Revert "PowerPC PLT speculative execution barriers"
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2018 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93 typedef Unordered_map<Address, Section_refs> Access_from;
94
95 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99 has_small_toc_reloc_(false), opd_valid_(false),
100 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101 access_from_map_(), has14_(), stub_table_index_(), st_other_()
102 {
103 this->set_abiversion(0);
104 }
105
106 ~Powerpc_relobj()
107 { }
108
109 // Read the symbols then set up st_other vector.
110 void
111 do_read_symbols(Read_symbols_data*);
112
113 // Arrange to always relocate .toc first.
114 virtual void
115 do_relocate_sections(
116 const Symbol_table* symtab, const Layout* layout,
117 const unsigned char* pshdrs, Output_file* of,
118 typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120 // The .toc section index.
121 unsigned int
122 toc_shndx() const
123 {
124 return this->toc_;
125 }
126
127 // Mark .toc entry at OFF as not optimizable.
128 void
129 set_no_toc_opt(Address off)
130 {
131 if (this->no_toc_opt_.empty())
132 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133 / (size / 8));
134 off /= size / 8;
135 if (off < this->no_toc_opt_.size())
136 this->no_toc_opt_[off] = true;
137 }
138
139 // Mark the entire .toc as not optimizable.
140 void
141 set_no_toc_opt()
142 {
143 this->no_toc_opt_.resize(1);
144 this->no_toc_opt_[0] = true;
145 }
146
147 // Return true if code using the .toc entry at OFF should not be edited.
148 bool
149 no_toc_opt(Address off) const
150 {
151 if (this->no_toc_opt_.empty())
152 return false;
153 off /= size / 8;
154 if (off >= this->no_toc_opt_.size())
155 return true;
156 return this->no_toc_opt_[off];
157 }
158
159 // The .got2 section shndx.
160 unsigned int
161 got2_shndx() const
162 {
163 if (size == 32)
164 return this->special_;
165 else
166 return 0;
167 }
168
169 // The .opd section shndx.
170 unsigned int
171 opd_shndx() const
172 {
173 if (size == 32)
174 return 0;
175 else
176 return this->special_;
177 }
178
179 // Init OPD entry arrays.
180 void
181 init_opd(size_t opd_size)
182 {
183 size_t count = this->opd_ent_ndx(opd_size);
184 this->opd_ent_.resize(count);
185 }
186
187 // Return section and offset of function entry for .opd + R_OFF.
188 unsigned int
189 get_opd_ent(Address r_off, Address* value = NULL) const
190 {
191 size_t ndx = this->opd_ent_ndx(r_off);
192 gold_assert(ndx < this->opd_ent_.size());
193 gold_assert(this->opd_ent_[ndx].shndx != 0);
194 if (value != NULL)
195 *value = this->opd_ent_[ndx].off;
196 return this->opd_ent_[ndx].shndx;
197 }
198
199 // Set section and offset of function entry for .opd + R_OFF.
200 void
201 set_opd_ent(Address r_off, unsigned int shndx, Address value)
202 {
203 size_t ndx = this->opd_ent_ndx(r_off);
204 gold_assert(ndx < this->opd_ent_.size());
205 this->opd_ent_[ndx].shndx = shndx;
206 this->opd_ent_[ndx].off = value;
207 }
208
209 // Return discard flag for .opd + R_OFF.
210 bool
211 get_opd_discard(Address r_off) const
212 {
213 size_t ndx = this->opd_ent_ndx(r_off);
214 gold_assert(ndx < this->opd_ent_.size());
215 return this->opd_ent_[ndx].discard;
216 }
217
218 // Set discard flag for .opd + R_OFF.
219 void
220 set_opd_discard(Address r_off)
221 {
222 size_t ndx = this->opd_ent_ndx(r_off);
223 gold_assert(ndx < this->opd_ent_.size());
224 this->opd_ent_[ndx].discard = true;
225 }
226
227 bool
228 opd_valid() const
229 { return this->opd_valid_; }
230
231 void
232 set_opd_valid()
233 { this->opd_valid_ = true; }
234
235 // Examine .rela.opd to build info about function entry points.
236 void
237 scan_opd_relocs(size_t reloc_count,
238 const unsigned char* prelocs,
239 const unsigned char* plocal_syms);
240
241 // Returns true if a code sequence loading a TOC entry can be
242 // converted into code calculating a TOC pointer relative offset.
243 bool
244 make_toc_relative(Target_powerpc<size, big_endian>* target,
245 Address* value);
246
247 // Perform the Sized_relobj_file method, then set up opd info from
248 // .opd relocs.
249 void
250 do_read_relocs(Read_relocs_data*);
251
252 bool
253 do_find_special_sections(Read_symbols_data* sd);
254
255 // Adjust this local symbol value. Return false if the symbol
256 // should be discarded from the output file.
257 bool
258 do_adjust_local_symbol(Symbol_value<size>* lv) const
259 {
260 if (size == 64 && this->opd_shndx() != 0)
261 {
262 bool is_ordinary;
263 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264 return true;
265 if (this->get_opd_discard(lv->input_value()))
266 return false;
267 }
268 return true;
269 }
270
271 Access_from*
272 access_from_map()
273 { return &this->access_from_map_; }
274
275 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276 // section at DST_OFF.
277 void
278 add_reference(Relobj* src_obj,
279 unsigned int src_indx,
280 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281 {
282 Section_id src_id(src_obj, src_indx);
283 this->access_from_map_[dst_off].insert(src_id);
284 }
285
286 // Add a reference to the code section specified by the .opd entry
287 // at DST_OFF
288 void
289 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290 {
291 size_t ndx = this->opd_ent_ndx(dst_off);
292 if (ndx >= this->opd_ent_.size())
293 this->opd_ent_.resize(ndx + 1);
294 this->opd_ent_[ndx].gc_mark = true;
295 }
296
297 void
298 process_gc_mark(Symbol_table* symtab)
299 {
300 for (size_t i = 0; i < this->opd_ent_.size(); i++)
301 if (this->opd_ent_[i].gc_mark)
302 {
303 unsigned int shndx = this->opd_ent_[i].shndx;
304 symtab->gc()->worklist().push_back(Section_id(this, shndx));
305 }
306 }
307
308 // Return offset in output GOT section that this object will use
309 // as a TOC pointer. Won't be just a constant with multi-toc support.
310 Address
311 toc_base_offset() const
312 { return 0x8000; }
313
314 void
315 set_has_small_toc_reloc()
316 { has_small_toc_reloc_ = true; }
317
318 bool
319 has_small_toc_reloc() const
320 { return has_small_toc_reloc_; }
321
322 void
323 set_has_14bit_branch(unsigned int shndx)
324 {
325 if (shndx >= this->has14_.size())
326 this->has14_.resize(shndx + 1);
327 this->has14_[shndx] = true;
328 }
329
330 bool
331 has_14bit_branch(unsigned int shndx) const
332 { return shndx < this->has14_.size() && this->has14_[shndx]; }
333
334 void
335 set_stub_table(unsigned int shndx, unsigned int stub_index)
336 {
337 if (shndx >= this->stub_table_index_.size())
338 this->stub_table_index_.resize(shndx + 1, -1);
339 this->stub_table_index_[shndx] = stub_index;
340 }
341
342 Stub_table<size, big_endian>*
343 stub_table(unsigned int shndx)
344 {
345 if (shndx < this->stub_table_index_.size())
346 {
347 Target_powerpc<size, big_endian>* target
348 = static_cast<Target_powerpc<size, big_endian>*>(
349 parameters->sized_target<size, big_endian>());
350 unsigned int indx = this->stub_table_index_[shndx];
351 if (indx < target->stub_tables().size())
352 return target->stub_tables()[indx];
353 }
354 return NULL;
355 }
356
357 void
358 clear_stub_table()
359 {
360 this->stub_table_index_.clear();
361 }
362
363 uint32_t
364 uniq() const
365 { return this->uniq_; }
366
367 int
368 abiversion() const
369 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371 // Set ABI version for input and output
372 void
373 set_abiversion(int ver);
374
375 unsigned int
376 st_other (unsigned int symndx) const
377 {
378 return this->st_other_[symndx];
379 }
380
381 unsigned int
382 ppc64_local_entry_offset(const Symbol* sym) const
383 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385 unsigned int
386 ppc64_local_entry_offset(unsigned int symndx) const
387 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390 struct Opd_ent
391 {
392 unsigned int shndx;
393 bool discard : 1;
394 bool gc_mark : 1;
395 Address off;
396 };
397
398 // Return index into opd_ent_ array for .opd entry at OFF.
