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7267 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7268 {
7269 // First instruction of a global dynamic sequence, arg setup insn.
7270 const bool final = gsym == NULL || gsym->final_value_is_known();
7271 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7272 enum Got_type got_type = GOT_TYPE_STANDARD;
7273 if (tls_type == tls::TLSOPT_NONE)
7274 got_type = GOT_TYPE_TLSGD;
7275 else if (tls_type == tls::TLSOPT_TO_IE)
7276 got_type = GOT_TYPE_TPREL;
7277 if (got_type != GOT_TYPE_STANDARD)
7278 {
7279 if (gsym != NULL)
7280 {
7281 gold_assert(gsym->has_got_offset(got_type));
7282 value = gsym->got_offset(got_type);
7283 }
7284 else
7285 {
7286 gold_assert(object->local_has_got_offset(r_sym, got_type));
7287 value = object->local_got_offset(r_sym, got_type);
7288 }
7289 value -= target->got_section()->got_base_offset(object);
7290 }
7291 if (tls_type == tls::TLSOPT_TO_IE)
7292 {
7293 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7294 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7295 {
7296 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7297 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7298 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7299 if (size == 32)
7300 insn |= 32 << 26; // lwz
7301 else
7302 insn |= 58 << 26; // ld
7303 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7304 }
7305 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7306 - elfcpp::R_POWERPC_GOT_TLSGD16);
7307 }
7308 else if (tls_type == tls::TLSOPT_TO_LE)
7309 {
7310 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7311 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7312 {
7313 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7314 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7315 insn &= (1 << 26) - (1 << 21); // extract rt
7316 if (size == 32)
7317 insn |= addis_0_2;
7318 else
7319 insn |= addis_0_13;
7320 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7321 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7322 value = psymval->value(object, rela.get_r_addend());
7323 }
7324 else
7325 {
7326 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7327 Insn insn = nop;
7328 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7329 r_type = elfcpp::R_POWERPC_NONE;
7330 }
7331 }
7332 }
7333 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7334 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7335 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7336 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7337 {
7338 // First instruction of a local dynamic sequence, arg setup insn.
7339 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7340 if (tls_type == tls::TLSOPT_NONE)
7341 {
7342 value = target->tlsld_got_offset();
7343 value -= target->got_section()->got_base_offset(object);
7344 }
7345 else
7346 {
7347 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7348 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7349 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7350 {
7351 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7352 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7353 insn &= (1 << 26) - (1 << 21); // extract rt
7354 if (size == 32)
7355 insn |= addis_0_2;
7356 else
7357 insn |= addis_0_13;
7358 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7359 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7360 value = dtp_offset;
7361 }
7362 else
7363 {
7364 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7365 Insn insn = nop;
7366 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7367 r_type = elfcpp::R_POWERPC_NONE;
7368 }
7369 }
7370 }
7371 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7372 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7373 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7374 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7375 {
7376 // Accesses relative to a local dynamic sequence address,
7377 // no optimisation here.
7378 if (gsym != NULL)
7379 {
7380 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7381 value = gsym->got_offset(GOT_TYPE_DTPREL);
7382 }
7383 else
7384 {
7385 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7386 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7387 }
7388 value -= target->got_section()->got_base_offset(object);
7389 }
7390 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7391 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7392 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7393 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7394 {
7395 // First instruction of initial exec sequence.
7396 const bool final = gsym == NULL || gsym->final_value_is_known();
7397 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7398 if (tls_type == tls::TLSOPT_NONE)
7399 {
7400 if (gsym != NULL)
7401 {
7402 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7403 value = gsym->got_offset(GOT_TYPE_TPREL);
7404 }
7405 else
7406 {
7407 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7408 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7409 }
7410 value -= target->got_section()->got_base_offset(object);
7411 }
7412 else
7413 {
7414 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7415 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7416 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7417 {
7418 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7419 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7420 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7421 if (size == 32)
7422 insn |= addis_0_2;
7423 else
7424 insn |= addis_0_13;
7425 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7426 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7427 value = psymval->value(object, rela.get_r_addend());
7428 }
7429 else
7430 {
7431 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7432 Insn insn = nop;
7433 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7434 r_type = elfcpp::R_POWERPC_NONE;
7435 }
7436 }
7437 }
7438 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7439 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7440 {
7441 // Second instruction of a global dynamic sequence,
7442 // the __tls_get_addr call
7443 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7444 const bool final = gsym == NULL || gsym->final_value_is_known();
7445 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7446 if (tls_type != tls::TLSOPT_NONE)
7447 {
7448 if (tls_type == tls::TLSOPT_TO_IE)
7449 {
7450 Insn* iview = reinterpret_cast<Insn*>(view);
7451 Insn insn = add_3_3_13;
7452 if (size == 32)
7453 insn = add_3_3_2;
7454 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7455 r_type = elfcpp::R_POWERPC_NONE;
7456 }
7457 else
7458 {
7459 Insn* iview = reinterpret_cast<Insn*>(view);
7460 Insn insn = addi_3_3;
