Support PLT16 relocs against local symbols
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2018 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93 typedef Unordered_map<Address, Section_refs> Access_from;
94
95 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99 has_small_toc_reloc_(false), opd_valid_(false),
100 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101 access_from_map_(), has14_(), stub_table_index_(), st_other_()
102 {
103 this->set_abiversion(0);
104 }
105
106 ~Powerpc_relobj()
107 { }
108
109 // Read the symbols then set up st_other vector.
110 void
111 do_read_symbols(Read_symbols_data*);
112
113 // Arrange to always relocate .toc first.
114 virtual void
115 do_relocate_sections(
116 const Symbol_table* symtab, const Layout* layout,
117 const unsigned char* pshdrs, Output_file* of,
118 typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120 // The .toc section index.
121 unsigned int
122 toc_shndx() const
123 {
124 return this->toc_;
125 }
126
127 // Mark .toc entry at OFF as not optimizable.
128 void
129 set_no_toc_opt(Address off)
130 {
131 if (this->no_toc_opt_.empty())
132 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133 / (size / 8));
134 off /= size / 8;
135 if (off < this->no_toc_opt_.size())
136 this->no_toc_opt_[off] = true;
137 }
138
139 // Mark the entire .toc as not optimizable.
140 void
141 set_no_toc_opt()
142 {
143 this->no_toc_opt_.resize(1);
144 this->no_toc_opt_[0] = true;
145 }
146
147 // Return true if code using the .toc entry at OFF should not be edited.
148 bool
149 no_toc_opt(Address off) const
150 {
151 if (this->no_toc_opt_.empty())
152 return false;
153 off /= size / 8;
154 if (off >= this->no_toc_opt_.size())
155 return true;
156 return this->no_toc_opt_[off];
157 }
158
159 // The .got2 section shndx.
160 unsigned int
161 got2_shndx() const
162 {
163 if (size == 32)
164 return this->special_;
165 else
166 return 0;
167 }
168
169 // The .opd section shndx.
170 unsigned int
171 opd_shndx() const
172 {
173 if (size == 32)
174 return 0;
175 else
176 return this->special_;
177 }
178
179 // Init OPD entry arrays.
180 void
181 init_opd(size_t opd_size)
182 {
183 size_t count = this->opd_ent_ndx(opd_size);
184 this->opd_ent_.resize(count);
185 }
186
187 // Return section and offset of function entry for .opd + R_OFF.
188 unsigned int
189 get_opd_ent(Address r_off, Address* value = NULL) const
190 {
191 size_t ndx = this->opd_ent_ndx(r_off);
192 gold_assert(ndx < this->opd_ent_.size());
193 gold_assert(this->opd_ent_[ndx].shndx != 0);
194 if (value != NULL)
195 *value = this->opd_ent_[ndx].off;
196 return this->opd_ent_[ndx].shndx;
197 }
198
199 // Set section and offset of function entry for .opd + R_OFF.
200 void
201 set_opd_ent(Address r_off, unsigned int shndx, Address value)
202 {
203 size_t ndx = this->opd_ent_ndx(r_off);
204 gold_assert(ndx < this->opd_ent_.size());
205 this->opd_ent_[ndx].shndx = shndx;
206 this->opd_ent_[ndx].off = value;
207 }
208
209 // Return discard flag for .opd + R_OFF.
210 bool
211 get_opd_discard(Address r_off) const
212 {
213 size_t ndx = this->opd_ent_ndx(r_off);
214 gold_assert(ndx < this->opd_ent_.size());
215 return this->opd_ent_[ndx].discard;
216 }
217
218 // Set discard flag for .opd + R_OFF.
219 void
220 set_opd_discard(Address r_off)
221 {
222 size_t ndx = this->opd_ent_ndx(r_off);
223 gold_assert(ndx < this->opd_ent_.size());
224 this->opd_ent_[ndx].discard = true;
225 }
226
227 bool
228 opd_valid() const
229 { return this->opd_valid_; }
230
231 void
232 set_opd_valid()
233 { this->opd_valid_ = true; }
234
235 // Examine .rela.opd to build info about function entry points.
236 void
237 scan_opd_relocs(size_t reloc_count,
238 const unsigned char* prelocs,
239 const unsigned char* plocal_syms);
240
241 // Returns true if a code sequence loading a TOC entry can be
242 // converted into code calculating a TOC pointer relative offset.
243 bool
244 make_toc_relative(Target_powerpc<size, big_endian>* target,
245 Address* value);
246
247 // Perform the Sized_relobj_file method, then set up opd info from
248 // .opd relocs.
249 void
250 do_read_relocs(Read_relocs_data*);
251
252 bool
253 do_find_special_sections(Read_symbols_data* sd);
254
255 // Adjust this local symbol value. Return false if the symbol
256 // should be discarded from the output file.
257 bool
258 do_adjust_local_symbol(Symbol_value<size>* lv) const
259 {
260 if (size == 64 && this->opd_shndx() != 0)
261 {
262 bool is_ordinary;
263 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264 return true;
265 if (this->get_opd_discard(lv->input_value()))
266 return false;
267 }
268 return true;
269 }
270
271 Access_from*
272 access_from_map()
273 { return &this->access_from_map_; }
274
275 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276 // section at DST_OFF.
277 void
278 add_reference(Relobj* src_obj,
279 unsigned int src_indx,
280 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281 {
282 Section_id src_id(src_obj, src_indx);
283 this->access_from_map_[dst_off].insert(src_id);
284 }
285
286 // Add a reference to the code section specified by the .opd entry
287 // at DST_OFF
288 void
289 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290 {
291 size_t ndx = this->opd_ent_ndx(dst_off);
292 if (ndx >= this->opd_ent_.size())
293 this->opd_ent_.resize(ndx + 1);
294 this->opd_ent_[ndx].gc_mark = true;
295 }
296
297 void
298 process_gc_mark(Symbol_table* symtab)
299 {
300 for (size_t i = 0; i < this->opd_ent_.size(); i++)
301 if (this->opd_ent_[i].gc_mark)
302 {
303 unsigned int shndx = this->opd_ent_[i].shndx;
304 symtab->gc()->worklist().push_back(Section_id(this, shndx));
305 }
306 }
307
308 // Return offset in output GOT section that this object will use
309 // as a TOC pointer. Won't be just a constant with multi-toc support.
310 Address
311 toc_base_offset() const
312 { return 0x8000; }
313
314 void
315 set_has_small_toc_reloc()
316 { has_small_toc_reloc_ = true; }
317
318 bool
319 has_small_toc_reloc() const
320 { return has_small_toc_reloc_; }
321
322 void
323 set_has_14bit_branch(unsigned int shndx)
324 {
325 if (shndx >= this->has14_.size())
326 this->has14_.resize(shndx + 1);
327 this->has14_[shndx] = true;
328 }
329
330 bool
331 has_14bit_branch(unsigned int shndx) const
332 { return shndx < this->has14_.size() && this->has14_[shndx]; }
333
334 void
335 set_stub_table(unsigned int shndx, unsigned int stub_index)
336 {
337 if (shndx >= this->stub_table_index_.size())
338 this->stub_table_index_.resize(shndx + 1, -1);
339 this->stub_table_index_[shndx] = stub_index;
340 }
341
342 Stub_table<size, big_endian>*
343 stub_table(unsigned int shndx)
344 {
345 if (shndx < this->stub_table_index_.size())
346 {
347 Target_powerpc<size, big_endian>* target
348 = static_cast<Target_powerpc<size, big_endian>*>(
349 parameters->sized_target<size, big_endian>());
350 unsigned int indx = this->stub_table_index_[shndx];
351 if (indx < target->stub_tables().size())
352 return target->stub_tables()[indx];
353 }
354 return NULL;
355 }
356
357 void
358 clear_stub_table()
359 {
360 this->stub_table_index_.clear();
361 }
362
363 uint32_t
364 uniq() const
365 { return this->uniq_; }
366
367 int
368 abiversion() const
369 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371 // Set ABI version for input and output
372 void
373 set_abiversion(int ver);
374
375 unsigned int
376 st_other (unsigned int symndx) const
377 {
378 return this->st_other_[symndx];
379 }
380
381 unsigned int
382 ppc64_local_entry_offset(const Symbol* sym) const
383 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385 unsigned int
386 ppc64_local_entry_offset(unsigned int symndx) const
387 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390 struct Opd_ent
391 {
392 unsigned int shndx;
393 bool discard : 1;
394 bool gc_mark : 1;
395 Address off;
396 };
397
398 // Return index into opd_ent_ array for .opd entry at OFF.
399 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400 // apart when the language doesn't use the last 8-byte word, the
401 // environment pointer. Thus dividing the entry section offset by
402 // 16 will give an index into opd_ent_ that works for either layout
403 // of .opd. (It leaves some elements of the vector unused when .opd
404 // entries are spaced 24 bytes apart, but we don't know the spacing
405 // until relocations are processed, and in any case it is possible
406 // for an object to have some entries spaced 16 bytes apart and
407 // others 24 bytes apart.)
408 size_t
409 opd_ent_ndx(size_t off) const
410 { return off >> 4;}
411
412 // Per object unique identifier
413 uint32_t uniq_;
414
415 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416 unsigned int special_;
417
418 // For 64-bit the .rela.toc and .toc section shdnx.
419 unsigned int relatoc_;
420 unsigned int toc_;
421
422 // For 64-bit, whether this object uses small model relocs to access
423 // the toc.
424 bool has_small_toc_reloc_;
425
426 // Set at the start of gc_process_relocs, when we know opd_ent_
427 // vector is valid. The flag could be made atomic and set in
428 // do_read_relocs with memory_order_release and then tested with
429 // memory_order_acquire, potentially resulting in fewer entries in
430 // access_from_map_.
431 bool opd_valid_;
432
433 // Header e_flags
434 elfcpp::Elf_Word e_flags_;
435
436 // For 64-bit, an array with one entry per 64-bit word in the .toc
437 // section, set if accesses using that word cannot be optimised.
438 std::vector<bool> no_toc_opt_;
439
440 // The first 8-byte word of an OPD entry gives the address of the
441 // entry point of the function. Relocatable object files have a
442 // relocation on this word. The following vector records the
443 // section and offset specified by these relocations.
444 std::vector<Opd_ent> opd_ent_;
445
446 // References made to this object's .opd section when running
447 // gc_process_relocs for another object, before the opd_ent_ vector
448 // is valid for this object.
449 Access_from access_from_map_;
450
451 // Whether input section has a 14-bit branch reloc.
452 std::vector<bool> has14_;
453
454 // The stub table to use for a given input section.
455 std::vector<unsigned int> stub_table_index_;
456
457 // ELF st_other field for local symbols.
458 std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471 {
472 this->set_abiversion(0);
473 }
474
475 ~Powerpc_dynobj()
476 { }
477
478 // Call Sized_dynobj::do_read_symbols to read the symbols then
479 // read .opd from a dynamic object, filling in opd_ent_ vector,
480 void
481 do_read_symbols(Read_symbols_data*);
482
483 // The .opd section shndx.
484 unsigned int
485 opd_shndx() const
486 {
487 return this->opd_shndx_;
488 }
489
490 // The .opd section address.
491 Address
492 opd_address() const
493 {
494 return this->opd_address_;
495 }
496
497 // Init OPD entry arrays.
498 void
499 init_opd(size_t opd_size)
500 {
501 size_t count = this->opd_ent_ndx(opd_size);
502 this->opd_ent_.resize(count);
503 }
504
505 // Return section and offset of function entry for .opd + R_OFF.
506 unsigned int
507 get_opd_ent(Address r_off, Address* value = NULL) const
508 {
509 size_t ndx = this->opd_ent_ndx(r_off);
510 gold_assert(ndx < this->opd_ent_.size());
511 gold_assert(this->opd_ent_[ndx].shndx != 0);
512 if (value != NULL)
513 *value = this->opd_ent_[ndx].off;
514 return this->opd_ent_[ndx].shndx;
515 }
516
517 // Set section and offset of function entry for .opd + R_OFF.
518 void
519 set_opd_ent(Address r_off, unsigned int shndx, Address value)
520 {
521 size_t ndx = this->opd_ent_ndx(r_off);
522 gold_assert(ndx < this->opd_ent_.size());
523 this->opd_ent_[ndx].shndx = shndx;
524 this->opd_ent_[ndx].off = value;
525 }
526
527 int
528 abiversion() const
529 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531 // Set ABI version for input and output.
532 void
533 set_abiversion(int ver);
534
535 private:
536 // Used to specify extent of executable sections.
537 struct Sec_info
538 {
539 Sec_info(Address start_, Address len_, unsigned int shndx_)
540 : start(start_), len(len_), shndx(shndx_)
541 { }
542
543 bool
544 operator<(const Sec_info& that) const
545 { return this->start < that.start; }
546
547 Address start;
548 Address len;
549 unsigned int shndx;
550 };
551
552 struct Opd_ent
553 {
554 unsigned int shndx;
555 Address off;
556 };
557
558 // Return index into opd_ent_ array for .opd entry at OFF.
559 size_t
560 opd_ent_ndx(size_t off) const
561 { return off >> 4;}
562
563 // For 64-bit the .opd section shndx and address.
564 unsigned int opd_shndx_;
565 Address opd_address_;
566
567 // Header e_flags
568 elfcpp::Elf_Word e_flags_;
569
570 // The first 8-byte word of an OPD entry gives the address of the
571 // entry point of the function. Records the section and offset
572 // corresponding to the address. Note that in dynamic objects,
573 // offset is *not* relative to the section.
574 std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583 public:
584 Powerpc_copy_relocs()
585 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586 { }
587
588 // Emit any saved relocations which turn out to be needed. This is
589 // called after all the relocs have been scanned.
590 void
591 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597 public:
598 typedef
599 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603 static const Address invalid_address = static_cast<Address>(0) - 1;
604 // Offset of tp and dtp pointers from start of TLS block.
605 static const Address tp_offset = 0x7000;
606 static const Address dtp_offset = 0x8000;
607
608 Target_powerpc()
609 : Sized_target<size, big_endian>(&powerpc_info),
610 got_(NULL), plt_(NULL), iplt_(NULL), lplt_(NULL), brlt_section_(NULL),
611 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612 tlsld_got_offset_(-1U),
613 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614 plt_thread_safe_(false), plt_localentry0_(false),
615 plt_localentry0_init_(false), has_localentry0_(false),
616 has_tls_get_addr_opt_(false),
617 relax_failed_(false), relax_fail_count_(0),
618 stub_group_size_(0), savres_section_(0),
619 tls_get_addr_(NULL), tls_get_addr_opt_(NULL)
620 {
621 }
622
623 // Process the relocations to determine unreferenced sections for
624 // garbage collection.
625 void
626 gc_process_relocs(Symbol_table* symtab,
627 Layout* layout,
628 Sized_relobj_file<size, big_endian>* object,
629 unsigned int data_shndx,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
632 size_t reloc_count,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
635 size_t local_symbol_count,
636 const unsigned char* plocal_symbols);
637
638 // Scan the relocations to look for symbol adjustments.
639 void
640 scan_relocs(Symbol_table* symtab,
641 Layout* layout,
642 Sized_relobj_file<size, big_endian>* object,
643 unsigned int data_shndx,
644 unsigned int sh_type,
645 const unsigned char* prelocs,
646 size_t reloc_count,
647 Output_section* output_section,
648 bool needs_special_offset_handling,
649 size_t local_symbol_count,
650 const unsigned char* plocal_symbols);
651
652 // Map input .toc section to output .got section.
653 const char*
654 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
655 {
656 if (size == 64 && strcmp(name, ".toc") == 0)
657 {
658 *plen = 4;
659 return ".got";
660 }
661 return NULL;
662 }
663
664 // Provide linker defined save/restore functions.
665 void
666 define_save_restore_funcs(Layout*, Symbol_table*);
667
668 // No stubs unless a final link.
669 bool
670 do_may_relax() const
671 { return !parameters->options().relocatable(); }
672
673 bool
674 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
675
676 void
677 do_plt_fde_location(const Output_data*, unsigned char*,
678 uint64_t*, off_t*) const;
679
680 // Stash info about branches, for stub generation.
681 void
682 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
683 unsigned int data_shndx, Address r_offset,
684 unsigned int r_type, unsigned int r_sym, Address addend)
685 {
686 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
687 this->branch_info_.push_back(info);
688 if (r_type == elfcpp::R_POWERPC_REL14
689 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
690 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
691 ppc_object->set_has_14bit_branch(data_shndx);
692 }
693
694 // Return whether the last branch is a plt call, and if so, mark the
695 // branch as having an R_PPC64_TOCSAVE.
696 bool
697 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
698 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
699 {
700 return (size == 64
701 && !this->branch_info_.empty()
702 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
703 r_offset, this, symtab));
704 }
705
706 // Say the given location, that of a nop in a function prologue with
707 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
708 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
709 void
710 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
711 unsigned int shndx, Address offset)
712 {
713 Symbol_location loc;
714 loc.object = ppc_object;
715 loc.shndx = shndx;
716 loc.offset = offset;
717 this->tocsave_loc_.insert(loc);
718 }
719
720 // Accessor
721 const Tocsave_loc
722 tocsave_loc() const
723 {
724 return this->tocsave_loc_;
725 }
726
727 void
728 do_define_standard_symbols(Symbol_table*, Layout*);
729
730 // Finalize the sections.
731 void
732 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
733
734 // Return the value to use for a dynamic which requires special
735 // treatment.
736 uint64_t
737 do_dynsym_value(const Symbol*) const;
738
739 // Return the PLT address to use for a local symbol.
740 uint64_t
741 do_plt_address_for_local(const Relobj*, unsigned int) const;
742
743 // Return the PLT address to use for a global symbol.
744 uint64_t
745 do_plt_address_for_global(const Symbol*) const;
746
747 // Return the offset to use for the GOT_INDX'th got entry which is
748 // for a local tls symbol specified by OBJECT, SYMNDX.
749 int64_t
750 do_tls_offset_for_local(const Relobj* object,
751 unsigned int symndx,
752 unsigned int got_indx) const;
753
754 // Return the offset to use for the GOT_INDX'th got entry which is
755 // for global tls symbol GSYM.
756 int64_t
757 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
758
759 void
760 do_function_location(Symbol_location*) const;
761
762 bool
763 do_can_check_for_function_pointers() const
764 { return true; }
765
766 // Adjust -fsplit-stack code which calls non-split-stack code.
767 void
768 do_calls_non_split(Relobj* object, unsigned int shndx,
769 section_offset_type fnoffset, section_size_type fnsize,
770 const unsigned char* prelocs, size_t reloc_count,
771 unsigned char* view, section_size_type view_size,
772 std::string* from, std::string* to) const;
773
774 // Relocate a section.
775 void
776 relocate_section(const Relocate_info<size, big_endian>*,
777 unsigned int sh_type,
778 const unsigned char* prelocs,
779 size_t reloc_count,
780 Output_section* output_section,
781 bool needs_special_offset_handling,
782 unsigned char* view,
783 Address view_address,
784 section_size_type view_size,
785 const Reloc_symbol_changes*);
786
787 // Scan the relocs during a relocatable link.
788 void
789 scan_relocatable_relocs(Symbol_table* symtab,
790 Layout* layout,
791 Sized_relobj_file<size, big_endian>* object,
792 unsigned int data_shndx,
793 unsigned int sh_type,
794 const unsigned char* prelocs,
795 size_t reloc_count,
796 Output_section* output_section,
797 bool needs_special_offset_handling,
798 size_t local_symbol_count,
799 const unsigned char* plocal_symbols,
800 Relocatable_relocs*);
801
802 // Scan the relocs for --emit-relocs.
803 void
804 emit_relocs_scan(Symbol_table* symtab,
805 Layout* layout,
806 Sized_relobj_file<size, big_endian>* object,
807 unsigned int data_shndx,
808 unsigned int sh_type,
809 const unsigned char* prelocs,
810 size_t reloc_count,
811 Output_section* output_section,
812 bool needs_special_offset_handling,
813 size_t local_symbol_count,
814 const unsigned char* plocal_syms,
815 Relocatable_relocs* rr);
816
817 // Emit relocations for a section.
818 void
819 relocate_relocs(const Relocate_info<size, big_endian>*,
820 unsigned int sh_type,
821 const unsigned char* prelocs,
822 size_t reloc_count,
823 Output_section* output_section,
824 typename elfcpp::Elf_types<size>::Elf_Off
825 offset_in_output_section,
826 unsigned char*,
827 Address view_address,
828 section_size_type,
829 unsigned char* reloc_view,
830 section_size_type reloc_view_size);
831
832 // Return whether SYM is defined by the ABI.
833 bool
834 do_is_defined_by_abi(const Symbol* sym) const
835 {
836 return strcmp(sym->name(), "__tls_get_addr") == 0;
837 }
838
839 // Return the size of the GOT section.
840 section_size_type
841 got_size() const
842 {
843 gold_assert(this->got_ != NULL);
844 return this->got_->data_size();
845 }
846
847 // Get the PLT section.
848 const Output_data_plt_powerpc<size, big_endian>*
849 plt_section() const
850 {
851 gold_assert(this->plt_ != NULL);
852 return this->plt_;
853 }
854
855 // Get the IPLT section.
856 const Output_data_plt_powerpc<size, big_endian>*
857 iplt_section() const
858 {
859 gold_assert(this->iplt_ != NULL);
860 return this->iplt_;
861 }
862
863 // Get the LPLT section.
864 const Output_data_plt_powerpc<size, big_endian>*
865 lplt_section() const
866 {
867 return this->lplt_;
868 }
869
870 // Return the plt offset and section for the given global sym.
871 Address
872 plt_off(const Symbol* gsym,
873 const Output_data_plt_powerpc<size, big_endian>** sec) const
874 {
875 if (gsym->type() == elfcpp::STT_GNU_IFUNC
876 && gsym->can_use_relative_reloc(false))
877 *sec = this->iplt_section();
878 else
879 *sec = this->plt_section();
880 return gsym->plt_offset();
881 }
882
883 // Return the plt offset and section for the given local sym.
884 Address
885 plt_off(const Sized_relobj_file<size, big_endian>* relobj,
886 unsigned int local_sym_index,
887 const Output_data_plt_powerpc<size, big_endian>** sec) const
888 {
889 const Symbol_value<size>* lsym = relobj->local_symbol(local_sym_index);
890 if (lsym->is_ifunc_symbol())
891 *sec = this->iplt_section();
892 else
893 *sec = this->lplt_section();
894 return relobj->local_plt_offset(local_sym_index);
895 }
896
897 // Get the .glink section.
898 const Output_data_glink<size, big_endian>*
899 glink_section() const
900 {
901 gold_assert(this->glink_ != NULL);
902 return this->glink_;
903 }
904
905 Output_data_glink<size, big_endian>*
906 glink_section()
907 {
908 gold_assert(this->glink_ != NULL);
909 return this->glink_;
910 }
911
912 bool has_glink() const
913 { return this->glink_ != NULL; }
914
915 // Get the GOT section.
916 const Output_data_got_powerpc<size, big_endian>*
917 got_section() const
918 {
919 gold_assert(this->got_ != NULL);
920 return this->got_;
921 }
922
923 // Get the GOT section, creating it if necessary.
924 Output_data_got_powerpc<size, big_endian>*
925 got_section(Symbol_table*, Layout*);
926
927 Object*
928 do_make_elf_object(const std::string&, Input_file*, off_t,
929 const elfcpp::Ehdr<size, big_endian>&);
930
931 // Return the number of entries in the GOT.
932 unsigned int
933 got_entry_count() const
934 {
935 if (this->got_ == NULL)
936 return 0;
937 return this->got_size() / (size / 8);
938 }
939
940 // Return the number of entries in the PLT.
941 unsigned int
942 plt_entry_count() const;
943
944 // Return the offset of the first non-reserved PLT entry.
945 unsigned int
946 first_plt_entry_offset() const
947 {
948 if (size == 32)
949 return 0;
950 if (this->abiversion() >= 2)
951 return 16;
952 return 24;
953 }
954
955 // Return the size of each PLT entry.
956 unsigned int
957 plt_entry_size() const
958 {
959 if (size == 32)
960 return 4;
961 if (this->abiversion() >= 2)
962 return 8;
963 return 24;
964 }
965
966 Output_data_save_res<size, big_endian>*
967 savres_section() const
968 {
969 return this->savres_section_;
970 }
971
972 // Add any special sections for this symbol to the gc work list.
973 // For powerpc64, this adds the code section of a function
974 // descriptor.
975 void
976 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
977
978 // Handle target specific gc actions when adding a gc reference from
979 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
980 // and DST_OFF. For powerpc64, this adds a referenc to the code
981 // section of a function descriptor.
982 void
983 do_gc_add_reference(Symbol_table* symtab,
984 Relobj* src_obj,
985 unsigned int src_shndx,
986 Relobj* dst_obj,
987 unsigned int dst_shndx,
988 Address dst_off) const;
989
990 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
991 const Stub_tables&
992 stub_tables() const
993 { return this->stub_tables_; }
994
995 const Output_data_brlt_powerpc<size, big_endian>*
996 brlt_section() const
997 { return this->brlt_section_; }
998
999 void
1000 add_branch_lookup_table(Address to)
1001 {
1002 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
1003 this->branch_lookup_table_.insert(std::make_pair(to, off));
1004 }
1005
1006 Address
1007 find_branch_lookup_table(Address to)
1008 {
1009 typename Branch_lookup_table::const_iterator p
1010 = this->branch_lookup_table_.find(to);
1011 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
1012 }
1013
1014 void
1015 write_branch_lookup_table(unsigned char *oview)
1016 {
1017 for (typename Branch_lookup_table::const_iterator p
1018 = this->branch_lookup_table_.begin();
1019 p != this->branch_lookup_table_.end();
1020 ++p)
1021 {
1022 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
1023 }
1024 }
1025
1026 // Wrapper used after relax to define a local symbol in output data,
1027 // from the end if value < 0.
1028 void
1029 define_local(Symbol_table* symtab, const char* name,
1030 Output_data* od, Address value, unsigned int symsize)
1031 {
1032 Symbol* sym
1033 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1034 od, value, symsize, elfcpp::STT_NOTYPE,
1035 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1036 static_cast<Signed_address>(value) < 0,
1037 false);
1038 // We are creating this symbol late, so need to fix up things
1039 // done early in Layout::finalize.
1040 sym->set_dynsym_index(-1U);
1041 }
1042
1043 bool
1044 plt_thread_safe() const
1045 { return this->plt_thread_safe_; }
1046
1047 bool
1048 plt_localentry0() const
1049 { return this->plt_localentry0_; }
1050
1051 void
1052 set_has_localentry0()
1053 {
1054 this->has_localentry0_ = true;
1055 }
1056
1057 bool
1058 is_elfv2_localentry0(const Symbol* gsym) const
1059 {
1060 return (size == 64
1061 && this->abiversion() >= 2
1062 && this->plt_localentry0()
1063 && gsym->type() == elfcpp::STT_FUNC
1064 && gsym->is_defined()
1065 && gsym->nonvis() >> 3 == 0
1066 && !gsym->non_zero_localentry());
1067 }
1068
1069 bool
1070 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1071 unsigned int r_sym) const
1072 {
1073 const Powerpc_relobj<size, big_endian>* ppc_object
1074 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1075
1076 if (size == 64
1077 && this->abiversion() >= 2
1078 && this->plt_localentry0()
1079 && ppc_object->st_other(r_sym) >> 5 == 0)
1080 {
1081 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1082 bool is_ordinary;
1083 if (!psymval->is_ifunc_symbol()
1084 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1085 && is_ordinary)
1086 return true;
1087 }
1088 return false;
1089 }
1090
1091 // Remember any symbols seen with non-zero localentry, even those
1092 // not providing a definition
1093 bool
1094 resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1095 const char*)
1096 {
1097 if (size == 64)
1098 {
1099 unsigned char st_other = sym.get_st_other();
1100 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1101 to->set_non_zero_localentry();
1102 }
1103 // We haven't resolved anything, continue normal processing.
1104 return false;
1105 }
1106
1107 int
1108 abiversion() const
1109 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1110
1111 void
1112 set_abiversion(int ver)
1113 {
1114 elfcpp::Elf_Word flags = this->processor_specific_flags();
1115 flags &= ~elfcpp::EF_PPC64_ABI;
1116 flags |= ver & elfcpp::EF_PPC64_ABI;
1117 this->set_processor_specific_flags(flags);
1118 }
1119
1120 Symbol*
1121 tls_get_addr_opt() const
1122 { return this->tls_get_addr_opt_; }
1123
1124 Symbol*
1125 tls_get_addr() const
1126 { return this->tls_get_addr_; }
1127
1128 // If optimizing __tls_get_addr calls, whether this is the
1129 // "__tls_get_addr" symbol.
1130 bool
1131 is_tls_get_addr_opt(const Symbol* gsym) const
1132 {
1133 return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1134 || gsym == this->tls_get_addr_opt_);
1135 }
1136
1137 bool
1138 replace_tls_get_addr(const Symbol* gsym) const
1139 { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1140
1141 void
1142 set_has_tls_get_addr_opt()
1143 { this->has_tls_get_addr_opt_ = true; }
1144
1145 // Offset to toc save stack slot
1146 int
1147 stk_toc() const
1148 { return this->abiversion() < 2 ? 40 : 24; }
1149
1150 // Offset to linker save stack slot. ELFv2 doesn't have a linker word,
1151 // so use the CR save slot. Used only by __tls_get_addr call stub,
1152 // relying on __tls_get_addr not saving CR itself.
1153 int
1154 stk_linker() const
1155 { return this->abiversion() < 2 ? 32 : 8; }
1156
1157 private:
1158
1159 class Track_tls
1160 {
1161 public:
1162 enum Tls_get_addr
1163 {
1164 NOT_EXPECTED = 0,
1165 EXPECTED = 1,
1166 SKIP = 2,
1167 NORMAL = 3
1168 };
1169
1170 Track_tls()
1171 : tls_get_addr_state_(NOT_EXPECTED),
1172 relinfo_(NULL), relnum_(0), r_offset_(0)
1173 { }
1174
1175 ~Track_tls()
1176 {
1177 if (this->tls_get_addr_state_ != NOT_EXPECTED)
1178 this->missing();
1179 }
1180
1181 void
1182 missing(void)
1183 {
1184 if (this->relinfo_ != NULL)
1185 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1186 _("missing expected __tls_get_addr call"));
1187 }
1188
1189 void
1190 expect_tls_get_addr_call(
1191 const Relocate_info<size, big_endian>* relinfo,
1192 size_t relnum,
1193 Address r_offset)
1194 {
1195 this->tls_get_addr_state_ = EXPECTED;
1196 this->relinfo_ = relinfo;
1197 this->relnum_ = relnum;
1198 this->r_offset_ = r_offset;
1199 }
1200
1201 void
1202 expect_tls_get_addr_call()
1203 { this->tls_get_addr_state_ = EXPECTED; }
1204
1205 void
1206 skip_next_tls_get_addr_call()
1207 {this->tls_get_addr_state_ = SKIP; }
1208
1209 Tls_get_addr
1210 maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1211 unsigned int r_type, const Symbol* gsym)
1212 {
1213 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1214 || r_type == elfcpp::R_PPC_PLTREL24)
1215 && gsym != NULL
1216 && (gsym == target->tls_get_addr()
1217 || gsym == target->tls_get_addr_opt()));
1218 Tls_get_addr last_tls = this->tls_get_addr_state_;
1219 this->tls_get_addr_state_ = NOT_EXPECTED;
1220 if (is_tls_call && last_tls != EXPECTED)
1221 return last_tls;
1222 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1223 {
1224 this->missing();
1225 return EXPECTED;
1226 }
1227 return NORMAL;
1228 }
1229
1230 private:
1231 // What we're up to regarding calls to __tls_get_addr.
1232 // On powerpc, the branch and link insn making a call to
1233 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1234 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1235 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1236 // The marker relocation always comes first, and has the same
1237 // symbol as the reloc on the insn setting up the __tls_get_addr
1238 // argument. This ties the arg setup insn with the call insn,
1239 // allowing ld to safely optimize away the call. We check that
1240 // every call to __tls_get_addr has a marker relocation, and that
1241 // every marker relocation is on a call to __tls_get_addr.
1242 Tls_get_addr tls_get_addr_state_;
1243 // Info about the last reloc for error message.
1244 const Relocate_info<size, big_endian>* relinfo_;
1245 size_t relnum_;
1246 Address r_offset_;
1247 };
1248
1249 // The class which scans relocations.
1250 class Scan : protected Track_tls
1251 {
1252 public:
1253 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1254
1255 Scan()
1256 : Track_tls(), issued_non_pic_error_(false)
1257 { }
1258
1259 static inline int
1260 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1261
1262 inline void
1263 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1264 Sized_relobj_file<size, big_endian>* object,
1265 unsigned int data_shndx,
1266 Output_section* output_section,
1267 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1268 const elfcpp::Sym<size, big_endian>& lsym,
1269 bool is_discarded);
1270
1271 inline void
1272 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1273 Sized_relobj_file<size, big_endian>* object,
1274 unsigned int data_shndx,
1275 Output_section* output_section,
1276 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1277 Symbol* gsym);
1278
1279 inline bool
1280 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1281 Target_powerpc* ,
1282 Sized_relobj_file<size, big_endian>* relobj,
1283 unsigned int ,
1284 Output_section* ,
1285 const elfcpp::Rela<size, big_endian>& ,
1286 unsigned int r_type,
1287 const elfcpp::Sym<size, big_endian>&)
1288 {
1289 // PowerPC64 .opd is not folded, so any identical function text
1290 // may be folded and we'll still keep function addresses distinct.
1291 // That means no reloc is of concern here.
1292 if (size == 64)
1293 {
1294 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1295 <Powerpc_relobj<size, big_endian>*>(relobj);
1296 if (ppcobj->abiversion() == 1)
1297 return false;
1298 }
1299 // For 32-bit and ELFv2, conservatively assume anything but calls to
1300 // function code might be taking the address of the function.
1301 return !is_branch_reloc(r_type);
1302 }
1303
1304 inline bool
1305 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1306 Target_powerpc* ,
1307 Sized_relobj_file<size, big_endian>* relobj,
1308 unsigned int ,
1309 Output_section* ,
1310 const elfcpp::Rela<size, big_endian>& ,
1311 unsigned int r_type,
1312 Symbol*)
1313 {
1314 // As above.
1315 if (size == 64)
1316 {
1317 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1318 <Powerpc_relobj<size, big_endian>*>(relobj);
1319 if (ppcobj->abiversion() == 1)
1320 return false;
1321 }
1322 return !is_branch_reloc(r_type);
1323 }
1324
1325 static bool
1326 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1327 Sized_relobj_file<size, big_endian>* object,
1328 unsigned int r_type, bool report_err);
1329
1330 private:
1331 static void
1332 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1333 unsigned int r_type);
1334
1335 static void
1336 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1337 unsigned int r_type, Symbol*);
1338
1339 static void
1340 generate_tls_call(Symbol_table* symtab, Layout* layout,
1341 Target_powerpc* target);
1342
1343 void
1344 check_non_pic(Relobj*, unsigned int r_type);
1345
1346 // Whether we have issued an error about a non-PIC compilation.
1347 bool issued_non_pic_error_;
1348 };
1349
1350 bool
1351 symval_for_branch(const Symbol_table* symtab,
1352 const Sized_symbol<size>* gsym,
1353 Powerpc_relobj<size, big_endian>* object,
1354 Address *value, unsigned int *dest_shndx);
1355
1356 // The class which implements relocation.
1357 class Relocate : protected Track_tls
1358 {
1359 public:
1360 // Use 'at' branch hints when true, 'y' when false.
1361 // FIXME maybe: set this with an option.
1362 static const bool is_isa_v2 = true;
1363
1364 Relocate()
1365 : Track_tls()
1366 { }
1367
1368 // Do a relocation. Return false if the caller should not issue
1369 // any warnings about this relocation.
1370 inline bool
1371 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1372 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1373 const Sized_symbol<size>*, const Symbol_value<size>*,
1374 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1375 section_size_type);
1376 };
1377
1378 class Relocate_comdat_behavior
1379 {
1380 public:
1381 // Decide what the linker should do for relocations that refer to
1382 // discarded comdat sections.
1383 inline Comdat_behavior
1384 get(const char* name)
1385 {
1386 gold::Default_comdat_behavior default_behavior;
1387 Comdat_behavior ret = default_behavior.get(name);
1388 if (ret == CB_ERROR)
1389 {
1390 if (size == 32
1391 && (strcmp(name, ".fixup") == 0
1392 || strcmp(name, ".got2") == 0))
1393 ret = CB_IGNORE;
1394 if (size == 64
1395 && (strcmp(name, ".opd") == 0
1396 || strcmp(name, ".toc") == 0
1397 || strcmp(name, ".toc1") == 0))
1398 ret = CB_IGNORE;
1399 }
1400 return ret;
1401 }
1402 };
1403
1404 // Optimize the TLS relocation type based on what we know about the
1405 // symbol. IS_FINAL is true if the final address of this symbol is
1406 // known at link time.
1407
1408 tls::Tls_optimization
1409 optimize_tls_gd(bool is_final)
1410 {
1411 // If we are generating a shared library, then we can't do anything
1412 // in the linker.
1413 if (parameters->options().shared()
1414 || !parameters->options().tls_optimize())
1415 return tls::TLSOPT_NONE;
1416
1417 if (!is_final)
1418 return tls::TLSOPT_TO_IE;
1419 return tls::TLSOPT_TO_LE;
1420 }
1421
1422 tls::Tls_optimization
1423 optimize_tls_ld()
1424 {
1425 if (parameters->options().shared()
1426 || !parameters->options().tls_optimize())
1427 return tls::TLSOPT_NONE;
1428
1429 return tls::TLSOPT_TO_LE;
1430 }
1431
1432 tls::Tls_optimization
1433 optimize_tls_ie(bool is_final)
1434 {
1435 if (!is_final
1436 || parameters->options().shared()
1437 || !parameters->options().tls_optimize())
1438 return tls::TLSOPT_NONE;
1439
1440 return tls::TLSOPT_TO_LE;
1441 }
1442
1443 // Create glink.
1444 void
1445 make_glink_section(Layout*);
1446
1447 // Create the PLT section.
1448 void
1449 make_plt_section(Symbol_table*, Layout*);
1450
1451 void
1452 make_iplt_section(Symbol_table*, Layout*);
1453
1454 void
1455 make_lplt_section(Layout*);
1456
1457 void
1458 make_brlt_section(Layout*);
1459
1460 // Create a PLT entry for a global symbol.
1461 void
1462 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1463
1464 // Create a PLT entry for a local IFUNC symbol.
1465 void
1466 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1467 Sized_relobj_file<size, big_endian>*,
1468 unsigned int);
1469
1470 // Create a PLT entry for a local non-IFUNC symbol.
1471 void
1472 make_local_plt_entry(Layout*,
1473 Sized_relobj_file<size, big_endian>*,
1474 unsigned int);
1475
1476
1477 // Create a GOT entry for local dynamic __tls_get_addr.
1478 unsigned int
1479 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1480 Sized_relobj_file<size, big_endian>* object);
1481
1482 unsigned int
1483 tlsld_got_offset() const
1484 {
1485 return this->tlsld_got_offset_;
1486 }
1487
1488 // Get the dynamic reloc section, creating it if necessary.
1489 Reloc_section*
1490 rela_dyn_section(Layout*);
1491
1492 // Similarly, but for ifunc symbols get the one for ifunc.
1493 Reloc_section*
1494 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1495
1496 // Copy a relocation against a global symbol.
1497 void
1498 copy_reloc(Symbol_table* symtab, Layout* layout,
1499 Sized_relobj_file<size, big_endian>* object,
1500 unsigned int shndx, Output_section* output_section,
1501 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1502 {
1503 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1504 this->copy_relocs_.copy_reloc(symtab, layout,
1505 symtab->get_sized_symbol<size>(sym),
1506 object, shndx, output_section,
1507 r_type, reloc.get_r_offset(),
1508 reloc.get_r_addend(),
1509 this->rela_dyn_section(layout));
1510 }
1511
1512 // Look over all the input sections, deciding where to place stubs.
1513 void
1514 group_sections(Layout*, const Task*, bool);
1515
1516 // Sort output sections by address.
1517 struct Sort_sections
1518 {
1519 bool
1520 operator()(const Output_section* sec1, const Output_section* sec2)
1521 { return sec1->address() < sec2->address(); }
1522 };
1523
1524 class Branch_info
1525 {
1526 public:
1527 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1528 unsigned int data_shndx,
1529 Address r_offset,
1530 unsigned int r_type,
1531 unsigned int r_sym,
1532 Address addend)
1533 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1534 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1535 { }
1536
1537 ~Branch_info()
1538 { }
1539
1540 // Return whether this branch is going via a plt call stub, and if
1541 // so, mark it as having an R_PPC64_TOCSAVE.
