powerpc gold, work around pr17670
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2014 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Target_powerpc;
67
68 struct Stub_table_owner
69 {
70 Output_section* output_section;
71 const Output_section::Input_section* owner;
72 };
73
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83 typedef Unordered_map<Address, Section_refs> Access_from;
84
85 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90 e_flags_(ehdr.get_e_flags()), st_other_()
91 {
92 this->set_abiversion(0);
93 }
94
95 ~Powerpc_relobj()
96 { }
97
98 // Read the symbols then set up st_other vector.
99 void
100 do_read_symbols(Read_symbols_data*);
101
102 // The .got2 section shndx.
103 unsigned int
104 got2_shndx() const
105 {
106 if (size == 32)
107 return this->special_;
108 else
109 return 0;
110 }
111
112 // The .opd section shndx.
113 unsigned int
114 opd_shndx() const
115 {
116 if (size == 32)
117 return 0;
118 else
119 return this->special_;
120 }
121
122 // Init OPD entry arrays.
123 void
124 init_opd(size_t opd_size)
125 {
126 size_t count = this->opd_ent_ndx(opd_size);
127 this->opd_ent_.resize(count);
128 }
129
130 // Return section and offset of function entry for .opd + R_OFF.
131 unsigned int
132 get_opd_ent(Address r_off, Address* value = NULL) const
133 {
134 size_t ndx = this->opd_ent_ndx(r_off);
135 gold_assert(ndx < this->opd_ent_.size());
136 gold_assert(this->opd_ent_[ndx].shndx != 0);
137 if (value != NULL)
138 *value = this->opd_ent_[ndx].off;
139 return this->opd_ent_[ndx].shndx;
140 }
141
142 // Set section and offset of function entry for .opd + R_OFF.
143 void
144 set_opd_ent(Address r_off, unsigned int shndx, Address value)
145 {
146 size_t ndx = this->opd_ent_ndx(r_off);
147 gold_assert(ndx < this->opd_ent_.size());
148 this->opd_ent_[ndx].shndx = shndx;
149 this->opd_ent_[ndx].off = value;
150 }
151
152 // Return discard flag for .opd + R_OFF.
153 bool
154 get_opd_discard(Address r_off) const
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 return this->opd_ent_[ndx].discard;
159 }
160
161 // Set discard flag for .opd + R_OFF.
162 void
163 set_opd_discard(Address r_off)
164 {
165 size_t ndx = this->opd_ent_ndx(r_off);
166 gold_assert(ndx < this->opd_ent_.size());
167 this->opd_ent_[ndx].discard = true;
168 }
169
170 bool
171 opd_valid() const
172 { return this->opd_valid_; }
173
174 void
175 set_opd_valid()
176 { this->opd_valid_ = true; }
177
178 // Examine .rela.opd to build info about function entry points.
179 void
180 scan_opd_relocs(size_t reloc_count,
181 const unsigned char* prelocs,
182 const unsigned char* plocal_syms);
183
184 // Perform the Sized_relobj_file method, then set up opd info from
185 // .opd relocs.
186 void
187 do_read_relocs(Read_relocs_data*);
188
189 bool
190 do_find_special_sections(Read_symbols_data* sd);
191
192 // Adjust this local symbol value. Return false if the symbol
193 // should be discarded from the output file.
194 bool
195 do_adjust_local_symbol(Symbol_value<size>* lv) const
196 {
197 if (size == 64 && this->opd_shndx() != 0)
198 {
199 bool is_ordinary;
200 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201 return true;
202 if (this->get_opd_discard(lv->input_value()))
203 return false;
204 }
205 return true;
206 }
207
208 Access_from*
209 access_from_map()
210 { return &this->access_from_map_; }
211
212 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213 // section at DST_OFF.
214 void
215 add_reference(Object* src_obj,
216 unsigned int src_indx,
217 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 Section_id src_id(src_obj, src_indx);
220 this->access_from_map_[dst_off].insert(src_id);
221 }
222
223 // Add a reference to the code section specified by the .opd entry
224 // at DST_OFF
225 void
226 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227 {
228 size_t ndx = this->opd_ent_ndx(dst_off);
229 if (ndx >= this->opd_ent_.size())
230 this->opd_ent_.resize(ndx + 1);
231 this->opd_ent_[ndx].gc_mark = true;
232 }
233
234 void
235 process_gc_mark(Symbol_table* symtab)
236 {
237 for (size_t i = 0; i < this->opd_ent_.size(); i++)
238 if (this->opd_ent_[i].gc_mark)
239 {
240 unsigned int shndx = this->opd_ent_[i].shndx;
241 symtab->gc()->worklist().push(Section_id(this, shndx));
242 }
243 }
244
245 // Return offset in output GOT section that this object will use
246 // as a TOC pointer. Won't be just a constant with multi-toc support.
247 Address
248 toc_base_offset() const
249 { return 0x8000; }
250
251 void
252 set_has_small_toc_reloc()
253 { has_small_toc_reloc_ = true; }
254
255 bool
256 has_small_toc_reloc() const
257 { return has_small_toc_reloc_; }
258
259 void
260 set_has_14bit_branch(unsigned int shndx)
261 {
262 if (shndx >= this->has14_.size())
263 this->has14_.resize(shndx + 1);
264 this->has14_[shndx] = true;
265 }
266
267 bool
268 has_14bit_branch(unsigned int shndx) const
269 { return shndx < this->has14_.size() && this->has14_[shndx]; }
270
271 void
272 set_stub_table(unsigned int shndx, unsigned int stub_index)
273 {
274 if (shndx >= this->stub_table_index_.size())
275 this->stub_table_index_.resize(shndx + 1);
276 this->stub_table_index_[shndx] = stub_index;
277 }
278
279 Stub_table<size, big_endian>*
280 stub_table(unsigned int shndx)
281 {
282 if (shndx < this->stub_table_index_.size())
283 {
284 Target_powerpc<size, big_endian>* target
285 = static_cast<Target_powerpc<size, big_endian>*>(
286 parameters->sized_target<size, big_endian>());
287 unsigned int indx = this->stub_table_index_[shndx];
288 gold_assert(indx < target->stub_tables().size());
289 return target->stub_tables()[indx];
290 }
291 return NULL;
292 }
293
294 void
295 clear_stub_table()
296 {
297 this->stub_table_index_.clear();
298 }
299
300 int
301 abiversion() const
302 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303
304 // Set ABI version for input and output
305 void
306 set_abiversion(int ver);
307
308 unsigned int
309 ppc64_local_entry_offset(const Symbol* sym) const
310 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311
312 unsigned int
313 ppc64_local_entry_offset(unsigned int symndx) const
314 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315
316 private:
317 struct Opd_ent
318 {
319 unsigned int shndx;
320 bool discard : 1;
321 bool gc_mark : 1;
322 Address off;
323 };
324
325 // Return index into opd_ent_ array for .opd entry at OFF.
326 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327 // apart when the language doesn't use the last 8-byte word, the
328 // environment pointer. Thus dividing the entry section offset by
329 // 16 will give an index into opd_ent_ that works for either layout
330 // of .opd. (It leaves some elements of the vector unused when .opd
331 // entries are spaced 24 bytes apart, but we don't know the spacing
332 // until relocations are processed, and in any case it is possible
333 // for an object to have some entries spaced 16 bytes apart and
334 // others 24 bytes apart.)
335 size_t
336 opd_ent_ndx(size_t off) const
337 { return off >> 4;}
338
339 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340 unsigned int special_;
341
342 // For 64-bit, whether this object uses small model relocs to access
343 // the toc.
344 bool has_small_toc_reloc_;
345
346 // Set at the start of gc_process_relocs, when we know opd_ent_
347 // vector is valid. The flag could be made atomic and set in
348 // do_read_relocs with memory_order_release and then tested with
349 // memory_order_acquire, potentially resulting in fewer entries in
350 // access_from_map_.
351 bool opd_valid_;
352
353 // The first 8-byte word of an OPD entry gives the address of the
354 // entry point of the function. Relocatable object files have a
355 // relocation on this word. The following vector records the
356 // section and offset specified by these relocations.
357 std::vector<Opd_ent> opd_ent_;
358
359 // References made to this object's .opd section when running
360 // gc_process_relocs for another object, before the opd_ent_ vector
361 // is valid for this object.
362 Access_from access_from_map_;
363
364 // Whether input section has a 14-bit branch reloc.
365 std::vector<bool> has14_;
366
367 // The stub table to use for a given input section.
368 std::vector<unsigned int> stub_table_index_;
369
370 // Header e_flags
371 elfcpp::Elf_Word e_flags_;
372
373 // ELF st_other field for local symbols.
374 std::vector<unsigned char> st_other_;
375 };
376
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382
383 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387 {
388 this->set_abiversion(0);
389 }
390
391 ~Powerpc_dynobj()
392 { }
393
394 // Call Sized_dynobj::do_read_symbols to read the symbols then
395 // read .opd from a dynamic object, filling in opd_ent_ vector,
396 void
397 do_read_symbols(Read_symbols_data*);
398
399 // The .opd section shndx.
400 unsigned int
401 opd_shndx() const
402 {
403 return this->opd_shndx_;
404 }
405
406 // The .opd section address.
407 Address
408 opd_address() const
409 {
410 return this->opd_address_;
411 }
412
413 // Init OPD entry arrays.
414 void
415 init_opd(size_t opd_size)
416 {
417 size_t count = this->opd_ent_ndx(opd_size);
418 this->opd_ent_.resize(count);
419 }
420
421 // Return section and offset of function entry for .opd + R_OFF.
422 unsigned int
423 get_opd_ent(Address r_off, Address* value = NULL) const
424 {
425 size_t ndx = this->opd_ent_ndx(r_off);
426 gold_assert(ndx < this->opd_ent_.size());
427 gold_assert(this->opd_ent_[ndx].shndx != 0);
428 if (value != NULL)
429 *value = this->opd_ent_[ndx].off;
430 return this->opd_ent_[ndx].shndx;
431 }
432
433 // Set section and offset of function entry for .opd + R_OFF.
434 void
435 set_opd_ent(Address r_off, unsigned int shndx, Address value)
436 {
437 size_t ndx = this->opd_ent_ndx(r_off);
438 gold_assert(ndx < this->opd_ent_.size());
439 this->opd_ent_[ndx].shndx = shndx;
440 this->opd_ent_[ndx].off = value;
441 }
442
443 int
444 abiversion() const
445 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446
447 // Set ABI version for input and output.
448 void
449 set_abiversion(int ver);
450
451 private:
452 // Used to specify extent of executable sections.
453 struct Sec_info
454 {
455 Sec_info(Address start_, Address len_, unsigned int shndx_)
456 : start(start_), len(len_), shndx(shndx_)
457 { }
458
459 bool
460 operator<(const Sec_info& that) const
461 { return this->start < that.start; }
462
463 Address start;
464 Address len;
465 unsigned int shndx;
466 };
467
468 struct Opd_ent
469 {
470 unsigned int shndx;
471 Address off;
472 };
473
474 // Return index into opd_ent_ array for .opd entry at OFF.
475 size_t
476 opd_ent_ndx(size_t off) const
477 { return off >> 4;}
478
479 // For 64-bit the .opd section shndx and address.
480 unsigned int opd_shndx_;
481 Address opd_address_;
482
483 // The first 8-byte word of an OPD entry gives the address of the
484 // entry point of the function. Records the section and offset
485 // corresponding to the address. Note that in dynamic objects,
486 // offset is *not* relative to the section.
487 std::vector<Opd_ent> opd_ent_;
488
489 // Header e_flags
490 elfcpp::Elf_Word e_flags_;
491 };
492
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496 public:
497 typedef
498 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501 static const Address invalid_address = static_cast<Address>(0) - 1;
502 // Offset of tp and dtp pointers from start of TLS block.
503 static const Address tp_offset = 0x7000;
504 static const Address dtp_offset = 0x8000;
505
506 Target_powerpc()
507 : Sized_target<size, big_endian>(&powerpc_info),
508 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510 tlsld_got_offset_(-1U),
511 stub_tables_(), branch_lookup_table_(), branch_info_(),
512 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513 stub_group_size_(0)
514 {
515 }
516
517 // Process the relocations to determine unreferenced sections for
518 // garbage collection.
519 void
520 gc_process_relocs(Symbol_table* symtab,
521 Layout* layout,
522 Sized_relobj_file<size, big_endian>* object,
523 unsigned int data_shndx,
524 unsigned int sh_type,
525 const unsigned char* prelocs,
526 size_t reloc_count,
527 Output_section* output_section,
528 bool needs_special_offset_handling,
529 size_t local_symbol_count,
530 const unsigned char* plocal_symbols);
531
532 // Scan the relocations to look for symbol adjustments.
533 void
534 scan_relocs(Symbol_table* symtab,
535 Layout* layout,
536 Sized_relobj_file<size, big_endian>* object,
537 unsigned int data_shndx,
538 unsigned int sh_type,
539 const unsigned char* prelocs,
540 size_t reloc_count,
541 Output_section* output_section,
542 bool needs_special_offset_handling,
543 size_t local_symbol_count,
544 const unsigned char* plocal_symbols);
545
546 // Map input .toc section to output .got section.
547 const char*
548 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549 {
550 if (size == 64 && strcmp(name, ".toc") == 0)
551 {
552 *plen = 4;
553 return ".got";
554 }
555 return NULL;
556 }
557
558 // Provide linker defined save/restore functions.
559 void
560 define_save_restore_funcs(Layout*, Symbol_table*);
561
562 // No stubs unless a final link.
563 bool
564 do_may_relax() const
565 { return !parameters->options().relocatable(); }
566
567 bool
568 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569
570 void
571 do_plt_fde_location(const Output_data*, unsigned char*,
572 uint64_t*, off_t*) const;
573
574 // Stash info about branches, for stub generation.
575 void
576 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577 unsigned int data_shndx, Address r_offset,
578 unsigned int r_type, unsigned int r_sym, Address addend)
579 {
580 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581 this->branch_info_.push_back(info);
582 if (r_type == elfcpp::R_POWERPC_REL14
583 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585 ppc_object->set_has_14bit_branch(data_shndx);
586 }
587
588 void
589 do_define_standard_symbols(Symbol_table*, Layout*);
590
591 // Finalize the sections.
592 void
593 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594
595 // Return the value to use for a dynamic which requires special
596 // treatment.
597 uint64_t
598 do_dynsym_value(const Symbol*) const;
599
600 // Return the PLT address to use for a local symbol.
601 uint64_t
602 do_plt_address_for_local(const Relobj*, unsigned int) const;
603
604 // Return the PLT address to use for a global symbol.
605 uint64_t
606 do_plt_address_for_global(const Symbol*) const;
607
608 // Return the offset to use for the GOT_INDX'th got entry which is
609 // for a local tls symbol specified by OBJECT, SYMNDX.
610 int64_t
611 do_tls_offset_for_local(const Relobj* object,
612 unsigned int symndx,
613 unsigned int got_indx) const;
614
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for global tls symbol GSYM.
617 int64_t
618 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619
620 void
621 do_function_location(Symbol_location*) const;
622
623 bool
624 do_can_check_for_function_pointers() const
625 { return true; }
626
627 // Relocate a section.
628 void
629 relocate_section(const Relocate_info<size, big_endian>*,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
632 size_t reloc_count,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
635 unsigned char* view,
636 Address view_address,
637 section_size_type view_size,
638 const Reloc_symbol_changes*);
639
640 // Scan the relocs during a relocatable link.
641 void
642 scan_relocatable_relocs(Symbol_table* symtab,
643 Layout* layout,
644 Sized_relobj_file<size, big_endian>* object,
645 unsigned int data_shndx,
646 unsigned int sh_type,
647 const unsigned char* prelocs,
648 size_t reloc_count,
649 Output_section* output_section,
650 bool needs_special_offset_handling,
651 size_t local_symbol_count,
652 const unsigned char* plocal_symbols,
653 Relocatable_relocs*);
654
655 // Emit relocations for a section.
656 void
657 relocate_relocs(const Relocate_info<size, big_endian>*,
658 unsigned int sh_type,
659 const unsigned char* prelocs,
660 size_t reloc_count,
661 Output_section* output_section,
662 typename elfcpp::Elf_types<size>::Elf_Off
663 offset_in_output_section,
664 const Relocatable_relocs*,
665 unsigned char*,
666 Address view_address,
667 section_size_type,
668 unsigned char* reloc_view,
669 section_size_type reloc_view_size);
670
671 // Return whether SYM is defined by the ABI.
672 bool
673 do_is_defined_by_abi(const Symbol* sym) const
674 {
675 return strcmp(sym->name(), "__tls_get_addr") == 0;
676 }
677
678 // Return the size of the GOT section.
679 section_size_type
680 got_size() const
681 {
682 gold_assert(this->got_ != NULL);
683 return this->got_->data_size();
684 }
685
686 // Get the PLT section.
687 const Output_data_plt_powerpc<size, big_endian>*
688 plt_section() const
689 {
690 gold_assert(this->plt_ != NULL);
691 return this->plt_;
692 }
693
694 // Get the IPLT section.
695 const Output_data_plt_powerpc<size, big_endian>*
696 iplt_section() const
697 {
698 gold_assert(this->iplt_ != NULL);
699 return this->iplt_;
700 }
701
702 // Get the .glink section.
703 const Output_data_glink<size, big_endian>*
704 glink_section() const
705 {
706 gold_assert(this->glink_ != NULL);
707 return this->glink_;
708 }
709
710 Output_data_glink<size, big_endian>*
711 glink_section()
712 {
713 gold_assert(this->glink_ != NULL);
714 return this->glink_;
715 }
716
717 bool has_glink() const
718 { return this->glink_ != NULL; }
719
720 // Get the GOT section.
721 const Output_data_got_powerpc<size, big_endian>*
722 got_section() const
723 {
724 gold_assert(this->got_ != NULL);
725 return this->got_;
726 }
727
728 // Get the GOT section, creating it if necessary.
729 Output_data_got_powerpc<size, big_endian>*
730 got_section(Symbol_table*, Layout*);
731
732 Object*
733 do_make_elf_object(const std::string&, Input_file*, off_t,
734 const elfcpp::Ehdr<size, big_endian>&);
735
736 // Return the number of entries in the GOT.
737 unsigned int
738 got_entry_count() const
739 {
740 if (this->got_ == NULL)
741 return 0;
742 return this->got_size() / (size / 8);
743 }
744
745 // Return the number of entries in the PLT.
746 unsigned int
747 plt_entry_count() const;
748
749 // Return the offset of the first non-reserved PLT entry.
750 unsigned int
751 first_plt_entry_offset() const
752 {
753 if (size == 32)
754 return 0;
755 if (this->abiversion() >= 2)
756 return 16;
757 return 24;
758 }
759
760 // Return the size of each PLT entry.
761 unsigned int
762 plt_entry_size() const
763 {
764 if (size == 32)
765 return 4;
766 if (this->abiversion() >= 2)
767 return 8;
768 return 24;
769 }
770
771 // Add any special sections for this symbol to the gc work list.
772 // For powerpc64, this adds the code section of a function
773 // descriptor.
774 void
775 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
776
777 // Handle target specific gc actions when adding a gc reference from
778 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
779 // and DST_OFF. For powerpc64, this adds a referenc to the code
780 // section of a function descriptor.
781 void
782 do_gc_add_reference(Symbol_table* symtab,
783 Object* src_obj,
784 unsigned int src_shndx,
785 Object* dst_obj,
786 unsigned int dst_shndx,
787 Address dst_off) const;
788
789 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
790 const Stub_tables&
791 stub_tables() const
792 { return this->stub_tables_; }
793
794 const Output_data_brlt_powerpc<size, big_endian>*
795 brlt_section() const
796 { return this->brlt_section_; }
797
798 void
799 add_branch_lookup_table(Address to)
800 {
801 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
802 this->branch_lookup_table_.insert(std::make_pair(to, off));
803 }
804
805 Address
806 find_branch_lookup_table(Address to)
807 {
808 typename Branch_lookup_table::const_iterator p
809 = this->branch_lookup_table_.find(to);
810 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
811 }
812
813 void
814 write_branch_lookup_table(unsigned char *oview)
815 {
816 for (typename Branch_lookup_table::const_iterator p
817 = this->branch_lookup_table_.begin();
818 p != this->branch_lookup_table_.end();
819 ++p)
820 {
821 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
822 }
823 }
824
825 bool
826 plt_thread_safe() const
827 { return this->plt_thread_safe_; }
828
829 int
830 abiversion () const
831 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
832
833 void
834 set_abiversion (int ver)
835 {
836 elfcpp::Elf_Word flags = this->processor_specific_flags();
837 flags &= ~elfcpp::EF_PPC64_ABI;
838 flags |= ver & elfcpp::EF_PPC64_ABI;
839 this->set_processor_specific_flags(flags);
840 }
841
842 // Offset to to save stack slot
843 int
844 stk_toc () const
845 { return this->abiversion() < 2 ? 40 : 24; }
846
847 private:
848
849 class Track_tls
850 {
851 public:
852 enum Tls_get_addr
853 {
854 NOT_EXPECTED = 0,
855 EXPECTED = 1,
856 SKIP = 2,
857 NORMAL = 3
858 };
859
860 Track_tls()
861 : tls_get_addr_(NOT_EXPECTED),
862 relinfo_(NULL), relnum_(0), r_offset_(0)
863 { }
864
865 ~Track_tls()
866 {
867 if (this->tls_get_addr_ != NOT_EXPECTED)
868 this->missing();
869 }
870
871 void
872 missing(void)
873 {
874 if (this->relinfo_ != NULL)
875 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
876 _("missing expected __tls_get_addr call"));
877 }
878
879 void
880 expect_tls_get_addr_call(
881 const Relocate_info<size, big_endian>* relinfo,
882 size_t relnum,
883 Address r_offset)
884 {
885 this->tls_get_addr_ = EXPECTED;
886 this->relinfo_ = relinfo;
887 this->relnum_ = relnum;
888 this->r_offset_ = r_offset;
889 }
890
891 void
892 expect_tls_get_addr_call()
893 { this->tls_get_addr_ = EXPECTED; }
894
895 void
896 skip_next_tls_get_addr_call()
897 {this->tls_get_addr_ = SKIP; }
898
899 Tls_get_addr
900 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
901 {
902 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
903 || r_type == elfcpp::R_PPC_PLTREL24)
904 && gsym != NULL
905 && strcmp(gsym->name(), "__tls_get_addr") == 0);
906 Tls_get_addr last_tls = this->tls_get_addr_;
907 this->tls_get_addr_ = NOT_EXPECTED;
908 if (is_tls_call && last_tls != EXPECTED)
909 return last_tls;
910 else if (!is_tls_call && last_tls != NOT_EXPECTED)
911 {
912 this->missing();
913 return EXPECTED;
914 }
915 return NORMAL;
916 }
917
918 private:
919 // What we're up to regarding calls to __tls_get_addr.
920 // On powerpc, the branch and link insn making a call to
921 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
922 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
923 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
924 // The marker relocation always comes first, and has the same
925 // symbol as the reloc on the insn setting up the __tls_get_addr
926 // argument. This ties the arg setup insn with the call insn,
927 // allowing ld to safely optimize away the call. We check that
928 // every call to __tls_get_addr has a marker relocation, and that
929 // every marker relocation is on a call to __tls_get_addr.
930 Tls_get_addr tls_get_addr_;
931 // Info about the last reloc for error message.
932 const Relocate_info<size, big_endian>* relinfo_;
933 size_t relnum_;
934 Address r_offset_;
935 };
936
937 // The class which scans relocations.
938 class Scan : protected Track_tls
939 {
940 public:
941 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
942
943 Scan()
944 : Track_tls(), issued_non_pic_error_(false)
945 { }
946
947 static inline int
948 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
949
950 inline void
951 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
952 Sized_relobj_file<size, big_endian>* object,
953 unsigned int data_shndx,
954 Output_section* output_section,
955 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
956 const elfcpp::Sym<size, big_endian>& lsym,
957 bool is_discarded);
958
959 inline void
960 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
961 Sized_relobj_file<size, big_endian>* object,
962 unsigned int data_shndx,
963 Output_section* output_section,
964 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
965 Symbol* gsym);
966
967 inline bool
968 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
969 Target_powerpc* ,
970 Sized_relobj_file<size, big_endian>* relobj,
971 unsigned int ,
972 Output_section* ,
973 const elfcpp::Rela<size, big_endian>& ,
974 unsigned int r_type,
975 const elfcpp::Sym<size, big_endian>&)
976 {
977 // PowerPC64 .opd is not folded, so any identical function text
978 // may be folded and we'll still keep function addresses distinct.
979 // That means no reloc is of concern here.
980 if (size == 64)
981 {
982 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
983 <Powerpc_relobj<size, big_endian>*>(relobj);
984 if (ppcobj->abiversion() == 1)
985 return false;
986 }
987 // For 32-bit and ELFv2, conservatively assume anything but calls to
988 // function code might be taking the address of the function.
989 return !is_branch_reloc(r_type);
990 }
991
992 inline bool
993 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
994 Target_powerpc* ,
995 Sized_relobj_file<size, big_endian>* relobj,
996 unsigned int ,
997 Output_section* ,
998 const elfcpp::Rela<size, big_endian>& ,
999 unsigned int r_type,
1000 Symbol*)
1001 {
1002 // As above.
1003 if (size == 64)
1004 {
1005 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1006 <Powerpc_relobj<size, big_endian>*>(relobj);
1007 if (ppcobj->abiversion() == 1)
1008 return false;
1009 }
1010 return !is_branch_reloc(r_type);
1011 }
1012
1013 static bool
1014 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1015 Sized_relobj_file<size, big_endian>* object,
1016 unsigned int r_type, bool report_err);
1017
1018 private:
1019 static void
1020 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1021 unsigned int r_type);
1022
1023 static void
1024 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1025 unsigned int r_type, Symbol*);
1026
1027 static void
1028 generate_tls_call(Symbol_table* symtab, Layout* layout,
1029 Target_powerpc* target);
1030
1031 void
1032 check_non_pic(Relobj*, unsigned int r_type);
1033
1034 // Whether we have issued an error about a non-PIC compilation.
1035 bool issued_non_pic_error_;
1036 };
1037
1038 bool
1039 symval_for_branch(const Symbol_table* symtab,
1040 const Sized_symbol<size>* gsym,
1041 Powerpc_relobj<size, big_endian>* object,
1042 Address *value, unsigned int *dest_shndx);
1043
1044 // The class which implements relocation.
1045 class Relocate : protected Track_tls
1046 {
1047 public:
1048 // Use 'at' branch hints when true, 'y' when false.
1049 // FIXME maybe: set this with an option.
1050 static const bool is_isa_v2 = true;
1051
1052 Relocate()
1053 : Track_tls()
1054 { }
1055
1056 // Do a relocation. Return false if the caller should not issue
1057 // any warnings about this relocation.
1058 inline bool
1059 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1060 Output_section*, size_t relnum,
1061 const elfcpp::Rela<size, big_endian>&,
1062 unsigned int r_type, const Sized_symbol<size>*,
1063 const Symbol_value<size>*,
1064 unsigned char*,
1065 typename elfcpp::Elf_types<size>::Elf_Addr,
1066 section_size_type);
1067 };
1068
1069 class Relocate_comdat_behavior
1070 {
1071 public:
1072 // Decide what the linker should do for relocations that refer to
1073 // discarded comdat sections.
1074 inline Comdat_behavior
1075 get(const char* name)
1076 {
1077 gold::Default_comdat_behavior default_behavior;
1078 Comdat_behavior ret = default_behavior.get(name);
1079 if (ret == CB_WARNING)
1080 {
1081 if (size == 32
1082 && (strcmp(name, ".fixup") == 0
1083 || strcmp(name, ".got2") == 0))
1084 ret = CB_IGNORE;
1085 if (size == 64
1086 && (strcmp(name, ".opd") == 0
1087 || strcmp(name, ".toc") == 0
1088 || strcmp(name, ".toc1") == 0))
1089 ret = CB_IGNORE;
1090 }
1091 return ret;
1092 }
1093 };
1094
1095 // A class which returns the size required for a relocation type,
1096 // used while scanning relocs during a relocatable link.
1097 class Relocatable_size_for_reloc
1098 {
1099 public:
1100 unsigned int
1101 get_size_for_reloc(unsigned int, Relobj*)
1102 {
1103 gold_unreachable();
1104 return 0;
1105 }
1106 };
1107
1108 // Optimize the TLS relocation type based on what we know about the
1109 // symbol. IS_FINAL is true if the final address of this symbol is
1110 // known at link time.
1111
1112 tls::Tls_optimization
1113 optimize_tls_gd(bool is_final)
1114 {
1115 // If we are generating a shared library, then we can't do anything
1116 // in the linker.
1117 if (parameters->options().shared())
1118 return tls::TLSOPT_NONE;
1119
1120 if (!is_final)
1121 return tls::TLSOPT_TO_IE;
1122 return tls::TLSOPT_TO_LE;
1123 }
1124
1125 tls::Tls_optimization
1126 optimize_tls_ld()
1127 {
1128 if (parameters->options().shared())
1129 return tls::TLSOPT_NONE;
1130
1131 return tls::TLSOPT_TO_LE;
1132 }
1133
1134 tls::Tls_optimization
1135 optimize_tls_ie(bool is_final)
1136 {
1137 if (!is_final || parameters->options().shared())
1138 return tls::TLSOPT_NONE;
1139
1140 return tls::TLSOPT_TO_LE;
1141 }
1142
1143 // Create glink.
1144 void
1145 make_glink_section(Layout*);
1146
1147 // Create the PLT section.
1148 void
1149 make_plt_section(Symbol_table*, Layout*);
1150
1151 void
1152 make_iplt_section(Symbol_table*, Layout*);
1153
1154 void
1155 make_brlt_section(Layout*);
1156
1157 // Create a PLT entry for a global symbol.
1158 void
1159 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1160
1161 // Create a PLT entry for a local IFUNC symbol.
1162 void
1163 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1164 Sized_relobj_file<size, big_endian>*,
1165 unsigned int);
1166
1167
1168 // Create a GOT entry for local dynamic __tls_get_addr.
1169 unsigned int
1170 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1171 Sized_relobj_file<size, big_endian>* object);
1172
1173 unsigned int
1174 tlsld_got_offset() const
1175 {
1176 return this->tlsld_got_offset_;
1177 }
1178
1179 // Get the dynamic reloc section, creating it if necessary.
1180 Reloc_section*
1181 rela_dyn_section(Layout*);
1182
1183 // Similarly, but for ifunc symbols get the one for ifunc.
1184 Reloc_section*
1185 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1186
1187 // Copy a relocation against a global symbol.
1188 void
1189 copy_reloc(Symbol_table* symtab, Layout* layout,
1190 Sized_relobj_file<size, big_endian>* object,
1191 unsigned int shndx, Output_section* output_section,
1192 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1193 {
1194 this->copy_relocs_.copy_reloc(symtab, layout,
1195 symtab->get_sized_symbol<size>(sym),
1196 object, shndx, output_section,
1197 reloc, this->rela_dyn_section(layout));
1198 }
1199
1200 // Look over all the input sections, deciding where to place stubs.
1201 void
1202 group_sections(Layout*, const Task*, bool);
1203
1204 // Sort output sections by address.
1205 struct Sort_sections
1206 {
1207 bool
1208 operator()(const Output_section* sec1, const Output_section* sec2)
1209 { return sec1->address() < sec2->address(); }
1210 };
1211
1212 class Branch_info
1213 {
1214 public:
1215 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1216 unsigned int data_shndx,
1217 Address r_offset,
1218 unsigned int r_type,
1219 unsigned int r_sym,
1220 Address addend)
1221 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1222 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1223 { }
1224
1225 ~Branch_info()
1226 { }
1227
1228 // If this branch needs a plt call stub, or a long branch stub, make one.
1229 bool
1230 make_stub(Stub_table<size, big_endian>*,
1231 Stub_table<size, big_endian>*,
1232 Symbol_table*) const;
1233
1234 private:
1235 // The branch location..
1236 Powerpc_relobj<size, big_endian>* object_;
1237 unsigned int shndx_;
1238 Address offset_;
1239 // ..and the branch type and destination.
1240 unsigned int r_type_;
1241 unsigned int r_sym_;
1242 Address addend_;
1243 };
1244
1245 // Information about this specific target which we pass to the
1246 // general Target structure.