399 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400 // apart when the language doesn't use the last 8-byte word, the
401 // environment pointer. Thus dividing the entry section offset by
402 // 16 will give an index into opd_ent_ that works for either layout
403 // of .opd. (It leaves some elements of the vector unused when .opd
404 // entries are spaced 24 bytes apart, but we don't know the spacing
405 // until relocations are processed, and in any case it is possible
406 // for an object to have some entries spaced 16 bytes apart and
407 // others 24 bytes apart.)
408 size_t
409 opd_ent_ndx(size_t off) const
410 { return off >> 4;}
411
412 // Per object unique identifier
413 uint32_t uniq_;
414
415 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416 unsigned int special_;
417
418 // For 64-bit the .rela.toc and .toc section shdnx.
419 unsigned int relatoc_;
420 unsigned int toc_;
421
422 // For 64-bit, whether this object uses small model relocs to access
423 // the toc.
424 bool has_small_toc_reloc_;
425
426 // Set at the start of gc_process_relocs, when we know opd_ent_
427 // vector is valid. The flag could be made atomic and set in
428 // do_read_relocs with memory_order_release and then tested with
429 // memory_order_acquire, potentially resulting in fewer entries in
430 // access_from_map_.
431 bool opd_valid_;
432
433 // Header e_flags
434 elfcpp::Elf_Word e_flags_;
435
436 // For 64-bit, an array with one entry per 64-bit word in the .toc
437 // section, set if accesses using that word cannot be optimised.
438 std::vector<bool> no_toc_opt_;
439
440 // The first 8-byte word of an OPD entry gives the address of the
441 // entry point of the function. Relocatable object files have a
442 // relocation on this word. The following vector records the
443 // section and offset specified by these relocations.
444 std::vector<Opd_ent> opd_ent_;
445
446 // References made to this object's .opd section when running
447 // gc_process_relocs for another object, before the opd_ent_ vector
448 // is valid for this object.
449 Access_from access_from_map_;
450
451 // Whether input section has a 14-bit branch reloc.
452 std::vector<bool> has14_;
453
454 // The stub table to use for a given input section.
455 std::vector<unsigned int> stub_table_index_;
456
457 // ELF st_other field for local symbols.
458 std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471 {
472 this->set_abiversion(0);
473 }
474
475 ~Powerpc_dynobj()
476 { }
477
478 // Call Sized_dynobj::do_read_symbols to read the symbols then
479 // read .opd from a dynamic object, filling in opd_ent_ vector,
480 void
481 do_read_symbols(Read_symbols_data*);
482
483 // The .opd section shndx.
484 unsigned int
485 opd_shndx() const
486 {
487 return this->opd_shndx_;
488 }
489
490 // The .opd section address.
491 Address
492 opd_address() const
493 {
494 return this->opd_address_;
495 }
496
497 // Init OPD entry arrays.
498 void
499 init_opd(size_t opd_size)
500 {
501 size_t count = this->opd_ent_ndx(opd_size);
502 this->opd_ent_.resize(count);
503 }
504
505 // Return section and offset of function entry for .opd + R_OFF.
506 unsigned int
507 get_opd_ent(Address r_off, Address* value = NULL) const
508 {
509 size_t ndx = this->opd_ent_ndx(r_off);
510 gold_assert(ndx < this->opd_ent_.size());
511 gold_assert(this->opd_ent_[ndx].shndx != 0);
512 if (value != NULL)
513 *value = this->opd_ent_[ndx].off;
514 return this->opd_ent_[ndx].shndx;
515 }
516
517 // Set section and offset of function entry for .opd + R_OFF.
518 void
519 set_opd_ent(Address r_off, unsigned int shndx, Address value)
520 {
521 size_t ndx = this->opd_ent_ndx(r_off);
522 gold_assert(ndx < this->opd_ent_.size());
523 this->opd_ent_[ndx].shndx = shndx;
524 this->opd_ent_[ndx].off = value;
525 }
526
527 int
528 abiversion() const
529 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531 // Set ABI version for input and output.
532 void
533 set_abiversion(int ver);
534
535 private:
536 // Used to specify extent of executable sections.
537 struct Sec_info
538 {
539 Sec_info(Address start_, Address len_, unsigned int shndx_)
540 : start(start_), len(len_), shndx(shndx_)
541 { }
542
543 bool
544 operator<(const Sec_info& that) const
545 { return this->start < that.start; }
546
547 Address start;
548 Address len;
549 unsigned int shndx;
550 };
551
552 struct Opd_ent
553 {
554 unsigned int shndx;
555 Address off;
556 };
557
558 // Return index into opd_ent_ array for .opd entry at OFF.
559 size_t
560 opd_ent_ndx(size_t off) const
561 { return off >> 4;}
562
563 // For 64-bit the .opd section shndx and address.
564 unsigned int opd_shndx_;
565 Address opd_address_;
566
567 // Header e_flags
568 elfcpp::Elf_Word e_flags_;
569
570 // The first 8-byte word of an OPD entry gives the address of the
571 // entry point of the function. Records the section and offset
572 // corresponding to the address. Note that in dynamic objects,
573 // offset is *not* relative to the section.
574 std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583 public:
584 Powerpc_copy_relocs()
585 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586 { }
587
588 // Emit any saved relocations which turn out to be needed. This is
589 // called after all the relocs have been scanned.
590 void
591 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597 public:
598 typedef
599 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603 static const Address invalid_address = static_cast<Address>(0) - 1;
604 // Offset of tp and dtp pointers from start of TLS block.
605 static const Address tp_offset = 0x7000;
606 static const Address dtp_offset = 0x8000;
607
608 Target_powerpc()
609 : Sized_target<size, big_endian>(&powerpc_info),
610 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
611 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612 tlsld_got_offset_(-1U),
613 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614 plt_thread_safe_(false), plt_localentry0_(false),
615 plt_localentry0_init_(false), has_localentry0_(false),
616 has_tls_get_addr_opt_(false),
617 relax_failed_(false), relax_fail_count_(0),
618 stub_group_size_(0), savres_section_(0),
619 tls_get_addr_(NULL), tls_get_addr_opt_(NULL)
620 {
621 }
622
623 // Process the relocations to determine unreferenced sections for
624 // garbage collection.
625 void
626 gc_process_relocs(Symbol_table* symtab,
627 Layout* layout,
628 Sized_relobj_file<size, big_endian>* object,
629 unsigned int data_shndx,
630 unsigned int sh_type,
631 const unsigned char* prelocs,
632 size_t reloc_count,
633 Output_section* output_section,
634 bool needs_special_offset_handling,
635 size_t local_symbol_count,
636 const unsigned char* plocal_symbols);
637
638 // Scan the relocations to look for symbol adjustments.
639 void
640 scan_relocs(Symbol_table* symtab,
641 Layout* layout,
642 Sized_relobj_file<size, big_endian>* object,
643 unsigned int data_shndx,
644 unsigned int sh_type,
645 const unsigned char* prelocs,
646 size_t reloc_count,
647 Output_section* output_section,
648 bool needs_special_offset_handling,
649 size_t local_symbol_count,
650 const unsigned char* plocal_symbols);
651
652 // Map input .toc section to output .got section.
653 const char*
654 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
655 {
656 if (size == 64 && strcmp(name, ".toc") == 0)
657 {
658 *plen = 4;
659 return ".got";
660 }
661 return NULL;
662 }
663
664 // Provide linker defined save/restore functions.
665 void
666 define_save_restore_funcs(Layout*, Symbol_table*);
667
668 // No stubs unless a final link.
669 bool
670 do_may_relax() const
671 { return !parameters->options().relocatable(); }
672
673 bool
674 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
675
676 void
677 do_plt_fde_location(const Output_data*, unsigned char*,
678 uint64_t*, off_t*) const;
679
680 // Stash info about branches, for stub generation.
681 void
682 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
683 unsigned int data_shndx, Address r_offset,
684 unsigned int r_type, unsigned int r_sym, Address addend)
685 {
686 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
687 this->branch_info_.push_back(info);
688 if (r_type == elfcpp::R_POWERPC_REL14
689 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
690 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
691 ppc_object->set_has_14bit_branch(data_shndx);
692 }
693
694 // Return whether the last branch is a plt call, and if so, mark the
695 // branch as having an R_PPC64_TOCSAVE.