1542 bool
1543 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1544 unsigned int shndx, Address offset,
1545 Target_powerpc* target, Symbol_table* symtab);
1546
1547 // If this branch needs a plt call stub, or a long branch stub, make one.
1548 bool
1549 make_stub(Stub_table<size, big_endian>*,
1550 Stub_table<size, big_endian>*,
1551 Symbol_table*) const;
1552
1553 private:
1554 // The branch location..
1555 Powerpc_relobj<size, big_endian>* object_;
1556 unsigned int shndx_;
1557 Address offset_;
1558 // ..and the branch type and destination.
1559 unsigned int r_type_ : 31;
1560 unsigned int tocsave_ : 1;
1561 unsigned int r_sym_;
1562 Address addend_;
1563 };
1564
1565 // Information about this specific target which we pass to the
1566 // general Target structure.
1567 static Target::Target_info powerpc_info;
1568
1569 // The types of GOT entries needed for this platform.
1570 // These values are exposed to the ABI in an incremental link.
1571 // Do not renumber existing values without changing the version
1572 // number of the .gnu_incremental_inputs section.
1573 enum Got_type
1574 {
1575 GOT_TYPE_STANDARD,
1576 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1577 GOT_TYPE_DTPREL, // entry for @got@dtprel
1578 GOT_TYPE_TPREL // entry for @got@tprel
1579 };
1580
1581 // The GOT section.
1582 Output_data_got_powerpc<size, big_endian>* got_;
1583 // The PLT section. This is a container for a table of addresses,
1584 // and their relocations. Each address in the PLT has a dynamic
1585 // relocation (R_*_JMP_SLOT) and each address will have a
1586 // corresponding entry in .glink for lazy resolution of the PLT.
1587 // ppc32 initialises the PLT to point at the .glink entry, while
1588 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1589 // linker adds a stub that loads the PLT entry into ctr then
1590 // branches to ctr. There may be more than one stub for each PLT
1591 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1592 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1593 Output_data_plt_powerpc<size, big_endian>* plt_;
1594 // The IPLT section. Like plt_, this is a container for a table of
1595 // addresses and their relocations, specifically for STT_GNU_IFUNC
1596 // functions that resolve locally (STT_GNU_IFUNC functions that
1597 // don't resolve locally go in PLT). Unlike plt_, these have no
1598 // entry in .glink for lazy resolution, and the relocation section
1599 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1600 // the relocation section may contain relocations against
1601 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1602 // relocation section will appear at the end of other dynamic
1603 // relocations, so that ld.so applies these relocations after other
1604 // dynamic relocations. In a static executable, the relocation
1605 // section is emitted and marked with __rela_iplt_start and
1606 // __rela_iplt_end symbols.
1607 Output_data_plt_powerpc<size, big_endian>* iplt_;
1608 // A PLT style section for local, non-ifunc symbols
1609 Output_data_plt_powerpc<size, big_endian>* lplt_;
1610 // Section holding long branch destinations.
1611 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1612 // The .glink section.
1613 Output_data_glink<size, big_endian>* glink_;
1614 // The dynamic reloc section.
1615 Reloc_section* rela_dyn_;
1616 // Relocs saved to avoid a COPY reloc.
1617 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1618 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1619 unsigned int tlsld_got_offset_;
1620
1621 Stub_tables stub_tables_;
1622 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1623 Branch_lookup_table branch_lookup_table_;
1624
1625 typedef std::vector<Branch_info> Branches;
1626 Branches branch_info_;
1627 Tocsave_loc tocsave_loc_;
1628
1629 bool plt_thread_safe_;
1630 bool plt_localentry0_;
1631 bool plt_localentry0_init_;
1632 bool has_localentry0_;
1633 bool has_tls_get_addr_opt_;
1634
1635 bool relax_failed_;
1636 int relax_fail_count_;
1637 int32_t stub_group_size_;
1638
1639 Output_data_save_res<size, big_endian> *savres_section_;
1640
1641 // The "__tls_get_addr" symbol, if present
1642 Symbol* tls_get_addr_;
1643 // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1644 Symbol* tls_get_addr_opt_;
1645 };
1646
1647 template<>
1648 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1649 {
1650 32, // size
1651 true, // is_big_endian
1652 elfcpp::EM_PPC, // machine_code
1653 false, // has_make_symbol
1654 false, // has_resolve
1655 false, // has_code_fill
1656 true, // is_default_stack_executable
1657 false, // can_icf_inline_merge_sections
1658 '\0', // wrap_char
1659 "/usr/lib/ld.so.1", // dynamic_linker
1660 0x10000000, // default_text_segment_address
1661 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1662 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1663 false, // isolate_execinstr
1664 0, // rosegment_gap
1665 elfcpp::SHN_UNDEF, // small_common_shndx
1666 elfcpp::SHN_UNDEF, // large_common_shndx
1667 0, // small_common_section_flags
1668 0, // large_common_section_flags
1669 NULL, // attributes_section
1670 NULL, // attributes_vendor
1671 "_start", // entry_symbol_name
1672 32, // hash_entry_size
1673 elfcpp::SHT_PROGBITS, // unwind_section_type
1674 };
1675
1676 template<>
1677 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1678 {
1679 32, // size
1680 false, // is_big_endian
1681 elfcpp::EM_PPC, // machine_code
1682 false, // has_make_symbol
1683 false, // has_resolve
1684 false, // has_code_fill
1685 true, // is_default_stack_executable
1686 false, // can_icf_inline_merge_sections
1687 '\0', // wrap_char
1688 "/usr/lib/ld.so.1", // dynamic_linker
1689 0x10000000, // default_text_segment_address
1690 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1691 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1692 false, // isolate_execinstr
1693 0, // rosegment_gap
1694 elfcpp::SHN_UNDEF, // small_common_shndx
1695 elfcpp::SHN_UNDEF, // large_common_shndx
1696 0, // small_common_section_flags
1697 0, // large_common_section_flags
1698 NULL, // attributes_section
1699 NULL, // attributes_vendor
1700 "_start", // entry_symbol_name
1701 32, // hash_entry_size
1702 elfcpp::SHT_PROGBITS, // unwind_section_type
1703 };
1704
1705 template<>
1706 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1707 {
1708 64, // size
1709 true, // is_big_endian
1710 elfcpp::EM_PPC64, // machine_code
1711 false, // has_make_symbol
1712 true, // has_resolve
1713 false, // has_code_fill
1714 false, // is_default_stack_executable
1715 false, // can_icf_inline_merge_sections
1716 '\0', // wrap_char
1717 "/usr/lib/ld.so.1", // dynamic_linker
1718 0x10000000, // default_text_segment_address
1719 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1720 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1721 false, // isolate_execinstr
1722 0, // rosegment_gap
1723 elfcpp::SHN_UNDEF, // small_common_shndx
1724 elfcpp::SHN_UNDEF, // large_common_shndx
1725 0, // small_common_section_flags
1726 0, // large_common_section_flags
1727 NULL, // attributes_section
1728 NULL, // attributes_vendor
1729 "_start", // entry_symbol_name
1730 32, // hash_entry_size
1731 elfcpp::SHT_PROGBITS, // unwind_section_type
1732 };
1733
1734 template<>
1735 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1736 {
1737 64, // size
1738 false, // is_big_endian
1739 elfcpp::EM_PPC64, // machine_code
1740 false, // has_make_symbol
1741 true, // has_resolve
1742 false, // has_code_fill
1743 false, // is_default_stack_executable
1744 false, // can_icf_inline_merge_sections
1745 '\0', // wrap_char
1746 "/usr/lib/ld.so.1", // dynamic_linker
1747 0x10000000, // default_text_segment_address
1748 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1749 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1750 false, // isolate_execinstr
1751 0, // rosegment_gap
1752 elfcpp::SHN_UNDEF, // small_common_shndx
1753 elfcpp::SHN_UNDEF, // large_common_shndx
1754 0, // small_common_section_flags
1755 0, // large_common_section_flags
1756 NULL, // attributes_section
1757 NULL, // attributes_vendor
1758 "_start", // entry_symbol_name
1759 32, // hash_entry_size
1760 elfcpp::SHT_PROGBITS, // unwind_section_type
1761 };
1762
1763 inline bool
1764 is_branch_reloc(unsigned int r_type)
1765 {
1766 return (r_type == elfcpp::R_POWERPC_REL24
1767 || r_type == elfcpp::R_PPC_PLTREL24
1768 || r_type == elfcpp::R_PPC_LOCAL24PC
1769 || r_type == elfcpp::R_POWERPC_REL14
1770 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1771 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1772 || r_type == elfcpp::R_POWERPC_ADDR24
1773 || r_type == elfcpp::R_POWERPC_ADDR14
1774 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1775 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1776 }
1777
1778 // Reloc resolves to plt entry.
1779 template<int size>
1780 inline bool
1781 is_plt16_reloc(unsigned int r_type)
1782 {
1783 return (r_type == elfcpp::R_POWERPC_PLT16_LO
1784 || r_type == elfcpp::R_POWERPC_PLT16_HI
1785 || r_type == elfcpp::R_POWERPC_PLT16_HA
1786 || (size == 64 && r_type == elfcpp::R_PPC64_PLT16_LO_DS));
1787 }
1788
1789 // If INSN is an opcode that may be used with an @tls operand, return
1790 // the transformed insn for TLS optimisation, otherwise return 0. If
1791 // REG is non-zero only match an insn with RB or RA equal to REG.
1792 uint32_t
1793 at_tls_transform(uint32_t insn, unsigned int reg)
1794 {
1795 if ((insn & (0x3f << 26)) != 31 << 26)
1796 return 0;
1797
1798 unsigned int rtra;
1799 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1800 rtra = insn & ((1 << 26) - (1 << 16));
1801 else if (((insn >> 16) & 0x1f) == reg)
1802 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1803 else
1804 return 0;
1805
1806 if ((insn & (0x3ff << 1)) == 266 << 1)
1807 // add -> addi
1808 insn = 14 << 26;
1809 else if ((insn & (0x1f << 1)) == 23 << 1
1810 && ((insn & (0x1f << 6)) < 14 << 6
1811 || ((insn & (0x1f << 6)) >= 16 << 6
1812 && (insn & (0x1f << 6)) < 24 << 6)))
1813 // load and store indexed -> dform
1814 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1815 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1816 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1817 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1818 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1819 // lwax -> lwa
1820 insn = (58 << 26) | 2;
1821 else
1822 return 0;
1823 insn |= rtra;
1824 return insn;
1825 }
1826
1827
1828 template<int size, bool big_endian>
1829 class Powerpc_relocate_functions
1830 {
1831 public:
1832 enum Overflow_check
1833 {
1834 CHECK_NONE,
1835 CHECK_SIGNED,
1836 CHECK_UNSIGNED,
1837 CHECK_BITFIELD,
1838 CHECK_LOW_INSN,
1839 CHECK_HIGH_INSN
1840 };
1841
1842 enum Status
1843 {
1844 STATUS_OK,
1845 STATUS_OVERFLOW
1846 };
1847
1848 private:
1849 typedef Powerpc_relocate_functions<size, big_endian> This;
1850 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1851 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1852
1853 template<int valsize>
1854 static inline bool
1855 has_overflow_signed(Address value)
1856 {
1857 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1858 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1859 limit <<= ((valsize - 1) >> 1);
1860 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1861 return value + limit > (limit << 1) - 1;
1862 }
1863
1864 template<int valsize>
1865 static inline bool
1866 has_overflow_unsigned(Address value)
1867 {
1868 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1869 limit <<= ((valsize - 1) >> 1);
1870 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1871 return value > (limit << 1) - 1;
1872 }
1873
1874 template<int valsize>
1875 static inline bool
1876 has_overflow_bitfield(Address value)
1877 {
1878 return (has_overflow_unsigned<valsize>(value)
1879 && has_overflow_signed<valsize>(value));
1880 }
1881
1882 template<int valsize>
1883 static inline Status
1884 overflowed(Address value, Overflow_check overflow)
1885 {
1886 if (overflow == CHECK_SIGNED)
1887 {
1888 if (has_overflow_signed<valsize>(value))
1889 return STATUS_OVERFLOW;
1890 }
1891 else if (overflow == CHECK_UNSIGNED)
1892 {
1893 if (has_overflow_unsigned<valsize>(value))
1894 return STATUS_OVERFLOW;
1895 }
1896 else if (overflow == CHECK_BITFIELD)
1897 {
1898 if (has_overflow_bitfield<valsize>(value))
1899 return STATUS_OVERFLOW;
1900 }
1901 return STATUS_OK;
1902 }
1903
1904 // Do a simple RELA relocation
1905 template<int fieldsize, int valsize>
1906 static inline Status
1907 rela(unsigned char* view, Address value, Overflow_check overflow)
1908 {
1909 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1910 Valtype* wv = reinterpret_cast<Valtype*>(view);
1911 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1912 return overflowed<valsize>(value, overflow);
1913 }
1914
1915 template<int fieldsize, int valsize>
1916 static inline Status
1917 rela(unsigned char* view,
1918 unsigned int right_shift,
1919 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1920 Address value,
1921 Overflow_check overflow)
1922 {
1923 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1924 Valtype* wv = reinterpret_cast<Valtype*>(view);
1925 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1926 Valtype reloc = value >> right_shift;
1927 val &= ~dst_mask;
1928 reloc &= dst_mask;
1929 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1930 return overflowed<valsize>(value >> right_shift, overflow);
1931 }
1932
1933 // Do a simple RELA relocation, unaligned.
1934 template<int fieldsize, int valsize>
1935 static inline Status
1936 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1937 {
1938 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1939 return overflowed<valsize>(value, overflow);
1940 }
1941
1942 template<int fieldsize, int valsize>
1943 static inline Status
1944 rela_ua(unsigned char* view,
1945 unsigned int right_shift,
1946 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1947 Address value,
1948 Overflow_check overflow)
1949 {
1950 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1951 Valtype;
1952 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1953 Valtype reloc = value >> right_shift;
1954 val &= ~dst_mask;
1955 reloc &= dst_mask;
1956 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1957 return overflowed<valsize>(value >> right_shift, overflow);
1958 }
1959
1960 public:
1961 // R_PPC64_ADDR64: (Symbol + Addend)
1962 static inline void
1963 addr64(unsigned char* view, Address value)
1964 { This::template rela<64,64>(view, value, CHECK_NONE); }
1965
1966 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1967 static inline void
1968 addr64_u(unsigned char* view, Address value)
1969 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1970
1971 // R_POWERPC_ADDR32: (Symbol + Addend)
1972 static inline Status
1973 addr32(unsigned char* view, Address value, Overflow_check overflow)
1974 { return This::template rela<32,32>(view, value, overflow); }
1975
1976 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1977 static inline Status
1978 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1979 { return This::template rela_ua<32,32>(view, value, overflow); }
1980
1981 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1982 static inline Status
1983 addr24(unsigned char* view, Address value, Overflow_check overflow)
1984 {
1985 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1986 value, overflow);
1987 if (overflow != CHECK_NONE && (value & 3) != 0)
1988 stat = STATUS_OVERFLOW;
1989 return stat;
1990 }
1991
1992 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1993 static inline Status
1994 addr16(unsigned char* view, Address value, Overflow_check overflow)
1995 { return This::template rela<16,16>(view, value, overflow); }
1996
1997 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1998 static inline Status
1999 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
2000 { return This::template rela_ua<16,16>(view, value, overflow); }
2001
2002 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
2003 static inline Status
2004 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
2005 {
2006 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
2007 if ((value & 3) != 0)
2008 stat = STATUS_OVERFLOW;
2009 return stat;
2010 }
2011
2012 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
2013 static inline Status
2014 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
2015 {
2016 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
2017 if ((value & 15) != 0)
2018 stat = STATUS_OVERFLOW;
2019 return stat;
2020 }
2021
2022 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
2023 static inline void
2024 addr16_hi(unsigned char* view, Address value)
2025 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
2026
2027 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
2028 static inline void
2029 addr16_ha(unsigned char* view, Address value)
2030 { This::addr16_hi(view, value + 0x8000); }
2031
2032 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
2033 static inline void
2034 addr16_hi2(unsigned char* view, Address value)
2035 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
2036
2037 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
2038 static inline void
2039 addr16_ha2(unsigned char* view, Address value)
2040 { This::addr16_hi2(view, value + 0x8000); }
2041
2042 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
2043 static inline void
2044 addr16_hi3(unsigned char* view, Address value)
2045 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
2046
2047 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
2048 static inline void
2049 addr16_ha3(unsigned char* view, Address value)
2050 { This::addr16_hi3(view, value + 0x8000); }
2051
2052 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
2053 static inline Status
2054 addr14(unsigned char* view, Address value, Overflow_check overflow)
2055 {
2056 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2057 if (overflow != CHECK_NONE && (value & 3) != 0)
2058 stat = STATUS_OVERFLOW;
2059 return stat;
2060 }
2061
2062 // R_POWERPC_REL16DX_HA
2063 static inline Status
2064 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2065 {
2066 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2067 Valtype* wv = reinterpret_cast<Valtype*>(view);
2068 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2069 value += 0x8000;
2070 value = static_cast<SignedAddress>(value) >> 16;
2071 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2072 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2073 return overflowed<16>(value, overflow);
2074 }
2075 };
2076
2077 // Set ABI version for input and output.
2078
2079 template<int size, bool big_endian>
2080 void
2081 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2082 {
2083 this->e_flags_ |= ver;
2084 if (this->abiversion() != 0)
2085 {
2086 Target_powerpc<size, big_endian>* target =
2087 static_cast<Target_powerpc<size, big_endian>*>(
2088 parameters->sized_target<size, big_endian>());
2089 if (target->abiversion() == 0)
2090 target->set_abiversion(this->abiversion());
2091 else if (target->abiversion() != this->abiversion())
2092 gold_error(_("%s: ABI version %d is not compatible "
2093 "with ABI version %d output"),
2094 this->name().c_str(),
2095 this->abiversion(), target->abiversion());
2096
2097 }
2098 }
2099
2100 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2101 // relocatable object, if such sections exists.
2102
2103 template<int size, bool big_endian>
2104 bool
2105 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2106 Read_symbols_data* sd)
2107 {
2108 const unsigned char* const pshdrs = sd->section_headers->data();
2109 const unsigned char* namesu = sd->section_names->data();
2110 const char* names = reinterpret_cast<const char*>(namesu);
2111 section_size_type names_size = sd->section_names_size;
2112 const unsigned char* s;
2113
2114 s = this->template find_shdr<size, big_endian>(pshdrs,
2115 size == 32 ? ".got2" : ".opd",
2116 names, names_size, NULL);
2117 if (s != NULL)
2118 {
2119 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2120 this->special_ = ndx;
2121 if (size == 64)
2122 {
2123 if (this->abiversion() == 0)
2124 this->set_abiversion(1);
2125 else if (this->abiversion() > 1)
2126 gold_error(_("%s: .opd invalid in abiv%d"),
2127 this->name().c_str(), this->abiversion());
2128 }
2129 }
2130 if (size == 64)
2131 {
2132 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2133 names, names_size, NULL);
2134 if (s != NULL)
2135 {
2136 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2137 this->relatoc_ = ndx;
2138 typename elfcpp::Shdr<size, big_endian> shdr(s);
2139 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2140 }
2141 }
2142 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2143 }
2144
2145 // Examine .rela.opd to build info about function entry points.
2146
2147 template<int size, bool big_endian>
2148 void
2149 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2150 size_t reloc_count,
2151 const unsigned char* prelocs,
2152 const unsigned char* plocal_syms)
2153 {
2154 if (size == 64)
2155 {
2156 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2157 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2158 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2159 Address expected_off = 0;
2160 bool regular = true;
2161 unsigned int opd_ent_size = 0;
2162
2163 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2164 {
2165 Reltype reloc(prelocs);
2166 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2167 = reloc.get_r_info();
2168 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2169 if (r_type == elfcpp::R_PPC64_ADDR64)
2170 {
2171 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2172 typename elfcpp::Elf_types<size>::Elf_Addr value;
2173 bool is_ordinary;
2174 unsigned int shndx;
2175 if (r_sym < this->local_symbol_count())
2176 {
2177 typename elfcpp::Sym<size, big_endian>
2178 lsym(plocal_syms + r_sym * sym_size);
2179 shndx = lsym.get_st_shndx();
2180 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2181 value = lsym.get_st_value();
2182 }
2183 else
2184 shndx = this->symbol_section_and_value(r_sym, &value,
2185 &is_ordinary);
2186 this->set_opd_ent(reloc.get_r_offset(), shndx,
2187 value + reloc.get_r_addend());
2188 if (i == 2)
2189 {
2190 expected_off = reloc.get_r_offset();
2191 opd_ent_size = expected_off;
2192 }
2193 else if (expected_off != reloc.get_r_offset())
2194 regular = false;
2195 expected_off += opd_ent_size;
2196 }
2197 else if (r_type == elfcpp::R_PPC64_TOC)
2198 {
2199 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2200 regular = false;
2201 }
2202 else
2203 {
2204 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2205 this->name().c_str(), r_type);
2206 regular = false;
2207 }
2208 }
2209 if (reloc_count <= 2)
2210 opd_ent_size = this->section_size(this->opd_shndx());
2211 if (opd_ent_size != 24 && opd_ent_size != 16)
2212 regular = false;
2213 if (!regular)
2214 {
2215 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2216 this->name().c_str());
2217 opd_ent_size = 0;
2218 }
2219 }
2220 }
2221
2222 // Returns true if a code sequence loading the TOC entry at VALUE
2223 // relative to the TOC pointer can be converted into code calculating
2224 // a TOC pointer relative offset.
2225 // If so, the TOC pointer relative offset is stored to VALUE.
2226
2227 template<int size, bool big_endian>
2228 bool
2229 Powerpc_relobj<size, big_endian>::make_toc_relative(
2230 Target_powerpc<size, big_endian>* target,
2231 Address* value)
2232 {
2233 if (size != 64)
2234 return false;
2235
2236 // With -mcmodel=medium code it is quite possible to have
2237 // toc-relative relocs referring to objects outside the TOC.
2238 // Don't try to look at a non-existent TOC.
2239 if (this->toc_shndx() == 0)
2240 return false;
2241
2242 // Convert VALUE back to an address by adding got_base (see below),
2243 // then to an offset in the TOC by subtracting the TOC output
2244 // section address and the TOC output offset. Since this TOC output
2245 // section and the got output section are one and the same, we can
2246 // omit adding and subtracting the output section address.
2247 Address off = (*value + this->toc_base_offset()
2248 - this->output_section_offset(this->toc_shndx()));
2249 // Is this offset in the TOC? -mcmodel=medium code may be using
2250 // TOC relative access to variables outside the TOC. Those of
2251 // course can't be optimized. We also don't try to optimize code
2252 // that is using a different object's TOC.
2253 if (off >= this->section_size(this->toc_shndx()))
2254 return false;
2255
2256 if (this->no_toc_opt(off))
2257 return false;
2258
2259 section_size_type vlen;
2260 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2261 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2262 // The TOC pointer
2263 Address got_base = (target->got_section()->output_section()->address()
2264 + this->toc_base_offset());
2265 addr -= got_base;
2266 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2267 return false;
2268
2269 *value = addr;
2270 return true;
2271 }
2272
2273 // Perform the Sized_relobj_file method, then set up opd info from
2274 // .opd relocs.
2275
2276 template<int size, bool big_endian>
2277 void
2278 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2279 {
2280 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2281 if (size == 64)
2282 {
2283 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2284 p != rd->relocs.end();
2285 ++p)
2286 {
2287 if (p->data_shndx == this->opd_shndx())
2288 {
2289 uint64_t opd_size = this->section_size(this->opd_shndx());
2290 gold_assert(opd_size == static_cast<size_t>(opd_size));
2291 if (opd_size != 0)
2292 {
2293 this->init_opd(opd_size);
2294 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2295 rd->local_symbols->data());
2296 }
2297 break;
2298 }
2299 }
2300 }
2301 }
2302
2303 // Read the symbols then set up st_other vector.
2304
2305 template<int size, bool big_endian>
2306 void
2307 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2308 {
2309 this->base_read_symbols(sd);
2310 if (size == 64)
2311 {
2312 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2313 const unsigned char* const pshdrs = sd->section_headers->data();
2314 const unsigned int loccount = this->do_local_symbol_count();
2315 if (loccount != 0)
2316 {
2317 this->st_other_.resize(loccount);
2318 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2319 off_t locsize = loccount * sym_size;
2320 const unsigned int symtab_shndx = this->symtab_shndx();
2321 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2322 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2323 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2324 locsize, true, false);
2325 psyms += sym_size;
2326 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2327 {
2328 elfcpp::Sym<size, big_endian> sym(psyms);
2329 unsigned char st_other = sym.get_st_other();
2330 this->st_other_[i] = st_other;
2331 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2332 {
2333 if (this->abiversion() == 0)
2334 this->set_abiversion(2);
2335 else if (this->abiversion() < 2)
2336 gold_error(_("%s: local symbol %d has invalid st_other"
2337 " for ABI version 1"),
2338 this->name().c_str(), i);
2339 }
2340 }
2341 }
2342 }
2343 }
2344
2345 template<int size, bool big_endian>
2346 void
2347 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2348 {
2349 this->e_flags_ |= ver;
2350 if (this->abiversion() != 0)
2351 {
2352 Target_powerpc<size, big_endian>* target =
2353 static_cast<Target_powerpc<size, big_endian>*>(
2354 parameters->sized_target<size, big_endian>());
2355 if (target->abiversion() == 0)
2356 target->set_abiversion(this->abiversion());
2357 else if (target->abiversion() != this->abiversion())
2358 gold_error(_("%s: ABI version %d is not compatible "
2359 "with ABI version %d output"),
2360 this->name().c_str(),
2361 this->abiversion(), target->abiversion());
2362
2363 }
2364 }
2365
2366 // Call Sized_dynobj::base_read_symbols to read the symbols then
2367 // read .opd from a dynamic object, filling in opd_ent_ vector,
2368
2369 template<int size, bool big_endian>
2370 void
2371 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2372 {
2373 this->base_read_symbols(sd);
2374 if (size == 64)
2375 {
2376 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2377 const unsigned char* const pshdrs = sd->section_headers->data();
2378 const unsigned char* namesu = sd->section_names->data();
2379 const char* names = reinterpret_cast<const char*>(namesu);
2380 const unsigned char* s = NULL;
2381 const unsigned char* opd;
2382 section_size_type opd_size;
2383
2384 // Find and read .opd section.
2385 while (1)
2386 {
2387 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2388 sd->section_names_size,
2389 s);
2390 if (s == NULL)
2391 return;
2392
2393 typename elfcpp::Shdr<size, big_endian> shdr(s);
2394 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2395 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2396 {
2397 if (this->abiversion() == 0)
2398 this->set_abiversion(1);
2399 else if (this->abiversion() > 1)
2400 gold_error(_("%s: .opd invalid in abiv%d"),
2401 this->name().c_str(), this->abiversion());
2402
2403 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2404 this->opd_address_ = shdr.get_sh_addr();
2405 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2406 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2407 true, false);
2408 break;
2409 }
2410 }
2411
2412 // Build set of executable sections.
2413 // Using a set is probably overkill. There is likely to be only
2414 // a few executable sections, typically .init, .text and .fini,
2415 // and they are generally grouped together.
2416 typedef std::set<Sec_info> Exec_sections;
2417 Exec_sections exec_sections;
2418 s = pshdrs;
2419 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2420 {
2421 typename elfcpp::Shdr<size, big_endian> shdr(s);
2422 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2423 && ((shdr.get_sh_flags()
2424 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2425 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2426 && shdr.get_sh_size() != 0)
2427 {
2428 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2429 shdr.get_sh_size(), i));
2430 }
2431 }
2432 if (exec_sections.empty())
2433 return;
2434
2435 // Look over the OPD entries. This is complicated by the fact
2436 // that some binaries will use two-word entries while others
2437 // will use the standard three-word entries. In most cases
2438 // the third word (the environment pointer for languages like
2439 // Pascal) is unused and will be zero. If the third word is
2440 // used it should not be pointing into executable sections,
2441 // I think.
2442 this->init_opd(opd_size);
2443 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2444 {
2445 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2446 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2447 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2448 if (val == 0)
2449 // Chances are that this is the third word of an OPD entry.
2450 continue;
2451 typename Exec_sections::const_iterator e
2452 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2453 if (e != exec_sections.begin())
2454 {
2455 --e;
2456 if (e->start <= val && val < e->start + e->len)
2457 {
2458 // We have an address in an executable section.
2459 // VAL ought to be the function entry, set it up.
2460 this->set_opd_ent(p - opd, e->shndx, val);
2461 // Skip second word of OPD entry, the TOC pointer.
2462 p += 8;
2463 }
2464 }
2465 // If we didn't match any executable sections, we likely
2466 // have a non-zero third word in the OPD entry.
2467 }
2468 }
2469 }
2470
2471 // Relocate sections.
2472
2473 template<int size, bool big_endian>
2474 void
2475 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2476 const Symbol_table* symtab, const Layout* layout,
2477 const unsigned char* pshdrs, Output_file* of,
2478 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2479 {
2480 unsigned int start = 1;
2481 if (size == 64
2482 && this->relatoc_ != 0
2483 && !parameters->options().relocatable())
2484 {
2485 // Relocate .toc first.
2486 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2487 this->relatoc_, this->relatoc_);
2488 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2489 1, this->relatoc_ - 1);
2490 start = this->relatoc_ + 1;
2491 }
2492 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2493 start, this->shnum() - 1);
2494
2495 if (!parameters->options().output_is_position_independent())
2496 {
2497 Target_powerpc<size, big_endian>* target
2498 = static_cast<Target_powerpc<size, big_endian>*>(
2499 parameters->sized_target<size, big_endian>());
2500 if (target->lplt_section() && target->lplt_section()->data_size() != 0)
2501 {
2502 const section_size_type offset = target->lplt_section()->offset();
2503 const section_size_type oview_size
2504 = convert_to_section_size_type(target->lplt_section()->data_size());
2505 unsigned char* const oview = of->get_output_view(offset, oview_size);
2506
2507 bool modified = false;
2508 unsigned int nsyms = this->local_symbol_count();
2509 for (unsigned int i = 0; i < nsyms; i++)
2510 if (this->local_has_plt_offset(i))
2511 {
2512 Address value = this->local_symbol_value(i, 0);
2513 if (size == 64)
2514 value += ppc64_local_entry_offset(i);
2515 size_t off = this->local_plt_offset(i);
2516 elfcpp::Swap<size, big_endian>::writeval(oview + off, value);
2517 modified = true;
2518 }
2519 if (modified)
2520 of->write_output_view(offset, oview_size, oview);
2521 }
2522 }
2523 }
2524
2525 // Set up some symbols.
2526
2527 template<int size, bool big_endian>
2528 void
2529 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2530 Symbol_table* symtab,
2531 Layout* layout)
2532 {
2533 if (size == 32)
2534 {
2535 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2536 // undefined when scanning relocs (and thus requires
2537 // non-relative dynamic relocs). The proper value will be
2538 // updated later.
2539 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2540 if (gotsym != NULL && gotsym->is_undefined())
2541 {
2542 Target_powerpc<size, big_endian>* target =
2543 static_cast<Target_powerpc<size, big_endian>*>(
2544 parameters->sized_target<size, big_endian>());
2545 Output_data_got_powerpc<size, big_endian>* got
2546 = target->got_section(symtab, layout);
2547 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2548 Symbol_table::PREDEFINED,
2549 got, 0, 0,
2550 elfcpp::STT_OBJECT,
2551 elfcpp::STB_LOCAL,
2552 elfcpp::STV_HIDDEN, 0,
2553 false, false);
2554 }
2555
2556 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2557 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2558 if (sdasym != NULL && sdasym->is_undefined())
2559 {
2560 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2561 Output_section* os
2562 = layout->add_output_section_data(".sdata", 0,
2563 elfcpp::SHF_ALLOC
2564 | elfcpp::SHF_WRITE,
2565 sdata, ORDER_SMALL_DATA, false);
2566 symtab->define_in_output_data("_SDA_BASE_", NULL,
2567 Symbol_table::PREDEFINED,
2568 os, 32768, 0, elfcpp::STT_OBJECT,
2569 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2570 0, false, false);
2571 }
2572 }
2573 else
2574 {
2575 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2576 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2577 if (gotsym != NULL && gotsym->is_undefined())
2578 {
2579 Target_powerpc<size, big_endian>* target =
2580 static_cast<Target_powerpc<size, big_endian>*>(
2581 parameters->sized_target<size, big_endian>());
2582 Output_data_got_powerpc<size, big_endian>* got
2583 = target->got_section(symtab, layout);
2584 symtab->define_in_output_data(".TOC.", NULL,
2585 Symbol_table::PREDEFINED,
2586 got, 0x8000, 0,
2587 elfcpp::STT_OBJECT,
2588 elfcpp::STB_LOCAL,
2589 elfcpp::STV_HIDDEN, 0,
2590 false, false);
2591 }
2592 }
2593
2594 this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2595 if (parameters->options().tls_get_addr_optimize()
2596 && this->tls_get_addr_ != NULL
2597 && this->tls_get_addr_->in_reg())
2598 this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2599 if (this->tls_get_addr_opt_ != NULL)
2600 {
2601 if (this->tls_get_addr_->is_undefined()
2602 || this->tls_get_addr_->is_from_dynobj())
2603 {
2604 // Make it seem as if references to __tls_get_addr are
2605 // really to __tls_get_addr_opt, so the latter symbol is
2606 // made dynamic, not the former.
2607 this->tls_get_addr_->clear_in_reg();
2608 this->tls_get_addr_opt_->set_in_reg();
2609 }
2610 // We have a non-dynamic definition for __tls_get_addr.
2611 // Make __tls_get_addr_opt the same, if it does not already have
2612 // a non-dynamic definition.
2613 else if (this->tls_get_addr_opt_->is_undefined()
2614 || this->tls_get_addr_opt_->is_from_dynobj())
2615 {
2616 Sized_symbol<size>* from
2617 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2618 Sized_symbol<size>* to
2619 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2620 symtab->clone<size>(to, from);
2621 }
2622 }
2623 }
2624
2625 // Set up PowerPC target specific relobj.
2626
2627 template<int size, bool big_endian>
2628 Object*
2629 Target_powerpc<size, big_endian>::do_make_elf_object(
2630 const std::string& name,
2631 Input_file* input_file,
2632 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2633 {
2634 int et = ehdr.get_e_type();
2635 // ET_EXEC files are valid input for --just-symbols/-R,
2636 // and we treat them as relocatable objects.
2637 if (et == elfcpp::ET_REL
2638 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2639 {
2640 Powerpc_relobj<size, big_endian>* obj =
2641 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2642 obj->setup();
2643 return obj;
2644 }
2645 else if (et == elfcpp::ET_DYN)
2646 {
2647 Powerpc_dynobj<size, big_endian>* obj =
2648 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2649 obj->setup();
2650 return obj;
2651 }
2652 else
2653 {
2654 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2655 return NULL;
2656 }
2657 }
2658
2659 template<int size, bool big_endian>
2660 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2661 {
2662 public:
2663 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2664 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2665
2666 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2667 : Output_data_got<size, big_endian>(),
2668 symtab_(symtab), layout_(layout),
2669 header_ent_cnt_(size == 32 ? 3 : 1),
2670 header_index_(size == 32 ? 0x2000 : 0)
2671 {
2672 if (size == 64)
2673 this->set_addralign(256);
2674 }
2675
2676 // Override all the Output_data_got methods we use so as to first call
2677 // reserve_ent().
2678 bool
2679 add_global(Symbol* gsym, unsigned int got_type)
2680 {
2681 this->reserve_ent();
2682 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2683 }
2684
2685 bool
2686 add_global_plt(Symbol* gsym, unsigned int got_type)
2687 {
2688 this->reserve_ent();
2689 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2690 }
2691
2692 bool
2693 add_global_tls(Symbol* gsym, unsigned int got_type)
2694 { return this->add_global_plt(gsym, got_type); }
2695
2696 void
2697 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2698 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2699 {
2700 this->reserve_ent();
2701 Output_data_got<size, big_endian>::
2702 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2703 }
2704
2705 void
2706 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2707 Output_data_reloc_generic* rel_dyn,
2708 unsigned int r_type_1, unsigned int r_type_2)
2709 {
2710 if (gsym->has_got_offset(got_type))
2711 return;
2712
2713 this->reserve_ent(2);
2714 Output_data_got<size, big_endian>::
2715 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2716 }
2717
2718 bool
2719 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2720 {
2721 this->reserve_ent();
2722 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2723 got_type);
2724 }
2725
2726 bool
2727 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2728 {
2729 this->reserve_ent();
2730 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2731 got_type);
2732 }
2733
2734 bool
2735 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2736 { return this->add_local_plt(object, sym_index, got_type); }
2737
2738 void
2739 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2740 unsigned int got_type,
2741 Output_data_reloc_generic* rel_dyn,
2742 unsigned int r_type)
2743 {
2744 if (object->local_has_got_offset(sym_index, got_type))
2745 return;
2746
2747 this->reserve_ent(2);
2748 Output_data_got<size, big_endian>::
2749 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2750 }
2751
2752 unsigned int
2753 add_constant(Valtype constant)
2754 {
2755 this->reserve_ent();
2756 return Output_data_got<size, big_endian>::add_constant(constant);
2757 }
2758
2759 unsigned int
2760 add_constant_pair(Valtype c1, Valtype c2)
2761 {
2762 this->reserve_ent(2);
2763 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2764 }
2765
2766 // Offset of _GLOBAL_OFFSET_TABLE_.
2767 unsigned int
2768 g_o_t() const
2769 {
2770 return this->got_offset(this->header_index_);
2771 }
2772
2773 // Offset of base used to access the GOT/TOC.
2774 // The got/toc pointer reg will be set to this value.
2775 Valtype
2776 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2777 {
2778 if (size == 32)
2779 return this->g_o_t();
2780 else
2781 return (this->output_section()->address()
2782 + object->toc_base_offset()
2783 - this->address());
2784 }
2785
2786 // Ensure our GOT has a header.
2787 void
2788 set_final_data_size()
2789 {
2790 if (this->header_ent_cnt_ != 0)
2791 this->make_header();
2792 Output_data_got<size, big_endian>::set_final_data_size();
2793 }
2794
2795 // First word of GOT header needs some values that are not
2796 // handled by Output_data_got so poke them in here.
2797 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2798 void
2799 do_write(Output_file* of)
2800 {
2801 Valtype val = 0;
2802 if (size == 32 && this->layout_->dynamic_data() != NULL)
2803 val = this->layout_->dynamic_section()->address();
2804 if (size == 64)
2805 val = this->output_section()->address() + 0x8000;
2806 this->replace_constant(this->header_index_, val);
2807 Output_data_got<size, big_endian>::do_write(of);
2808 }
2809
2810 private:
2811 void
2812 reserve_ent(unsigned int cnt = 1)
2813 {
2814 if (this->header_ent_cnt_ == 0)
2815 return;
2816 if (this->num_entries() + cnt > this->header_index_)
2817 this->make_header();
2818 }
2819
2820 void
2821 make_header()
2822 {
2823 this->header_ent_cnt_ = 0;
2824 this->header_index_ = this->num_entries();
2825 if (size == 32)
2826 {
2827 Output_data_got<size, big_endian>::add_constant(0);
2828 Output_data_got<size, big_endian>::add_constant(0);
2829 Output_data_got<size, big_endian>::add_constant(0);
2830
2831 // Define _GLOBAL_OFFSET_TABLE_ at the header
2832 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2833 if (gotsym != NULL)
2834 {
2835 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2836 sym->set_value(this->g_o_t());
2837 }
2838 else
2839 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2840 Symbol_table::PREDEFINED,
2841 this, this->g_o_t(), 0,
2842 elfcpp::STT_OBJECT,
2843 elfcpp::STB_LOCAL,
2844 elfcpp::STV_HIDDEN, 0,
2845 false, false);
2846 }
2847 else
2848 Output_data_got<size, big_endian>::add_constant(0);
2849 }
2850
2851 // Stashed pointers.
2852 Symbol_table* symtab_;
2853 Layout* layout_;
2854
2855 // GOT header size.
2856 unsigned int header_ent_cnt_;
2857 // GOT header index.
2858 unsigned int header_index_;
2859 };
2860
2861 // Get the GOT section, creating it if necessary.
2862
2863 template<int size, bool big_endian>
2864 Output_data_got_powerpc<size, big_endian>*
2865 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2866 Layout* layout)
2867 {
2868 if (this->got_ == NULL)
2869 {
2870 gold_assert(symtab != NULL && layout != NULL);
2871
2872 this->got_
2873 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2874
2875 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2876 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2877 this->got_, ORDER_DATA, false);
2878 }
2879
2880 return this->got_;
2881 }
2882
2883 // Get the dynamic reloc section, creating it if necessary.