1247 static Target::Target_info powerpc_info;
1248
1249 // The types of GOT entries needed for this platform.
1250 // These values are exposed to the ABI in an incremental link.
1251 // Do not renumber existing values without changing the version
1252 // number of the .gnu_incremental_inputs section.
1253 enum Got_type
1254 {
1255 GOT_TYPE_STANDARD,
1256 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1257 GOT_TYPE_DTPREL, // entry for @got@dtprel
1258 GOT_TYPE_TPREL // entry for @got@tprel
1259 };
1260
1261 // The GOT section.
1262 Output_data_got_powerpc<size, big_endian>* got_;
1263 // The PLT section. This is a container for a table of addresses,
1264 // and their relocations. Each address in the PLT has a dynamic
1265 // relocation (R_*_JMP_SLOT) and each address will have a
1266 // corresponding entry in .glink for lazy resolution of the PLT.
1267 // ppc32 initialises the PLT to point at the .glink entry, while
1268 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1269 // linker adds a stub that loads the PLT entry into ctr then
1270 // branches to ctr. There may be more than one stub for each PLT
1271 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1272 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1273 Output_data_plt_powerpc<size, big_endian>* plt_;
1274 // The IPLT section. Like plt_, this is a container for a table of
1275 // addresses and their relocations, specifically for STT_GNU_IFUNC
1276 // functions that resolve locally (STT_GNU_IFUNC functions that
1277 // don't resolve locally go in PLT). Unlike plt_, these have no
1278 // entry in .glink for lazy resolution, and the relocation section
1279 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1280 // the relocation section may contain relocations against
1281 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1282 // relocation section will appear at the end of other dynamic
1283 // relocations, so that ld.so applies these relocations after other
1284 // dynamic relocations. In a static executable, the relocation
1285 // section is emitted and marked with __rela_iplt_start and
1286 // __rela_iplt_end symbols.
1287 Output_data_plt_powerpc<size, big_endian>* iplt_;
1288 // Section holding long branch destinations.
1289 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1290 // The .glink section.
1291 Output_data_glink<size, big_endian>* glink_;
1292 // The dynamic reloc section.
1293 Reloc_section* rela_dyn_;
1294 // Relocs saved to avoid a COPY reloc.
1295 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1296 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1297 unsigned int tlsld_got_offset_;
1298
1299 Stub_tables stub_tables_;
1300 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1301 Branch_lookup_table branch_lookup_table_;
1302
1303 typedef std::vector<Branch_info> Branches;
1304 Branches branch_info_;
1305
1306 bool plt_thread_safe_;
1307
1308 bool relax_failed_;
1309 int relax_fail_count_;
1310 int32_t stub_group_size_;
1311 };
1312
1313 template<>
1314 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1315 {
1316 32, // size
1317 true, // is_big_endian
1318 elfcpp::EM_PPC, // machine_code
1319 false, // has_make_symbol
1320 false, // has_resolve
1321 false, // has_code_fill
1322 true, // is_default_stack_executable
1323 false, // can_icf_inline_merge_sections
1324 '\0', // wrap_char
1325 "/usr/lib/ld.so.1", // dynamic_linker
1326 0x10000000, // default_text_segment_address
1327 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1328 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1329 false, // isolate_execinstr
1330 0, // rosegment_gap
1331 elfcpp::SHN_UNDEF, // small_common_shndx
1332 elfcpp::SHN_UNDEF, // large_common_shndx
1333 0, // small_common_section_flags
1334 0, // large_common_section_flags
1335 NULL, // attributes_section
1336 NULL, // attributes_vendor
1337 "_start" // entry_symbol_name
1338 };
1339
1340 template<>
1341 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1342 {
1343 32, // size
1344 false, // is_big_endian
1345 elfcpp::EM_PPC, // machine_code
1346 false, // has_make_symbol
1347 false, // has_resolve
1348 false, // has_code_fill
1349 true, // is_default_stack_executable
1350 false, // can_icf_inline_merge_sections
1351 '\0', // wrap_char
1352 "/usr/lib/ld.so.1", // dynamic_linker
1353 0x10000000, // default_text_segment_address
1354 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1355 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1356 false, // isolate_execinstr
1357 0, // rosegment_gap
1358 elfcpp::SHN_UNDEF, // small_common_shndx
1359 elfcpp::SHN_UNDEF, // large_common_shndx
1360 0, // small_common_section_flags
1361 0, // large_common_section_flags
1362 NULL, // attributes_section
1363 NULL, // attributes_vendor
1364 "_start" // entry_symbol_name
1365 };
1366
1367 template<>
1368 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1369 {
1370 64, // size
1371 true, // is_big_endian
1372 elfcpp::EM_PPC64, // machine_code
1373 false, // has_make_symbol
1374 false, // has_resolve
1375 false, // has_code_fill
1376 true, // is_default_stack_executable
1377 false, // can_icf_inline_merge_sections
1378 '\0', // wrap_char
1379 "/usr/lib/ld.so.1", // dynamic_linker
1380 0x10000000, // default_text_segment_address
1381 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1382 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1383 false, // isolate_execinstr
1384 0, // rosegment_gap
1385 elfcpp::SHN_UNDEF, // small_common_shndx
1386 elfcpp::SHN_UNDEF, // large_common_shndx
1387 0, // small_common_section_flags
1388 0, // large_common_section_flags
1389 NULL, // attributes_section
1390 NULL, // attributes_vendor
1391 "_start" // entry_symbol_name
1392 };
1393
1394 template<>
1395 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1396 {
1397 64, // size
1398 false, // is_big_endian
1399 elfcpp::EM_PPC64, // machine_code
1400 false, // has_make_symbol
1401 false, // has_resolve
1402 false, // has_code_fill
1403 true, // is_default_stack_executable
1404 false, // can_icf_inline_merge_sections
1405 '\0', // wrap_char
1406 "/usr/lib/ld.so.1", // dynamic_linker
1407 0x10000000, // default_text_segment_address
1408 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1409 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1410 false, // isolate_execinstr
1411 0, // rosegment_gap
1412 elfcpp::SHN_UNDEF, // small_common_shndx
1413 elfcpp::SHN_UNDEF, // large_common_shndx
1414 0, // small_common_section_flags
1415 0, // large_common_section_flags
1416 NULL, // attributes_section
1417 NULL, // attributes_vendor
1418 "_start" // entry_symbol_name
1419 };
1420
1421 inline bool
1422 is_branch_reloc(unsigned int r_type)
1423 {
1424 return (r_type == elfcpp::R_POWERPC_REL24
1425 || r_type == elfcpp::R_PPC_PLTREL24
1426 || r_type == elfcpp::R_PPC_LOCAL24PC
1427 || r_type == elfcpp::R_POWERPC_REL14
1428 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1429 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1430 || r_type == elfcpp::R_POWERPC_ADDR24
1431 || r_type == elfcpp::R_POWERPC_ADDR14
1432 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1433 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1434 }
1435
1436 // If INSN is an opcode that may be used with an @tls operand, return
1437 // the transformed insn for TLS optimisation, otherwise return 0. If
1438 // REG is non-zero only match an insn with RB or RA equal to REG.
1439 uint32_t
1440 at_tls_transform(uint32_t insn, unsigned int reg)
1441 {
1442 if ((insn & (0x3f << 26)) != 31 << 26)
1443 return 0;
1444
1445 unsigned int rtra;
1446 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1447 rtra = insn & ((1 << 26) - (1 << 16));
1448 else if (((insn >> 16) & 0x1f) == reg)
1449 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1450 else
1451 return 0;
1452
1453 if ((insn & (0x3ff << 1)) == 266 << 1)
1454 // add -> addi
1455 insn = 14 << 26;
1456 else if ((insn & (0x1f << 1)) == 23 << 1
1457 && ((insn & (0x1f << 6)) < 14 << 6
1458 || ((insn & (0x1f << 6)) >= 16 << 6
1459 && (insn & (0x1f << 6)) < 24 << 6)))
1460 // load and store indexed -> dform
1461 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1462 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1463 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1464 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1465 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1466 // lwax -> lwa
1467 insn = (58 << 26) | 2;
1468 else
1469 return 0;
1470 insn |= rtra;
1471 return insn;
1472 }
1473
1474
1475 template<int size, bool big_endian>
1476 class Powerpc_relocate_functions
1477 {
1478 public:
1479 enum Overflow_check
1480 {
1481 CHECK_NONE,
1482 CHECK_SIGNED,
1483 CHECK_UNSIGNED,
1484 CHECK_BITFIELD,
1485 CHECK_LOW_INSN,
1486 CHECK_HIGH_INSN
1487 };
1488
1489 enum Status
1490 {
1491 STATUS_OK,
1492 STATUS_OVERFLOW
1493 };
1494
1495 private:
1496 typedef Powerpc_relocate_functions<size, big_endian> This;
1497 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1498
1499 template<int valsize>
1500 static inline bool
1501 has_overflow_signed(Address value)
1502 {
1503 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1504 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1505 limit <<= ((valsize - 1) >> 1);
1506 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1507 return value + limit > (limit << 1) - 1;
1508 }
1509
1510 template<int valsize>
1511 static inline bool
1512 has_overflow_unsigned(Address value)
1513 {
1514 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1515 limit <<= ((valsize - 1) >> 1);
1516 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1517 return value > (limit << 1) - 1;
1518 }
1519
1520 template<int valsize>
1521 static inline bool
1522 has_overflow_bitfield(Address value)
1523 {
1524 return (has_overflow_unsigned<valsize>(value)
1525 && has_overflow_signed<valsize>(value));
1526 }
1527
1528 template<int valsize>
1529 static inline Status
1530 overflowed(Address value, Overflow_check overflow)
1531 {
1532 if (overflow == CHECK_SIGNED)
1533 {
1534 if (has_overflow_signed<valsize>(value))
1535 return STATUS_OVERFLOW;
1536 }
1537 else if (overflow == CHECK_UNSIGNED)
1538 {
1539 if (has_overflow_unsigned<valsize>(value))
1540 return STATUS_OVERFLOW;
1541 }
1542 else if (overflow == CHECK_BITFIELD)
1543 {
1544 if (has_overflow_bitfield<valsize>(value))
1545 return STATUS_OVERFLOW;
1546 }
1547 return STATUS_OK;
1548 }
1549
1550 // Do a simple RELA relocation
1551 template<int fieldsize, int valsize>
1552 static inline Status
1553 rela(unsigned char* view, Address value, Overflow_check overflow)
1554 {
1555 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1556 Valtype* wv = reinterpret_cast<Valtype*>(view);
1557 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1558 return overflowed<valsize>(value, overflow);
1559 }
1560
1561 template<int fieldsize, int valsize>
1562 static inline Status
1563 rela(unsigned char* view,
1564 unsigned int right_shift,
1565 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1566 Address value,
1567 Overflow_check overflow)
1568 {
1569 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1570 Valtype* wv = reinterpret_cast<Valtype*>(view);
1571 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1572 Valtype reloc = value >> right_shift;
1573 val &= ~dst_mask;
1574 reloc &= dst_mask;
1575 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1576 return overflowed<valsize>(value >> right_shift, overflow);
1577 }
1578
1579 // Do a simple RELA relocation, unaligned.
1580 template<int fieldsize, int valsize>
1581 static inline Status
1582 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1583 {
1584 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1585 return overflowed<valsize>(value, overflow);
1586 }
1587
1588 template<int fieldsize, int valsize>
1589 static inline Status
1590 rela_ua(unsigned char* view,
1591 unsigned int right_shift,
1592 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1593 Address value,
1594 Overflow_check overflow)
1595 {
1596 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1597 Valtype;
1598 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1599 Valtype reloc = value >> right_shift;
1600 val &= ~dst_mask;
1601 reloc &= dst_mask;
1602 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1603 return overflowed<valsize>(value >> right_shift, overflow);
1604 }
1605
1606 public:
1607 // R_PPC64_ADDR64: (Symbol + Addend)
1608 static inline void
1609 addr64(unsigned char* view, Address value)
1610 { This::template rela<64,64>(view, value, CHECK_NONE); }
1611
1612 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1613 static inline void
1614 addr64_u(unsigned char* view, Address value)
1615 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1616
1617 // R_POWERPC_ADDR32: (Symbol + Addend)
1618 static inline Status
1619 addr32(unsigned char* view, Address value, Overflow_check overflow)
1620 { return This::template rela<32,32>(view, value, overflow); }
1621
1622 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1623 static inline Status
1624 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1625 { return This::template rela_ua<32,32>(view, value, overflow); }
1626
1627 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1628 static inline Status
1629 addr24(unsigned char* view, Address value, Overflow_check overflow)
1630 {
1631 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1632 value, overflow);
1633 if (overflow != CHECK_NONE && (value & 3) != 0)
1634 stat = STATUS_OVERFLOW;
1635 return stat;
1636 }
1637
1638 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1639 static inline Status
1640 addr16(unsigned char* view, Address value, Overflow_check overflow)
1641 { return This::template rela<16,16>(view, value, overflow); }
1642
1643 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1644 static inline Status
1645 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1646 { return This::template rela_ua<16,16>(view, value, overflow); }
1647
1648 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1649 static inline Status
1650 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1651 {
1652 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1653 if (overflow != CHECK_NONE && (value & 3) != 0)
1654 stat = STATUS_OVERFLOW;
1655 return stat;
1656 }
1657
1658 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1659 static inline void
1660 addr16_hi(unsigned char* view, Address value)
1661 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1662
1663 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1664 static inline void
1665 addr16_ha(unsigned char* view, Address value)
1666 { This::addr16_hi(view, value + 0x8000); }
1667
1668 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1669 static inline void
1670 addr16_hi2(unsigned char* view, Address value)
1671 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1672
1673 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1674 static inline void
1675 addr16_ha2(unsigned char* view, Address value)
1676 { This::addr16_hi2(view, value + 0x8000); }
1677
1678 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1679 static inline void
1680 addr16_hi3(unsigned char* view, Address value)
1681 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1682
1683 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1684 static inline void
1685 addr16_ha3(unsigned char* view, Address value)
1686 { This::addr16_hi3(view, value + 0x8000); }
1687
1688 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1689 static inline Status
1690 addr14(unsigned char* view, Address value, Overflow_check overflow)
1691 {
1692 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1693 if (overflow != CHECK_NONE && (value & 3) != 0)
1694 stat = STATUS_OVERFLOW;
1695 return stat;
1696 }
1697 };
1698
1699 // Set ABI version for input and output.
1700
1701 template<int size, bool big_endian>
1702 void
1703 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1704 {
1705 this->e_flags_ |= ver;
1706 if (this->abiversion() != 0)
1707 {
1708 Target_powerpc<size, big_endian>* target =
1709 static_cast<Target_powerpc<size, big_endian>*>(
1710 parameters->sized_target<size, big_endian>());
1711 if (target->abiversion() == 0)
1712 target->set_abiversion(this->abiversion());
1713 else if (target->abiversion() != this->abiversion())
1714 gold_error(_("%s: ABI version %d is not compatible "
1715 "with ABI version %d output"),
1716 this->name().c_str(),
1717 this->abiversion(), target->abiversion());
1718
1719 }
1720 }
1721
1722 // Stash away the index of .got2 or .opd in a relocatable object, if
1723 // such a section exists.
1724
1725 template<int size, bool big_endian>
1726 bool
1727 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1728 Read_symbols_data* sd)
1729 {
1730 const unsigned char* const pshdrs = sd->section_headers->data();
1731 const unsigned char* namesu = sd->section_names->data();
1732 const char* names = reinterpret_cast<const char*>(namesu);
1733 section_size_type names_size = sd->section_names_size;
1734 const unsigned char* s;
1735
1736 s = this->template find_shdr<size, big_endian>(pshdrs,
1737 size == 32 ? ".got2" : ".opd",
1738 names, names_size, NULL);
1739 if (s != NULL)
1740 {
1741 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1742 this->special_ = ndx;
1743 if (size == 64)
1744 {
1745 if (this->abiversion() == 0)
1746 this->set_abiversion(1);
1747 else if (this->abiversion() > 1)
1748 gold_error(_("%s: .opd invalid in abiv%d"),
1749 this->name().c_str(), this->abiversion());
1750 }
1751 }
1752 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1753 }
1754
1755 // Examine .rela.opd to build info about function entry points.
1756
1757 template<int size, bool big_endian>
1758 void
1759 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1760 size_t reloc_count,
1761 const unsigned char* prelocs,
1762 const unsigned char* plocal_syms)
1763 {
1764 if (size == 64)
1765 {
1766 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1767 Reltype;
1768 const int reloc_size
1769 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1770 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1771 Address expected_off = 0;
1772 bool regular = true;
1773 unsigned int opd_ent_size = 0;
1774
1775 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1776 {
1777 Reltype reloc(prelocs);
1778 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1779 = reloc.get_r_info();
1780 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1781 if (r_type == elfcpp::R_PPC64_ADDR64)
1782 {
1783 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1784 typename elfcpp::Elf_types<size>::Elf_Addr value;
1785 bool is_ordinary;
1786 unsigned int shndx;
1787 if (r_sym < this->local_symbol_count())
1788 {
1789 typename elfcpp::Sym<size, big_endian>
1790 lsym(plocal_syms + r_sym * sym_size);
1791 shndx = lsym.get_st_shndx();
1792 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1793 value = lsym.get_st_value();
1794 }
1795 else
1796 shndx = this->symbol_section_and_value(r_sym, &value,
1797 &is_ordinary);
1798 this->set_opd_ent(reloc.get_r_offset(), shndx,
1799 value + reloc.get_r_addend());
1800 if (i == 2)
1801 {
1802 expected_off = reloc.get_r_offset();
1803 opd_ent_size = expected_off;
1804 }
1805 else if (expected_off != reloc.get_r_offset())
1806 regular = false;
1807 expected_off += opd_ent_size;
1808 }
1809 else if (r_type == elfcpp::R_PPC64_TOC)
1810 {
1811 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1812 regular = false;
1813 }
1814 else
1815 {
1816 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1817 this->name().c_str(), r_type);
1818 regular = false;
1819 }
1820 }
1821 if (reloc_count <= 2)
1822 opd_ent_size = this->section_size(this->opd_shndx());
1823 if (opd_ent_size != 24 && opd_ent_size != 16)
1824 regular = false;
1825 if (!regular)
1826 {
1827 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1828 this->name().c_str());
1829 opd_ent_size = 0;
1830 }
1831 }
1832 }
1833
1834 template<int size, bool big_endian>
1835 void
1836 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1837 {
1838 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1839 if (size == 64)
1840 {
1841 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1842 p != rd->relocs.end();
1843 ++p)
1844 {
1845 if (p->data_shndx == this->opd_shndx())
1846 {
1847 uint64_t opd_size = this->section_size(this->opd_shndx());
1848 gold_assert(opd_size == static_cast<size_t>(opd_size));
1849 if (opd_size != 0)
1850 {
1851 this->init_opd(opd_size);
1852 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1853 rd->local_symbols->data());
1854 }
1855 break;
1856 }
1857 }
1858 }
1859 }
1860
1861 // Read the symbols then set up st_other vector.
1862
1863 template<int size, bool big_endian>
1864 void
1865 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1866 {
1867 this->base_read_symbols(sd);
1868 if (size == 64)
1869 {
1870 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1871 const unsigned char* const pshdrs = sd->section_headers->data();
1872 const unsigned int loccount = this->do_local_symbol_count();
1873 if (loccount != 0)
1874 {
1875 this->st_other_.resize(loccount);
1876 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1877 off_t locsize = loccount * sym_size;
1878 const unsigned int symtab_shndx = this->symtab_shndx();
1879 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1880 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1881 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1882 locsize, true, false);
1883 psyms += sym_size;
1884 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1885 {
1886 elfcpp::Sym<size, big_endian> sym(psyms);
1887 unsigned char st_other = sym.get_st_other();
1888 this->st_other_[i] = st_other;
1889 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1890 {
1891 if (this->abiversion() == 0)
1892 this->set_abiversion(2);
1893 else if (this->abiversion() < 2)
1894 gold_error(_("%s: local symbol %d has invalid st_other"
1895 " for ABI version 1"),
1896 this->name().c_str(), i);
1897 }
1898 }
1899 }
1900 }
1901 }
1902
1903 template<int size, bool big_endian>
1904 void
1905 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1906 {
1907 this->e_flags_ |= ver;
1908 if (this->abiversion() != 0)
1909 {
1910 Target_powerpc<size, big_endian>* target =
1911 static_cast<Target_powerpc<size, big_endian>*>(
1912 parameters->sized_target<size, big_endian>());
1913 if (target->abiversion() == 0)
1914 target->set_abiversion(this->abiversion());
1915 else if (target->abiversion() != this->abiversion())
1916 gold_error(_("%s: ABI version %d is not compatible "
1917 "with ABI version %d output"),
1918 this->name().c_str(),
1919 this->abiversion(), target->abiversion());
1920
1921 }
1922 }
1923
1924 // Call Sized_dynobj::base_read_symbols to read the symbols then
1925 // read .opd from a dynamic object, filling in opd_ent_ vector,
1926
1927 template<int size, bool big_endian>
1928 void
1929 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1930 {
1931 this->base_read_symbols(sd);
1932 if (size == 64)
1933 {
1934 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1935 const unsigned char* const pshdrs = sd->section_headers->data();
1936 const unsigned char* namesu = sd->section_names->data();
1937 const char* names = reinterpret_cast<const char*>(namesu);
1938 const unsigned char* s = NULL;
1939 const unsigned char* opd;
1940 section_size_type opd_size;
1941
1942 // Find and read .opd section.
1943 while (1)
1944 {
1945 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1946 sd->section_names_size,
1947 s);
1948 if (s == NULL)
1949 return;
1950
1951 typename elfcpp::Shdr<size, big_endian> shdr(s);
1952 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1953 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1954 {
1955 if (this->abiversion() == 0)
1956 this->set_abiversion(1);
1957 else if (this->abiversion() > 1)
1958 gold_error(_("%s: .opd invalid in abiv%d"),
1959 this->name().c_str(), this->abiversion());
1960
1961 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1962 this->opd_address_ = shdr.get_sh_addr();
1963 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1964 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1965 true, false);
1966 break;
1967 }
1968 }
1969
1970 // Build set of executable sections.
1971 // Using a set is probably overkill. There is likely to be only
1972 // a few executable sections, typically .init, .text and .fini,
1973 // and they are generally grouped together.
1974 typedef std::set<Sec_info> Exec_sections;
1975 Exec_sections exec_sections;
1976 s = pshdrs;
1977 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1978 {
1979 typename elfcpp::Shdr<size, big_endian> shdr(s);
1980 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1981 && ((shdr.get_sh_flags()
1982 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1983 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1984 && shdr.get_sh_size() != 0)
1985 {
1986 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1987 shdr.get_sh_size(), i));
1988 }
1989 }
1990 if (exec_sections.empty())
1991 return;
1992
1993 // Look over the OPD entries. This is complicated by the fact
1994 // that some binaries will use two-word entries while others
1995 // will use the standard three-word entries. In most cases
1996 // the third word (the environment pointer for languages like
1997 // Pascal) is unused and will be zero. If the third word is
1998 // used it should not be pointing into executable sections,
1999 // I think.
2000 this->init_opd(opd_size);
2001 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2002 {
2003 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2004 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2005 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2006 if (val == 0)
2007 // Chances are that this is the third word of an OPD entry.
2008 continue;
2009 typename Exec_sections::const_iterator e
2010 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2011 if (e != exec_sections.begin())
2012 {
2013 --e;
2014 if (e->start <= val && val < e->start + e->len)
2015 {
2016 // We have an address in an executable section.
2017 // VAL ought to be the function entry, set it up.
2018 this->set_opd_ent(p - opd, e->shndx, val);
2019 // Skip second word of OPD entry, the TOC pointer.
2020 p += 8;
2021 }
2022 }
2023 // If we didn't match any executable sections, we likely
2024 // have a non-zero third word in the OPD entry.
2025 }
2026 }
2027 }
2028
2029 // Set up some symbols.
2030
2031 template<int size, bool big_endian>
2032 void
2033 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2034 Symbol_table* symtab,
2035 Layout* layout)
2036 {
2037 if (size == 32)
2038 {
2039 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2040 // undefined when scanning relocs (and thus requires
2041 // non-relative dynamic relocs). The proper value will be
2042 // updated later.
2043 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2044 if (gotsym != NULL && gotsym->is_undefined())
2045 {
2046 Target_powerpc<size, big_endian>* target =
2047 static_cast<Target_powerpc<size, big_endian>*>(
2048 parameters->sized_target<size, big_endian>());
2049 Output_data_got_powerpc<size, big_endian>* got
2050 = target->got_section(symtab, layout);
2051 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2052 Symbol_table::PREDEFINED,
2053 got, 0, 0,
2054 elfcpp::STT_OBJECT,
2055 elfcpp::STB_LOCAL,
2056 elfcpp::STV_HIDDEN, 0,
2057 false, false);
2058 }
2059
2060 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2061 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2062 if (sdasym != NULL && sdasym->is_undefined())
2063 {
2064 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2065 Output_section* os
2066 = layout->add_output_section_data(".sdata", 0,
2067 elfcpp::SHF_ALLOC
2068 | elfcpp::SHF_WRITE,
2069 sdata, ORDER_SMALL_DATA, false);
2070 symtab->define_in_output_data("_SDA_BASE_", NULL,
2071 Symbol_table::PREDEFINED,
2072 os, 32768, 0, elfcpp::STT_OBJECT,
2073 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2074 0, false, false);
2075 }
2076 }
2077 else
2078 {
2079 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2080 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2081 if (gotsym != NULL && gotsym->is_undefined())
2082 {
2083 Target_powerpc<size, big_endian>* target =
2084 static_cast<Target_powerpc<size, big_endian>*>(
2085 parameters->sized_target<size, big_endian>());
2086 Output_data_got_powerpc<size, big_endian>* got
2087 = target->got_section(symtab, layout);
2088 symtab->define_in_output_data(".TOC.", NULL,
2089 Symbol_table::PREDEFINED,
2090 got, 0x8000, 0,
2091 elfcpp::STT_OBJECT,
2092 elfcpp::STB_LOCAL,
2093 elfcpp::STV_HIDDEN, 0,
2094 false, false);
2095 }
2096 }
2097 }
2098
2099 // Set up PowerPC target specific relobj.
2100
2101 template<int size, bool big_endian>
2102 Object*
2103 Target_powerpc<size, big_endian>::do_make_elf_object(
2104 const std::string& name,
2105 Input_file* input_file,
2106 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2107 {
2108 int et = ehdr.get_e_type();
2109 // ET_EXEC files are valid input for --just-symbols/-R,
2110 // and we treat them as relocatable objects.
2111 if (et == elfcpp::ET_REL
2112 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2113 {
2114 Powerpc_relobj<size, big_endian>* obj =
2115 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2116 obj->setup();
2117 return obj;
2118 }
2119 else if (et == elfcpp::ET_DYN)
2120 {
2121 Powerpc_dynobj<size, big_endian>* obj =
2122 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2123 obj->setup();
2124 return obj;
2125 }
2126 else
2127 {
2128 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2129 return NULL;
2130 }
2131 }
2132
2133 template<int size, bool big_endian>
2134 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2135 {
2136 public:
2137 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2138 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2139
2140 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2141 : Output_data_got<size, big_endian>(),
2142 symtab_(symtab), layout_(layout),
2143 header_ent_cnt_(size == 32 ? 3 : 1),
2144 header_index_(size == 32 ? 0x2000 : 0)
2145 { }
2146
2147 // Override all the Output_data_got methods we use so as to first call
2148 // reserve_ent().
2149 bool
2150 add_global(Symbol* gsym, unsigned int got_type)
2151 {
2152 this->reserve_ent();
2153 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2154 }
2155
2156 bool
2157 add_global_plt(Symbol* gsym, unsigned int got_type)
2158 {
2159 this->reserve_ent();
2160 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2161 }
2162
2163 bool
2164 add_global_tls(Symbol* gsym, unsigned int got_type)
2165 { return this->add_global_plt(gsym, got_type); }
2166
2167 void
2168 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2169 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2170 {
2171 this->reserve_ent();
2172 Output_data_got<size, big_endian>::
2173 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2174 }
2175
2176 void
2177 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2178 Output_data_reloc_generic* rel_dyn,
2179 unsigned int r_type_1, unsigned int r_type_2)
2180 {
2181 this->reserve_ent(2);
2182 Output_data_got<size, big_endian>::
2183 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2184 }
2185
2186 bool
2187 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2188 {
2189 this->reserve_ent();
2190 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2191 got_type);
2192 }
2193
2194 bool
2195 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2196 {
2197 this->reserve_ent();
2198 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2199 got_type);
2200 }
2201
2202 bool
2203 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2204 { return this->add_local_plt(object, sym_index, got_type); }
2205
2206 void
2207 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2208 unsigned int got_type,
2209 Output_data_reloc_generic* rel_dyn,
2210 unsigned int r_type)
2211 {
2212 this->reserve_ent(2);
2213 Output_data_got<size, big_endian>::
2214 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2215 }
2216
2217 unsigned int
2218 add_constant(Valtype constant)
2219 {
2220 this->reserve_ent();
2221 return Output_data_got<size, big_endian>::add_constant(constant);
2222 }
2223
2224 unsigned int
2225 add_constant_pair(Valtype c1, Valtype c2)
2226 {
2227 this->reserve_ent(2);
2228 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2229 }
2230
2231 // Offset of _GLOBAL_OFFSET_TABLE_.
2232 unsigned int
2233 g_o_t() const
2234 {
2235 return this->got_offset(this->header_index_);
2236 }
2237
2238 // Offset of base used to access the GOT/TOC.
2239 // The got/toc pointer reg will be set to this value.
2240 Valtype
2241 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2242 {
2243 if (size == 32)
2244 return this->g_o_t();
2245 else
2246 return (this->output_section()->address()
2247 + object->toc_base_offset()
2248 - this->address());
2249 }
2250
2251 // Ensure our GOT has a header.
2252 void
2253 set_final_data_size()
2254 {
2255 if (this->header_ent_cnt_ != 0)
2256 this->make_header();
2257 Output_data_got<size, big_endian>::set_final_data_size();
2258 }
2259
2260 // First word of GOT header needs some values that are not
2261 // handled by Output_data_got so poke them in here.
2262 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2263 void
2264 do_write(Output_file* of)
2265 {
2266 Valtype val = 0;
2267 if (size == 32 && this->layout_->dynamic_data() != NULL)
2268 val = this->layout_->dynamic_section()->address();
2269 if (size == 64)
2270 val = this->output_section()->address() + 0x8000;
2271 this->replace_constant(this->header_index_, val);
2272 Output_data_got<size, big_endian>::do_write(of);
2273 }
2274
2275 private:
2276 void
2277 reserve_ent(unsigned int cnt = 1)
2278 {
2279 if (this->header_ent_cnt_ == 0)
2280 return;
2281 if (this->num_entries() + cnt > this->header_index_)
2282 this->make_header();
2283 }
2284
2285 void
2286 make_header()
2287 {
2288 this->header_ent_cnt_ = 0;
2289 this->header_index_ = this->num_entries();
2290 if (size == 32)
2291 {
2292 Output_data_got<size, big_endian>::add_constant(0);
2293 Output_data_got<size, big_endian>::add_constant(0);
2294 Output_data_got<size, big_endian>::add_constant(0);
2295
2296 // Define _GLOBAL_OFFSET_TABLE_ at the header
2297 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2298 if (gotsym != NULL)
2299 {
2300 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2301 sym->set_value(this->g_o_t());
2302 }
2303 else
2304 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2305 Symbol_table::PREDEFINED,
2306 this, this->g_o_t(), 0,
2307 elfcpp::STT_OBJECT,
2308 elfcpp::STB_LOCAL,
2309 elfcpp::STV_HIDDEN, 0,
2310 false, false);
2311 }
2312 else
2313 Output_data_got<size, big_endian>::add_constant(0);
2314 }
2315
2316 // Stashed pointers.
2317 Symbol_table* symtab_;
2318 Layout* layout_;
2319
2320 // GOT header size.
2321 unsigned int header_ent_cnt_;
2322 // GOT header index.
2323 unsigned int header_index_;
2324 };
2325
2326 // Get the GOT section, creating it if necessary.