696 bool
697 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
698 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
699 {
700 return (size == 64
701 && !this->branch_info_.empty()
702 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
703 r_offset, this, symtab));
704 }
705
706 // Say the given location, that of a nop in a function prologue with
707 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
708 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
709 void
710 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
711 unsigned int shndx, Address offset)
712 {
713 Symbol_location loc;
714 loc.object = ppc_object;
715 loc.shndx = shndx;
716 loc.offset = offset;
717 this->tocsave_loc_.insert(loc);
718 }
719
720 // Accessor
721 const Tocsave_loc
722 tocsave_loc() const
723 {
724 return this->tocsave_loc_;
725 }
726
727 void
728 do_define_standard_symbols(Symbol_table*, Layout*);
729
730 // Finalize the sections.
731 void
732 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
733
734 // Return the value to use for a dynamic which requires special
735 // treatment.
736 uint64_t
737 do_dynsym_value(const Symbol*) const;
738
739 // Return the PLT address to use for a local symbol.
740 uint64_t
741 do_plt_address_for_local(const Relobj*, unsigned int) const;
742
743 // Return the PLT address to use for a global symbol.
744 uint64_t
745 do_plt_address_for_global(const Symbol*) const;
746
747 // Return the offset to use for the GOT_INDX'th got entry which is
748 // for a local tls symbol specified by OBJECT, SYMNDX.
749 int64_t
750 do_tls_offset_for_local(const Relobj* object,
751 unsigned int symndx,
752 unsigned int got_indx) const;
753
754 // Return the offset to use for the GOT_INDX'th got entry which is
755 // for global tls symbol GSYM.
756 int64_t
757 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
758
759 void
760 do_function_location(Symbol_location*) const;
761
762 bool
763 do_can_check_for_function_pointers() const
764 { return true; }
765
766 // Adjust -fsplit-stack code which calls non-split-stack code.
767 void
768 do_calls_non_split(Relobj* object, unsigned int shndx,
769 section_offset_type fnoffset, section_size_type fnsize,
770 const unsigned char* prelocs, size_t reloc_count,
771 unsigned char* view, section_size_type view_size,
772 std::string* from, std::string* to) const;
773
774 // Relocate a section.
775 void
776 relocate_section(const Relocate_info<size, big_endian>*,
777 unsigned int sh_type,
778 const unsigned char* prelocs,
779 size_t reloc_count,
780 Output_section* output_section,
781 bool needs_special_offset_handling,
782 unsigned char* view,
783 Address view_address,
784 section_size_type view_size,
785 const Reloc_symbol_changes*);
786
787 // Scan the relocs during a relocatable link.
788 void
789 scan_relocatable_relocs(Symbol_table* symtab,
790 Layout* layout,
791 Sized_relobj_file<size, big_endian>* object,
792 unsigned int data_shndx,
793 unsigned int sh_type,
794 const unsigned char* prelocs,
795 size_t reloc_count,
796 Output_section* output_section,
797 bool needs_special_offset_handling,
798 size_t local_symbol_count,
799 const unsigned char* plocal_symbols,
800 Relocatable_relocs*);
801
802 // Scan the relocs for --emit-relocs.
803 void
804 emit_relocs_scan(Symbol_table* symtab,
805 Layout* layout,
806 Sized_relobj_file<size, big_endian>* object,
807 unsigned int data_shndx,
808 unsigned int sh_type,
809 const unsigned char* prelocs,
810 size_t reloc_count,
811 Output_section* output_section,
812 bool needs_special_offset_handling,
813 size_t local_symbol_count,
814 const unsigned char* plocal_syms,
815 Relocatable_relocs* rr);
816
817 // Emit relocations for a section.
818 void
819 relocate_relocs(const Relocate_info<size, big_endian>*,
820 unsigned int sh_type,
821 const unsigned char* prelocs,
822 size_t reloc_count,
823 Output_section* output_section,
824 typename elfcpp::Elf_types<size>::Elf_Off
825 offset_in_output_section,
826 unsigned char*,
827 Address view_address,
828 section_size_type,
829 unsigned char* reloc_view,
830 section_size_type reloc_view_size);
831
832 // Return whether SYM is defined by the ABI.
833 bool
834 do_is_defined_by_abi(const Symbol* sym) const
835 {
836 return strcmp(sym->name(), "__tls_get_addr") == 0;
837 }
838
839 // Return the size of the GOT section.
840 section_size_type
841 got_size() const
842 {
843 gold_assert(this->got_ != NULL);
844 return this->got_->data_size();
845 }
846
847 // Get the PLT section.
848 const Output_data_plt_powerpc<size, big_endian>*
849 plt_section() const
850 {
851 gold_assert(this->plt_ != NULL);
852 return this->plt_;
853 }
854
855 // Get the IPLT section.
856 const Output_data_plt_powerpc<size, big_endian>*
857 iplt_section() const
858 {
859 gold_assert(this->iplt_ != NULL);
860 return this->iplt_;
861 }
862
863 // Get the .glink section.
864 const Output_data_glink<size, big_endian>*
865 glink_section() const
866 {
867 gold_assert(this->glink_ != NULL);
868 return this->glink_;
869 }
870
871 Output_data_glink<size, big_endian>*
872 glink_section()
873 {
874 gold_assert(this->glink_ != NULL);
875 return this->glink_;
876 }
877
878 bool has_glink() const
879 { return this->glink_ != NULL; }
880
881 // Get the GOT section.
882 const Output_data_got_powerpc<size, big_endian>*
883 got_section() const
884 {
885 gold_assert(this->got_ != NULL);
886 return this->got_;
887 }
888
889 // Get the GOT section, creating it if necessary.
890 Output_data_got_powerpc<size, big_endian>*
891 got_section(Symbol_table*, Layout*);
892
893 Object*
894 do_make_elf_object(const std::string&, Input_file*, off_t,
895 const elfcpp::Ehdr<size, big_endian>&);
896
897 // Return the number of entries in the GOT.
898 unsigned int
899 got_entry_count() const
900 {
901 if (this->got_ == NULL)
902 return 0;
903 return this->got_size() / (size / 8);
904 }
905
906 // Return the number of entries in the PLT.
907 unsigned int
908 plt_entry_count() const;
909
910 // Return the offset of the first non-reserved PLT entry.
911 unsigned int
912 first_plt_entry_offset() const
913 {
914 if (size == 32)
915 return 0;
916 if (this->abiversion() >= 2)
917 return 16;
918 return 24;
919 }
920
921 // Return the size of each PLT entry.
922 unsigned int
923 plt_entry_size() const
924 {
925 if (size == 32)
926 return 4;
927 if (this->abiversion() >= 2)
928 return 8;
929 return 24;
930 }
931
932 Output_data_save_res<size, big_endian>*
933 savres_section() const
934 {
935 return this->savres_section_;
936 }
937
938 // Add any special sections for this symbol to the gc work list.
939 // For powerpc64, this adds the code section of a function
940 // descriptor.
941 void
942 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
943
944 // Handle target specific gc actions when adding a gc reference from
945 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
946 // and DST_OFF. For powerpc64, this adds a referenc to the code
947 // section of a function descriptor.
948 void
949 do_gc_add_reference(Symbol_table* symtab,
950 Relobj* src_obj,
951 unsigned int src_shndx,
952 Relobj* dst_obj,
953 unsigned int dst_shndx,
954 Address dst_off) const;
955
956 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
957 const Stub_tables&
958 stub_tables() const
959 { return this->stub_tables_; }
960
961 const Output_data_brlt_powerpc<size, big_endian>*
962 brlt_section() const
963 { return this->brlt_section_; }
964
965 void
966 add_branch_lookup_table(Address to)
967 {
968 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
969 this->branch_lookup_table_.insert(std::make_pair(to, off));
970 }
971
972 Address
973 find_branch_lookup_table(Address to)
974 {
975 typename Branch_lookup_table::const_iterator p
976 = this->branch_lookup_table_.find(to);
977 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
978 }
979
980 void
981 write_branch_lookup_table(unsigned char *oview)
982 {
983 for (typename Branch_lookup_table::const_iterator p
984 = this->branch_lookup_table_.begin();
985 p != this->branch_lookup_table_.end();
986 ++p)
987 {
988 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
989 }
990 }
991
992 // Wrapper used after relax to define a local symbol in output data,
993 // from the end if value < 0.