2884
2885 template<int size, bool big_endian>
2886 typename Target_powerpc<size, big_endian>::Reloc_section*
2887 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2888 {
2889 if (this->rela_dyn_ == NULL)
2890 {
2891 gold_assert(layout != NULL);
2892 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2893 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2894 elfcpp::SHF_ALLOC, this->rela_dyn_,
2895 ORDER_DYNAMIC_RELOCS, false);
2896 }
2897 return this->rela_dyn_;
2898 }
2899
2900 // Similarly, but for ifunc symbols get the one for ifunc.
2901
2902 template<int size, bool big_endian>
2903 typename Target_powerpc<size, big_endian>::Reloc_section*
2904 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2905 Layout* layout,
2906 bool for_ifunc)
2907 {
2908 if (!for_ifunc)
2909 return this->rela_dyn_section(layout);
2910
2911 if (this->iplt_ == NULL)
2912 this->make_iplt_section(symtab, layout);
2913 return this->iplt_->rel_plt();
2914 }
2915
2916 class Stub_control
2917 {
2918 public:
2919 // Determine the stub group size. The group size is the absolute
2920 // value of the parameter --stub-group-size. If --stub-group-size
2921 // is passed a negative value, we restrict stubs to be always after
2922 // the stubbed branches.
2923 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2924 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2925 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2926 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2927 owner_(NULL), output_section_(NULL)
2928 {
2929 }
2930
2931 // Return true iff input section can be handled by current stub
2932 // group.
2933 bool
2934 can_add_to_stub_group(Output_section* o,
2935 const Output_section::Input_section* i,
2936 bool has14);
2937
2938 const Output_section::Input_section*
2939 owner()
2940 { return owner_; }
2941
2942 Output_section*
2943 output_section()
2944 { return output_section_; }
2945
2946 void
2947 set_output_and_owner(Output_section* o,
2948 const Output_section::Input_section* i)
2949 {
2950 this->output_section_ = o;
2951 this->owner_ = i;
2952 }
2953
2954 private:
2955 typedef enum
2956 {
2957 // Initial state.
2958 NO_GROUP,
2959 // Adding group sections before the stubs.
2960 FINDING_STUB_SECTION,
2961 // Adding group sections after the stubs.
2962 HAS_STUB_SECTION
2963 } State;
2964
2965 uint32_t stub_group_size_;
2966 bool stubs_always_after_branch_;
2967 bool suppress_size_errors_;
2968 // True if a stub group can serve multiple output sections.
2969 bool multi_os_;
2970 State state_;
2971 // Current max size of group. Starts at stub_group_size_ but is
2972 // reduced to stub_group_size_/1024 on seeing a section with
2973 // external conditional branches.
2974 uint32_t group_size_;
2975 uint64_t group_start_addr_;
2976 // owner_ and output_section_ specify the section to which stubs are
2977 // attached. The stubs are placed at the end of this section.
2978 const Output_section::Input_section* owner_;
2979 Output_section* output_section_;
2980 };
2981
2982 // Return true iff input section can be handled by current stub
2983 // group. Sections are presented to this function in order,
2984 // so the first section is the head of the group.
2985
2986 bool
2987 Stub_control::can_add_to_stub_group(Output_section* o,
2988 const Output_section::Input_section* i,
2989 bool has14)
2990 {
2991 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2992 uint64_t this_size;
2993 uint64_t start_addr = o->address();
2994
2995 if (whole_sec)
2996 // .init and .fini sections are pasted together to form a single
2997 // function. We can't be adding stubs in the middle of the function.
2998 this_size = o->data_size();
2999 else
3000 {
3001 start_addr += i->relobj()->output_section_offset(i->shndx());
3002 this_size = i->data_size();
3003 }
3004
3005 uint64_t end_addr = start_addr + this_size;
3006 uint32_t group_size = this->stub_group_size_;
3007 if (has14)
3008 this->group_size_ = group_size = group_size >> 10;
3009
3010 if (this_size > group_size && !this->suppress_size_errors_)
3011 gold_warning(_("%s:%s exceeds group size"),
3012 i->relobj()->name().c_str(),
3013 i->relobj()->section_name(i->shndx()).c_str());
3014
3015 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
3016 has14 ? " 14bit" : "",
3017 i->relobj()->name().c_str(),
3018 i->relobj()->section_name(i->shndx()).c_str(),
3019 (long long) this_size,
3020 (this->state_ == NO_GROUP
3021 ? this_size
3022 : (long long) end_addr - this->group_start_addr_));
3023
3024 if (this->state_ == NO_GROUP)
3025 {
3026 // Only here on very first use of Stub_control
3027 this->owner_ = i;
3028 this->output_section_ = o;
3029 this->state_ = FINDING_STUB_SECTION;
3030 this->group_size_ = group_size;
3031 this->group_start_addr_ = start_addr;
3032 return true;
3033 }
3034 else if (!this->multi_os_ && this->output_section_ != o)
3035 ;
3036 else if (this->state_ == HAS_STUB_SECTION)
3037 {
3038 // Can we add this section, which is after the stubs, to the
3039 // group?
3040 if (end_addr - this->group_start_addr_ <= this->group_size_)
3041 return true;
3042 }
3043 else if (this->state_ == FINDING_STUB_SECTION)
3044 {
3045 if ((whole_sec && this->output_section_ == o)
3046 || end_addr - this->group_start_addr_ <= this->group_size_)
3047 {
3048 // Stubs are added at the end of "owner_".
3049 this->owner_ = i;
3050 this->output_section_ = o;
3051 return true;
3052 }
3053 // The group before the stubs has reached maximum size.
3054 // Now see about adding sections after the stubs to the
3055 // group. If the current section has a 14-bit branch and
3056 // the group before the stubs exceeds group_size_ (because
3057 // they didn't have 14-bit branches), don't add sections
3058 // after the stubs: The size of stubs for such a large
3059 // group may exceed the reach of a 14-bit branch.
3060 if (!this->stubs_always_after_branch_
3061 && this_size <= this->group_size_
3062 && start_addr - this->group_start_addr_ <= this->group_size_)
3063 {
3064 gold_debug(DEBUG_TARGET, "adding after stubs");
3065 this->state_ = HAS_STUB_SECTION;
3066 this->group_start_addr_ = start_addr;
3067 return true;
3068 }
3069 }
3070 else
3071 gold_unreachable();
3072
3073 gold_debug(DEBUG_TARGET,
3074 !this->multi_os_ && this->output_section_ != o
3075 ? "nope, new output section\n"
3076 : "nope, didn't fit\n");
3077
3078 // The section fails to fit in the current group. Set up a few
3079 // things for the next group. owner_ and output_section_ will be
3080 // set later after we've retrieved those values for the current
3081 // group.
3082 this->state_ = FINDING_STUB_SECTION;
3083 this->group_size_ = group_size;
3084 this->group_start_addr_ = start_addr;
3085 return false;
3086 }
3087
3088 // Look over all the input sections, deciding where to place stubs.
3089
3090 template<int size, bool big_endian>
3091 void
3092 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3093 const Task*,
3094 bool no_size_errors)
3095 {
3096 Stub_control stub_control(this->stub_group_size_, no_size_errors,
3097 parameters->options().stub_group_multi());
3098
3099 // Group input sections and insert stub table
3100 Stub_table_owner* table_owner = NULL;
3101 std::vector<Stub_table_owner*> tables;
3102 Layout::Section_list section_list;
3103 layout->get_executable_sections(&section_list);
3104 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3105 for (Layout::Section_list::iterator o = section_list.begin();
3106 o != section_list.end();
3107 ++o)
3108 {
3109 typedef Output_section::Input_section_list Input_section_list;
3110 for (Input_section_list::const_iterator i
3111 = (*o)->input_sections().begin();
3112 i != (*o)->input_sections().end();
3113 ++i)
3114 {
3115 if (i->is_input_section()
3116 || i->is_relaxed_input_section())
3117 {
3118 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3119 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3120 bool has14 = ppcobj->has_14bit_branch(i->shndx());
3121 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3122 {
3123 table_owner->output_section = stub_control.output_section();
3124 table_owner->owner = stub_control.owner();
3125 stub_control.set_output_and_owner(*o, &*i);
3126 table_owner = NULL;
3127 }
3128 if (table_owner == NULL)
3129 {
3130 table_owner = new Stub_table_owner;
3131 tables.push_back(table_owner);
3132 }
3133 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3134 }
3135 }
3136 }
3137 if (table_owner != NULL)
3138 {
3139 table_owner->output_section = stub_control.output_section();
3140 table_owner->owner = stub_control.owner();;
3141 }
3142 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3143 t != tables.end();
3144 ++t)
3145 {
3146 Stub_table<size, big_endian>* stub_table;
3147
3148 if ((*t)->owner->is_input_section())
3149 stub_table = new Stub_table<size, big_endian>(this,
3150 (*t)->output_section,
3151 (*t)->owner,
3152 this->stub_tables_.size());
3153 else if ((*t)->owner->is_relaxed_input_section())
3154 stub_table = static_cast<Stub_table<size, big_endian>*>(
3155 (*t)->owner->relaxed_input_section());
3156 else
3157 gold_unreachable();
3158 this->stub_tables_.push_back(stub_table);
3159 delete *t;
3160 }
3161 }
3162
3163 static unsigned long
3164 max_branch_delta (unsigned int r_type)
3165 {
3166 if (r_type == elfcpp::R_POWERPC_REL14
3167 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3168 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3169 return 1L << 15;
3170 if (r_type == elfcpp::R_POWERPC_REL24
3171 || r_type == elfcpp::R_PPC_PLTREL24
3172 || r_type == elfcpp::R_PPC_LOCAL24PC)
3173 return 1L << 25;
3174 return 0;
3175 }
3176
3177 // Return whether this branch is going via a plt call stub.
3178
3179 template<int size, bool big_endian>
3180 bool
3181 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3182 Powerpc_relobj<size, big_endian>* ppc_object,
3183 unsigned int shndx,
3184 Address offset,
3185 Target_powerpc* target,
3186 Symbol_table* symtab)
3187 {
3188 if (this->object_ != ppc_object
3189 || this->shndx_ != shndx
3190 || this->offset_ != offset)
3191 return false;
3192
3193 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3194 if (sym != NULL && sym->is_forwarder())
3195 sym = symtab->resolve_forwards(sym);
3196 if (target->replace_tls_get_addr(sym))
3197 sym = target->tls_get_addr_opt();
3198 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3199 if (gsym != NULL
3200 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3201 && !target->is_elfv2_localentry0(gsym))
3202 : (this->object_->local_has_plt_offset(this->r_sym_)
3203 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3204 {
3205 this->tocsave_ = 1;
3206 return true;
3207 }
3208 return false;
3209 }
3210
3211 // If this branch needs a plt call stub, or a long branch stub, make one.
3212
3213 template<int size, bool big_endian>
3214 bool
3215 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3216 Stub_table<size, big_endian>* stub_table,
3217 Stub_table<size, big_endian>* ifunc_stub_table,
3218 Symbol_table* symtab) const
3219 {
3220 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3221 Target_powerpc<size, big_endian>* target =
3222 static_cast<Target_powerpc<size, big_endian>*>(
3223 parameters->sized_target<size, big_endian>());
3224 if (sym != NULL && sym->is_forwarder())
3225 sym = symtab->resolve_forwards(sym);
3226 if (target->replace_tls_get_addr(sym))
3227 sym = target->tls_get_addr_opt();
3228 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3229 bool ok = true;
3230
3231 if (gsym != NULL
3232 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3233 : this->object_->local_has_plt_offset(this->r_sym_))
3234 {
3235 if (size == 64
3236 && gsym != NULL
3237 && target->abiversion() >= 2
3238 && !parameters->options().output_is_position_independent()
3239 && !is_branch_reloc(this->r_type_))
3240 target->glink_section()->add_global_entry(gsym);
3241 else
3242 {
3243 if (stub_table == NULL
3244 && !(size == 32
3245 && gsym != NULL
3246 && !parameters->options().output_is_position_independent()
3247 && !is_branch_reloc(this->r_type_)))
3248 stub_table = this->object_->stub_table(this->shndx_);
3249 if (stub_table == NULL)
3250 {
3251 // This is a ref from a data section to an ifunc symbol,
3252 // or a non-branch reloc for which we always want to use
3253 // one set of stubs for resolving function addresses.
3254 stub_table = ifunc_stub_table;
3255 }
3256 gold_assert(stub_table != NULL);
3257 Address from = this->object_->get_output_section_offset(this->shndx_);
3258 if (from != invalid_address)
3259 from += (this->object_->output_section(this->shndx_)->address()
3260 + this->offset_);
3261 if (gsym != NULL)
3262 ok = stub_table->add_plt_call_entry(from,
3263 this->object_, gsym,
3264 this->r_type_, this->addend_,
3265 this->tocsave_);
3266 else
3267 ok = stub_table->add_plt_call_entry(from,
3268 this->object_, this->r_sym_,
3269 this->r_type_, this->addend_,
3270 this->tocsave_);
3271 }
3272 }
3273 else
3274 {
3275 Address max_branch_offset = max_branch_delta(this->r_type_);
3276 if (max_branch_offset == 0)
3277 return true;
3278 Address from = this->object_->get_output_section_offset(this->shndx_);
3279 gold_assert(from != invalid_address);
3280 from += (this->object_->output_section(this->shndx_)->address()
3281 + this->offset_);
3282 Address to;
3283 if (gsym != NULL)
3284 {
3285 switch (gsym->source())
3286 {
3287 case Symbol::FROM_OBJECT:
3288 {
3289 Object* symobj = gsym->object();
3290 if (symobj->is_dynamic()
3291 || symobj->pluginobj() != NULL)
3292 return true;
3293 bool is_ordinary;
3294 unsigned int shndx = gsym->shndx(&is_ordinary);
3295 if (shndx == elfcpp::SHN_UNDEF)
3296 return true;
3297 }
3298 break;
3299
3300 case Symbol::IS_UNDEFINED:
3301 return true;
3302
3303 default:
3304 break;
3305 }
3306 Symbol_table::Compute_final_value_status status;
3307 to = symtab->compute_final_value<size>(gsym, &status);
3308 if (status != Symbol_table::CFVS_OK)
3309 return true;
3310 if (size == 64)
3311 to += this->object_->ppc64_local_entry_offset(gsym);
3312 }
3313 else
3314 {
3315 const Symbol_value<size>* psymval
3316 = this->object_->local_symbol(this->r_sym_);
3317 Symbol_value<size> symval;
3318 if (psymval->is_section_symbol())
3319 symval.set_is_section_symbol();
3320 typedef Sized_relobj_file<size, big_endian> ObjType;
3321 typename ObjType::Compute_final_local_value_status status
3322 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3323 &symval, symtab);
3324 if (status != ObjType::CFLV_OK
3325 || !symval.has_output_value())
3326 return true;
3327 to = symval.value(this->object_, 0);
3328 if (size == 64)
3329 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3330 }
3331 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3332 to += this->addend_;
3333 if (stub_table == NULL)
3334 stub_table = this->object_->stub_table(this->shndx_);
3335 if (size == 64 && target->abiversion() < 2)
3336 {
3337 unsigned int dest_shndx;
3338 if (!target->symval_for_branch(symtab, gsym, this->object_,
3339 &to, &dest_shndx))
3340 return true;
3341 }
3342 Address delta = to - from;
3343 if (delta + max_branch_offset >= 2 * max_branch_offset)
3344 {
3345 if (stub_table == NULL)
3346 {
3347 gold_warning(_("%s:%s: branch in non-executable section,"
3348 " no long branch stub for you"),
3349 this->object_->name().c_str(),
3350 this->object_->section_name(this->shndx_).c_str());
3351 return true;
3352 }
3353 bool save_res = (size == 64
3354 && gsym != NULL
3355 && gsym->source() == Symbol::IN_OUTPUT_DATA
3356 && gsym->output_data() == target->savres_section());
3357 ok = stub_table->add_long_branch_entry(this->object_,
3358 this->r_type_,
3359 from, to, save_res);
3360 }
3361 }
3362 if (!ok)
3363 gold_debug(DEBUG_TARGET,
3364 "branch at %s:%s+%#lx\n"
3365 "can't reach stub attached to %s:%s",
3366 this->object_->name().c_str(),
3367 this->object_->section_name(this->shndx_).c_str(),
3368 (unsigned long) this->offset_,
3369 stub_table->relobj()->name().c_str(),
3370 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3371
3372 return ok;
3373 }
3374
3375 // Relaxation hook. This is where we do stub generation.
3376
3377 template<int size, bool big_endian>
3378 bool
3379 Target_powerpc<size, big_endian>::do_relax(int pass,
3380 const Input_objects*,
3381 Symbol_table* symtab,
3382 Layout* layout,
3383 const Task* task)
3384 {
3385 unsigned int prev_brlt_size = 0;
3386 if (pass == 1)
3387 {
3388 bool thread_safe
3389 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3390 if (size == 64
3391 && this->abiversion() < 2
3392 && !thread_safe
3393 && !parameters->options().user_set_plt_thread_safe())
3394 {
3395 static const char* const thread_starter[] =
3396 {
3397 "pthread_create",
3398 /* libstdc++ */
3399 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3400 /* librt */
3401 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3402 "mq_notify", "create_timer",
3403 /* libanl */
3404 "getaddrinfo_a",
3405 /* libgomp */
3406 "GOMP_parallel",
3407 "GOMP_parallel_start",
3408 "GOMP_parallel_loop_static",
3409 "GOMP_parallel_loop_static_start",
3410 "GOMP_parallel_loop_dynamic",
3411 "GOMP_parallel_loop_dynamic_start",
3412 "GOMP_parallel_loop_guided",
3413 "GOMP_parallel_loop_guided_start",
3414 "GOMP_parallel_loop_runtime",
3415 "GOMP_parallel_loop_runtime_start",
3416 "GOMP_parallel_sections",
3417 "GOMP_parallel_sections_start",
3418 /* libgo */
3419 "__go_go",
3420 };
3421
3422 if (parameters->options().shared())
3423 thread_safe = true;
3424 else
3425 {
3426 for (unsigned int i = 0;
3427 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3428 i++)
3429 {
3430 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3431 thread_safe = (sym != NULL
3432 && sym->in_reg()
3433 && sym->in_real_elf());
3434 if (thread_safe)
3435 break;
3436 }
3437 }
3438 }
3439 this->plt_thread_safe_ = thread_safe;
3440 }
3441
3442 if (pass == 1)
3443 {
3444 this->stub_group_size_ = parameters->options().stub_group_size();
3445 bool no_size_errors = true;
3446 if (this->stub_group_size_ == 1)
3447 this->stub_group_size_ = 0x1c00000;
3448 else if (this->stub_group_size_ == -1)
3449 this->stub_group_size_ = -0x1e00000;
3450 else
3451 no_size_errors = false;
3452 this->group_sections(layout, task, no_size_errors);
3453 }
3454 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3455 {
3456 this->branch_lookup_table_.clear();
3457 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3458 p != this->stub_tables_.end();
3459 ++p)
3460 {
3461 (*p)->clear_stubs(true);
3462 }
3463 this->stub_tables_.clear();
3464 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3465 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3466 program_name, this->stub_group_size_);
3467 this->group_sections(layout, task, true);
3468 }
3469
3470 // We need address of stub tables valid for make_stub.
3471 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3472 p != this->stub_tables_.end();
3473 ++p)
3474 {
3475 const Powerpc_relobj<size, big_endian>* object
3476 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3477 Address off = object->get_output_section_offset((*p)->shndx());
3478 gold_assert(off != invalid_address);
3479 Output_section* os = (*p)->output_section();
3480 (*p)->set_address_and_size(os, off);
3481 }
3482
3483 if (pass != 1)
3484 {
3485 // Clear plt call stubs, long branch stubs and branch lookup table.
3486 prev_brlt_size = this->branch_lookup_table_.size();
3487 this->branch_lookup_table_.clear();
3488 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3489 p != this->stub_tables_.end();
3490 ++p)
3491 {
3492 (*p)->clear_stubs(false);
3493 }
3494 }
3495
3496 // Build all the stubs.
3497 this->relax_failed_ = false;
3498 Stub_table<size, big_endian>* ifunc_stub_table
3499 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3500 Stub_table<size, big_endian>* one_stub_table
3501 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3502 for (typename Branches::const_iterator b = this->branch_info_.begin();
3503 b != this->branch_info_.end();
3504 b++)
3505 {
3506 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3507 && !this->relax_failed_)
3508 {
3509 this->relax_failed_ = true;
3510 this->relax_fail_count_++;
3511 if (this->relax_fail_count_ < 3)
3512 return true;
3513 }
3514 }
3515
3516 // Did anything change size?
3517 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3518 bool again = num_huge_branches != prev_brlt_size;
3519 if (size == 64 && num_huge_branches != 0)
3520 this->make_brlt_section(layout);
3521 if (size == 64 && again)
3522 this->brlt_section_->set_current_size(num_huge_branches);
3523
3524 for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3525 p != this->stub_tables_.rend();
3526 ++p)
3527 (*p)->remove_eh_frame(layout);
3528
3529 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3530 p != this->stub_tables_.end();
3531 ++p)
3532 (*p)->add_eh_frame(layout);
3533
3534 typedef Unordered_set<Output_section*> Output_sections;
3535 Output_sections os_need_update;
3536 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3537 p != this->stub_tables_.end();
3538 ++p)
3539 {
3540 if ((*p)->size_update())
3541 {
3542 again = true;
3543 os_need_update.insert((*p)->output_section());
3544 }
3545 }
3546
3547 // Set output section offsets for all input sections in an output
3548 // section that just changed size. Anything past the stubs will
3549 // need updating.
3550 for (typename Output_sections::iterator p = os_need_update.begin();
3551 p != os_need_update.end();
3552 p++)
3553 {
3554 Output_section* os = *p;
3555 Address off = 0;
3556 typedef Output_section::Input_section_list Input_section_list;
3557 for (Input_section_list::const_iterator i = os->input_sections().begin();
3558 i != os->input_sections().end();
3559 ++i)
3560 {
3561 off = align_address(off, i->addralign());
3562 if (i->is_input_section() || i->is_relaxed_input_section())
3563 i->relobj()->set_section_offset(i->shndx(), off);
3564 if (i->is_relaxed_input_section())
3565 {
3566 Stub_table<size, big_endian>* stub_table
3567 = static_cast<Stub_table<size, big_endian>*>(
3568 i->relaxed_input_section());
3569 Address stub_table_size = stub_table->set_address_and_size(os, off);
3570 off += stub_table_size;
3571 // After a few iterations, set current stub table size
3572 // as min size threshold, so later stub tables can only
3573 // grow in size.
3574 if (pass >= 4)
3575 stub_table->set_min_size_threshold(stub_table_size);
3576 }
3577 else
3578 off += i->data_size();
3579 }
3580 // If .branch_lt is part of this output section, then we have
3581 // just done the offset adjustment.
3582 os->clear_section_offsets_need_adjustment();
3583 }
3584
3585 if (size == 64
3586 && !again
3587 && num_huge_branches != 0
3588 && parameters->options().output_is_position_independent())
3589 {
3590 // Fill in the BRLT relocs.
3591 this->brlt_section_->reset_brlt_sizes();
3592 for (typename Branch_lookup_table::const_iterator p
3593 = this->branch_lookup_table_.begin();
3594 p != this->branch_lookup_table_.end();
3595 ++p)
3596 {
3597 this->brlt_section_->add_reloc(p->first, p->second);
3598 }
3599 this->brlt_section_->finalize_brlt_sizes();
3600 }
3601
3602 if (!again
3603 && (parameters->options().user_set_emit_stub_syms()
3604 ? parameters->options().emit_stub_syms()
3605 : (size == 64
3606 || parameters->options().output_is_position_independent()
3607 || parameters->options().emit_relocs())))
3608 {
3609 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3610 p != this->stub_tables_.end();
3611 ++p)
3612 (*p)->define_stub_syms(symtab);
3613
3614 if (this->glink_ != NULL)
3615 {
3616 int stub_size = this->glink_->pltresolve_size();
3617 Address value = -stub_size;
3618 if (size == 64)
3619 {
3620 value = 8;
3621 stub_size -= 8;
3622 }
3623 this->define_local(symtab, "__glink_PLTresolve",
3624 this->glink_, value, stub_size);
3625
3626 if (size != 64)
3627 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3628 }
3629 }
3630
3631 return again;
3632 }
3633
3634 template<int size, bool big_endian>
3635 void
3636 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3637 unsigned char* oview,
3638 uint64_t* paddress,
3639 off_t* plen) const
3640 {
3641 uint64_t address = plt->address();
3642 off_t len = plt->data_size();
3643
3644 if (plt == this->glink_)
3645 {
3646 // See Output_data_glink::do_write() for glink contents.
3647 if (len == 0)
3648 {
3649 gold_assert(parameters->doing_static_link());
3650 // Static linking may need stubs, to support ifunc and long
3651 // branches. We need to create an output section for
3652 // .eh_frame early in the link process, to have a place to
3653 // attach stub .eh_frame info. We also need to have
3654 // registered a CIE that matches the stub CIE. Both of
3655 // these requirements are satisfied by creating an FDE and
3656 // CIE for .glink, even though static linking will leave
3657 // .glink zero length.
3658 // ??? Hopefully generating an FDE with a zero address range
3659 // won't confuse anything that consumes .eh_frame info.
3660 }
3661 else if (size == 64)
3662 {
3663 // There is one word before __glink_PLTresolve
3664 address += 8;
3665 len -= 8;
3666 }
3667 else if (parameters->options().output_is_position_independent())
3668 {
3669 // There are two FDEs for a position independent glink.
3670 // The first covers the branch table, the second
3671 // __glink_PLTresolve at the end of glink.
3672 off_t resolve_size = this->glink_->pltresolve_size();
3673 if (oview[9] == elfcpp::DW_CFA_nop)
3674 len -= resolve_size;
3675 else
3676 {
3677 address += len - resolve_size;
3678 len = resolve_size;
3679 }
3680 }
3681 }
3682 else
3683 {
3684 // Must be a stub table.
3685 const Stub_table<size, big_endian>* stub_table
3686 = static_cast<const Stub_table<size, big_endian>*>(plt);
3687 uint64_t stub_address = stub_table->stub_address();
3688 len -= stub_address - address;
3689 address = stub_address;
3690 }
3691
3692 *paddress = address;
3693 *plen = len;
3694 }
3695
3696 // A class to handle the PLT data.
3697
3698 template<int size, bool big_endian>
3699 class Output_data_plt_powerpc : public Output_section_data_build
3700 {
3701 public:
3702 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3703 size, big_endian> Reloc_section;
3704
3705 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3706 Reloc_section* plt_rel,
3707 const char* name)
3708 : Output_section_data_build(size == 32 ? 4 : 8),
3709 rel_(plt_rel),
3710 targ_(targ),
3711 name_(name)
3712 { }
3713
3714 // Add an entry to the PLT.
3715 void
3716 add_entry(Symbol*);
3717
3718 void
3719 add_ifunc_entry(Symbol*);
3720
3721 void
3722 add_local_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3723
3724 void
3725 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3726
3727 // Return the .rela.plt section data.
3728 Reloc_section*
3729 rel_plt() const
3730 {
3731 return this->rel_;
3732 }
3733
3734 // Return the number of PLT entries.
3735 unsigned int
3736 entry_count() const
3737 {
3738 if (this->current_data_size() == 0)
3739 return 0;
3740 return ((this->current_data_size() - this->first_plt_entry_offset())
3741 / this->plt_entry_size());
3742 }
3743
3744 protected:
3745 void
3746 do_adjust_output_section(Output_section* os)
3747 {
3748 os->set_entsize(0);
3749 }
3750
3751 // Write to a map file.
3752 void
3753 do_print_to_mapfile(Mapfile* mapfile) const
3754 { mapfile->print_output_data(this, this->name_); }
3755
3756 private:
3757 // Return the offset of the first non-reserved PLT entry.
3758 unsigned int
3759 first_plt_entry_offset() const
3760 {
3761 // IPLT and LPLT have no reserved entry.
3762 if (this->name_[3] == 'I' || this->name_[3] == 'L')
3763 return 0;
3764 return this->targ_->first_plt_entry_offset();
3765 }
3766
3767 // Return the size of each PLT entry.
3768 unsigned int
3769 plt_entry_size() const
3770 {
3771 return this->targ_->plt_entry_size();
3772 }
3773
3774 // Write out the PLT data.
3775 void
3776 do_write(Output_file*);
3777
3778 // The reloc section.
3779 Reloc_section* rel_;
3780 // Allows access to .glink for do_write.
3781 Target_powerpc<size, big_endian>* targ_;
3782 // What to report in map file.
3783 const char *name_;
3784 };
3785
3786 // Add an entry to the PLT.
3787
3788 template<int size, bool big_endian>
3789 void
3790 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3791 {
3792 if (!gsym->has_plt_offset())
3793 {
3794 section_size_type off = this->current_data_size();
3795 if (off == 0)
3796 off += this->first_plt_entry_offset();
3797 gsym->set_plt_offset(off);
3798 gsym->set_needs_dynsym_entry();
3799 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3800 this->rel_->add_global(gsym, dynrel, this, off, 0);
3801 off += this->plt_entry_size();
3802 this->set_current_data_size(off);
3803 }
3804 }
3805
3806 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3807
3808 template<int size, bool big_endian>
3809 void
3810 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3811 {
3812 if (!gsym->has_plt_offset())
3813 {
3814 section_size_type off = this->current_data_size();
3815 gsym->set_plt_offset(off);
3816 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3817 if (size == 64 && this->targ_->abiversion() < 2)
3818 dynrel = elfcpp::R_PPC64_JMP_IREL;
3819 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3820 off += this->plt_entry_size();
3821 this->set_current_data_size(off);
3822 }
3823 }
3824
3825 // Add an entry for a local symbol to the PLT.
3826
3827 template<int size, bool big_endian>
3828 void
3829 Output_data_plt_powerpc<size, big_endian>::add_local_entry(
3830 Sized_relobj_file<size, big_endian>* relobj,
3831 unsigned int local_sym_index)
3832 {
3833 if (!relobj->local_has_plt_offset(local_sym_index))
3834 {
3835 section_size_type off = this->current_data_size();
3836 relobj->set_local_plt_offset(local_sym_index, off);
3837 if (this->rel_)
3838 {
3839 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3840 if (size == 64 && this->targ_->abiversion() < 2)
3841 dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3842 this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
3843 dynrel, this, off, 0);
3844 }
3845 off += this->plt_entry_size();
3846 this->set_current_data_size(off);
3847 }
3848 }
3849
3850 // Add an entry for a local ifunc symbol to the IPLT.
3851
3852 template<int size, bool big_endian>
3853 void
3854 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3855 Sized_relobj_file<size, big_endian>* relobj,
3856 unsigned int local_sym_index)
3857 {
3858 if (!relobj->local_has_plt_offset(local_sym_index))
3859 {
3860 section_size_type off = this->current_data_size();
3861 relobj->set_local_plt_offset(local_sym_index, off);
3862 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3863 if (size == 64 && this->targ_->abiversion() < 2)
3864 dynrel = elfcpp::R_PPC64_JMP_IREL;
3865 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3866 this, off, 0);
3867 off += this->plt_entry_size();
3868 this->set_current_data_size(off);
3869 }
3870 }
3871
3872 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3873 static const uint32_t add_2_2_11 = 0x7c425a14;
3874 static const uint32_t add_2_2_12 = 0x7c426214;
3875 static const uint32_t add_3_3_2 = 0x7c631214;
3876 static const uint32_t add_3_3_13 = 0x7c636a14;
3877 static const uint32_t add_3_12_2 = 0x7c6c1214;
3878 static const uint32_t add_3_12_13 = 0x7c6c6a14;
3879 static const uint32_t add_11_0_11 = 0x7d605a14;
3880 static const uint32_t add_11_2_11 = 0x7d625a14;
3881 static const uint32_t add_11_11_2 = 0x7d6b1214;
3882 static const uint32_t addi_0_12 = 0x380c0000;
3883 static const uint32_t addi_2_2 = 0x38420000;
3884 static const uint32_t addi_3_3 = 0x38630000;
3885 static const uint32_t addi_11_11 = 0x396b0000;
3886 static const uint32_t addi_12_1 = 0x39810000;
3887 static const uint32_t addi_12_12 = 0x398c0000;
3888 static const uint32_t addis_0_2 = 0x3c020000;
3889 static const uint32_t addis_0_13 = 0x3c0d0000;
3890 static const uint32_t addis_2_12 = 0x3c4c0000;
3891 static const uint32_t addis_11_2 = 0x3d620000;
3892 static const uint32_t addis_11_11 = 0x3d6b0000;
3893 static const uint32_t addis_11_30 = 0x3d7e0000;
3894 static const uint32_t addis_12_1 = 0x3d810000;
3895 static const uint32_t addis_12_2 = 0x3d820000;
3896 static const uint32_t addis_12_12 = 0x3d8c0000;
3897 static const uint32_t b = 0x48000000;
3898 static const uint32_t bcl_20_31 = 0x429f0005;
3899 static const uint32_t bctr = 0x4e800420;
3900 static const uint32_t bctrl = 0x4e800421;
3901 static const uint32_t beqlr = 0x4d820020;
3902 static const uint32_t blr = 0x4e800020;
3903 static const uint32_t bnectr_p4 = 0x4ce20420;
3904 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3905 static const uint32_t cmpldi_2_0 = 0x28220000;
3906 static const uint32_t cmpdi_11_0 = 0x2c2b0000;
3907 static const uint32_t cmpwi_11_0 = 0x2c0b0000;
3908 static const uint32_t cror_15_15_15 = 0x4def7b82;
3909 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3910 static const uint32_t ld_0_1 = 0xe8010000;
3911 static const uint32_t ld_0_12 = 0xe80c0000;
3912 static const uint32_t ld_2_1 = 0xe8410000;
3913 static const uint32_t ld_2_2 = 0xe8420000;
3914 static const uint32_t ld_2_11 = 0xe84b0000;
3915 static const uint32_t ld_2_12 = 0xe84c0000;
3916 static const uint32_t ld_11_1 = 0xe9610000;
3917 static const uint32_t ld_11_2 = 0xe9620000;
3918 static const uint32_t ld_11_3 = 0xe9630000;
3919 static const uint32_t ld_11_11 = 0xe96b0000;
3920 static const uint32_t ld_12_2 = 0xe9820000;
3921 static const uint32_t ld_12_3 = 0xe9830000;
3922 static const uint32_t ld_12_11 = 0xe98b0000;
3923 static const uint32_t ld_12_12 = 0xe98c0000;
3924 static const uint32_t lfd_0_1 = 0xc8010000;
3925 static const uint32_t li_0_0 = 0x38000000;
3926 static const uint32_t li_12_0 = 0x39800000;
3927 static const uint32_t lis_0 = 0x3c000000;
3928 static const uint32_t lis_2 = 0x3c400000;
3929 static const uint32_t lis_11 = 0x3d600000;
3930 static const uint32_t lis_12 = 0x3d800000;
3931 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3932 static const uint32_t lwz_0_12 = 0x800c0000;
3933 static const uint32_t lwz_11_3 = 0x81630000;
3934 static const uint32_t lwz_11_11 = 0x816b0000;
3935 static const uint32_t lwz_11_30 = 0x817e0000;
3936 static const uint32_t lwz_12_3 = 0x81830000;
3937 static const uint32_t lwz_12_12 = 0x818c0000;
3938 static const uint32_t lwzu_0_12 = 0x840c0000;
3939 static const uint32_t mflr_0 = 0x7c0802a6;
3940 static const uint32_t mflr_11 = 0x7d6802a6;
3941 static const uint32_t mflr_12 = 0x7d8802a6;
3942 static const uint32_t mr_0_3 = 0x7c601b78;
3943 static const uint32_t mr_3_0 = 0x7c030378;
3944 static const uint32_t mtctr_0 = 0x7c0903a6;
3945 static const uint32_t mtctr_11 = 0x7d6903a6;
3946 static const uint32_t mtctr_12 = 0x7d8903a6;
3947 static const uint32_t mtlr_0 = 0x7c0803a6;
3948 static const uint32_t mtlr_11 = 0x7d6803a6;
3949 static const uint32_t mtlr_12 = 0x7d8803a6;
3950 static const uint32_t nop = 0x60000000;
3951 static const uint32_t ori_0_0_0 = 0x60000000;
3952 static const uint32_t srdi_0_0_2 = 0x7800f082;
3953 static const uint32_t std_0_1 = 0xf8010000;
3954 static const uint32_t std_0_12 = 0xf80c0000;
3955 static const uint32_t std_2_1 = 0xf8410000;
3956 static const uint32_t std_11_1 = 0xf9610000;
3957 static const uint32_t stfd_0_1 = 0xd8010000;
3958 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3959 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3960 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3961 static const uint32_t xor_2_12_12 = 0x7d826278;
3962 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3963
3964 // Write out the PLT.
3965
3966 template<int size, bool big_endian>
3967 void
3968 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3969 {
3970 if (size == 32 && (this->name_[3] != 'I' && this->name_[3] != 'L'))
3971 {
3972 const section_size_type offset = this->offset();
3973 const section_size_type oview_size
3974 = convert_to_section_size_type(this->data_size());
3975 unsigned char* const oview = of->get_output_view(offset, oview_size);
3976 unsigned char* pov = oview;
3977 unsigned char* endpov = oview + oview_size;
3978
3979 // The address of the .glink branch table
3980 const Output_data_glink<size, big_endian>* glink
3981 = this->targ_->glink_section();
3982 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3983
3984 while (pov < endpov)
3985 {
3986 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3987 pov += 4;
3988 branch_tab += 4;
3989 }
3990
3991 of->write_output_view(offset, oview_size, oview);
3992 }
3993 }
3994
3995 // Create the PLT section.
3996
3997 template<int size, bool big_endian>
3998 void
3999 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
4000 Layout* layout)
4001 {
4002 if (this->plt_ == NULL)
4003 {
4004 if (this->got_ == NULL)
4005 this->got_section(symtab, layout);
4006
4007 if (this->glink_ == NULL)
4008 make_glink_section(layout);
4009
4010 // Ensure that .rela.dyn always appears before .rela.plt This is
4011 // necessary due to how, on PowerPC and some other targets, .rela.dyn
4012 // needs to include .rela.plt in its range.
4013 this->rela_dyn_section(layout);
4014
4015 Reloc_section* plt_rel = new Reloc_section(false);
4016 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4017 elfcpp::SHF_ALLOC, plt_rel,
4018 ORDER_DYNAMIC_PLT_RELOCS, false);
4019 this->plt_
4020 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
4021 "** PLT");
4022 layout->add_output_section_data(".plt",
4023 (size == 32
4024 ? elfcpp::SHT_PROGBITS
4025 : elfcpp::SHT_NOBITS),
4026 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4027 this->plt_,
4028 (size == 32
4029 ? ORDER_SMALL_DATA
4030 : ORDER_SMALL_BSS),
4031 false);
4032
4033 Output_section* rela_plt_os = plt_rel->output_section();
4034 rela_plt_os->set_info_section(this->plt_->output_section());
4035 }
4036 }
4037
4038 // Create the IPLT section.
4039
4040 template<int size, bool big_endian>
4041 void
4042 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
4043 Layout* layout)
4044 {
4045 if (this->iplt_ == NULL)
4046 {
4047 this->make_plt_section(symtab, layout);
4048 this->make_lplt_section(layout);
4049
4050 Reloc_section* iplt_rel = new Reloc_section(false);
4051 if (this->rela_dyn_->output_section())
4052 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
4053 this->iplt_
4054 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
4055 "** IPLT");
4056 if (this->plt_->output_section())
4057 this->plt_->output_section()->add_output_section_data(this->iplt_);
4058 }
4059 }
4060
4061 // Create the LPLT section.
4062
4063 template<int size, bool big_endian>
4064 void
4065 Target_powerpc<size, big_endian>::make_lplt_section(Layout* layout)
4066 {
4067 if (this->lplt_ == NULL)
4068 {
4069 Reloc_section* lplt_rel = NULL;
4070 if (parameters->options().output_is_position_independent())
4071 {
4072 lplt_rel = new Reloc_section(false);
4073 this->rela_dyn_section(layout);
4074 if (this->rela_dyn_->output_section())
4075 this->rela_dyn_->output_section()
4076 ->add_output_section_data(lplt_rel);
4077 }
4078 this->lplt_
4079 = new Output_data_plt_powerpc<size, big_endian>(this, lplt_rel,
4080 "** LPLT");
4081 this->make_brlt_section(layout);
4082 if (this->brlt_section_ && this->brlt_section_->output_section())
4083 this->brlt_section_->output_section()
4084 ->add_output_section_data(this->lplt_);
4085 else
4086 layout->add_output_section_data(".branch_lt",
4087 elfcpp::SHT_PROGBITS,
4088 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4089 this->lplt_,
4090 ORDER_RELRO,
4091 true);
4092 }
4093 }
4094
4095 // A section for huge long branch addresses, similar to plt section.