2327
2328 template<int size, bool big_endian>
2329 Output_data_got_powerpc<size, big_endian>*
2330 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2331 Layout* layout)
2332 {
2333 if (this->got_ == NULL)
2334 {
2335 gold_assert(symtab != NULL && layout != NULL);
2336
2337 this->got_
2338 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2339
2340 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2341 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2342 this->got_, ORDER_DATA, false);
2343 }
2344
2345 return this->got_;
2346 }
2347
2348 // Get the dynamic reloc section, creating it if necessary.
2349
2350 template<int size, bool big_endian>
2351 typename Target_powerpc<size, big_endian>::Reloc_section*
2352 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2353 {
2354 if (this->rela_dyn_ == NULL)
2355 {
2356 gold_assert(layout != NULL);
2357 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2359 elfcpp::SHF_ALLOC, this->rela_dyn_,
2360 ORDER_DYNAMIC_RELOCS, false);
2361 }
2362 return this->rela_dyn_;
2363 }
2364
2365 // Similarly, but for ifunc symbols get the one for ifunc.
2366
2367 template<int size, bool big_endian>
2368 typename Target_powerpc<size, big_endian>::Reloc_section*
2369 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2370 Layout* layout,
2371 bool for_ifunc)
2372 {
2373 if (!for_ifunc)
2374 return this->rela_dyn_section(layout);
2375
2376 if (this->iplt_ == NULL)
2377 this->make_iplt_section(symtab, layout);
2378 return this->iplt_->rel_plt();
2379 }
2380
2381 class Stub_control
2382 {
2383 public:
2384 // Determine the stub group size. The group size is the absolute
2385 // value of the parameter --stub-group-size. If --stub-group-size
2386 // is passed a negative value, we restrict stubs to be always before
2387 // the stubbed branches.
2388 Stub_control(int32_t size, bool no_size_errors)
2389 : state_(NO_GROUP), stub_group_size_(abs(size)),
2390 stub14_group_size_(abs(size) >> 10),
2391 stubs_always_before_branch_(size < 0),
2392 suppress_size_errors_(no_size_errors),
2393 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2394 {
2395 }
2396
2397 // Return true iff input section can be handled by current stub
2398 // group.
2399 bool
2400 can_add_to_stub_group(Output_section* o,
2401 const Output_section::Input_section* i,
2402 bool has14);
2403
2404 const Output_section::Input_section*
2405 owner()
2406 { return owner_; }
2407
2408 Output_section*
2409 output_section()
2410 { return output_section_; }
2411
2412 void
2413 set_output_and_owner(Output_section* o,
2414 const Output_section::Input_section* i)
2415 {
2416 this->output_section_ = o;
2417 this->owner_ = i;
2418 }
2419
2420 private:
2421 typedef enum
2422 {
2423 NO_GROUP,
2424 FINDING_STUB_SECTION,
2425 HAS_STUB_SECTION
2426 } State;
2427
2428 State state_;
2429 uint32_t stub_group_size_;
2430 uint32_t stub14_group_size_;
2431 bool stubs_always_before_branch_;
2432 bool suppress_size_errors_;
2433 uint64_t group_end_addr_;
2434 const Output_section::Input_section* owner_;
2435 Output_section* output_section_;
2436 };
2437
2438 // Return true iff input section can be handled by current stub
2439 // group.
2440
2441 bool
2442 Stub_control::can_add_to_stub_group(Output_section* o,
2443 const Output_section::Input_section* i,
2444 bool has14)
2445 {
2446 uint32_t group_size
2447 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2448 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2449 uint64_t this_size;
2450 uint64_t start_addr = o->address();
2451
2452 if (whole_sec)
2453 // .init and .fini sections are pasted together to form a single
2454 // function. We can't be adding stubs in the middle of the function.
2455 this_size = o->data_size();
2456 else
2457 {
2458 start_addr += i->relobj()->output_section_offset(i->shndx());
2459 this_size = i->data_size();
2460 }
2461 uint64_t end_addr = start_addr + this_size;
2462 bool toobig = this_size > group_size;
2463
2464 if (toobig && !this->suppress_size_errors_)
2465 gold_warning(_("%s:%s exceeds group size"),
2466 i->relobj()->name().c_str(),
2467 i->relobj()->section_name(i->shndx()).c_str());
2468
2469 if (this->state_ != HAS_STUB_SECTION
2470 && (!whole_sec || this->output_section_ != o)
2471 && (this->state_ == NO_GROUP
2472 || this->group_end_addr_ - end_addr < group_size))
2473 {
2474 this->owner_ = i;
2475 this->output_section_ = o;
2476 }
2477
2478 if (this->state_ == NO_GROUP)
2479 {
2480 this->state_ = FINDING_STUB_SECTION;
2481 this->group_end_addr_ = end_addr;
2482 }
2483 else if (this->group_end_addr_ - start_addr < group_size)
2484 ;
2485 // Adding this section would make the group larger than GROUP_SIZE.
2486 else if (this->state_ == FINDING_STUB_SECTION
2487 && !this->stubs_always_before_branch_
2488 && !toobig)
2489 {
2490 // But wait, there's more! Input sections up to GROUP_SIZE
2491 // bytes before the stub table can be handled by it too.
2492 this->state_ = HAS_STUB_SECTION;
2493 this->group_end_addr_ = end_addr;
2494 }
2495 else
2496 {
2497 this->state_ = NO_GROUP;
2498 return false;
2499 }
2500 return true;
2501 }
2502
2503 // Look over all the input sections, deciding where to place stubs.
2504
2505 template<int size, bool big_endian>
2506 void
2507 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2508 const Task*,
2509 bool no_size_errors)
2510 {
2511 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2512
2513 // Group input sections and insert stub table
2514 Stub_table_owner* table_owner = NULL;
2515 std::vector<Stub_table_owner*> tables;
2516 Layout::Section_list section_list;
2517 layout->get_executable_sections(&section_list);
2518 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2519 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2520 o != section_list.rend();
2521 ++o)
2522 {
2523 typedef Output_section::Input_section_list Input_section_list;
2524 for (Input_section_list::const_reverse_iterator i
2525 = (*o)->input_sections().rbegin();
2526 i != (*o)->input_sections().rend();
2527 ++i)
2528 {
2529 if (i->is_input_section()
2530 || i->is_relaxed_input_section())
2531 {
2532 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2533 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2534 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2535 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2536 {
2537 table_owner->output_section = stub_control.output_section();
2538 table_owner->owner = stub_control.owner();
2539 stub_control.set_output_and_owner(*o, &*i);
2540 table_owner = NULL;
2541 }
2542 if (table_owner == NULL)
2543 {
2544 table_owner = new Stub_table_owner;
2545 tables.push_back(table_owner);
2546 }
2547 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2548 }
2549 }
2550 }
2551 if (table_owner != NULL)
2552 {
2553 const Output_section::Input_section* i = stub_control.owner();
2554
2555 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2556 {
2557 // Corner case. A new stub group was made for the first
2558 // section (last one looked at here) for some reason, but
2559 // the first section is already being used as the owner for
2560 // a stub table for following sections. Force it into that
2561 // stub group.
2562 tables.pop_back();
2563 delete table_owner;
2564 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2565 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2566 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2567 }
2568 else
2569 {
2570 table_owner->output_section = stub_control.output_section();
2571 table_owner->owner = i;
2572 }
2573 }
2574 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2575 t != tables.end();
2576 ++t)
2577 {
2578 Stub_table<size, big_endian>* stub_table;
2579
2580 if ((*t)->owner->is_input_section())
2581 stub_table = new Stub_table<size, big_endian>(this,
2582 (*t)->output_section,
2583 (*t)->owner);
2584 else if ((*t)->owner->is_relaxed_input_section())
2585 stub_table = static_cast<Stub_table<size, big_endian>*>(
2586 (*t)->owner->relaxed_input_section());
2587 else
2588 gold_unreachable();
2589 this->stub_tables_.push_back(stub_table);
2590 delete *t;
2591 }
2592 }
2593
2594 static unsigned long
2595 max_branch_delta (unsigned int r_type)
2596 {
2597 if (r_type == elfcpp::R_POWERPC_REL14
2598 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2599 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2600 return 1L << 15;
2601 if (r_type == elfcpp::R_POWERPC_REL24
2602 || r_type == elfcpp::R_PPC_PLTREL24
2603 || r_type == elfcpp::R_PPC_LOCAL24PC)
2604 return 1L << 25;
2605 return 0;
2606 }
2607
2608 // If this branch needs a plt call stub, or a long branch stub, make one.
2609
2610 template<int size, bool big_endian>
2611 bool
2612 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2613 Stub_table<size, big_endian>* stub_table,
2614 Stub_table<size, big_endian>* ifunc_stub_table,
2615 Symbol_table* symtab) const
2616 {
2617 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2618 if (sym != NULL && sym->is_forwarder())
2619 sym = symtab->resolve_forwards(sym);
2620 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2621 Target_powerpc<size, big_endian>* target =
2622 static_cast<Target_powerpc<size, big_endian>*>(
2623 parameters->sized_target<size, big_endian>());
2624 if (gsym != NULL
2625 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2626 : this->object_->local_has_plt_offset(this->r_sym_))
2627 {
2628 if (size == 64
2629 && gsym != NULL
2630 && target->abiversion() >= 2
2631 && !parameters->options().output_is_position_independent()
2632 && !is_branch_reloc(this->r_type_))
2633 target->glink_section()->add_global_entry(gsym);
2634 else
2635 {
2636 if (stub_table == NULL)
2637 stub_table = this->object_->stub_table(this->shndx_);
2638 if (stub_table == NULL)
2639 {
2640 // This is a ref from a data section to an ifunc symbol.
2641 stub_table = ifunc_stub_table;
2642 }
2643 gold_assert(stub_table != NULL);
2644 Address from = this->object_->get_output_section_offset(this->shndx_);
2645 if (from != invalid_address)
2646 from += (this->object_->output_section(this->shndx_)->address()
2647 + this->offset_);
2648 if (gsym != NULL)
2649 return stub_table->add_plt_call_entry(from,
2650 this->object_, gsym,
2651 this->r_type_, this->addend_);
2652 else
2653 return stub_table->add_plt_call_entry(from,
2654 this->object_, this->r_sym_,
2655 this->r_type_, this->addend_);
2656 }
2657 }
2658 else
2659 {
2660 unsigned long max_branch_offset = max_branch_delta(this->r_type_);
2661 if (max_branch_offset == 0)
2662 return true;
2663 Address from = this->object_->get_output_section_offset(this->shndx_);
2664 gold_assert(from != invalid_address);
2665 from += (this->object_->output_section(this->shndx_)->address()
2666 + this->offset_);
2667 Address to;
2668 if (gsym != NULL)
2669 {
2670 switch (gsym->source())
2671 {
2672 case Symbol::FROM_OBJECT:
2673 {
2674 Object* symobj = gsym->object();
2675 if (symobj->is_dynamic()
2676 || symobj->pluginobj() != NULL)
2677 return true;
2678 bool is_ordinary;
2679 unsigned int shndx = gsym->shndx(&is_ordinary);
2680 if (shndx == elfcpp::SHN_UNDEF)
2681 return true;
2682 }
2683 break;
2684
2685 case Symbol::IS_UNDEFINED:
2686 return true;
2687
2688 default:
2689 break;
2690 }
2691 Symbol_table::Compute_final_value_status status;
2692 to = symtab->compute_final_value<size>(gsym, &status);
2693 if (status != Symbol_table::CFVS_OK)
2694 return true;
2695 if (size == 64)
2696 to += this->object_->ppc64_local_entry_offset(gsym);
2697 }
2698 else
2699 {
2700 const Symbol_value<size>* psymval
2701 = this->object_->local_symbol(this->r_sym_);
2702 Symbol_value<size> symval;
2703 typedef Sized_relobj_file<size, big_endian> ObjType;
2704 typename ObjType::Compute_final_local_value_status status
2705 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2706 &symval, symtab);
2707 if (status != ObjType::CFLV_OK
2708 || !symval.has_output_value())
2709 return true;
2710 to = symval.value(this->object_, 0);
2711 if (size == 64)
2712 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2713 }
2714 to += this->addend_;
2715 if (stub_table == NULL)
2716 stub_table = this->object_->stub_table(this->shndx_);
2717 if (size == 64 && target->abiversion() < 2)
2718 {
2719 unsigned int dest_shndx;
2720 if (!target->symval_for_branch(symtab, gsym, this->object_,
2721 &to, &dest_shndx))
2722 return true;
2723 }
2724 Address delta = to - from;
2725 if (delta + max_branch_offset >= 2 * max_branch_offset)
2726 {
2727 if (stub_table == NULL)
2728 {
2729 gold_warning(_("%s:%s: branch in non-executable section,"
2730 " no long branch stub for you"),
2731 this->object_->name().c_str(),
2732 this->object_->section_name(this->shndx_).c_str());
2733 return true;
2734 }
2735 return stub_table->add_long_branch_entry(this->object_,
2736 this->r_type_, from, to);
2737 }
2738 }
2739 return true;
2740 }
2741
2742 // Relaxation hook. This is where we do stub generation.
2743
2744 template<int size, bool big_endian>
2745 bool
2746 Target_powerpc<size, big_endian>::do_relax(int pass,
2747 const Input_objects*,
2748 Symbol_table* symtab,
2749 Layout* layout,
2750 const Task* task)
2751 {
2752 unsigned int prev_brlt_size = 0;
2753 if (pass == 1)
2754 {
2755 bool thread_safe
2756 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2757 if (size == 64
2758 && this->abiversion() < 2
2759 && !thread_safe
2760 && !parameters->options().user_set_plt_thread_safe())
2761 {
2762 static const char* const thread_starter[] =
2763 {
2764 "pthread_create",
2765 /* libstdc++ */
2766 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2767 /* librt */
2768 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2769 "mq_notify", "create_timer",
2770 /* libanl */
2771 "getaddrinfo_a",
2772 /* libgomp */
2773 "GOMP_parallel",
2774 "GOMP_parallel_start",
2775 "GOMP_parallel_loop_static",
2776 "GOMP_parallel_loop_static_start",
2777 "GOMP_parallel_loop_dynamic",
2778 "GOMP_parallel_loop_dynamic_start",
2779 "GOMP_parallel_loop_guided",
2780 "GOMP_parallel_loop_guided_start",
2781 "GOMP_parallel_loop_runtime",
2782 "GOMP_parallel_loop_runtime_start",
2783 "GOMP_parallel_sections",
2784 "GOMP_parallel_sections_start",
2785 /* libgo */
2786 "__go_go",
2787 };
2788
2789 if (parameters->options().shared())
2790 thread_safe = true;
2791 else
2792 {
2793 for (unsigned int i = 0;
2794 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2795 i++)
2796 {
2797 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2798 thread_safe = (sym != NULL
2799 && sym->in_reg()
2800 && sym->in_real_elf());
2801 if (thread_safe)
2802 break;
2803 }
2804 }
2805 }
2806 this->plt_thread_safe_ = thread_safe;
2807 }
2808
2809 if (pass == 1)
2810 {
2811 this->stub_group_size_ = parameters->options().stub_group_size();
2812 bool no_size_errors = true;
2813 if (this->stub_group_size_ == 1)
2814 this->stub_group_size_ = 0x1c00000;
2815 else if (this->stub_group_size_ == -1)
2816 this->stub_group_size_ = -0x1e00000;
2817 else
2818 no_size_errors = false;
2819 this->group_sections(layout, task, no_size_errors);
2820 }
2821 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2822 {
2823 this->branch_lookup_table_.clear();
2824 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2825 p != this->stub_tables_.end();
2826 ++p)
2827 {
2828 (*p)->clear_stubs(true);
2829 }
2830 this->stub_tables_.clear();
2831 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2832 gold_info(_("%s: stub group size is too large; retrying with %d"),
2833 program_name, this->stub_group_size_);
2834 this->group_sections(layout, task, true);
2835 }
2836
2837 // We need address of stub tables valid for make_stub.
2838 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2839 p != this->stub_tables_.end();
2840 ++p)
2841 {
2842 const Powerpc_relobj<size, big_endian>* object
2843 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2844 Address off = object->get_output_section_offset((*p)->shndx());
2845 gold_assert(off != invalid_address);
2846 Output_section* os = (*p)->output_section();
2847 (*p)->set_address_and_size(os, off);
2848 }
2849
2850 if (pass != 1)
2851 {
2852 // Clear plt call stubs, long branch stubs and branch lookup table.
2853 prev_brlt_size = this->branch_lookup_table_.size();
2854 this->branch_lookup_table_.clear();
2855 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2856 p != this->stub_tables_.end();
2857 ++p)
2858 {
2859 (*p)->clear_stubs(false);
2860 }
2861 }
2862
2863 // Build all the stubs.
2864 this->relax_failed_ = false;
2865 Stub_table<size, big_endian>* ifunc_stub_table
2866 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2867 Stub_table<size, big_endian>* one_stub_table
2868 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2869 for (typename Branches::const_iterator b = this->branch_info_.begin();
2870 b != this->branch_info_.end();
2871 b++)
2872 {
2873 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2874 && !this->relax_failed_)
2875 {
2876 this->relax_failed_ = true;
2877 this->relax_fail_count_++;
2878 if (this->relax_fail_count_ < 3)
2879 return true;
2880 }
2881 }
2882
2883 // Did anything change size?
2884 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2885 bool again = num_huge_branches != prev_brlt_size;
2886 if (size == 64 && num_huge_branches != 0)
2887 this->make_brlt_section(layout);
2888 if (size == 64 && again)
2889 this->brlt_section_->set_current_size(num_huge_branches);
2890
2891 typedef Unordered_set<Output_section*> Output_sections;
2892 Output_sections os_need_update;
2893 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2894 p != this->stub_tables_.end();
2895 ++p)
2896 {
2897 if ((*p)->size_update())
2898 {
2899 again = true;
2900 (*p)->add_eh_frame(layout);
2901 os_need_update.insert((*p)->output_section());
2902 }
2903 }
2904
2905 // Set output section offsets for all input sections in an output
2906 // section that just changed size. Anything past the stubs will
2907 // need updating.
2908 for (typename Output_sections::iterator p = os_need_update.begin();
2909 p != os_need_update.end();
2910 p++)
2911 {
2912 Output_section* os = *p;
2913 Address off = 0;
2914 typedef Output_section::Input_section_list Input_section_list;
2915 for (Input_section_list::const_iterator i = os->input_sections().begin();
2916 i != os->input_sections().end();
2917 ++i)
2918 {
2919 off = align_address(off, i->addralign());
2920 if (i->is_input_section() || i->is_relaxed_input_section())
2921 i->relobj()->set_section_offset(i->shndx(), off);
2922 if (i->is_relaxed_input_section())
2923 {
2924 Stub_table<size, big_endian>* stub_table
2925 = static_cast<Stub_table<size, big_endian>*>(
2926 i->relaxed_input_section());
2927 off += stub_table->set_address_and_size(os, off);
2928 }
2929 else
2930 off += i->data_size();
2931 }
2932 // If .branch_lt is part of this output section, then we have
2933 // just done the offset adjustment.
2934 os->clear_section_offsets_need_adjustment();
2935 }
2936
2937 if (size == 64
2938 && !again
2939 && num_huge_branches != 0
2940 && parameters->options().output_is_position_independent())
2941 {
2942 // Fill in the BRLT relocs.
2943 this->brlt_section_->reset_brlt_sizes();
2944 for (typename Branch_lookup_table::const_iterator p
2945 = this->branch_lookup_table_.begin();
2946 p != this->branch_lookup_table_.end();
2947 ++p)
2948 {
2949 this->brlt_section_->add_reloc(p->first, p->second);
2950 }
2951 this->brlt_section_->finalize_brlt_sizes();
2952 }
2953 return again;
2954 }
2955
2956 template<int size, bool big_endian>
2957 void
2958 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2959 unsigned char* oview,
2960 uint64_t* paddress,
2961 off_t* plen) const
2962 {
2963 uint64_t address = plt->address();
2964 off_t len = plt->data_size();
2965
2966 if (plt == this->glink_)
2967 {
2968 // See Output_data_glink::do_write() for glink contents.
2969 if (len == 0)
2970 {
2971 gold_assert(parameters->doing_static_link());
2972 // Static linking may need stubs, to support ifunc and long
2973 // branches. We need to create an output section for
2974 // .eh_frame early in the link process, to have a place to
2975 // attach stub .eh_frame info. We also need to have
2976 // registered a CIE that matches the stub CIE. Both of
2977 // these requirements are satisfied by creating an FDE and
2978 // CIE for .glink, even though static linking will leave
2979 // .glink zero length.
2980 // ??? Hopefully generating an FDE with a zero address range
2981 // won't confuse anything that consumes .eh_frame info.
2982 }
2983 else if (size == 64)
2984 {
2985 // There is one word before __glink_PLTresolve
2986 address += 8;
2987 len -= 8;
2988 }
2989 else if (parameters->options().output_is_position_independent())
2990 {
2991 // There are two FDEs for a position independent glink.
2992 // The first covers the branch table, the second
2993 // __glink_PLTresolve at the end of glink.
2994 off_t resolve_size = this->glink_->pltresolve_size;
2995 if (oview[9] == elfcpp::DW_CFA_nop)
2996 len -= resolve_size;
2997 else
2998 {
2999 address += len - resolve_size;
3000 len = resolve_size;
3001 }
3002 }
3003 }
3004 else
3005 {
3006 // Must be a stub table.
3007 const Stub_table<size, big_endian>* stub_table
3008 = static_cast<const Stub_table<size, big_endian>*>(plt);
3009 uint64_t stub_address = stub_table->stub_address();
3010 len -= stub_address - address;
3011 address = stub_address;
3012 }
3013
3014 *paddress = address;
3015 *plen = len;
3016 }
3017
3018 // A class to handle the PLT data.
3019
3020 template<int size, bool big_endian>
3021 class Output_data_plt_powerpc : public Output_section_data_build
3022 {
3023 public:
3024 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3025 size, big_endian> Reloc_section;
3026
3027 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3028 Reloc_section* plt_rel,
3029 const char* name)
3030 : Output_section_data_build(size == 32 ? 4 : 8),
3031 rel_(plt_rel),
3032 targ_(targ),
3033 name_(name)
3034 { }
3035
3036 // Add an entry to the PLT.
3037 void
3038 add_entry(Symbol*);
3039
3040 void
3041 add_ifunc_entry(Symbol*);
3042
3043 void
3044 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3045
3046 // Return the .rela.plt section data.
3047 Reloc_section*
3048 rel_plt() const
3049 {
3050 return this->rel_;
3051 }
3052
3053 // Return the number of PLT entries.
3054 unsigned int
3055 entry_count() const
3056 {
3057 if (this->current_data_size() == 0)
3058 return 0;
3059 return ((this->current_data_size() - this->first_plt_entry_offset())
3060 / this->plt_entry_size());
3061 }
3062
3063 protected:
3064 void
3065 do_adjust_output_section(Output_section* os)
3066 {
3067 os->set_entsize(0);
3068 }
3069
3070 // Write to a map file.
3071 void
3072 do_print_to_mapfile(Mapfile* mapfile) const
3073 { mapfile->print_output_data(this, this->name_); }
3074
3075 private:
3076 // Return the offset of the first non-reserved PLT entry.
3077 unsigned int
3078 first_plt_entry_offset() const
3079 {
3080 // IPLT has no reserved entry.
3081 if (this->name_[3] == 'I')
3082 return 0;
3083 return this->targ_->first_plt_entry_offset();
3084 }
3085
3086 // Return the size of each PLT entry.
3087 unsigned int
3088 plt_entry_size() const
3089 {
3090 return this->targ_->plt_entry_size();
3091 }
3092
3093 // Write out the PLT data.
3094 void
3095 do_write(Output_file*);
3096
3097 // The reloc section.
3098 Reloc_section* rel_;
3099 // Allows access to .glink for do_write.
3100 Target_powerpc<size, big_endian>* targ_;
3101 // What to report in map file.
3102 const char *name_;
3103 };
3104
3105 // Add an entry to the PLT.
3106
3107 template<int size, bool big_endian>
3108 void
3109 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3110 {
3111 if (!gsym->has_plt_offset())
3112 {
3113 section_size_type off = this->current_data_size();
3114 if (off == 0)
3115 off += this->first_plt_entry_offset();
3116 gsym->set_plt_offset(off);
3117 gsym->set_needs_dynsym_entry();
3118 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3119 this->rel_->add_global(gsym, dynrel, this, off, 0);
3120 off += this->plt_entry_size();
3121 this->set_current_data_size(off);
3122 }
3123 }
3124
3125 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3126
3127 template<int size, bool big_endian>
3128 void
3129 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3130 {
3131 if (!gsym->has_plt_offset())
3132 {
3133 section_size_type off = this->current_data_size();
3134 gsym->set_plt_offset(off);
3135 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3136 if (size == 64 && this->targ_->abiversion() < 2)
3137 dynrel = elfcpp::R_PPC64_JMP_IREL;
3138 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3139 off += this->plt_entry_size();
3140 this->set_current_data_size(off);
3141 }
3142 }
3143
3144 // Add an entry for a local ifunc symbol to the IPLT.
3145
3146 template<int size, bool big_endian>
3147 void
3148 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3149 Sized_relobj_file<size, big_endian>* relobj,
3150 unsigned int local_sym_index)
3151 {
3152 if (!relobj->local_has_plt_offset(local_sym_index))
3153 {
3154 section_size_type off = this->current_data_size();
3155 relobj->set_local_plt_offset(local_sym_index, off);
3156 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3157 if (size == 64 && this->targ_->abiversion() < 2)
3158 dynrel = elfcpp::R_PPC64_JMP_IREL;
3159 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3160 this, off, 0);
3161 off += this->plt_entry_size();
3162 this->set_current_data_size(off);
3163 }
3164 }
3165
3166 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3167 static const uint32_t add_2_2_11 = 0x7c425a14;
3168 static const uint32_t add_3_3_2 = 0x7c631214;
3169 static const uint32_t add_3_3_13 = 0x7c636a14;
3170 static const uint32_t add_11_0_11 = 0x7d605a14;
3171 static const uint32_t add_11_2_11 = 0x7d625a14;
3172 static const uint32_t add_11_11_2 = 0x7d6b1214;
3173 static const uint32_t addi_0_12 = 0x380c0000;
3174 static const uint32_t addi_2_2 = 0x38420000;
3175 static const uint32_t addi_3_3 = 0x38630000;
3176 static const uint32_t addi_11_11 = 0x396b0000;
3177 static const uint32_t addi_12_12 = 0x398c0000;
3178 static const uint32_t addis_0_2 = 0x3c020000;
3179 static const uint32_t addis_0_13 = 0x3c0d0000;
3180 static const uint32_t addis_3_2 = 0x3c620000;
3181 static const uint32_t addis_3_13 = 0x3c6d0000;
3182 static const uint32_t addis_11_2 = 0x3d620000;
3183 static const uint32_t addis_11_11 = 0x3d6b0000;
3184 static const uint32_t addis_11_30 = 0x3d7e0000;
3185 static const uint32_t addis_12_2 = 0x3d820000;
3186 static const uint32_t addis_12_12 = 0x3d8c0000;
3187 static const uint32_t b = 0x48000000;
3188 static const uint32_t bcl_20_31 = 0x429f0005;
3189 static const uint32_t bctr = 0x4e800420;
3190 static const uint32_t blr = 0x4e800020;
3191 static const uint32_t bnectr_p4 = 0x4ce20420;
3192 static const uint32_t cmpldi_2_0 = 0x28220000;
3193 static const uint32_t cror_15_15_15 = 0x4def7b82;
3194 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3195 static const uint32_t ld_0_1 = 0xe8010000;
3196 static const uint32_t ld_0_12 = 0xe80c0000;
3197 static const uint32_t ld_2_1 = 0xe8410000;
3198 static const uint32_t ld_2_2 = 0xe8420000;
3199 static const uint32_t ld_2_11 = 0xe84b0000;
3200 static const uint32_t ld_11_2 = 0xe9620000;
3201 static const uint32_t ld_11_11 = 0xe96b0000;
3202 static const uint32_t ld_12_2 = 0xe9820000;
3203 static const uint32_t ld_12_11 = 0xe98b0000;
3204 static const uint32_t ld_12_12 = 0xe98c0000;
3205 static const uint32_t lfd_0_1 = 0xc8010000;
3206 static const uint32_t li_0_0 = 0x38000000;
3207 static const uint32_t li_12_0 = 0x39800000;
3208 static const uint32_t lis_0_0 = 0x3c000000;
3209 static const uint32_t lis_11 = 0x3d600000;
3210 static const uint32_t lis_12 = 0x3d800000;
3211 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3212 static const uint32_t lwz_0_12 = 0x800c0000;
3213 static const uint32_t lwz_11_11 = 0x816b0000;
3214 static const uint32_t lwz_11_30 = 0x817e0000;
3215 static const uint32_t lwz_12_12 = 0x818c0000;
3216 static const uint32_t lwzu_0_12 = 0x840c0000;
3217 static const uint32_t mflr_0 = 0x7c0802a6;
3218 static const uint32_t mflr_11 = 0x7d6802a6;
3219 static const uint32_t mflr_12 = 0x7d8802a6;
3220 static const uint32_t mtctr_0 = 0x7c0903a6;
3221 static const uint32_t mtctr_11 = 0x7d6903a6;
3222 static const uint32_t mtctr_12 = 0x7d8903a6;
3223 static const uint32_t mtlr_0 = 0x7c0803a6;
3224 static const uint32_t mtlr_12 = 0x7d8803a6;
3225 static const uint32_t nop = 0x60000000;
3226 static const uint32_t ori_0_0_0 = 0x60000000;
3227 static const uint32_t srdi_0_0_2 = 0x7800f082;
3228 static const uint32_t std_0_1 = 0xf8010000;
3229 static const uint32_t std_0_12 = 0xf80c0000;
3230 static const uint32_t std_2_1 = 0xf8410000;
3231 static const uint32_t stfd_0_1 = 0xd8010000;
3232 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3233 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3234 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3235 static const uint32_t xor_2_12_12 = 0x7d826278;
3236 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3237
3238 // Write out the PLT.
3239
3240 template<int size, bool big_endian>
3241 void
3242 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3243 {
3244 if (size == 32 && this->name_[3] != 'I')
3245 {
3246 const section_size_type offset = this->offset();
3247 const section_size_type oview_size
3248 = convert_to_section_size_type(this->data_size());
3249 unsigned char* const oview = of->get_output_view(offset, oview_size);
3250 unsigned char* pov = oview;
3251 unsigned char* endpov = oview + oview_size;
3252
3253 // The address of the .glink branch table
3254 const Output_data_glink<size, big_endian>* glink
3255 = this->targ_->glink_section();
3256 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3257
3258 while (pov < endpov)
3259 {
3260 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3261 pov += 4;
3262 branch_tab += 4;
3263 }
3264
3265 of->write_output_view(offset, oview_size, oview);
3266 }
3267 }
3268
3269 // Create the PLT section.
3270
3271 template<int size, bool big_endian>
3272 void
3273 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3274 Layout* layout)
3275 {
3276 if (this->plt_ == NULL)
3277 {
3278 if (this->got_ == NULL)
3279 this->got_section(symtab, layout);
3280
3281 if (this->glink_ == NULL)
3282 make_glink_section(layout);
3283
3284 // Ensure that .rela.dyn always appears before .rela.plt This is
3285 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3286 // needs to include .rela.plt in its range.
3287 this->rela_dyn_section(layout);
3288
3289 Reloc_section* plt_rel = new Reloc_section(false);
3290 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3291 elfcpp::SHF_ALLOC, plt_rel,
3292 ORDER_DYNAMIC_PLT_RELOCS, false);
3293 this->plt_
3294 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3295 "** PLT");
3296 layout->add_output_section_data(".plt",
3297 (size == 32
3298 ? elfcpp::SHT_PROGBITS
3299 : elfcpp::SHT_NOBITS),
3300 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3301 this->plt_,
3302 (size == 32
3303 ? ORDER_SMALL_DATA
3304 : ORDER_SMALL_BSS),
3305 false);
3306 }
3307 }
3308
3309 // Create the IPLT section.
3310
3311 template<int size, bool big_endian>
3312 void
3313 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3314 Layout* layout)
3315 {
3316 if (this->iplt_ == NULL)
3317 {
3318 this->make_plt_section(symtab, layout);
3319
3320 Reloc_section* iplt_rel = new Reloc_section(false);
3321 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3322 this->iplt_
3323 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3324 "** IPLT");
3325 this->plt_->output_section()->add_output_section_data(this->iplt_);
3326 }
3327 }
3328
3329 // A section for huge long branch addresses, similar to plt section.