994 void
995 define_local(Symbol_table* symtab, const char* name,
996 Output_data* od, Address value, unsigned int symsize)
997 {
998 Symbol* sym
999 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1000 od, value, symsize, elfcpp::STT_NOTYPE,
1001 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1002 static_cast<Signed_address>(value) < 0,
1003 false);
1004 // We are creating this symbol late, so need to fix up things
1005 // done early in Layout::finalize.
1006 sym->set_dynsym_index(-1U);
1007 }
1008
1009 bool
1010 plt_thread_safe() const
1011 { return this->plt_thread_safe_; }
1012
1013 bool
1014 plt_localentry0() const
1015 { return this->plt_localentry0_; }
1016
1017 void
1018 set_has_localentry0()
1019 {
1020 this->has_localentry0_ = true;
1021 }
1022
1023 bool
1024 is_elfv2_localentry0(const Symbol* gsym) const
1025 {
1026 return (size == 64
1027 && this->abiversion() >= 2
1028 && this->plt_localentry0()
1029 && gsym->type() == elfcpp::STT_FUNC
1030 && gsym->is_defined()
1031 && gsym->nonvis() >> 3 == 0
1032 && !gsym->non_zero_localentry());
1033 }
1034
1035 bool
1036 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1037 unsigned int r_sym) const
1038 {
1039 const Powerpc_relobj<size, big_endian>* ppc_object
1040 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1041
1042 if (size == 64
1043 && this->abiversion() >= 2
1044 && this->plt_localentry0()
1045 && ppc_object->st_other(r_sym) >> 5 == 0)
1046 {
1047 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1048 bool is_ordinary;
1049 if (!psymval->is_ifunc_symbol()
1050 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1051 && is_ordinary)
1052 return true;
1053 }
1054 return false;
1055 }
1056
1057 // Remember any symbols seen with non-zero localentry, even those
1058 // not providing a definition
1059 bool
1060 resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1061 const char*)
1062 {
1063 if (size == 64)
1064 {
1065 unsigned char st_other = sym.get_st_other();
1066 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1067 to->set_non_zero_localentry();
1068 }
1069 // We haven't resolved anything, continue normal processing.
1070 return false;
1071 }
1072
1073 int
1074 abiversion() const
1075 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1076
1077 void
1078 set_abiversion(int ver)
1079 {
1080 elfcpp::Elf_Word flags = this->processor_specific_flags();
1081 flags &= ~elfcpp::EF_PPC64_ABI;
1082 flags |= ver & elfcpp::EF_PPC64_ABI;
1083 this->set_processor_specific_flags(flags);
1084 }
1085
1086 Symbol*
1087 tls_get_addr_opt() const
1088 { return this->tls_get_addr_opt_; }
1089
1090 Symbol*
1091 tls_get_addr() const
1092 { return this->tls_get_addr_; }
1093
1094 // If optimizing __tls_get_addr calls, whether this is the
1095 // "__tls_get_addr" symbol.
1096 bool
1097 is_tls_get_addr_opt(const Symbol* gsym) const
1098 {
1099 return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1100 || gsym == this->tls_get_addr_opt_);
1101 }
1102
1103 bool
1104 replace_tls_get_addr(const Symbol* gsym) const
1105 { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1106
1107 void
1108 set_has_tls_get_addr_opt()
1109 { this->has_tls_get_addr_opt_ = true; }
1110
1111 // Offset to toc save stack slot
1112 int
1113 stk_toc() const
1114 { return this->abiversion() < 2 ? 40 : 24; }
1115
1116 // Offset to linker save stack slot. ELFv2 doesn't have a linker word,
1117 // so use the CR save slot. Used only by __tls_get_addr call stub,
1118 // relying on __tls_get_addr not saving CR itself.
1119 int
1120 stk_linker() const
1121 { return this->abiversion() < 2 ? 32 : 8; }
1122
1123 private:
1124
1125 class Track_tls
1126 {
1127 public:
1128 enum Tls_get_addr
1129 {
1130 NOT_EXPECTED = 0,
1131 EXPECTED = 1,
1132 SKIP = 2,
1133 NORMAL = 3
1134 };
1135
1136 Track_tls()
1137 : tls_get_addr_state_(NOT_EXPECTED),
1138 relinfo_(NULL), relnum_(0), r_offset_(0)
1139 { }
1140
1141 ~Track_tls()
1142 {
1143 if (this->tls_get_addr_state_ != NOT_EXPECTED)
1144 this->missing();
1145 }
1146
1147 void
1148 missing(void)
1149 {
1150 if (this->relinfo_ != NULL)
1151 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1152 _("missing expected __tls_get_addr call"));
1153 }
1154
1155 void
1156 expect_tls_get_addr_call(
1157 const Relocate_info<size, big_endian>* relinfo,
1158 size_t relnum,
1159 Address r_offset)
1160 {
1161 this->tls_get_addr_state_ = EXPECTED;
1162 this->relinfo_ = relinfo;
1163 this->relnum_ = relnum;
1164 this->r_offset_ = r_offset;
1165 }
1166
1167 void
1168 expect_tls_get_addr_call()
1169 { this->tls_get_addr_state_ = EXPECTED; }
1170
1171 void
1172 skip_next_tls_get_addr_call()
1173 {this->tls_get_addr_state_ = SKIP; }
1174
1175 Tls_get_addr
1176 maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1177 unsigned int r_type, const Symbol* gsym)
1178 {
1179 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1180 || r_type == elfcpp::R_PPC_PLTREL24)
1181 && gsym != NULL
1182 && (gsym == target->tls_get_addr()
1183 || gsym == target->tls_get_addr_opt()));
1184 Tls_get_addr last_tls = this->tls_get_addr_state_;
1185 this->tls_get_addr_state_ = NOT_EXPECTED;
1186 if (is_tls_call && last_tls != EXPECTED)
1187 return last_tls;
1188 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1189 {
1190 this->missing();
1191 return EXPECTED;
1192 }
1193 return NORMAL;
1194 }
1195
1196 private:
1197 // What we're up to regarding calls to __tls_get_addr.
1198 // On powerpc, the branch and link insn making a call to
1199 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1200 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1201 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1202 // The marker relocation always comes first, and has the same
1203 // symbol as the reloc on the insn setting up the __tls_get_addr
1204 // argument. This ties the arg setup insn with the call insn,
1205 // allowing ld to safely optimize away the call. We check that
1206 // every call to __tls_get_addr has a marker relocation, and that
1207 // every marker relocation is on a call to __tls_get_addr.
1208 Tls_get_addr tls_get_addr_state_;
1209 // Info about the last reloc for error message.
1210 const Relocate_info<size, big_endian>* relinfo_;
1211 size_t relnum_;
1212 Address r_offset_;
1213 };
1214
1215 // The class which scans relocations.
1216 class Scan : protected Track_tls
1217 {
1218 public:
1219 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1220
1221 Scan()
1222 : Track_tls(), issued_non_pic_error_(false)
1223 { }
1224
1225 static inline int
1226 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1227
1228 inline void
1229 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1230 Sized_relobj_file<size, big_endian>* object,
1231 unsigned int data_shndx,
1232 Output_section* output_section,
1233 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1234 const elfcpp::Sym<size, big_endian>& lsym,
1235 bool is_discarded);
1236
1237 inline void
1238 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1239 Sized_relobj_file<size, big_endian>* object,
1240 unsigned int data_shndx,
1241 Output_section* output_section,
1242 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1243 Symbol* gsym);
1244
1245 inline bool
1246 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1247 Target_powerpc* ,
1248 Sized_relobj_file<size, big_endian>* relobj,
1249 unsigned int ,
1250 Output_section* ,
1251 const elfcpp::Rela<size, big_endian>& ,
1252 unsigned int r_type,
1253 const elfcpp::Sym<size, big_endian>&)
1254 {
1255 // PowerPC64 .opd is not folded, so any identical function text
1256 // may be folded and we'll still keep function addresses distinct.
1257 // That means no reloc is of concern here.
1258 if (size == 64)
1259 {
1260 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1261 <Powerpc_relobj<size, big_endian>*>(relobj);
1262 if (ppcobj->abiversion() == 1)
1263 return false;
1264 }
1265 // For 32-bit and ELFv2, conservatively assume anything but calls to
1266 // function code might be taking the address of the function.