4096
4097 template<int size, bool big_endian>
4098 class Output_data_brlt_powerpc : public Output_section_data_build
4099 {
4100 public:
4101 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4102 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4103 size, big_endian> Reloc_section;
4104
4105 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
4106 Reloc_section* brlt_rel)
4107 : Output_section_data_build(size == 32 ? 4 : 8),
4108 rel_(brlt_rel),
4109 targ_(targ)
4110 { }
4111
4112 void
4113 reset_brlt_sizes()
4114 {
4115 this->reset_data_size();
4116 this->rel_->reset_data_size();
4117 }
4118
4119 void
4120 finalize_brlt_sizes()
4121 {
4122 this->finalize_data_size();
4123 this->rel_->finalize_data_size();
4124 }
4125
4126 // Add a reloc for an entry in the BRLT.
4127 void
4128 add_reloc(Address to, unsigned int off)
4129 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
4130
4131 // Update section and reloc section size.
4132 void
4133 set_current_size(unsigned int num_branches)
4134 {
4135 this->reset_address_and_file_offset();
4136 this->set_current_data_size(num_branches * 16);
4137 this->finalize_data_size();
4138 Output_section* os = this->output_section();
4139 os->set_section_offsets_need_adjustment();
4140 if (this->rel_ != NULL)
4141 {
4142 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
4143 this->rel_->reset_address_and_file_offset();
4144 this->rel_->set_current_data_size(num_branches * reloc_size);
4145 this->rel_->finalize_data_size();
4146 Output_section* os = this->rel_->output_section();
4147 os->set_section_offsets_need_adjustment();
4148 }
4149 }
4150
4151 protected:
4152 void
4153 do_adjust_output_section(Output_section* os)
4154 {
4155 os->set_entsize(0);
4156 }
4157
4158 // Write to a map file.
4159 void
4160 do_print_to_mapfile(Mapfile* mapfile) const
4161 { mapfile->print_output_data(this, "** BRLT"); }
4162
4163 private:
4164 // Write out the BRLT data.
4165 void
4166 do_write(Output_file*);
4167
4168 // The reloc section.
4169 Reloc_section* rel_;
4170 Target_powerpc<size, big_endian>* targ_;
4171 };
4172
4173 // Make the branch lookup table section.
4174
4175 template<int size, bool big_endian>
4176 void
4177 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4178 {
4179 if (size == 64 && this->brlt_section_ == NULL)
4180 {
4181 Reloc_section* brlt_rel = NULL;
4182 bool is_pic = parameters->options().output_is_position_independent();
4183 if (is_pic)
4184 {
4185 // When PIC we can't fill in .branch_lt but must initialise at
4186 // runtime via dynamic relocations.
4187 this->rela_dyn_section(layout);
4188 brlt_rel = new Reloc_section(false);
4189 if (this->rela_dyn_->output_section())
4190 this->rela_dyn_->output_section()
4191 ->add_output_section_data(brlt_rel);
4192 }
4193 this->brlt_section_
4194 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4195 if (this->plt_ && is_pic && this->plt_->output_section())
4196 this->plt_->output_section()
4197 ->add_output_section_data(this->brlt_section_);
4198 else
4199 layout->add_output_section_data(".branch_lt",
4200 elfcpp::SHT_PROGBITS,
4201 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4202 this->brlt_section_,
4203 ORDER_RELRO,
4204 true);
4205 }
4206 }
4207
4208 // Write out .branch_lt when non-PIC.
4209
4210 template<int size, bool big_endian>
4211 void
4212 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4213 {
4214 if (size == 64 && !parameters->options().output_is_position_independent())
4215 {
4216 const section_size_type offset = this->offset();
4217 const section_size_type oview_size
4218 = convert_to_section_size_type(this->data_size());
4219 unsigned char* const oview = of->get_output_view(offset, oview_size);
4220
4221 this->targ_->write_branch_lookup_table(oview);
4222 of->write_output_view(offset, oview_size, oview);
4223 }
4224 }
4225
4226 static inline uint32_t
4227 l(uint32_t a)
4228 {
4229 return a & 0xffff;
4230 }
4231
4232 static inline uint32_t
4233 hi(uint32_t a)
4234 {
4235 return l(a >> 16);
4236 }
4237
4238 static inline uint32_t
4239 ha(uint32_t a)
4240 {
4241 return hi(a + 0x8000);
4242 }
4243
4244 template<int size>
4245 struct Eh_cie
4246 {
4247 static const unsigned char eh_frame_cie[12];
4248 };
4249
4250 template<int size>
4251 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4252 {
4253 1, // CIE version.
4254 'z', 'R', 0, // Augmentation string.
4255 4, // Code alignment.
4256 0x80 - size / 8 , // Data alignment.
4257 65, // RA reg.
4258 1, // Augmentation size.
4259 (elfcpp::DW_EH_PE_pcrel
4260 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
4261 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
4262 };
4263
4264 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4265 static const unsigned char glink_eh_frame_fde_64v1[] =
4266 {
4267 0, 0, 0, 0, // Replaced with offset to .glink.
4268 0, 0, 0, 0, // Replaced with size of .glink.
4269 0, // Augmentation size.
4270 elfcpp::DW_CFA_advance_loc + 1,
4271 elfcpp::DW_CFA_register, 65, 12,
4272 elfcpp::DW_CFA_advance_loc + 5,
4273 elfcpp::DW_CFA_restore_extended, 65
4274 };
4275
4276 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4277 static const unsigned char glink_eh_frame_fde_64v2[] =
4278 {
4279 0, 0, 0, 0, // Replaced with offset to .glink.
4280 0, 0, 0, 0, // Replaced with size of .glink.
4281 0, // Augmentation size.
4282 elfcpp::DW_CFA_advance_loc + 1,
4283 elfcpp::DW_CFA_register, 65, 0,
4284 elfcpp::DW_CFA_advance_loc + 7,
4285 elfcpp::DW_CFA_restore_extended, 65
4286 };
4287
4288 // Describe __glink_PLTresolve use of LR, 32-bit version.
4289 static const unsigned char glink_eh_frame_fde_32[] =
4290 {
4291 0, 0, 0, 0, // Replaced with offset to .glink.
4292 0, 0, 0, 0, // Replaced with size of .glink.
4293 0, // Augmentation size.
4294 elfcpp::DW_CFA_advance_loc + 2,
4295 elfcpp::DW_CFA_register, 65, 0,
4296 elfcpp::DW_CFA_advance_loc + 4,
4297 elfcpp::DW_CFA_restore_extended, 65
4298 };
4299
4300 static const unsigned char default_fde[] =
4301 {
4302 0, 0, 0, 0, // Replaced with offset to stubs.
4303 0, 0, 0, 0, // Replaced with size of stubs.
4304 0, // Augmentation size.
4305 elfcpp::DW_CFA_nop, // Pad.
4306 elfcpp::DW_CFA_nop,
4307 elfcpp::DW_CFA_nop
4308 };
4309
4310 template<bool big_endian>
4311 static inline void
4312 write_insn(unsigned char* p, uint32_t v)
4313 {
4314 elfcpp::Swap<32, big_endian>::writeval(p, v);
4315 }
4316
4317 template<int size>
4318 static inline unsigned int
4319 param_plt_align()
4320 {
4321 if (!parameters->options().user_set_plt_align())
4322 return size == 64 ? 32 : 8;
4323 return 1 << parameters->options().plt_align();
4324 }
4325
4326 // Stub_table holds information about plt and long branch stubs.
4327 // Stubs are built in an area following some input section determined
4328 // by group_sections(). This input section is converted to a relaxed
4329 // input section allowing it to be resized to accommodate the stubs
4330
4331 template<int size, bool big_endian>
4332 class Stub_table : public Output_relaxed_input_section
4333 {
4334 public:
4335 struct Plt_stub_ent
4336 {
4337 Plt_stub_ent(unsigned int off, unsigned int indx)
4338 : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4339 { }
4340
4341 unsigned int off_;
4342 unsigned int indx_ : 30;
4343 unsigned int r2save_ : 1;
4344 unsigned int localentry0_ : 1;
4345 };
4346 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4347 static const Address invalid_address = static_cast<Address>(0) - 1;
4348
4349 Stub_table(Target_powerpc<size, big_endian>* targ,
4350 Output_section* output_section,
4351 const Output_section::Input_section* owner,
4352 uint32_t id)
4353 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4354 owner->relobj()
4355 ->section_addralign(owner->shndx())),
4356 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4357 orig_data_size_(owner->current_data_size()),
4358 plt_size_(0), last_plt_size_(0),
4359 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4360 need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4361 plt_fde_len_(0)
4362 {
4363 this->set_output_section(output_section);
4364
4365 std::vector<Output_relaxed_input_section*> new_relaxed;
4366 new_relaxed.push_back(this);
4367 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4368 }
4369
4370 // Add a plt call stub.
4371 bool
4372 add_plt_call_entry(Address,
4373 const Sized_relobj_file<size, big_endian>*,
4374 const Symbol*,
4375 unsigned int,
4376 Address,
4377 bool);
4378
4379 bool
4380 add_plt_call_entry(Address,
4381 const Sized_relobj_file<size, big_endian>*,
4382 unsigned int,
4383 unsigned int,
4384 Address,
4385 bool);
4386
4387 // Find a given plt call stub.
4388 const Plt_stub_ent*
4389 find_plt_call_entry(const Symbol*) const;
4390
4391 const Plt_stub_ent*
4392 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4393 unsigned int) const;
4394
4395 const Plt_stub_ent*
4396 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4397 const Symbol*,
4398 unsigned int,
4399 Address) const;
4400
4401 const Plt_stub_ent*
4402 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4403 unsigned int,
4404 unsigned int,
4405 Address) const;
4406
4407 // Add a long branch stub.
4408 bool
4409 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4410 unsigned int, Address, Address, bool);
4411
4412 Address
4413 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4414 Address) const;
4415
4416 bool
4417 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4418 {
4419 Address max_branch_offset = max_branch_delta(r_type);
4420 if (max_branch_offset == 0)
4421 return true;
4422 gold_assert(from != invalid_address);
4423 Address loc = off + this->stub_address();
4424 return loc - from + max_branch_offset < 2 * max_branch_offset;
4425 }
4426
4427 void
4428 clear_stubs(bool all)
4429 {
4430 this->plt_call_stubs_.clear();
4431 this->plt_size_ = 0;
4432 this->long_branch_stubs_.clear();
4433 this->branch_size_ = 0;
4434 this->need_save_res_ = false;
4435 if (all)
4436 {
4437 this->last_plt_size_ = 0;
4438 this->last_branch_size_ = 0;
4439 }
4440 }
4441
4442 Address
4443 set_address_and_size(const Output_section* os, Address off)
4444 {
4445 Address start_off = off;
4446 off += this->orig_data_size_;
4447 Address my_size = this->plt_size_ + this->branch_size_;
4448 if (this->need_save_res_)
4449 my_size += this->targ_->savres_section()->data_size();
4450 if (my_size != 0)
4451 off = align_address(off, this->stub_align());
4452 // Include original section size and alignment padding in size
4453 my_size += off - start_off;
4454 // Ensure new size is always larger than min size
4455 // threshold. Alignment requirement is included in "my_size", so
4456 // increase "my_size" does not invalidate alignment.
4457 if (my_size < this->min_size_threshold_)
4458 my_size = this->min_size_threshold_;
4459 this->reset_address_and_file_offset();
4460 this->set_current_data_size(my_size);
4461 this->set_address_and_file_offset(os->address() + start_off,
4462 os->offset() + start_off);
4463 return my_size;
4464 }
4465
4466 Address
4467 stub_address() const
4468 {
4469 return align_address(this->address() + this->orig_data_size_,
4470 this->stub_align());
4471 }
4472
4473 Address
4474 stub_offset() const
4475 {
4476 return align_address(this->offset() + this->orig_data_size_,
4477 this->stub_align());
4478 }
4479
4480 section_size_type
4481 plt_size() const
4482 { return this->plt_size_; }
4483
4484 void
4485 set_min_size_threshold(Address min_size)
4486 { this->min_size_threshold_ = min_size; }
4487
4488 void
4489 define_stub_syms(Symbol_table*);
4490
4491 bool
4492 size_update()
4493 {
4494 Output_section* os = this->output_section();
4495 if (os->addralign() < this->stub_align())
4496 {
4497 os->set_addralign(this->stub_align());
4498 // FIXME: get rid of the insane checkpointing.
4499 // We can't increase alignment of the input section to which
4500 // stubs are attached; The input section may be .init which
4501 // is pasted together with other .init sections to form a
4502 // function. Aligning might insert zero padding resulting in
4503 // sigill. However we do need to increase alignment of the
4504 // output section so that the align_address() on offset in
4505 // set_address_and_size() adds the same padding as the
4506 // align_address() on address in stub_address().
4507 // What's more, we need this alignment for the layout done in
4508 // relaxation_loop_body() so that the output section starts at
4509 // a suitably aligned address.
4510 os->checkpoint_set_addralign(this->stub_align());
4511 }
4512 if (this->last_plt_size_ != this->plt_size_
4513 || this->last_branch_size_ != this->branch_size_)
4514 {
4515 this->last_plt_size_ = this->plt_size_;
4516 this->last_branch_size_ = this->branch_size_;
4517 return true;
4518 }
4519 return false;
4520 }
4521
4522 // Generate a suitable FDE to describe code in this stub group.
4523 void
4524 init_plt_fde();
4525
4526 // Add .eh_frame info for this stub section.
4527 void
4528 add_eh_frame(Layout* layout);
4529
4530 // Remove .eh_frame info for this stub section.
4531 void
4532 remove_eh_frame(Layout* layout);
4533
4534 Target_powerpc<size, big_endian>*
4535 targ() const
4536 { return targ_; }
4537
4538 private:
4539 class Plt_stub_key;
4540 class Plt_stub_key_hash;
4541 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4542 Plt_stub_key_hash> Plt_stub_entries;
4543 class Branch_stub_ent;
4544 class Branch_stub_ent_hash;
4545 typedef Unordered_map<Branch_stub_ent, unsigned int,
4546 Branch_stub_ent_hash> Branch_stub_entries;
4547
4548 // Alignment of stub section.
4549 unsigned int
4550 stub_align() const
4551 {
4552 unsigned int min_align = size == 64 ? 32 : 16;
4553 unsigned int user_align = 1 << parameters->options().plt_align();
4554 return std::max(user_align, min_align);
4555 }
4556
4557 // Return the plt offset for the given call stub.
4558 Address
4559 plt_off(typename Plt_stub_entries::const_iterator p,
4560 const Output_data_plt_powerpc<size, big_endian>** sec) const
4561 {
4562 const Symbol* gsym = p->first.sym_;
4563 if (gsym != NULL)
4564 return this->targ_->plt_off(gsym, sec);
4565 else
4566 {
4567 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4568 unsigned int local_sym_index = p->first.locsym_;
4569 return this->targ_->plt_off(relobj, local_sym_index, sec);
4570 }
4571 }
4572
4573 // Size of a given plt call stub.
4574 unsigned int
4575 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4576 {
4577 if (size == 32)
4578 {
4579 const Symbol* gsym = p->first.sym_;
4580 return (4 * 4
4581 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4582 }
4583
4584 const Output_data_plt_powerpc<size, big_endian>* plt;
4585 Address plt_addr = this->plt_off(p, &plt);
4586 plt_addr += plt->address();
4587 Address got_addr = this->targ_->got_section()->output_section()->address();
4588 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4589 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4590 got_addr += ppcobj->toc_base_offset();
4591 Address off = plt_addr - got_addr;
4592 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4593 const Symbol* gsym = p->first.sym_;
4594 if (this->targ_->is_tls_get_addr_opt(gsym))
4595 bytes += 13 * 4;
4596 if (this->targ_->abiversion() < 2)
4597 {
4598 bool static_chain = parameters->options().plt_static_chain();
4599 bool thread_safe = this->targ_->plt_thread_safe();
4600 bytes += (4
4601 + 4 * static_chain
4602 + 8 * thread_safe
4603 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4604 }
4605 return bytes;
4606 }
4607
4608 unsigned int
4609 plt_call_align(unsigned int bytes) const
4610 {
4611 unsigned int align = param_plt_align<size>();
4612 return (bytes + align - 1) & -align;
4613 }
4614
4615 // Return long branch stub size.
4616 unsigned int
4617 branch_stub_size(typename Branch_stub_entries::const_iterator p)
4618 {
4619 Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4620 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4621 return 4;
4622 unsigned int bytes = 16;
4623 if (size == 32 && parameters->options().output_is_position_independent())
4624 bytes += 16;
4625 return bytes;
4626 }
4627
4628 // Write out stubs.
4629 void
4630 do_write(Output_file*);
4631
4632 // Plt call stub keys.
4633 class Plt_stub_key
4634 {
4635 public:
4636 Plt_stub_key(const Symbol* sym)
4637 : sym_(sym), object_(0), addend_(0), locsym_(0)
4638 { }
4639
4640 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4641 unsigned int locsym_index)
4642 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4643 { }
4644
4645 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4646 const Symbol* sym,
4647 unsigned int r_type,
4648 Address addend)
4649 : sym_(sym), object_(0), addend_(0), locsym_(0)
4650 {
4651 if (size != 32)
4652 this->addend_ = addend;
4653 else if (parameters->options().output_is_position_independent()
4654 && r_type == elfcpp::R_PPC_PLTREL24)
4655 {
4656 this->addend_ = addend;
4657 if (this->addend_ >= 32768)
4658 this->object_ = object;
4659 }
4660 }
4661
4662 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4663 unsigned int locsym_index,
4664 unsigned int r_type,
4665 Address addend)
4666 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4667 {
4668 if (size != 32)
4669 this->addend_ = addend;
4670 else if (parameters->options().output_is_position_independent()
4671 && r_type == elfcpp::R_PPC_PLTREL24)
4672 this->addend_ = addend;
4673 }
4674
4675 bool operator==(const Plt_stub_key& that) const
4676 {
4677 return (this->sym_ == that.sym_
4678 && this->object_ == that.object_
4679 && this->addend_ == that.addend_
4680 && this->locsym_ == that.locsym_);
4681 }
4682
4683 const Symbol* sym_;
4684 const Sized_relobj_file<size, big_endian>* object_;
4685 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4686 unsigned int locsym_;
4687 };
4688
4689 class Plt_stub_key_hash
4690 {
4691 public:
4692 size_t operator()(const Plt_stub_key& ent) const
4693 {
4694 return (reinterpret_cast<uintptr_t>(ent.sym_)
4695 ^ reinterpret_cast<uintptr_t>(ent.object_)
4696 ^ ent.addend_
4697 ^ ent.locsym_);
4698 }
4699 };
4700
4701 // Long branch stub keys.
4702 class Branch_stub_ent
4703 {
4704 public:
4705 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4706 Address to, bool save_res)
4707 : dest_(to), toc_base_off_(0), save_res_(save_res)
4708 {
4709 if (size == 64)
4710 toc_base_off_ = obj->toc_base_offset();
4711 }
4712
4713 bool operator==(const Branch_stub_ent& that) const
4714 {
4715 return (this->dest_ == that.dest_
4716 && (size == 32
4717 || this->toc_base_off_ == that.toc_base_off_));
4718 }
4719
4720 Address dest_;
4721 unsigned int toc_base_off_;
4722 bool save_res_;
4723 };
4724
4725 class Branch_stub_ent_hash
4726 {
4727 public:
4728 size_t operator()(const Branch_stub_ent& ent) const
4729 { return ent.dest_ ^ ent.toc_base_off_; }
4730 };
4731
4732 // In a sane world this would be a global.
4733 Target_powerpc<size, big_endian>* targ_;
4734 // Map sym/object/addend to stub offset.
4735 Plt_stub_entries plt_call_stubs_;
4736 // Map destination address to stub offset.
4737 Branch_stub_entries long_branch_stubs_;
4738 // size of input section
4739 section_size_type orig_data_size_;
4740 // size of stubs
4741 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4742 // Some rare cases cause (PR/20529) fluctuation in stub table
4743 // size, which leads to an endless relax loop. This is to be fixed
4744 // by, after the first few iterations, allowing only increase of
4745 // stub table size. This variable sets the minimal possible size of
4746 // a stub table, it is zero for the first few iterations, then
4747 // increases monotonically.
4748 Address min_size_threshold_;
4749 // Set if this stub group needs a copy of out-of-line register
4750 // save/restore functions.
4751 bool need_save_res_;
4752 // Per stub table unique identifier.
4753 uint32_t uniq_;
4754 // The bctrl in the __tls_get_addr_opt stub, if present.
4755 unsigned int tls_get_addr_opt_bctrl_;
4756 // FDE unwind info for this stub group.
4757 unsigned int plt_fde_len_;
4758 unsigned char plt_fde_[20];
4759 };
4760
4761 // Add a plt call stub, if we do not already have one for this
4762 // sym/object/addend combo.
4763
4764 template<int size, bool big_endian>
4765 bool
4766 Stub_table<size, big_endian>::add_plt_call_entry(
4767 Address from,
4768 const Sized_relobj_file<size, big_endian>* object,
4769 const Symbol* gsym,
4770 unsigned int r_type,
4771 Address addend,
4772 bool tocsave)
4773 {
4774 Plt_stub_key key(object, gsym, r_type, addend);
4775 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4776 std::pair<typename Plt_stub_entries::iterator, bool> p
4777 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4778 if (p.second)
4779 {
4780 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4781 if (size == 64
4782 && this->targ_->is_elfv2_localentry0(gsym))
4783 {
4784 p.first->second.localentry0_ = 1;
4785 this->targ_->set_has_localentry0();
4786 }
4787 if (this->targ_->is_tls_get_addr_opt(gsym))
4788 {
4789 this->targ_->set_has_tls_get_addr_opt();
4790 this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4791 }
4792 this->plt_size_ = this->plt_call_align(this->plt_size_);
4793 }
4794 if (size == 64
4795 && !tocsave
4796 && !p.first->second.localentry0_)
4797 p.first->second.r2save_ = 1;
4798 return this->can_reach_stub(from, ent.off_, r_type);
4799 }
4800
4801 template<int size, bool big_endian>
4802 bool
4803 Stub_table<size, big_endian>::add_plt_call_entry(
4804 Address from,
4805 const Sized_relobj_file<size, big_endian>* object,
4806 unsigned int locsym_index,
4807 unsigned int r_type,
4808 Address addend,
4809 bool tocsave)
4810 {
4811 Plt_stub_key key(object, locsym_index, r_type, addend);
4812 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4813 std::pair<typename Plt_stub_entries::iterator, bool> p
4814 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4815 if (p.second)
4816 {
4817 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4818 this->plt_size_ = this->plt_call_align(this->plt_size_);
4819 if (size == 64
4820 && this->targ_->is_elfv2_localentry0(object, locsym_index))
4821 {
4822 p.first->second.localentry0_ = 1;
4823 this->targ_->set_has_localentry0();
4824 }
4825 }
4826 if (size == 64
4827 && !tocsave
4828 && !p.first->second.localentry0_)
4829 p.first->second.r2save_ = 1;
4830 return this->can_reach_stub(from, ent.off_, r_type);
4831 }
4832
4833 // Find a plt call stub.
4834
4835 template<int size, bool big_endian>
4836 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4837 Stub_table<size, big_endian>::find_plt_call_entry(
4838 const Sized_relobj_file<size, big_endian>* object,
4839 const Symbol* gsym,
4840 unsigned int r_type,
4841 Address addend) const
4842 {
4843 Plt_stub_key key(object, gsym, r_type, addend);
4844 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4845 if (p == this->plt_call_stubs_.end())
4846 return NULL;
4847 return &p->second;
4848 }
4849
4850 template<int size, bool big_endian>
4851 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4852 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4853 {
4854 Plt_stub_key key(gsym);
4855 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4856 if (p == this->plt_call_stubs_.end())
4857 return NULL;
4858 return &p->second;
4859 }
4860
4861 template<int size, bool big_endian>
4862 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4863 Stub_table<size, big_endian>::find_plt_call_entry(
4864 const Sized_relobj_file<size, big_endian>* object,
4865 unsigned int locsym_index,
4866 unsigned int r_type,
4867 Address addend) const
4868 {
4869 Plt_stub_key key(object, locsym_index, r_type, addend);
4870 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4871 if (p == this->plt_call_stubs_.end())
4872 return NULL;
4873 return &p->second;
4874 }
4875
4876 template<int size, bool big_endian>
4877 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4878 Stub_table<size, big_endian>::find_plt_call_entry(
4879 const Sized_relobj_file<size, big_endian>* object,
4880 unsigned int locsym_index) const
4881 {
4882 Plt_stub_key key(object, locsym_index);
4883 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4884 if (p == this->plt_call_stubs_.end())
4885 return NULL;
4886 return &p->second;
4887 }
4888
4889 // Add a long branch stub if we don't already have one to given
4890 // destination.
4891
4892 template<int size, bool big_endian>
4893 bool
4894 Stub_table<size, big_endian>::add_long_branch_entry(
4895 const Powerpc_relobj<size, big_endian>* object,
4896 unsigned int r_type,
4897 Address from,
4898 Address to,
4899 bool save_res)
4900 {
4901 Branch_stub_ent ent(object, to, save_res);
4902 Address off = this->branch_size_;
4903 std::pair<typename Branch_stub_entries::iterator, bool> p
4904 = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4905 if (p.second)
4906 {
4907 if (save_res)
4908 this->need_save_res_ = true;
4909 else
4910 {
4911 unsigned int stub_size = this->branch_stub_size(p.first);
4912 this->branch_size_ = off + stub_size;
4913 if (size == 64 && stub_size != 4)
4914 this->targ_->add_branch_lookup_table(to);
4915 }
4916 }
4917 return this->can_reach_stub(from, off, r_type);
4918 }
4919
4920 // Find long branch stub offset.
4921
4922 template<int size, bool big_endian>
4923 typename Stub_table<size, big_endian>::Address
4924 Stub_table<size, big_endian>::find_long_branch_entry(
4925 const Powerpc_relobj<size, big_endian>* object,
4926 Address to) const
4927 {
4928 Branch_stub_ent ent(object, to, false);
4929 typename Branch_stub_entries::const_iterator p
4930 = this->long_branch_stubs_.find(ent);
4931 if (p == this->long_branch_stubs_.end())
4932 return invalid_address;
4933 if (p->first.save_res_)
4934 return to - this->targ_->savres_section()->address() + this->branch_size_;
4935 return p->second;
4936 }
4937
4938 // Generate a suitable FDE to describe code in this stub group.
4939 // The __tls_get_addr_opt call stub needs to describe where it saves
4940 // LR, to support exceptions that might be thrown from __tls_get_addr.
4941
4942 template<int size, bool big_endian>
4943 void
4944 Stub_table<size, big_endian>::init_plt_fde()
4945 {
4946 unsigned char* p = this->plt_fde_;
4947 // offset pcrel sdata4, size udata4, and augmentation size byte.
4948 memset (p, 0, 9);
4949 p += 9;
4950 if (this->tls_get_addr_opt_bctrl_ != -1u)
4951 {
4952 unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
4953 if (to_bctrl < 64)
4954 *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
4955 else if (to_bctrl < 256)
4956 {
4957 *p++ = elfcpp::DW_CFA_advance_loc1;
4958 *p++ = to_bctrl;
4959 }
4960 else if (to_bctrl < 65536)
4961 {
4962 *p++ = elfcpp::DW_CFA_advance_loc2;
4963 elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
4964 p += 2;
4965 }
4966 else
4967 {
4968 *p++ = elfcpp::DW_CFA_advance_loc4;
4969 elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
4970 p += 4;
4971 }
4972 *p++ = elfcpp::DW_CFA_offset_extended_sf;
4973 *p++ = 65;
4974 *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
4975 *p++ = elfcpp::DW_CFA_advance_loc + 4;
4976 *p++ = elfcpp::DW_CFA_restore_extended;
4977 *p++ = 65;
4978 }
4979 this->plt_fde_len_ = p - this->plt_fde_;
4980 }
4981
4982 // Add .eh_frame info for this stub section. Unlike other linker
4983 // generated .eh_frame this is added late in the link, because we
4984 // only want the .eh_frame info if this particular stub section is
4985 // non-empty.
4986
4987 template<int size, bool big_endian>
4988 void
4989 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
4990 {
4991 if (!parameters->options().ld_generated_unwind_info())
4992 return;
4993
4994 // Since we add stub .eh_frame info late, it must be placed
4995 // after all other linker generated .eh_frame info so that
4996 // merge mapping need not be updated for input sections.
4997 // There is no provision to use a different CIE to that used
4998 // by .glink.
4999 if (!this->targ_->has_glink())
5000 return;
5001
5002 if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
5003 return;
5004
5005 this->init_plt_fde();
5006 layout->add_eh_frame_for_plt(this,
5007 Eh_cie<size>::eh_frame_cie,
5008 sizeof (Eh_cie<size>::eh_frame_cie),
5009 this->plt_fde_, this->plt_fde_len_);
5010 }
5011
5012 template<int size, bool big_endian>
5013 void
5014 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
5015 {
5016 if (this->plt_fde_len_ != 0)
5017 {
5018 layout->remove_eh_frame_for_plt(this,
5019 Eh_cie<size>::eh_frame_cie,
5020 sizeof (Eh_cie<size>::eh_frame_cie),
5021 this->plt_fde_, this->plt_fde_len_);
5022 this->plt_fde_len_ = 0;
5023 }
5024 }
5025
5026 // A class to handle .glink.
5027
5028 template<int size, bool big_endian>
5029 class Output_data_glink : public Output_section_data
5030 {
5031 public:
5032 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5033 static const Address invalid_address = static_cast<Address>(0) - 1;
5034
5035 Output_data_glink(Target_powerpc<size, big_endian>* targ)
5036 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
5037 end_branch_table_(), ge_size_(0)
5038 { }
5039
5040 void
5041 add_eh_frame(Layout* layout);
5042
5043 void
5044 add_global_entry(const Symbol*);
5045
5046 Address
5047 find_global_entry(const Symbol*) const;
5048
5049 unsigned int
5050 global_entry_align(unsigned int off) const
5051 {
5052 unsigned int align = param_plt_align<size>();
5053 return (off + align - 1) & -align;
5054 }
5055
5056 unsigned int
5057 global_entry_off() const
5058 {
5059 return this->global_entry_align(this->end_branch_table_);
5060 }
5061
5062 Address
5063 global_entry_address() const
5064 {
5065 gold_assert(this->is_data_size_valid());
5066 return this->address() + this->global_entry_off();
5067 }
5068
5069 int
5070 pltresolve_size() const
5071 {
5072 if (size == 64)
5073 return (8
5074 + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
5075 return 16 * 4;
5076 }
5077
5078 protected:
5079 // Write to a map file.
5080 void
5081 do_print_to_mapfile(Mapfile* mapfile) const
5082 { mapfile->print_output_data(this, _("** glink")); }
5083
5084 private:
5085 void
5086 set_final_data_size();
5087
5088 // Write out .glink
5089 void
5090 do_write(Output_file*);
5091
5092 // Allows access to .got and .plt for do_write.
5093 Target_powerpc<size, big_endian>* targ_;
5094
5095 // Map sym to stub offset.
5096 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
5097 Global_entry_stub_entries global_entry_stubs_;
5098
5099 unsigned int end_branch_table_, ge_size_;
5100 };
5101
5102 template<int size, bool big_endian>
5103 void
5104 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
5105 {
5106 if (!parameters->options().ld_generated_unwind_info())
5107 return;
5108
5109 if (size == 64)
5110 {
5111 if (this->targ_->abiversion() < 2)
5112 layout->add_eh_frame_for_plt(this,
5113 Eh_cie<64>::eh_frame_cie,
5114 sizeof (Eh_cie<64>::eh_frame_cie),
5115 glink_eh_frame_fde_64v1,
5116 sizeof (glink_eh_frame_fde_64v1));
5117 else
5118 layout->add_eh_frame_for_plt(this,
5119 Eh_cie<64>::eh_frame_cie,
5120 sizeof (Eh_cie<64>::eh_frame_cie),
5121 glink_eh_frame_fde_64v2,
5122 sizeof (glink_eh_frame_fde_64v2));
5123 }
5124 else
5125 {
5126 // 32-bit .glink can use the default since the CIE return
5127 // address reg, LR, is valid.
5128 layout->add_eh_frame_for_plt(this,
5129 Eh_cie<32>::eh_frame_cie,
5130 sizeof (Eh_cie<32>::eh_frame_cie),
5131 default_fde,
5132 sizeof (default_fde));
5133 // Except where LR is used in a PIC __glink_PLTresolve.
5134 if (parameters->options().output_is_position_independent())
5135 layout->add_eh_frame_for_plt(this,
5136 Eh_cie<32>::eh_frame_cie,
5137 sizeof (Eh_cie<32>::eh_frame_cie),
5138 glink_eh_frame_fde_32,
5139 sizeof (glink_eh_frame_fde_32));
5140 }
5141 }
5142
5143 template<int size, bool big_endian>
5144 void
5145 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5146 {
5147 unsigned int off = this->global_entry_align(this->ge_size_);
5148 std::pair<typename Global_entry_stub_entries::iterator, bool> p
5149 = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5150 if (p.second)
5151 this->ge_size_ = off + 16;
5152 }
5153
5154 template<int size, bool big_endian>
5155 typename Output_data_glink<size, big_endian>::Address
5156 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5157 {
5158 typename Global_entry_stub_entries::const_iterator p
5159 = this->global_entry_stubs_.find(gsym);
5160 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5161 }
5162
5163 template<int size, bool big_endian>
5164 void
5165 Output_data_glink<size, big_endian>::set_final_data_size()
5166 {
5167 unsigned int count = this->targ_->plt_entry_count();
5168 section_size_type total = 0;
5169
5170 if (count != 0)
5171 {
5172 if (size == 32)
5173 {
5174 // space for branch table
5175 total += 4 * (count - 1);
5176
5177 total += -total & 15;
5178 total += this->pltresolve_size();
5179 }
5180 else
5181 {
5182 total += this->pltresolve_size();
5183
5184 // space for branch table
5185 total += 4 * count;
5186 if (this->targ_->abiversion() < 2)
5187 {
5188 total += 4 * count;
5189 if (count > 0x8000)
5190 total += 4 * (count - 0x8000);
5191 }
5192 }
5193 }
5194 this->end_branch_table_ = total;
5195 total = this->global_entry_align(total);
5196 total += this->ge_size_;
5197
5198 this->set_data_size(total);
5199 }
5200
5201 // Define symbols on stubs, identifying the stub.
5202
5203 template<int size, bool big_endian>
5204 void
5205 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5206 {
5207 if (!this->plt_call_stubs_.empty())
5208 {
5209 // The key for the plt call stub hash table includes addresses,
5210 // therefore traversal order depends on those addresses, which
5211 // can change between runs if gold is a PIE. Unfortunately the
5212 // output .symtab ordering depends on the order in which symbols
5213 // are added to the linker symtab. We want reproducible output
5214 // so must sort the call stub symbols.
5215 typedef typename Plt_stub_entries::const_iterator plt_iter;
5216 std::vector<plt_iter> sorted;
5217 sorted.resize(this->plt_call_stubs_.size());
5218
5219 for (plt_iter cs = this->plt_call_stubs_.begin();
5220 cs != this->plt_call_stubs_.end();
5221 ++cs)
5222 sorted[cs->second.indx_] = cs;
5223
5224 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5225 {
5226 plt_iter cs = sorted[i];
5227 char add[10];
5228 add[0] = 0;
5229 if (cs->first.addend_ != 0)
5230 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5231 char obj[10];
5232 obj[0] = 0;
5233 if (cs->first.object_)
5234 {
5235 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5236 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5237 sprintf(obj, "%x:", ppcobj->uniq());
5238 }
5239 char localname[9];
5240 const char *symname;
5241 if (cs->first.sym_ == NULL)
5242 {
5243 sprintf(localname, "%x", cs->first.locsym_);
5244 symname = localname;
5245 }
5246 else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5247 symname = this->targ_->tls_get_addr_opt()->name();
5248 else
5249 symname = cs->first.sym_->name();
5250 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5251 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5252 Address value
5253 = this->stub_address() - this->address() + cs->second.off_;
5254 unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5255 this->targ_->define_local(symtab, name, this, value, stub_size);
5256 }
5257 }
5258
5259 typedef typename Branch_stub_entries::const_iterator branch_iter;
5260 for (branch_iter bs = this->long_branch_stubs_.begin();
5261 bs != this->long_branch_stubs_.end();
5262 ++bs)
5263 {
5264 if (bs->first.save_res_)
5265 continue;
5266
5267 char* name = new char[8 + 13 + 16 + 1];
5268 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5269 static_cast<unsigned long long>(bs->first.dest_));
5270 Address value = (this->stub_address() - this->address()
5271 + this->plt_size_ + bs->second);
5272 unsigned int stub_size = this->branch_stub_size(bs);
5273 this->targ_->define_local(symtab, name, this, value, stub_size);
5274 }
5275 }
5276
5277 // Write out plt and long branch stub code.
5278
5279 template<int size, bool big_endian>
5280 void
5281 Stub_table<size, big_endian>::do_write(Output_file* of)
5282 {
5283 if (this->plt_call_stubs_.empty()
5284 && this->long_branch_stubs_.empty())
5285 return;
5286
5287 const section_size_type start_off = this->offset();
5288 const section_size_type off = this->stub_offset();
5289 const section_size_type oview_size =
5290 convert_to_section_size_type(this->data_size() - (off - start_off));
5291 unsigned char* const oview = of->get_output_view(off, oview_size);
5292 unsigned char* p;
5293
5294 if (size == 64)
5295 {
5296 const Output_data_got_powerpc<size, big_endian>* got
5297 = this->targ_->got_section();
5298 Address got_os_addr = got->output_section()->address();
5299
5300 if (!this->plt_call_stubs_.empty())
5301 {
5302 // Write out plt call stubs.