3330
3331 template<int size, bool big_endian>
3332 class Output_data_brlt_powerpc : public Output_section_data_build
3333 {
3334 public:
3335 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3336 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3337 size, big_endian> Reloc_section;
3338
3339 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3340 Reloc_section* brlt_rel)
3341 : Output_section_data_build(size == 32 ? 4 : 8),
3342 rel_(brlt_rel),
3343 targ_(targ)
3344 { }
3345
3346 void
3347 reset_brlt_sizes()
3348 {
3349 this->reset_data_size();
3350 this->rel_->reset_data_size();
3351 }
3352
3353 void
3354 finalize_brlt_sizes()
3355 {
3356 this->finalize_data_size();
3357 this->rel_->finalize_data_size();
3358 }
3359
3360 // Add a reloc for an entry in the BRLT.
3361 void
3362 add_reloc(Address to, unsigned int off)
3363 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3364
3365 // Update section and reloc section size.
3366 void
3367 set_current_size(unsigned int num_branches)
3368 {
3369 this->reset_address_and_file_offset();
3370 this->set_current_data_size(num_branches * 16);
3371 this->finalize_data_size();
3372 Output_section* os = this->output_section();
3373 os->set_section_offsets_need_adjustment();
3374 if (this->rel_ != NULL)
3375 {
3376 unsigned int reloc_size
3377 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3378 this->rel_->reset_address_and_file_offset();
3379 this->rel_->set_current_data_size(num_branches * reloc_size);
3380 this->rel_->finalize_data_size();
3381 Output_section* os = this->rel_->output_section();
3382 os->set_section_offsets_need_adjustment();
3383 }
3384 }
3385
3386 protected:
3387 void
3388 do_adjust_output_section(Output_section* os)
3389 {
3390 os->set_entsize(0);
3391 }
3392
3393 // Write to a map file.
3394 void
3395 do_print_to_mapfile(Mapfile* mapfile) const
3396 { mapfile->print_output_data(this, "** BRLT"); }
3397
3398 private:
3399 // Write out the BRLT data.
3400 void
3401 do_write(Output_file*);
3402
3403 // The reloc section.
3404 Reloc_section* rel_;
3405 Target_powerpc<size, big_endian>* targ_;
3406 };
3407
3408 // Make the branch lookup table section.
3409
3410 template<int size, bool big_endian>
3411 void
3412 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3413 {
3414 if (size == 64 && this->brlt_section_ == NULL)
3415 {
3416 Reloc_section* brlt_rel = NULL;
3417 bool is_pic = parameters->options().output_is_position_independent();
3418 if (is_pic)
3419 {
3420 // When PIC we can't fill in .branch_lt (like .plt it can be
3421 // a bss style section) but must initialise at runtime via
3422 // dynamic relocats.
3423 this->rela_dyn_section(layout);
3424 brlt_rel = new Reloc_section(false);
3425 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3426 }
3427 this->brlt_section_
3428 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3429 if (this->plt_ && is_pic)
3430 this->plt_->output_section()
3431 ->add_output_section_data(this->brlt_section_);
3432 else
3433 layout->add_output_section_data(".branch_lt",
3434 (is_pic ? elfcpp::SHT_NOBITS
3435 : elfcpp::SHT_PROGBITS),
3436 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3437 this->brlt_section_,
3438 (is_pic ? ORDER_SMALL_BSS
3439 : ORDER_SMALL_DATA),
3440 false);
3441 }
3442 }
3443
3444 // Write out .branch_lt when non-PIC.
3445
3446 template<int size, bool big_endian>
3447 void
3448 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3449 {
3450 if (size == 64 && !parameters->options().output_is_position_independent())
3451 {
3452 const section_size_type offset = this->offset();
3453 const section_size_type oview_size
3454 = convert_to_section_size_type(this->data_size());
3455 unsigned char* const oview = of->get_output_view(offset, oview_size);
3456
3457 this->targ_->write_branch_lookup_table(oview);
3458 of->write_output_view(offset, oview_size, oview);
3459 }
3460 }
3461
3462 static inline uint32_t
3463 l(uint32_t a)
3464 {
3465 return a & 0xffff;
3466 }
3467
3468 static inline uint32_t
3469 hi(uint32_t a)
3470 {
3471 return l(a >> 16);
3472 }
3473
3474 static inline uint32_t
3475 ha(uint32_t a)
3476 {
3477 return hi(a + 0x8000);
3478 }
3479
3480 template<int size>
3481 struct Eh_cie
3482 {
3483 static const unsigned char eh_frame_cie[12];
3484 };
3485
3486 template<int size>
3487 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3488 {
3489 1, // CIE version.
3490 'z', 'R', 0, // Augmentation string.
3491 4, // Code alignment.
3492 0x80 - size / 8 , // Data alignment.
3493 65, // RA reg.
3494 1, // Augmentation size.
3495 (elfcpp::DW_EH_PE_pcrel
3496 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3497 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3498 };
3499
3500 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3501 static const unsigned char glink_eh_frame_fde_64v1[] =
3502 {
3503 0, 0, 0, 0, // Replaced with offset to .glink.
3504 0, 0, 0, 0, // Replaced with size of .glink.
3505 0, // Augmentation size.
3506 elfcpp::DW_CFA_advance_loc + 1,
3507 elfcpp::DW_CFA_register, 65, 12,
3508 elfcpp::DW_CFA_advance_loc + 4,
3509 elfcpp::DW_CFA_restore_extended, 65
3510 };
3511
3512 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3513 static const unsigned char glink_eh_frame_fde_64v2[] =
3514 {
3515 0, 0, 0, 0, // Replaced with offset to .glink.
3516 0, 0, 0, 0, // Replaced with size of .glink.
3517 0, // Augmentation size.
3518 elfcpp::DW_CFA_advance_loc + 1,
3519 elfcpp::DW_CFA_register, 65, 0,
3520 elfcpp::DW_CFA_advance_loc + 4,
3521 elfcpp::DW_CFA_restore_extended, 65
3522 };
3523
3524 // Describe __glink_PLTresolve use of LR, 32-bit version.
3525 static const unsigned char glink_eh_frame_fde_32[] =
3526 {
3527 0, 0, 0, 0, // Replaced with offset to .glink.
3528 0, 0, 0, 0, // Replaced with size of .glink.
3529 0, // Augmentation size.
3530 elfcpp::DW_CFA_advance_loc + 2,
3531 elfcpp::DW_CFA_register, 65, 0,
3532 elfcpp::DW_CFA_advance_loc + 4,
3533 elfcpp::DW_CFA_restore_extended, 65
3534 };
3535
3536 static const unsigned char default_fde[] =
3537 {
3538 0, 0, 0, 0, // Replaced with offset to stubs.
3539 0, 0, 0, 0, // Replaced with size of stubs.
3540 0, // Augmentation size.
3541 elfcpp::DW_CFA_nop, // Pad.
3542 elfcpp::DW_CFA_nop,
3543 elfcpp::DW_CFA_nop
3544 };
3545
3546 template<bool big_endian>
3547 static inline void
3548 write_insn(unsigned char* p, uint32_t v)
3549 {
3550 elfcpp::Swap<32, big_endian>::writeval(p, v);
3551 }
3552
3553 // Stub_table holds information about plt and long branch stubs.
3554 // Stubs are built in an area following some input section determined
3555 // by group_sections(). This input section is converted to a relaxed
3556 // input section allowing it to be resized to accommodate the stubs
3557
3558 template<int size, bool big_endian>
3559 class Stub_table : public Output_relaxed_input_section
3560 {
3561 public:
3562 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3563 static const Address invalid_address = static_cast<Address>(0) - 1;
3564
3565 Stub_table(Target_powerpc<size, big_endian>* targ,
3566 Output_section* output_section,
3567 const Output_section::Input_section* owner)
3568 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3569 owner->relobj()
3570 ->section_addralign(owner->shndx())),
3571 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3572 orig_data_size_(owner->current_data_size()),
3573 plt_size_(0), last_plt_size_(0),
3574 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3575 {
3576 this->set_output_section(output_section);
3577
3578 std::vector<Output_relaxed_input_section*> new_relaxed;
3579 new_relaxed.push_back(this);
3580 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3581 }
3582
3583 // Add a plt call stub.
3584 bool
3585 add_plt_call_entry(Address,
3586 const Sized_relobj_file<size, big_endian>*,
3587 const Symbol*,
3588 unsigned int,
3589 Address);
3590
3591 bool
3592 add_plt_call_entry(Address,
3593 const Sized_relobj_file<size, big_endian>*,
3594 unsigned int,
3595 unsigned int,
3596 Address);
3597
3598 // Find a given plt call stub.
3599 Address
3600 find_plt_call_entry(const Symbol*) const;
3601
3602 Address
3603 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3604 unsigned int) const;
3605
3606 Address
3607 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3608 const Symbol*,
3609 unsigned int,
3610 Address) const;
3611
3612 Address
3613 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3614 unsigned int,
3615 unsigned int,
3616 Address) const;
3617
3618 // Add a long branch stub.
3619 bool
3620 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3621 unsigned int, Address, Address);
3622
3623 Address
3624 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3625 Address) const;
3626
3627 bool
3628 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3629 {
3630 unsigned long max_branch_offset = max_branch_delta(r_type);
3631 if (max_branch_offset == 0)
3632 return true;
3633 gold_assert(from != invalid_address);
3634 Address loc = off + this->stub_address();
3635 return loc - from + max_branch_offset < 2 * max_branch_offset;
3636 }
3637
3638 void
3639 clear_stubs(bool all)
3640 {
3641 this->plt_call_stubs_.clear();
3642 this->plt_size_ = 0;
3643 this->long_branch_stubs_.clear();
3644 this->branch_size_ = 0;
3645 if (all)
3646 {
3647 this->last_plt_size_ = 0;
3648 this->last_branch_size_ = 0;
3649 }
3650 }
3651
3652 Address
3653 set_address_and_size(const Output_section* os, Address off)
3654 {
3655 Address start_off = off;
3656 off += this->orig_data_size_;
3657 Address my_size = this->plt_size_ + this->branch_size_;
3658 if (my_size != 0)
3659 off = align_address(off, this->stub_align());
3660 // Include original section size and alignment padding in size
3661 my_size += off - start_off;
3662 this->reset_address_and_file_offset();
3663 this->set_current_data_size(my_size);
3664 this->set_address_and_file_offset(os->address() + start_off,
3665 os->offset() + start_off);
3666 return my_size;
3667 }
3668
3669 Address
3670 stub_address() const
3671 {
3672 return align_address(this->address() + this->orig_data_size_,
3673 this->stub_align());
3674 }
3675
3676 Address
3677 stub_offset() const
3678 {
3679 return align_address(this->offset() + this->orig_data_size_,
3680 this->stub_align());
3681 }
3682
3683 section_size_type
3684 plt_size() const
3685 { return this->plt_size_; }
3686
3687 bool
3688 size_update()
3689 {
3690 Output_section* os = this->output_section();
3691 if (os->addralign() < this->stub_align())
3692 {
3693 os->set_addralign(this->stub_align());
3694 // FIXME: get rid of the insane checkpointing.
3695 // We can't increase alignment of the input section to which
3696 // stubs are attached; The input section may be .init which
3697 // is pasted together with other .init sections to form a
3698 // function. Aligning might insert zero padding resulting in
3699 // sigill. However we do need to increase alignment of the
3700 // output section so that the align_address() on offset in
3701 // set_address_and_size() adds the same padding as the
3702 // align_address() on address in stub_address().
3703 // What's more, we need this alignment for the layout done in
3704 // relaxation_loop_body() so that the output section starts at
3705 // a suitably aligned address.
3706 os->checkpoint_set_addralign(this->stub_align());
3707 }
3708 if (this->last_plt_size_ != this->plt_size_
3709 || this->last_branch_size_ != this->branch_size_)
3710 {
3711 this->last_plt_size_ = this->plt_size_;
3712 this->last_branch_size_ = this->branch_size_;
3713 return true;
3714 }
3715 return false;
3716 }
3717
3718 // Add .eh_frame info for this stub section. Unlike other linker
3719 // generated .eh_frame this is added late in the link, because we
3720 // only want the .eh_frame info if this particular stub section is
3721 // non-empty.
3722 void
3723 add_eh_frame(Layout* layout)
3724 {
3725 if (!this->eh_frame_added_)
3726 {
3727 if (!parameters->options().ld_generated_unwind_info())
3728 return;
3729
3730 // Since we add stub .eh_frame info late, it must be placed
3731 // after all other linker generated .eh_frame info so that
3732 // merge mapping need not be updated for input sections.
3733 // There is no provision to use a different CIE to that used
3734 // by .glink.
3735 if (!this->targ_->has_glink())
3736 return;
3737
3738 layout->add_eh_frame_for_plt(this,
3739 Eh_cie<size>::eh_frame_cie,
3740 sizeof (Eh_cie<size>::eh_frame_cie),
3741 default_fde,
3742 sizeof (default_fde));
3743 this->eh_frame_added_ = true;
3744 }
3745 }
3746
3747 Target_powerpc<size, big_endian>*
3748 targ() const
3749 { return targ_; }
3750
3751 private:
3752 class Plt_stub_ent;
3753 class Plt_stub_ent_hash;
3754 typedef Unordered_map<Plt_stub_ent, unsigned int,
3755 Plt_stub_ent_hash> Plt_stub_entries;
3756
3757 // Alignment of stub section.
3758 unsigned int
3759 stub_align() const
3760 {
3761 if (size == 32)
3762 return 16;
3763 unsigned int min_align = 32;
3764 unsigned int user_align = 1 << parameters->options().plt_align();
3765 return std::max(user_align, min_align);
3766 }
3767
3768 // Return the plt offset for the given call stub.
3769 Address
3770 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3771 {
3772 const Symbol* gsym = p->first.sym_;
3773 if (gsym != NULL)
3774 {
3775 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3776 && gsym->can_use_relative_reloc(false));
3777 return gsym->plt_offset();
3778 }
3779 else
3780 {
3781 *is_iplt = true;
3782 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3783 unsigned int local_sym_index = p->first.locsym_;
3784 return relobj->local_plt_offset(local_sym_index);
3785 }
3786 }
3787
3788 // Size of a given plt call stub.
3789 unsigned int
3790 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3791 {
3792 if (size == 32)
3793 return 16;
3794
3795 bool is_iplt;
3796 Address plt_addr = this->plt_off(p, &is_iplt);
3797 if (is_iplt)
3798 plt_addr += this->targ_->iplt_section()->address();
3799 else
3800 plt_addr += this->targ_->plt_section()->address();
3801 Address got_addr = this->targ_->got_section()->output_section()->address();
3802 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3803 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3804 got_addr += ppcobj->toc_base_offset();
3805 Address off = plt_addr - got_addr;
3806 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3807 if (this->targ_->abiversion() < 2)
3808 {
3809 bool static_chain = parameters->options().plt_static_chain();
3810 bool thread_safe = this->targ_->plt_thread_safe();
3811 bytes += (4
3812 + 4 * static_chain
3813 + 8 * thread_safe
3814 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3815 }
3816 unsigned int align = 1 << parameters->options().plt_align();
3817 if (align > 1)
3818 bytes = (bytes + align - 1) & -align;
3819 return bytes;
3820 }
3821
3822 // Return long branch stub size.
3823 unsigned int
3824 branch_stub_size(Address to)
3825 {
3826 Address loc
3827 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3828 if (to - loc + (1 << 25) < 2 << 25)
3829 return 4;
3830 if (size == 64 || !parameters->options().output_is_position_independent())
3831 return 16;
3832 return 32;
3833 }
3834
3835 // Write out stubs.
3836 void
3837 do_write(Output_file*);
3838
3839 // Plt call stub keys.
3840 class Plt_stub_ent
3841 {
3842 public:
3843 Plt_stub_ent(const Symbol* sym)
3844 : sym_(sym), object_(0), addend_(0), locsym_(0)
3845 { }
3846
3847 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3848 unsigned int locsym_index)
3849 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3850 { }
3851
3852 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3853 const Symbol* sym,
3854 unsigned int r_type,
3855 Address addend)
3856 : sym_(sym), object_(0), addend_(0), locsym_(0)
3857 {
3858 if (size != 32)
3859 this->addend_ = addend;
3860 else if (parameters->options().output_is_position_independent()
3861 && r_type == elfcpp::R_PPC_PLTREL24)
3862 {
3863 this->addend_ = addend;
3864 if (this->addend_ >= 32768)
3865 this->object_ = object;
3866 }
3867 }
3868
3869 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3870 unsigned int locsym_index,
3871 unsigned int r_type,
3872 Address addend)
3873 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3874 {
3875 if (size != 32)
3876 this->addend_ = addend;
3877 else if (parameters->options().output_is_position_independent()
3878 && r_type == elfcpp::R_PPC_PLTREL24)
3879 this->addend_ = addend;
3880 }
3881
3882 bool operator==(const Plt_stub_ent& that) const
3883 {
3884 return (this->sym_ == that.sym_
3885 && this->object_ == that.object_
3886 && this->addend_ == that.addend_
3887 && this->locsym_ == that.locsym_);
3888 }
3889
3890 const Symbol* sym_;
3891 const Sized_relobj_file<size, big_endian>* object_;
3892 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3893 unsigned int locsym_;
3894 };
3895
3896 class Plt_stub_ent_hash
3897 {
3898 public:
3899 size_t operator()(const Plt_stub_ent& ent) const
3900 {
3901 return (reinterpret_cast<uintptr_t>(ent.sym_)
3902 ^ reinterpret_cast<uintptr_t>(ent.object_)
3903 ^ ent.addend_
3904 ^ ent.locsym_);
3905 }
3906 };
3907
3908 // Long branch stub keys.
3909 class Branch_stub_ent
3910 {
3911 public:
3912 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3913 : dest_(to), toc_base_off_(0)
3914 {
3915 if (size == 64)
3916 toc_base_off_ = obj->toc_base_offset();
3917 }
3918
3919 bool operator==(const Branch_stub_ent& that) const
3920 {
3921 return (this->dest_ == that.dest_
3922 && (size == 32
3923 || this->toc_base_off_ == that.toc_base_off_));
3924 }
3925
3926 Address dest_;
3927 unsigned int toc_base_off_;
3928 };
3929
3930 class Branch_stub_ent_hash
3931 {
3932 public:
3933 size_t operator()(const Branch_stub_ent& ent) const
3934 { return ent.dest_ ^ ent.toc_base_off_; }
3935 };
3936
3937 // In a sane world this would be a global.
3938 Target_powerpc<size, big_endian>* targ_;
3939 // Map sym/object/addend to stub offset.
3940 Plt_stub_entries plt_call_stubs_;
3941 // Map destination address to stub offset.
3942 typedef Unordered_map<Branch_stub_ent, unsigned int,
3943 Branch_stub_ent_hash> Branch_stub_entries;
3944 Branch_stub_entries long_branch_stubs_;
3945 // size of input section
3946 section_size_type orig_data_size_;
3947 // size of stubs
3948 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3949 // Whether .eh_frame info has been created for this stub section.
3950 bool eh_frame_added_;
3951 };
3952
3953 // Add a plt call stub, if we do not already have one for this
3954 // sym/object/addend combo.
3955
3956 template<int size, bool big_endian>
3957 bool
3958 Stub_table<size, big_endian>::add_plt_call_entry(
3959 Address from,
3960 const Sized_relobj_file<size, big_endian>* object,
3961 const Symbol* gsym,
3962 unsigned int r_type,
3963 Address addend)
3964 {
3965 Plt_stub_ent ent(object, gsym, r_type, addend);
3966 unsigned int off = this->plt_size_;
3967 std::pair<typename Plt_stub_entries::iterator, bool> p
3968 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3969 if (p.second)
3970 this->plt_size_ = off + this->plt_call_size(p.first);
3971 return this->can_reach_stub(from, off, r_type);
3972 }
3973
3974 template<int size, bool big_endian>
3975 bool
3976 Stub_table<size, big_endian>::add_plt_call_entry(
3977 Address from,
3978 const Sized_relobj_file<size, big_endian>* object,
3979 unsigned int locsym_index,
3980 unsigned int r_type,
3981 Address addend)
3982 {
3983 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3984 unsigned int off = this->plt_size_;
3985 std::pair<typename Plt_stub_entries::iterator, bool> p
3986 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3987 if (p.second)
3988 this->plt_size_ = off + this->plt_call_size(p.first);
3989 return this->can_reach_stub(from, off, r_type);
3990 }
3991
3992 // Find a plt call stub.
3993
3994 template<int size, bool big_endian>
3995 typename Stub_table<size, big_endian>::Address
3996 Stub_table<size, big_endian>::find_plt_call_entry(
3997 const Sized_relobj_file<size, big_endian>* object,
3998 const Symbol* gsym,
3999 unsigned int r_type,
4000 Address addend) const
4001 {
4002 Plt_stub_ent ent(object, gsym, r_type, addend);
4003 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4004 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4005 }
4006
4007 template<int size, bool big_endian>
4008 typename Stub_table<size, big_endian>::Address
4009 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4010 {
4011 Plt_stub_ent ent(gsym);
4012 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4013 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4014 }
4015
4016 template<int size, bool big_endian>
4017 typename Stub_table<size, big_endian>::Address
4018 Stub_table<size, big_endian>::find_plt_call_entry(
4019 const Sized_relobj_file<size, big_endian>* object,
4020 unsigned int locsym_index,
4021 unsigned int r_type,
4022 Address addend) const
4023 {
4024 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4025 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4026 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4027 }
4028
4029 template<int size, bool big_endian>
4030 typename Stub_table<size, big_endian>::Address
4031 Stub_table<size, big_endian>::find_plt_call_entry(
4032 const Sized_relobj_file<size, big_endian>* object,
4033 unsigned int locsym_index) const
4034 {
4035 Plt_stub_ent ent(object, locsym_index);
4036 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4037 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4038 }
4039
4040 // Add a long branch stub if we don't already have one to given
4041 // destination.
4042
4043 template<int size, bool big_endian>
4044 bool
4045 Stub_table<size, big_endian>::add_long_branch_entry(
4046 const Powerpc_relobj<size, big_endian>* object,
4047 unsigned int r_type,
4048 Address from,
4049 Address to)
4050 {
4051 Branch_stub_ent ent(object, to);
4052 Address off = this->branch_size_;
4053 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4054 {
4055 unsigned int stub_size = this->branch_stub_size(to);
4056 this->branch_size_ = off + stub_size;
4057 if (size == 64 && stub_size != 4)
4058 this->targ_->add_branch_lookup_table(to);
4059 }
4060 return this->can_reach_stub(from, off, r_type);
4061 }
4062
4063 // Find long branch stub.
4064
4065 template<int size, bool big_endian>
4066 typename Stub_table<size, big_endian>::Address
4067 Stub_table<size, big_endian>::find_long_branch_entry(
4068 const Powerpc_relobj<size, big_endian>* object,
4069 Address to) const
4070 {
4071 Branch_stub_ent ent(object, to);
4072 typename Branch_stub_entries::const_iterator p
4073 = this->long_branch_stubs_.find(ent);
4074 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4075 }
4076
4077 // A class to handle .glink.
4078
4079 template<int size, bool big_endian>
4080 class Output_data_glink : public Output_section_data
4081 {
4082 public:
4083 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4084 static const Address invalid_address = static_cast<Address>(0) - 1;
4085 static const int pltresolve_size = 16*4;
4086
4087 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4088 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4089 end_branch_table_(), ge_size_(0)
4090 { }
4091
4092 void
4093 add_eh_frame(Layout* layout);
4094
4095 void
4096 add_global_entry(const Symbol*);
4097
4098 Address
4099 find_global_entry(const Symbol*) const;
4100
4101 Address
4102 global_entry_address() const
4103 {
4104 gold_assert(this->is_data_size_valid());
4105 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4106 return this->address() + global_entry_off;
4107 }
4108
4109 protected:
4110 // Write to a map file.
4111 void
4112 do_print_to_mapfile(Mapfile* mapfile) const
4113 { mapfile->print_output_data(this, _("** glink")); }
4114
4115 private:
4116 void
4117 set_final_data_size();
4118
4119 // Write out .glink
4120 void
4121 do_write(Output_file*);
4122
4123 // Allows access to .got and .plt for do_write.
4124 Target_powerpc<size, big_endian>* targ_;
4125
4126 // Map sym to stub offset.
4127 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4128 Global_entry_stub_entries global_entry_stubs_;
4129
4130 unsigned int end_branch_table_, ge_size_;
4131 };
4132
4133 template<int size, bool big_endian>
4134 void
4135 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4136 {
4137 if (!parameters->options().ld_generated_unwind_info())
4138 return;
4139
4140 if (size == 64)
4141 {
4142 if (this->targ_->abiversion() < 2)
4143 layout->add_eh_frame_for_plt(this,
4144 Eh_cie<64>::eh_frame_cie,
4145 sizeof (Eh_cie<64>::eh_frame_cie),
4146 glink_eh_frame_fde_64v1,
4147 sizeof (glink_eh_frame_fde_64v1));
4148 else
4149 layout->add_eh_frame_for_plt(this,
4150 Eh_cie<64>::eh_frame_cie,
4151 sizeof (Eh_cie<64>::eh_frame_cie),
4152 glink_eh_frame_fde_64v2,
4153 sizeof (glink_eh_frame_fde_64v2));
4154 }
4155 else
4156 {
4157 // 32-bit .glink can use the default since the CIE return
4158 // address reg, LR, is valid.
4159 layout->add_eh_frame_for_plt(this,
4160 Eh_cie<32>::eh_frame_cie,
4161 sizeof (Eh_cie<32>::eh_frame_cie),
4162 default_fde,
4163 sizeof (default_fde));
4164 // Except where LR is used in a PIC __glink_PLTresolve.
4165 if (parameters->options().output_is_position_independent())
4166 layout->add_eh_frame_for_plt(this,
4167 Eh_cie<32>::eh_frame_cie,
4168 sizeof (Eh_cie<32>::eh_frame_cie),
4169 glink_eh_frame_fde_32,
4170 sizeof (glink_eh_frame_fde_32));
4171 }
4172 }
4173
4174 template<int size, bool big_endian>
4175 void
4176 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4177 {
4178 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4179 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4180 if (p.second)
4181 this->ge_size_ += 16;
4182 }
4183
4184 template<int size, bool big_endian>
4185 typename Output_data_glink<size, big_endian>::Address
4186 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4187 {
4188 typename Global_entry_stub_entries::const_iterator p
4189 = this->global_entry_stubs_.find(gsym);
4190 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4191 }
4192
4193 template<int size, bool big_endian>
4194 void
4195 Output_data_glink<size, big_endian>::set_final_data_size()
4196 {
4197 unsigned int count = this->targ_->plt_entry_count();
4198 section_size_type total = 0;
4199
4200 if (count != 0)
4201 {
4202 if (size == 32)
4203 {
4204 // space for branch table
4205 total += 4 * (count - 1);
4206
4207 total += -total & 15;
4208 total += this->pltresolve_size;
4209 }
4210 else
4211 {
4212 total += this->pltresolve_size;
4213
4214 // space for branch table
4215 total += 4 * count;
4216 if (this->targ_->abiversion() < 2)
4217 {
4218 total += 4 * count;
4219 if (count > 0x8000)
4220 total += 4 * (count - 0x8000);
4221 }
4222 }
4223 }
4224 this->end_branch_table_ = total;
4225 total = (total + 15) & -16;
4226 total += this->ge_size_;
4227
4228 this->set_data_size(total);
4229 }
4230
4231 // Write out plt and long branch stub code.
4232
4233 template<int size, bool big_endian>
4234 void
4235 Stub_table<size, big_endian>::do_write(Output_file* of)
4236 {
4237 if (this->plt_call_stubs_.empty()
4238 && this->long_branch_stubs_.empty())
4239 return;
4240
4241 const section_size_type start_off = this->offset();
4242 const section_size_type off = this->stub_offset();
4243 const section_size_type oview_size =
4244 convert_to_section_size_type(this->data_size() - (off - start_off));
4245 unsigned char* const oview = of->get_output_view(off, oview_size);
4246 unsigned char* p;
4247
4248 if (size == 64)
4249 {
4250 const Output_data_got_powerpc<size, big_endian>* got
4251 = this->targ_->got_section();
4252 Address got_os_addr = got->output_section()->address();
4253
4254 if (!this->plt_call_stubs_.empty())
4255 {
4256 // The base address of the .plt section.
4257 Address plt_base = this->targ_->plt_section()->address();
4258 Address iplt_base = invalid_address;
4259
4260 // Write out plt call stubs.
4261 typename Plt_stub_entries::const_iterator cs;
4262 for (cs = this->plt_call_stubs_.begin();
4263 cs != this->plt_call_stubs_.end();
4264 ++cs)
4265 {
4266 bool is_iplt;
4267 Address pltoff = this->plt_off(cs, &is_iplt);
4268 Address plt_addr = pltoff;
4269 if (is_iplt)
4270 {
4271 if (iplt_base == invalid_address)
4272 iplt_base = this->targ_->iplt_section()->address();
4273 plt_addr += iplt_base;
4274 }
4275 else
4276 plt_addr += plt_base;
4277 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4278 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4279 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4280 Address off = plt_addr - got_addr;
4281
4282 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4283 gold_error(_("%s: linkage table error against `%s'"),
4284 cs->first.object_->name().c_str(),
4285 cs->first.sym_->demangled_name().c_str());
4286
4287 bool plt_load_toc = this->targ_->abiversion() < 2;
4288 bool static_chain
4289 = plt_load_toc && parameters->options().plt_static_chain();
4290 bool thread_safe
4291 = plt_load_toc && this->targ_->plt_thread_safe();
4292 bool use_fake_dep = false;
4293 Address cmp_branch_off = 0;
4294 if (thread_safe)
4295 {
4296 unsigned int pltindex
4297 = ((pltoff - this->targ_->first_plt_entry_offset())
4298 / this->targ_->plt_entry_size());
4299 Address glinkoff
4300 = (this->targ_->glink_section()->pltresolve_size
4301 + pltindex * 8);
4302 if (pltindex > 32768)
4303 glinkoff += (pltindex - 32768) * 4;
4304 Address to
4305 = this->targ_->glink_section()->address() + glinkoff;
4306 Address from
4307 = (this->stub_address() + cs->second + 24
4308 + 4 * (ha(off) != 0)
4309 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4310 + 4 * static_chain);
4311 cmp_branch_off = to - from;
4312 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4313 }
4314
4315 p = oview + cs->second;
4316 if (ha(off) != 0)
4317 {
4318 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4319 p += 4;
4320 if (plt_load_toc)
4321 {
4322 write_insn<big_endian>(p, addis_11_2 + ha(off));
4323 p += 4;
4324 write_insn<big_endian>(p, ld_12_11 + l(off));
4325 p += 4;
4326 }
4327 else
4328 {
4329 write_insn<big_endian>(p, addis_12_2 + ha(off));
4330 p += 4;
4331 write_insn<big_endian>(p, ld_12_12 + l(off));
4332 p += 4;
4333 }
4334 if (plt_load_toc
4335 && ha(off + 8 + 8 * static_chain) != ha(off))
4336 {
4337 write_insn<big_endian>(p, addi_11_11 + l(off));
4338 p += 4;
4339 off = 0;
4340 }
4341 write_insn<big_endian>(p, mtctr_12);
4342 p += 4;
4343 if (plt_load_toc)
4344 {
4345 if (use_fake_dep)
4346 {
4347 write_insn<big_endian>(p, xor_2_12_12);
4348 p += 4;
4349 write_insn<big_endian>(p, add_11_11_2);
4350 p += 4;
4351 }
4352 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4353 p += 4;
4354 if (static_chain)
4355 {
4356 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4357 p += 4;
4358 }
4359 }
4360 }
4361 else
4362 {
4363 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4364 p += 4;
4365 write_insn<big_endian>(p, ld_12_2 + l(off));
4366 p += 4;
4367 if (plt_load_toc
4368 && ha(off + 8 + 8 * static_chain) != ha(off))
4369 {
4370 write_insn<big_endian>(p, addi_2_2 + l(off));
4371 p += 4;
4372 off = 0;
4373 }
4374 write_insn<big_endian>(p, mtctr_12);
4375 p += 4;
4376 if (plt_load_toc)
4377 {
4378 if (use_fake_dep)
4379 {
4380 write_insn<big_endian>(p, xor_11_12_12);
4381 p += 4;
4382 write_insn<big_endian>(p, add_2_2_11);
4383 p += 4;
4384 }
4385 if (static_chain)
4386 {
4387 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4388 p += 4;
4389 }
4390 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4391 p += 4;
4392 }
4393 }
4394 if (thread_safe && !use_fake_dep)
4395 {
4396 write_insn<big_endian>(p, cmpldi_2_0);
4397 p += 4;
4398 write_insn<big_endian>(p, bnectr_p4);
4399 p += 4;
4400 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4401 }
4402 else
4403 write_insn<big_endian>(p, bctr);
4404 }
4405 }
4406
4407 // Write out long branch stubs.