7461 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7462 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7463 view += d_offset;
7464 value = psymval->value(object, rela.get_r_addend());
7465 }
7466 this->skip_next_tls_get_addr_call();
7467 }
7468 }
7469 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7470 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7471 {
7472 // Second instruction of a local dynamic sequence,
7473 // the __tls_get_addr call
7474 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7475 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7476 if (tls_type == tls::TLSOPT_TO_LE)
7477 {
7478 Insn* iview = reinterpret_cast<Insn*>(view);
7479 Insn insn = addi_3_3;
7480 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7481 this->skip_next_tls_get_addr_call();
7482 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7483 view += d_offset;
7484 value = dtp_offset;
7485 }
7486 }
7487 else if (r_type == elfcpp::R_POWERPC_TLS)
7488 {
7489 // Second instruction of an initial exec sequence
7490 const bool final = gsym == NULL || gsym->final_value_is_known();
7491 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7492 if (tls_type == tls::TLSOPT_TO_LE)
7493 {
7494 Insn* iview = reinterpret_cast<Insn*>(view);
7495 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7496 unsigned int reg = size == 32 ? 2 : 13;
7497 insn = at_tls_transform(insn, reg);
7498 gold_assert(insn != 0);
7499 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7500 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7501 view += d_offset;
7502 value = psymval->value(object, rela.get_r_addend());
7503 }
7504 }
7505 else if (!has_stub_value)
7506 {
7507 Address addend = 0;
7508 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7509 addend = rela.get_r_addend();
7510 value = psymval->value(object, addend);
7511 if (size == 64 && is_branch_reloc(r_type))
7512 {
7513 if (target->abiversion() >= 2)
7514 {
7515 if (gsym != NULL)
7516 value += object->ppc64_local_entry_offset(gsym);
7517 else
7518 value += object->ppc64_local_entry_offset(r_sym);
7519 }
7520 else
7521 {
7522 unsigned int dest_shndx;
7523 target->symval_for_branch(relinfo->symtab, gsym, object,
7524 &value, &dest_shndx);
7525 }
7526 }
7527 Address max_branch_offset = max_branch_delta(r_type);
7528 if (max_branch_offset != 0
7529 && value - address + max_branch_offset >= 2 * max_branch_offset)
7530 {
7531 Stub_table<size, big_endian>* stub_table
7532 = object->stub_table(relinfo->data_shndx);
7533 if (stub_table != NULL)
7534 {
7535 Address off = stub_table->find_long_branch_entry(object, value);
7536 if (off != invalid_address)
7537 {
7538 value = (stub_table->stub_address() + stub_table->plt_size()
7539 + off);
7540 has_stub_value = true;
7541 }
7542 }
7543 }
7544 }
7545
7546 switch (r_type)
7547 {
7548 case elfcpp::R_PPC64_REL64:
7549 case elfcpp::R_POWERPC_REL32:
7550 case elfcpp::R_POWERPC_REL24:
7551 case elfcpp::R_PPC_PLTREL24:
7552 case elfcpp::R_PPC_LOCAL24PC:
7553 case elfcpp::R_POWERPC_REL16:
7554 case elfcpp::R_POWERPC_REL16_LO:
7555 case elfcpp::R_POWERPC_REL16_HI:
7556 case elfcpp::R_POWERPC_REL16_HA:
7557 case elfcpp::R_POWERPC_REL16DX_HA:
7558 case elfcpp::R_POWERPC_REL14:
7559 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7560 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7561 value -= address;
7562 break;
7563
7564 case elfcpp::R_PPC64_TOC16:
7565 case elfcpp::R_PPC64_TOC16_LO:
7566 case elfcpp::R_PPC64_TOC16_HI:
7567 case elfcpp::R_PPC64_TOC16_HA:
7568 case elfcpp::R_PPC64_TOC16_DS:
7569 case elfcpp::R_PPC64_TOC16_LO_DS:
7570 // Subtract the TOC base address.
7571 value -= (target->got_section()->output_section()->address()
7572 + object->toc_base_offset());
7573 break;
7574
7575 case elfcpp::R_POWERPC_SECTOFF:
7576 case elfcpp::R_POWERPC_SECTOFF_LO:
7577 case elfcpp::R_POWERPC_SECTOFF_HI:
7578 case elfcpp::R_POWERPC_SECTOFF_HA:
7579 case elfcpp::R_PPC64_SECTOFF_DS:
7580 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7581 if (os != NULL)
7582 value -= os->address();
7583 break;
7584
7585 case elfcpp::R_PPC64_TPREL16_DS:
7586 case elfcpp::R_PPC64_TPREL16_LO_DS:
7587 case elfcpp::R_PPC64_TPREL16_HIGH:
7588 case elfcpp::R_PPC64_TPREL16_HIGHA:
7589 if (size != 64)
7590 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7591 break;
7592 // Fall through.
7593 case elfcpp::R_POWERPC_TPREL16:
7594 case elfcpp::R_POWERPC_TPREL16_LO:
7595 case elfcpp::R_POWERPC_TPREL16_HI:
7596 case elfcpp::R_POWERPC_TPREL16_HA:
7597 case elfcpp::R_POWERPC_TPREL:
7598 case elfcpp::R_PPC64_TPREL16_HIGHER:
7599 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7600 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7601 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7602 // tls symbol values are relative to tls_segment()->vaddr()
7603 value -= tp_offset;
7604 break;
7605
7606 case elfcpp::R_PPC64_DTPREL16_DS:
7607 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7608 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7609 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7610 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7611 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7612 if (size != 64)
7613 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7614 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7615 break;
7616 // Fall through.
7617 case elfcpp::R_POWERPC_DTPREL16:
7618 case elfcpp::R_POWERPC_DTPREL16_LO:
7619 case elfcpp::R_POWERPC_DTPREL16_HI:
7620 case elfcpp::R_POWERPC_DTPREL16_HA:
7621 case elfcpp::R_POWERPC_DTPREL:
7622 case elfcpp::R_PPC64_DTPREL16_HIGH:
7623 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7624 // tls symbol values are relative to tls_segment()->vaddr()
7625 value -= dtp_offset;
7626 break;
7627
7628 case elfcpp::R_PPC64_ADDR64_LOCAL:
7629 if (gsym != NULL)
7630 value += object->ppc64_local_entry_offset(gsym);
7631 else
7632 value += object->ppc64_local_entry_offset(r_sym);
7633 break;
7634
7635 default:
7636 break;
7637 }
7638
7639 Insn branch_bit = 0;
7640 switch (r_type)
7641 {
7642 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7643 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7644 branch_bit = 1 << 21;
7645 // Fall through.
7646 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7647 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7648 {
7649 Insn* iview = reinterpret_cast<Insn*>(view);
7650 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7651 insn &= ~(1 << 21);
7652 insn |= branch_bit;
7653 if (this->is_isa_v2)
7654 {
7655 // Set 'a' bit. This is 0b00010 in BO field for branch
7656 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7657 // for branch on CTR insns (BO == 1a00t or 1a01t).
7658 if ((insn & (0x14 << 21)) == (0x04 << 21))
7659 insn |= 0x02 << 21;
7660 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7661 insn |= 0x08 << 21;
7662 else
7663 break;
7664 }
7665 else
7666 {
7667 // Invert 'y' bit if not the default.