5303 typename Plt_stub_entries::const_iterator cs;
5304 for (cs = this->plt_call_stubs_.begin();
5305 cs != this->plt_call_stubs_.end();
5306 ++cs)
5307 {
5308 const Output_data_plt_powerpc<size, big_endian>* plt;
5309 Address pltoff = this->plt_off(cs, &plt);
5310 Address plt_addr = pltoff + plt->address();
5311 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5312 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5313 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5314 Address off = plt_addr - got_addr;
5315
5316 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5317 gold_error(_("%s: linkage table error against `%s'"),
5318 cs->first.object_->name().c_str(),
5319 cs->first.sym_->demangled_name().c_str());
5320
5321 bool plt_load_toc = this->targ_->abiversion() < 2;
5322 bool static_chain
5323 = plt_load_toc && parameters->options().plt_static_chain();
5324 bool thread_safe
5325 = plt_load_toc && this->targ_->plt_thread_safe();
5326 bool use_fake_dep = false;
5327 Address cmp_branch_off = 0;
5328 if (thread_safe)
5329 {
5330 unsigned int pltindex
5331 = ((pltoff - this->targ_->first_plt_entry_offset())
5332 / this->targ_->plt_entry_size());
5333 Address glinkoff
5334 = (this->targ_->glink_section()->pltresolve_size()
5335 + pltindex * 8);
5336 if (pltindex > 32768)
5337 glinkoff += (pltindex - 32768) * 4;
5338 Address to
5339 = this->targ_->glink_section()->address() + glinkoff;
5340 Address from
5341 = (this->stub_address() + cs->second.off_ + 20
5342 + 4 * cs->second.r2save_
5343 + 4 * (ha(off) != 0)
5344 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5345 + 4 * static_chain);
5346 cmp_branch_off = to - from;
5347 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5348 }
5349
5350 p = oview + cs->second.off_;
5351 const Symbol* gsym = cs->first.sym_;
5352 if (this->targ_->is_tls_get_addr_opt(gsym))
5353 {
5354 write_insn<big_endian>(p, ld_11_3 + 0);
5355 p += 4;
5356 write_insn<big_endian>(p, ld_12_3 + 8);
5357 p += 4;
5358 write_insn<big_endian>(p, mr_0_3);
5359 p += 4;
5360 write_insn<big_endian>(p, cmpdi_11_0);
5361 p += 4;
5362 write_insn<big_endian>(p, add_3_12_13);
5363 p += 4;
5364 write_insn<big_endian>(p, beqlr);
5365 p += 4;
5366 write_insn<big_endian>(p, mr_3_0);
5367 p += 4;
5368 if (!cs->second.localentry0_)
5369 {
5370 write_insn<big_endian>(p, mflr_11);
5371 p += 4;
5372 write_insn<big_endian>(p, (std_11_1
5373 + this->targ_->stk_linker()));
5374 p += 4;
5375 }
5376 use_fake_dep = thread_safe;
5377 }
5378 if (ha(off) != 0)
5379 {
5380 if (cs->second.r2save_)
5381 {
5382 write_insn<big_endian>(p,
5383 std_2_1 + this->targ_->stk_toc());
5384 p += 4;
5385 }
5386 if (plt_load_toc)
5387 {
5388 write_insn<big_endian>(p, addis_11_2 + ha(off));
5389 p += 4;
5390 write_insn<big_endian>(p, ld_12_11 + l(off));
5391 p += 4;
5392 }
5393 else
5394 {
5395 write_insn<big_endian>(p, addis_12_2 + ha(off));
5396 p += 4;
5397 write_insn<big_endian>(p, ld_12_12 + l(off));
5398 p += 4;
5399 }
5400 if (plt_load_toc
5401 && ha(off + 8 + 8 * static_chain) != ha(off))
5402 {
5403 write_insn<big_endian>(p, addi_11_11 + l(off));
5404 p += 4;
5405 off = 0;
5406 }
5407 write_insn<big_endian>(p, mtctr_12);
5408 p += 4;
5409 if (plt_load_toc)
5410 {
5411 if (use_fake_dep)
5412 {
5413 write_insn<big_endian>(p, xor_2_12_12);
5414 p += 4;
5415 write_insn<big_endian>(p, add_11_11_2);
5416 p += 4;
5417 }
5418 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5419 p += 4;
5420 if (static_chain)
5421 {
5422 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5423 p += 4;
5424 }
5425 }
5426 }
5427 else
5428 {
5429 if (cs->second.r2save_)
5430 {
5431 write_insn<big_endian>(p,
5432 std_2_1 + this->targ_->stk_toc());
5433 p += 4;
5434 }
5435 write_insn<big_endian>(p, ld_12_2 + l(off));
5436 p += 4;
5437 if (plt_load_toc
5438 && ha(off + 8 + 8 * static_chain) != ha(off))
5439 {
5440 write_insn<big_endian>(p, addi_2_2 + l(off));
5441 p += 4;
5442 off = 0;
5443 }
5444 write_insn<big_endian>(p, mtctr_12);
5445 p += 4;
5446 if (plt_load_toc)
5447 {
5448 if (use_fake_dep)
5449 {
5450 write_insn<big_endian>(p, xor_11_12_12);
5451 p += 4;
5452 write_insn<big_endian>(p, add_2_2_11);
5453 p += 4;
5454 }
5455 if (static_chain)
5456 {
5457 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5458 p += 4;
5459 }
5460 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5461 p += 4;
5462 }
5463 }
5464 if (!cs->second.localentry0_
5465 && this->targ_->is_tls_get_addr_opt(gsym))
5466 {
5467 write_insn<big_endian>(p, bctrl);
5468 p += 4;
5469 write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5470 p += 4;
5471 write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5472 p += 4;
5473 write_insn<big_endian>(p, mtlr_11);
5474 p += 4;
5475 write_insn<big_endian>(p, blr);
5476 }
5477 else if (thread_safe && !use_fake_dep)
5478 {
5479 write_insn<big_endian>(p, cmpldi_2_0);
5480 p += 4;
5481 write_insn<big_endian>(p, bnectr_p4);
5482 p += 4;
5483 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5484 }
5485 else
5486 write_insn<big_endian>(p, bctr);
5487 }
5488 }
5489
5490 // Write out long branch stubs.
5491 typename Branch_stub_entries::const_iterator bs;
5492 for (bs = this->long_branch_stubs_.begin();
5493 bs != this->long_branch_stubs_.end();
5494 ++bs)
5495 {
5496 if (bs->first.save_res_)
5497 continue;
5498 p = oview + this->plt_size_ + bs->second;
5499 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5500 Address delta = bs->first.dest_ - loc;
5501 if (delta + (1 << 25) < 2 << 25)
5502 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5503 else
5504 {
5505 Address brlt_addr
5506 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5507 gold_assert(brlt_addr != invalid_address);
5508 brlt_addr += this->targ_->brlt_section()->address();
5509 Address got_addr = got_os_addr + bs->first.toc_base_off_;
5510 Address brltoff = brlt_addr - got_addr;
5511 if (ha(brltoff) == 0)
5512 {
5513 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
5514 }
5515 else
5516 {
5517 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
5518 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
5519 }
5520 write_insn<big_endian>(p, mtctr_12), p += 4;
5521 write_insn<big_endian>(p, bctr);
5522 }
5523 }
5524 }
5525 else
5526 {
5527 if (!this->plt_call_stubs_.empty())
5528 {
5529 // The address of _GLOBAL_OFFSET_TABLE_.
5530 Address g_o_t = invalid_address;
5531
5532 // Write out plt call stubs.
5533 typename Plt_stub_entries::const_iterator cs;
5534 for (cs = this->plt_call_stubs_.begin();
5535 cs != this->plt_call_stubs_.end();
5536 ++cs)
5537 {
5538 const Output_data_plt_powerpc<size, big_endian>* plt;
5539 Address plt_addr = this->plt_off(cs, &plt);
5540 plt_addr += plt->address();
5541
5542 p = oview + cs->second.off_;
5543 const Symbol* gsym = cs->first.sym_;
5544 if (this->targ_->is_tls_get_addr_opt(gsym))
5545 {
5546 write_insn<big_endian>(p, lwz_11_3 + 0);
5547 p += 4;
5548 write_insn<big_endian>(p, lwz_12_3 + 4);
5549 p += 4;
5550 write_insn<big_endian>(p, mr_0_3);
5551 p += 4;
5552 write_insn<big_endian>(p, cmpwi_11_0);
5553 p += 4;
5554 write_insn<big_endian>(p, add_3_12_2);
5555 p += 4;
5556 write_insn<big_endian>(p, beqlr);
5557 p += 4;
5558 write_insn<big_endian>(p, mr_3_0);
5559 p += 4;
5560 write_insn<big_endian>(p, nop);
5561 p += 4;
5562 }
5563 if (parameters->options().output_is_position_independent())
5564 {
5565 Address got_addr;
5566 const Powerpc_relobj<size, big_endian>* ppcobj
5567 = (static_cast<const Powerpc_relobj<size, big_endian>*>
5568 (cs->first.object_));
5569 if (ppcobj != NULL && cs->first.addend_ >= 32768)
5570 {
5571 unsigned int got2 = ppcobj->got2_shndx();
5572 got_addr = ppcobj->get_output_section_offset(got2);
5573 gold_assert(got_addr != invalid_address);
5574 got_addr += (ppcobj->output_section(got2)->address()
5575 + cs->first.addend_);
5576 }
5577 else
5578 {
5579 if (g_o_t == invalid_address)
5580 {
5581 const Output_data_got_powerpc<size, big_endian>* got
5582 = this->targ_->got_section();
5583 g_o_t = got->address() + got->g_o_t();
5584 }
5585 got_addr = g_o_t;
5586 }
5587
5588 Address off = plt_addr - got_addr;
5589 if (ha(off) == 0)
5590 write_insn<big_endian>(p, lwz_11_30 + l(off));
5591 else
5592 {
5593 write_insn<big_endian>(p, addis_11_30 + ha(off));
5594 p += 4;
5595 write_insn<big_endian>(p, lwz_11_11 + l(off));
5596 }
5597 }
5598 else
5599 {
5600 write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5601 p += 4;
5602 write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5603 }
5604 p += 4;
5605 write_insn<big_endian>(p, mtctr_11);
5606 p += 4;
5607 write_insn<big_endian>(p, bctr);
5608 }
5609 }
5610
5611 // Write out long branch stubs.
5612 typename Branch_stub_entries::const_iterator bs;
5613 for (bs = this->long_branch_stubs_.begin();
5614 bs != this->long_branch_stubs_.end();
5615 ++bs)
5616 {
5617 if (bs->first.save_res_)
5618 continue;
5619 p = oview + this->plt_size_ + bs->second;
5620 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5621 Address delta = bs->first.dest_ - loc;
5622 if (delta + (1 << 25) < 2 << 25)
5623 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5624 else if (!parameters->options().output_is_position_independent())
5625 {
5626 write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5627 p += 4;
5628 write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5629 }
5630 else
5631 {
5632 delta -= 8;
5633 write_insn<big_endian>(p, mflr_0);
5634 p += 4;
5635 write_insn<big_endian>(p, bcl_20_31);
5636 p += 4;
5637 write_insn<big_endian>(p, mflr_12);
5638 p += 4;
5639 write_insn<big_endian>(p, addis_12_12 + ha(delta));
5640 p += 4;
5641 write_insn<big_endian>(p, addi_12_12 + l(delta));
5642 p += 4;
5643 write_insn<big_endian>(p, mtlr_0);
5644 }
5645 p += 4;
5646 write_insn<big_endian>(p, mtctr_12);
5647 p += 4;
5648 write_insn<big_endian>(p, bctr);
5649 }
5650 }
5651 if (this->need_save_res_)
5652 {
5653 p = oview + this->plt_size_ + this->branch_size_;
5654 memcpy (p, this->targ_->savres_section()->contents(),
5655 this->targ_->savres_section()->data_size());
5656 }
5657 }
5658
5659 // Write out .glink.
5660
5661 template<int size, bool big_endian>
5662 void
5663 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5664 {
5665 const section_size_type off = this->offset();
5666 const section_size_type oview_size =
5667 convert_to_section_size_type(this->data_size());
5668 unsigned char* const oview = of->get_output_view(off, oview_size);
5669 unsigned char* p;
5670
5671 // The base address of the .plt section.
5672 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5673 Address plt_base = this->targ_->plt_section()->address();
5674
5675 if (size == 64)
5676 {
5677 if (this->end_branch_table_ != 0)
5678 {
5679 // Write pltresolve stub.
5680 p = oview;
5681 Address after_bcl = this->address() + 16;
5682 Address pltoff = plt_base - after_bcl;
5683
5684 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
5685
5686 if (this->targ_->abiversion() < 2)
5687 {
5688 write_insn<big_endian>(p, mflr_12), p += 4;
5689 write_insn<big_endian>(p, bcl_20_31), p += 4;
5690 write_insn<big_endian>(p, mflr_11), p += 4;
5691 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5692 write_insn<big_endian>(p, mtlr_12), p += 4;
5693 write_insn<big_endian>(p, add_11_2_11), p += 4;
5694 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5695 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
5696 write_insn<big_endian>(p, mtctr_12), p += 4;
5697 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
5698 }
5699 else
5700 {
5701 write_insn<big_endian>(p, mflr_0), p += 4;
5702 write_insn<big_endian>(p, bcl_20_31), p += 4;
5703 write_insn<big_endian>(p, mflr_11), p += 4;
5704 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
5705 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5706 write_insn<big_endian>(p, mtlr_0), p += 4;
5707 write_insn<big_endian>(p, sub_12_12_11), p += 4;
5708 write_insn<big_endian>(p, add_11_2_11), p += 4;
5709 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
5710 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5711 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
5712 write_insn<big_endian>(p, mtctr_12), p += 4;
5713 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
5714 }
5715 write_insn<big_endian>(p, bctr), p += 4;
5716 gold_assert(p == oview + this->pltresolve_size());
5717
5718 // Write lazy link call stubs.
5719 uint32_t indx = 0;
5720 while (p < oview + this->end_branch_table_)
5721 {
5722 if (this->targ_->abiversion() < 2)
5723 {
5724 if (indx < 0x8000)
5725 {
5726 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
5727 }
5728 else
5729 {
5730 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
5731 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
5732 }
5733 }
5734 uint32_t branch_off = 8 - (p - oview);
5735 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
5736 indx++;
5737 }
5738 }
5739
5740 Address plt_base = this->targ_->plt_section()->address();
5741 Address iplt_base = invalid_address;
5742 unsigned int global_entry_off = this->global_entry_off();
5743 Address global_entry_base = this->address() + global_entry_off;
5744 typename Global_entry_stub_entries::const_iterator ge;
5745 for (ge = this->global_entry_stubs_.begin();
5746 ge != this->global_entry_stubs_.end();
5747 ++ge)
5748 {
5749 p = oview + global_entry_off + ge->second;
5750 Address plt_addr = ge->first->plt_offset();
5751 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5752 && ge->first->can_use_relative_reloc(false))
5753 {
5754 if (iplt_base == invalid_address)
5755 iplt_base = this->targ_->iplt_section()->address();
5756 plt_addr += iplt_base;
5757 }
5758 else
5759 plt_addr += plt_base;
5760 Address my_addr = global_entry_base + ge->second;
5761 Address off = plt_addr - my_addr;
5762
5763 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5764 gold_error(_("%s: linkage table error against `%s'"),
5765 ge->first->object()->name().c_str(),
5766 ge->first->demangled_name().c_str());
5767
5768 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
5769 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5770 write_insn<big_endian>(p, mtctr_12), p += 4;
5771 write_insn<big_endian>(p, bctr);
5772 }
5773 }
5774 else
5775 {
5776 const Output_data_got_powerpc<size, big_endian>* got
5777 = this->targ_->got_section();
5778 // The address of _GLOBAL_OFFSET_TABLE_.
5779 Address g_o_t = got->address() + got->g_o_t();
5780
5781 // Write out pltresolve branch table.
5782 p = oview;
5783 unsigned int the_end = oview_size - this->pltresolve_size();
5784 unsigned char* end_p = oview + the_end;
5785 while (p < end_p - 8 * 4)
5786 write_insn<big_endian>(p, b + end_p - p), p += 4;
5787 while (p < end_p)
5788 write_insn<big_endian>(p, nop), p += 4;
5789
5790 // Write out pltresolve call stub.
5791 end_p = oview + oview_size;
5792 if (parameters->options().output_is_position_independent())
5793 {
5794 Address res0_off = 0;
5795 Address after_bcl_off = the_end + 12;
5796 Address bcl_res0 = after_bcl_off - res0_off;
5797
5798 write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5799 p += 4;
5800 write_insn<big_endian>(p, mflr_0);
5801 p += 4;
5802 write_insn<big_endian>(p, bcl_20_31);
5803 p += 4;
5804 write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5805 p += 4;
5806 write_insn<big_endian>(p, mflr_12);
5807 p += 4;
5808 write_insn<big_endian>(p, mtlr_0);
5809 p += 4;
5810 write_insn<big_endian>(p, sub_11_11_12);
5811 p += 4;
5812
5813 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5814
5815 write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5816 p += 4;
5817 if (ha(got_bcl) == ha(got_bcl + 4))
5818 {
5819 write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5820 p += 4;
5821 write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5822 }
5823 else
5824 {
5825 write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5826 p += 4;
5827 write_insn<big_endian>(p, lwz_12_12 + 4);
5828 }
5829 p += 4;
5830 write_insn<big_endian>(p, mtctr_0);
5831 p += 4;
5832 write_insn<big_endian>(p, add_0_11_11);
5833 p += 4;
5834 write_insn<big_endian>(p, add_11_0_11);
5835 }
5836 else
5837 {
5838 Address res0 = this->address();
5839
5840 write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5841 p += 4;
5842 write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5843 p += 4;
5844 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5845 write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5846 else
5847 write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5848 p += 4;
5849 write_insn<big_endian>(p, addi_11_11 + l(-res0));
5850 p += 4;
5851 write_insn<big_endian>(p, mtctr_0);
5852 p += 4;
5853 write_insn<big_endian>(p, add_0_11_11);
5854 p += 4;
5855 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5856 write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5857 else
5858 write_insn<big_endian>(p, lwz_12_12 + 4);
5859 p += 4;
5860 write_insn<big_endian>(p, add_11_0_11);
5861 }
5862 p += 4;
5863 write_insn<big_endian>(p, bctr);
5864 p += 4;
5865 while (p < end_p)
5866 {
5867 write_insn<big_endian>(p, nop);
5868 p += 4;
5869 }
5870 }
5871
5872 of->write_output_view(off, oview_size, oview);
5873 }
5874
5875
5876 // A class to handle linker generated save/restore functions.
5877
5878 template<int size, bool big_endian>
5879 class Output_data_save_res : public Output_section_data_build
5880 {
5881 public:
5882 Output_data_save_res(Symbol_table* symtab);
5883
5884 const unsigned char*
5885 contents() const
5886 {
5887 return contents_;
5888 }
5889
5890 protected:
5891 // Write to a map file.
5892 void
5893 do_print_to_mapfile(Mapfile* mapfile) const
5894 { mapfile->print_output_data(this, _("** save/restore")); }
5895
5896 void
5897 do_write(Output_file*);
5898
5899 private:
5900 // The maximum size of save/restore contents.
5901 static const unsigned int savres_max = 218*4;
5902
5903 void
5904 savres_define(Symbol_table* symtab,
5905 const char *name,
5906 unsigned int lo, unsigned int hi,
5907 unsigned char* write_ent(unsigned char*, int),
5908 unsigned char* write_tail(unsigned char*, int));
5909
5910 unsigned char *contents_;
5911 };
5912
5913 template<bool big_endian>
5914 static unsigned char*
5915 savegpr0(unsigned char* p, int r)
5916 {
5917 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5918 write_insn<big_endian>(p, insn);
5919 return p + 4;
5920 }
5921
5922 template<bool big_endian>
5923 static unsigned char*
5924 savegpr0_tail(unsigned char* p, int r)
5925 {
5926 p = savegpr0<big_endian>(p, r);
5927 uint32_t insn = std_0_1 + 16;
5928 write_insn<big_endian>(p, insn);
5929 p = p + 4;
5930 write_insn<big_endian>(p, blr);
5931 return p + 4;
5932 }
5933
5934 template<bool big_endian>
5935 static unsigned char*
5936 restgpr0(unsigned char* p, int r)
5937 {
5938 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5939 write_insn<big_endian>(p, insn);
5940 return p + 4;
5941 }
5942
5943 template<bool big_endian>
5944 static unsigned char*
5945 restgpr0_tail(unsigned char* p, int r)
5946 {
5947 uint32_t insn = ld_0_1 + 16;
5948 write_insn<big_endian>(p, insn);
5949 p = p + 4;
5950 p = restgpr0<big_endian>(p, r);
5951 write_insn<big_endian>(p, mtlr_0);
5952 p = p + 4;
5953 if (r == 29)
5954 {
5955 p = restgpr0<big_endian>(p, 30);
5956 p = restgpr0<big_endian>(p, 31);
5957 }
5958 write_insn<big_endian>(p, blr);
5959 return p + 4;
5960 }
5961
5962 template<bool big_endian>
5963 static unsigned char*
5964 savegpr1(unsigned char* p, int r)
5965 {
5966 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5967 write_insn<big_endian>(p, insn);
5968 return p + 4;
5969 }
5970
5971 template<bool big_endian>
5972 static unsigned char*
5973 savegpr1_tail(unsigned char* p, int r)
5974 {
5975 p = savegpr1<big_endian>(p, r);
5976 write_insn<big_endian>(p, blr);
5977 return p + 4;
5978 }
5979
5980 template<bool big_endian>
5981 static unsigned char*
5982 restgpr1(unsigned char* p, int r)
5983 {
5984 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5985 write_insn<big_endian>(p, insn);
5986 return p + 4;
5987 }
5988
5989 template<bool big_endian>
5990 static unsigned char*
5991 restgpr1_tail(unsigned char* p, int r)
5992 {
5993 p = restgpr1<big_endian>(p, r);
5994 write_insn<big_endian>(p, blr);
5995 return p + 4;
5996 }
5997
5998 template<bool big_endian>
5999 static unsigned char*
6000 savefpr(unsigned char* p, int r)
6001 {
6002 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6003 write_insn<big_endian>(p, insn);
6004 return p + 4;
6005 }
6006
6007 template<bool big_endian>
6008 static unsigned char*
6009 savefpr0_tail(unsigned char* p, int r)
6010 {
6011 p = savefpr<big_endian>(p, r);
6012 write_insn<big_endian>(p, std_0_1 + 16);
6013 p = p + 4;
6014 write_insn<big_endian>(p, blr);
6015 return p + 4;
6016 }
6017
6018 template<bool big_endian>
6019 static unsigned char*
6020 restfpr(unsigned char* p, int r)
6021 {
6022 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6023 write_insn<big_endian>(p, insn);
6024 return p + 4;
6025 }
6026
6027 template<bool big_endian>
6028 static unsigned char*
6029 restfpr0_tail(unsigned char* p, int r)
6030 {
6031 write_insn<big_endian>(p, ld_0_1 + 16);
6032 p = p + 4;
6033 p = restfpr<big_endian>(p, r);
6034 write_insn<big_endian>(p, mtlr_0);
6035 p = p + 4;
6036 if (r == 29)
6037 {
6038 p = restfpr<big_endian>(p, 30);
6039 p = restfpr<big_endian>(p, 31);
6040 }
6041 write_insn<big_endian>(p, blr);
6042 return p + 4;
6043 }
6044
6045 template<bool big_endian>
6046 static unsigned char*
6047 savefpr1_tail(unsigned char* p, int r)
6048 {
6049 p = savefpr<big_endian>(p, r);
6050 write_insn<big_endian>(p, blr);
6051 return p + 4;
6052 }
6053
6054 template<bool big_endian>
6055 static unsigned char*
6056 restfpr1_tail(unsigned char* p, int r)
6057 {
6058 p = restfpr<big_endian>(p, r);
6059 write_insn<big_endian>(p, blr);
6060 return p + 4;
6061 }
6062
6063 template<bool big_endian>
6064 static unsigned char*
6065 savevr(unsigned char* p, int r)
6066 {
6067 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6068 write_insn<big_endian>(p, insn);
6069 p = p + 4;
6070 insn = stvx_0_12_0 + (r << 21);
6071 write_insn<big_endian>(p, insn);
6072 return p + 4;
6073 }
6074
6075 template<bool big_endian>
6076 static unsigned char*
6077 savevr_tail(unsigned char* p, int r)
6078 {
6079 p = savevr<big_endian>(p, r);
6080 write_insn<big_endian>(p, blr);
6081 return p + 4;
6082 }
6083
6084 template<bool big_endian>
6085 static unsigned char*
6086 restvr(unsigned char* p, int r)
6087 {
6088 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6089 write_insn<big_endian>(p, insn);
6090 p = p + 4;
6091 insn = lvx_0_12_0 + (r << 21);
6092 write_insn<big_endian>(p, insn);
6093 return p + 4;
6094 }
6095
6096 template<bool big_endian>
6097 static unsigned char*
6098 restvr_tail(unsigned char* p, int r)
6099 {
6100 p = restvr<big_endian>(p, r);
6101 write_insn<big_endian>(p, blr);
6102 return p + 4;
6103 }
6104
6105
6106 template<int size, bool big_endian>
6107 Output_data_save_res<size, big_endian>::Output_data_save_res(
6108 Symbol_table* symtab)
6109 : Output_section_data_build(4),
6110 contents_(NULL)
6111 {
6112 this->savres_define(symtab,
6113 "_savegpr0_", 14, 31,
6114 savegpr0<big_endian>, savegpr0_tail<big_endian>);
6115 this->savres_define(symtab,
6116 "_restgpr0_", 14, 29,
6117 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6118 this->savres_define(symtab,
6119 "_restgpr0_", 30, 31,
6120 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6121 this->savres_define(symtab,
6122 "_savegpr1_", 14, 31,
6123 savegpr1<big_endian>, savegpr1_tail<big_endian>);
6124 this->savres_define(symtab,
6125 "_restgpr1_", 14, 31,
6126 restgpr1<big_endian>, restgpr1_tail<big_endian>);
6127 this->savres_define(symtab,
6128 "_savefpr_", 14, 31,
6129 savefpr<big_endian>, savefpr0_tail<big_endian>);
6130 this->savres_define(symtab,
6131 "_restfpr_", 14, 29,
6132 restfpr<big_endian>, restfpr0_tail<big_endian>);
6133 this->savres_define(symtab,
6134 "_restfpr_", 30, 31,
6135 restfpr<big_endian>, restfpr0_tail<big_endian>);
6136 this->savres_define(symtab,
6137 "._savef", 14, 31,
6138 savefpr<big_endian>, savefpr1_tail<big_endian>);
6139 this->savres_define(symtab,
6140 "._restf", 14, 31,
6141 restfpr<big_endian>, restfpr1_tail<big_endian>);
6142 this->savres_define(symtab,
6143 "_savevr_", 20, 31,
6144 savevr<big_endian>, savevr_tail<big_endian>);
6145 this->savres_define(symtab,
6146 "_restvr_", 20, 31,
6147 restvr<big_endian>, restvr_tail<big_endian>);
6148 }
6149
6150 template<int size, bool big_endian>
6151 void
6152 Output_data_save_res<size, big_endian>::savres_define(
6153 Symbol_table* symtab,
6154 const char *name,
6155 unsigned int lo, unsigned int hi,
6156 unsigned char* write_ent(unsigned char*, int),
6157 unsigned char* write_tail(unsigned char*, int))
6158 {
6159 size_t len = strlen(name);
6160 bool writing = false;
6161 char sym[16];
6162
6163 memcpy(sym, name, len);
6164 sym[len + 2] = 0;
6165
6166 for (unsigned int i = lo; i <= hi; i++)
6167 {
6168 sym[len + 0] = i / 10 + '0';
6169 sym[len + 1] = i % 10 + '0';
6170 Symbol* gsym = symtab->lookup(sym);
6171 bool refd = gsym != NULL && gsym->is_undefined();
6172 writing = writing || refd;
6173 if (writing)
6174 {
6175 if (this->contents_ == NULL)
6176 this->contents_ = new unsigned char[this->savres_max];
6177
6178 section_size_type value = this->current_data_size();
6179 unsigned char* p = this->contents_ + value;
6180 if (i != hi)
6181 p = write_ent(p, i);
6182 else
6183 p = write_tail(p, i);
6184 section_size_type cur_size = p - this->contents_;
6185 this->set_current_data_size(cur_size);
6186 if (refd)
6187 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6188 this, value, cur_size - value,
6189 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6190 elfcpp::STV_HIDDEN, 0, false, false);
6191 }
6192 }
6193 }
6194
6195 // Write out save/restore.
6196
6197 template<int size, bool big_endian>
6198 void
6199 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6200 {
6201 const section_size_type off = this->offset();
6202 const section_size_type oview_size =
6203 convert_to_section_size_type(this->data_size());
6204 unsigned char* const oview = of->get_output_view(off, oview_size);
6205 memcpy(oview, this->contents_, oview_size);
6206 of->write_output_view(off, oview_size, oview);
6207 }
6208
6209
6210 // Create the glink section.
6211
6212 template<int size, bool big_endian>
6213 void
6214 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6215 {
6216 if (this->glink_ == NULL)
6217 {
6218 this->glink_ = new Output_data_glink<size, big_endian>(this);
6219 this->glink_->add_eh_frame(layout);
6220 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6221 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6222 this->glink_, ORDER_TEXT, false);
6223 }
6224 }
6225
6226 // Create a PLT entry for a global symbol.
6227
6228 template<int size, bool big_endian>
6229 void
6230 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6231 Layout* layout,
6232 Symbol* gsym)
6233 {
6234 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6235 && gsym->can_use_relative_reloc(false))
6236 {
6237 if (this->iplt_ == NULL)
6238 this->make_iplt_section(symtab, layout);
6239 this->iplt_->add_ifunc_entry(gsym);
6240 }
6241 else
6242 {
6243 if (this->plt_ == NULL)
6244 this->make_plt_section(symtab, layout);
6245 this->plt_->add_entry(gsym);
6246 }
6247 }
6248
6249 // Make a PLT entry for a local symbol.
6250
6251 template<int size, bool big_endian>
6252 void
6253 Target_powerpc<size, big_endian>::make_local_plt_entry(
6254 Layout* layout,
6255 Sized_relobj_file<size, big_endian>* relobj,
6256 unsigned int r_sym)
6257 {
6258 if (this->lplt_ == NULL)
6259 this->make_lplt_section(layout);
6260 this->lplt_->add_local_entry(relobj, r_sym);
6261 }
6262
6263 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6268 Symbol_table* symtab,
6269 Layout* layout,
6270 Sized_relobj_file<size, big_endian>* relobj,
6271 unsigned int r_sym)
6272 {
6273 if (this->iplt_ == NULL)
6274 this->make_iplt_section(symtab, layout);
6275 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6276 }
6277
6278 // Return the number of entries in the PLT.
6279
6280 template<int size, bool big_endian>
6281 unsigned int
6282 Target_powerpc<size, big_endian>::plt_entry_count() const
6283 {
6284 if (this->plt_ == NULL)
6285 return 0;
6286 return this->plt_->entry_count();
6287 }
6288
6289 // Create a GOT entry for local dynamic __tls_get_addr calls.
6290
6291 template<int size, bool big_endian>
6292 unsigned int
6293 Target_powerpc<size, big_endian>::tlsld_got_offset(
6294 Symbol_table* symtab,
6295 Layout* layout,
6296 Sized_relobj_file<size, big_endian>* object)
6297 {
6298 if (this->tlsld_got_offset_ == -1U)
6299 {
6300 gold_assert(symtab != NULL && layout != NULL && object != NULL);
6301 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6302 Output_data_got_powerpc<size, big_endian>* got
6303 = this->got_section(symtab, layout);
6304 unsigned int got_offset = got->add_constant_pair(0, 0);
6305 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6306 got_offset, 0);
6307 this->tlsld_got_offset_ = got_offset;
6308 }
6309 return this->tlsld_got_offset_;
6310 }
6311
6312 // Get the Reference_flags for a particular relocation.
6313
6314 template<int size, bool big_endian>
6315 int
6316 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6317 unsigned int r_type,
6318 const Target_powerpc* target)
6319 {
6320 int ref = 0;
6321
6322 switch (r_type)
6323 {
6324 case elfcpp::R_POWERPC_NONE:
6325 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6326 case elfcpp::R_POWERPC_GNU_VTENTRY:
6327 case elfcpp::R_PPC64_TOC:
6328 // No symbol reference.
6329 break;
6330
6331 case elfcpp::R_PPC64_ADDR64:
6332 case elfcpp::R_PPC64_UADDR64:
6333 case elfcpp::R_POWERPC_ADDR32:
6334 case elfcpp::R_POWERPC_UADDR32:
6335 case elfcpp::R_POWERPC_ADDR16:
6336 case elfcpp::R_POWERPC_UADDR16:
6337 case elfcpp::R_POWERPC_ADDR16_LO:
6338 case elfcpp::R_POWERPC_ADDR16_HI:
6339 case elfcpp::R_POWERPC_ADDR16_HA:
6340 ref = Symbol::ABSOLUTE_REF;
6341 break;
6342
6343 case elfcpp::R_POWERPC_ADDR24:
6344 case elfcpp::R_POWERPC_ADDR14:
6345 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6346 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6347 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6348 break;
6349
6350 case elfcpp::R_PPC64_REL64:
6351 case elfcpp::R_POWERPC_REL32:
6352 case elfcpp::R_PPC_LOCAL24PC:
6353 case elfcpp::R_POWERPC_REL16:
6354 case elfcpp::R_POWERPC_REL16_LO:
6355 case elfcpp::R_POWERPC_REL16_HI:
6356 case elfcpp::R_POWERPC_REL16_HA:
6357 ref = Symbol::RELATIVE_REF;
6358 break;
6359
6360 case elfcpp::R_POWERPC_REL24:
6361 case elfcpp::R_PPC_PLTREL24:
6362 case elfcpp::R_POWERPC_REL14:
6363 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6364 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6365 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6366 break;
6367
6368 case elfcpp::R_POWERPC_GOT16:
6369 case elfcpp::R_POWERPC_GOT16_LO:
6370 case elfcpp::R_POWERPC_GOT16_HI:
6371 case elfcpp::R_POWERPC_GOT16_HA:
6372 case elfcpp::R_PPC64_GOT16_DS:
6373 case elfcpp::R_PPC64_GOT16_LO_DS:
6374 case elfcpp::R_PPC64_TOC16:
6375 case elfcpp::R_PPC64_TOC16_LO:
6376 case elfcpp::R_PPC64_TOC16_HI:
6377 case elfcpp::R_PPC64_TOC16_HA:
6378 case elfcpp::R_PPC64_TOC16_DS:
6379 case elfcpp::R_PPC64_TOC16_LO_DS:
6380 case elfcpp::R_POWERPC_PLT16_LO:
6381 case elfcpp::R_POWERPC_PLT16_HI:
6382 case elfcpp::R_POWERPC_PLT16_HA:
6383 case elfcpp::R_PPC64_PLT16_LO_DS:
6384 ref = Symbol::RELATIVE_REF;
6385 break;
6386
6387 case elfcpp::R_POWERPC_GOT_TPREL16:
6388 case elfcpp::R_POWERPC_TLS:
6389 ref = Symbol::TLS_REF;
6390 break;
6391
6392 case elfcpp::R_POWERPC_COPY:
6393 case elfcpp::R_POWERPC_GLOB_DAT:
6394 case elfcpp::R_POWERPC_JMP_SLOT:
6395 case elfcpp::R_POWERPC_RELATIVE:
6396 case elfcpp::R_POWERPC_DTPMOD:
6397 default:
6398 // Not expected. We will give an error later.
6399 break;
6400 }
6401
6402 if (size == 64 && target->abiversion() < 2)
6403 ref |= Symbol::FUNC_DESC_ABI;
6404 return ref;
6405 }
6406
6407 // Report an unsupported relocation against a local symbol.
6408
6409 template<int size, bool big_endian>
6410 void
6411 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6412 Sized_relobj_file<size, big_endian>* object,
6413 unsigned int r_type)
6414 {
6415 gold_error(_("%s: unsupported reloc %u against local symbol"),
6416 object->name().c_str(), r_type);
6417 }
6418
6419 // We are about to emit a dynamic relocation of type R_TYPE. If the
6420 // dynamic linker does not support it, issue an error.
6421
6422 template<int size, bool big_endian>
6423 void
6424 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6425 unsigned int r_type)
6426 {
6427 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6428
6429 // These are the relocation types supported by glibc for both 32-bit
6430 // and 64-bit powerpc.
6431 switch (r_type)
6432 {
6433 case elfcpp::R_POWERPC_NONE:
6434 case elfcpp::R_POWERPC_RELATIVE:
6435 case elfcpp::R_POWERPC_GLOB_DAT:
6436 case elfcpp::R_POWERPC_DTPMOD:
6437 case elfcpp::R_POWERPC_DTPREL:
6438 case elfcpp::R_POWERPC_TPREL:
6439 case elfcpp::R_POWERPC_JMP_SLOT:
6440 case elfcpp::R_POWERPC_COPY:
6441 case elfcpp::R_POWERPC_IRELATIVE:
6442 case elfcpp::R_POWERPC_ADDR32:
6443 case elfcpp::R_POWERPC_UADDR32:
6444 case elfcpp::R_POWERPC_ADDR24:
6445 case elfcpp::R_POWERPC_ADDR16:
6446 case elfcpp::R_POWERPC_UADDR16:
6447 case elfcpp::R_POWERPC_ADDR16_LO:
6448 case elfcpp::R_POWERPC_ADDR16_HI:
6449 case elfcpp::R_POWERPC_ADDR16_HA:
6450 case elfcpp::R_POWERPC_ADDR14:
6451 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6452 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6453 case elfcpp::R_POWERPC_REL32:
6454 case elfcpp::R_POWERPC_REL24:
6455 case elfcpp::R_POWERPC_TPREL16:
6456 case elfcpp::R_POWERPC_TPREL16_LO:
6457 case elfcpp::R_POWERPC_TPREL16_HI:
6458 case elfcpp::R_POWERPC_TPREL16_HA:
6459 return;
6460
6461 default:
6462 break;
6463 }
6464
6465 if (size == 64)
6466 {
6467 switch (r_type)
6468 {
6469 // These are the relocation types supported only on 64-bit.
6470 case elfcpp::R_PPC64_ADDR64:
6471 case elfcpp::R_PPC64_UADDR64:
6472 case elfcpp::R_PPC64_JMP_IREL:
6473 case elfcpp::R_PPC64_ADDR16_DS:
6474 case elfcpp::R_PPC64_ADDR16_LO_DS:
6475 case elfcpp::R_PPC64_ADDR16_HIGH:
6476 case elfcpp::R_PPC64_ADDR16_HIGHA:
6477 case elfcpp::R_PPC64_ADDR16_HIGHER:
6478 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6479 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6480 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6481 case elfcpp::R_PPC64_REL64:
6482 case elfcpp::R_POWERPC_ADDR30:
6483 case elfcpp::R_PPC64_TPREL16_DS:
6484 case elfcpp::R_PPC64_TPREL16_LO_DS:
6485 case elfcpp::R_PPC64_TPREL16_HIGH:
6486 case elfcpp::R_PPC64_TPREL16_HIGHA:
6487 case elfcpp::R_PPC64_TPREL16_HIGHER:
6488 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6489 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6490 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6491 return;
6492
6493 default:
6494 break;
6495 }
6496 }
6497 else
6498 {
6499 switch (r_type)
6500 {
6501 // These are the relocation types supported only on 32-bit.
6502 // ??? glibc ld.so doesn't need to support these.
6503 case elfcpp::R_POWERPC_DTPREL16:
6504 case elfcpp::R_POWERPC_DTPREL16_LO:
6505 case elfcpp::R_POWERPC_DTPREL16_HI:
6506 case elfcpp::R_POWERPC_DTPREL16_HA:
6507 return;
6508
6509 default:
6510 break;
6511 }
6512 }
6513
6514 // This prevents us from issuing more than one error per reloc
6515 // section. But we can still wind up issuing more than one
6516 // error per object file.
6517 if (this->issued_non_pic_error_)
6518 return;
6519 gold_assert(parameters->options().output_is_position_independent());
6520 object->error(_("requires unsupported dynamic reloc; "
6521 "recompile with -fPIC"));
6522 this->issued_non_pic_error_ = true;
6523 return;
6524 }
6525
6526 // Return whether we need to make a PLT entry for a relocation of the
6527 // given type against a STT_GNU_IFUNC symbol.
6528
6529 template<int size, bool big_endian>
6530 bool
6531 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6532 Target_powerpc<size, big_endian>* target,
6533 Sized_relobj_file<size, big_endian>* object,
6534 unsigned int r_type,
6535 bool report_err)
6536 {
6537 // In non-pic code any reference will resolve to the plt call stub
6538 // for the ifunc symbol.
6539 if ((size == 32 || target->abiversion() >= 2)
6540 && !parameters->options().output_is_position_independent())
6541 return true;
6542
6543 switch (r_type)
6544 {
6545 // Word size refs from data sections are OK, but don't need a PLT entry.
6546 case elfcpp::R_POWERPC_ADDR32:
6547 case elfcpp::R_POWERPC_UADDR32:
6548 if (size == 32)
6549 return false;
6550 break;
6551
6552 case elfcpp::R_PPC64_ADDR64:
6553 case elfcpp::R_PPC64_UADDR64:
6554 if (size == 64)
6555 return false;
6556 break;
6557
6558 // GOT refs are good, but also don't need a PLT entry.
6559 case elfcpp::R_POWERPC_GOT16:
6560 case elfcpp::R_POWERPC_GOT16_LO:
6561 case elfcpp::R_POWERPC_GOT16_HI:
6562 case elfcpp::R_POWERPC_GOT16_HA:
6563 case elfcpp::R_PPC64_GOT16_DS:
6564 case elfcpp::R_PPC64_GOT16_LO_DS:
6565 return false;
6566
6567 // PLT relocs are OK and need a PLT entry.
6568 case elfcpp::R_POWERPC_PLT16_LO:
6569 case elfcpp::R_POWERPC_PLT16_HI:
6570 case elfcpp::R_POWERPC_PLT16_HA:
6571 case elfcpp::R_PPC64_PLT16_LO_DS:
6572 return true;
6573 break;
6574
6575 // Function calls are good, and these do need a PLT entry.
6576 case elfcpp::R_POWERPC_ADDR24:
6577 case elfcpp::R_POWERPC_ADDR14:
6578 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6579 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6580 case elfcpp::R_POWERPC_REL24:
6581 case elfcpp::R_PPC_PLTREL24:
6582 case elfcpp::R_POWERPC_REL14:
6583 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6584 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6585 return true;
6586
6587 default:
6588 break;
6589 }
6590
6591 // Anything else is a problem.
6592 // If we are building a static executable, the libc startup function
6593 // responsible for applying indirect function relocations is going
6594 // to complain about the reloc type.
6595 // If we are building a dynamic executable, we will have a text
6596 // relocation. The dynamic loader will set the text segment
6597 // writable and non-executable to apply text relocations. So we'll
6598 // segfault when trying to run the indirection function to resolve
6599 // the reloc.
6600 if (report_err)
6601 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6602 object->name().c_str(), r_type);
6603 return false;
6604 }
6605
6606 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6607 // reloc.