4408 typename Branch_stub_entries::const_iterator bs;
4409 for (bs = this->long_branch_stubs_.begin();
4410 bs != this->long_branch_stubs_.end();
4411 ++bs)
4412 {
4413 p = oview + this->plt_size_ + bs->second;
4414 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4415 Address delta = bs->first.dest_ - loc;
4416 if (delta + (1 << 25) < 2 << 25)
4417 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4418 else
4419 {
4420 Address brlt_addr
4421 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4422 gold_assert(brlt_addr != invalid_address);
4423 brlt_addr += this->targ_->brlt_section()->address();
4424 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4425 Address brltoff = brlt_addr - got_addr;
4426 if (ha(brltoff) == 0)
4427 {
4428 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4429 }
4430 else
4431 {
4432 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4433 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4434 }
4435 write_insn<big_endian>(p, mtctr_12), p += 4;
4436 write_insn<big_endian>(p, bctr);
4437 }
4438 }
4439 }
4440 else
4441 {
4442 if (!this->plt_call_stubs_.empty())
4443 {
4444 // The base address of the .plt section.
4445 Address plt_base = this->targ_->plt_section()->address();
4446 Address iplt_base = invalid_address;
4447 // The address of _GLOBAL_OFFSET_TABLE_.
4448 Address g_o_t = invalid_address;
4449
4450 // Write out plt call stubs.
4451 typename Plt_stub_entries::const_iterator cs;
4452 for (cs = this->plt_call_stubs_.begin();
4453 cs != this->plt_call_stubs_.end();
4454 ++cs)
4455 {
4456 bool is_iplt;
4457 Address plt_addr = this->plt_off(cs, &is_iplt);
4458 if (is_iplt)
4459 {
4460 if (iplt_base == invalid_address)
4461 iplt_base = this->targ_->iplt_section()->address();
4462 plt_addr += iplt_base;
4463 }
4464 else
4465 plt_addr += plt_base;
4466
4467 p = oview + cs->second;
4468 if (parameters->options().output_is_position_independent())
4469 {
4470 Address got_addr;
4471 const Powerpc_relobj<size, big_endian>* ppcobj
4472 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4473 (cs->first.object_));
4474 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4475 {
4476 unsigned int got2 = ppcobj->got2_shndx();
4477 got_addr = ppcobj->get_output_section_offset(got2);
4478 gold_assert(got_addr != invalid_address);
4479 got_addr += (ppcobj->output_section(got2)->address()
4480 + cs->first.addend_);
4481 }
4482 else
4483 {
4484 if (g_o_t == invalid_address)
4485 {
4486 const Output_data_got_powerpc<size, big_endian>* got
4487 = this->targ_->got_section();
4488 g_o_t = got->address() + got->g_o_t();
4489 }
4490 got_addr = g_o_t;
4491 }
4492
4493 Address off = plt_addr - got_addr;
4494 if (ha(off) == 0)
4495 {
4496 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4497 write_insn<big_endian>(p + 4, mtctr_11);
4498 write_insn<big_endian>(p + 8, bctr);
4499 }
4500 else
4501 {
4502 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4503 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4504 write_insn<big_endian>(p + 8, mtctr_11);
4505 write_insn<big_endian>(p + 12, bctr);
4506 }
4507 }
4508 else
4509 {
4510 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4511 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4512 write_insn<big_endian>(p + 8, mtctr_11);
4513 write_insn<big_endian>(p + 12, bctr);
4514 }
4515 }
4516 }
4517
4518 // Write out long branch stubs.
4519 typename Branch_stub_entries::const_iterator bs;
4520 for (bs = this->long_branch_stubs_.begin();
4521 bs != this->long_branch_stubs_.end();
4522 ++bs)
4523 {
4524 p = oview + this->plt_size_ + bs->second;
4525 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4526 Address delta = bs->first.dest_ - loc;
4527 if (delta + (1 << 25) < 2 << 25)
4528 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4529 else if (!parameters->options().output_is_position_independent())
4530 {
4531 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4532 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4533 write_insn<big_endian>(p + 8, mtctr_12);
4534 write_insn<big_endian>(p + 12, bctr);
4535 }
4536 else
4537 {
4538 delta -= 8;
4539 write_insn<big_endian>(p + 0, mflr_0);
4540 write_insn<big_endian>(p + 4, bcl_20_31);
4541 write_insn<big_endian>(p + 8, mflr_12);
4542 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4543 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4544 write_insn<big_endian>(p + 20, mtlr_0);
4545 write_insn<big_endian>(p + 24, mtctr_12);
4546 write_insn<big_endian>(p + 28, bctr);
4547 }
4548 }
4549 }
4550 }
4551
4552 // Write out .glink.
4553
4554 template<int size, bool big_endian>
4555 void
4556 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4557 {
4558 const section_size_type off = this->offset();
4559 const section_size_type oview_size =
4560 convert_to_section_size_type(this->data_size());
4561 unsigned char* const oview = of->get_output_view(off, oview_size);
4562 unsigned char* p;
4563
4564 // The base address of the .plt section.
4565 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4566 Address plt_base = this->targ_->plt_section()->address();
4567
4568 if (size == 64)
4569 {
4570 if (this->end_branch_table_ != 0)
4571 {
4572 // Write pltresolve stub.
4573 p = oview;
4574 Address after_bcl = this->address() + 16;
4575 Address pltoff = plt_base - after_bcl;
4576
4577 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4578
4579 if (this->targ_->abiversion() < 2)
4580 {
4581 write_insn<big_endian>(p, mflr_12), p += 4;
4582 write_insn<big_endian>(p, bcl_20_31), p += 4;
4583 write_insn<big_endian>(p, mflr_11), p += 4;
4584 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4585 write_insn<big_endian>(p, mtlr_12), p += 4;
4586 write_insn<big_endian>(p, add_11_2_11), p += 4;
4587 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4588 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4589 write_insn<big_endian>(p, mtctr_12), p += 4;
4590 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4591 }
4592 else
4593 {
4594 write_insn<big_endian>(p, mflr_0), p += 4;
4595 write_insn<big_endian>(p, bcl_20_31), p += 4;
4596 write_insn<big_endian>(p, mflr_11), p += 4;
4597 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4598 write_insn<big_endian>(p, mtlr_0), p += 4;
4599 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4600 write_insn<big_endian>(p, add_11_2_11), p += 4;
4601 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4602 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4603 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4604 write_insn<big_endian>(p, mtctr_12), p += 4;
4605 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4606 }
4607 write_insn<big_endian>(p, bctr), p += 4;
4608 while (p < oview + this->pltresolve_size)
4609 write_insn<big_endian>(p, nop), p += 4;
4610
4611 // Write lazy link call stubs.
4612 uint32_t indx = 0;
4613 while (p < oview + this->end_branch_table_)
4614 {
4615 if (this->targ_->abiversion() < 2)
4616 {
4617 if (indx < 0x8000)
4618 {
4619 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4620 }
4621 else
4622 {
4623 write_insn<big_endian>(p, lis_0_0 + hi(indx)), p += 4;
4624 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4625 }
4626 }
4627 uint32_t branch_off = 8 - (p - oview);
4628 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4629 indx++;
4630 }
4631 }
4632
4633 Address plt_base = this->targ_->plt_section()->address();
4634 Address iplt_base = invalid_address;
4635 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4636 Address global_entry_base = this->address() + global_entry_off;
4637 typename Global_entry_stub_entries::const_iterator ge;
4638 for (ge = this->global_entry_stubs_.begin();
4639 ge != this->global_entry_stubs_.end();
4640 ++ge)
4641 {
4642 p = oview + global_entry_off + ge->second;
4643 Address plt_addr = ge->first->plt_offset();
4644 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4645 && ge->first->can_use_relative_reloc(false))
4646 {
4647 if (iplt_base == invalid_address)
4648 iplt_base = this->targ_->iplt_section()->address();
4649 plt_addr += iplt_base;
4650 }
4651 else
4652 plt_addr += plt_base;
4653 Address my_addr = global_entry_base + ge->second;
4654 Address off = plt_addr - my_addr;
4655
4656 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4657 gold_error(_("%s: linkage table error against `%s'"),
4658 ge->first->object()->name().c_str(),
4659 ge->first->demangled_name().c_str());
4660
4661 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4662 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4663 write_insn<big_endian>(p, mtctr_12), p += 4;
4664 write_insn<big_endian>(p, bctr);
4665 }
4666 }
4667 else
4668 {
4669 const Output_data_got_powerpc<size, big_endian>* got
4670 = this->targ_->got_section();
4671 // The address of _GLOBAL_OFFSET_TABLE_.
4672 Address g_o_t = got->address() + got->g_o_t();
4673
4674 // Write out pltresolve branch table.
4675 p = oview;
4676 unsigned int the_end = oview_size - this->pltresolve_size;
4677 unsigned char* end_p = oview + the_end;
4678 while (p < end_p - 8 * 4)
4679 write_insn<big_endian>(p, b + end_p - p), p += 4;
4680 while (p < end_p)
4681 write_insn<big_endian>(p, nop), p += 4;
4682
4683 // Write out pltresolve call stub.
4684 if (parameters->options().output_is_position_independent())
4685 {
4686 Address res0_off = 0;
4687 Address after_bcl_off = the_end + 12;
4688 Address bcl_res0 = after_bcl_off - res0_off;
4689
4690 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4691 write_insn<big_endian>(p + 4, mflr_0);
4692 write_insn<big_endian>(p + 8, bcl_20_31);
4693 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4694 write_insn<big_endian>(p + 16, mflr_12);
4695 write_insn<big_endian>(p + 20, mtlr_0);
4696 write_insn<big_endian>(p + 24, sub_11_11_12);
4697
4698 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4699
4700 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4701 if (ha(got_bcl) == ha(got_bcl + 4))
4702 {
4703 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4704 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4705 }
4706 else
4707 {
4708 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4709 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4710 }
4711 write_insn<big_endian>(p + 40, mtctr_0);
4712 write_insn<big_endian>(p + 44, add_0_11_11);
4713 write_insn<big_endian>(p + 48, add_11_0_11);
4714 write_insn<big_endian>(p + 52, bctr);
4715 write_insn<big_endian>(p + 56, nop);
4716 write_insn<big_endian>(p + 60, nop);
4717 }
4718 else
4719 {
4720 Address res0 = this->address();
4721
4722 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4723 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4724 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4725 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4726 else
4727 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4728 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4729 write_insn<big_endian>(p + 16, mtctr_0);
4730 write_insn<big_endian>(p + 20, add_0_11_11);
4731 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4732 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4733 else
4734 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4735 write_insn<big_endian>(p + 28, add_11_0_11);
4736 write_insn<big_endian>(p + 32, bctr);
4737 write_insn<big_endian>(p + 36, nop);
4738 write_insn<big_endian>(p + 40, nop);
4739 write_insn<big_endian>(p + 44, nop);
4740 write_insn<big_endian>(p + 48, nop);
4741 write_insn<big_endian>(p + 52, nop);
4742 write_insn<big_endian>(p + 56, nop);
4743 write_insn<big_endian>(p + 60, nop);
4744 }
4745 p += 64;
4746 }
4747
4748 of->write_output_view(off, oview_size, oview);
4749 }
4750
4751
4752 // A class to handle linker generated save/restore functions.
4753
4754 template<int size, bool big_endian>
4755 class Output_data_save_res : public Output_section_data_build
4756 {
4757 public:
4758 Output_data_save_res(Symbol_table* symtab);
4759
4760 protected:
4761 // Write to a map file.
4762 void
4763 do_print_to_mapfile(Mapfile* mapfile) const
4764 { mapfile->print_output_data(this, _("** save/restore")); }
4765
4766 void
4767 do_write(Output_file*);
4768
4769 private:
4770 // The maximum size of save/restore contents.
4771 static const unsigned int savres_max = 218*4;
4772
4773 void
4774 savres_define(Symbol_table* symtab,
4775 const char *name,
4776 unsigned int lo, unsigned int hi,
4777 unsigned char* write_ent(unsigned char*, int),
4778 unsigned char* write_tail(unsigned char*, int));
4779
4780 unsigned char *contents_;
4781 };
4782
4783 template<bool big_endian>
4784 static unsigned char*
4785 savegpr0(unsigned char* p, int r)
4786 {
4787 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4788 write_insn<big_endian>(p, insn);
4789 return p + 4;
4790 }
4791
4792 template<bool big_endian>
4793 static unsigned char*
4794 savegpr0_tail(unsigned char* p, int r)
4795 {
4796 p = savegpr0<big_endian>(p, r);
4797 uint32_t insn = std_0_1 + 16;
4798 write_insn<big_endian>(p, insn);
4799 p = p + 4;
4800 write_insn<big_endian>(p, blr);
4801 return p + 4;
4802 }
4803
4804 template<bool big_endian>
4805 static unsigned char*
4806 restgpr0(unsigned char* p, int r)
4807 {
4808 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4809 write_insn<big_endian>(p, insn);
4810 return p + 4;
4811 }
4812
4813 template<bool big_endian>
4814 static unsigned char*
4815 restgpr0_tail(unsigned char* p, int r)
4816 {
4817 uint32_t insn = ld_0_1 + 16;
4818 write_insn<big_endian>(p, insn);
4819 p = p + 4;
4820 p = restgpr0<big_endian>(p, r);
4821 write_insn<big_endian>(p, mtlr_0);
4822 p = p + 4;
4823 if (r == 29)
4824 {
4825 p = restgpr0<big_endian>(p, 30);
4826 p = restgpr0<big_endian>(p, 31);
4827 }
4828 write_insn<big_endian>(p, blr);
4829 return p + 4;
4830 }
4831
4832 template<bool big_endian>
4833 static unsigned char*
4834 savegpr1(unsigned char* p, int r)
4835 {
4836 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4837 write_insn<big_endian>(p, insn);
4838 return p + 4;
4839 }
4840
4841 template<bool big_endian>
4842 static unsigned char*
4843 savegpr1_tail(unsigned char* p, int r)
4844 {
4845 p = savegpr1<big_endian>(p, r);
4846 write_insn<big_endian>(p, blr);
4847 return p + 4;
4848 }
4849
4850 template<bool big_endian>
4851 static unsigned char*
4852 restgpr1(unsigned char* p, int r)
4853 {
4854 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4855 write_insn<big_endian>(p, insn);
4856 return p + 4;
4857 }
4858
4859 template<bool big_endian>
4860 static unsigned char*
4861 restgpr1_tail(unsigned char* p, int r)
4862 {
4863 p = restgpr1<big_endian>(p, r);
4864 write_insn<big_endian>(p, blr);
4865 return p + 4;
4866 }
4867
4868 template<bool big_endian>
4869 static unsigned char*
4870 savefpr(unsigned char* p, int r)
4871 {
4872 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4873 write_insn<big_endian>(p, insn);
4874 return p + 4;
4875 }
4876
4877 template<bool big_endian>
4878 static unsigned char*
4879 savefpr0_tail(unsigned char* p, int r)
4880 {
4881 p = savefpr<big_endian>(p, r);
4882 write_insn<big_endian>(p, std_0_1 + 16);
4883 p = p + 4;
4884 write_insn<big_endian>(p, blr);
4885 return p + 4;
4886 }
4887
4888 template<bool big_endian>
4889 static unsigned char*
4890 restfpr(unsigned char* p, int r)
4891 {
4892 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4893 write_insn<big_endian>(p, insn);
4894 return p + 4;
4895 }
4896
4897 template<bool big_endian>
4898 static unsigned char*
4899 restfpr0_tail(unsigned char* p, int r)
4900 {
4901 write_insn<big_endian>(p, ld_0_1 + 16);
4902 p = p + 4;
4903 p = restfpr<big_endian>(p, r);
4904 write_insn<big_endian>(p, mtlr_0);
4905 p = p + 4;
4906 if (r == 29)
4907 {
4908 p = restfpr<big_endian>(p, 30);
4909 p = restfpr<big_endian>(p, 31);
4910 }
4911 write_insn<big_endian>(p, blr);
4912 return p + 4;
4913 }
4914
4915 template<bool big_endian>
4916 static unsigned char*
4917 savefpr1_tail(unsigned char* p, int r)
4918 {
4919 p = savefpr<big_endian>(p, r);
4920 write_insn<big_endian>(p, blr);
4921 return p + 4;
4922 }
4923
4924 template<bool big_endian>
4925 static unsigned char*
4926 restfpr1_tail(unsigned char* p, int r)
4927 {
4928 p = restfpr<big_endian>(p, r);
4929 write_insn<big_endian>(p, blr);
4930 return p + 4;
4931 }
4932
4933 template<bool big_endian>
4934 static unsigned char*
4935 savevr(unsigned char* p, int r)
4936 {
4937 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4938 write_insn<big_endian>(p, insn);
4939 p = p + 4;
4940 insn = stvx_0_12_0 + (r << 21);
4941 write_insn<big_endian>(p, insn);
4942 return p + 4;
4943 }
4944
4945 template<bool big_endian>
4946 static unsigned char*
4947 savevr_tail(unsigned char* p, int r)
4948 {
4949 p = savevr<big_endian>(p, r);
4950 write_insn<big_endian>(p, blr);
4951 return p + 4;
4952 }
4953
4954 template<bool big_endian>
4955 static unsigned char*
4956 restvr(unsigned char* p, int r)
4957 {
4958 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4959 write_insn<big_endian>(p, insn);
4960 p = p + 4;
4961 insn = lvx_0_12_0 + (r << 21);
4962 write_insn<big_endian>(p, insn);
4963 return p + 4;
4964 }
4965
4966 template<bool big_endian>
4967 static unsigned char*
4968 restvr_tail(unsigned char* p, int r)
4969 {
4970 p = restvr<big_endian>(p, r);
4971 write_insn<big_endian>(p, blr);
4972 return p + 4;
4973 }
4974
4975
4976 template<int size, bool big_endian>
4977 Output_data_save_res<size, big_endian>::Output_data_save_res(
4978 Symbol_table* symtab)
4979 : Output_section_data_build(4),
4980 contents_(NULL)
4981 {
4982 this->savres_define(symtab,
4983 "_savegpr0_", 14, 31,
4984 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4985 this->savres_define(symtab,
4986 "_restgpr0_", 14, 29,
4987 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4988 this->savres_define(symtab,
4989 "_restgpr0_", 30, 31,
4990 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4991 this->savres_define(symtab,
4992 "_savegpr1_", 14, 31,
4993 savegpr1<big_endian>, savegpr1_tail<big_endian>);
4994 this->savres_define(symtab,
4995 "_restgpr1_", 14, 31,
4996 restgpr1<big_endian>, restgpr1_tail<big_endian>);
4997 this->savres_define(symtab,
4998 "_savefpr_", 14, 31,
4999 savefpr<big_endian>, savefpr0_tail<big_endian>);
5000 this->savres_define(symtab,
5001 "_restfpr_", 14, 29,
5002 restfpr<big_endian>, restfpr0_tail<big_endian>);
5003 this->savres_define(symtab,
5004 "_restfpr_", 30, 31,
5005 restfpr<big_endian>, restfpr0_tail<big_endian>);
5006 this->savres_define(symtab,
5007 "._savef", 14, 31,
5008 savefpr<big_endian>, savefpr1_tail<big_endian>);
5009 this->savres_define(symtab,
5010 "._restf", 14, 31,
5011 restfpr<big_endian>, restfpr1_tail<big_endian>);
5012 this->savres_define(symtab,
5013 "_savevr_", 20, 31,
5014 savevr<big_endian>, savevr_tail<big_endian>);
5015 this->savres_define(symtab,
5016 "_restvr_", 20, 31,
5017 restvr<big_endian>, restvr_tail<big_endian>);
5018 }
5019
5020 template<int size, bool big_endian>
5021 void
5022 Output_data_save_res<size, big_endian>::savres_define(
5023 Symbol_table* symtab,
5024 const char *name,
5025 unsigned int lo, unsigned int hi,
5026 unsigned char* write_ent(unsigned char*, int),
5027 unsigned char* write_tail(unsigned char*, int))
5028 {
5029 size_t len = strlen(name);
5030 bool writing = false;
5031 char sym[16];
5032
5033 memcpy(sym, name, len);
5034 sym[len + 2] = 0;
5035
5036 for (unsigned int i = lo; i <= hi; i++)
5037 {
5038 sym[len + 0] = i / 10 + '0';
5039 sym[len + 1] = i % 10 + '0';
5040 Symbol* gsym = symtab->lookup(sym);
5041 bool refd = gsym != NULL && gsym->is_undefined();
5042 writing = writing || refd;
5043 if (writing)
5044 {
5045 if (this->contents_ == NULL)
5046 this->contents_ = new unsigned char[this->savres_max];
5047
5048 section_size_type value = this->current_data_size();
5049 unsigned char* p = this->contents_ + value;
5050 if (i != hi)
5051 p = write_ent(p, i);
5052 else
5053 p = write_tail(p, i);
5054 section_size_type cur_size = p - this->contents_;
5055 this->set_current_data_size(cur_size);
5056 if (refd)
5057 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5058 this, value, cur_size - value,
5059 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5060 elfcpp::STV_HIDDEN, 0, false, false);
5061 }
5062 }
5063 }
5064
5065 // Write out save/restore.
5066
5067 template<int size, bool big_endian>
5068 void
5069 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5070 {
5071 const section_size_type off = this->offset();
5072 const section_size_type oview_size =
5073 convert_to_section_size_type(this->data_size());
5074 unsigned char* const oview = of->get_output_view(off, oview_size);
5075 memcpy(oview, this->contents_, oview_size);
5076 of->write_output_view(off, oview_size, oview);
5077 }
5078
5079
5080 // Create the glink section.
5081
5082 template<int size, bool big_endian>
5083 void
5084 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5085 {
5086 if (this->glink_ == NULL)
5087 {
5088 this->glink_ = new Output_data_glink<size, big_endian>(this);
5089 this->glink_->add_eh_frame(layout);
5090 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5091 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5092 this->glink_, ORDER_TEXT, false);
5093 }
5094 }
5095
5096 // Create a PLT entry for a global symbol.
5097
5098 template<int size, bool big_endian>
5099 void
5100 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5101 Layout* layout,
5102 Symbol* gsym)
5103 {
5104 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5105 && gsym->can_use_relative_reloc(false))
5106 {
5107 if (this->iplt_ == NULL)
5108 this->make_iplt_section(symtab, layout);
5109 this->iplt_->add_ifunc_entry(gsym);
5110 }
5111 else
5112 {
5113 if (this->plt_ == NULL)
5114 this->make_plt_section(symtab, layout);
5115 this->plt_->add_entry(gsym);
5116 }
5117 }
5118
5119 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5120
5121 template<int size, bool big_endian>
5122 void
5123 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5124 Symbol_table* symtab,
5125 Layout* layout,
5126 Sized_relobj_file<size, big_endian>* relobj,
5127 unsigned int r_sym)
5128 {
5129 if (this->iplt_ == NULL)
5130 this->make_iplt_section(symtab, layout);
5131 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5132 }
5133
5134 // Return the number of entries in the PLT.
5135
5136 template<int size, bool big_endian>
5137 unsigned int
5138 Target_powerpc<size, big_endian>::plt_entry_count() const
5139 {
5140 if (this->plt_ == NULL)
5141 return 0;
5142 return this->plt_->entry_count();
5143 }
5144
5145 // Create a GOT entry for local dynamic __tls_get_addr calls.
5146
5147 template<int size, bool big_endian>
5148 unsigned int
5149 Target_powerpc<size, big_endian>::tlsld_got_offset(
5150 Symbol_table* symtab,
5151 Layout* layout,
5152 Sized_relobj_file<size, big_endian>* object)
5153 {
5154 if (this->tlsld_got_offset_ == -1U)
5155 {
5156 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5157 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5158 Output_data_got_powerpc<size, big_endian>* got
5159 = this->got_section(symtab, layout);
5160 unsigned int got_offset = got->add_constant_pair(0, 0);
5161 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5162 got_offset, 0);
5163 this->tlsld_got_offset_ = got_offset;
5164 }
5165 return this->tlsld_got_offset_;
5166 }
5167
5168 // Get the Reference_flags for a particular relocation.
5169
5170 template<int size, bool big_endian>
5171 int
5172 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5173 unsigned int r_type,
5174 const Target_powerpc* target)
5175 {
5176 int ref = 0;
5177
5178 switch (r_type)
5179 {
5180 case elfcpp::R_POWERPC_NONE:
5181 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5182 case elfcpp::R_POWERPC_GNU_VTENTRY:
5183 case elfcpp::R_PPC64_TOC:
5184 // No symbol reference.
5185 break;
5186
5187 case elfcpp::R_PPC64_ADDR64:
5188 case elfcpp::R_PPC64_UADDR64:
5189 case elfcpp::R_POWERPC_ADDR32:
5190 case elfcpp::R_POWERPC_UADDR32:
5191 case elfcpp::R_POWERPC_ADDR16:
5192 case elfcpp::R_POWERPC_UADDR16:
5193 case elfcpp::R_POWERPC_ADDR16_LO:
5194 case elfcpp::R_POWERPC_ADDR16_HI:
5195 case elfcpp::R_POWERPC_ADDR16_HA:
5196 ref = Symbol::ABSOLUTE_REF;
5197 break;
5198
5199 case elfcpp::R_POWERPC_ADDR24:
5200 case elfcpp::R_POWERPC_ADDR14:
5201 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5202 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5203 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5204 break;
5205
5206 case elfcpp::R_PPC64_REL64:
5207 case elfcpp::R_POWERPC_REL32:
5208 case elfcpp::R_PPC_LOCAL24PC:
5209 case elfcpp::R_POWERPC_REL16:
5210 case elfcpp::R_POWERPC_REL16_LO:
5211 case elfcpp::R_POWERPC_REL16_HI:
5212 case elfcpp::R_POWERPC_REL16_HA:
5213 ref = Symbol::RELATIVE_REF;
5214 break;
5215
5216 case elfcpp::R_POWERPC_REL24:
5217 case elfcpp::R_PPC_PLTREL24:
5218 case elfcpp::R_POWERPC_REL14:
5219 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5220 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5221 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5222 break;
5223
5224 case elfcpp::R_POWERPC_GOT16:
5225 case elfcpp::R_POWERPC_GOT16_LO:
5226 case elfcpp::R_POWERPC_GOT16_HI:
5227 case elfcpp::R_POWERPC_GOT16_HA:
5228 case elfcpp::R_PPC64_GOT16_DS:
5229 case elfcpp::R_PPC64_GOT16_LO_DS:
5230 case elfcpp::R_PPC64_TOC16:
5231 case elfcpp::R_PPC64_TOC16_LO:
5232 case elfcpp::R_PPC64_TOC16_HI:
5233 case elfcpp::R_PPC64_TOC16_HA:
5234 case elfcpp::R_PPC64_TOC16_DS:
5235 case elfcpp::R_PPC64_TOC16_LO_DS:
5236 // Absolute in GOT.
5237 ref = Symbol::ABSOLUTE_REF;
5238 break;
5239
5240 case elfcpp::R_POWERPC_GOT_TPREL16:
5241 case elfcpp::R_POWERPC_TLS:
5242 ref = Symbol::TLS_REF;
5243 break;
5244
5245 case elfcpp::R_POWERPC_COPY:
5246 case elfcpp::R_POWERPC_GLOB_DAT:
5247 case elfcpp::R_POWERPC_JMP_SLOT:
5248 case elfcpp::R_POWERPC_RELATIVE:
5249 case elfcpp::R_POWERPC_DTPMOD:
5250 default:
5251 // Not expected. We will give an error later.
5252 break;
5253 }
5254
5255 if (size == 64 && target->abiversion() < 2)
5256 ref |= Symbol::FUNC_DESC_ABI;
5257 return ref;
5258 }
5259
5260 // Report an unsupported relocation against a local symbol.
5261
5262 template<int size, bool big_endian>
5263 void
5264 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5265 Sized_relobj_file<size, big_endian>* object,
5266 unsigned int r_type)
5267 {
5268 gold_error(_("%s: unsupported reloc %u against local symbol"),
5269 object->name().c_str(), r_type);
5270 }
5271
5272 // We are about to emit a dynamic relocation of type R_TYPE. If the
5273 // dynamic linker does not support it, issue an error.
5274
5275 template<int size, bool big_endian>
5276 void
5277 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5278 unsigned int r_type)
5279 {
5280 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5281
5282 // These are the relocation types supported by glibc for both 32-bit
5283 // and 64-bit powerpc.
5284 switch (r_type)
5285 {
5286 case elfcpp::R_POWERPC_NONE:
5287 case elfcpp::R_POWERPC_RELATIVE:
5288 case elfcpp::R_POWERPC_GLOB_DAT:
5289 case elfcpp::R_POWERPC_DTPMOD:
5290 case elfcpp::R_POWERPC_DTPREL:
5291 case elfcpp::R_POWERPC_TPREL:
5292 case elfcpp::R_POWERPC_JMP_SLOT:
5293 case elfcpp::R_POWERPC_COPY:
5294 case elfcpp::R_POWERPC_IRELATIVE:
5295 case elfcpp::R_POWERPC_ADDR32:
5296 case elfcpp::R_POWERPC_UADDR32:
5297 case elfcpp::R_POWERPC_ADDR24:
5298 case elfcpp::R_POWERPC_ADDR16:
5299 case elfcpp::R_POWERPC_UADDR16:
5300 case elfcpp::R_POWERPC_ADDR16_LO:
5301 case elfcpp::R_POWERPC_ADDR16_HI:
5302 case elfcpp::R_POWERPC_ADDR16_HA:
5303 case elfcpp::R_POWERPC_ADDR14:
5304 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5305 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5306 case elfcpp::R_POWERPC_REL32:
5307 case elfcpp::R_POWERPC_REL24:
5308 case elfcpp::R_POWERPC_TPREL16:
5309 case elfcpp::R_POWERPC_TPREL16_LO:
5310 case elfcpp::R_POWERPC_TPREL16_HI:
5311 case elfcpp::R_POWERPC_TPREL16_HA:
5312 return;
5313
5314 default:
5315 break;
5316 }
5317
5318 if (size == 64)
5319 {
5320 switch (r_type)
5321 {
5322 // These are the relocation types supported only on 64-bit.
5323 case elfcpp::R_PPC64_ADDR64:
5324 case elfcpp::R_PPC64_UADDR64:
5325 case elfcpp::R_PPC64_JMP_IREL:
5326 case elfcpp::R_PPC64_ADDR16_DS:
5327 case elfcpp::R_PPC64_ADDR16_LO_DS:
5328 case elfcpp::R_PPC64_ADDR16_HIGH:
5329 case elfcpp::R_PPC64_ADDR16_HIGHA:
5330 case elfcpp::R_PPC64_ADDR16_HIGHER:
5331 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5332 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5333 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5334 case elfcpp::R_PPC64_REL64:
5335 case elfcpp::R_POWERPC_ADDR30:
5336 case elfcpp::R_PPC64_TPREL16_DS:
5337 case elfcpp::R_PPC64_TPREL16_LO_DS:
5338 case elfcpp::R_PPC64_TPREL16_HIGH:
5339 case elfcpp::R_PPC64_TPREL16_HIGHA:
5340 case elfcpp::R_PPC64_TPREL16_HIGHER:
5341 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5342 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5343 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5344 return;
5345
5346 default:
5347 break;
5348 }
5349 }
5350 else
5351 {
5352 switch (r_type)
5353 {
5354 // These are the relocation types supported only on 32-bit.
5355 // ??? glibc ld.so doesn't need to support these.