7668 if (static_cast<Signed_address>(value) < 0)
7669 insn ^= 1 << 21;
7670 }
7671 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7672 }
7673 break;
7674
7675 default:
7676 break;
7677 }
7678
7679 if (size == 64)
7680 {
7681 // Multi-instruction sequences that access the TOC can be
7682 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7683 // to nop; addi rb,r2,x;
7684 switch (r_type)
7685 {
7686 default:
7687 break;
7688
7689 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7690 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7691 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7692 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7693 case elfcpp::R_POWERPC_GOT16_HA:
7694 case elfcpp::R_PPC64_TOC16_HA:
7695 if (parameters->options().toc_optimize())
7696 {
7697 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7698 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7699 if ((insn & ((0x3f << 26) | 0x1f << 16))
7700 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7701 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7702 _("toc optimization is not supported "
7703 "for %#08x instruction"), insn);
7704 else if (value + 0x8000 < 0x10000)
7705 {
7706 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7707 return true;
7708 }
7709 }
7710 break;
7711
7712 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7713 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7714 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7715 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7716 case elfcpp::R_POWERPC_GOT16_LO:
7717 case elfcpp::R_PPC64_GOT16_LO_DS:
7718 case elfcpp::R_PPC64_TOC16_LO:
7719 case elfcpp::R_PPC64_TOC16_LO_DS:
7720 if (parameters->options().toc_optimize())
7721 {
7722 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7723 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7724 if (!ok_lo_toc_insn(insn))
7725 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7726 _("toc optimization is not supported "
7727 "for %#08x instruction"), insn);
7728 else if (value + 0x8000 < 0x10000)
7729 {
7730 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7731 {
7732 // Transform addic to addi when we change reg.
7733 insn &= ~((0x3f << 26) | (0x1f << 16));
7734 insn |= (14u << 26) | (2 << 16);
7735 }
7736 else
7737 {
7738 insn &= ~(0x1f << 16);
7739 insn |= 2 << 16;
7740 }
7741 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7742 }
7743 }
7744 break;
7745
7746 case elfcpp::R_PPC64_ENTRY:
7747 value = (target->got_section()->output_section()->address()
7748 + object->toc_base_offset());
7749 if (value + 0x80008000 <= 0xffffffff
7750 && !parameters->options().output_is_position_independent())
7751 {
7752 Insn* iview = reinterpret_cast<Insn*>(view);
7753 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7754 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7755
7756 if ((insn1 & ~0xfffc) == ld_2_12
7757 && insn2 == add_2_2_12)
7758 {
7759 insn1 = lis_2 + ha(value);
7760 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7761 insn2 = addi_2_2 + l(value);
7762 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7763 return true;
7764 }
7765 }
7766 else
7767 {
7768 value -= address;
7769 if (value + 0x80008000 <= 0xffffffff)
7770 {
7771 Insn* iview = reinterpret_cast<Insn*>(view);
7772 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7773 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7774
7775 if ((insn1 & ~0xfffc) == ld_2_12
7776 && insn2 == add_2_2_12)
7777 {
7778 insn1 = addis_2_12 + ha(value);
7779 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7780 insn2 = addi_2_2 + l(value);
7781 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7782 return true;
7783 }
7784 }
7785 }
7786 break;
7787
7788 case elfcpp::R_POWERPC_REL16_LO:
7789 // If we are generating a non-PIC executable, edit
7790 // 0: addis 2,12,.TOC.-0b@ha
7791 // addi 2,2,.TOC.-0b@l
7792 // used by ELFv2 global entry points to set up r2, to
7793 // lis 2,.TOC.@ha
7794 // addi 2,2,.TOC.@l
7795 // if .TOC. is in range. */
7796 if (value + address - 4 + 0x80008000 <= 0xffffffff
7797 && relnum != 0
7798 && preloc != NULL
7799 && target->abiversion() >= 2
7800 && !parameters->options().output_is_position_independent()
7801 && rela.get_r_addend() == d_offset + 4
7802 && gsym != NULL
7803 && strcmp(gsym->name(), ".TOC.") == 0)
7804 {
7805 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
7806 Reltype prev_rela(preloc - reloc_size);
7807 if ((prev_rela.get_r_info()
7808 == elfcpp::elf_r_info<size>(r_sym,
7809 elfcpp::R_POWERPC_REL16_HA))
7810 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7811 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7812 {
7813 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7814 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7815 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7816
7817 if ((insn1 & 0xffff0000) == addis_2_12
7818 && (insn2 & 0xffff0000) == addi_2_2)
7819 {
7820 insn1 = lis_2 + ha(value + address - 4);
7821 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7822 insn2 = addi_2_2 + l(value + address - 4);
7823 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7824 if (relinfo->rr)
7825 {
7826 relinfo->rr->set_strategy(relnum - 1,
7827 Relocatable_relocs::RELOC_SPECIAL);
7828 relinfo->rr->set_strategy(relnum,
7829 Relocatable_relocs::RELOC_SPECIAL);
7830 }
7831 return true;
7832 }
7833 }
7834 }
7835 break;
7836 }
7837 }
7838
7839 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7840 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7841 switch (r_type)
7842 {
7843 case elfcpp::R_POWERPC_ADDR32:
7844 case elfcpp::R_POWERPC_UADDR32:
7845 if (size == 64)
7846 overflow = Reloc::CHECK_BITFIELD;
7847 break;
7848
7849 case elfcpp::R_POWERPC_REL32:
7850 case elfcpp::R_POWERPC_REL16DX_HA:
7851 if (size == 64)
7852 overflow = Reloc::CHECK_SIGNED;
7853 break;
7854
7855 case elfcpp::R_POWERPC_UADDR16:
7856 overflow = Reloc::CHECK_BITFIELD;
7857 break;
7858
7859 case elfcpp::R_POWERPC_ADDR16:
7860 // We really should have three separate relocations,
7861 // one for 16-bit data, one for insns with 16-bit signed fields,
7862 // and one for insns with 16-bit unsigned fields.