6608
6609 static bool
6610 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6611 {
6612 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6613 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6614 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6615 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6616 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6617 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6618 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6619 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6620 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6621 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6622 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6623 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6624 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6625 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6626 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6627 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6628 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6629 /* Exclude lfqu by testing reloc. If relocs are ever
6630 defined for the reduced D field in psq_lu then those
6631 will need testing too. */
6632 && r_type != elfcpp::R_PPC64_TOC16_LO
6633 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6634 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6635 && (insn & 1) == 0)
6636 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6637 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6638 /* Exclude stfqu. psq_stu as above for psq_lu. */
6639 && r_type != elfcpp::R_PPC64_TOC16_LO
6640 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6641 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6642 && (insn & 1) == 0));
6643 }
6644
6645 // Scan a relocation for a local symbol.
6646
6647 template<int size, bool big_endian>
6648 inline void
6649 Target_powerpc<size, big_endian>::Scan::local(
6650 Symbol_table* symtab,
6651 Layout* layout,
6652 Target_powerpc<size, big_endian>* target,
6653 Sized_relobj_file<size, big_endian>* object,
6654 unsigned int data_shndx,
6655 Output_section* output_section,
6656 const elfcpp::Rela<size, big_endian>& reloc,
6657 unsigned int r_type,
6658 const elfcpp::Sym<size, big_endian>& lsym,
6659 bool is_discarded)
6660 {
6661 this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6662
6663 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6664 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6665 {
6666 this->expect_tls_get_addr_call();
6667 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6668 if (tls_type != tls::TLSOPT_NONE)
6669 this->skip_next_tls_get_addr_call();
6670 }
6671 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6672 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6673 {
6674 this->expect_tls_get_addr_call();
6675 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6676 if (tls_type != tls::TLSOPT_NONE)
6677 this->skip_next_tls_get_addr_call();
6678 }
6679
6680 Powerpc_relobj<size, big_endian>* ppc_object
6681 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6682
6683 if (is_discarded)
6684 {
6685 if (size == 64
6686 && data_shndx == ppc_object->opd_shndx()
6687 && r_type == elfcpp::R_PPC64_ADDR64)
6688 ppc_object->set_opd_discard(reloc.get_r_offset());
6689 return;
6690 }
6691
6692 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6693 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6694 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6695 {
6696 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6697 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6698 r_type, r_sym, reloc.get_r_addend());
6699 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6700 }
6701
6702 switch (r_type)
6703 {
6704 case elfcpp::R_POWERPC_NONE:
6705 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6706 case elfcpp::R_POWERPC_GNU_VTENTRY:
6707 case elfcpp::R_POWERPC_TLS:
6708 case elfcpp::R_PPC64_ENTRY:
6709 break;
6710
6711 case elfcpp::R_PPC64_TOC:
6712 {
6713 Output_data_got_powerpc<size, big_endian>* got
6714 = target->got_section(symtab, layout);
6715 if (parameters->options().output_is_position_independent())
6716 {
6717 Address off = reloc.get_r_offset();
6718 if (size == 64
6719 && target->abiversion() < 2
6720 && data_shndx == ppc_object->opd_shndx()
6721 && ppc_object->get_opd_discard(off - 8))
6722 break;
6723
6724 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6725 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6726 rela_dyn->add_output_section_relative(got->output_section(),
6727 elfcpp::R_POWERPC_RELATIVE,
6728 output_section,
6729 object, data_shndx, off,
6730 symobj->toc_base_offset());
6731 }
6732 }
6733 break;
6734
6735 case elfcpp::R_PPC64_ADDR64:
6736 case elfcpp::R_PPC64_UADDR64:
6737 case elfcpp::R_POWERPC_ADDR32:
6738 case elfcpp::R_POWERPC_UADDR32:
6739 case elfcpp::R_POWERPC_ADDR24:
6740 case elfcpp::R_POWERPC_ADDR16:
6741 case elfcpp::R_POWERPC_ADDR16_LO:
6742 case elfcpp::R_POWERPC_ADDR16_HI:
6743 case elfcpp::R_POWERPC_ADDR16_HA:
6744 case elfcpp::R_POWERPC_UADDR16:
6745 case elfcpp::R_PPC64_ADDR16_HIGH:
6746 case elfcpp::R_PPC64_ADDR16_HIGHA:
6747 case elfcpp::R_PPC64_ADDR16_HIGHER:
6748 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6749 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6750 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6751 case elfcpp::R_PPC64_ADDR16_DS:
6752 case elfcpp::R_PPC64_ADDR16_LO_DS:
6753 case elfcpp::R_POWERPC_ADDR14:
6754 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6755 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6756 // If building a shared library (or a position-independent
6757 // executable), we need to create a dynamic relocation for
6758 // this location.
6759 if (parameters->options().output_is_position_independent()
6760 || (size == 64 && is_ifunc && target->abiversion() < 2))
6761 {
6762 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6763 is_ifunc);
6764 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6765 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6766 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6767 {
6768 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6769 : elfcpp::R_POWERPC_RELATIVE);
6770 rela_dyn->add_local_relative(object, r_sym, dynrel,
6771 output_section, data_shndx,
6772 reloc.get_r_offset(),
6773 reloc.get_r_addend(), false);
6774 }
6775 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6776 {
6777 check_non_pic(object, r_type);
6778 rela_dyn->add_local(object, r_sym, r_type, output_section,
6779 data_shndx, reloc.get_r_offset(),
6780 reloc.get_r_addend());
6781 }
6782 else
6783 {
6784 gold_assert(lsym.get_st_value() == 0);
6785 unsigned int shndx = lsym.get_st_shndx();
6786 bool is_ordinary;
6787 shndx = object->adjust_sym_shndx(r_sym, shndx,
6788 &is_ordinary);
6789 if (!is_ordinary)
6790 object->error(_("section symbol %u has bad shndx %u"),
6791 r_sym, shndx);
6792 else
6793 rela_dyn->add_local_section(object, shndx, r_type,
6794 output_section, data_shndx,
6795 reloc.get_r_offset());
6796 }
6797 }
6798 break;
6799
6800 case elfcpp::R_POWERPC_PLT16_LO:
6801 case elfcpp::R_POWERPC_PLT16_HI:
6802 case elfcpp::R_POWERPC_PLT16_HA:
6803 case elfcpp::R_PPC64_PLT16_LO_DS:
6804 if (!is_ifunc)
6805 {
6806 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6807 target->make_local_plt_entry(layout, object, r_sym);
6808 }
6809 break;
6810
6811 case elfcpp::R_POWERPC_REL24:
6812 case elfcpp::R_PPC_PLTREL24:
6813 case elfcpp::R_PPC_LOCAL24PC:
6814 case elfcpp::R_POWERPC_REL14:
6815 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6816 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6817 if (!is_ifunc)
6818 {
6819 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6820 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6821 r_type, r_sym, reloc.get_r_addend());
6822 }
6823 break;
6824
6825 case elfcpp::R_PPC64_TOCSAVE:
6826 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6827 // caller has already saved r2 and thus a plt call stub need not
6828 // save r2.
6829 if (size == 64
6830 && target->mark_pltcall(ppc_object, data_shndx,
6831 reloc.get_r_offset() - 4, symtab))
6832 {
6833 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6834 unsigned int shndx = lsym.get_st_shndx();
6835 bool is_ordinary;
6836 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6837 if (!is_ordinary)
6838 object->error(_("tocsave symbol %u has bad shndx %u"),
6839 r_sym, shndx);
6840 else
6841 target->add_tocsave(ppc_object, shndx,
6842 lsym.get_st_value() + reloc.get_r_addend());
6843 }
6844 break;
6845
6846 case elfcpp::R_PPC64_REL64:
6847 case elfcpp::R_POWERPC_REL32:
6848 case elfcpp::R_POWERPC_REL16:
6849 case elfcpp::R_POWERPC_REL16_LO:
6850 case elfcpp::R_POWERPC_REL16_HI:
6851 case elfcpp::R_POWERPC_REL16_HA:
6852 case elfcpp::R_POWERPC_REL16DX_HA:
6853 case elfcpp::R_POWERPC_SECTOFF:
6854 case elfcpp::R_POWERPC_SECTOFF_LO:
6855 case elfcpp::R_POWERPC_SECTOFF_HI:
6856 case elfcpp::R_POWERPC_SECTOFF_HA:
6857 case elfcpp::R_PPC64_SECTOFF_DS:
6858 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6859 case elfcpp::R_POWERPC_TPREL16:
6860 case elfcpp::R_POWERPC_TPREL16_LO:
6861 case elfcpp::R_POWERPC_TPREL16_HI:
6862 case elfcpp::R_POWERPC_TPREL16_HA:
6863 case elfcpp::R_PPC64_TPREL16_DS:
6864 case elfcpp::R_PPC64_TPREL16_LO_DS:
6865 case elfcpp::R_PPC64_TPREL16_HIGH:
6866 case elfcpp::R_PPC64_TPREL16_HIGHA:
6867 case elfcpp::R_PPC64_TPREL16_HIGHER:
6868 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6869 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6870 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6871 case elfcpp::R_POWERPC_DTPREL16:
6872 case elfcpp::R_POWERPC_DTPREL16_LO:
6873 case elfcpp::R_POWERPC_DTPREL16_HI:
6874 case elfcpp::R_POWERPC_DTPREL16_HA:
6875 case elfcpp::R_PPC64_DTPREL16_DS:
6876 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6877 case elfcpp::R_PPC64_DTPREL16_HIGH:
6878 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6879 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6880 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6881 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6882 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6883 case elfcpp::R_PPC64_TLSGD:
6884 case elfcpp::R_PPC64_TLSLD:
6885 case elfcpp::R_PPC64_ADDR64_LOCAL:
6886 break;
6887
6888 case elfcpp::R_POWERPC_GOT16:
6889 case elfcpp::R_POWERPC_GOT16_LO:
6890 case elfcpp::R_POWERPC_GOT16_HI:
6891 case elfcpp::R_POWERPC_GOT16_HA:
6892 case elfcpp::R_PPC64_GOT16_DS:
6893 case elfcpp::R_PPC64_GOT16_LO_DS:
6894 {
6895 // The symbol requires a GOT entry.
6896 Output_data_got_powerpc<size, big_endian>* got
6897 = target->got_section(symtab, layout);
6898 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6899
6900 if (!parameters->options().output_is_position_independent())
6901 {
6902 if (is_ifunc
6903 && (size == 32 || target->abiversion() >= 2))
6904 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6905 else
6906 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6907 }
6908 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6909 {
6910 // If we are generating a shared object or a pie, this
6911 // symbol's GOT entry will be set by a dynamic relocation.
6912 unsigned int off;
6913 off = got->add_constant(0);
6914 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6915
6916 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6917 is_ifunc);
6918 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6919 : elfcpp::R_POWERPC_RELATIVE);
6920 rela_dyn->add_local_relative(object, r_sym, dynrel,
6921 got, off, 0, false);
6922 }
6923 }
6924 break;
6925
6926 case elfcpp::R_PPC64_TOC16:
6927 case elfcpp::R_PPC64_TOC16_LO:
6928 case elfcpp::R_PPC64_TOC16_HI:
6929 case elfcpp::R_PPC64_TOC16_HA:
6930 case elfcpp::R_PPC64_TOC16_DS:
6931 case elfcpp::R_PPC64_TOC16_LO_DS:
6932 // We need a GOT section.
6933 target->got_section(symtab, layout);
6934 break;
6935
6936 case elfcpp::R_POWERPC_GOT_TLSGD16:
6937 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6938 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6939 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6940 {
6941 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6942 if (tls_type == tls::TLSOPT_NONE)
6943 {
6944 Output_data_got_powerpc<size, big_endian>* got
6945 = target->got_section(symtab, layout);
6946 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6947 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6948 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6949 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6950 }
6951 else if (tls_type == tls::TLSOPT_TO_LE)
6952 {
6953 // no GOT relocs needed for Local Exec.
6954 }
6955 else
6956 gold_unreachable();
6957 }
6958 break;
6959
6960 case elfcpp::R_POWERPC_GOT_TLSLD16:
6961 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6962 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6963 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6964 {
6965 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6966 if (tls_type == tls::TLSOPT_NONE)
6967 target->tlsld_got_offset(symtab, layout, object);
6968 else if (tls_type == tls::TLSOPT_TO_LE)
6969 {
6970 // no GOT relocs needed for Local Exec.
6971 if (parameters->options().emit_relocs())
6972 {
6973 Output_section* os = layout->tls_segment()->first_section();
6974 gold_assert(os != NULL);
6975 os->set_needs_symtab_index();
6976 }
6977 }
6978 else
6979 gold_unreachable();
6980 }
6981 break;
6982
6983 case elfcpp::R_POWERPC_GOT_DTPREL16:
6984 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6985 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6986 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6987 {
6988 Output_data_got_powerpc<size, big_endian>* got
6989 = target->got_section(symtab, layout);
6990 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6991 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6992 }
6993 break;
6994
6995 case elfcpp::R_POWERPC_GOT_TPREL16:
6996 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6997 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6998 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6999 {
7000 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
7001 if (tls_type == tls::TLSOPT_NONE)
7002 {
7003 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7004 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
7005 {
7006 Output_data_got_powerpc<size, big_endian>* got
7007 = target->got_section(symtab, layout);
7008 unsigned int off = got->add_constant(0);
7009 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
7010
7011 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7012 rela_dyn->add_symbolless_local_addend(object, r_sym,
7013 elfcpp::R_POWERPC_TPREL,
7014 got, off, 0);
7015 }
7016 }
7017 else if (tls_type == tls::TLSOPT_TO_LE)
7018 {
7019 // no GOT relocs needed for Local Exec.
7020 }
7021 else
7022 gold_unreachable();
7023 }
7024 break;
7025
7026 default:
7027 unsupported_reloc_local(object, r_type);
7028 break;
7029 }
7030
7031 if (size == 64
7032 && parameters->options().toc_optimize())
7033 {
7034 if (data_shndx == ppc_object->toc_shndx())
7035 {
7036 bool ok = true;
7037 if (r_type != elfcpp::R_PPC64_ADDR64
7038 || (is_ifunc && target->abiversion() < 2))
7039 ok = false;
7040 else if (parameters->options().output_is_position_independent())
7041 {
7042 if (is_ifunc)
7043 ok = false;
7044 else
7045 {
7046 unsigned int shndx = lsym.get_st_shndx();
7047 if (shndx >= elfcpp::SHN_LORESERVE
7048 && shndx != elfcpp::SHN_XINDEX)
7049 ok = false;
7050 }
7051 }
7052 if (!ok)
7053 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7054 }
7055
7056 enum {no_check, check_lo, check_ha} insn_check;
7057 switch (r_type)
7058 {
7059 default:
7060 insn_check = no_check;
7061 break;
7062
7063 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7064 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7065 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7066 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7067 case elfcpp::R_POWERPC_GOT16_HA:
7068 case elfcpp::R_PPC64_TOC16_HA:
7069 insn_check = check_ha;
7070 break;
7071
7072 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7073 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7074 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7075 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7076 case elfcpp::R_POWERPC_GOT16_LO:
7077 case elfcpp::R_PPC64_GOT16_LO_DS:
7078 case elfcpp::R_PPC64_TOC16_LO:
7079 case elfcpp::R_PPC64_TOC16_LO_DS:
7080 insn_check = check_lo;
7081 break;
7082 }
7083
7084 section_size_type slen;
7085 const unsigned char* view = NULL;
7086 if (insn_check != no_check)
7087 {
7088 view = ppc_object->section_contents(data_shndx, &slen, false);
7089 section_size_type off =
7090 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7091 if (off < slen)
7092 {
7093 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7094 if (insn_check == check_lo
7095 ? !ok_lo_toc_insn(insn, r_type)
7096 : ((insn & ((0x3f << 26) | 0x1f << 16))
7097 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7098 {
7099 ppc_object->set_no_toc_opt();
7100 gold_warning(_("%s: toc optimization is not supported "
7101 "for %#08x instruction"),
7102 ppc_object->name().c_str(), insn);
7103 }
7104 }
7105 }
7106
7107 switch (r_type)
7108 {
7109 default:
7110 break;
7111 case elfcpp::R_PPC64_TOC16:
7112 case elfcpp::R_PPC64_TOC16_LO:
7113 case elfcpp::R_PPC64_TOC16_HI:
7114 case elfcpp::R_PPC64_TOC16_HA:
7115 case elfcpp::R_PPC64_TOC16_DS:
7116 case elfcpp::R_PPC64_TOC16_LO_DS:
7117 unsigned int shndx = lsym.get_st_shndx();
7118 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7119 bool is_ordinary;
7120 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7121 if (is_ordinary && shndx == ppc_object->toc_shndx())
7122 {
7123 Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
7124 if (dst_off < ppc_object->section_size(shndx))
7125 {
7126 bool ok = false;
7127 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7128 ok = true;
7129 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7130 {
7131 // Need to check that the insn is a ld
7132 if (!view)
7133 view = ppc_object->section_contents(data_shndx,
7134 &slen,
7135 false);
7136 section_size_type off =
7137 (convert_to_section_size_type(reloc.get_r_offset())
7138 + (big_endian ? -2 : 3));
7139 if (off < slen
7140 && (view[off] & (0x3f << 2)) == 58u << 2)
7141 ok = true;
7142 }
7143 if (!ok)
7144 ppc_object->set_no_toc_opt(dst_off);
7145 }
7146 }
7147 break;
7148 }
7149 }
7150
7151 if (size == 32)
7152 {
7153 switch (r_type)
7154 {
7155 case elfcpp::R_POWERPC_REL32:
7156 if (ppc_object->got2_shndx() != 0
7157 && parameters->options().output_is_position_independent())
7158 {
7159 unsigned int shndx = lsym.get_st_shndx();
7160 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7161 bool is_ordinary;
7162 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7163 if (is_ordinary && shndx == ppc_object->got2_shndx()
7164 && (ppc_object->section_flags(data_shndx)
7165 & elfcpp::SHF_EXECINSTR) != 0)
7166 gold_error(_("%s: unsupported -mbss-plt code"),
7167 ppc_object->name().c_str());
7168 }
7169 break;
7170 default:
7171 break;
7172 }
7173 }
7174
7175 switch (r_type)
7176 {
7177 case elfcpp::R_POWERPC_GOT_TLSLD16:
7178 case elfcpp::R_POWERPC_GOT_TLSGD16:
7179 case elfcpp::R_POWERPC_GOT_TPREL16:
7180 case elfcpp::R_POWERPC_GOT_DTPREL16:
7181 case elfcpp::R_POWERPC_GOT16:
7182 case elfcpp::R_PPC64_GOT16_DS:
7183 case elfcpp::R_PPC64_TOC16:
7184 case elfcpp::R_PPC64_TOC16_DS:
7185 ppc_object->set_has_small_toc_reloc();
7186 default:
7187 break;
7188 }
7189 }
7190
7191 // Report an unsupported relocation against a global symbol.
7192
7193 template<int size, bool big_endian>
7194 void
7195 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7196 Sized_relobj_file<size, big_endian>* object,
7197 unsigned int r_type,
7198 Symbol* gsym)
7199 {
7200 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7201 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7202 }
7203
7204 // Scan a relocation for a global symbol.
7205
7206 template<int size, bool big_endian>
7207 inline void
7208 Target_powerpc<size, big_endian>::Scan::global(
7209 Symbol_table* symtab,
7210 Layout* layout,
7211 Target_powerpc<size, big_endian>* target,
7212 Sized_relobj_file<size, big_endian>* object,
7213 unsigned int data_shndx,
7214 Output_section* output_section,
7215 const elfcpp::Rela<size, big_endian>& reloc,
7216 unsigned int r_type,
7217 Symbol* gsym)
7218 {
7219 if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7220 == Track_tls::SKIP)
7221 return;
7222
7223 if (target->replace_tls_get_addr(gsym))
7224 // Change a __tls_get_addr reference to __tls_get_addr_opt
7225 // so dynamic relocs are emitted against the latter symbol.
7226 gsym = target->tls_get_addr_opt();
7227
7228 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7229 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7230 {
7231 this->expect_tls_get_addr_call();
7232 const bool final = gsym->final_value_is_known();
7233 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7234 if (tls_type != tls::TLSOPT_NONE)
7235 this->skip_next_tls_get_addr_call();
7236 }
7237 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7238 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7239 {
7240 this->expect_tls_get_addr_call();
7241 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7242 if (tls_type != tls::TLSOPT_NONE)
7243 this->skip_next_tls_get_addr_call();
7244 }
7245
7246 Powerpc_relobj<size, big_endian>* ppc_object
7247 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7248
7249 // A STT_GNU_IFUNC symbol may require a PLT entry.
7250 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7251 bool pushed_ifunc = false;
7252 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7253 {
7254 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7255 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7256 r_type, r_sym, reloc.get_r_addend());
7257 target->make_plt_entry(symtab, layout, gsym);
7258 pushed_ifunc = true;
7259 }
7260
7261 switch (r_type)
7262 {
7263 case elfcpp::R_POWERPC_NONE:
7264 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7265 case elfcpp::R_POWERPC_GNU_VTENTRY:
7266 case elfcpp::R_PPC_LOCAL24PC:
7267 case elfcpp::R_POWERPC_TLS:
7268 case elfcpp::R_PPC64_ENTRY:
7269 break;
7270
7271 case elfcpp::R_PPC64_TOC:
7272 {
7273 Output_data_got_powerpc<size, big_endian>* got
7274 = target->got_section(symtab, layout);
7275 if (parameters->options().output_is_position_independent())
7276 {
7277 Address off = reloc.get_r_offset();
7278 if (size == 64
7279 && data_shndx == ppc_object->opd_shndx()
7280 && ppc_object->get_opd_discard(off - 8))
7281 break;
7282
7283 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7284 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7285 if (data_shndx != ppc_object->opd_shndx())
7286 symobj = static_cast
7287 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7288 rela_dyn->add_output_section_relative(got->output_section(),
7289 elfcpp::R_POWERPC_RELATIVE,
7290 output_section,
7291 object, data_shndx, off,
7292 symobj->toc_base_offset());
7293 }
7294 }
7295 break;
7296
7297 case elfcpp::R_PPC64_ADDR64:
7298 if (size == 64
7299 && target->abiversion() < 2
7300 && data_shndx == ppc_object->opd_shndx()
7301 && (gsym->is_defined_in_discarded_section()
7302 || gsym->object() != object))
7303 {
7304 ppc_object->set_opd_discard(reloc.get_r_offset());
7305 break;
7306 }
7307 // Fall through.
7308 case elfcpp::R_PPC64_UADDR64:
7309 case elfcpp::R_POWERPC_ADDR32:
7310 case elfcpp::R_POWERPC_UADDR32:
7311 case elfcpp::R_POWERPC_ADDR24:
7312 case elfcpp::R_POWERPC_ADDR16:
7313 case elfcpp::R_POWERPC_ADDR16_LO:
7314 case elfcpp::R_POWERPC_ADDR16_HI:
7315 case elfcpp::R_POWERPC_ADDR16_HA:
7316 case elfcpp::R_POWERPC_UADDR16:
7317 case elfcpp::R_PPC64_ADDR16_HIGH:
7318 case elfcpp::R_PPC64_ADDR16_HIGHA:
7319 case elfcpp::R_PPC64_ADDR16_HIGHER:
7320 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7321 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7322 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7323 case elfcpp::R_PPC64_ADDR16_DS:
7324 case elfcpp::R_PPC64_ADDR16_LO_DS:
7325 case elfcpp::R_POWERPC_ADDR14:
7326 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7327 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7328 {
7329 // Make a PLT entry if necessary.
7330 if (gsym->needs_plt_entry())
7331 {
7332 // Since this is not a PC-relative relocation, we may be
7333 // taking the address of a function. In that case we need to
7334 // set the entry in the dynamic symbol table to the address of
7335 // the PLT call stub.
7336 bool need_ifunc_plt = false;
7337 if ((size == 32 || target->abiversion() >= 2)
7338 && gsym->is_from_dynobj()
7339 && !parameters->options().output_is_position_independent())
7340 {
7341 gsym->set_needs_dynsym_value();
7342 need_ifunc_plt = true;
7343 }
7344 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7345 {
7346 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7347 target->push_branch(ppc_object, data_shndx,
7348 reloc.get_r_offset(), r_type, r_sym,
7349 reloc.get_r_addend());
7350 target->make_plt_entry(symtab, layout, gsym);
7351 }
7352 }
7353 // Make a dynamic relocation if necessary.
7354 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7355 || (size == 64 && is_ifunc && target->abiversion() < 2))
7356 {
7357 if (!parameters->options().output_is_position_independent()
7358 && gsym->may_need_copy_reloc())
7359 {
7360 target->copy_reloc(symtab, layout, object,
7361 data_shndx, output_section, gsym, reloc);
7362 }
7363 else if ((((size == 32
7364 && r_type == elfcpp::R_POWERPC_ADDR32)
7365 || (size == 64
7366 && r_type == elfcpp::R_PPC64_ADDR64
7367 && target->abiversion() >= 2))
7368 && gsym->can_use_relative_reloc(false)
7369 && !(gsym->visibility() == elfcpp::STV_PROTECTED
7370 && parameters->options().shared()))
7371 || (size == 64
7372 && r_type == elfcpp::R_PPC64_ADDR64
7373 && target->abiversion() < 2
7374 && (gsym->can_use_relative_reloc(false)
7375 || data_shndx == ppc_object->opd_shndx())))
7376 {
7377 Reloc_section* rela_dyn
7378 = target->rela_dyn_section(symtab, layout, is_ifunc);
7379 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7380 : elfcpp::R_POWERPC_RELATIVE);
7381 rela_dyn->add_symbolless_global_addend(
7382 gsym, dynrel, output_section, object, data_shndx,
7383 reloc.get_r_offset(), reloc.get_r_addend());
7384 }
7385 else
7386 {
7387 Reloc_section* rela_dyn
7388 = target->rela_dyn_section(symtab, layout, is_ifunc);
7389 check_non_pic(object, r_type);
7390 rela_dyn->add_global(gsym, r_type, output_section,
7391 object, data_shndx,
7392 reloc.get_r_offset(),
7393 reloc.get_r_addend());
7394
7395 if (size == 64
7396 && parameters->options().toc_optimize()
7397 && data_shndx == ppc_object->toc_shndx())
7398 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7399 }
7400 }
7401 }
7402 break;
7403
7404 case elfcpp::R_POWERPC_PLT16_LO:
7405 case elfcpp::R_POWERPC_PLT16_HI:
7406 case elfcpp::R_POWERPC_PLT16_HA:
7407 case elfcpp::R_PPC64_PLT16_LO_DS:
7408 if (!pushed_ifunc)
7409 target->make_plt_entry(symtab, layout, gsym);
7410 break;
7411
7412 case elfcpp::R_PPC_PLTREL24:
7413 case elfcpp::R_POWERPC_REL24:
7414 if (!is_ifunc)
7415 {
7416 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7417 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7418 r_type, r_sym, reloc.get_r_addend());
7419 if (gsym->needs_plt_entry()
7420 || (!gsym->final_value_is_known()
7421 && (gsym->is_undefined()
7422 || gsym->is_from_dynobj()
7423 || gsym->is_preemptible())))
7424 target->make_plt_entry(symtab, layout, gsym);
7425 }
7426 // Fall through.
7427
7428 case elfcpp::R_PPC64_REL64:
7429 case elfcpp::R_POWERPC_REL32:
7430 // Make a dynamic relocation if necessary.
7431 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7432 {
7433 if (!parameters->options().output_is_position_independent()
7434 && gsym->may_need_copy_reloc())
7435 {
7436 target->copy_reloc(symtab, layout, object,
7437 data_shndx, output_section, gsym,
7438 reloc);
7439 }
7440 else
7441 {
7442 Reloc_section* rela_dyn
7443 = target->rela_dyn_section(symtab, layout, is_ifunc);
7444 check_non_pic(object, r_type);
7445 rela_dyn->add_global(gsym, r_type, output_section, object,
7446 data_shndx, reloc.get_r_offset(),
7447 reloc.get_r_addend());
7448 }
7449 }
7450 break;
7451
7452 case elfcpp::R_POWERPC_REL14:
7453 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7454 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7455 if (!is_ifunc)
7456 {
7457 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7458 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7459 r_type, r_sym, reloc.get_r_addend());
7460 }
7461 break;
7462
7463 case elfcpp::R_PPC64_TOCSAVE:
7464 // R_PPC64_TOCSAVE follows a call instruction to indicate the
7465 // caller has already saved r2 and thus a plt call stub need not
7466 // save r2.
7467 if (size == 64
7468 && target->mark_pltcall(ppc_object, data_shndx,
7469 reloc.get_r_offset() - 4, symtab))
7470 {
7471 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7472 bool is_ordinary;
7473 unsigned int shndx = gsym->shndx(&is_ordinary);
7474 if (!is_ordinary)
7475 object->error(_("tocsave symbol %u has bad shndx %u"),
7476 r_sym, shndx);
7477 else
7478 {
7479 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7480 target->add_tocsave(ppc_object, shndx,
7481 sym->value() + reloc.get_r_addend());
7482 }
7483 }
7484 break;
7485
7486 case elfcpp::R_POWERPC_REL16:
7487 case elfcpp::R_POWERPC_REL16_LO:
7488 case elfcpp::R_POWERPC_REL16_HI:
7489 case elfcpp::R_POWERPC_REL16_HA:
7490 case elfcpp::R_POWERPC_REL16DX_HA:
7491 case elfcpp::R_POWERPC_SECTOFF:
7492 case elfcpp::R_POWERPC_SECTOFF_LO:
7493 case elfcpp::R_POWERPC_SECTOFF_HI:
7494 case elfcpp::R_POWERPC_SECTOFF_HA:
7495 case elfcpp::R_PPC64_SECTOFF_DS:
7496 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7497 case elfcpp::R_POWERPC_TPREL16:
7498 case elfcpp::R_POWERPC_TPREL16_LO:
7499 case elfcpp::R_POWERPC_TPREL16_HI:
7500 case elfcpp::R_POWERPC_TPREL16_HA:
7501 case elfcpp::R_PPC64_TPREL16_DS:
7502 case elfcpp::R_PPC64_TPREL16_LO_DS:
7503 case elfcpp::R_PPC64_TPREL16_HIGH:
7504 case elfcpp::R_PPC64_TPREL16_HIGHA:
7505 case elfcpp::R_PPC64_TPREL16_HIGHER:
7506 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7507 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7508 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7509 case elfcpp::R_POWERPC_DTPREL16:
7510 case elfcpp::R_POWERPC_DTPREL16_LO:
7511 case elfcpp::R_POWERPC_DTPREL16_HI:
7512 case elfcpp::R_POWERPC_DTPREL16_HA:
7513 case elfcpp::R_PPC64_DTPREL16_DS:
7514 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7515 case elfcpp::R_PPC64_DTPREL16_HIGH:
7516 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7517 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7518 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7519 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7520 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7521 case elfcpp::R_PPC64_TLSGD:
7522 case elfcpp::R_PPC64_TLSLD:
7523 case elfcpp::R_PPC64_ADDR64_LOCAL:
7524 break;
7525
7526 case elfcpp::R_POWERPC_GOT16:
7527 case elfcpp::R_POWERPC_GOT16_LO:
7528 case elfcpp::R_POWERPC_GOT16_HI:
7529 case elfcpp::R_POWERPC_GOT16_HA:
7530 case elfcpp::R_PPC64_GOT16_DS:
7531 case elfcpp::R_PPC64_GOT16_LO_DS:
7532 {
7533 // The symbol requires a GOT entry.
7534 Output_data_got_powerpc<size, big_endian>* got;
7535
7536 got = target->got_section(symtab, layout);
7537 if (gsym->final_value_is_known())
7538 {
7539 if (is_ifunc
7540 && (size == 32 || target->abiversion() >= 2))
7541 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7542 else
7543 got->add_global(gsym, GOT_TYPE_STANDARD);
7544 }
7545 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7546 {
7547 // If we are generating a shared object or a pie, this
7548 // symbol's GOT entry will be set by a dynamic relocation.
7549 unsigned int off = got->add_constant(0);
7550 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7551
7552 Reloc_section* rela_dyn
7553 = target->rela_dyn_section(symtab, layout, is_ifunc);
7554
7555 if (gsym->can_use_relative_reloc(false)
7556 && !((size == 32
7557 || target->abiversion() >= 2)
7558 && gsym->visibility() == elfcpp::STV_PROTECTED
7559 && parameters->options().shared()))
7560 {
7561 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7562 : elfcpp::R_POWERPC_RELATIVE);
7563 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7564 }
7565 else
7566 {
7567 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7568 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7569 }
7570 }
7571 }
7572 break;
7573
7574 case elfcpp::R_PPC64_TOC16:
7575 case elfcpp::R_PPC64_TOC16_LO:
7576 case elfcpp::R_PPC64_TOC16_HI:
7577 case elfcpp::R_PPC64_TOC16_HA:
7578 case elfcpp::R_PPC64_TOC16_DS:
7579 case elfcpp::R_PPC64_TOC16_LO_DS:
7580 // We need a GOT section.
7581 target->got_section(symtab, layout);
7582 break;
7583
7584 case elfcpp::R_POWERPC_GOT_TLSGD16:
7585 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7586 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7587 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7588 {
7589 const bool final = gsym->final_value_is_known();
7590 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7591 if (tls_type == tls::TLSOPT_NONE)
7592 {
7593 Output_data_got_powerpc<size, big_endian>* got
7594 = target->got_section(symtab, layout);
7595 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7596 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7597 elfcpp::R_POWERPC_DTPMOD,
7598 elfcpp::R_POWERPC_DTPREL);
7599 }
7600 else if (tls_type == tls::TLSOPT_TO_IE)
7601 {
7602 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7603 {
7604 Output_data_got_powerpc<size, big_endian>* got
7605 = target->got_section(symtab, layout);
7606 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7607 if (gsym->is_undefined()
7608 || gsym->is_from_dynobj())
7609 {
7610 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7611 elfcpp::R_POWERPC_TPREL);
7612 }
7613 else
7614 {
7615 unsigned int off = got->add_constant(0);
7616 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7617 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7618 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7619 got, off, 0);
7620 }
7621 }
7622 }
7623 else if (tls_type == tls::TLSOPT_TO_LE)
7624 {
7625 // no GOT relocs needed for Local Exec.
7626 }
7627 else
7628 gold_unreachable();
7629 }
7630 break;
7631
7632 case elfcpp::R_POWERPC_GOT_TLSLD16:
7633 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7634 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7635 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7636 {
7637 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7638 if (tls_type == tls::TLSOPT_NONE)
7639 target->tlsld_got_offset(symtab, layout, object);
7640 else if (tls_type == tls::TLSOPT_TO_LE)
7641 {
7642 // no GOT relocs needed for Local Exec.
7643 if (parameters->options().emit_relocs())
7644 {
7645 Output_section* os = layout->tls_segment()->first_section();
7646 gold_assert(os != NULL);
7647 os->set_needs_symtab_index();
7648 }
7649 }
7650 else
7651 gold_unreachable();
7652 }
7653 break;
7654
7655 case elfcpp::R_POWERPC_GOT_DTPREL16:
7656 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7657 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7658 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7659 {
7660 Output_data_got_powerpc<size, big_endian>* got
7661 = target->got_section(symtab, layout);
7662 if (!gsym->final_value_is_known()
7663 && (gsym->is_from_dynobj()
7664 || gsym->is_undefined()
7665 || gsym->is_preemptible()))
7666 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7667 target->rela_dyn_section(layout),
7668 elfcpp::R_POWERPC_DTPREL);
7669 else
7670 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7671 }
7672 break;
7673
7674 case elfcpp::R_POWERPC_GOT_TPREL16:
7675 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7676 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7677 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7678 {
7679 const bool final = gsym->final_value_is_known();
7680 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7681 if (tls_type == tls::TLSOPT_NONE)
7682 {
7683 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7684 {
7685 Output_data_got_powerpc<size, big_endian>* got
7686 = target->got_section(symtab, layout);
7687 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7688 if (gsym->is_undefined()
7689 || gsym->is_from_dynobj())
7690 {
7691 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7692 elfcpp::R_POWERPC_TPREL);
7693 }
7694 else
7695 {
7696 unsigned int off = got->add_constant(0);
7697 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7698 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7699 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7700 got, off, 0);
7701 }
7702 }
7703 }
7704 else if (tls_type == tls::TLSOPT_TO_LE)
7705 {
7706 // no GOT relocs needed for Local Exec.
7707 }
7708 else
7709 gold_unreachable();
7710 }
7711 break;
7712
7713 default:
7714 unsupported_reloc_global(object, r_type, gsym);
7715 break;
7716 }
7717
7718 if (size == 64
7719 && parameters->options().toc_optimize())
7720 {
7721 if (data_shndx == ppc_object->toc_shndx())
7722 {
7723 bool ok = true;
7724 if (r_type != elfcpp::R_PPC64_ADDR64
7725 || (is_ifunc && target->abiversion() < 2))
7726 ok = false;
7727 else if (parameters->options().output_is_position_independent()
7728 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7729 ok = false;
7730 if (!ok)
7731 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7732 }
7733
7734 enum {no_check, check_lo, check_ha} insn_check;
7735 switch (r_type)
7736 {
7737 default:
7738 insn_check = no_check;
7739 break;
7740
7741 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7742 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7743 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7744 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7745 case elfcpp::R_POWERPC_GOT16_HA:
7746 case elfcpp::R_PPC64_TOC16_HA:
7747 insn_check = check_ha;
7748 break;
7749
7750 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7751 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7752 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7753 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7754 case elfcpp::R_POWERPC_GOT16_LO:
7755 case elfcpp::R_PPC64_GOT16_LO_DS:
7756 case elfcpp::R_PPC64_TOC16_LO:
7757 case elfcpp::R_PPC64_TOC16_LO_DS:
7758 insn_check = check_lo;
7759 break;
7760 }
7761
7762 section_size_type slen;
7763 const unsigned char* view = NULL;
7764 if (insn_check != no_check)
7765 {
7766 view = ppc_object->section_contents(data_shndx, &slen, false);
7767 section_size_type off =
7768 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7769 if (off < slen)
7770 {
7771 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7772 if (insn_check == check_lo
7773 ? !ok_lo_toc_insn(insn, r_type)
7774 : ((insn & ((0x3f << 26) | 0x1f << 16))
7775 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7776 {
7777 ppc_object->set_no_toc_opt();
7778 gold_warning(_("%s: toc optimization is not supported "
7779 "for %#08x instruction"),
7780 ppc_object->name().c_str(), insn);
7781 }
7782 }
7783 }
7784
7785 switch (r_type)
7786 {
7787 default:
7788 break;
7789 case elfcpp::R_PPC64_TOC16:
7790 case elfcpp::R_PPC64_TOC16_LO:
7791 case elfcpp::R_PPC64_TOC16_HI:
7792 case elfcpp::R_PPC64_TOC16_HA:
7793 case elfcpp::R_PPC64_TOC16_DS:
7794 case elfcpp::R_PPC64_TOC16_LO_DS:
7795 if (gsym->source() == Symbol::FROM_OBJECT
7796 && !gsym->object()->is_dynamic())
7797 {
7798 Powerpc_relobj<size, big_endian>* sym_object
7799 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7800 bool is_ordinary;
7801 unsigned int shndx = gsym->shndx(&is_ordinary);
7802 if (shndx == sym_object->toc_shndx())
7803 {
7804 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7805 Address dst_off = sym->value() + reloc.get_r_addend();
7806 if (dst_off < sym_object->section_size(shndx))
7807 {
7808 bool ok = false;
7809 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7810 ok = true;
7811 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7812 {
7813 // Need to check that the insn is a ld
7814 if (!view)
7815 view = ppc_object->section_contents(data_shndx,
7816 &slen,
7817 false);
7818 section_size_type off =
7819 (convert_to_section_size_type(reloc.get_r_offset())
7820 + (big_endian ? -2 : 3));
7821 if (off < slen
7822 && (view[off] & (0x3f << 2)) == (58u << 2))
7823 ok = true;
7824 }
7825 if (!ok)
7826 sym_object->set_no_toc_opt(dst_off);
7827 }
7828 }
7829 }
7830 break;
7831 }
7832 }
7833
7834 if (size == 32)
7835 {
7836 switch (r_type)
7837 {
7838 case elfcpp::R_PPC_LOCAL24PC:
7839 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7840 gold_error(_("%s: unsupported -mbss-plt code"),
7841 ppc_object->name().c_str());
7842 break;
7843 default:
7844 break;
7845 }
7846 }
7847
7848 switch (r_type)
7849 {
7850 case elfcpp::R_POWERPC_GOT_TLSLD16:
7851 case elfcpp::R_POWERPC_GOT_TLSGD16:
7852 case elfcpp::R_POWERPC_GOT_TPREL16:
7853 case elfcpp::R_POWERPC_GOT_DTPREL16:
7854 case elfcpp::R_POWERPC_GOT16:
7855 case elfcpp::R_PPC64_GOT16_DS:
7856 case elfcpp::R_PPC64_TOC16:
7857 case elfcpp::R_PPC64_TOC16_DS:
7858 ppc_object->set_has_small_toc_reloc();
7859 default:
7860 break;
7861 }
7862 }
7863
7864 // Process relocations for gc.