5356 case elfcpp::R_POWERPC_DTPREL16:
5357 case elfcpp::R_POWERPC_DTPREL16_LO:
5358 case elfcpp::R_POWERPC_DTPREL16_HI:
5359 case elfcpp::R_POWERPC_DTPREL16_HA:
5360 return;
5361
5362 default:
5363 break;
5364 }
5365 }
5366
5367 // This prevents us from issuing more than one error per reloc
5368 // section. But we can still wind up issuing more than one
5369 // error per object file.
5370 if (this->issued_non_pic_error_)
5371 return;
5372 gold_assert(parameters->options().output_is_position_independent());
5373 object->error(_("requires unsupported dynamic reloc; "
5374 "recompile with -fPIC"));
5375 this->issued_non_pic_error_ = true;
5376 return;
5377 }
5378
5379 // Return whether we need to make a PLT entry for a relocation of the
5380 // given type against a STT_GNU_IFUNC symbol.
5381
5382 template<int size, bool big_endian>
5383 bool
5384 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5385 Target_powerpc<size, big_endian>* target,
5386 Sized_relobj_file<size, big_endian>* object,
5387 unsigned int r_type,
5388 bool report_err)
5389 {
5390 // In non-pic code any reference will resolve to the plt call stub
5391 // for the ifunc symbol.
5392 if ((size == 32 || target->abiversion() >= 2)
5393 && !parameters->options().output_is_position_independent())
5394 return true;
5395
5396 switch (r_type)
5397 {
5398 // Word size refs from data sections are OK, but don't need a PLT entry.
5399 case elfcpp::R_POWERPC_ADDR32:
5400 case elfcpp::R_POWERPC_UADDR32:
5401 if (size == 32)
5402 return false;
5403 break;
5404
5405 case elfcpp::R_PPC64_ADDR64:
5406 case elfcpp::R_PPC64_UADDR64:
5407 if (size == 64)
5408 return false;
5409 break;
5410
5411 // GOT refs are good, but also don't need a PLT entry.
5412 case elfcpp::R_POWERPC_GOT16:
5413 case elfcpp::R_POWERPC_GOT16_LO:
5414 case elfcpp::R_POWERPC_GOT16_HI:
5415 case elfcpp::R_POWERPC_GOT16_HA:
5416 case elfcpp::R_PPC64_GOT16_DS:
5417 case elfcpp::R_PPC64_GOT16_LO_DS:
5418 return false;
5419
5420 // Function calls are good, and these do need a PLT entry.
5421 case elfcpp::R_POWERPC_ADDR24:
5422 case elfcpp::R_POWERPC_ADDR14:
5423 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5424 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5425 case elfcpp::R_POWERPC_REL24:
5426 case elfcpp::R_PPC_PLTREL24:
5427 case elfcpp::R_POWERPC_REL14:
5428 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5429 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5430 return true;
5431
5432 default:
5433 break;
5434 }
5435
5436 // Anything else is a problem.
5437 // If we are building a static executable, the libc startup function
5438 // responsible for applying indirect function relocations is going
5439 // to complain about the reloc type.
5440 // If we are building a dynamic executable, we will have a text
5441 // relocation. The dynamic loader will set the text segment
5442 // writable and non-executable to apply text relocations. So we'll
5443 // segfault when trying to run the indirection function to resolve
5444 // the reloc.
5445 if (report_err)
5446 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5447 object->name().c_str(), r_type);
5448 return false;
5449 }
5450
5451 // Scan a relocation for a local symbol.
5452
5453 template<int size, bool big_endian>
5454 inline void
5455 Target_powerpc<size, big_endian>::Scan::local(
5456 Symbol_table* symtab,
5457 Layout* layout,
5458 Target_powerpc<size, big_endian>* target,
5459 Sized_relobj_file<size, big_endian>* object,
5460 unsigned int data_shndx,
5461 Output_section* output_section,
5462 const elfcpp::Rela<size, big_endian>& reloc,
5463 unsigned int r_type,
5464 const elfcpp::Sym<size, big_endian>& lsym,
5465 bool is_discarded)
5466 {
5467 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5468
5469 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5470 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5471 {
5472 this->expect_tls_get_addr_call();
5473 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5474 if (tls_type != tls::TLSOPT_NONE)
5475 this->skip_next_tls_get_addr_call();
5476 }
5477 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5478 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5479 {
5480 this->expect_tls_get_addr_call();
5481 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5482 if (tls_type != tls::TLSOPT_NONE)
5483 this->skip_next_tls_get_addr_call();
5484 }
5485
5486 Powerpc_relobj<size, big_endian>* ppc_object
5487 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5488
5489 if (is_discarded)
5490 {
5491 if (size == 64
5492 && data_shndx == ppc_object->opd_shndx()
5493 && r_type == elfcpp::R_PPC64_ADDR64)
5494 ppc_object->set_opd_discard(reloc.get_r_offset());
5495 return;
5496 }
5497
5498 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5499 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5500 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5501 {
5502 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5503 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5504 r_type, r_sym, reloc.get_r_addend());
5505 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5506 }
5507
5508 switch (r_type)
5509 {
5510 case elfcpp::R_POWERPC_NONE:
5511 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5512 case elfcpp::R_POWERPC_GNU_VTENTRY:
5513 case elfcpp::R_PPC64_TOCSAVE:
5514 case elfcpp::R_POWERPC_TLS:
5515 break;
5516
5517 case elfcpp::R_PPC64_TOC:
5518 {
5519 Output_data_got_powerpc<size, big_endian>* got
5520 = target->got_section(symtab, layout);
5521 if (parameters->options().output_is_position_independent())
5522 {
5523 Address off = reloc.get_r_offset();
5524 if (size == 64
5525 && target->abiversion() < 2
5526 && data_shndx == ppc_object->opd_shndx()
5527 && ppc_object->get_opd_discard(off - 8))
5528 break;
5529
5530 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5531 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5532 rela_dyn->add_output_section_relative(got->output_section(),
5533 elfcpp::R_POWERPC_RELATIVE,
5534 output_section,
5535 object, data_shndx, off,
5536 symobj->toc_base_offset());
5537 }
5538 }
5539 break;
5540
5541 case elfcpp::R_PPC64_ADDR64:
5542 case elfcpp::R_PPC64_UADDR64:
5543 case elfcpp::R_POWERPC_ADDR32:
5544 case elfcpp::R_POWERPC_UADDR32:
5545 case elfcpp::R_POWERPC_ADDR24:
5546 case elfcpp::R_POWERPC_ADDR16:
5547 case elfcpp::R_POWERPC_ADDR16_LO:
5548 case elfcpp::R_POWERPC_ADDR16_HI:
5549 case elfcpp::R_POWERPC_ADDR16_HA:
5550 case elfcpp::R_POWERPC_UADDR16:
5551 case elfcpp::R_PPC64_ADDR16_HIGH:
5552 case elfcpp::R_PPC64_ADDR16_HIGHA:
5553 case elfcpp::R_PPC64_ADDR16_HIGHER:
5554 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5555 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5556 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5557 case elfcpp::R_PPC64_ADDR16_DS:
5558 case elfcpp::R_PPC64_ADDR16_LO_DS:
5559 case elfcpp::R_POWERPC_ADDR14:
5560 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5561 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5562 // If building a shared library (or a position-independent
5563 // executable), we need to create a dynamic relocation for
5564 // this location.
5565 if (parameters->options().output_is_position_independent()
5566 || (size == 64 && is_ifunc && target->abiversion() < 2))
5567 {
5568 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5569 is_ifunc);
5570 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5571 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5572 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5573 {
5574 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5575 : elfcpp::R_POWERPC_RELATIVE);
5576 rela_dyn->add_local_relative(object, r_sym, dynrel,
5577 output_section, data_shndx,
5578 reloc.get_r_offset(),
5579 reloc.get_r_addend(), false);
5580 }
5581 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5582 {
5583 check_non_pic(object, r_type);
5584 rela_dyn->add_local(object, r_sym, r_type, output_section,
5585 data_shndx, reloc.get_r_offset(),
5586 reloc.get_r_addend());
5587 }
5588 else
5589 {
5590 gold_assert(lsym.get_st_value() == 0);
5591 unsigned int shndx = lsym.get_st_shndx();
5592 bool is_ordinary;
5593 shndx = object->adjust_sym_shndx(r_sym, shndx,
5594 &is_ordinary);
5595 if (!is_ordinary)
5596 object->error(_("section symbol %u has bad shndx %u"),
5597 r_sym, shndx);
5598 else
5599 rela_dyn->add_local_section(object, shndx, r_type,
5600 output_section, data_shndx,
5601 reloc.get_r_offset());
5602 }
5603 }
5604 break;
5605
5606 case elfcpp::R_POWERPC_REL24:
5607 case elfcpp::R_PPC_PLTREL24:
5608 case elfcpp::R_PPC_LOCAL24PC:
5609 case elfcpp::R_POWERPC_REL14:
5610 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5611 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5612 if (!is_ifunc)
5613 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5614 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5615 reloc.get_r_addend());
5616 break;
5617
5618 case elfcpp::R_PPC64_REL64:
5619 case elfcpp::R_POWERPC_REL32:
5620 case elfcpp::R_POWERPC_REL16:
5621 case elfcpp::R_POWERPC_REL16_LO:
5622 case elfcpp::R_POWERPC_REL16_HI:
5623 case elfcpp::R_POWERPC_REL16_HA:
5624 case elfcpp::R_POWERPC_SECTOFF:
5625 case elfcpp::R_POWERPC_SECTOFF_LO:
5626 case elfcpp::R_POWERPC_SECTOFF_HI:
5627 case elfcpp::R_POWERPC_SECTOFF_HA:
5628 case elfcpp::R_PPC64_SECTOFF_DS:
5629 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5630 case elfcpp::R_POWERPC_TPREL16:
5631 case elfcpp::R_POWERPC_TPREL16_LO:
5632 case elfcpp::R_POWERPC_TPREL16_HI:
5633 case elfcpp::R_POWERPC_TPREL16_HA:
5634 case elfcpp::R_PPC64_TPREL16_DS:
5635 case elfcpp::R_PPC64_TPREL16_LO_DS:
5636 case elfcpp::R_PPC64_TPREL16_HIGH:
5637 case elfcpp::R_PPC64_TPREL16_HIGHA:
5638 case elfcpp::R_PPC64_TPREL16_HIGHER:
5639 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5640 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5641 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5642 case elfcpp::R_POWERPC_DTPREL16:
5643 case elfcpp::R_POWERPC_DTPREL16_LO:
5644 case elfcpp::R_POWERPC_DTPREL16_HI:
5645 case elfcpp::R_POWERPC_DTPREL16_HA:
5646 case elfcpp::R_PPC64_DTPREL16_DS:
5647 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5648 case elfcpp::R_PPC64_DTPREL16_HIGH:
5649 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5650 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5651 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5652 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5653 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5654 case elfcpp::R_PPC64_TLSGD:
5655 case elfcpp::R_PPC64_TLSLD:
5656 case elfcpp::R_PPC64_ADDR64_LOCAL:
5657 break;
5658
5659 case elfcpp::R_POWERPC_GOT16:
5660 case elfcpp::R_POWERPC_GOT16_LO:
5661 case elfcpp::R_POWERPC_GOT16_HI:
5662 case elfcpp::R_POWERPC_GOT16_HA:
5663 case elfcpp::R_PPC64_GOT16_DS:
5664 case elfcpp::R_PPC64_GOT16_LO_DS:
5665 {
5666 // The symbol requires a GOT entry.
5667 Output_data_got_powerpc<size, big_endian>* got
5668 = target->got_section(symtab, layout);
5669 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670
5671 if (!parameters->options().output_is_position_independent())
5672 {
5673 if ((size == 32 && is_ifunc)
5674 || (size == 64 && target->abiversion() >= 2))
5675 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5676 else
5677 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5678 }
5679 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5680 {
5681 // If we are generating a shared object or a pie, this
5682 // symbol's GOT entry will be set by a dynamic relocation.
5683 unsigned int off;
5684 off = got->add_constant(0);
5685 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5686
5687 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5688 is_ifunc);
5689 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5690 : elfcpp::R_POWERPC_RELATIVE);
5691 rela_dyn->add_local_relative(object, r_sym, dynrel,
5692 got, off, 0, false);
5693 }
5694 }
5695 break;
5696
5697 case elfcpp::R_PPC64_TOC16:
5698 case elfcpp::R_PPC64_TOC16_LO:
5699 case elfcpp::R_PPC64_TOC16_HI:
5700 case elfcpp::R_PPC64_TOC16_HA:
5701 case elfcpp::R_PPC64_TOC16_DS:
5702 case elfcpp::R_PPC64_TOC16_LO_DS:
5703 // We need a GOT section.
5704 target->got_section(symtab, layout);
5705 break;
5706
5707 case elfcpp::R_POWERPC_GOT_TLSGD16:
5708 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5709 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5710 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5711 {
5712 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5713 if (tls_type == tls::TLSOPT_NONE)
5714 {
5715 Output_data_got_powerpc<size, big_endian>* got
5716 = target->got_section(symtab, layout);
5717 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5718 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5719 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5720 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5721 }
5722 else if (tls_type == tls::TLSOPT_TO_LE)
5723 {
5724 // no GOT relocs needed for Local Exec.
5725 }
5726 else
5727 gold_unreachable();
5728 }
5729 break;
5730
5731 case elfcpp::R_POWERPC_GOT_TLSLD16:
5732 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5733 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5734 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5735 {
5736 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5737 if (tls_type == tls::TLSOPT_NONE)
5738 target->tlsld_got_offset(symtab, layout, object);
5739 else if (tls_type == tls::TLSOPT_TO_LE)
5740 {
5741 // no GOT relocs needed for Local Exec.
5742 if (parameters->options().emit_relocs())
5743 {
5744 Output_section* os = layout->tls_segment()->first_section();
5745 gold_assert(os != NULL);
5746 os->set_needs_symtab_index();
5747 }
5748 }
5749 else
5750 gold_unreachable();
5751 }
5752 break;
5753
5754 case elfcpp::R_POWERPC_GOT_DTPREL16:
5755 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5756 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5757 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5758 {
5759 Output_data_got_powerpc<size, big_endian>* got
5760 = target->got_section(symtab, layout);
5761 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5762 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5763 }
5764 break;
5765
5766 case elfcpp::R_POWERPC_GOT_TPREL16:
5767 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5768 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5769 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5770 {
5771 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5772 if (tls_type == tls::TLSOPT_NONE)
5773 {
5774 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5775 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5776 {
5777 Output_data_got_powerpc<size, big_endian>* got
5778 = target->got_section(symtab, layout);
5779 unsigned int off = got->add_constant(0);
5780 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5781
5782 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5783 rela_dyn->add_symbolless_local_addend(object, r_sym,
5784 elfcpp::R_POWERPC_TPREL,
5785 got, off, 0);
5786 }
5787 }
5788 else if (tls_type == tls::TLSOPT_TO_LE)
5789 {
5790 // no GOT relocs needed for Local Exec.
5791 }
5792 else
5793 gold_unreachable();
5794 }
5795 break;
5796
5797 default:
5798 unsupported_reloc_local(object, r_type);
5799 break;
5800 }
5801
5802 switch (r_type)
5803 {
5804 case elfcpp::R_POWERPC_GOT_TLSLD16:
5805 case elfcpp::R_POWERPC_GOT_TLSGD16:
5806 case elfcpp::R_POWERPC_GOT_TPREL16:
5807 case elfcpp::R_POWERPC_GOT_DTPREL16:
5808 case elfcpp::R_POWERPC_GOT16:
5809 case elfcpp::R_PPC64_GOT16_DS:
5810 case elfcpp::R_PPC64_TOC16:
5811 case elfcpp::R_PPC64_TOC16_DS:
5812 ppc_object->set_has_small_toc_reloc();
5813 default:
5814 break;
5815 }
5816 }
5817
5818 // Report an unsupported relocation against a global symbol.
5819
5820 template<int size, bool big_endian>
5821 void
5822 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5823 Sized_relobj_file<size, big_endian>* object,
5824 unsigned int r_type,
5825 Symbol* gsym)
5826 {
5827 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5828 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5829 }
5830
5831 // Scan a relocation for a global symbol.
5832
5833 template<int size, bool big_endian>
5834 inline void
5835 Target_powerpc<size, big_endian>::Scan::global(
5836 Symbol_table* symtab,
5837 Layout* layout,
5838 Target_powerpc<size, big_endian>* target,
5839 Sized_relobj_file<size, big_endian>* object,
5840 unsigned int data_shndx,
5841 Output_section* output_section,
5842 const elfcpp::Rela<size, big_endian>& reloc,
5843 unsigned int r_type,
5844 Symbol* gsym)
5845 {
5846 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5847 return;
5848
5849 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5850 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5851 {
5852 this->expect_tls_get_addr_call();
5853 const bool final = gsym->final_value_is_known();
5854 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5855 if (tls_type != tls::TLSOPT_NONE)
5856 this->skip_next_tls_get_addr_call();
5857 }
5858 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5859 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5860 {
5861 this->expect_tls_get_addr_call();
5862 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5863 if (tls_type != tls::TLSOPT_NONE)
5864 this->skip_next_tls_get_addr_call();
5865 }
5866
5867 Powerpc_relobj<size, big_endian>* ppc_object
5868 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5869
5870 // A STT_GNU_IFUNC symbol may require a PLT entry.
5871 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5872 bool pushed_ifunc = false;
5873 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5874 {
5875 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5876 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5877 reloc.get_r_addend());
5878 target->make_plt_entry(symtab, layout, gsym);
5879 pushed_ifunc = true;
5880 }
5881
5882 switch (r_type)
5883 {
5884 case elfcpp::R_POWERPC_NONE:
5885 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5886 case elfcpp::R_POWERPC_GNU_VTENTRY:
5887 case elfcpp::R_PPC_LOCAL24PC:
5888 case elfcpp::R_POWERPC_TLS:
5889 break;
5890
5891 case elfcpp::R_PPC64_TOC:
5892 {
5893 Output_data_got_powerpc<size, big_endian>* got
5894 = target->got_section(symtab, layout);
5895 if (parameters->options().output_is_position_independent())
5896 {
5897 Address off = reloc.get_r_offset();
5898 if (size == 64
5899 && data_shndx == ppc_object->opd_shndx()
5900 && ppc_object->get_opd_discard(off - 8))
5901 break;
5902
5903 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5904 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5905 if (data_shndx != ppc_object->opd_shndx())
5906 symobj = static_cast
5907 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5908 rela_dyn->add_output_section_relative(got->output_section(),
5909 elfcpp::R_POWERPC_RELATIVE,
5910 output_section,
5911 object, data_shndx, off,
5912 symobj->toc_base_offset());
5913 }
5914 }
5915 break;
5916
5917 case elfcpp::R_PPC64_ADDR64:
5918 if (size == 64
5919 && target->abiversion() < 2
5920 && data_shndx == ppc_object->opd_shndx()
5921 && (gsym->is_defined_in_discarded_section()
5922 || gsym->object() != object))
5923 {
5924 ppc_object->set_opd_discard(reloc.get_r_offset());
5925 break;
5926 }
5927 // Fall thru
5928 case elfcpp::R_PPC64_UADDR64:
5929 case elfcpp::R_POWERPC_ADDR32:
5930 case elfcpp::R_POWERPC_UADDR32:
5931 case elfcpp::R_POWERPC_ADDR24:
5932 case elfcpp::R_POWERPC_ADDR16:
5933 case elfcpp::R_POWERPC_ADDR16_LO:
5934 case elfcpp::R_POWERPC_ADDR16_HI:
5935 case elfcpp::R_POWERPC_ADDR16_HA:
5936 case elfcpp::R_POWERPC_UADDR16:
5937 case elfcpp::R_PPC64_ADDR16_HIGH:
5938 case elfcpp::R_PPC64_ADDR16_HIGHA:
5939 case elfcpp::R_PPC64_ADDR16_HIGHER:
5940 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5941 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5942 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5943 case elfcpp::R_PPC64_ADDR16_DS:
5944 case elfcpp::R_PPC64_ADDR16_LO_DS:
5945 case elfcpp::R_POWERPC_ADDR14:
5946 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5947 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5948 {
5949 // Make a PLT entry if necessary.
5950 if (gsym->needs_plt_entry())
5951 {
5952 // Since this is not a PC-relative relocation, we may be
5953 // taking the address of a function. In that case we need to
5954 // set the entry in the dynamic symbol table to the address of
5955 // the PLT call stub.
5956 bool need_ifunc_plt = false;
5957 if ((size == 32 || target->abiversion() >= 2)
5958 && gsym->is_from_dynobj()
5959 && !parameters->options().output_is_position_independent())
5960 {
5961 gsym->set_needs_dynsym_value();
5962 need_ifunc_plt = true;
5963 }
5964 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5965 {
5966 target->push_branch(ppc_object, data_shndx,
5967 reloc.get_r_offset(), r_type,
5968 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5969 reloc.get_r_addend());
5970 target->make_plt_entry(symtab, layout, gsym);
5971 }
5972 }
5973 // Make a dynamic relocation if necessary.
5974 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5975 || (size == 64 && is_ifunc && target->abiversion() < 2))
5976 {
5977 if (!parameters->options().output_is_position_independent()
5978 && gsym->may_need_copy_reloc())
5979 {
5980 target->copy_reloc(symtab, layout, object,
5981 data_shndx, output_section, gsym, reloc);
5982 }
5983 else if ((((size == 32
5984 && r_type == elfcpp::R_POWERPC_ADDR32)
5985 || (size == 64
5986 && r_type == elfcpp::R_PPC64_ADDR64
5987 && target->abiversion() >= 2))
5988 && gsym->can_use_relative_reloc(false)
5989 && !(gsym->visibility() == elfcpp::STV_PROTECTED
5990 && parameters->options().shared()))
5991 || (size == 64
5992 && r_type == elfcpp::R_PPC64_ADDR64
5993 && target->abiversion() < 2
5994 && (gsym->can_use_relative_reloc(false)
5995 || data_shndx == ppc_object->opd_shndx())))
5996 {
5997 Reloc_section* rela_dyn
5998 = target->rela_dyn_section(symtab, layout, is_ifunc);
5999 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6000 : elfcpp::R_POWERPC_RELATIVE);
6001 rela_dyn->add_symbolless_global_addend(
6002 gsym, dynrel, output_section, object, data_shndx,
6003 reloc.get_r_offset(), reloc.get_r_addend());
6004 }
6005 else
6006 {
6007 Reloc_section* rela_dyn
6008 = target->rela_dyn_section(symtab, layout, is_ifunc);
6009 check_non_pic(object, r_type);
6010 rela_dyn->add_global(gsym, r_type, output_section,
6011 object, data_shndx,
6012 reloc.get_r_offset(),
6013 reloc.get_r_addend());
6014 }
6015 }
6016 }
6017 break;
6018
6019 case elfcpp::R_PPC_PLTREL24:
6020 case elfcpp::R_POWERPC_REL24:
6021 if (!is_ifunc)
6022 {
6023 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6024 r_type,
6025 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6026 reloc.get_r_addend());
6027 if (gsym->needs_plt_entry()
6028 || (!gsym->final_value_is_known()
6029 && (gsym->is_undefined()
6030 || gsym->is_from_dynobj()
6031 || gsym->is_preemptible())))
6032 target->make_plt_entry(symtab, layout, gsym);
6033 }
6034 // Fall thru
6035
6036 case elfcpp::R_PPC64_REL64:
6037 case elfcpp::R_POWERPC_REL32:
6038 // Make a dynamic relocation if necessary.
6039 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6040 {
6041 if (!parameters->options().output_is_position_independent()
6042 && gsym->may_need_copy_reloc())
6043 {
6044 target->copy_reloc(symtab, layout, object,
6045 data_shndx, output_section, gsym,
6046 reloc);
6047 }
6048 else
6049 {
6050 Reloc_section* rela_dyn
6051 = target->rela_dyn_section(symtab, layout, is_ifunc);
6052 check_non_pic(object, r_type);
6053 rela_dyn->add_global(gsym, r_type, output_section, object,
6054 data_shndx, reloc.get_r_offset(),
6055 reloc.get_r_addend());
6056 }
6057 }
6058 break;
6059
6060 case elfcpp::R_POWERPC_REL14:
6061 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6062 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6063 if (!is_ifunc)
6064 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6065 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6066 reloc.get_r_addend());
6067 break;
6068
6069 case elfcpp::R_POWERPC_REL16:
6070 case elfcpp::R_POWERPC_REL16_LO:
6071 case elfcpp::R_POWERPC_REL16_HI:
6072 case elfcpp::R_POWERPC_REL16_HA:
6073 case elfcpp::R_POWERPC_SECTOFF:
6074 case elfcpp::R_POWERPC_SECTOFF_LO:
6075 case elfcpp::R_POWERPC_SECTOFF_HI:
6076 case elfcpp::R_POWERPC_SECTOFF_HA:
6077 case elfcpp::R_PPC64_SECTOFF_DS:
6078 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6079 case elfcpp::R_POWERPC_TPREL16:
6080 case elfcpp::R_POWERPC_TPREL16_LO:
6081 case elfcpp::R_POWERPC_TPREL16_HI:
6082 case elfcpp::R_POWERPC_TPREL16_HA:
6083 case elfcpp::R_PPC64_TPREL16_DS:
6084 case elfcpp::R_PPC64_TPREL16_LO_DS:
6085 case elfcpp::R_PPC64_TPREL16_HIGH:
6086 case elfcpp::R_PPC64_TPREL16_HIGHA:
6087 case elfcpp::R_PPC64_TPREL16_HIGHER:
6088 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6089 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6090 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6091 case elfcpp::R_POWERPC_DTPREL16:
6092 case elfcpp::R_POWERPC_DTPREL16_LO:
6093 case elfcpp::R_POWERPC_DTPREL16_HI:
6094 case elfcpp::R_POWERPC_DTPREL16_HA:
6095 case elfcpp::R_PPC64_DTPREL16_DS:
6096 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6097 case elfcpp::R_PPC64_DTPREL16_HIGH:
6098 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6099 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6100 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6101 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6102 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6103 case elfcpp::R_PPC64_TLSGD:
6104 case elfcpp::R_PPC64_TLSLD:
6105 case elfcpp::R_PPC64_ADDR64_LOCAL:
6106 break;
6107
6108 case elfcpp::R_POWERPC_GOT16:
6109 case elfcpp::R_POWERPC_GOT16_LO:
6110 case elfcpp::R_POWERPC_GOT16_HI:
6111 case elfcpp::R_POWERPC_GOT16_HA:
6112 case elfcpp::R_PPC64_GOT16_DS:
6113 case elfcpp::R_PPC64_GOT16_LO_DS:
6114 {
6115 // The symbol requires a GOT entry.
6116 Output_data_got_powerpc<size, big_endian>* got;
6117
6118 got = target->got_section(symtab, layout);
6119 if (gsym->final_value_is_known())
6120 {
6121 if ((size == 32 && is_ifunc)
6122 || (size == 64 && target->abiversion() >= 2))
6123 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6124 else
6125 got->add_global(gsym, GOT_TYPE_STANDARD);
6126 }
6127 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6128 {
6129 // If we are generating a shared object or a pie, this
6130 // symbol's GOT entry will be set by a dynamic relocation.
6131 unsigned int off = got->add_constant(0);
6132 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6133
6134 Reloc_section* rela_dyn
6135 = target->rela_dyn_section(symtab, layout, is_ifunc);
6136
6137 if (gsym->can_use_relative_reloc(false)
6138 && !((size == 32
6139 || target->abiversion() >= 2)
6140 && gsym->visibility() == elfcpp::STV_PROTECTED
6141 && parameters->options().shared()))
6142 {
6143 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6144 : elfcpp::R_POWERPC_RELATIVE);
6145 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6146 }
6147 else
6148 {
6149 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6150 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6151 }
6152 }
6153 }
6154 break;
6155
6156 case elfcpp::R_PPC64_TOC16:
6157 case elfcpp::R_PPC64_TOC16_LO:
6158 case elfcpp::R_PPC64_TOC16_HI:
6159 case elfcpp::R_PPC64_TOC16_HA:
6160 case elfcpp::R_PPC64_TOC16_DS:
6161 case elfcpp::R_PPC64_TOC16_LO_DS:
6162 // We need a GOT section.
6163 target->got_section(symtab, layout);
6164 break;
6165
6166 case elfcpp::R_POWERPC_GOT_TLSGD16:
6167 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6168 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6169 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6170 {
6171 const bool final = gsym->final_value_is_known();
6172 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6173 if (tls_type == tls::TLSOPT_NONE)
6174 {
6175 Output_data_got_powerpc<size, big_endian>* got
6176 = target->got_section(symtab, layout);
6177 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6178 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6179 elfcpp::R_POWERPC_DTPMOD,
6180 elfcpp::R_POWERPC_DTPREL);
6181 }
6182 else if (tls_type == tls::TLSOPT_TO_IE)
6183 {
6184 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6185 {
6186 Output_data_got_powerpc<size, big_endian>* got
6187 = target->got_section(symtab, layout);
6188 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6189 if (gsym->is_undefined()
6190 || gsym->is_from_dynobj())
6191 {
6192 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6193 elfcpp::R_POWERPC_TPREL);
6194 }
6195 else
6196 {
6197 unsigned int off = got->add_constant(0);
6198 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6199 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6200 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6201 got, off, 0);
6202 }
6203 }
6204 }
6205 else if (tls_type == tls::TLSOPT_TO_LE)
6206 {
6207 // no GOT relocs needed for Local Exec.
6208 }
6209 else
6210 gold_unreachable();
6211 }
6212 break;
6213
6214 case elfcpp::R_POWERPC_GOT_TLSLD16:
6215 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6216 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6217 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6218 {
6219 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6220 if (tls_type == tls::TLSOPT_NONE)
6221 target->tlsld_got_offset(symtab, layout, object);
6222 else if (tls_type == tls::TLSOPT_TO_LE)
6223 {
6224 // no GOT relocs needed for Local Exec.
6225 if (parameters->options().emit_relocs())
6226 {
6227 Output_section* os = layout->tls_segment()->first_section();
6228 gold_assert(os != NULL);
6229 os->set_needs_symtab_index();
6230 }
6231 }
6232 else
6233 gold_unreachable();
6234 }
6235 break;
6236
6237 case elfcpp::R_POWERPC_GOT_DTPREL16:
6238 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6239 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6240 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6241 {
6242 Output_data_got_powerpc<size, big_endian>* got
6243 = target->got_section(symtab, layout);
6244 if (!gsym->final_value_is_known()
6245 && (gsym->is_from_dynobj()
6246 || gsym->is_undefined()
6247 || gsym->is_preemptible()))
6248 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6249 target->rela_dyn_section(layout),
6250 elfcpp::R_POWERPC_DTPREL);
6251 else
6252 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6253 }
6254 break;
6255
6256 case elfcpp::R_POWERPC_GOT_TPREL16:
6257 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6258 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6259 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6260 {
6261 const bool final = gsym->final_value_is_known();
6262 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6263 if (tls_type == tls::TLSOPT_NONE)
6264 {
6265 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6266 {
6267 Output_data_got_powerpc<size, big_endian>* got
6268 = target->got_section(symtab, layout);
6269 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6270 if (gsym->is_undefined()
6271 || gsym->is_from_dynobj())
6272 {
6273 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6274 elfcpp::R_POWERPC_TPREL);
6275 }
6276 else
6277 {
6278 unsigned int off = got->add_constant(0);
6279 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6280 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6281 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6282 got, off, 0);
6283 }
6284 }
6285 }
6286 else if (tls_type == tls::TLSOPT_TO_LE)
6287 {
6288 // no GOT relocs needed for Local Exec.
6289 }
6290 else
6291 gold_unreachable();
6292 }
6293 break;
6294
6295 default:
6296 unsupported_reloc_global(object, r_type, gsym);
6297 break;
6298 }
6299
6300 switch (r_type)
6301 {
6302 case elfcpp::R_POWERPC_GOT_TLSLD16:
6303 case elfcpp::R_POWERPC_GOT_TLSGD16:
6304 case elfcpp::R_POWERPC_GOT_TPREL16:
6305 case elfcpp::R_POWERPC_GOT_DTPREL16:
6306 case elfcpp::R_POWERPC_GOT16:
6307 case elfcpp::R_PPC64_GOT16_DS:
6308 case elfcpp::R_PPC64_TOC16:
6309 case elfcpp::R_PPC64_TOC16_DS:
6310 ppc_object->set_has_small_toc_reloc();
6311 default:
6312 break;
6313 }
6314 }
6315
6316 // Process relocations for gc.