7863 overflow = Reloc::CHECK_BITFIELD;
7864 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7865 overflow = Reloc::CHECK_LOW_INSN;
7866 break;
7867
7868 case elfcpp::R_POWERPC_ADDR16_HI:
7869 case elfcpp::R_POWERPC_ADDR16_HA:
7870 case elfcpp::R_POWERPC_GOT16_HI:
7871 case elfcpp::R_POWERPC_GOT16_HA:
7872 case elfcpp::R_POWERPC_PLT16_HI:
7873 case elfcpp::R_POWERPC_PLT16_HA:
7874 case elfcpp::R_POWERPC_SECTOFF_HI:
7875 case elfcpp::R_POWERPC_SECTOFF_HA:
7876 case elfcpp::R_PPC64_TOC16_HI:
7877 case elfcpp::R_PPC64_TOC16_HA:
7878 case elfcpp::R_PPC64_PLTGOT16_HI:
7879 case elfcpp::R_PPC64_PLTGOT16_HA:
7880 case elfcpp::R_POWERPC_TPREL16_HI:
7881 case elfcpp::R_POWERPC_TPREL16_HA:
7882 case elfcpp::R_POWERPC_DTPREL16_HI:
7883 case elfcpp::R_POWERPC_DTPREL16_HA:
7884 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7885 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7886 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7887 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7888 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7889 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7890 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7891 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7892 case elfcpp::R_POWERPC_REL16_HI:
7893 case elfcpp::R_POWERPC_REL16_HA:
7894 if (size != 32)
7895 overflow = Reloc::CHECK_HIGH_INSN;
7896 break;
7897
7898 case elfcpp::R_POWERPC_REL16:
7899 case elfcpp::R_PPC64_TOC16:
7900 case elfcpp::R_POWERPC_GOT16:
7901 case elfcpp::R_POWERPC_SECTOFF:
7902 case elfcpp::R_POWERPC_TPREL16:
7903 case elfcpp::R_POWERPC_DTPREL16:
7904 case elfcpp::R_POWERPC_GOT_TLSGD16:
7905 case elfcpp::R_POWERPC_GOT_TLSLD16:
7906 case elfcpp::R_POWERPC_GOT_TPREL16:
7907 case elfcpp::R_POWERPC_GOT_DTPREL16:
7908 overflow = Reloc::CHECK_LOW_INSN;
7909 break;
7910
7911 case elfcpp::R_POWERPC_ADDR24:
7912 case elfcpp::R_POWERPC_ADDR14:
7913 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7914 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7915 case elfcpp::R_PPC64_ADDR16_DS:
7916 case elfcpp::R_POWERPC_REL24:
7917 case elfcpp::R_PPC_PLTREL24:
7918 case elfcpp::R_PPC_LOCAL24PC:
7919 case elfcpp::R_PPC64_TPREL16_DS:
7920 case elfcpp::R_PPC64_DTPREL16_DS:
7921 case elfcpp::R_PPC64_TOC16_DS:
7922 case elfcpp::R_PPC64_GOT16_DS:
7923 case elfcpp::R_PPC64_SECTOFF_DS:
7924 case elfcpp::R_POWERPC_REL14:
7925 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7926 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7927 overflow = Reloc::CHECK_SIGNED;
7928 break;
7929 }
7930
7931 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7932 Insn insn = 0;
7933
7934 if (overflow == Reloc::CHECK_LOW_INSN
7935 || overflow == Reloc::CHECK_HIGH_INSN)
7936 {
7937 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7938
7939 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7940 overflow = Reloc::CHECK_BITFIELD;
7941 else if (overflow == Reloc::CHECK_LOW_INSN
7942 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7943 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7944 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7945 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7946 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7947 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7948 overflow = Reloc::CHECK_UNSIGNED;
7949 else
7950 overflow = Reloc::CHECK_SIGNED;
7951 }
7952
7953 bool maybe_dq_reloc = false;
7954 typename Powerpc_relocate_functions<size, big_endian>::Status status
7955 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7956 switch (r_type)
7957 {
7958 case elfcpp::R_POWERPC_NONE:
7959 case elfcpp::R_POWERPC_TLS:
7960 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7961 case elfcpp::R_POWERPC_GNU_VTENTRY:
7962 break;
7963
7964 case elfcpp::R_PPC64_ADDR64:
7965 case elfcpp::R_PPC64_REL64:
7966 case elfcpp::R_PPC64_TOC:
7967 case elfcpp::R_PPC64_ADDR64_LOCAL:
7968 Reloc::addr64(view, value);
7969 break;
7970
7971 case elfcpp::R_POWERPC_TPREL:
7972 case elfcpp::R_POWERPC_DTPREL:
7973 if (size == 64)
7974 Reloc::addr64(view, value);
7975 else
7976 status = Reloc::addr32(view, value, overflow);
7977 break;
7978
7979 case elfcpp::R_PPC64_UADDR64:
7980 Reloc::addr64_u(view, value);
7981 break;
7982
7983 case elfcpp::R_POWERPC_ADDR32:
7984 status = Reloc::addr32(view, value, overflow);
7985 break;
7986
7987 case elfcpp::R_POWERPC_REL32:
7988 case elfcpp::R_POWERPC_UADDR32:
7989 status = Reloc::addr32_u(view, value, overflow);
7990 break;
7991
7992 case elfcpp::R_POWERPC_ADDR24:
7993 case elfcpp::R_POWERPC_REL24:
7994 case elfcpp::R_PPC_PLTREL24:
7995 case elfcpp::R_PPC_LOCAL24PC:
7996 status = Reloc::addr24(view, value, overflow);
7997 break;
7998
7999 case elfcpp::R_POWERPC_GOT_DTPREL16:
8000 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8001 case elfcpp::R_POWERPC_GOT_TPREL16:
8002 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8003 if (size == 64)
8004 {
8005 // On ppc64 these are all ds form
8006 maybe_dq_reloc = true;
8007 break;
8008 }
8009 // Fall through.
8010 case elfcpp::R_POWERPC_ADDR16:
8011 case elfcpp::R_POWERPC_REL16:
8012 case elfcpp::R_PPC64_TOC16:
8013 case elfcpp::R_POWERPC_GOT16:
8014 case elfcpp::R_POWERPC_SECTOFF:
8015 case elfcpp::R_POWERPC_TPREL16:
8016 case elfcpp::R_POWERPC_DTPREL16:
8017 case elfcpp::R_POWERPC_GOT_TLSGD16:
8018 case elfcpp::R_POWERPC_GOT_TLSLD16:
8019 case elfcpp::R_POWERPC_ADDR16_LO:
8020 case elfcpp::R_POWERPC_REL16_LO:
8021 case elfcpp::R_PPC64_TOC16_LO:
8022 case elfcpp::R_POWERPC_GOT16_LO:
8023 case elfcpp::R_POWERPC_SECTOFF_LO:
8024 case elfcpp::R_POWERPC_TPREL16_LO:
8025 case elfcpp::R_POWERPC_DTPREL16_LO:
8026 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8027 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8028 if (size == 64)
8029 status = Reloc::addr16(view, value, overflow);
8030 else
8031 maybe_dq_reloc = true;
8032 break;
8033
8034 case elfcpp::R_POWERPC_UADDR16:
8035 status = Reloc::addr16_u(view, value, overflow);
8036 break;
8037
8038 case elfcpp::R_PPC64_ADDR16_HIGH:
8039 case elfcpp::R_PPC64_TPREL16_HIGH:
8040 case elfcpp::R_PPC64_DTPREL16_HIGH:
8041 if (size == 32)
8042 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8043 goto unsupp;
8044 // Fall through.