1267 return !is_branch_reloc(r_type);
1268 }
1269
1270 inline bool
1271 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1272 Target_powerpc* ,
1273 Sized_relobj_file<size, big_endian>* relobj,
1274 unsigned int ,
1275 Output_section* ,
1276 const elfcpp::Rela<size, big_endian>& ,
1277 unsigned int r_type,
1278 Symbol*)
1279 {
1280 // As above.
1281 if (size == 64)
1282 {
1283 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1284 <Powerpc_relobj<size, big_endian>*>(relobj);
1285 if (ppcobj->abiversion() == 1)
1286 return false;
1287 }
1288 return !is_branch_reloc(r_type);
1289 }
1290
1291 static bool
1292 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1293 Sized_relobj_file<size, big_endian>* object,
1294 unsigned int r_type, bool report_err);
1295
1296 private:
1297 static void
1298 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1299 unsigned int r_type);
1300
1301 static void
1302 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1303 unsigned int r_type, Symbol*);
1304
1305 static void
1306 generate_tls_call(Symbol_table* symtab, Layout* layout,
1307 Target_powerpc* target);
1308
1309 void
1310 check_non_pic(Relobj*, unsigned int r_type);
1311
1312 // Whether we have issued an error about a non-PIC compilation.
1313 bool issued_non_pic_error_;
1314 };
1315
1316 bool
1317 symval_for_branch(const Symbol_table* symtab,
1318 const Sized_symbol<size>* gsym,
1319 Powerpc_relobj<size, big_endian>* object,
1320 Address *value, unsigned int *dest_shndx);
1321
1322 // The class which implements relocation.
1323 class Relocate : protected Track_tls
1324 {
1325 public:
1326 // Use 'at' branch hints when true, 'y' when false.
1327 // FIXME maybe: set this with an option.
1328 static const bool is_isa_v2 = true;
1329
1330 Relocate()
1331 : Track_tls()
1332 { }
1333
1334 // Do a relocation. Return false if the caller should not issue
1335 // any warnings about this relocation.
1336 inline bool
1337 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1338 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1339 const Sized_symbol<size>*, const Symbol_value<size>*,
1340 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1341 section_size_type);
1342 };
1343
1344 class Relocate_comdat_behavior
1345 {
1346 public:
1347 // Decide what the linker should do for relocations that refer to
1348 // discarded comdat sections.
1349 inline Comdat_behavior
1350 get(const char* name)
1351 {
1352 gold::Default_comdat_behavior default_behavior;
1353 Comdat_behavior ret = default_behavior.get(name);
1354 if (ret == CB_WARNING)
1355 {
1356 if (size == 32
1357 && (strcmp(name, ".fixup") == 0
1358 || strcmp(name, ".got2") == 0))
1359 ret = CB_IGNORE;
1360 if (size == 64
1361 && (strcmp(name, ".opd") == 0
1362 || strcmp(name, ".toc") == 0
1363 || strcmp(name, ".toc1") == 0))
1364 ret = CB_IGNORE;
1365 }
1366 return ret;
1367 }
1368 };
1369
1370 // Optimize the TLS relocation type based on what we know about the
1371 // symbol. IS_FINAL is true if the final address of this symbol is
1372 // known at link time.
1373
1374 tls::Tls_optimization
1375 optimize_tls_gd(bool is_final)
1376 {
1377 // If we are generating a shared library, then we can't do anything
1378 // in the linker.
1379 if (parameters->options().shared()
1380 || !parameters->options().tls_optimize())
1381 return tls::TLSOPT_NONE;
1382
1383 if (!is_final)
1384 return tls::TLSOPT_TO_IE;
1385 return tls::TLSOPT_TO_LE;
1386 }
1387
1388 tls::Tls_optimization
1389 optimize_tls_ld()
1390 {
1391 if (parameters->options().shared()
1392 || !parameters->options().tls_optimize())
1393 return tls::TLSOPT_NONE;
1394
1395 return tls::TLSOPT_TO_LE;
1396 }
1397
1398 tls::Tls_optimization
1399 optimize_tls_ie(bool is_final)
1400 {
1401 if (!is_final
1402 || parameters->options().shared()
1403 || !parameters->options().tls_optimize())
1404 return tls::TLSOPT_NONE;
1405
1406 return tls::TLSOPT_TO_LE;
1407 }
1408
1409 // Create glink.
1410 void
1411 make_glink_section(Layout*);
1412
1413 // Create the PLT section.
1414 void
1415 make_plt_section(Symbol_table*, Layout*);
1416
1417 void
1418 make_iplt_section(Symbol_table*, Layout*);
1419
1420 void
1421 make_brlt_section(Layout*);
1422
1423 // Create a PLT entry for a global symbol.
1424 void
1425 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1426
1427 // Create a PLT entry for a local IFUNC symbol.
1428 void
1429 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1430 Sized_relobj_file<size, big_endian>*,
1431 unsigned int);
1432
1433
1434 // Create a GOT entry for local dynamic __tls_get_addr.
1435 unsigned int
1436 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1437 Sized_relobj_file<size, big_endian>* object);
1438
1439 unsigned int
1440 tlsld_got_offset() const
1441 {
1442 return this->tlsld_got_offset_;
1443 }
1444
1445 // Get the dynamic reloc section, creating it if necessary.
1446 Reloc_section*
1447 rela_dyn_section(Layout*);
1448
1449 // Similarly, but for ifunc symbols get the one for ifunc.
1450 Reloc_section*
1451 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1452
1453 // Copy a relocation against a global symbol.
1454 void
1455 copy_reloc(Symbol_table* symtab, Layout* layout,
1456 Sized_relobj_file<size, big_endian>* object,
1457 unsigned int shndx, Output_section* output_section,
1458 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1459 {
1460 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1461 this->copy_relocs_.copy_reloc(symtab, layout,
1462 symtab->get_sized_symbol<size>(sym),
1463 object, shndx, output_section,
1464 r_type, reloc.get_r_offset(),
1465 reloc.get_r_addend(),
1466 this->rela_dyn_section(layout));
1467 }
1468
1469 // Look over all the input sections, deciding where to place stubs.
1470 void
1471 group_sections(Layout*, const Task*, bool);
1472
1473 // Sort output sections by address.
1474 struct Sort_sections
1475 {
1476 bool
1477 operator()(const Output_section* sec1, const Output_section* sec2)
1478 { return sec1->address() < sec2->address(); }
1479 };
1480
1481 class Branch_info
1482 {
1483 public:
1484 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1485 unsigned int data_shndx,
1486 Address r_offset,
1487 unsigned int r_type,
1488 unsigned int r_sym,
1489 Address addend)
1490 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1491 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1492 { }
1493
1494 ~Branch_info()
1495 { }
1496
1497 // Return whether this branch is going via a plt call stub, and if
1498 // so, mark it as having an R_PPC64_TOCSAVE.
1499 bool
1500 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1501 unsigned int shndx, Address offset,
1502 Target_powerpc* target, Symbol_table* symtab);
1503
1504 // If this branch needs a plt call stub, or a long branch stub, make one.
1505 bool
1506 make_stub(Stub_table<size, big_endian>*,
1507 Stub_table<size, big_endian>*,
1508 Symbol_table*) const;
1509
1510 private:
1511 // The branch location..
1512 Powerpc_relobj<size, big_endian>* object_;
1513 unsigned int shndx_;
1514 Address offset_;
1515 // ..and the branch type and destination.
1516 unsigned int r_type_ : 31;
1517 unsigned int tocsave_ : 1;
1518 unsigned int r_sym_;
1519 Address addend_;
1520 };
1521
1522 // Information about this specific target which we pass to the
1523 // general Target structure.
1524 static Target::Target_info powerpc_info;
1525
1526 // The types of GOT entries needed for this platform.
1527 // These values are exposed to the ABI in an incremental link.
1528 // Do not renumber existing values without changing the version
1529 // number of the .gnu_incremental_inputs section.
1530 enum Got_type
1531 {
1532 GOT_TYPE_STANDARD,
1533 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1534 GOT_TYPE_DTPREL, // entry for @got@dtprel
1535 GOT_TYPE_TPREL // entry for @got@tprel
1536 };
1537
1538 // The GOT section.