6317
6318 template<int size, bool big_endian>
6319 void
6320 Target_powerpc<size, big_endian>::gc_process_relocs(
6321 Symbol_table* symtab,
6322 Layout* layout,
6323 Sized_relobj_file<size, big_endian>* object,
6324 unsigned int data_shndx,
6325 unsigned int,
6326 const unsigned char* prelocs,
6327 size_t reloc_count,
6328 Output_section* output_section,
6329 bool needs_special_offset_handling,
6330 size_t local_symbol_count,
6331 const unsigned char* plocal_symbols)
6332 {
6333 typedef Target_powerpc<size, big_endian> Powerpc;
6334 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6335 Powerpc_relobj<size, big_endian>* ppc_object
6336 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6337 if (size == 64)
6338 ppc_object->set_opd_valid();
6339 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6340 {
6341 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6342 for (p = ppc_object->access_from_map()->begin();
6343 p != ppc_object->access_from_map()->end();
6344 ++p)
6345 {
6346 Address dst_off = p->first;
6347 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6348 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6349 for (s = p->second.begin(); s != p->second.end(); ++s)
6350 {
6351 Object* src_obj = s->first;
6352 unsigned int src_indx = s->second;
6353 symtab->gc()->add_reference(src_obj, src_indx,
6354 ppc_object, dst_indx);
6355 }
6356 p->second.clear();
6357 }
6358 ppc_object->access_from_map()->clear();
6359 ppc_object->process_gc_mark(symtab);
6360 // Don't look at .opd relocs as .opd will reference everything.
6361 return;
6362 }
6363
6364 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6365 typename Target_powerpc::Relocatable_size_for_reloc>(
6366 symtab,
6367 layout,
6368 this,
6369 object,
6370 data_shndx,
6371 prelocs,
6372 reloc_count,
6373 output_section,
6374 needs_special_offset_handling,
6375 local_symbol_count,
6376 plocal_symbols);
6377 }
6378
6379 // Handle target specific gc actions when adding a gc reference from
6380 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6381 // and DST_OFF. For powerpc64, this adds a referenc to the code
6382 // section of a function descriptor.
6383
6384 template<int size, bool big_endian>
6385 void
6386 Target_powerpc<size, big_endian>::do_gc_add_reference(
6387 Symbol_table* symtab,
6388 Object* src_obj,
6389 unsigned int src_shndx,
6390 Object* dst_obj,
6391 unsigned int dst_shndx,
6392 Address dst_off) const
6393 {
6394 if (size != 64 || dst_obj->is_dynamic())
6395 return;
6396
6397 Powerpc_relobj<size, big_endian>* ppc_object
6398 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6399 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6400 {
6401 if (ppc_object->opd_valid())
6402 {
6403 dst_shndx = ppc_object->get_opd_ent(dst_off);
6404 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6405 }
6406 else
6407 {
6408 // If we haven't run scan_opd_relocs, we must delay
6409 // processing this function descriptor reference.
6410 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6411 }
6412 }
6413 }
6414
6415 // Add any special sections for this symbol to the gc work list.
6416 // For powerpc64, this adds the code section of a function
6417 // descriptor.
6418
6419 template<int size, bool big_endian>
6420 void
6421 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6422 Symbol_table* symtab,
6423 Symbol* sym) const
6424 {
6425 if (size == 64)
6426 {
6427 Powerpc_relobj<size, big_endian>* ppc_object
6428 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6429 bool is_ordinary;
6430 unsigned int shndx = sym->shndx(&is_ordinary);
6431 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6432 {
6433 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6434 Address dst_off = gsym->value();
6435 if (ppc_object->opd_valid())
6436 {
6437 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6438 symtab->gc()->worklist().push(Section_id(ppc_object, dst_indx));
6439 }
6440 else
6441 ppc_object->add_gc_mark(dst_off);
6442 }
6443 }
6444 }
6445
6446 // For a symbol location in .opd, set LOC to the location of the
6447 // function entry.
6448
6449 template<int size, bool big_endian>
6450 void
6451 Target_powerpc<size, big_endian>::do_function_location(
6452 Symbol_location* loc) const
6453 {
6454 if (size == 64 && loc->shndx != 0)
6455 {
6456 if (loc->object->is_dynamic())
6457 {
6458 Powerpc_dynobj<size, big_endian>* ppc_object
6459 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6460 if (loc->shndx == ppc_object->opd_shndx())
6461 {
6462 Address dest_off;
6463 Address off = loc->offset - ppc_object->opd_address();
6464 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6465 loc->offset = dest_off;
6466 }
6467 }
6468 else
6469 {
6470 const Powerpc_relobj<size, big_endian>* ppc_object
6471 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6472 if (loc->shndx == ppc_object->opd_shndx())
6473 {
6474 Address dest_off;
6475 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6476 loc->offset = dest_off;
6477 }
6478 }
6479 }
6480 }
6481
6482 // Scan relocations for a section.
6483
6484 template<int size, bool big_endian>
6485 void
6486 Target_powerpc<size, big_endian>::scan_relocs(
6487 Symbol_table* symtab,
6488 Layout* layout,
6489 Sized_relobj_file<size, big_endian>* object,
6490 unsigned int data_shndx,
6491 unsigned int sh_type,
6492 const unsigned char* prelocs,
6493 size_t reloc_count,
6494 Output_section* output_section,
6495 bool needs_special_offset_handling,
6496 size_t local_symbol_count,
6497 const unsigned char* plocal_symbols)
6498 {
6499 typedef Target_powerpc<size, big_endian> Powerpc;
6500 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6501
6502 if (sh_type == elfcpp::SHT_REL)
6503 {
6504 gold_error(_("%s: unsupported REL reloc section"),
6505 object->name().c_str());
6506 return;
6507 }
6508
6509 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6510 symtab,
6511 layout,
6512 this,
6513 object,
6514 data_shndx,
6515 prelocs,
6516 reloc_count,
6517 output_section,
6518 needs_special_offset_handling,
6519 local_symbol_count,
6520 plocal_symbols);
6521 }
6522
6523 // Functor class for processing the global symbol table.
6524 // Removes symbols defined on discarded opd entries.
6525
6526 template<bool big_endian>
6527 class Global_symbol_visitor_opd
6528 {
6529 public:
6530 Global_symbol_visitor_opd()
6531 { }
6532
6533 void
6534 operator()(Sized_symbol<64>* sym)
6535 {
6536 if (sym->has_symtab_index()
6537 || sym->source() != Symbol::FROM_OBJECT
6538 || !sym->in_real_elf())
6539 return;
6540
6541 if (sym->object()->is_dynamic())
6542 return;
6543
6544 Powerpc_relobj<64, big_endian>* symobj
6545 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6546 if (symobj->opd_shndx() == 0)
6547 return;
6548
6549 bool is_ordinary;
6550 unsigned int shndx = sym->shndx(&is_ordinary);
6551 if (shndx == symobj->opd_shndx()
6552 && symobj->get_opd_discard(sym->value()))
6553 {
6554 sym->set_undefined();
6555 sym->set_is_defined_in_discarded_section();
6556 sym->set_symtab_index(-1U);
6557 }
6558 }
6559 };
6560
6561 template<int size, bool big_endian>
6562 void
6563 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6564 Layout* layout,
6565 Symbol_table* symtab)
6566 {
6567 if (size == 64)
6568 {
6569 Output_data_save_res<64, big_endian>* savres
6570 = new Output_data_save_res<64, big_endian>(symtab);
6571 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6572 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6573 savres, ORDER_TEXT, false);
6574 }
6575 }
6576
6577 // Sort linker created .got section first (for the header), then input
6578 // sections belonging to files using small model code.
6579
6580 template<bool big_endian>
6581 class Sort_toc_sections
6582 {
6583 public:
6584 bool
6585 operator()(const Output_section::Input_section& is1,
6586 const Output_section::Input_section& is2) const
6587 {
6588 if (!is1.is_input_section() && is2.is_input_section())
6589 return true;
6590 bool small1
6591 = (is1.is_input_section()
6592 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6593 ->has_small_toc_reloc()));
6594 bool small2
6595 = (is2.is_input_section()
6596 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6597 ->has_small_toc_reloc()));
6598 return small1 && !small2;
6599 }
6600 };
6601
6602 // Finalize the sections.
6603
6604 template<int size, bool big_endian>
6605 void
6606 Target_powerpc<size, big_endian>::do_finalize_sections(
6607 Layout* layout,
6608 const Input_objects*,
6609 Symbol_table* symtab)
6610 {
6611 if (parameters->doing_static_link())
6612 {
6613 // At least some versions of glibc elf-init.o have a strong
6614 // reference to __rela_iplt marker syms. A weak ref would be
6615 // better..
6616 if (this->iplt_ != NULL)
6617 {
6618 Reloc_section* rel = this->iplt_->rel_plt();
6619 symtab->define_in_output_data("__rela_iplt_start", NULL,
6620 Symbol_table::PREDEFINED, rel, 0, 0,
6621 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6622 elfcpp::STV_HIDDEN, 0, false, true);
6623 symtab->define_in_output_data("__rela_iplt_end", NULL,
6624 Symbol_table::PREDEFINED, rel, 0, 0,
6625 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6626 elfcpp::STV_HIDDEN, 0, true, true);
6627 }
6628 else
6629 {
6630 symtab->define_as_constant("__rela_iplt_start", NULL,
6631 Symbol_table::PREDEFINED, 0, 0,
6632 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6633 elfcpp::STV_HIDDEN, 0, true, false);
6634 symtab->define_as_constant("__rela_iplt_end", NULL,
6635 Symbol_table::PREDEFINED, 0, 0,
6636 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6637 elfcpp::STV_HIDDEN, 0, true, false);
6638 }
6639 }
6640
6641 if (size == 64)
6642 {
6643 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6644 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6645
6646 if (!parameters->options().relocatable())
6647 {
6648 this->define_save_restore_funcs(layout, symtab);
6649
6650 // Annoyingly, we need to make these sections now whether or
6651 // not we need them. If we delay until do_relax then we
6652 // need to mess with the relaxation machinery checkpointing.
6653 this->got_section(symtab, layout);
6654 this->make_brlt_section(layout);
6655
6656 if (parameters->options().toc_sort())
6657 {
6658 Output_section* os = this->got_->output_section();
6659 if (os != NULL && os->input_sections().size() > 1)
6660 std::stable_sort(os->input_sections().begin(),
6661 os->input_sections().end(),
6662 Sort_toc_sections<big_endian>());
6663 }
6664 }
6665 }
6666
6667 // Fill in some more dynamic tags.
6668 Output_data_dynamic* odyn = layout->dynamic_data();
6669 if (odyn != NULL)
6670 {
6671 const Reloc_section* rel_plt = (this->plt_ == NULL
6672 ? NULL
6673 : this->plt_->rel_plt());
6674 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6675 this->rela_dyn_, true, size == 32);
6676
6677 if (size == 32)
6678 {
6679 if (this->got_ != NULL)
6680 {
6681 this->got_->finalize_data_size();
6682 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6683 this->got_, this->got_->g_o_t());
6684 }
6685 }
6686 else
6687 {
6688 if (this->glink_ != NULL)
6689 {
6690 this->glink_->finalize_data_size();
6691 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6692 this->glink_,
6693 (this->glink_->pltresolve_size
6694 - 32));
6695 }
6696 }
6697 }
6698
6699 // Emit any relocs we saved in an attempt to avoid generating COPY
6700 // relocs.
6701 if (this->copy_relocs_.any_saved_relocs())
6702 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6703 }
6704
6705 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6706 // reloc.
6707
6708 static bool
6709 ok_lo_toc_insn(uint32_t insn)
6710 {
6711 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6712 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6713 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6714 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6715 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6716 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6717 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6718 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6719 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6720 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6721 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6722 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6723 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6724 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6725 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6726 && (insn & 3) != 1)
6727 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6728 && ((insn & 3) == 0 || (insn & 3) == 3))
6729 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6730 }
6731
6732 // Return the value to use for a branch relocation.
6733
6734 template<int size, bool big_endian>
6735 bool
6736 Target_powerpc<size, big_endian>::symval_for_branch(
6737 const Symbol_table* symtab,
6738 const Sized_symbol<size>* gsym,
6739 Powerpc_relobj<size, big_endian>* object,
6740 Address *value,
6741 unsigned int *dest_shndx)
6742 {
6743 if (size == 32 || this->abiversion() >= 2)
6744 gold_unreachable();
6745 *dest_shndx = 0;
6746
6747 // If the symbol is defined in an opd section, ie. is a function
6748 // descriptor, use the function descriptor code entry address
6749 Powerpc_relobj<size, big_endian>* symobj = object;
6750 if (gsym != NULL
6751 && gsym->source() != Symbol::FROM_OBJECT)
6752 return true;
6753 if (gsym != NULL)
6754 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6755 unsigned int shndx = symobj->opd_shndx();
6756 if (shndx == 0)
6757 return true;
6758 Address opd_addr = symobj->get_output_section_offset(shndx);
6759 if (opd_addr == invalid_address)
6760 return true;
6761 opd_addr += symobj->output_section_address(shndx);
6762 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6763 {
6764 Address sec_off;
6765 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6766 if (symtab->is_section_folded(symobj, *dest_shndx))
6767 {
6768 Section_id folded
6769 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6770 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6771 *dest_shndx = folded.second;
6772 }
6773 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6774 if (sec_addr == invalid_address)
6775 return false;
6776
6777 sec_addr += symobj->output_section(*dest_shndx)->address();
6778 *value = sec_addr + sec_off;
6779 }
6780 return true;
6781 }
6782
6783 // Perform a relocation.
6784
6785 template<int size, bool big_endian>
6786 inline bool
6787 Target_powerpc<size, big_endian>::Relocate::relocate(
6788 const Relocate_info<size, big_endian>* relinfo,
6789 Target_powerpc* target,
6790 Output_section* os,
6791 size_t relnum,
6792 const elfcpp::Rela<size, big_endian>& rela,
6793 unsigned int r_type,
6794 const Sized_symbol<size>* gsym,
6795 const Symbol_value<size>* psymval,
6796 unsigned char* view,
6797 Address address,
6798 section_size_type view_size)
6799 {
6800 if (view == NULL)
6801 return true;
6802
6803 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6804 {
6805 case Track_tls::NOT_EXPECTED:
6806 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6807 _("__tls_get_addr call lacks marker reloc"));
6808 break;
6809 case Track_tls::EXPECTED:
6810 // We have already complained.
6811 break;
6812 case Track_tls::SKIP:
6813 return true;
6814 case Track_tls::NORMAL:
6815 break;
6816 }
6817
6818 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6819 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6820 Powerpc_relobj<size, big_endian>* const object
6821 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6822 Address value = 0;
6823 bool has_stub_value = false;
6824 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6825 if ((gsym != NULL
6826 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6827 : object->local_has_plt_offset(r_sym))
6828 && (!psymval->is_ifunc_symbol()
6829 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6830 {
6831 if (size == 64
6832 && gsym != NULL
6833 && target->abiversion() >= 2
6834 && !parameters->options().output_is_position_independent()
6835 && !is_branch_reloc(r_type))
6836 {
6837 unsigned int off = target->glink_section()->find_global_entry(gsym);
6838 gold_assert(off != (unsigned int)-1);
6839 value = target->glink_section()->global_entry_address() + off;
6840 }
6841 else
6842 {
6843 Stub_table<size, big_endian>* stub_table
6844 = object->stub_table(relinfo->data_shndx);
6845 if (stub_table == NULL)
6846 {
6847 // This is a ref from a data section to an ifunc symbol.
6848 if (target->stub_tables().size() != 0)
6849 stub_table = target->stub_tables()[0];
6850 }
6851 gold_assert(stub_table != NULL);
6852 Address off;
6853 if (gsym != NULL)
6854 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6855 rela.get_r_addend());
6856 else
6857 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6858 rela.get_r_addend());
6859 gold_assert(off != invalid_address);
6860 value = stub_table->stub_address() + off;
6861 }
6862 has_stub_value = true;
6863 }
6864
6865 if (r_type == elfcpp::R_POWERPC_GOT16
6866 || r_type == elfcpp::R_POWERPC_GOT16_LO
6867 || r_type == elfcpp::R_POWERPC_GOT16_HI
6868 || r_type == elfcpp::R_POWERPC_GOT16_HA
6869 || r_type == elfcpp::R_PPC64_GOT16_DS
6870 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
6871 {
6872 if (gsym != NULL)
6873 {
6874 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6875 value = gsym->got_offset(GOT_TYPE_STANDARD);
6876 }
6877 else
6878 {
6879 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6880 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6881 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
6882 }
6883 value -= target->got_section()->got_base_offset(object);
6884 }
6885 else if (r_type == elfcpp::R_PPC64_TOC)
6886 {
6887 value = (target->got_section()->output_section()->address()
6888 + object->toc_base_offset());
6889 }
6890 else if (gsym != NULL
6891 && (r_type == elfcpp::R_POWERPC_REL24
6892 || r_type == elfcpp::R_PPC_PLTREL24)
6893 && has_stub_value)
6894 {
6895 if (size == 64)
6896 {
6897 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
6898 Valtype* wv = reinterpret_cast<Valtype*>(view);
6899 bool can_plt_call = false;
6900 if (rela.get_r_offset() + 8 <= view_size)
6901 {
6902 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
6903 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
6904 if ((insn & 1) != 0
6905 && (insn2 == nop
6906 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
6907 {
6908 elfcpp::Swap<32, big_endian>::
6909 writeval(wv + 1, ld_2_1 + target->stk_toc());
6910 can_plt_call = true;
6911 }
6912 }
6913 if (!can_plt_call)
6914 {
6915 // If we don't have a branch and link followed by a nop,
6916 // we can't go via the plt because there is no place to
6917 // put a toc restoring instruction.
6918 // Unless we know we won't be returning.
6919 if (strcmp(gsym->name(), "__libc_start_main") == 0)
6920 can_plt_call = true;
6921 }
6922 if (!can_plt_call)
6923 {
6924 // g++ as of 20130507 emits self-calls without a
6925 // following nop. This is arguably wrong since we have
6926 // conflicting information. On the one hand a global
6927 // symbol and on the other a local call sequence, but
6928 // don't error for this special case.
6929 // It isn't possible to cheaply verify we have exactly
6930 // such a call. Allow all calls to the same section.
6931 bool ok = false;
6932 Address code = value;
6933 if (gsym->source() == Symbol::FROM_OBJECT
6934 && gsym->object() == object)
6935 {
6936 unsigned int dest_shndx = 0;
6937 if (target->abiversion() < 2)
6938 {
6939 Address addend = rela.get_r_addend();
6940 code = psymval->value(object, addend);
6941 target->symval_for_branch(relinfo->symtab, gsym, object,
6942 &code, &dest_shndx);
6943 }
6944 bool is_ordinary;
6945 if (dest_shndx == 0)
6946 dest_shndx = gsym->shndx(&is_ordinary);
6947 ok = dest_shndx == relinfo->data_shndx;
6948 }
6949 if (!ok)
6950 {
6951 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6952 _("call lacks nop, can't restore toc; "
6953 "recompile with -fPIC"));
6954 value = code;
6955 }
6956 }
6957 }
6958 }
6959 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6960 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
6961 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
6962 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
6963 {
6964 // First instruction of a global dynamic sequence, arg setup insn.
6965 const bool final = gsym == NULL || gsym->final_value_is_known();
6966 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6967 enum Got_type got_type = GOT_TYPE_STANDARD;
6968 if (tls_type == tls::TLSOPT_NONE)
6969 got_type = GOT_TYPE_TLSGD;
6970 else if (tls_type == tls::TLSOPT_TO_IE)
6971 got_type = GOT_TYPE_TPREL;
6972 if (got_type != GOT_TYPE_STANDARD)
6973 {
6974 if (gsym != NULL)
6975 {
6976 gold_assert(gsym->has_got_offset(got_type));
6977 value = gsym->got_offset(got_type);
6978 }
6979 else
6980 {
6981 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6982 gold_assert(object->local_has_got_offset(r_sym, got_type));
6983 value = object->local_got_offset(r_sym, got_type);
6984 }
6985 value -= target->got_section()->got_base_offset(object);
6986 }
6987 if (tls_type == tls::TLSOPT_TO_IE)
6988 {
6989 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
6990 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
6991 {
6992 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
6993 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
6994 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
6995 if (size == 32)
6996 insn |= 32 << 26; // lwz
6997 else
6998 insn |= 58 << 26; // ld
6999 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7000 }
7001 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7002 - elfcpp::R_POWERPC_GOT_TLSGD16);
7003 }
7004 else if (tls_type == tls::TLSOPT_TO_LE)
7005 {
7006 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7007 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7008 {
7009 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7010 Insn insn = addis_3_13;
7011 if (size == 32)
7012 insn = addis_3_2;
7013 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7014 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7015 value = psymval->value(object, rela.get_r_addend());
7016 }
7017 else
7018 {
7019 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7020 Insn insn = nop;
7021 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7022 r_type = elfcpp::R_POWERPC_NONE;
7023 }
7024 }
7025 }
7026 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7027 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7028 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7029 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7030 {
7031 // First instruction of a local dynamic sequence, arg setup insn.
7032 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7033 if (tls_type == tls::TLSOPT_NONE)
7034 {
7035 value = target->tlsld_got_offset();
7036 value -= target->got_section()->got_base_offset(object);
7037 }
7038 else
7039 {
7040 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7041 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7042 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7043 {
7044 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7045 Insn insn = addis_3_13;
7046 if (size == 32)
7047 insn = addis_3_2;
7048 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7049 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7050 value = dtp_offset;
7051 }
7052 else
7053 {
7054 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7055 Insn insn = nop;
7056 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7057 r_type = elfcpp::R_POWERPC_NONE;
7058 }
7059 }
7060 }
7061 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7062 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7063 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7064 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7065 {
7066 // Accesses relative to a local dynamic sequence address,
7067 // no optimisation here.
7068 if (gsym != NULL)
7069 {
7070 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7071 value = gsym->got_offset(GOT_TYPE_DTPREL);
7072 }
7073 else
7074 {
7075 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7076 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7077 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7078 }
7079 value -= target->got_section()->got_base_offset(object);
7080 }
7081 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7082 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7083 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7084 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7085 {
7086 // First instruction of initial exec sequence.
7087 const bool final = gsym == NULL || gsym->final_value_is_known();
7088 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7089 if (tls_type == tls::TLSOPT_NONE)
7090 {
7091 if (gsym != NULL)
7092 {
7093 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7094 value = gsym->got_offset(GOT_TYPE_TPREL);
7095 }
7096 else
7097 {
7098 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7099 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7100 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7101 }
7102 value -= target->got_section()->got_base_offset(object);
7103 }
7104 else
7105 {
7106 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7107 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7108 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7109 {
7110 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7111 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7112 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7113 if (size == 32)
7114 insn |= addis_0_2;
7115 else
7116 insn |= addis_0_13;
7117 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7118 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7119 value = psymval->value(object, rela.get_r_addend());
7120 }
7121 else
7122 {
7123 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7124 Insn insn = nop;
7125 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7126 r_type = elfcpp::R_POWERPC_NONE;
7127 }
7128 }
7129 }
7130 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7131 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7132 {
7133 // Second instruction of a global dynamic sequence,
7134 // the __tls_get_addr call
7135 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7136 const bool final = gsym == NULL || gsym->final_value_is_known();
7137 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7138 if (tls_type != tls::TLSOPT_NONE)
7139 {
7140 if (tls_type == tls::TLSOPT_TO_IE)
7141 {
7142 Insn* iview = reinterpret_cast<Insn*>(view);
7143 Insn insn = add_3_3_13;
7144 if (size == 32)
7145 insn = add_3_3_2;
7146 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7147 r_type = elfcpp::R_POWERPC_NONE;
7148 }
7149 else
7150 {
7151 Insn* iview = reinterpret_cast<Insn*>(view);
7152 Insn insn = addi_3_3;
7153 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7154 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7155 view += 2 * big_endian;
7156 value = psymval->value(object, rela.get_r_addend());
7157 }
7158 this->skip_next_tls_get_addr_call();
7159 }
7160 }
7161 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7162 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7163 {
7164 // Second instruction of a local dynamic sequence,
7165 // the __tls_get_addr call
7166 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7167 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7168 if (tls_type == tls::TLSOPT_TO_LE)
7169 {
7170 Insn* iview = reinterpret_cast<Insn*>(view);
7171 Insn insn = addi_3_3;
7172 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7173 this->skip_next_tls_get_addr_call();
7174 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7175 view += 2 * big_endian;
7176 value = dtp_offset;
7177 }
7178 }
7179 else if (r_type == elfcpp::R_POWERPC_TLS)
7180 {
7181 // Second instruction of an initial exec sequence
7182 const bool final = gsym == NULL || gsym->final_value_is_known();
7183 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7184 if (tls_type == tls::TLSOPT_TO_LE)
7185 {
7186 Insn* iview = reinterpret_cast<Insn*>(view);
7187 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7188 unsigned int reg = size == 32 ? 2 : 13;
7189 insn = at_tls_transform(insn, reg);
7190 gold_assert(insn != 0);
7191 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7192 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7193 view += 2 * big_endian;
7194 value = psymval->value(object, rela.get_r_addend());
7195 }
7196 }
7197 else if (!has_stub_value)
7198 {
7199 Address addend = 0;
7200 if (r_type != elfcpp::R_PPC_PLTREL24)
7201 addend = rela.get_r_addend();
7202 value = psymval->value(object, addend);
7203 if (size == 64 && is_branch_reloc(r_type))
7204 {
7205 if (target->abiversion() >= 2)
7206 {
7207 if (gsym != NULL)
7208 value += object->ppc64_local_entry_offset(gsym);
7209 else
7210 value += object->ppc64_local_entry_offset(r_sym);
7211 }
7212 else
7213 {
7214 unsigned int dest_shndx;
7215 target->symval_for_branch(relinfo->symtab, gsym, object,
7216 &value, &dest_shndx);
7217 }
7218 }
7219 unsigned long max_branch_offset = max_branch_delta(r_type);
7220 if (max_branch_offset != 0
7221 && value - address + max_branch_offset >= 2 * max_branch_offset)
7222 {
7223 Stub_table<size, big_endian>* stub_table
7224 = object->stub_table(relinfo->data_shndx);
7225 if (stub_table != NULL)
7226 {
7227 Address off = stub_table->find_long_branch_entry(object, value);
7228 if (off != invalid_address)
7229 {
7230 value = (stub_table->stub_address() + stub_table->plt_size()
7231 + off);
7232 has_stub_value = true;
7233 }
7234 }
7235 }
7236 }
7237
7238 switch (r_type)
7239 {
7240 case elfcpp::R_PPC64_REL64:
7241 case elfcpp::R_POWERPC_REL32:
7242 case elfcpp::R_POWERPC_REL24:
7243 case elfcpp::R_PPC_PLTREL24:
7244 case elfcpp::R_PPC_LOCAL24PC:
7245 case elfcpp::R_POWERPC_REL16:
7246 case elfcpp::R_POWERPC_REL16_LO:
7247 case elfcpp::R_POWERPC_REL16_HI:
7248 case elfcpp::R_POWERPC_REL16_HA:
7249 case elfcpp::R_POWERPC_REL14:
7250 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7251 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7252 value -= address;
7253 break;
7254
7255 case elfcpp::R_PPC64_TOC16:
7256 case elfcpp::R_PPC64_TOC16_LO:
7257 case elfcpp::R_PPC64_TOC16_HI:
7258 case elfcpp::R_PPC64_TOC16_HA:
7259 case elfcpp::R_PPC64_TOC16_DS:
7260 case elfcpp::R_PPC64_TOC16_LO_DS:
7261 // Subtract the TOC base address.
7262 value -= (target->got_section()->output_section()->address()
7263 + object->toc_base_offset());
7264 break;
7265
7266 case elfcpp::R_POWERPC_SECTOFF:
7267 case elfcpp::R_POWERPC_SECTOFF_LO:
7268 case elfcpp::R_POWERPC_SECTOFF_HI:
7269 case elfcpp::R_POWERPC_SECTOFF_HA:
7270 case elfcpp::R_PPC64_SECTOFF_DS:
7271 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7272 if (os != NULL)
7273 value -= os->address();
7274 break;
7275
7276 case elfcpp::R_PPC64_TPREL16_DS:
7277 case elfcpp::R_PPC64_TPREL16_LO_DS:
7278 case elfcpp::R_PPC64_TPREL16_HIGH:
7279 case elfcpp::R_PPC64_TPREL16_HIGHA:
7280 if (size != 64)
7281 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7282 break;
7283 case elfcpp::R_POWERPC_TPREL16:
7284 case elfcpp::R_POWERPC_TPREL16_LO:
7285 case elfcpp::R_POWERPC_TPREL16_HI:
7286 case elfcpp::R_POWERPC_TPREL16_HA:
7287 case elfcpp::R_POWERPC_TPREL:
7288 case elfcpp::R_PPC64_TPREL16_HIGHER:
7289 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7290 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7291 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7292 // tls symbol values are relative to tls_segment()->vaddr()
7293 value -= tp_offset;
7294 break;
7295
7296 case elfcpp::R_PPC64_DTPREL16_DS:
7297 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7298 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7299 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7300 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7301 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7302 if (size != 64)
7303 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7304 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7305 break;
7306 case elfcpp::R_POWERPC_DTPREL16:
7307 case elfcpp::R_POWERPC_DTPREL16_LO:
7308 case elfcpp::R_POWERPC_DTPREL16_HI:
7309 case elfcpp::R_POWERPC_DTPREL16_HA:
7310 case elfcpp::R_POWERPC_DTPREL:
7311 case elfcpp::R_PPC64_DTPREL16_HIGH:
7312 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7313 // tls symbol values are relative to tls_segment()->vaddr()
7314 value -= dtp_offset;
7315 break;
7316
7317 case elfcpp::R_PPC64_ADDR64_LOCAL:
7318 if (gsym != NULL)
7319 value += object->ppc64_local_entry_offset(gsym);
7320 else
7321 value += object->ppc64_local_entry_offset(r_sym);
7322 break;
7323
7324 default:
7325 break;
7326 }
7327
7328 Insn branch_bit = 0;
7329 switch (r_type)
7330 {
7331 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7332 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7333 branch_bit = 1 << 21;
7334 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7335 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7336 {
7337 Insn* iview = reinterpret_cast<Insn*>(view);
7338 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7339 insn &= ~(1 << 21);
7340 insn |= branch_bit;
7341 if (this->is_isa_v2)
7342 {
7343 // Set 'a' bit. This is 0b00010 in BO field for branch
7344 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7345 // for branch on CTR insns (BO == 1a00t or 1a01t).
7346 if ((insn & (0x14 << 21)) == (0x04 << 21))
7347 insn |= 0x02 << 21;
7348 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7349 insn |= 0x08 << 21;
7350 else
7351 break;
7352 }
7353 else
7354 {
7355 // Invert 'y' bit if not the default.
7356 if (static_cast<Signed_address>(value) < 0)
7357 insn ^= 1 << 21;
7358 }
7359 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7360 }
7361 break;
7362
7363 default:
7364 break;
7365 }
7366
7367 if (size == 64)
7368 {
7369 // Multi-instruction sequences that access the TOC can be
7370 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7371 // to nop; addi rb,r2,x;
7372 switch (r_type)
7373 {
7374 default:
7375 break;
7376
7377 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7378 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7379 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7380 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7381 case elfcpp::R_POWERPC_GOT16_HA:
7382 case elfcpp::R_PPC64_TOC16_HA:
7383 if (parameters->options().toc_optimize())
7384 {
7385 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7386 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7387 if ((insn & ((0x3f << 26) | 0x1f << 16))
7388 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7389 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7390 _("toc optimization is not supported "
7391 "for %#08x instruction"), insn);
7392 else if (value + 0x8000 < 0x10000)
7393 {
7394 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7395 return true;
7396 }
7397 }
7398 break;
7399
7400 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7401 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7402 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7403 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7404 case elfcpp::R_POWERPC_GOT16_LO:
7405 case elfcpp::R_PPC64_GOT16_LO_DS:
7406 case elfcpp::R_PPC64_TOC16_LO:
7407 case elfcpp::R_PPC64_TOC16_LO_DS:
7408 if (parameters->options().toc_optimize())
7409 {
7410 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7411 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7412 if (!ok_lo_toc_insn(insn))
7413 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7414 _("toc optimization is not supported "
7415 "for %#08x instruction"), insn);
7416 else if (value + 0x8000 < 0x10000)
7417 {
7418 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7419 {
7420 // Transform addic to addi when we change reg.