8045 case elfcpp::R_POWERPC_ADDR16_HI:
8046 case elfcpp::R_POWERPC_REL16_HI:
8047 case elfcpp::R_PPC64_TOC16_HI:
8048 case elfcpp::R_POWERPC_GOT16_HI:
8049 case elfcpp::R_POWERPC_SECTOFF_HI:
8050 case elfcpp::R_POWERPC_TPREL16_HI:
8051 case elfcpp::R_POWERPC_DTPREL16_HI:
8052 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8053 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8054 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8055 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8056 Reloc::addr16_hi(view, value);
8057 break;
8058
8059 case elfcpp::R_PPC64_ADDR16_HIGHA:
8060 case elfcpp::R_PPC64_TPREL16_HIGHA:
8061 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8062 if (size == 32)
8063 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8064 goto unsupp;
8065 // Fall through.
8066 case elfcpp::R_POWERPC_ADDR16_HA:
8067 case elfcpp::R_POWERPC_REL16_HA:
8068 case elfcpp::R_PPC64_TOC16_HA:
8069 case elfcpp::R_POWERPC_GOT16_HA:
8070 case elfcpp::R_POWERPC_SECTOFF_HA:
8071 case elfcpp::R_POWERPC_TPREL16_HA:
8072 case elfcpp::R_POWERPC_DTPREL16_HA:
8073 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8074 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8075 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8076 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8077 Reloc::addr16_ha(view, value);
8078 break;
8079
8080 case elfcpp::R_POWERPC_REL16DX_HA:
8081 status = Reloc::addr16dx_ha(view, value, overflow);
8082 break;
8083
8084 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8085 if (size == 32)
8086 // R_PPC_EMB_NADDR16_LO
8087 goto unsupp;
8088 // Fall through.
8089 case elfcpp::R_PPC64_ADDR16_HIGHER:
8090 case elfcpp::R_PPC64_TPREL16_HIGHER:
8091 Reloc::addr16_hi2(view, value);
8092 break;
8093
8094 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8095 if (size == 32)
8096 // R_PPC_EMB_NADDR16_HI
8097 goto unsupp;
8098 // Fall through.
8099 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8100 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8101 Reloc::addr16_ha2(view, value);
8102 break;
8103
8104 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8105 if (size == 32)
8106 // R_PPC_EMB_NADDR16_HA
8107 goto unsupp;
8108 // Fall through.
8109 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8110 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8111 Reloc::addr16_hi3(view, value);
8112 break;
8113
8114 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8115 if (size == 32)
8116 // R_PPC_EMB_SDAI16
8117 goto unsupp;
8118 // Fall through.
8119 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8120 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8121 Reloc::addr16_ha3(view, value);
8122 break;
8123
8124 case elfcpp::R_PPC64_DTPREL16_DS:
8125 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8126 if (size == 32)
8127 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8128 goto unsupp;
8129 // Fall through.
8130 case elfcpp::R_PPC64_TPREL16_DS:
8131 case elfcpp::R_PPC64_TPREL16_LO_DS:
8132 if (size == 32)
8133 // R_PPC_TLSGD, R_PPC_TLSLD
8134 break;
8135 // Fall through.
8136 case elfcpp::R_PPC64_ADDR16_DS:
8137 case elfcpp::R_PPC64_ADDR16_LO_DS:
8138 case elfcpp::R_PPC64_TOC16_DS:
8139 case elfcpp::R_PPC64_TOC16_LO_DS:
8140 case elfcpp::R_PPC64_GOT16_DS:
8141 case elfcpp::R_PPC64_GOT16_LO_DS:
8142 case elfcpp::R_PPC64_SECTOFF_DS:
8143 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8144 maybe_dq_reloc = true;
8145 break;
8146
8147 case elfcpp::R_POWERPC_ADDR14:
8148 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8149 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8150 case elfcpp::R_POWERPC_REL14:
8151 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8152 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8153 status = Reloc::addr14(view, value, overflow);
8154 break;
8155
8156 case elfcpp::R_POWERPC_COPY:
8157 case elfcpp::R_POWERPC_GLOB_DAT:
8158 case elfcpp::R_POWERPC_JMP_SLOT:
8159 case elfcpp::R_POWERPC_RELATIVE:
8160 case elfcpp::R_POWERPC_DTPMOD:
8161 case elfcpp::R_PPC64_JMP_IREL:
8162 case elfcpp::R_POWERPC_IRELATIVE:
8163 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8164 _("unexpected reloc %u in object file"),
8165 r_type);
8166 break;
8167
8168 case elfcpp::R_PPC_EMB_SDA21:
8169 if (size == 32)
8170 goto unsupp;
8171 else
8172 {
8173 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8174 }
8175 break;
8176
8177 case elfcpp::R_PPC_EMB_SDA2I16:
8178 case elfcpp::R_PPC_EMB_SDA2REL:
8179 if (size == 32)
8180 goto unsupp;
8181 // R_PPC64_TLSGD, R_PPC64_TLSLD
8182 break;
8183
8184 case elfcpp::R_POWERPC_PLT32:
8185 case elfcpp::R_POWERPC_PLTREL32:
8186 case elfcpp::R_POWERPC_PLT16_LO:
8187 case elfcpp::R_POWERPC_PLT16_HI:
8188 case elfcpp::R_POWERPC_PLT16_HA:
8189 case elfcpp::R_PPC_SDAREL16:
8190 case elfcpp::R_POWERPC_ADDR30:
8191 case elfcpp::R_PPC64_PLT64:
8192 case elfcpp::R_PPC64_PLTREL64:
8193 case elfcpp::R_PPC64_PLTGOT16:
8194 case elfcpp::R_PPC64_PLTGOT16_LO:
8195 case elfcpp::R_PPC64_PLTGOT16_HI:
8196 case elfcpp::R_PPC64_PLTGOT16_HA:
8197 case elfcpp::R_PPC64_PLT16_LO_DS:
8198 case elfcpp::R_PPC64_PLTGOT16_DS:
8199 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8200 case elfcpp::R_PPC_EMB_RELSDA:
8201 case elfcpp::R_PPC_TOC16:
8202 default:
8203 unsupp:
8204 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8205 _("unsupported reloc %u"),
8206 r_type);
8207 break;
8208 }
8209
8210 if (maybe_dq_reloc)
8211 {
8212 if (insn == 0)
8213 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8214
8215 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8216 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8217 && (insn & 3) == 1))
8218 status = Reloc::addr16_dq(view, value, overflow);
8219 else if (size == 64
8220 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8221 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8222 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8223 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8224 status = Reloc::addr16_ds(view, value, overflow);
8225 else
8226 status = Reloc::addr16(view, value, overflow);
8227 }
8228
8229 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8230 && (has_stub_value
8231 || !(gsym != NULL
8232 && gsym->is_undefined()
8233 && is_branch_reloc(r_type))))
8234 {
8235 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8236 _("relocation overflow"));
8237 if (has_stub_value)
8238 gold_info(_("try relinking with a smaller --stub-group-size"));
8239 }
8240
8241 return true;
8242 }
8243
8244 // Relocate section data.