1539 Output_data_got_powerpc<size, big_endian>* got_;
1540 // The PLT section. This is a container for a table of addresses,
1541 // and their relocations. Each address in the PLT has a dynamic
1542 // relocation (R_*_JMP_SLOT) and each address will have a
1543 // corresponding entry in .glink for lazy resolution of the PLT.
1544 // ppc32 initialises the PLT to point at the .glink entry, while
1545 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1546 // linker adds a stub that loads the PLT entry into ctr then
1547 // branches to ctr. There may be more than one stub for each PLT
1548 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1549 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1550 Output_data_plt_powerpc<size, big_endian>* plt_;
1551 // The IPLT section. Like plt_, this is a container for a table of
1552 // addresses and their relocations, specifically for STT_GNU_IFUNC
1553 // functions that resolve locally (STT_GNU_IFUNC functions that
1554 // don't resolve locally go in PLT). Unlike plt_, these have no
1555 // entry in .glink for lazy resolution, and the relocation section
1556 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1557 // the relocation section may contain relocations against
1558 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1559 // relocation section will appear at the end of other dynamic
1560 // relocations, so that ld.so applies these relocations after other
1561 // dynamic relocations. In a static executable, the relocation
1562 // section is emitted and marked with __rela_iplt_start and
1563 // __rela_iplt_end symbols.
1564 Output_data_plt_powerpc<size, big_endian>* iplt_;
1565 // Section holding long branch destinations.
1566 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1567 // The .glink section.
1568 Output_data_glink<size, big_endian>* glink_;
1569 // The dynamic reloc section.
1570 Reloc_section* rela_dyn_;
1571 // Relocs saved to avoid a COPY reloc.
1572 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1573 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1574 unsigned int tlsld_got_offset_;
1575
1576 Stub_tables stub_tables_;
1577 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1578 Branch_lookup_table branch_lookup_table_;
1579
1580 typedef std::vector<Branch_info> Branches;
1581 Branches branch_info_;
1582 Tocsave_loc tocsave_loc_;
1583
1584 bool plt_thread_safe_;
1585 bool plt_localentry0_;
1586 bool plt_localentry0_init_;
1587 bool has_localentry0_;
1588 bool has_tls_get_addr_opt_;
1589
1590 bool relax_failed_;
1591 int relax_fail_count_;
1592 int32_t stub_group_size_;
1593
1594 Output_data_save_res<size, big_endian> *savres_section_;
1595
1596 // The "__tls_get_addr" symbol, if present
1597 Symbol* tls_get_addr_;
1598 // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1599 Symbol* tls_get_addr_opt_;
1600 };
1601
1602 template<>
1603 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1604 {
1605 32, // size
1606 true, // is_big_endian
1607 elfcpp::EM_PPC, // machine_code
1608 false, // has_make_symbol
1609 false, // has_resolve
1610 false, // has_code_fill
1611 true, // is_default_stack_executable
1612 false, // can_icf_inline_merge_sections
1613 '\0', // wrap_char
1614 "/usr/lib/ld.so.1", // dynamic_linker
1615 0x10000000, // default_text_segment_address
1616 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1617 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1618 false, // isolate_execinstr
1619 0, // rosegment_gap
1620 elfcpp::SHN_UNDEF, // small_common_shndx
1621 elfcpp::SHN_UNDEF, // large_common_shndx
1622 0, // small_common_section_flags
1623 0, // large_common_section_flags
1624 NULL, // attributes_section
1625 NULL, // attributes_vendor
1626 "_start", // entry_symbol_name
1627 32, // hash_entry_size
1628 };
1629
1630 template<>
1631 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1632 {
1633 32, // size
1634 false, // is_big_endian
1635 elfcpp::EM_PPC, // machine_code
1636 false, // has_make_symbol
1637 false, // has_resolve
1638 false, // has_code_fill
1639 true, // is_default_stack_executable
1640 false, // can_icf_inline_merge_sections
1641 '\0', // wrap_char
1642 "/usr/lib/ld.so.1", // dynamic_linker
1643 0x10000000, // default_text_segment_address
1644 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1645 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1646 false, // isolate_execinstr
1647 0, // rosegment_gap
1648 elfcpp::SHN_UNDEF, // small_common_shndx
1649 elfcpp::SHN_UNDEF, // large_common_shndx
1650 0, // small_common_section_flags
1651 0, // large_common_section_flags
1652 NULL, // attributes_section
1653 NULL, // attributes_vendor
1654 "_start", // entry_symbol_name
1655 32, // hash_entry_size
1656 };
1657
1658 template<>
1659 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1660 {
1661 64, // size
1662 true, // is_big_endian
1663 elfcpp::EM_PPC64, // machine_code
1664 false, // has_make_symbol
1665 true, // has_resolve
1666 false, // has_code_fill
1667 false, // is_default_stack_executable
1668 false, // can_icf_inline_merge_sections
1669 '\0', // wrap_char
1670 "/usr/lib/ld.so.1", // dynamic_linker
1671 0x10000000, // default_text_segment_address
1672 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1673 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1674 false, // isolate_execinstr
1675 0, // rosegment_gap
1676 elfcpp::SHN_UNDEF, // small_common_shndx
1677 elfcpp::SHN_UNDEF, // large_common_shndx
1678 0, // small_common_section_flags
1679 0, // large_common_section_flags
1680 NULL, // attributes_section
1681 NULL, // attributes_vendor
1682 "_start", // entry_symbol_name
1683 32, // hash_entry_size
1684 };
1685
1686 template<>
1687 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1688 {
1689 64, // size
1690 false, // is_big_endian
1691 elfcpp::EM_PPC64, // machine_code
1692 false, // has_make_symbol
1693 true, // has_resolve
1694 false, // has_code_fill
1695 false, // is_default_stack_executable
1696 false, // can_icf_inline_merge_sections
1697 '\0', // wrap_char
1698 "/usr/lib/ld.so.1", // dynamic_linker
1699 0x10000000, // default_text_segment_address
1700 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1701 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1702 false, // isolate_execinstr
1703 0, // rosegment_gap
1704 elfcpp::SHN_UNDEF, // small_common_shndx
1705 elfcpp::SHN_UNDEF, // large_common_shndx
1706 0, // small_common_section_flags
1707 0, // large_common_section_flags
1708 NULL, // attributes_section
1709 NULL, // attributes_vendor
1710 "_start", // entry_symbol_name
1711 32, // hash_entry_size
1712 };
1713
1714 inline bool
1715 is_branch_reloc(unsigned int r_type)
1716 {
1717 return (r_type == elfcpp::R_POWERPC_REL24
1718 || r_type == elfcpp::R_PPC_PLTREL24
1719 || r_type == elfcpp::R_PPC_LOCAL24PC
1720 || r_type == elfcpp::R_POWERPC_REL14
1721 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1722 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1723 || r_type == elfcpp::R_POWERPC_ADDR24
1724 || r_type == elfcpp::R_POWERPC_ADDR14
1725 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1726 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1727 }
1728
1729 // If INSN is an opcode that may be used with an @tls operand, return
1730 // the transformed insn for TLS optimisation, otherwise return 0. If
1731 // REG is non-zero only match an insn with RB or RA equal to REG.