7421 insn &= ~((0x3f << 26) | (0x1f << 16));
7422 insn |= (14u << 26) | (2 << 16);
7423 }
7424 else
7425 {
7426 insn &= ~(0x1f << 16);
7427 insn |= 2 << 16;
7428 }
7429 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7430 }
7431 }
7432 break;
7433 }
7434 }
7435
7436 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7437 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7438 switch (r_type)
7439 {
7440 case elfcpp::R_POWERPC_ADDR32:
7441 case elfcpp::R_POWERPC_UADDR32:
7442 if (size == 64)
7443 overflow = Reloc::CHECK_BITFIELD;
7444 break;
7445
7446 case elfcpp::R_POWERPC_REL32:
7447 if (size == 64)
7448 overflow = Reloc::CHECK_SIGNED;
7449 break;
7450
7451 case elfcpp::R_POWERPC_UADDR16:
7452 overflow = Reloc::CHECK_BITFIELD;
7453 break;
7454
7455 case elfcpp::R_POWERPC_ADDR16:
7456 // We really should have three separate relocations,
7457 // one for 16-bit data, one for insns with 16-bit signed fields,
7458 // and one for insns with 16-bit unsigned fields.
7459 overflow = Reloc::CHECK_BITFIELD;
7460 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7461 overflow = Reloc::CHECK_LOW_INSN;
7462 break;
7463
7464 case elfcpp::R_POWERPC_ADDR16_HI:
7465 case elfcpp::R_POWERPC_ADDR16_HA:
7466 case elfcpp::R_POWERPC_GOT16_HI:
7467 case elfcpp::R_POWERPC_GOT16_HA:
7468 case elfcpp::R_POWERPC_PLT16_HI:
7469 case elfcpp::R_POWERPC_PLT16_HA:
7470 case elfcpp::R_POWERPC_SECTOFF_HI:
7471 case elfcpp::R_POWERPC_SECTOFF_HA:
7472 case elfcpp::R_PPC64_TOC16_HI:
7473 case elfcpp::R_PPC64_TOC16_HA:
7474 case elfcpp::R_PPC64_PLTGOT16_HI:
7475 case elfcpp::R_PPC64_PLTGOT16_HA:
7476 case elfcpp::R_POWERPC_TPREL16_HI:
7477 case elfcpp::R_POWERPC_TPREL16_HA:
7478 case elfcpp::R_POWERPC_DTPREL16_HI:
7479 case elfcpp::R_POWERPC_DTPREL16_HA:
7480 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7481 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7482 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7483 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7484 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7485 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7486 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7487 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7488 case elfcpp::R_POWERPC_REL16_HI:
7489 case elfcpp::R_POWERPC_REL16_HA:
7490 if (size != 32)
7491 overflow = Reloc::CHECK_HIGH_INSN;
7492 break;
7493
7494 case elfcpp::R_POWERPC_REL16:
7495 case elfcpp::R_PPC64_TOC16:
7496 case elfcpp::R_POWERPC_GOT16:
7497 case elfcpp::R_POWERPC_SECTOFF:
7498 case elfcpp::R_POWERPC_TPREL16:
7499 case elfcpp::R_POWERPC_DTPREL16:
7500 case elfcpp::R_POWERPC_GOT_TLSGD16:
7501 case elfcpp::R_POWERPC_GOT_TLSLD16:
7502 case elfcpp::R_POWERPC_GOT_TPREL16:
7503 case elfcpp::R_POWERPC_GOT_DTPREL16:
7504 overflow = Reloc::CHECK_LOW_INSN;
7505 break;
7506
7507 case elfcpp::R_POWERPC_ADDR24:
7508 case elfcpp::R_POWERPC_ADDR14:
7509 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7510 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7511 case elfcpp::R_PPC64_ADDR16_DS:
7512 case elfcpp::R_POWERPC_REL24:
7513 case elfcpp::R_PPC_PLTREL24:
7514 case elfcpp::R_PPC_LOCAL24PC:
7515 case elfcpp::R_PPC64_TPREL16_DS:
7516 case elfcpp::R_PPC64_DTPREL16_DS:
7517 case elfcpp::R_PPC64_TOC16_DS:
7518 case elfcpp::R_PPC64_GOT16_DS:
7519 case elfcpp::R_PPC64_SECTOFF_DS:
7520 case elfcpp::R_POWERPC_REL14:
7521 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7522 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7523 overflow = Reloc::CHECK_SIGNED;
7524 break;
7525 }
7526
7527 if (overflow == Reloc::CHECK_LOW_INSN
7528 || overflow == Reloc::CHECK_HIGH_INSN)
7529 {
7530 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7531 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7532
7533 overflow = Reloc::CHECK_SIGNED;
7534 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7535 overflow = Reloc::CHECK_BITFIELD;
7536 else if (overflow == Reloc::CHECK_LOW_INSN
7537 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7538 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7539 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7540 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7541 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7542 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7543 overflow = Reloc::CHECK_UNSIGNED;
7544 }
7545
7546 typename Powerpc_relocate_functions<size, big_endian>::Status status
7547 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7548 switch (r_type)
7549 {
7550 case elfcpp::R_POWERPC_NONE:
7551 case elfcpp::R_POWERPC_TLS:
7552 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7553 case elfcpp::R_POWERPC_GNU_VTENTRY:
7554 break;
7555
7556 case elfcpp::R_PPC64_ADDR64:
7557 case elfcpp::R_PPC64_REL64:
7558 case elfcpp::R_PPC64_TOC:
7559 case elfcpp::R_PPC64_ADDR64_LOCAL:
7560 Reloc::addr64(view, value);
7561 break;
7562
7563 case elfcpp::R_POWERPC_TPREL:
7564 case elfcpp::R_POWERPC_DTPREL:
7565 if (size == 64)
7566 Reloc::addr64(view, value);
7567 else
7568 status = Reloc::addr32(view, value, overflow);
7569 break;
7570
7571 case elfcpp::R_PPC64_UADDR64:
7572 Reloc::addr64_u(view, value);
7573 break;
7574
7575 case elfcpp::R_POWERPC_ADDR32:
7576 status = Reloc::addr32(view, value, overflow);
7577 break;
7578
7579 case elfcpp::R_POWERPC_REL32:
7580 case elfcpp::R_POWERPC_UADDR32:
7581 status = Reloc::addr32_u(view, value, overflow);
7582 break;
7583
7584 case elfcpp::R_POWERPC_ADDR24:
7585 case elfcpp::R_POWERPC_REL24:
7586 case elfcpp::R_PPC_PLTREL24:
7587 case elfcpp::R_PPC_LOCAL24PC:
7588 status = Reloc::addr24(view, value, overflow);
7589 break;
7590
7591 case elfcpp::R_POWERPC_GOT_DTPREL16:
7592 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7593 if (size == 64)
7594 {
7595 status = Reloc::addr16_ds(view, value, overflow);
7596 break;
7597 }
7598 case elfcpp::R_POWERPC_ADDR16:
7599 case elfcpp::R_POWERPC_REL16:
7600 case elfcpp::R_PPC64_TOC16:
7601 case elfcpp::R_POWERPC_GOT16:
7602 case elfcpp::R_POWERPC_SECTOFF:
7603 case elfcpp::R_POWERPC_TPREL16:
7604 case elfcpp::R_POWERPC_DTPREL16:
7605 case elfcpp::R_POWERPC_GOT_TLSGD16:
7606 case elfcpp::R_POWERPC_GOT_TLSLD16:
7607 case elfcpp::R_POWERPC_GOT_TPREL16:
7608 case elfcpp::R_POWERPC_ADDR16_LO:
7609 case elfcpp::R_POWERPC_REL16_LO:
7610 case elfcpp::R_PPC64_TOC16_LO:
7611 case elfcpp::R_POWERPC_GOT16_LO:
7612 case elfcpp::R_POWERPC_SECTOFF_LO:
7613 case elfcpp::R_POWERPC_TPREL16_LO:
7614 case elfcpp::R_POWERPC_DTPREL16_LO:
7615 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7616 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7617 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7618 status = Reloc::addr16(view, value, overflow);
7619 break;
7620
7621 case elfcpp::R_POWERPC_UADDR16:
7622 status = Reloc::addr16_u(view, value, overflow);
7623 break;
7624
7625 case elfcpp::R_PPC64_ADDR16_HIGH:
7626 case elfcpp::R_PPC64_TPREL16_HIGH:
7627 case elfcpp::R_PPC64_DTPREL16_HIGH:
7628 if (size == 32)
7629 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7630 goto unsupp;
7631 case elfcpp::R_POWERPC_ADDR16_HI:
7632 case elfcpp::R_POWERPC_REL16_HI:
7633 case elfcpp::R_PPC64_TOC16_HI:
7634 case elfcpp::R_POWERPC_GOT16_HI:
7635 case elfcpp::R_POWERPC_SECTOFF_HI:
7636 case elfcpp::R_POWERPC_TPREL16_HI:
7637 case elfcpp::R_POWERPC_DTPREL16_HI:
7638 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7639 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7640 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7641 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7642 Reloc::addr16_hi(view, value);
7643 break;
7644
7645 case elfcpp::R_PPC64_ADDR16_HIGHA:
7646 case elfcpp::R_PPC64_TPREL16_HIGHA:
7647 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7648 if (size == 32)
7649 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7650 goto unsupp;
7651 case elfcpp::R_POWERPC_ADDR16_HA:
7652 case elfcpp::R_POWERPC_REL16_HA:
7653 case elfcpp::R_PPC64_TOC16_HA:
7654 case elfcpp::R_POWERPC_GOT16_HA:
7655 case elfcpp::R_POWERPC_SECTOFF_HA:
7656 case elfcpp::R_POWERPC_TPREL16_HA:
7657 case elfcpp::R_POWERPC_DTPREL16_HA:
7658 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7659 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7660 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7661 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7662 Reloc::addr16_ha(view, value);
7663 break;
7664
7665 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7666 if (size == 32)
7667 // R_PPC_EMB_NADDR16_LO
7668 goto unsupp;
7669 case elfcpp::R_PPC64_ADDR16_HIGHER:
7670 case elfcpp::R_PPC64_TPREL16_HIGHER:
7671 Reloc::addr16_hi2(view, value);
7672 break;
7673
7674 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7675 if (size == 32)
7676 // R_PPC_EMB_NADDR16_HI
7677 goto unsupp;
7678 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7679 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7680 Reloc::addr16_ha2(view, value);
7681 break;
7682
7683 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7684 if (size == 32)
7685 // R_PPC_EMB_NADDR16_HA
7686 goto unsupp;
7687 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7688 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7689 Reloc::addr16_hi3(view, value);
7690 break;
7691
7692 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7693 if (size == 32)
7694 // R_PPC_EMB_SDAI16
7695 goto unsupp;
7696 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7697 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7698 Reloc::addr16_ha3(view, value);
7699 break;
7700
7701 case elfcpp::R_PPC64_DTPREL16_DS:
7702 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7703 if (size == 32)
7704 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7705 goto unsupp;
7706 case elfcpp::R_PPC64_TPREL16_DS:
7707 case elfcpp::R_PPC64_TPREL16_LO_DS:
7708 if (size == 32)
7709 // R_PPC_TLSGD, R_PPC_TLSLD
7710 break;
7711 case elfcpp::R_PPC64_ADDR16_DS:
7712 case elfcpp::R_PPC64_ADDR16_LO_DS:
7713 case elfcpp::R_PPC64_TOC16_DS:
7714 case elfcpp::R_PPC64_TOC16_LO_DS:
7715 case elfcpp::R_PPC64_GOT16_DS:
7716 case elfcpp::R_PPC64_GOT16_LO_DS:
7717 case elfcpp::R_PPC64_SECTOFF_DS:
7718 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7719 status = Reloc::addr16_ds(view, value, overflow);
7720 break;
7721
7722 case elfcpp::R_POWERPC_ADDR14:
7723 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7724 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7725 case elfcpp::R_POWERPC_REL14:
7726 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7727 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7728 status = Reloc::addr14(view, value, overflow);
7729 break;
7730
7731 case elfcpp::R_POWERPC_COPY:
7732 case elfcpp::R_POWERPC_GLOB_DAT:
7733 case elfcpp::R_POWERPC_JMP_SLOT:
7734 case elfcpp::R_POWERPC_RELATIVE:
7735 case elfcpp::R_POWERPC_DTPMOD:
7736 case elfcpp::R_PPC64_JMP_IREL:
7737 case elfcpp::R_POWERPC_IRELATIVE:
7738 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7739 _("unexpected reloc %u in object file"),
7740 r_type);
7741 break;
7742
7743 case elfcpp::R_PPC_EMB_SDA21:
7744 if (size == 32)
7745 goto unsupp;
7746 else
7747 {
7748 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7749 }
7750 break;
7751
7752 case elfcpp::R_PPC_EMB_SDA2I16:
7753 case elfcpp::R_PPC_EMB_SDA2REL:
7754 if (size == 32)
7755 goto unsupp;
7756 // R_PPC64_TLSGD, R_PPC64_TLSLD
7757 break;
7758
7759 case elfcpp::R_POWERPC_PLT32:
7760 case elfcpp::R_POWERPC_PLTREL32:
7761 case elfcpp::R_POWERPC_PLT16_LO:
7762 case elfcpp::R_POWERPC_PLT16_HI:
7763 case elfcpp::R_POWERPC_PLT16_HA:
7764 case elfcpp::R_PPC_SDAREL16:
7765 case elfcpp::R_POWERPC_ADDR30:
7766 case elfcpp::R_PPC64_PLT64:
7767 case elfcpp::R_PPC64_PLTREL64:
7768 case elfcpp::R_PPC64_PLTGOT16:
7769 case elfcpp::R_PPC64_PLTGOT16_LO:
7770 case elfcpp::R_PPC64_PLTGOT16_HI:
7771 case elfcpp::R_PPC64_PLTGOT16_HA:
7772 case elfcpp::R_PPC64_PLT16_LO_DS:
7773 case elfcpp::R_PPC64_PLTGOT16_DS:
7774 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7775 case elfcpp::R_PPC_EMB_RELSDA:
7776 case elfcpp::R_PPC_TOC16:
7777 default:
7778 unsupp:
7779 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7780 _("unsupported reloc %u"),
7781 r_type);
7782 break;
7783 }
7784 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7785 && (has_stub_value
7786 || !(gsym != NULL
7787 && gsym->is_weak_undefined()
7788 && is_branch_reloc(r_type))))
7789 {
7790 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7791 _("relocation overflow"));
7792 if (has_stub_value)
7793 gold_info(_("try relinking with a smaller --stub-group-size"));
7794 }
7795
7796 return true;
7797 }
7798
7799 // Relocate section data.
7800
7801 template<int size, bool big_endian>
7802 void
7803 Target_powerpc<size, big_endian>::relocate_section(
7804 const Relocate_info<size, big_endian>* relinfo,
7805 unsigned int sh_type,
7806 const unsigned char* prelocs,
7807 size_t reloc_count,
7808 Output_section* output_section,
7809 bool needs_special_offset_handling,
7810 unsigned char* view,
7811 Address address,
7812 section_size_type view_size,
7813 const Reloc_symbol_changes* reloc_symbol_changes)
7814 {
7815 typedef Target_powerpc<size, big_endian> Powerpc;
7816 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7817 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7818 Powerpc_comdat_behavior;
7819
7820 gold_assert(sh_type == elfcpp::SHT_RELA);
7821
7822 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7823 Powerpc_relocate, Powerpc_comdat_behavior>(
7824 relinfo,
7825 this,
7826 prelocs,
7827 reloc_count,
7828 output_section,
7829 needs_special_offset_handling,
7830 view,
7831 address,
7832 view_size,
7833 reloc_symbol_changes);
7834 }
7835
7836 class Powerpc_scan_relocatable_reloc
7837 {
7838 public:
7839 // Return the strategy to use for a local symbol which is not a
7840 // section symbol, given the relocation type.
7841 inline Relocatable_relocs::Reloc_strategy
7842 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7843 {
7844 if (r_type == 0 && r_sym == 0)
7845 return Relocatable_relocs::RELOC_DISCARD;
7846 return Relocatable_relocs::RELOC_COPY;
7847 }
7848
7849 // Return the strategy to use for a local symbol which is a section
7850 // symbol, given the relocation type.
7851 inline Relocatable_relocs::Reloc_strategy
7852 local_section_strategy(unsigned int, Relobj*)
7853 {
7854 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7855 }
7856
7857 // Return the strategy to use for a global symbol, given the
7858 // relocation type, the object, and the symbol index.
7859 inline Relocatable_relocs::Reloc_strategy
7860 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7861 {
7862 if (r_type == elfcpp::R_PPC_PLTREL24)
7863 return Relocatable_relocs::RELOC_SPECIAL;
7864 return Relocatable_relocs::RELOC_COPY;
7865 }
7866 };
7867
7868 // Scan the relocs during a relocatable link.
7869
7870 template<int size, bool big_endian>
7871 void
7872 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
7873 Symbol_table* symtab,
7874 Layout* layout,
7875 Sized_relobj_file<size, big_endian>* object,
7876 unsigned int data_shndx,
7877 unsigned int sh_type,
7878 const unsigned char* prelocs,
7879 size_t reloc_count,
7880 Output_section* output_section,
7881 bool needs_special_offset_handling,
7882 size_t local_symbol_count,
7883 const unsigned char* plocal_symbols,
7884 Relocatable_relocs* rr)
7885 {
7886 gold_assert(sh_type == elfcpp::SHT_RELA);
7887
7888 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7889 Powerpc_scan_relocatable_reloc>(
7890 symtab,
7891 layout,
7892 object,
7893 data_shndx,
7894 prelocs,
7895 reloc_count,
7896 output_section,
7897 needs_special_offset_handling,
7898 local_symbol_count,
7899 plocal_symbols,
7900 rr);
7901 }
7902
7903 // Emit relocations for a section.
7904 // This is a modified version of the function by the same name in
7905 // target-reloc.h. Using relocate_special_relocatable for
7906 // R_PPC_PLTREL24 would require duplication of the entire body of the
7907 // loop, so we may as well duplicate the whole thing.
7908
7909 template<int size, bool big_endian>
7910 void
7911 Target_powerpc<size, big_endian>::relocate_relocs(
7912 const Relocate_info<size, big_endian>* relinfo,
7913 unsigned int sh_type,
7914 const unsigned char* prelocs,
7915 size_t reloc_count,
7916 Output_section* output_section,
7917 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7918 const Relocatable_relocs* rr,
7919 unsigned char*,
7920 Address view_address,
7921 section_size_type,
7922 unsigned char* reloc_view,
7923 section_size_type reloc_view_size)
7924 {
7925 gold_assert(sh_type == elfcpp::SHT_RELA);
7926
7927 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
7928 Reltype;
7929 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
7930 Reltype_write;
7931 const int reloc_size
7932 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7933
7934 Powerpc_relobj<size, big_endian>* const object
7935 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7936 const unsigned int local_count = object->local_symbol_count();
7937 unsigned int got2_shndx = object->got2_shndx();
7938 Address got2_addend = 0;
7939 if (got2_shndx != 0)
7940 {
7941 got2_addend = object->get_output_section_offset(got2_shndx);
7942 gold_assert(got2_addend != invalid_address);
7943 }
7944
7945 unsigned char* pwrite = reloc_view;
7946 bool zap_next = false;
7947 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
7948 {
7949 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
7950 if (strategy == Relocatable_relocs::RELOC_DISCARD)
7951 continue;
7952
7953 Reltype reloc(prelocs);
7954 Reltype_write reloc_write(pwrite);
7955
7956 Address offset = reloc.get_r_offset();
7957 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
7958 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
7959 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
7960 const unsigned int orig_r_sym = r_sym;
7961 typename elfcpp::Elf_types<size>::Elf_Swxword addend
7962 = reloc.get_r_addend();
7963 const Symbol* gsym = NULL;
7964
7965 if (zap_next)
7966 {
7967 // We could arrange to discard these and other relocs for
7968 // tls optimised sequences in the strategy methods, but for
7969 // now do as BFD ld does.
7970 r_type = elfcpp::R_POWERPC_NONE;
7971 zap_next = false;
7972 }
7973
7974 // Get the new symbol index.
7975 if (r_sym < local_count)
7976 {
7977 switch (strategy)
7978 {
7979 case Relocatable_relocs::RELOC_COPY:
7980 case Relocatable_relocs::RELOC_SPECIAL:
7981 if (r_sym != 0)
7982 {
7983 r_sym = object->symtab_index(r_sym);
7984 gold_assert(r_sym != -1U);
7985 }
7986 break;
7987
7988 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
7989 {
7990 // We are adjusting a section symbol. We need to find
7991 // the symbol table index of the section symbol for
7992 // the output section corresponding to input section
7993 // in which this symbol is defined.
7994 gold_assert(r_sym < local_count);
7995 bool is_ordinary;
7996 unsigned int shndx =
7997 object->local_symbol_input_shndx(r_sym, &is_ordinary);
7998 gold_assert(is_ordinary);
7999 Output_section* os = object->output_section(shndx);
8000 gold_assert(os != NULL);
8001 gold_assert(os->needs_symtab_index());
8002 r_sym = os->symtab_index();
8003 }
8004 break;
8005
8006 default:
8007 gold_unreachable();
8008 }
8009 }
8010 else
8011 {
8012 gsym = object->global_symbol(r_sym);
8013 gold_assert(gsym != NULL);
8014 if (gsym->is_forwarder())
8015 gsym = relinfo->symtab->resolve_forwards(gsym);
8016
8017 gold_assert(gsym->has_symtab_index());
8018 r_sym = gsym->symtab_index();
8019 }
8020
8021 // Get the new offset--the location in the output section where
8022 // this relocation should be applied.
8023 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8024 offset += offset_in_output_section;
8025 else
8026 {
8027 section_offset_type sot_offset =
8028 convert_types<section_offset_type, Address>(offset);
8029 section_offset_type new_sot_offset =
8030 output_section->output_offset(object, relinfo->data_shndx,
8031 sot_offset);
8032 gold_assert(new_sot_offset != -1);
8033 offset = new_sot_offset;
8034 }
8035
8036 // In an object file, r_offset is an offset within the section.
8037 // In an executable or dynamic object, generated by
8038 // --emit-relocs, r_offset is an absolute address.
8039 if (!parameters->options().relocatable())
8040 {
8041 offset += view_address;
8042 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8043 offset -= offset_in_output_section;
8044 }
8045
8046 // Handle the reloc addend based on the strategy.
8047 if (strategy == Relocatable_relocs::RELOC_COPY)
8048 ;
8049 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8050 {
8051 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8052 addend = psymval->value(object, addend);
8053 }
8054 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8055 {
8056 if (addend >= 32768)
8057 addend += got2_addend;
8058 }
8059 else
8060 gold_unreachable();
8061
8062 if (!parameters->options().relocatable())
8063 {
8064 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8065 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8066 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8067 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8068 {
8069 // First instruction of a global dynamic sequence,
8070 // arg setup insn.
8071 const bool final = gsym == NULL || gsym->final_value_is_known();
8072 switch (this->optimize_tls_gd(final))
8073 {
8074 case tls::TLSOPT_TO_IE:
8075 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8076 - elfcpp::R_POWERPC_GOT_TLSGD16);
8077 break;
8078 case tls::TLSOPT_TO_LE:
8079 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8080 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8081 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8082 else
8083 {
8084 r_type = elfcpp::R_POWERPC_NONE;
8085 offset -= 2 * big_endian;
8086 }
8087 break;
8088 default:
8089 break;
8090 }
8091 }
8092 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8093 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8094 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8095 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8096 {
8097 // First instruction of a local dynamic sequence,
8098 // arg setup insn.
8099 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8100 {
8101 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8102 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8103 {
8104 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8105 const Output_section* os = relinfo->layout->tls_segment()
8106 ->first_section();
8107 gold_assert(os != NULL);
8108 gold_assert(os->needs_symtab_index());
8109 r_sym = os->symtab_index();
8110 addend = dtp_offset;
8111 }
8112 else
8113 {
8114 r_type = elfcpp::R_POWERPC_NONE;
8115 offset -= 2 * big_endian;
8116 }
8117 }
8118 }
8119 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8120 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8121 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8122 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8123 {
8124 // First instruction of initial exec sequence.
8125 const bool final = gsym == NULL || gsym->final_value_is_known();
8126 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8127 {
8128 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8129 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8130 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8131 else
8132 {
8133 r_type = elfcpp::R_POWERPC_NONE;
8134 offset -= 2 * big_endian;
8135 }
8136 }
8137 }
8138 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8139 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8140 {
8141 // Second instruction of a global dynamic sequence,
8142 // the __tls_get_addr call
8143 const bool final = gsym == NULL || gsym->final_value_is_known();
8144 switch (this->optimize_tls_gd(final))
8145 {
8146 case tls::TLSOPT_TO_IE:
8147 r_type = elfcpp::R_POWERPC_NONE;
8148 zap_next = true;
8149 break;
8150 case tls::TLSOPT_TO_LE:
8151 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8152 offset += 2 * big_endian;
8153 zap_next = true;
8154 break;
8155 default:
8156 break;
8157 }
8158 }
8159 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8160 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8161 {
8162 // Second instruction of a local dynamic sequence,
8163 // the __tls_get_addr call
8164 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8165 {
8166 const Output_section* os = relinfo->layout->tls_segment()
8167 ->first_section();
8168 gold_assert(os != NULL);
8169 gold_assert(os->needs_symtab_index());
8170 r_sym = os->symtab_index();
8171 addend = dtp_offset;
8172 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8173 offset += 2 * big_endian;
8174 zap_next = true;
8175 }
8176 }
8177 else if (r_type == elfcpp::R_POWERPC_TLS)
8178 {
8179 // Second instruction of an initial exec sequence
8180 const bool final = gsym == NULL || gsym->final_value_is_known();
8181 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8182 {
8183 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8184 offset += 2 * big_endian;
8185 }
8186 }
8187 }
8188
8189 reloc_write.put_r_offset(offset);
8190 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8191 reloc_write.put_r_addend(addend);
8192
8193 pwrite += reloc_size;
8194 }
8195
8196 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8197 == reloc_view_size);
8198 }
8199
8200 // Return the value to use for a dynamic symbol which requires special
8201 // treatment. This is how we support equality comparisons of function
8202 // pointers across shared library boundaries, as described in the
8203 // processor specific ABI supplement.
8204
8205 template<int size, bool big_endian>
8206 uint64_t
8207 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8208 {
8209 if (size == 32)
8210 {
8211 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8212 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8213 p != this->stub_tables_.end();
8214 ++p)
8215 {
8216 Address off = (*p)->find_plt_call_entry(gsym);
8217 if (off != invalid_address)
8218 return (*p)->stub_address() + off;
8219 }
8220 }
8221 else if (this->abiversion() >= 2)
8222 {
8223 unsigned int off = this->glink_section()->find_global_entry(gsym);
8224 if (off != (unsigned int)-1)
8225 return this->glink_section()->global_entry_address() + off;
8226 }
8227 gold_unreachable();
8228 }
8229
8230 // Return the PLT address to use for a local symbol.
8231 template<int size, bool big_endian>
8232 uint64_t
8233 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8234 const Relobj* object,
8235 unsigned int symndx) const
8236 {
8237 if (size == 32)
8238 {
8239 const Sized_relobj<size, big_endian>* relobj
8240 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8241 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8242 p != this->stub_tables_.end();
8243 ++p)
8244 {
8245 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8246 symndx);
8247 if (off != invalid_address)
8248 return (*p)->stub_address() + off;
8249 }
8250 }
8251 gold_unreachable();
8252 }
8253
8254 // Return the PLT address to use for a global symbol.
8255 template<int size, bool big_endian>
8256 uint64_t
8257 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8258 const Symbol* gsym) const
8259 {
8260 if (size == 32)
8261 {
8262 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8263 p != this->stub_tables_.end();
8264 ++p)
8265 {
8266 Address off = (*p)->find_plt_call_entry(gsym);
8267 if (off != invalid_address)
8268 return (*p)->stub_address() + off;
8269 }
8270 }
8271 else if (this->abiversion() >= 2)
8272 {
8273 unsigned int off = this->glink_section()->find_global_entry(gsym);
8274 if (off != (unsigned int)-1)
8275 return this->glink_section()->global_entry_address() + off;
8276 }
8277 gold_unreachable();
8278 }
8279
8280 // Return the offset to use for the GOT_INDX'th got entry which is
8281 // for a local tls symbol specified by OBJECT, SYMNDX.
8282 template<int size, bool big_endian>
8283 int64_t
8284 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8285 const Relobj* object,
8286 unsigned int symndx,
8287 unsigned int got_indx) const
8288 {
8289 const Powerpc_relobj<size, big_endian>* ppc_object
8290 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8291 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8292 {
8293 for (Got_type got_type = GOT_TYPE_TLSGD;
8294 got_type <= GOT_TYPE_TPREL;
8295 got_type = Got_type(got_type + 1))
8296 if (ppc_object->local_has_got_offset(symndx, got_type))
8297 {
8298 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8299 if (got_type == GOT_TYPE_TLSGD)
8300 off += size / 8;
8301 if (off == got_indx * (size / 8))
8302 {
8303 if (got_type == GOT_TYPE_TPREL)
8304 return -tp_offset;
8305 else
8306 return -dtp_offset;
8307 }
8308 }
8309 }
8310 gold_unreachable();
8311 }
8312
8313 // Return the offset to use for the GOT_INDX'th got entry which is
8314 // for global tls symbol GSYM.
8315 template<int size, bool big_endian>
8316 int64_t
8317 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8318 Symbol* gsym,
8319 unsigned int got_indx) const
8320 {
8321 if (gsym->type() == elfcpp::STT_TLS)
8322 {
8323 for (Got_type got_type = GOT_TYPE_TLSGD;
8324 got_type <= GOT_TYPE_TPREL;
8325 got_type = Got_type(got_type + 1))
8326 if (gsym->has_got_offset(got_type))
8327 {
8328 unsigned int off = gsym->got_offset(got_type);
8329 if (got_type == GOT_TYPE_TLSGD)
8330 off += size / 8;
8331 if (off == got_indx * (size / 8))
8332 {
8333 if (got_type == GOT_TYPE_TPREL)
8334 return -tp_offset;
8335 else
8336 return -dtp_offset;
8337 }
8338 }
8339 }
8340 gold_unreachable();
8341 }
8342
8343 // The selector for powerpc object files.
8344
8345 template<int size, bool big_endian>
8346 class Target_selector_powerpc : public Target_selector
8347 {
8348 public:
8349 Target_selector_powerpc()
8350 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8351 size, big_endian,
8352 (size == 64
8353 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8354 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8355 (size == 64
8356 ? (big_endian ? "elf64ppc" : "elf64lppc")
8357 : (big_endian ? "elf32ppc" : "elf32lppc")))
8358 { }
8359
8360 virtual Target*
8361 do_instantiate_target()
8362 { return new Target_powerpc<size, big_endian>(); }
8363 };
8364
8365 Target_selector_powerpc<32, true> target_selector_ppc32;
8366 Target_selector_powerpc<32, false> target_selector_ppc32le;
8367 Target_selector_powerpc<64, true> target_selector_ppc64;
8368 Target_selector_powerpc<64, false> target_selector_ppc64le;
8369
8370 // Instantiate these constants for -O0
8371 template<int size, bool big_endian>
8372 const int Output_data_glink<size, big_endian>::pltresolve_size;
8373 template<int size, bool big_endian>
8374 const typename Output_data_glink<size, big_endian>::Address
8375 Output_data_glink<size, big_endian>::invalid_address;
8376 template<int size, bool big_endian>
8377 const typename Stub_table<size, big_endian>::Address
8378 Stub_table<size, big_endian>::invalid_address;
8379 template<int size, bool big_endian>
8380 const typename Target_powerpc<size, big_endian>::Address
8381 Target_powerpc<size, big_endian>::invalid_address;
8382
8383 } // End anonymous namespace.
This page took 0.248872 seconds and 5 git commands to generate.