8245
8246 template<int size, bool big_endian>
8247 void
8248 Target_powerpc<size, big_endian>::relocate_section(
8249 const Relocate_info<size, big_endian>* relinfo,
8250 unsigned int sh_type,
8251 const unsigned char* prelocs,
8252 size_t reloc_count,
8253 Output_section* output_section,
8254 bool needs_special_offset_handling,
8255 unsigned char* view,
8256 Address address,
8257 section_size_type view_size,
8258 const Reloc_symbol_changes* reloc_symbol_changes)
8259 {
8260 typedef Target_powerpc<size, big_endian> Powerpc;
8261 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8262 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8263 Powerpc_comdat_behavior;
8264 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8265 Classify_reloc;
8266
8267 gold_assert(sh_type == elfcpp::SHT_RELA);
8268
8269 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8270 Powerpc_comdat_behavior, Classify_reloc>(
8271 relinfo,
8272 this,
8273 prelocs,
8274 reloc_count,
8275 output_section,
8276 needs_special_offset_handling,
8277 view,
8278 address,
8279 view_size,
8280 reloc_symbol_changes);
8281 }
8282
8283 template<int size, bool big_endian>
8284 class Powerpc_scan_relocatable_reloc
8285 {
8286 public:
8287 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8288 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8289 static const int sh_type = elfcpp::SHT_RELA;
8290
8291 // Return the symbol referred to by the relocation.
8292 static inline unsigned int
8293 get_r_sym(const Reltype* reloc)
8294 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8295
8296 // Return the type of the relocation.
8297 static inline unsigned int
8298 get_r_type(const Reltype* reloc)
8299 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8300
8301 // Return the strategy to use for a local symbol which is not a
8302 // section symbol, given the relocation type.
8303 inline Relocatable_relocs::Reloc_strategy
8304 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8305 {
8306 if (r_type == 0 && r_sym == 0)
8307 return Relocatable_relocs::RELOC_DISCARD;
8308 return Relocatable_relocs::RELOC_COPY;
8309 }
8310
8311 // Return the strategy to use for a local symbol which is a section
8312 // symbol, given the relocation type.
8313 inline Relocatable_relocs::Reloc_strategy
8314 local_section_strategy(unsigned int, Relobj*)
8315 {
8316 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8317 }
8318
8319 // Return the strategy to use for a global symbol, given the
8320 // relocation type, the object, and the symbol index.
8321 inline Relocatable_relocs::Reloc_strategy
8322 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8323 {
8324 if (r_type == elfcpp::R_PPC_PLTREL24)
8325 return Relocatable_relocs::RELOC_SPECIAL;
8326 return Relocatable_relocs::RELOC_COPY;
8327 }
8328 };
8329
8330 // Scan the relocs during a relocatable link.
8331
8332 template<int size, bool big_endian>
8333 void
8334 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8335 Symbol_table* symtab,
8336 Layout* layout,
8337 Sized_relobj_file<size, big_endian>* object,
8338 unsigned int data_shndx,
8339 unsigned int sh_type,
8340 const unsigned char* prelocs,
8341 size_t reloc_count,
8342 Output_section* output_section,
8343 bool needs_special_offset_handling,
8344 size_t local_symbol_count,
8345 const unsigned char* plocal_symbols,
8346 Relocatable_relocs* rr)
8347 {
8348 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8349
8350 gold_assert(sh_type == elfcpp::SHT_RELA);
8351
8352 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8353 symtab,
8354 layout,
8355 object,
8356 data_shndx,
8357 prelocs,
8358 reloc_count,
8359 output_section,
8360 needs_special_offset_handling,
8361 local_symbol_count,
8362 plocal_symbols,
8363 rr);
8364 }
8365
8366 // Scan the relocs for --emit-relocs.
8367
8368 template<int size, bool big_endian>
8369 void
8370 Target_powerpc<size, big_endian>::emit_relocs_scan(
8371 Symbol_table* symtab,
8372 Layout* layout,
8373 Sized_relobj_file<size, big_endian>* object,
8374 unsigned int data_shndx,
8375 unsigned int sh_type,
8376 const unsigned char* prelocs,
8377 size_t reloc_count,
8378 Output_section* output_section,
8379 bool needs_special_offset_handling,
8380 size_t local_symbol_count,
8381 const unsigned char* plocal_syms,
8382 Relocatable_relocs* rr)
8383 {
8384 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8385 Classify_reloc;
8386 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8387 Emit_relocs_strategy;
8388
8389 gold_assert(sh_type == elfcpp::SHT_RELA);
8390
8391 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8392 symtab,
8393 layout,
8394 object,
8395 data_shndx,
8396 prelocs,
8397 reloc_count,
8398 output_section,
8399 needs_special_offset_handling,
8400 local_symbol_count,
8401 plocal_syms,
8402 rr);
8403 }
8404
8405 // Emit relocations for a section.
8406 // This is a modified version of the function by the same name in
8407 // target-reloc.h. Using relocate_special_relocatable for
8408 // R_PPC_PLTREL24 would require duplication of the entire body of the
8409 // loop, so we may as well duplicate the whole thing.
8410
8411 template<int size, bool big_endian>
8412 void
8413 Target_powerpc<size, big_endian>::relocate_relocs(
8414 const Relocate_info<size, big_endian>* relinfo,
8415 unsigned int sh_type,
8416 const unsigned char* prelocs,
8417 size_t reloc_count,
8418 Output_section* output_section,
8419 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8420 unsigned char*,
8421 Address view_address,
8422 section_size_type,
8423 unsigned char* reloc_view,
8424 section_size_type reloc_view_size)
8425 {
8426 gold_assert(sh_type == elfcpp::SHT_RELA);
8427
8428 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8429 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
8430 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8431 // Offset from start of insn to d-field reloc.