1732 uint32_t
1733 at_tls_transform(uint32_t insn, unsigned int reg)
1734 {
1735 if ((insn & (0x3f << 26)) != 31 << 26)
1736 return 0;
1737
1738 unsigned int rtra;
1739 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1740 rtra = insn & ((1 << 26) - (1 << 16));
1741 else if (((insn >> 16) & 0x1f) == reg)
1742 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1743 else
1744 return 0;
1745
1746 if ((insn & (0x3ff << 1)) == 266 << 1)
1747 // add -> addi
1748 insn = 14 << 26;
1749 else if ((insn & (0x1f << 1)) == 23 << 1
1750 && ((insn & (0x1f << 6)) < 14 << 6
1751 || ((insn & (0x1f << 6)) >= 16 << 6
1752 && (insn & (0x1f << 6)) < 24 << 6)))
1753 // load and store indexed -> dform
1754 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1755 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1756 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1757 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1758 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1759 // lwax -> lwa
1760 insn = (58 << 26) | 2;
1761 else
1762 return 0;
1763 insn |= rtra;
1764 return insn;
1765 }
1766
1767
1768 template<int size, bool big_endian>
1769 class Powerpc_relocate_functions
1770 {
1771 public:
1772 enum Overflow_check
1773 {
1774 CHECK_NONE,
1775 CHECK_SIGNED,
1776 CHECK_UNSIGNED,
1777 CHECK_BITFIELD,
1778 CHECK_LOW_INSN,
1779 CHECK_HIGH_INSN
1780 };
1781
1782 enum Status
1783 {
1784 STATUS_OK,
1785 STATUS_OVERFLOW
1786 };
1787
1788 private:
1789 typedef Powerpc_relocate_functions<size, big_endian> This;
1790 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1791 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1792
1793 template<int valsize>
1794 static inline bool
1795 has_overflow_signed(Address value)
1796 {
1797 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1798 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1799 limit <<= ((valsize - 1) >> 1);
1800 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1801 return value + limit > (limit << 1) - 1;
1802 }
1803
1804 template<int valsize>
1805 static inline bool
1806 has_overflow_unsigned(Address value)
1807 {
1808 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1809 limit <<= ((valsize - 1) >> 1);
1810 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1811 return value > (limit << 1) - 1;
1812 }
1813
1814 template<int valsize>
1815 static inline bool
1816 has_overflow_bitfield(Address value)
1817 {
1818 return (has_overflow_unsigned<valsize>(value)
1819 && has_overflow_signed<valsize>(value));
1820 }
1821
1822 template<int valsize>
1823 static inline Status
1824 overflowed(Address value, Overflow_check overflow)
1825 {
1826 if (overflow == CHECK_SIGNED)
1827 {
1828 if (has_overflow_signed<valsize>(value))
1829 return STATUS_OVERFLOW;
1830 }
1831 else if (overflow == CHECK_UNSIGNED)
1832 {
1833 if (has_overflow_unsigned<valsize>(value))
1834 return STATUS_OVERFLOW;
1835 }
1836 else if (overflow == CHECK_BITFIELD)
1837 {
1838 if (has_overflow_bitfield<valsize>(value))
1839 return STATUS_OVERFLOW;
1840 }
1841 return STATUS_OK;
1842 }
1843
1844 // Do a simple RELA relocation
1845 template<int fieldsize, int valsize>
1846 static inline Status
1847 rela(unsigned char* view, Address value, Overflow_check overflow)
1848 {
1849 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1850 Valtype* wv = reinterpret_cast<Valtype*>(view);
1851 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1852 return overflowed<valsize>(value, overflow);
1853 }
1854
1855 template<int fieldsize, int valsize>
1856 static inline Status
1857 rela(unsigned char* view,
1858 unsigned int right_shift,
1859 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1860 Address value,
1861 Overflow_check overflow)
1862 {
1863 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1864 Valtype* wv = reinterpret_cast<Valtype*>(view);
1865 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1866 Valtype reloc = value >> right_shift;
1867 val &= ~dst_mask;
1868 reloc &= dst_mask;
1869 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1870 return overflowed<valsize>(value >> right_shift, overflow);
1871 }
1872
1873 // Do a simple RELA relocation, unaligned.
1874 template<int fieldsize, int valsize>
1875 static inline Status
1876 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1877 {
1878 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1879 return overflowed<valsize>(value, overflow);
1880 }
1881
1882 template<int fieldsize, int valsize>
1883 static inline Status
1884 rela_ua(unsigned char* view,
1885 unsigned int right_shift,
1886 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1887 Address value,
1888 Overflow_check overflow)
1889 {
1890 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1891 Valtype;
1892 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1893 Valtype reloc = value >> right_shift;
1894 val &= ~dst_mask;
1895 reloc &= dst_mask;
1896 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1897 return overflowed<valsize>(value >> right_shift, overflow);
1898 }
1899
1900 public:
1901 // R_PPC64_ADDR64: (Symbol + Addend)
1902 static inline void
1903 addr64(unsigned char* view, Address value)
1904 { This::template rela<64,64>(view, value, CHECK_NONE); }
1905
1906 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1907 static inline void
1908 addr64_u(unsigned char* view, Address value)
1909 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1910
1911 // R_POWERPC_ADDR32: (Symbol + Addend)
1912 static inline Status
1913 addr32(unsigned char* view, Address value, Overflow_check overflow)
1914 { return This::template rela<32,32>(view, value, overflow); }
1915
1916 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1917 static inline Status
1918 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1919 { return This::template rela_ua<32,32>(view, value, overflow); }
1920
1921 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1922 static inline Status
1923 addr24(unsigned char* view, Address value, Overflow_check overflow)
1924 {
1925 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1926 value, overflow);
1927 if (overflow != CHECK_NONE && (value & 3) != 0)
1928 stat = STATUS_OVERFLOW;
1929 return stat;
1930 }
1931
1932 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1933 static inline Status
1934 addr16(unsigned char* view, Address value, Overflow_check overflow)
1935 { return This::template rela<16,16>(view, value, overflow); }
1936
1937 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1938 static inline Status
1939 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1940 { return This::template rela_ua<16,16>(view, value, overflow); }
1941
1942 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1943 static inline Status
1944 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1945 {
1946 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1947 if ((value & 3) != 0)
1948 stat = STATUS_OVERFLOW;
1949 return stat;
1950 }
1951
1952 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1953 static inline Status
1954 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1955 {
1956 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1957 if ((value & 15) != 0)
1958 stat = STATUS_OVERFLOW;
1959 return stat;
1960 }
1961
1962 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1963 static inline void
1964 addr16_hi(unsigned char* view, Address value)
1965 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1966
1967 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1968 static inline void
1969 addr16_ha(unsigned char* view, Address value)
1970 { This::addr16_hi(view, value + 0x8000); }
1971
1972 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1973 static inline void
1974 addr16_hi2(unsigned char* view, Address value)
1975 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1976
1977 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1978 static inline void
1979 addr16_ha2(unsigned char* view, Address value)
1980 { This::addr16_hi2(view, value + 0x8000); }
1981
1982 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1983 static inline void
1984 addr16_hi3(unsigned char* view, Address value)
1985 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1986
1987 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1988 static inline void
1989 addr16_ha3(unsigned char* view, Address value)
1990 { This::addr16_hi3(view, value + 0x8000); }
1991
1992 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1993 static inline Status
1994 addr14(unsigned char* view, Address value, Overflow_check overflow)
1995 {
1996 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1997 if (overflow != CHECK_NONE && (value & 3) != 0)
1998 stat = STATUS_OVERFLOW;
1999 return stat;
2000 }
2001
2002 // R_POWERPC_REL16DX_HA
2003 static inline Status
2004 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2005 {
2006 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2007 Valtype* wv = reinterpret_cast<Valtype*>(view);
2008 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2009 value += 0x8000;
2010 value = static_cast<SignedAddress>(value) >> 16;
2011 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2012 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2013 return overflowed<16>(value, overflow);
2014 }
2015 };
2016
2017 // Set ABI version for input and output.
2018
2019 template<int size, bool big_endian>
2020 void
2021 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2022 {
2023 this->e_flags_ |= ver;
2024 if (this->abiversion() != 0)
2025 {
2026 Target_powerpc<size, big_endian>* target =
2027 static_cast<Target_powerpc<size, big_endian>*>(
2028 parameters->sized_target<size, big_endian>());
2029 if (target->abiversion() == 0)
2030 target->set_abiversion(this->abiversion());
2031 else if (target->abiversion() != this->abiversion())
2032 gold_error(_("%s: ABI version %d is not compatible "
2033 "with ABI version %d output"),
2034 this->name().c_str(),
2035 this->abiversion(), target->abiversion());
2036
2037 }
2038 }
2039
2040 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2041 // relocatable object, if such sections exists.
2042
2043 template<int size, bool big_endian>
2044 bool
2045 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2046 Read_symbols_data* sd)
2047 {
2048 const unsigned char* const pshdrs = sd->section_headers->data();
2049 const unsigned char* namesu = sd->section_names->data();
2050 const char* names = reinterpret_cast<const char*>(namesu);
2051 section_size_type names_size = sd->section_names_size;
2052 const unsigned char* s;
2053
2054 s = this->template find_shdr<size, big_endian>(pshdrs,
2055 size == 32 ? ".got2" : ".opd",
2056 names, names_size, NULL);
2057 if (s != NULL)
2058 {
2059 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2060 this->special_ = ndx;
2061 if (size == 64)
2062 {
2063 if (this->abiversion() == 0)
2064 this->set_abiversion(1);
2065 else if (this->abiversion() > 1)
2066 gold_error(_("%s: .opd invalid in abiv%d"),
2067 this->name().c_str(), this->abiversion());
2068 }
2069 }
2070 if (size == 64)
2071 {
2072 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2073 names, names_size, NULL);
2074 if (s != NULL)
2075 {
2076 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2077 this->relatoc_ = ndx;
2078 typename elfcpp::Shdr<size, big_endian> shdr(s);
2079 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2080 }
2081 }
2082 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2083 }
2084
2085 // Examine .rela.opd to build info about function entry points.