7865
7866 template<int size, bool big_endian>
7867 void
7868 Target_powerpc<size, big_endian>::gc_process_relocs(
7869 Symbol_table* symtab,
7870 Layout* layout,
7871 Sized_relobj_file<size, big_endian>* object,
7872 unsigned int data_shndx,
7873 unsigned int,
7874 const unsigned char* prelocs,
7875 size_t reloc_count,
7876 Output_section* output_section,
7877 bool needs_special_offset_handling,
7878 size_t local_symbol_count,
7879 const unsigned char* plocal_symbols)
7880 {
7881 typedef Target_powerpc<size, big_endian> Powerpc;
7882 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7883 Classify_reloc;
7884
7885 Powerpc_relobj<size, big_endian>* ppc_object
7886 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7887 if (size == 64)
7888 ppc_object->set_opd_valid();
7889 if (size == 64 && data_shndx == ppc_object->opd_shndx())
7890 {
7891 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7892 for (p = ppc_object->access_from_map()->begin();
7893 p != ppc_object->access_from_map()->end();
7894 ++p)
7895 {
7896 Address dst_off = p->first;
7897 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7898 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7899 for (s = p->second.begin(); s != p->second.end(); ++s)
7900 {
7901 Relobj* src_obj = s->first;
7902 unsigned int src_indx = s->second;
7903 symtab->gc()->add_reference(src_obj, src_indx,
7904 ppc_object, dst_indx);
7905 }
7906 p->second.clear();
7907 }
7908 ppc_object->access_from_map()->clear();
7909 ppc_object->process_gc_mark(symtab);
7910 // Don't look at .opd relocs as .opd will reference everything.
7911 return;
7912 }
7913
7914 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7915 symtab,
7916 layout,
7917 this,
7918 object,
7919 data_shndx,
7920 prelocs,
7921 reloc_count,
7922 output_section,
7923 needs_special_offset_handling,
7924 local_symbol_count,
7925 plocal_symbols);
7926 }
7927
7928 // Handle target specific gc actions when adding a gc reference from
7929 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7930 // and DST_OFF. For powerpc64, this adds a referenc to the code
7931 // section of a function descriptor.
7932
7933 template<int size, bool big_endian>
7934 void
7935 Target_powerpc<size, big_endian>::do_gc_add_reference(
7936 Symbol_table* symtab,
7937 Relobj* src_obj,
7938 unsigned int src_shndx,
7939 Relobj* dst_obj,
7940 unsigned int dst_shndx,
7941 Address dst_off) const
7942 {
7943 if (size != 64 || dst_obj->is_dynamic())
7944 return;
7945
7946 Powerpc_relobj<size, big_endian>* ppc_object
7947 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7948 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7949 {
7950 if (ppc_object->opd_valid())
7951 {
7952 dst_shndx = ppc_object->get_opd_ent(dst_off);
7953 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7954 }
7955 else
7956 {
7957 // If we haven't run scan_opd_relocs, we must delay
7958 // processing this function descriptor reference.
7959 ppc_object->add_reference(src_obj, src_shndx, dst_off);
7960 }
7961 }
7962 }
7963
7964 // Add any special sections for this symbol to the gc work list.
7965 // For powerpc64, this adds the code section of a function
7966 // descriptor.
7967
7968 template<int size, bool big_endian>
7969 void
7970 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7971 Symbol_table* symtab,
7972 Symbol* sym) const
7973 {
7974 if (size == 64)
7975 {
7976 Powerpc_relobj<size, big_endian>* ppc_object
7977 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7978 bool is_ordinary;
7979 unsigned int shndx = sym->shndx(&is_ordinary);
7980 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7981 {
7982 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7983 Address dst_off = gsym->value();
7984 if (ppc_object->opd_valid())
7985 {
7986 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7987 symtab->gc()->worklist().push_back(Section_id(ppc_object,
7988 dst_indx));
7989 }
7990 else
7991 ppc_object->add_gc_mark(dst_off);
7992 }
7993 }
7994 }
7995
7996 // For a symbol location in .opd, set LOC to the location of the
7997 // function entry.
7998
7999 template<int size, bool big_endian>
8000 void
8001 Target_powerpc<size, big_endian>::do_function_location(
8002 Symbol_location* loc) const
8003 {
8004 if (size == 64 && loc->shndx != 0)
8005 {
8006 if (loc->object->is_dynamic())
8007 {
8008 Powerpc_dynobj<size, big_endian>* ppc_object
8009 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
8010 if (loc->shndx == ppc_object->opd_shndx())
8011 {
8012 Address dest_off;
8013 Address off = loc->offset - ppc_object->opd_address();
8014 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
8015 loc->offset = dest_off;
8016 }
8017 }
8018 else
8019 {
8020 const Powerpc_relobj<size, big_endian>* ppc_object
8021 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
8022 if (loc->shndx == ppc_object->opd_shndx())
8023 {
8024 Address dest_off;
8025 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
8026 loc->offset = dest_off;
8027 }
8028 }
8029 }
8030 }
8031
8032 // FNOFFSET in section SHNDX in OBJECT is the start of a function
8033 // compiled with -fsplit-stack. The function calls non-split-stack
8034 // code. Change the function to ensure it has enough stack space to
8035 // call some random function.
8036
8037 template<int size, bool big_endian>
8038 void
8039 Target_powerpc<size, big_endian>::do_calls_non_split(
8040 Relobj* object,
8041 unsigned int shndx,
8042 section_offset_type fnoffset,
8043 section_size_type fnsize,
8044 const unsigned char* prelocs,
8045 size_t reloc_count,
8046 unsigned char* view,
8047 section_size_type view_size,
8048 std::string* from,
8049 std::string* to) const
8050 {
8051 // 32-bit not supported.
8052 if (size == 32)
8053 {
8054 // warn
8055 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
8056 prelocs, reloc_count, view, view_size,
8057 from, to);
8058 return;
8059 }
8060
8061 // The function always starts with
8062 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
8063 // addis %r12,%r1,-allocate@ha
8064 // addi %r12,%r12,-allocate@l
8065 // cmpld %r12,%r0
8066 // but note that the addis or addi may be replaced with a nop
8067
8068 unsigned char *entry = view + fnoffset;
8069 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
8070
8071 if ((insn & 0xffff0000) == addis_2_12)
8072 {
8073 /* Skip ELFv2 global entry code. */
8074 entry += 8;
8075 insn = elfcpp::Swap<32, big_endian>::readval(entry);
8076 }
8077
8078 unsigned char *pinsn = entry;
8079 bool ok = false;
8080 const uint32_t ld_private_ss = 0xe80d8fc0;
8081 if (insn == ld_private_ss)
8082 {
8083 int32_t allocate = 0;
8084 while (1)
8085 {
8086 pinsn += 4;
8087 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
8088 if ((insn & 0xffff0000) == addis_12_1)
8089 allocate += (insn & 0xffff) << 16;
8090 else if ((insn & 0xffff0000) == addi_12_1
8091 || (insn & 0xffff0000) == addi_12_12)
8092 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
8093 else if (insn != nop)
8094 break;
8095 }
8096 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
8097 {
8098 int extra = parameters->options().split_stack_adjust_size();
8099 allocate -= extra;
8100 if (allocate >= 0 || extra < 0)
8101 {
8102 object->error(_("split-stack stack size overflow at "
8103 "section %u offset %0zx"),
8104 shndx, static_cast<size_t>(fnoffset));
8105 return;
8106 }
8107 pinsn = entry + 4;
8108 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
8109 if (insn != addis_12_1)
8110 {
8111 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8112 pinsn += 4;
8113 insn = addi_12_12 | (allocate & 0xffff);
8114 if (insn != addi_12_12)
8115 {
8116 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8117 pinsn += 4;
8118 }
8119 }
8120 else
8121 {
8122 insn = addi_12_1 | (allocate & 0xffff);
8123 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8124 pinsn += 4;
8125 }
8126 if (pinsn != entry + 12)
8127 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
8128
8129 ok = true;
8130 }
8131 }
8132
8133 if (!ok)
8134 {
8135 if (!object->has_no_split_stack())
8136 object->error(_("failed to match split-stack sequence at "
8137 "section %u offset %0zx"),
8138 shndx, static_cast<size_t>(fnoffset));
8139 }
8140 }
8141
8142 // Scan relocations for a section.
8143
8144 template<int size, bool big_endian>
8145 void
8146 Target_powerpc<size, big_endian>::scan_relocs(
8147 Symbol_table* symtab,
8148 Layout* layout,
8149 Sized_relobj_file<size, big_endian>* object,
8150 unsigned int data_shndx,
8151 unsigned int sh_type,
8152 const unsigned char* prelocs,
8153 size_t reloc_count,
8154 Output_section* output_section,
8155 bool needs_special_offset_handling,
8156 size_t local_symbol_count,
8157 const unsigned char* plocal_symbols)
8158 {
8159 typedef Target_powerpc<size, big_endian> Powerpc;
8160 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8161 Classify_reloc;
8162
8163 if (!this->plt_localentry0_init_)
8164 {
8165 bool plt_localentry0 = false;
8166 if (size == 64
8167 && this->abiversion() >= 2)
8168 {
8169 if (parameters->options().user_set_plt_localentry())
8170 plt_localentry0 = parameters->options().plt_localentry();
8171 if (plt_localentry0
8172 && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8173 gold_warning(_("--plt-localentry is especially dangerous without "
8174 "ld.so support to detect ABI violations"));
8175 }
8176 this->plt_localentry0_ = plt_localentry0;
8177 this->plt_localentry0_init_ = true;
8178 }
8179
8180 if (sh_type == elfcpp::SHT_REL)
8181 {
8182 gold_error(_("%s: unsupported REL reloc section"),
8183 object->name().c_str());
8184 return;
8185 }
8186
8187 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8188 symtab,
8189 layout,
8190 this,
8191 object,
8192 data_shndx,
8193 prelocs,
8194 reloc_count,
8195 output_section,
8196 needs_special_offset_handling,
8197 local_symbol_count,
8198 plocal_symbols);
8199 }
8200
8201 // Functor class for processing the global symbol table.
8202 // Removes symbols defined on discarded opd entries.
8203
8204 template<bool big_endian>
8205 class Global_symbol_visitor_opd
8206 {
8207 public:
8208 Global_symbol_visitor_opd()
8209 { }
8210
8211 void
8212 operator()(Sized_symbol<64>* sym)
8213 {
8214 if (sym->has_symtab_index()
8215 || sym->source() != Symbol::FROM_OBJECT
8216 || !sym->in_real_elf())
8217 return;
8218
8219 if (sym->object()->is_dynamic())
8220 return;
8221
8222 Powerpc_relobj<64, big_endian>* symobj
8223 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8224 if (symobj->opd_shndx() == 0)
8225 return;
8226
8227 bool is_ordinary;
8228 unsigned int shndx = sym->shndx(&is_ordinary);
8229 if (shndx == symobj->opd_shndx()
8230 && symobj->get_opd_discard(sym->value()))
8231 {
8232 sym->set_undefined();
8233 sym->set_visibility(elfcpp::STV_DEFAULT);
8234 sym->set_is_defined_in_discarded_section();
8235 sym->set_symtab_index(-1U);
8236 }
8237 }
8238 };
8239
8240 template<int size, bool big_endian>
8241 void
8242 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8243 Layout* layout,
8244 Symbol_table* symtab)
8245 {
8246 if (size == 64)
8247 {
8248 Output_data_save_res<size, big_endian>* savres
8249 = new Output_data_save_res<size, big_endian>(symtab);
8250 this->savres_section_ = savres;
8251 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8252 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8253 savres, ORDER_TEXT, false);
8254 }
8255 }
8256
8257 // Sort linker created .got section first (for the header), then input
8258 // sections belonging to files using small model code.
8259
8260 template<bool big_endian>
8261 class Sort_toc_sections
8262 {
8263 public:
8264 bool
8265 operator()(const Output_section::Input_section& is1,
8266 const Output_section::Input_section& is2) const
8267 {
8268 if (!is1.is_input_section() && is2.is_input_section())
8269 return true;
8270 bool small1
8271 = (is1.is_input_section()
8272 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8273 ->has_small_toc_reloc()));
8274 bool small2
8275 = (is2.is_input_section()
8276 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8277 ->has_small_toc_reloc()));
8278 return small1 && !small2;
8279 }
8280 };
8281
8282 // Finalize the sections.
8283
8284 template<int size, bool big_endian>
8285 void
8286 Target_powerpc<size, big_endian>::do_finalize_sections(
8287 Layout* layout,
8288 const Input_objects*,
8289 Symbol_table* symtab)
8290 {
8291 if (parameters->doing_static_link())
8292 {
8293 // At least some versions of glibc elf-init.o have a strong
8294 // reference to __rela_iplt marker syms. A weak ref would be
8295 // better..
8296 if (this->iplt_ != NULL)
8297 {
8298 Reloc_section* rel = this->iplt_->rel_plt();
8299 symtab->define_in_output_data("__rela_iplt_start", NULL,
8300 Symbol_table::PREDEFINED, rel, 0, 0,
8301 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8302 elfcpp::STV_HIDDEN, 0, false, true);
8303 symtab->define_in_output_data("__rela_iplt_end", NULL,
8304 Symbol_table::PREDEFINED, rel, 0, 0,
8305 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8306 elfcpp::STV_HIDDEN, 0, true, true);
8307 }
8308 else
8309 {
8310 symtab->define_as_constant("__rela_iplt_start", NULL,
8311 Symbol_table::PREDEFINED, 0, 0,
8312 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8313 elfcpp::STV_HIDDEN, 0, true, false);
8314 symtab->define_as_constant("__rela_iplt_end", NULL,
8315 Symbol_table::PREDEFINED, 0, 0,
8316 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8317 elfcpp::STV_HIDDEN, 0, true, false);
8318 }
8319 }
8320
8321 if (size == 64)
8322 {
8323 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8324 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8325
8326 if (!parameters->options().relocatable())
8327 {
8328 this->define_save_restore_funcs(layout, symtab);
8329
8330 // Annoyingly, we need to make these sections now whether or
8331 // not we need them. If we delay until do_relax then we
8332 // need to mess with the relaxation machinery checkpointing.
8333 this->got_section(symtab, layout);
8334 this->make_brlt_section(layout);
8335
8336 if (parameters->options().toc_sort())
8337 {
8338 Output_section* os = this->got_->output_section();
8339 if (os != NULL && os->input_sections().size() > 1)
8340 std::stable_sort(os->input_sections().begin(),
8341 os->input_sections().end(),
8342 Sort_toc_sections<big_endian>());
8343 }
8344 }
8345 }
8346
8347 // Fill in some more dynamic tags.
8348 Output_data_dynamic* odyn = layout->dynamic_data();
8349 if (odyn != NULL)
8350 {
8351 const Reloc_section* rel_plt = (this->plt_ == NULL
8352 ? NULL
8353 : this->plt_->rel_plt());
8354 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8355 this->rela_dyn_, true, size == 32);
8356
8357 if (size == 32)
8358 {
8359 if (this->got_ != NULL)
8360 {
8361 this->got_->finalize_data_size();
8362 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8363 this->got_, this->got_->g_o_t());
8364 }
8365 if (this->has_tls_get_addr_opt_)
8366 odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8367 }
8368 else
8369 {
8370 if (this->glink_ != NULL)
8371 {
8372 this->glink_->finalize_data_size();
8373 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8374 this->glink_,
8375 (this->glink_->pltresolve_size()
8376 - 32));
8377 }
8378 if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8379 odyn->add_constant(elfcpp::DT_PPC64_OPT,
8380 ((this->has_localentry0_
8381 ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8382 | (this->has_tls_get_addr_opt_
8383 ? elfcpp::PPC64_OPT_TLS : 0)));
8384 }
8385 }
8386
8387 // Emit any relocs we saved in an attempt to avoid generating COPY
8388 // relocs.
8389 if (this->copy_relocs_.any_saved_relocs())
8390 this->copy_relocs_.emit(this->rela_dyn_section(layout));
8391 }
8392
8393 // Emit any saved relocs, and mark toc entries using any of these
8394 // relocs as not optimizable.
8395
8396 template<int sh_type, int size, bool big_endian>
8397 void
8398 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8399 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8400 {
8401 if (size == 64
8402 && parameters->options().toc_optimize())
8403 {
8404 for (typename Copy_relocs<sh_type, size, big_endian>::
8405 Copy_reloc_entries::iterator p = this->entries_.begin();
8406 p != this->entries_.end();
8407 ++p)
8408 {
8409 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8410 entry = *p;
8411
8412 // If the symbol is no longer defined in a dynamic object,
8413 // then we emitted a COPY relocation. If it is still
8414 // dynamic then we'll need dynamic relocations and thus
8415 // can't optimize toc entries.
8416 if (entry.sym_->is_from_dynobj())
8417 {
8418 Powerpc_relobj<size, big_endian>* ppc_object
8419 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8420 if (entry.shndx_ == ppc_object->toc_shndx())
8421 ppc_object->set_no_toc_opt(entry.address_);
8422 }
8423 }
8424 }
8425
8426 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8427 }
8428
8429 // Return the value to use for a branch relocation.
8430
8431 template<int size, bool big_endian>
8432 bool
8433 Target_powerpc<size, big_endian>::symval_for_branch(
8434 const Symbol_table* symtab,
8435 const Sized_symbol<size>* gsym,
8436 Powerpc_relobj<size, big_endian>* object,
8437 Address *value,
8438 unsigned int *dest_shndx)
8439 {
8440 if (size == 32 || this->abiversion() >= 2)
8441 gold_unreachable();
8442 *dest_shndx = 0;
8443
8444 // If the symbol is defined in an opd section, ie. is a function
8445 // descriptor, use the function descriptor code entry address
8446 Powerpc_relobj<size, big_endian>* symobj = object;
8447 if (gsym != NULL
8448 && (gsym->source() != Symbol::FROM_OBJECT
8449 || gsym->object()->is_dynamic()))
8450 return true;
8451 if (gsym != NULL)
8452 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8453 unsigned int shndx = symobj->opd_shndx();
8454 if (shndx == 0)
8455 return true;
8456 Address opd_addr = symobj->get_output_section_offset(shndx);
8457 if (opd_addr == invalid_address)
8458 return true;
8459 opd_addr += symobj->output_section_address(shndx);
8460 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8461 {
8462 Address sec_off;
8463 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8464 if (symtab->is_section_folded(symobj, *dest_shndx))
8465 {
8466 Section_id folded
8467 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8468 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8469 *dest_shndx = folded.second;
8470 }
8471 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8472 if (sec_addr == invalid_address)
8473 return false;
8474
8475 sec_addr += symobj->output_section(*dest_shndx)->address();
8476 *value = sec_addr + sec_off;
8477 }
8478 return true;
8479 }
8480
8481 // Perform a relocation.
8482
8483 template<int size, bool big_endian>
8484 inline bool
8485 Target_powerpc<size, big_endian>::Relocate::relocate(
8486 const Relocate_info<size, big_endian>* relinfo,
8487 unsigned int,
8488 Target_powerpc* target,
8489 Output_section* os,
8490 size_t relnum,
8491 const unsigned char* preloc,
8492 const Sized_symbol<size>* gsym,
8493 const Symbol_value<size>* psymval,
8494 unsigned char* view,
8495 Address address,
8496 section_size_type view_size)
8497 {
8498 if (view == NULL)
8499 return true;
8500
8501 if (target->replace_tls_get_addr(gsym))
8502 gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8503
8504 const elfcpp::Rela<size, big_endian> rela(preloc);
8505 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8506 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8507 {
8508 case Track_tls::NOT_EXPECTED:
8509 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8510 _("__tls_get_addr call lacks marker reloc"));
8511 break;
8512 case Track_tls::EXPECTED:
8513 // We have already complained.
8514 break;
8515 case Track_tls::SKIP:
8516 return true;
8517 case Track_tls::NORMAL:
8518 break;
8519 }
8520
8521 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8522 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8523 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8524 // Offset from start of insn to d-field reloc.
8525 const int d_offset = big_endian ? 2 : 0;
8526
8527 Powerpc_relobj<size, big_endian>* const object
8528 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8529 Address value = 0;
8530 bool has_stub_value = false;
8531 bool localentry0 = false;
8532 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8533 bool has_plt_offset
8534 = (gsym != NULL
8535 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8536 : object->local_has_plt_offset(r_sym));
8537 if (has_plt_offset
8538 && !is_plt16_reloc<size>(r_type)
8539 && (!psymval->is_ifunc_symbol()
8540 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8541 {
8542 if (size == 64
8543 && gsym != NULL
8544 && target->abiversion() >= 2
8545 && !parameters->options().output_is_position_independent()
8546 && !is_branch_reloc(r_type))
8547 {
8548 Address off = target->glink_section()->find_global_entry(gsym);
8549 if (off != invalid_address)
8550 {
8551 value = target->glink_section()->global_entry_address() + off;
8552 has_stub_value = true;
8553 }
8554 }
8555 else
8556 {
8557 Stub_table<size, big_endian>* stub_table = NULL;
8558 if (target->stub_tables().size() == 1)
8559 stub_table = target->stub_tables()[0];
8560 if (stub_table == NULL
8561 && !(size == 32
8562 && gsym != NULL
8563 && !parameters->options().output_is_position_independent()
8564 && !is_branch_reloc(r_type)))
8565 stub_table = object->stub_table(relinfo->data_shndx);
8566 if (stub_table == NULL)
8567 {
8568 // This is a ref from a data section to an ifunc symbol,
8569 // or a non-branch reloc for which we always want to use
8570 // one set of stubs for resolving function addresses.
8571 if (target->stub_tables().size() != 0)
8572 stub_table = target->stub_tables()[0];
8573 }
8574 if (stub_table != NULL)
8575 {
8576 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8577 if (gsym != NULL)
8578 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8579 rela.get_r_addend());
8580 else
8581 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8582 rela.get_r_addend());
8583 if (ent != NULL)
8584 {
8585 value = stub_table->stub_address() + ent->off_;
8586 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8587 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8588 size_t reloc_count = shdr.get_sh_size() / reloc_size;
8589 if (size == 64
8590 && ent->r2save_
8591 && relnum + 1 < reloc_count)
8592 {
8593 Reltype next_rela(preloc + reloc_size);
8594 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8595 == elfcpp::R_PPC64_TOCSAVE
8596 && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8597 value += 4;
8598 }
8599 localentry0 = ent->localentry0_;
8600 has_stub_value = true;
8601 }
8602 }
8603 }
8604 // We don't care too much about bogus debug references to
8605 // non-local functions, but otherwise there had better be a plt
8606 // call stub or global entry stub as appropriate.
8607 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8608 }
8609
8610 if (has_plt_offset && is_plt16_reloc<size>(r_type))
8611 {
8612 const Output_data_plt_powerpc<size, big_endian>* plt;
8613 if (gsym)
8614 value = target->plt_off(gsym, &plt);
8615 else
8616 value = target->plt_off(object, r_sym, &plt);
8617 value += plt->address();
8618
8619 if (size == 64)
8620 value -= (target->got_section()->output_section()->address()
8621 + object->toc_base_offset());
8622 else if (parameters->options().output_is_position_independent())
8623 {
8624 if (rela.get_r_addend() >= 32768)
8625 {
8626 unsigned int got2 = object->got2_shndx();
8627 value -= (object->get_output_section_offset(got2)
8628 + object->output_section(got2)->address()
8629 + rela.get_r_addend());
8630 }
8631 else
8632 value -= (target->got_section()->address()
8633 + target->got_section()->g_o_t());
8634 }
8635 }
8636 else if (r_type == elfcpp::R_POWERPC_GOT16
8637 || r_type == elfcpp::R_POWERPC_GOT16_LO
8638 || r_type == elfcpp::R_POWERPC_GOT16_HI
8639 || r_type == elfcpp::R_POWERPC_GOT16_HA
8640 || r_type == elfcpp::R_PPC64_GOT16_DS
8641 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8642 {
8643 if (gsym != NULL)
8644 {
8645 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8646 value = gsym->got_offset(GOT_TYPE_STANDARD);
8647 }
8648 else
8649 {
8650 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8651 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8652 }
8653 value -= target->got_section()->got_base_offset(object);
8654 }
8655 else if (r_type == elfcpp::R_PPC64_TOC)
8656 {
8657 value = (target->got_section()->output_section()->address()
8658 + object->toc_base_offset());
8659 }
8660 else if (gsym != NULL
8661 && (r_type == elfcpp::R_POWERPC_REL24
8662 || r_type == elfcpp::R_PPC_PLTREL24)
8663 && has_stub_value)
8664 {
8665 if (size == 64)
8666 {
8667 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8668 Valtype* wv = reinterpret_cast<Valtype*>(view);
8669 bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
8670 if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
8671 {
8672 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8673 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8674 if ((insn & 1) != 0
8675 && (insn2 == nop
8676 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8677 {
8678 elfcpp::Swap<32, big_endian>::
8679 writeval(wv + 1, ld_2_1 + target->stk_toc());
8680 can_plt_call = true;
8681 }
8682 }
8683 if (!can_plt_call)
8684 {
8685 // If we don't have a branch and link followed by a nop,
8686 // we can't go via the plt because there is no place to
8687 // put a toc restoring instruction.
8688 // Unless we know we won't be returning.
8689 if (strcmp(gsym->name(), "__libc_start_main") == 0)
8690 can_plt_call = true;
8691 }
8692 if (!can_plt_call)
8693 {
8694 // g++ as of 20130507 emits self-calls without a
8695 // following nop. This is arguably wrong since we have
8696 // conflicting information. On the one hand a global
8697 // symbol and on the other a local call sequence, but
8698 // don't error for this special case.
8699 // It isn't possible to cheaply verify we have exactly
8700 // such a call. Allow all calls to the same section.
8701 bool ok = false;
8702 Address code = value;
8703 if (gsym->source() == Symbol::FROM_OBJECT
8704 && gsym->object() == object)
8705 {
8706 unsigned int dest_shndx = 0;
8707 if (target->abiversion() < 2)
8708 {
8709 Address addend = rela.get_r_addend();
8710 code = psymval->value(object, addend);
8711 target->symval_for_branch(relinfo->symtab, gsym, object,
8712 &code, &dest_shndx);
8713 }
8714 bool is_ordinary;
8715 if (dest_shndx == 0)
8716 dest_shndx = gsym->shndx(&is_ordinary);
8717 ok = dest_shndx == relinfo->data_shndx;
8718 }
8719 if (!ok)
8720 {
8721 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8722 _("call lacks nop, can't restore toc; "
8723 "recompile with -fPIC"));
8724 value = code;
8725 }
8726 }
8727 }
8728 }
8729 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8730 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8731 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8732 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8733 {
8734 // First instruction of a global dynamic sequence, arg setup insn.
8735 const bool final = gsym == NULL || gsym->final_value_is_known();
8736 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8737 enum Got_type got_type = GOT_TYPE_STANDARD;
8738 if (tls_type == tls::TLSOPT_NONE)
8739 got_type = GOT_TYPE_TLSGD;
8740 else if (tls_type == tls::TLSOPT_TO_IE)
8741 got_type = GOT_TYPE_TPREL;
8742 if (got_type != GOT_TYPE_STANDARD)
8743 {
8744 if (gsym != NULL)
8745 {
8746 gold_assert(gsym->has_got_offset(got_type));
8747 value = gsym->got_offset(got_type);
8748 }
8749 else
8750 {
8751 gold_assert(object->local_has_got_offset(r_sym, got_type));
8752 value = object->local_got_offset(r_sym, got_type);
8753 }
8754 value -= target->got_section()->got_base_offset(object);
8755 }
8756 if (tls_type == tls::TLSOPT_TO_IE)
8757 {
8758 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8759 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8760 {
8761 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8762 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8763 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8764 if (size == 32)
8765 insn |= 32 << 26; // lwz
8766 else
8767 insn |= 58 << 26; // ld
8768 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8769 }
8770 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8771 - elfcpp::R_POWERPC_GOT_TLSGD16);
8772 }
8773 else if (tls_type == tls::TLSOPT_TO_LE)
8774 {
8775 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8776 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8777 {
8778 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8779 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8780 insn &= (1 << 26) - (1 << 21); // extract rt
8781 if (size == 32)
8782 insn |= addis_0_2;
8783 else
8784 insn |= addis_0_13;
8785 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8786 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8787 value = psymval->value(object, rela.get_r_addend());
8788 }
8789 else
8790 {
8791 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8792 Insn insn = nop;
8793 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8794 r_type = elfcpp::R_POWERPC_NONE;
8795 }
8796 }
8797 }
8798 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8799 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8800 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8801 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8802 {
8803 // First instruction of a local dynamic sequence, arg setup insn.
8804 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8805 if (tls_type == tls::TLSOPT_NONE)
8806 {
8807 value = target->tlsld_got_offset();
8808 value -= target->got_section()->got_base_offset(object);
8809 }
8810 else
8811 {
8812 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8813 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8814 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8815 {
8816 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8817 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8818 insn &= (1 << 26) - (1 << 21); // extract rt
8819 if (size == 32)
8820 insn |= addis_0_2;
8821 else
8822 insn |= addis_0_13;
8823 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8824 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8825 value = dtp_offset;
8826 }
8827 else
8828 {
8829 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8830 Insn insn = nop;
8831 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8832 r_type = elfcpp::R_POWERPC_NONE;
8833 }
8834 }
8835 }
8836 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8837 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8838 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8839 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8840 {
8841 // Accesses relative to a local dynamic sequence address,
8842 // no optimisation here.
8843 if (gsym != NULL)
8844 {
8845 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8846 value = gsym->got_offset(GOT_TYPE_DTPREL);
8847 }
8848 else
8849 {
8850 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8851 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8852 }
8853 value -= target->got_section()->got_base_offset(object);
8854 }
8855 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8856 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8857 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8858 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8859 {
8860 // First instruction of initial exec sequence.
8861 const bool final = gsym == NULL || gsym->final_value_is_known();
8862 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8863 if (tls_type == tls::TLSOPT_NONE)
8864 {
8865 if (gsym != NULL)
8866 {
8867 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8868 value = gsym->got_offset(GOT_TYPE_TPREL);
8869 }
8870 else
8871 {
8872 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8873 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8874 }
8875 value -= target->got_section()->got_base_offset(object);
8876 }
8877 else
8878 {
8879 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8880 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8881 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8882 {
8883 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8884 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8885 insn &= (1 << 26) - (1 << 21); // extract rt from ld
8886 if (size == 32)
8887 insn |= addis_0_2;
8888 else
8889 insn |= addis_0_13;
8890 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8891 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8892 value = psymval->value(object, rela.get_r_addend());
8893 }
8894 else
8895 {
8896 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8897 Insn insn = nop;
8898 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8899 r_type = elfcpp::R_POWERPC_NONE;
8900 }
8901 }
8902 }
8903 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8904 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8905 {
8906 // Second instruction of a global dynamic sequence,
8907 // the __tls_get_addr call
8908 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8909 const bool final = gsym == NULL || gsym->final_value_is_known();
8910 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8911 if (tls_type != tls::TLSOPT_NONE)
8912 {
8913 if (tls_type == tls::TLSOPT_TO_IE)
8914 {
8915 Insn* iview = reinterpret_cast<Insn*>(view);
8916 Insn insn = add_3_3_13;
8917 if (size == 32)
8918 insn = add_3_3_2;
8919 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8920 r_type = elfcpp::R_POWERPC_NONE;
8921 }
8922 else
8923 {
8924 Insn* iview = reinterpret_cast<Insn*>(view);
8925 Insn insn = addi_3_3;
8926 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8927 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8928 view += d_offset;
8929 value = psymval->value(object, rela.get_r_addend());
8930 }
8931 this->skip_next_tls_get_addr_call();
8932 }
8933 }
8934 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8935 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8936 {
8937 // Second instruction of a local dynamic sequence,
8938 // the __tls_get_addr call
8939 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8940 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8941 if (tls_type == tls::TLSOPT_TO_LE)
8942 {
8943 Insn* iview = reinterpret_cast<Insn*>(view);
8944 Insn insn = addi_3_3;
8945 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8946 this->skip_next_tls_get_addr_call();
8947 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8948 view += d_offset;
8949 value = dtp_offset;
8950 }
8951 }
8952 else if (r_type == elfcpp::R_POWERPC_TLS)
8953 {
8954 // Second instruction of an initial exec sequence
8955 const bool final = gsym == NULL || gsym->final_value_is_known();
8956 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8957 if (tls_type == tls::TLSOPT_TO_LE)
8958 {
8959 Insn* iview = reinterpret_cast<Insn*>(view);
8960 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8961 unsigned int reg = size == 32 ? 2 : 13;
8962 insn = at_tls_transform(insn, reg);
8963 gold_assert(insn != 0);
8964 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8965 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8966 view += d_offset;
8967 value = psymval->value(object, rela.get_r_addend());
8968 }
8969 }
8970 else if (!has_stub_value)
8971 {
8972 Address addend = 0;
8973 if (!(size == 32
8974 && (r_type == elfcpp::R_PPC_PLTREL24
8975 || r_type == elfcpp::R_POWERPC_PLT16_LO
8976 || r_type == elfcpp::R_POWERPC_PLT16_HI
8977 || r_type == elfcpp::R_POWERPC_PLT16_HA)))
8978 addend = rela.get_r_addend();
8979 value = psymval->value(object, addend);
8980 if (size == 64 && is_branch_reloc(r_type))
8981 {
8982 if (target->abiversion() >= 2)
8983 {
8984 if (gsym != NULL)
8985 value += object->ppc64_local_entry_offset(gsym);
8986 else
8987 value += object->ppc64_local_entry_offset(r_sym);
8988 }
8989 else
8990 {
8991 unsigned int dest_shndx;
8992 target->symval_for_branch(relinfo->symtab, gsym, object,
8993 &value, &dest_shndx);
8994 }
8995 }
8996 Address max_branch_offset = max_branch_delta(r_type);
8997 if (max_branch_offset != 0
8998 && value - address + max_branch_offset >= 2 * max_branch_offset)
8999 {
9000 Stub_table<size, big_endian>* stub_table
9001 = object->stub_table(relinfo->data_shndx);
9002 if (stub_table != NULL)
9003 {
9004 Address off = stub_table->find_long_branch_entry(object, value);
9005 if (off != invalid_address)
9006 {
9007 value = (stub_table->stub_address() + stub_table->plt_size()
9008 + off);
9009 has_stub_value = true;
9010 }
9011 }
9012 }
9013 }
9014
9015 switch (r_type)
9016 {
9017 case elfcpp::R_PPC64_REL64:
9018 case elfcpp::R_POWERPC_REL32:
9019 case elfcpp::R_POWERPC_REL24:
9020 case elfcpp::R_PPC_PLTREL24:
9021 case elfcpp::R_PPC_LOCAL24PC:
9022 case elfcpp::R_POWERPC_REL16:
9023 case elfcpp::R_POWERPC_REL16_LO:
9024 case elfcpp::R_POWERPC_REL16_HI:
9025 case elfcpp::R_POWERPC_REL16_HA:
9026 case elfcpp::R_POWERPC_REL16DX_HA:
9027 case elfcpp::R_POWERPC_REL14:
9028 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9029 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9030 value -= address;
9031 break;
9032
9033 case elfcpp::R_PPC64_TOC16:
9034 case elfcpp::R_PPC64_TOC16_LO:
9035 case elfcpp::R_PPC64_TOC16_HI:
9036 case elfcpp::R_PPC64_TOC16_HA:
9037 case elfcpp::R_PPC64_TOC16_DS:
9038 case elfcpp::R_PPC64_TOC16_LO_DS:
9039 // Subtract the TOC base address.
9040 value -= (target->got_section()->output_section()->address()
9041 + object->toc_base_offset());
9042 break;
9043
9044 case elfcpp::R_POWERPC_SECTOFF:
9045 case elfcpp::R_POWERPC_SECTOFF_LO:
9046 case elfcpp::R_POWERPC_SECTOFF_HI:
9047 case elfcpp::R_POWERPC_SECTOFF_HA:
9048 case elfcpp::R_PPC64_SECTOFF_DS:
9049 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9050 if (os != NULL)
9051 value -= os->address();
9052 break;
9053
9054 case elfcpp::R_PPC64_TPREL16_DS:
9055 case elfcpp::R_PPC64_TPREL16_LO_DS:
9056 case elfcpp::R_PPC64_TPREL16_HIGH:
9057 case elfcpp::R_PPC64_TPREL16_HIGHA:
9058 if (size != 64)
9059 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
9060 break;
9061 // Fall through.
9062 case elfcpp::R_POWERPC_TPREL16:
9063 case elfcpp::R_POWERPC_TPREL16_LO:
9064 case elfcpp::R_POWERPC_TPREL16_HI:
9065 case elfcpp::R_POWERPC_TPREL16_HA:
9066 case elfcpp::R_POWERPC_TPREL:
9067 case elfcpp::R_PPC64_TPREL16_HIGHER:
9068 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9069 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9070 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9071 // tls symbol values are relative to tls_segment()->vaddr()
9072 value -= tp_offset;
9073 break;
9074
9075 case elfcpp::R_PPC64_DTPREL16_DS:
9076 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9077 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9078 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9079 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9080 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9081 if (size != 64)
9082 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
9083 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
9084 break;
9085 // Fall through.
9086 case elfcpp::R_POWERPC_DTPREL16:
9087 case elfcpp::R_POWERPC_DTPREL16_LO:
9088 case elfcpp::R_POWERPC_DTPREL16_HI:
9089 case elfcpp::R_POWERPC_DTPREL16_HA:
9090 case elfcpp::R_POWERPC_DTPREL:
9091 case elfcpp::R_PPC64_DTPREL16_HIGH:
9092 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9093 // tls symbol values are relative to tls_segment()->vaddr()
9094 value -= dtp_offset;
9095 break;
9096
9097 case elfcpp::R_PPC64_ADDR64_LOCAL:
9098 if (gsym != NULL)
9099 value += object->ppc64_local_entry_offset(gsym);
9100 else
9101 value += object->ppc64_local_entry_offset(r_sym);
9102 break;
9103
9104 default:
9105 break;
9106 }
9107
9108 Insn branch_bit = 0;
9109 switch (r_type)
9110 {
9111 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9112 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9113 branch_bit = 1 << 21;
9114 // Fall through.
9115 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9116 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9117 {
9118 Insn* iview = reinterpret_cast<Insn*>(view);
9119 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9120 insn &= ~(1 << 21);
9121 insn |= branch_bit;
9122 if (this->is_isa_v2)
9123 {
9124 // Set 'a' bit. This is 0b00010 in BO field for branch
9125 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
9126 // for branch on CTR insns (BO == 1a00t or 1a01t).
9127 if ((insn & (0x14 << 21)) == (0x04 << 21))
9128 insn |= 0x02 << 21;
9129 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9130 insn |= 0x08 << 21;
9131 else
9132 break;
9133 }
9134 else
9135 {
9136 // Invert 'y' bit if not the default.
9137 if (static_cast<Signed_address>(value) < 0)
9138 insn ^= 1 << 21;
9139 }
9140 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9141 }
9142 break;
9143
9144 case elfcpp::R_POWERPC_PLT16_HA:
9145 if (size == 32
9146 && !parameters->options().output_is_position_independent())
9147 {
9148 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9149 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9150
9151 // Convert addis to lis.
9152 if ((insn & (0x3f << 26)) == 15u << 26
9153 && (insn & (0x1f << 16)) != 0)
9154 {
9155 insn &= ~(0x1f << 16);
9156 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9157 }
9158 }
9159 break;
9160
9161 default:
9162 break;
9163 }
9164
9165 if (size == 64)
9166 {
9167 switch (r_type)
9168 {
9169 default:
9170 break;
9171
9172 // Multi-instruction sequences that access the GOT/TOC can
9173 // be optimized, eg.
9174 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
9175 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
9176 // and
9177 // addis ra,r2,0; addi rb,ra,x@toc@l;
9178 // to nop; addi rb,r2,x@toc;
9179 // FIXME: the @got sequence shown above is not yet
9180 // optimized. Note that gcc as of 2017-01-07 doesn't use
9181 // the ELF @got relocs except for TLS, instead using the
9182 // PowerOpen variant of a compiler managed GOT (called TOC).
9183 // The PowerOpen TOC sequence equivalent to the first
9184 // example is optimized.