8432 const int d_offset = big_endian ? 2 : 0;
8433
8434 Powerpc_relobj<size, big_endian>* const object
8435 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8436 const unsigned int local_count = object->local_symbol_count();
8437 unsigned int got2_shndx = object->got2_shndx();
8438 Address got2_addend = 0;
8439 if (got2_shndx != 0)
8440 {
8441 got2_addend = object->get_output_section_offset(got2_shndx);
8442 gold_assert(got2_addend != invalid_address);
8443 }
8444
8445 unsigned char* pwrite = reloc_view;
8446 bool zap_next = false;
8447 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8448 {
8449 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8450 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8451 continue;
8452
8453 Reltype reloc(prelocs);
8454 Reltype_write reloc_write(pwrite);
8455
8456 Address offset = reloc.get_r_offset();
8457 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8458 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8459 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8460 const unsigned int orig_r_sym = r_sym;
8461 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8462 = reloc.get_r_addend();
8463 const Symbol* gsym = NULL;
8464
8465 if (zap_next)
8466 {
8467 // We could arrange to discard these and other relocs for
8468 // tls optimised sequences in the strategy methods, but for
8469 // now do as BFD ld does.
8470 r_type = elfcpp::R_POWERPC_NONE;
8471 zap_next = false;
8472 }
8473
8474 // Get the new symbol index.
8475 Output_section* os = NULL;
8476 if (r_sym < local_count)
8477 {
8478 switch (strategy)
8479 {
8480 case Relocatable_relocs::RELOC_COPY:
8481 case Relocatable_relocs::RELOC_SPECIAL:
8482 if (r_sym != 0)
8483 {
8484 r_sym = object->symtab_index(r_sym);
8485 gold_assert(r_sym != -1U);
8486 }
8487 break;
8488
8489 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8490 {
8491 // We are adjusting a section symbol. We need to find
8492 // the symbol table index of the section symbol for
8493 // the output section corresponding to input section
8494 // in which this symbol is defined.
8495 gold_assert(r_sym < local_count);
8496 bool is_ordinary;
8497 unsigned int shndx =
8498 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8499 gold_assert(is_ordinary);
8500 os = object->output_section(shndx);
8501 gold_assert(os != NULL);
8502 gold_assert(os->needs_symtab_index());
8503 r_sym = os->symtab_index();
8504 }
8505 break;
8506
8507 default:
8508 gold_unreachable();
8509 }
8510 }
8511 else
8512 {
8513 gsym = object->global_symbol(r_sym);
8514 gold_assert(gsym != NULL);
8515 if (gsym->is_forwarder())
8516 gsym = relinfo->symtab->resolve_forwards(gsym);
8517
8518 gold_assert(gsym->has_symtab_index());
8519 r_sym = gsym->symtab_index();
8520 }
8521
8522 // Get the new offset--the location in the output section where
8523 // this relocation should be applied.
8524 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8525 offset += offset_in_output_section;
8526 else
8527 {
8528 section_offset_type sot_offset =
8529 convert_types<section_offset_type, Address>(offset);
8530 section_offset_type new_sot_offset =
8531 output_section->output_offset(object, relinfo->data_shndx,
8532 sot_offset);
8533 gold_assert(new_sot_offset != -1);
8534 offset = new_sot_offset;
8535 }
8536
8537 // In an object file, r_offset is an offset within the section.
8538 // In an executable or dynamic object, generated by
8539 // --emit-relocs, r_offset is an absolute address.
8540 if (!parameters->options().relocatable())
8541 {
8542 offset += view_address;
8543 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8544 offset -= offset_in_output_section;
8545 }
8546
8547 // Handle the reloc addend based on the strategy.
8548 if (strategy == Relocatable_relocs::RELOC_COPY)
8549 ;
8550 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8551 {
8552 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8553 gold_assert(os != NULL);
8554 addend = psymval->value(object, addend) - os->address();
8555 }
8556 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8557 {
8558 if (size == 32)
8559 {
8560 if (addend >= 32768)
8561 addend += got2_addend;
8562 }
8563 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8564 {
8565 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8566 addend -= d_offset;
8567 }
8568 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8569 {
8570 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8571 addend -= d_offset + 4;
8572 }
8573 }
8574 else
8575 gold_unreachable();
8576
8577 if (!parameters->options().relocatable())
8578 {
8579 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8580 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8581 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8582 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8583 {
8584 // First instruction of a global dynamic sequence,
8585 // arg setup insn.
8586 const bool final = gsym == NULL || gsym->final_value_is_known();
8587 switch (this->optimize_tls_gd(final))
8588 {
8589 case tls::TLSOPT_TO_IE:
8590 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8591 - elfcpp::R_POWERPC_GOT_TLSGD16);
8592 break;
8593 case tls::TLSOPT_TO_LE:
8594 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8595 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8596 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8597 else
8598 {
8599 r_type = elfcpp::R_POWERPC_NONE;
8600 offset -= d_offset;
8601 }
8602 break;
8603 default:
8604 break;
8605 }
8606 }
8607 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8608 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8609 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8610 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8611 {
8612 // First instruction of a local dynamic sequence,
8613 // arg setup insn.
8614 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8615 {
8616 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8617 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8618 {
8619 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8620 const Output_section* os = relinfo->layout->tls_segment()
8621 ->first_section();
8622 gold_assert(os != NULL);
8623 gold_assert(os->needs_symtab_index());
8624 r_sym = os->symtab_index();
8625 addend = dtp_offset;
8626 }
8627 else
8628 {
8629 r_type = elfcpp::R_POWERPC_NONE;
8630 offset -= d_offset;
8631 }
8632 }
8633 }
8634 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8635 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8636 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8637 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8638 {
8639 // First instruction of initial exec sequence.
8640 const bool final = gsym == NULL || gsym->final_value_is_known();
8641 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8642 {
8643 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8644 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8645 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8646 else
8647 {
8648 r_type = elfcpp::R_POWERPC_NONE;
8649 offset -= d_offset;
8650 }
8651 }
8652 }
8653 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8654 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8655 {
8656 // Second instruction of a global dynamic sequence,
8657 // the __tls_get_addr call
8658 const bool final = gsym == NULL || gsym->final_value_is_known();
8659 switch (this->optimize_tls_gd(final))
8660 {
8661 case tls::TLSOPT_TO_IE:
8662 r_type = elfcpp::R_POWERPC_NONE;
8663 zap_next = true;
8664 break;
8665 case tls::TLSOPT_TO_LE:
8666 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8667 offset += d_offset;
8668 zap_next = true;
8669 break;
8670 default:
8671 break;
8672 }
8673 }
8674 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8675 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8676 {
8677 // Second instruction of a local dynamic sequence,
8678 // the __tls_get_addr call
8679 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8680 {
8681 const Output_section* os = relinfo->layout->tls_segment()
8682 ->first_section();
8683 gold_assert(os != NULL);
8684 gold_assert(os->needs_symtab_index());
8685 r_sym = os->symtab_index();
8686 addend = dtp_offset;
8687 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8688 offset += d_offset;
8689 zap_next = true;
8690 }
8691 }
8692 else if (r_type == elfcpp::R_POWERPC_TLS)
8693 {
8694 // Second instruction of an initial exec sequence
8695 const bool final = gsym == NULL || gsym->final_value_is_known();
8696 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8697 {
8698 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8699 offset += d_offset;
8700 }
8701 }
8702 }
8703
8704 reloc_write.put_r_offset(offset);
8705 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8706 reloc_write.put_r_addend(addend);
8707
8708 pwrite += reloc_size;
8709 }
8710
8711 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8712 == reloc_view_size);
8713 }
8714
8715 // Return the value to use for a dynamic symbol which requires special
8716 // treatment. This is how we support equality comparisons of function
8717 // pointers across shared library boundaries, as described in the
8718 // processor specific ABI supplement.
8719
8720 template<int size, bool big_endian>
8721 uint64_t
8722 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8723 {
8724 if (size == 32)
8725 {
8726 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8727 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8728 p != this->stub_tables_.end();
8729 ++p)
8730 {
8731 Address off = (*p)->find_plt_call_entry(gsym);
8732 if (off != invalid_address)
8733 return (*p)->stub_address() + off;
8734 }
8735 }
8736 else if (this->abiversion() >= 2)
8737 {
8738 Address off = this->glink_section()->find_global_entry(gsym);
8739 if (off != invalid_address)
8740 return this->glink_section()->global_entry_address() + off;
8741 }
8742 gold_unreachable();
8743 }
8744
8745 // Return the PLT address to use for a local symbol.
8746 template<int size, bool big_endian>
8747 uint64_t
8748 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8749 const Relobj* object,
8750 unsigned int symndx) const
8751 {
8752 if (size == 32)
8753 {
8754 const Sized_relobj<size, big_endian>* relobj
8755 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8756 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8757 p != this->stub_tables_.end();
8758 ++p)
8759 {
8760 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8761 symndx);
8762 if (off != invalid_address)
8763 return (*p)->stub_address() + off;
8764 }
8765 }
8766 gold_unreachable();
8767 }
8768
8769 // Return the PLT address to use for a global symbol.
8770 template<int size, bool big_endian>
8771 uint64_t
8772 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8773 const Symbol* gsym) const
8774 {
8775 if (size == 32)
8776 {
8777 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8778 p != this->stub_tables_.end();
8779 ++p)
8780 {
8781 Address off = (*p)->find_plt_call_entry(gsym);
8782 if (off != invalid_address)
8783 return (*p)->stub_address() + off;
8784 }
8785 }
8786 else if (this->abiversion() >= 2)
8787 {
8788 Address off = this->glink_section()->find_global_entry(gsym);
8789 if (off != invalid_address)
8790 return this->glink_section()->global_entry_address() + off;
8791 }
8792 gold_unreachable();
8793 }
8794
8795 // Return the offset to use for the GOT_INDX'th got entry which is
8796 // for a local tls symbol specified by OBJECT, SYMNDX.
8797 template<int size, bool big_endian>
8798 int64_t
8799 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8800 const Relobj* object,
8801 unsigned int symndx,
8802 unsigned int got_indx) const
8803 {
8804 const Powerpc_relobj<size, big_endian>* ppc_object
8805 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8806 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8807 {
8808 for (Got_type got_type = GOT_TYPE_TLSGD;
8809 got_type <= GOT_TYPE_TPREL;
8810 got_type = Got_type(got_type + 1))
8811 if (ppc_object->local_has_got_offset(symndx, got_type))
8812 {
8813 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8814 if (got_type == GOT_TYPE_TLSGD)
8815 off += size / 8;
8816 if (off == got_indx * (size / 8))
8817 {
8818 if (got_type == GOT_TYPE_TPREL)
8819 return -tp_offset;
8820 else
8821 return -dtp_offset;
8822 }
8823 }
8824 }
8825 gold_unreachable();
8826 }
8827
8828 // Return the offset to use for the GOT_INDX'th got entry which is
8829 // for global tls symbol GSYM.
8830 template<int size, bool big_endian>
8831 int64_t
8832 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8833 Symbol* gsym,
8834 unsigned int got_indx) const
8835 {
8836 if (gsym->type() == elfcpp::STT_TLS)
8837 {
8838 for (Got_type got_type = GOT_TYPE_TLSGD;
8839 got_type <= GOT_TYPE_TPREL;
8840 got_type = Got_type(got_type + 1))
8841 if (gsym->has_got_offset(got_type))
8842 {
8843 unsigned int off = gsym->got_offset(got_type);
8844 if (got_type == GOT_TYPE_TLSGD)
8845 off += size / 8;
8846 if (off == got_indx * (size / 8))
8847 {
8848 if (got_type == GOT_TYPE_TPREL)
8849 return -tp_offset;
8850 else
8851 return -dtp_offset;
8852 }
8853 }
8854 }
8855 gold_unreachable();
8856 }
8857
8858 // The selector for powerpc object files.
8859
8860 template<int size, bool big_endian>
8861 class Target_selector_powerpc : public Target_selector
8862 {
8863 public:
8864 Target_selector_powerpc()
8865 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8866 size, big_endian,
8867 (size == 64
8868 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8869 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8870 (size == 64
8871 ? (big_endian ? "elf64ppc" : "elf64lppc")
8872 : (big_endian ? "elf32ppc" : "elf32lppc")))
8873 { }
8874
8875 virtual Target*
8876 do_instantiate_target()
8877 { return new Target_powerpc<size, big_endian>(); }
8878 };
8879
8880 Target_selector_powerpc<32, true> target_selector_ppc32;
8881 Target_selector_powerpc<32, false> target_selector_ppc32le;
8882 Target_selector_powerpc<64, true> target_selector_ppc64;
8883 Target_selector_powerpc<64, false> target_selector_ppc64le;
8884
8885 // Instantiate these constants for -O0
8886 template<int size, bool big_endian>
8887 const int Output_data_glink<size, big_endian>::pltresolve_size;
8888 template<int size, bool big_endian>
8889 const typename Output_data_glink<size, big_endian>::Address
8890 Output_data_glink<size, big_endian>::invalid_address;
8891 template<int size, bool big_endian>
8892 const typename Stub_table<size, big_endian>::Address
8893 Stub_table<size, big_endian>::invalid_address;
8894 template<int size, bool big_endian>
8895 const typename Target_powerpc<size, big_endian>::Address
8896 Target_powerpc<size, big_endian>::invalid_address;
8897
8898 } // End anonymous namespace.
This page took 0.292003 seconds and 5 git commands to generate.