9185 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9186 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9187 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9188 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9189 case elfcpp::R_POWERPC_GOT16_HA:
9190 case elfcpp::R_PPC64_TOC16_HA:
9191 if (parameters->options().toc_optimize())
9192 {
9193 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9194 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9195 if (r_type == elfcpp::R_PPC64_TOC16_HA
9196 && object->make_toc_relative(target, &value))
9197 {
9198 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
9199 == ((15u << 26) | (2 << 16)));
9200 }
9201 if (((insn & ((0x3f << 26) | 0x1f << 16))
9202 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
9203 && value + 0x8000 < 0x10000)
9204 {
9205 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9206 return true;
9207 }
9208 }
9209 break;
9210
9211 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9212 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9213 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9214 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9215 case elfcpp::R_POWERPC_GOT16_LO:
9216 case elfcpp::R_PPC64_GOT16_LO_DS:
9217 case elfcpp::R_PPC64_TOC16_LO:
9218 case elfcpp::R_PPC64_TOC16_LO_DS:
9219 if (parameters->options().toc_optimize())
9220 {
9221 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9222 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9223 bool changed = false;
9224 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9225 && object->make_toc_relative(target, &value))
9226 {
9227 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9228 insn ^= (14u << 26) ^ (58u << 26);
9229 r_type = elfcpp::R_PPC64_TOC16_LO;
9230 changed = true;
9231 }
9232 if (ok_lo_toc_insn(insn, r_type)
9233 && value + 0x8000 < 0x10000)
9234 {
9235 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9236 {
9237 // Transform addic to addi when we change reg.
9238 insn &= ~((0x3f << 26) | (0x1f << 16));
9239 insn |= (14u << 26) | (2 << 16);
9240 }
9241 else
9242 {
9243 insn &= ~(0x1f << 16);
9244 insn |= 2 << 16;
9245 }
9246 changed = true;
9247 }
9248 if (changed)
9249 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9250 }
9251 break;
9252
9253 case elfcpp::R_POWERPC_TPREL16_HA:
9254 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9255 {
9256 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9257 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9258 if ((insn & ((0x3f << 26) | 0x1f << 16))
9259 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9260 ;
9261 else
9262 {
9263 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9264 return true;
9265 }
9266 }
9267 break;
9268
9269 case elfcpp::R_PPC64_TPREL16_LO_DS:
9270 if (size == 32)
9271 // R_PPC_TLSGD, R_PPC_TLSLD
9272 break;
9273 // Fall through.
9274 case elfcpp::R_POWERPC_TPREL16_LO:
9275 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9276 {
9277 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9278 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9279 insn &= ~(0x1f << 16);
9280 insn |= (size == 32 ? 2 : 13) << 16;
9281 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9282 }
9283 break;
9284
9285 case elfcpp::R_PPC64_ENTRY:
9286 value = (target->got_section()->output_section()->address()
9287 + object->toc_base_offset());
9288 if (value + 0x80008000 <= 0xffffffff
9289 && !parameters->options().output_is_position_independent())
9290 {
9291 Insn* iview = reinterpret_cast<Insn*>(view);
9292 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9293 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9294
9295 if ((insn1 & ~0xfffc) == ld_2_12
9296 && insn2 == add_2_2_12)
9297 {
9298 insn1 = lis_2 + ha(value);
9299 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9300 insn2 = addi_2_2 + l(value);
9301 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9302 return true;
9303 }
9304 }
9305 else
9306 {
9307 value -= address;
9308 if (value + 0x80008000 <= 0xffffffff)
9309 {
9310 Insn* iview = reinterpret_cast<Insn*>(view);
9311 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9312 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9313
9314 if ((insn1 & ~0xfffc) == ld_2_12
9315 && insn2 == add_2_2_12)
9316 {
9317 insn1 = addis_2_12 + ha(value);
9318 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9319 insn2 = addi_2_2 + l(value);
9320 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9321 return true;
9322 }
9323 }
9324 }
9325 break;
9326
9327 case elfcpp::R_POWERPC_REL16_LO:
9328 // If we are generating a non-PIC executable, edit
9329 // 0: addis 2,12,.TOC.-0b@ha
9330 // addi 2,2,.TOC.-0b@l
9331 // used by ELFv2 global entry points to set up r2, to
9332 // lis 2,.TOC.@ha
9333 // addi 2,2,.TOC.@l
9334 // if .TOC. is in range. */
9335 if (value + address - 4 + 0x80008000 <= 0xffffffff
9336 && relnum != 0
9337 && preloc != NULL
9338 && target->abiversion() >= 2
9339 && !parameters->options().output_is_position_independent()
9340 && rela.get_r_addend() == d_offset + 4
9341 && gsym != NULL
9342 && strcmp(gsym->name(), ".TOC.") == 0)
9343 {
9344 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9345 Reltype prev_rela(preloc - reloc_size);
9346 if ((prev_rela.get_r_info()
9347 == elfcpp::elf_r_info<size>(r_sym,
9348 elfcpp::R_POWERPC_REL16_HA))
9349 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9350 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9351 {
9352 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9353 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9354 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9355
9356 if ((insn1 & 0xffff0000) == addis_2_12
9357 && (insn2 & 0xffff0000) == addi_2_2)
9358 {
9359 insn1 = lis_2 + ha(value + address - 4);
9360 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9361 insn2 = addi_2_2 + l(value + address - 4);
9362 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9363 if (relinfo->rr)
9364 {
9365 relinfo->rr->set_strategy(relnum - 1,
9366 Relocatable_relocs::RELOC_SPECIAL);
9367 relinfo->rr->set_strategy(relnum,
9368 Relocatable_relocs::RELOC_SPECIAL);
9369 }
9370 return true;
9371 }
9372 }
9373 }
9374 break;
9375 }
9376 }
9377
9378 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9379 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9380 switch (r_type)
9381 {
9382 case elfcpp::R_POWERPC_ADDR32:
9383 case elfcpp::R_POWERPC_UADDR32:
9384 if (size == 64)
9385 overflow = Reloc::CHECK_BITFIELD;
9386 break;
9387
9388 case elfcpp::R_POWERPC_REL32:
9389 case elfcpp::R_POWERPC_REL16DX_HA:
9390 if (size == 64)
9391 overflow = Reloc::CHECK_SIGNED;
9392 break;
9393
9394 case elfcpp::R_POWERPC_UADDR16:
9395 overflow = Reloc::CHECK_BITFIELD;
9396 break;
9397
9398 case elfcpp::R_POWERPC_ADDR16:
9399 // We really should have three separate relocations,
9400 // one for 16-bit data, one for insns with 16-bit signed fields,
9401 // and one for insns with 16-bit unsigned fields.
9402 overflow = Reloc::CHECK_BITFIELD;
9403 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9404 overflow = Reloc::CHECK_LOW_INSN;
9405 break;
9406
9407 case elfcpp::R_POWERPC_ADDR16_HI:
9408 case elfcpp::R_POWERPC_ADDR16_HA:
9409 case elfcpp::R_POWERPC_GOT16_HI:
9410 case elfcpp::R_POWERPC_GOT16_HA:
9411 case elfcpp::R_POWERPC_PLT16_HI:
9412 case elfcpp::R_POWERPC_PLT16_HA:
9413 case elfcpp::R_POWERPC_SECTOFF_HI:
9414 case elfcpp::R_POWERPC_SECTOFF_HA:
9415 case elfcpp::R_PPC64_TOC16_HI:
9416 case elfcpp::R_PPC64_TOC16_HA:
9417 case elfcpp::R_PPC64_PLTGOT16_HI:
9418 case elfcpp::R_PPC64_PLTGOT16_HA:
9419 case elfcpp::R_POWERPC_TPREL16_HI:
9420 case elfcpp::R_POWERPC_TPREL16_HA:
9421 case elfcpp::R_POWERPC_DTPREL16_HI:
9422 case elfcpp::R_POWERPC_DTPREL16_HA:
9423 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9424 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9425 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9426 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9427 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9428 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9429 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9430 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9431 case elfcpp::R_POWERPC_REL16_HI:
9432 case elfcpp::R_POWERPC_REL16_HA:
9433 if (size != 32)
9434 overflow = Reloc::CHECK_HIGH_INSN;
9435 break;
9436
9437 case elfcpp::R_POWERPC_REL16:
9438 case elfcpp::R_PPC64_TOC16:
9439 case elfcpp::R_POWERPC_GOT16:
9440 case elfcpp::R_POWERPC_SECTOFF:
9441 case elfcpp::R_POWERPC_TPREL16:
9442 case elfcpp::R_POWERPC_DTPREL16:
9443 case elfcpp::R_POWERPC_GOT_TLSGD16:
9444 case elfcpp::R_POWERPC_GOT_TLSLD16:
9445 case elfcpp::R_POWERPC_GOT_TPREL16:
9446 case elfcpp::R_POWERPC_GOT_DTPREL16:
9447 overflow = Reloc::CHECK_LOW_INSN;
9448 break;
9449
9450 case elfcpp::R_POWERPC_ADDR24:
9451 case elfcpp::R_POWERPC_ADDR14:
9452 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9453 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9454 case elfcpp::R_PPC64_ADDR16_DS:
9455 case elfcpp::R_POWERPC_REL24:
9456 case elfcpp::R_PPC_PLTREL24:
9457 case elfcpp::R_PPC_LOCAL24PC:
9458 case elfcpp::R_PPC64_TPREL16_DS:
9459 case elfcpp::R_PPC64_DTPREL16_DS:
9460 case elfcpp::R_PPC64_TOC16_DS:
9461 case elfcpp::R_PPC64_GOT16_DS:
9462 case elfcpp::R_PPC64_SECTOFF_DS:
9463 case elfcpp::R_POWERPC_REL14:
9464 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9465 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9466 overflow = Reloc::CHECK_SIGNED;
9467 break;
9468 }
9469
9470 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9471 Insn insn = 0;
9472
9473 if (overflow == Reloc::CHECK_LOW_INSN
9474 || overflow == Reloc::CHECK_HIGH_INSN)
9475 {
9476 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9477
9478 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9479 overflow = Reloc::CHECK_BITFIELD;
9480 else if (overflow == Reloc::CHECK_LOW_INSN
9481 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9482 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9483 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9484 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9485 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9486 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9487 overflow = Reloc::CHECK_UNSIGNED;
9488 else
9489 overflow = Reloc::CHECK_SIGNED;
9490 }
9491
9492 bool maybe_dq_reloc = false;
9493 typename Powerpc_relocate_functions<size, big_endian>::Status status
9494 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9495 switch (r_type)
9496 {
9497 case elfcpp::R_POWERPC_NONE:
9498 case elfcpp::R_POWERPC_TLS:
9499 case elfcpp::R_POWERPC_GNU_VTINHERIT:
9500 case elfcpp::R_POWERPC_GNU_VTENTRY:
9501 break;
9502
9503 case elfcpp::R_PPC64_ADDR64:
9504 case elfcpp::R_PPC64_REL64:
9505 case elfcpp::R_PPC64_TOC:
9506 case elfcpp::R_PPC64_ADDR64_LOCAL:
9507 Reloc::addr64(view, value);
9508 break;
9509
9510 case elfcpp::R_POWERPC_TPREL:
9511 case elfcpp::R_POWERPC_DTPREL:
9512 if (size == 64)
9513 Reloc::addr64(view, value);
9514 else
9515 status = Reloc::addr32(view, value, overflow);
9516 break;
9517
9518 case elfcpp::R_PPC64_UADDR64:
9519 Reloc::addr64_u(view, value);
9520 break;
9521
9522 case elfcpp::R_POWERPC_ADDR32:
9523 status = Reloc::addr32(view, value, overflow);
9524 break;
9525
9526 case elfcpp::R_POWERPC_REL32:
9527 case elfcpp::R_POWERPC_UADDR32:
9528 status = Reloc::addr32_u(view, value, overflow);
9529 break;
9530
9531 case elfcpp::R_POWERPC_ADDR24:
9532 case elfcpp::R_POWERPC_REL24:
9533 case elfcpp::R_PPC_PLTREL24:
9534 case elfcpp::R_PPC_LOCAL24PC:
9535 status = Reloc::addr24(view, value, overflow);
9536 break;
9537
9538 case elfcpp::R_POWERPC_GOT_DTPREL16:
9539 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9540 case elfcpp::R_POWERPC_GOT_TPREL16:
9541 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9542 if (size == 64)
9543 {
9544 // On ppc64 these are all ds form
9545 maybe_dq_reloc = true;
9546 break;
9547 }
9548 // Fall through.
9549 case elfcpp::R_POWERPC_ADDR16:
9550 case elfcpp::R_POWERPC_REL16:
9551 case elfcpp::R_PPC64_TOC16:
9552 case elfcpp::R_POWERPC_GOT16:
9553 case elfcpp::R_POWERPC_SECTOFF:
9554 case elfcpp::R_POWERPC_TPREL16:
9555 case elfcpp::R_POWERPC_DTPREL16:
9556 case elfcpp::R_POWERPC_GOT_TLSGD16:
9557 case elfcpp::R_POWERPC_GOT_TLSLD16:
9558 case elfcpp::R_POWERPC_ADDR16_LO:
9559 case elfcpp::R_POWERPC_REL16_LO:
9560 case elfcpp::R_PPC64_TOC16_LO:
9561 case elfcpp::R_POWERPC_GOT16_LO:
9562 case elfcpp::R_POWERPC_PLT16_LO:
9563 case elfcpp::R_POWERPC_SECTOFF_LO:
9564 case elfcpp::R_POWERPC_TPREL16_LO:
9565 case elfcpp::R_POWERPC_DTPREL16_LO:
9566 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9567 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9568 if (size == 64)
9569 status = Reloc::addr16(view, value, overflow);
9570 else
9571 maybe_dq_reloc = true;
9572 break;
9573
9574 case elfcpp::R_POWERPC_UADDR16:
9575 status = Reloc::addr16_u(view, value, overflow);
9576 break;
9577
9578 case elfcpp::R_PPC64_ADDR16_HIGH:
9579 case elfcpp::R_PPC64_TPREL16_HIGH:
9580 case elfcpp::R_PPC64_DTPREL16_HIGH:
9581 if (size == 32)
9582 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9583 goto unsupp;
9584 // Fall through.
9585 case elfcpp::R_POWERPC_ADDR16_HI:
9586 case elfcpp::R_POWERPC_REL16_HI:
9587 case elfcpp::R_PPC64_TOC16_HI:
9588 case elfcpp::R_POWERPC_GOT16_HI:
9589 case elfcpp::R_POWERPC_PLT16_HI:
9590 case elfcpp::R_POWERPC_SECTOFF_HI:
9591 case elfcpp::R_POWERPC_TPREL16_HI:
9592 case elfcpp::R_POWERPC_DTPREL16_HI:
9593 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9594 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9595 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9596 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9597 Reloc::addr16_hi(view, value);
9598 break;
9599
9600 case elfcpp::R_PPC64_ADDR16_HIGHA:
9601 case elfcpp::R_PPC64_TPREL16_HIGHA:
9602 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9603 if (size == 32)
9604 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
9605 goto unsupp;
9606 // Fall through.
9607 case elfcpp::R_POWERPC_ADDR16_HA:
9608 case elfcpp::R_POWERPC_REL16_HA:
9609 case elfcpp::R_PPC64_TOC16_HA:
9610 case elfcpp::R_POWERPC_GOT16_HA:
9611 case elfcpp::R_POWERPC_PLT16_HA:
9612 case elfcpp::R_POWERPC_SECTOFF_HA:
9613 case elfcpp::R_POWERPC_TPREL16_HA:
9614 case elfcpp::R_POWERPC_DTPREL16_HA:
9615 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9616 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9617 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9618 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9619 Reloc::addr16_ha(view, value);
9620 break;
9621
9622 case elfcpp::R_POWERPC_REL16DX_HA:
9623 status = Reloc::addr16dx_ha(view, value, overflow);
9624 break;
9625
9626 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9627 if (size == 32)
9628 // R_PPC_EMB_NADDR16_LO
9629 goto unsupp;
9630 // Fall through.
9631 case elfcpp::R_PPC64_ADDR16_HIGHER:
9632 case elfcpp::R_PPC64_TPREL16_HIGHER:
9633 Reloc::addr16_hi2(view, value);
9634 break;
9635
9636 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9637 if (size == 32)
9638 // R_PPC_EMB_NADDR16_HI
9639 goto unsupp;
9640 // Fall through.
9641 case elfcpp::R_PPC64_ADDR16_HIGHERA:
9642 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9643 Reloc::addr16_ha2(view, value);
9644 break;
9645
9646 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9647 if (size == 32)
9648 // R_PPC_EMB_NADDR16_HA
9649 goto unsupp;
9650 // Fall through.
9651 case elfcpp::R_PPC64_ADDR16_HIGHEST:
9652 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9653 Reloc::addr16_hi3(view, value);
9654 break;
9655
9656 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9657 if (size == 32)
9658 // R_PPC_EMB_SDAI16
9659 goto unsupp;
9660 // Fall through.
9661 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9662 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9663 Reloc::addr16_ha3(view, value);
9664 break;
9665
9666 case elfcpp::R_PPC64_DTPREL16_DS:
9667 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9668 if (size == 32)
9669 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9670 goto unsupp;
9671 // Fall through.
9672 case elfcpp::R_PPC64_TPREL16_DS:
9673 case elfcpp::R_PPC64_TPREL16_LO_DS:
9674 if (size == 32)
9675 // R_PPC_TLSGD, R_PPC_TLSLD
9676 break;
9677 // Fall through.
9678 case elfcpp::R_PPC64_ADDR16_DS:
9679 case elfcpp::R_PPC64_ADDR16_LO_DS:
9680 case elfcpp::R_PPC64_TOC16_DS:
9681 case elfcpp::R_PPC64_TOC16_LO_DS:
9682 case elfcpp::R_PPC64_GOT16_DS:
9683 case elfcpp::R_PPC64_GOT16_LO_DS:
9684 case elfcpp::R_PPC64_PLT16_LO_DS:
9685 case elfcpp::R_PPC64_SECTOFF_DS:
9686 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9687 maybe_dq_reloc = true;
9688 break;
9689
9690 case elfcpp::R_POWERPC_ADDR14:
9691 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9692 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9693 case elfcpp::R_POWERPC_REL14:
9694 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9695 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9696 status = Reloc::addr14(view, value, overflow);
9697 break;
9698
9699 case elfcpp::R_POWERPC_COPY:
9700 case elfcpp::R_POWERPC_GLOB_DAT:
9701 case elfcpp::R_POWERPC_JMP_SLOT:
9702 case elfcpp::R_POWERPC_RELATIVE:
9703 case elfcpp::R_POWERPC_DTPMOD:
9704 case elfcpp::R_PPC64_JMP_IREL:
9705 case elfcpp::R_POWERPC_IRELATIVE:
9706 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9707 _("unexpected reloc %u in object file"),
9708 r_type);
9709 break;
9710
9711 case elfcpp::R_PPC64_TOCSAVE:
9712 if (size == 32)
9713 // R_PPC_EMB_SDA21
9714 goto unsupp;
9715 else
9716 {
9717 Symbol_location loc;
9718 loc.object = relinfo->object;
9719 loc.shndx = relinfo->data_shndx;
9720 loc.offset = rela.get_r_offset();
9721 Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9722 if (p != target->tocsave_loc().end())
9723 {
9724 // If we've generated plt calls using this tocsave, then
9725 // the nop needs to be changed to save r2.
9726 Insn* iview = reinterpret_cast<Insn*>(view);
9727 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9728 elfcpp::Swap<32, big_endian>::
9729 writeval(iview, std_2_1 + target->stk_toc());
9730 }
9731 }
9732 break;
9733
9734 case elfcpp::R_PPC_EMB_SDA2I16:
9735 case elfcpp::R_PPC_EMB_SDA2REL:
9736 if (size == 32)
9737 goto unsupp;
9738 // R_PPC64_TLSGD, R_PPC64_TLSLD
9739 break;
9740
9741 case elfcpp::R_POWERPC_PLT32:
9742 case elfcpp::R_POWERPC_PLTREL32:
9743 case elfcpp::R_PPC_SDAREL16:
9744 case elfcpp::R_POWERPC_ADDR30:
9745 case elfcpp::R_PPC64_PLT64:
9746 case elfcpp::R_PPC64_PLTREL64:
9747 case elfcpp::R_PPC64_PLTGOT16:
9748 case elfcpp::R_PPC64_PLTGOT16_LO:
9749 case elfcpp::R_PPC64_PLTGOT16_HI:
9750 case elfcpp::R_PPC64_PLTGOT16_HA:
9751 case elfcpp::R_PPC64_PLTGOT16_DS:
9752 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9753 case elfcpp::R_PPC_EMB_RELSDA:
9754 case elfcpp::R_PPC_TOC16:
9755 default:
9756 unsupp:
9757 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9758 _("unsupported reloc %u"),
9759 r_type);
9760 break;
9761 }
9762
9763 if (maybe_dq_reloc)
9764 {
9765 if (insn == 0)
9766 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9767
9768 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9769 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9770 && (insn & 3) == 1))
9771 status = Reloc::addr16_dq(view, value, overflow);
9772 else if (size == 64
9773 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9774 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9775 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9776 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9777 status = Reloc::addr16_ds(view, value, overflow);
9778 else
9779 status = Reloc::addr16(view, value, overflow);
9780 }
9781
9782 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9783 && (has_stub_value
9784 || !(gsym != NULL
9785 && gsym->is_undefined()
9786 && is_branch_reloc(r_type))))
9787 {
9788 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9789 _("relocation overflow"));
9790 if (has_stub_value)
9791 gold_info(_("try relinking with a smaller --stub-group-size"));
9792 }
9793
9794 return true;
9795 }
9796
9797 // Relocate section data.
9798
9799 template<int size, bool big_endian>
9800 void
9801 Target_powerpc<size, big_endian>::relocate_section(
9802 const Relocate_info<size, big_endian>* relinfo,
9803 unsigned int sh_type,
9804 const unsigned char* prelocs,
9805 size_t reloc_count,
9806 Output_section* output_section,
9807 bool needs_special_offset_handling,
9808 unsigned char* view,
9809 Address address,
9810 section_size_type view_size,
9811 const Reloc_symbol_changes* reloc_symbol_changes)
9812 {
9813 typedef Target_powerpc<size, big_endian> Powerpc;
9814 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9815 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9816 Powerpc_comdat_behavior;
9817 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9818 Classify_reloc;
9819
9820 gold_assert(sh_type == elfcpp::SHT_RELA);
9821
9822 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9823 Powerpc_comdat_behavior, Classify_reloc>(
9824 relinfo,
9825 this,
9826 prelocs,
9827 reloc_count,
9828 output_section,
9829 needs_special_offset_handling,
9830 view,
9831 address,
9832 view_size,
9833 reloc_symbol_changes);
9834 }
9835
9836 template<int size, bool big_endian>
9837 class Powerpc_scan_relocatable_reloc
9838 {
9839 public:
9840 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9841 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9842 static const int sh_type = elfcpp::SHT_RELA;
9843
9844 // Return the symbol referred to by the relocation.
9845 static inline unsigned int
9846 get_r_sym(const Reltype* reloc)
9847 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9848
9849 // Return the type of the relocation.
9850 static inline unsigned int
9851 get_r_type(const Reltype* reloc)
9852 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9853
9854 // Return the strategy to use for a local symbol which is not a
9855 // section symbol, given the relocation type.
9856 inline Relocatable_relocs::Reloc_strategy
9857 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9858 {
9859 if (r_type == 0 && r_sym == 0)
9860 return Relocatable_relocs::RELOC_DISCARD;
9861 return Relocatable_relocs::RELOC_COPY;
9862 }
9863
9864 // Return the strategy to use for a local symbol which is a section
9865 // symbol, given the relocation type.
9866 inline Relocatable_relocs::Reloc_strategy
9867 local_section_strategy(unsigned int, Relobj*)
9868 {
9869 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9870 }
9871
9872 // Return the strategy to use for a global symbol, given the
9873 // relocation type, the object, and the symbol index.
9874 inline Relocatable_relocs::Reloc_strategy
9875 global_strategy(unsigned int r_type, Relobj*, unsigned int)
9876 {
9877 if (size == 32
9878 && (r_type == elfcpp::R_PPC_PLTREL24
9879 || r_type == elfcpp::R_POWERPC_PLT16_LO
9880 || r_type == elfcpp::R_POWERPC_PLT16_HI
9881 || r_type == elfcpp::R_POWERPC_PLT16_HA))
9882 return Relocatable_relocs::RELOC_SPECIAL;
9883 return Relocatable_relocs::RELOC_COPY;
9884 }
9885 };
9886
9887 // Scan the relocs during a relocatable link.
9888
9889 template<int size, bool big_endian>
9890 void
9891 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9892 Symbol_table* symtab,
9893 Layout* layout,
9894 Sized_relobj_file<size, big_endian>* object,
9895 unsigned int data_shndx,
9896 unsigned int sh_type,
9897 const unsigned char* prelocs,
9898 size_t reloc_count,
9899 Output_section* output_section,
9900 bool needs_special_offset_handling,
9901 size_t local_symbol_count,
9902 const unsigned char* plocal_symbols,
9903 Relocatable_relocs* rr)
9904 {
9905 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9906
9907 gold_assert(sh_type == elfcpp::SHT_RELA);
9908
9909 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9910 symtab,
9911 layout,
9912 object,
9913 data_shndx,
9914 prelocs,
9915 reloc_count,
9916 output_section,
9917 needs_special_offset_handling,
9918 local_symbol_count,
9919 plocal_symbols,
9920 rr);
9921 }
9922
9923 // Scan the relocs for --emit-relocs.
9924
9925 template<int size, bool big_endian>
9926 void
9927 Target_powerpc<size, big_endian>::emit_relocs_scan(
9928 Symbol_table* symtab,
9929 Layout* layout,
9930 Sized_relobj_file<size, big_endian>* object,
9931 unsigned int data_shndx,
9932 unsigned int sh_type,
9933 const unsigned char* prelocs,
9934 size_t reloc_count,
9935 Output_section* output_section,
9936 bool needs_special_offset_handling,
9937 size_t local_symbol_count,
9938 const unsigned char* plocal_syms,
9939 Relocatable_relocs* rr)
9940 {
9941 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9942 Classify_reloc;
9943 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9944 Emit_relocs_strategy;
9945
9946 gold_assert(sh_type == elfcpp::SHT_RELA);
9947
9948 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9949 symtab,
9950 layout,
9951 object,
9952 data_shndx,
9953 prelocs,
9954 reloc_count,
9955 output_section,
9956 needs_special_offset_handling,
9957 local_symbol_count,
9958 plocal_syms,
9959 rr);
9960 }
9961
9962 // Emit relocations for a section.
9963 // This is a modified version of the function by the same name in
9964 // target-reloc.h. Using relocate_special_relocatable for
9965 // R_PPC_PLTREL24 would require duplication of the entire body of the
9966 // loop, so we may as well duplicate the whole thing.
9967
9968 template<int size, bool big_endian>
9969 void
9970 Target_powerpc<size, big_endian>::relocate_relocs(
9971 const Relocate_info<size, big_endian>* relinfo,
9972 unsigned int sh_type,
9973 const unsigned char* prelocs,
9974 size_t reloc_count,
9975 Output_section* output_section,
9976 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9977 unsigned char*,
9978 Address view_address,
9979 section_size_type,
9980 unsigned char* reloc_view,
9981 section_size_type reloc_view_size)
9982 {
9983 gold_assert(sh_type == elfcpp::SHT_RELA);
9984
9985 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9986 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9987 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9988 // Offset from start of insn to d-field reloc.
9989 const int d_offset = big_endian ? 2 : 0;
9990
9991 Powerpc_relobj<size, big_endian>* const object
9992 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9993 const unsigned int local_count = object->local_symbol_count();
9994 unsigned int got2_shndx = object->got2_shndx();
9995 Address got2_addend = 0;
9996 if (got2_shndx != 0)
9997 {
9998 got2_addend = object->get_output_section_offset(got2_shndx);
9999 gold_assert(got2_addend != invalid_address);
10000 }
10001
10002 const bool relocatable = parameters->options().relocatable();
10003
10004 unsigned char* pwrite = reloc_view;
10005 bool zap_next = false;
10006 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10007 {
10008 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
10009 if (strategy == Relocatable_relocs::RELOC_DISCARD)
10010 continue;
10011
10012 Reltype reloc(prelocs);
10013 Reltype_write reloc_write(pwrite);
10014
10015 Address offset = reloc.get_r_offset();
10016 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
10017 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10018 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10019 const unsigned int orig_r_sym = r_sym;
10020 typename elfcpp::Elf_types<size>::Elf_Swxword addend
10021 = reloc.get_r_addend();
10022 const Symbol* gsym = NULL;
10023
10024 if (zap_next)
10025 {
10026 // We could arrange to discard these and other relocs for
10027 // tls optimised sequences in the strategy methods, but for
10028 // now do as BFD ld does.
10029 r_type = elfcpp::R_POWERPC_NONE;
10030 zap_next = false;
10031 }
10032
10033 // Get the new symbol index.
10034 Output_section* os = NULL;
10035 if (r_sym < local_count)
10036 {
10037 switch (strategy)
10038 {
10039 case Relocatable_relocs::RELOC_COPY:
10040 case Relocatable_relocs::RELOC_SPECIAL:
10041 if (r_sym != 0)
10042 {
10043 r_sym = object->symtab_index(r_sym);
10044 gold_assert(r_sym != -1U);
10045 }
10046 break;
10047
10048 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
10049 {
10050 // We are adjusting a section symbol. We need to find
10051 // the symbol table index of the section symbol for
10052 // the output section corresponding to input section
10053 // in which this symbol is defined.
10054 gold_assert(r_sym < local_count);
10055 bool is_ordinary;
10056 unsigned int shndx =
10057 object->local_symbol_input_shndx(r_sym, &is_ordinary);
10058 gold_assert(is_ordinary);
10059 os = object->output_section(shndx);
10060 gold_assert(os != NULL);
10061 gold_assert(os->needs_symtab_index());
10062 r_sym = os->symtab_index();
10063 }
10064 break;
10065
10066 default:
10067 gold_unreachable();
10068 }
10069 }
10070 else
10071 {
10072 gsym = object->global_symbol(r_sym);
10073 gold_assert(gsym != NULL);
10074 if (gsym->is_forwarder())
10075 gsym = relinfo->symtab->resolve_forwards(gsym);
10076
10077 gold_assert(gsym->has_symtab_index());
10078 r_sym = gsym->symtab_index();
10079 }
10080
10081 // Get the new offset--the location in the output section where
10082 // this relocation should be applied.
10083 if (static_cast<Address>(offset_in_output_section) != invalid_address)
10084 offset += offset_in_output_section;
10085 else
10086 {
10087 section_offset_type sot_offset =
10088 convert_types<section_offset_type, Address>(offset);
10089 section_offset_type new_sot_offset =
10090 output_section->output_offset(object, relinfo->data_shndx,
10091 sot_offset);
10092 gold_assert(new_sot_offset != -1);
10093 offset = new_sot_offset;
10094 }
10095
10096 // In an object file, r_offset is an offset within the section.
10097 // In an executable or dynamic object, generated by
10098 // --emit-relocs, r_offset is an absolute address.
10099 if (!relocatable)
10100 {
10101 offset += view_address;
10102 if (static_cast<Address>(offset_in_output_section) != invalid_address)
10103 offset -= offset_in_output_section;
10104 }
10105
10106 // Handle the reloc addend based on the strategy.
10107 if (strategy == Relocatable_relocs::RELOC_COPY)
10108 ;
10109 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
10110 {
10111 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
10112 addend = psymval->value(object, addend);
10113 // In a relocatable link, the symbol value is relative to
10114 // the start of the output section. For a non-relocatable
10115 // link, we need to adjust the addend.
10116 if (!relocatable)
10117 {
10118 gold_assert(os != NULL);
10119 addend -= os->address();
10120 }
10121 }
10122 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
10123 {
10124 if (size == 32)
10125 {
10126 if (addend >= 32768)
10127 addend += got2_addend;
10128 }
10129 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
10130 {
10131 r_type = elfcpp::R_POWERPC_ADDR16_HA;
10132 addend -= d_offset;
10133 }
10134 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
10135 {
10136 r_type = elfcpp::R_POWERPC_ADDR16_LO;
10137 addend -= d_offset + 4;
10138 }
10139 }
10140 else
10141 gold_unreachable();
10142
10143 if (!relocatable)
10144 {
10145 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10146 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
10147 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
10148 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
10149 {
10150 // First instruction of a global dynamic sequence,
10151 // arg setup insn.
10152 const bool final = gsym == NULL || gsym->final_value_is_known();
10153 switch (this->optimize_tls_gd(final))
10154 {
10155 case tls::TLSOPT_TO_IE:
10156 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
10157 - elfcpp::R_POWERPC_GOT_TLSGD16);
10158 break;
10159 case tls::TLSOPT_TO_LE:
10160 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10161 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10162 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10163 else
10164 {
10165 r_type = elfcpp::R_POWERPC_NONE;
10166 offset -= d_offset;
10167 }
10168 break;
10169 default:
10170 break;
10171 }
10172 }
10173 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10174 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
10175 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
10176 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
10177 {
10178 // First instruction of a local dynamic sequence,
10179 // arg setup insn.
10180 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10181 {
10182 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10183 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
10184 {
10185 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10186 const Output_section* os = relinfo->layout->tls_segment()
10187 ->first_section();
10188 gold_assert(os != NULL);
10189 gold_assert(os->needs_symtab_index());
10190 r_sym = os->symtab_index();
10191 addend = dtp_offset;
10192 }
10193 else
10194 {
10195 r_type = elfcpp::R_POWERPC_NONE;
10196 offset -= d_offset;
10197 }
10198 }
10199 }
10200 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10201 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
10202 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
10203 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
10204 {
10205 // First instruction of initial exec sequence.
10206 const bool final = gsym == NULL || gsym->final_value_is_known();
10207 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10208 {
10209 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10210 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
10211 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10212 else
10213 {
10214 r_type = elfcpp::R_POWERPC_NONE;
10215 offset -= d_offset;
10216 }
10217 }
10218 }
10219 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10220 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10221 {
10222 // Second instruction of a global dynamic sequence,
10223 // the __tls_get_addr call
10224 const bool final = gsym == NULL || gsym->final_value_is_known();
10225 switch (this->optimize_tls_gd(final))
10226 {
10227 case tls::TLSOPT_TO_IE:
10228 r_type = elfcpp::R_POWERPC_NONE;
10229 zap_next = true;
10230 break;
10231 case tls::TLSOPT_TO_LE:
10232 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10233 offset += d_offset;
10234 zap_next = true;
10235 break;
10236 default:
10237 break;
10238 }
10239 }
10240 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10241 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10242 {
10243 // Second instruction of a local dynamic sequence,
10244 // the __tls_get_addr call
10245 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10246 {
10247 const Output_section* os = relinfo->layout->tls_segment()
10248 ->first_section();
10249 gold_assert(os != NULL);
10250 gold_assert(os->needs_symtab_index());
10251 r_sym = os->symtab_index();
10252 addend = dtp_offset;
10253 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10254 offset += d_offset;
10255 zap_next = true;
10256 }
10257 }
10258 else if (r_type == elfcpp::R_POWERPC_TLS)
10259 {
10260 // Second instruction of an initial exec sequence
10261 const bool final = gsym == NULL || gsym->final_value_is_known();
10262 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10263 {
10264 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10265 offset += d_offset;
10266 }
10267 }
10268 }
10269
10270 reloc_write.put_r_offset(offset);
10271 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10272 reloc_write.put_r_addend(addend);
10273
10274 pwrite += reloc_size;
10275 }
10276
10277 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10278 == reloc_view_size);
10279 }
10280
10281 // Return the value to use for a dynamic symbol which requires special
10282 // treatment. This is how we support equality comparisons of function
10283 // pointers across shared library boundaries, as described in the
10284 // processor specific ABI supplement.
10285
10286 template<int size, bool big_endian>
10287 uint64_t
10288 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10289 {
10290 if (size == 32)
10291 {
10292 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10293 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10294 p != this->stub_tables_.end();
10295 ++p)
10296 {
10297 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10298 = (*p)->find_plt_call_entry(gsym);
10299 if (ent != NULL)
10300 return (*p)->stub_address() + ent->off_;
10301 }
10302 }
10303 else if (this->abiversion() >= 2)
10304 {
10305 Address off = this->glink_section()->find_global_entry(gsym);
10306 if (off != invalid_address)
10307 return this->glink_section()->global_entry_address() + off;
10308 }
10309 gold_unreachable();
10310 }
10311
10312 // Return the PLT address to use for a local symbol.
10313 template<int size, bool big_endian>
10314 uint64_t
10315 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10316 const Relobj* object,
10317 unsigned int symndx) const
10318 {
10319 if (size == 32)
10320 {
10321 const Sized_relobj<size, big_endian>* relobj
10322 = static_cast<const Sized_relobj<size, big_endian>*>(object);
10323 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10324 p != this->stub_tables_.end();
10325 ++p)
10326 {
10327 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10328 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10329 if (ent != NULL)
10330 return (*p)->stub_address() + ent->off_;
10331 }
10332 }
10333 gold_unreachable();
10334 }
10335
10336 // Return the PLT address to use for a global symbol.
10337 template<int size, bool big_endian>
10338 uint64_t
10339 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10340 const Symbol* gsym) const
10341 {
10342 if (size == 32)
10343 {
10344 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10345 p != this->stub_tables_.end();
10346 ++p)
10347 {
10348 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10349 = (*p)->find_plt_call_entry(gsym);
10350 if (ent != NULL)
10351 return (*p)->stub_address() + ent->off_;
10352 }
10353 }
10354 else if (this->abiversion() >= 2)
10355 {
10356 Address off = this->glink_section()->find_global_entry(gsym);
10357 if (off != invalid_address)
10358 return this->glink_section()->global_entry_address() + off;
10359 }
10360 gold_unreachable();
10361 }
10362
10363 // Return the offset to use for the GOT_INDX'th got entry which is
10364 // for a local tls symbol specified by OBJECT, SYMNDX.
10365 template<int size, bool big_endian>
10366 int64_t
10367 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10368 const Relobj* object,
10369 unsigned int symndx,
10370 unsigned int got_indx) const
10371 {
10372 const Powerpc_relobj<size, big_endian>* ppc_object
10373 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10374 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10375 {
10376 for (Got_type got_type = GOT_TYPE_TLSGD;
10377 got_type <= GOT_TYPE_TPREL;
10378 got_type = Got_type(got_type + 1))
10379 if (ppc_object->local_has_got_offset(symndx, got_type))
10380 {
10381 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10382 if (got_type == GOT_TYPE_TLSGD)
10383 off += size / 8;
10384 if (off == got_indx * (size / 8))
10385 {
10386 if (got_type == GOT_TYPE_TPREL)
10387 return -tp_offset;
10388 else
10389 return -dtp_offset;
10390 }
10391 }
10392 }
10393 gold_unreachable();
10394 }
10395
10396 // Return the offset to use for the GOT_INDX'th got entry which is
10397 // for global tls symbol GSYM.
10398 template<int size, bool big_endian>
10399 int64_t
10400 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10401 Symbol* gsym,
10402 unsigned int got_indx) const
10403 {
10404 if (gsym->type() == elfcpp::STT_TLS)
10405 {
10406 for (Got_type got_type = GOT_TYPE_TLSGD;
10407 got_type <= GOT_TYPE_TPREL;
10408 got_type = Got_type(got_type + 1))
10409 if (gsym->has_got_offset(got_type))
10410 {
10411 unsigned int off = gsym->got_offset(got_type);
10412 if (got_type == GOT_TYPE_TLSGD)
10413 off += size / 8;
10414 if (off == got_indx * (size / 8))
10415 {
10416 if (got_type == GOT_TYPE_TPREL)
10417 return -tp_offset;
10418 else
10419 return -dtp_offset;
10420 }
10421 }
10422 }
10423 gold_unreachable();
10424 }
10425
10426 // The selector for powerpc object files.
10427
10428 template<int size, bool big_endian>
10429 class Target_selector_powerpc : public Target_selector
10430 {
10431 public:
10432 Target_selector_powerpc()
10433 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10434 size, big_endian,
10435 (size == 64
10436 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10437 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10438 (size == 64
10439 ? (big_endian ? "elf64ppc" : "elf64lppc")
10440 : (big_endian ? "elf32ppc" : "elf32lppc")))
10441 { }
10442
10443 virtual Target*
10444 do_instantiate_target()
10445 { return new Target_powerpc<size, big_endian>(); }
10446 };
10447
10448 Target_selector_powerpc<32, true> target_selector_ppc32;
10449 Target_selector_powerpc<32, false> target_selector_ppc32le;
10450 Target_selector_powerpc<64, true> target_selector_ppc64;
10451 Target_selector_powerpc<64, false> target_selector_ppc64le;
10452
10453 // Instantiate these constants for -O0
10454 template<int size, bool big_endian>
10455 const typename Output_data_glink<size, big_endian>::Address
10456 Output_data_glink<size, big_endian>::invalid_address;
10457 template<int size, bool big_endian>
10458 const typename Stub_table<size, big_endian>::Address
10459 Stub_table<size, big_endian>::invalid_address;
10460 template<int size, bool big_endian>
10461 const typename Target_powerpc<size, big_endian>::Address
10462 Target_powerpc<size, big_endian>::invalid_address;
10463
10464 } // End anonymous namespace.
This page took 0.310436 seconds and 5 git commands to generate.