2086
2087 template<int size, bool big_endian>
2088 void
2089 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2090 size_t reloc_count,
2091 const unsigned char* prelocs,
2092 const unsigned char* plocal_syms)
2093 {
2094 if (size == 64)
2095 {
2096 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2097 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2098 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2099 Address expected_off = 0;
2100 bool regular = true;
2101 unsigned int opd_ent_size = 0;
2102
2103 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2104 {
2105 Reltype reloc(prelocs);
2106 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2107 = reloc.get_r_info();
2108 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2109 if (r_type == elfcpp::R_PPC64_ADDR64)
2110 {
2111 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2112 typename elfcpp::Elf_types<size>::Elf_Addr value;
2113 bool is_ordinary;
2114 unsigned int shndx;
2115 if (r_sym < this->local_symbol_count())
2116 {
2117 typename elfcpp::Sym<size, big_endian>
2118 lsym(plocal_syms + r_sym * sym_size);
2119 shndx = lsym.get_st_shndx();
2120 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2121 value = lsym.get_st_value();
2122 }
2123 else
2124 shndx = this->symbol_section_and_value(r_sym, &value,
2125 &is_ordinary);
2126 this->set_opd_ent(reloc.get_r_offset(), shndx,
2127 value + reloc.get_r_addend());
2128 if (i == 2)
2129 {
2130 expected_off = reloc.get_r_offset();
2131 opd_ent_size = expected_off;
2132 }
2133 else if (expected_off != reloc.get_r_offset())
2134 regular = false;
2135 expected_off += opd_ent_size;
2136 }
2137 else if (r_type == elfcpp::R_PPC64_TOC)
2138 {
2139 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2140 regular = false;
2141 }
2142 else
2143 {
2144 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2145 this->name().c_str(), r_type);
2146 regular = false;
2147 }
2148 }
2149 if (reloc_count <= 2)
2150 opd_ent_size = this->section_size(this->opd_shndx());
2151 if (opd_ent_size != 24 && opd_ent_size != 16)
2152 regular = false;
2153 if (!regular)
2154 {
2155 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2156 this->name().c_str());
2157 opd_ent_size = 0;
2158 }
2159 }
2160 }
2161
2162 // Returns true if a code sequence loading the TOC entry at VALUE
2163 // relative to the TOC pointer can be converted into code calculating
2164 // a TOC pointer relative offset.
2165 // If so, the TOC pointer relative offset is stored to VALUE.
2166
2167 template<int size, bool big_endian>
2168 bool
2169 Powerpc_relobj<size, big_endian>::make_toc_relative(
2170 Target_powerpc<size, big_endian>* target,
2171 Address* value)
2172 {
2173 if (size != 64)
2174 return false;
2175
2176 // With -mcmodel=medium code it is quite possible to have
2177 // toc-relative relocs referring to objects outside the TOC.
2178 // Don't try to look at a non-existent TOC.
2179 if (this->toc_shndx() == 0)
2180 return false;
2181
2182 // Convert VALUE back to an address by adding got_base (see below),
2183 // then to an offset in the TOC by subtracting the TOC output
2184 // section address and the TOC output offset. Since this TOC output
2185 // section and the got output section are one and the same, we can
2186 // omit adding and subtracting the output section address.
2187 Address off = (*value + this->toc_base_offset()
2188 - this->output_section_offset(this->toc_shndx()));
2189 // Is this offset in the TOC? -mcmodel=medium code may be using
2190 // TOC relative access to variables outside the TOC. Those of
2191 // course can't be optimized. We also don't try to optimize code
2192 // that is using a different object's TOC.
2193 if (off >= this->section_size(this->toc_shndx()))
2194 return false;
2195
2196 if (this->no_toc_opt(off))
2197 return false;
2198
2199 section_size_type vlen;
2200 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2201 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2202 // The TOC pointer
2203 Address got_base = (target->got_section()->output_section()->address()
2204 + this->toc_base_offset());
2205 addr -= got_base;
2206 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2207 return false;
2208
2209 *value = addr;
2210 return true;
2211 }
2212
2213 // Perform the Sized_relobj_file method, then set up opd info from
2214 // .opd relocs.
2215
2216 template<int size, bool big_endian>
2217 void
2218 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2219 {
2220 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2221 if (size == 64)
2222 {
2223 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2224 p != rd->relocs.end();
2225 ++p)
2226 {
2227 if (p->data_shndx == this->opd_shndx())
2228 {
2229 uint64_t opd_size = this->section_size(this->opd_shndx());
2230 gold_assert(opd_size == static_cast<size_t>(opd_size));
2231 if (opd_size != 0)
2232 {
2233 this->init_opd(opd_size);
2234 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2235 rd->local_symbols->data());
2236 }
2237 break;
2238 }
2239 }
2240 }
2241 }
2242
2243 // Read the symbols then set up st_other vector.
2244
2245 template<int size, bool big_endian>
2246 void
2247 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2248 {
2249 this->base_read_symbols(sd);
2250 if (size == 64)
2251 {
2252 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2253 const unsigned char* const pshdrs = sd->section_headers->data();
2254 const unsigned int loccount = this->do_local_symbol_count();
2255 if (loccount != 0)
2256 {
2257 this->st_other_.resize(loccount);
2258 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2259 off_t locsize = loccount * sym_size;
2260 const unsigned int symtab_shndx = this->symtab_shndx();
2261 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2262 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2263 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2264 locsize, true, false);
2265 psyms += sym_size;
2266 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2267 {
2268 elfcpp::Sym<size, big_endian> sym(psyms);
2269 unsigned char st_other = sym.get_st_other();
2270 this->st_other_[i] = st_other;
2271 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2272 {
2273 if (this->abiversion() == 0)
2274 this->set_abiversion(2);
2275 else if (this->abiversion() < 2)
2276 gold_error(_("%s: local symbol %d has invalid st_other"
2277 " for ABI version 1"),
2278 this->name().c_str(), i);
2279 }
2280 }
2281 }
2282 }
2283 }
2284
2285 template<int size, bool big_endian>
2286 void
2287 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2288 {
2289 this->e_flags_ |= ver;
2290 if (this->abiversion() != 0)
2291 {
2292 Target_powerpc<size, big_endian>* target =
2293 static_cast<Target_powerpc<size, big_endian>*>(
2294 parameters->sized_target<size, big_endian>());
2295 if (target->abiversion() == 0)
2296 target->set_abiversion(this->abiversion());
2297 else if (target->abiversion() != this->abiversion())
2298 gold_error(_("%s: ABI version %d is not compatible "
2299 "with ABI version %d output"),
2300 this->name().c_str(),
2301 this->abiversion(), target->abiversion());
2302
2303 }
2304 }
2305
2306 // Call Sized_dynobj::base_read_symbols to read the symbols then
2307 // read .opd from a dynamic object, filling in opd_ent_ vector,
2308
2309 template<int size, bool big_endian>
2310 void
2311 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2312 {
2313 this->base_read_symbols(sd);
2314 if (size == 64)
2315 {
2316 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2317 const unsigned char* const pshdrs = sd->section_headers->data();
2318 const unsigned char* namesu = sd->section_names->data();
2319 const char* names = reinterpret_cast<const char*>(namesu);
2320 const unsigned char* s = NULL;
2321 const unsigned char* opd;
2322 section_size_type opd_size;
2323
2324 // Find and read .opd section.
2325 while (1)
2326 {
2327 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2328 sd->section_names_size,
2329 s);
2330 if (s == NULL)
2331 return;
2332
2333 typename elfcpp::Shdr<size, big_endian> shdr(s);
2334 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2335 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2336 {
2337 if (this->abiversion() == 0)
2338 this->set_abiversion(1);
2339 else if (this->abiversion() > 1)
2340 gold_error(_("%s: .opd invalid in abiv%d"),
2341 this->name().c_str(), this->abiversion());
2342
2343 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2344 this->opd_address_ = shdr.get_sh_addr();
2345 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2346 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2347 true, false);
2348 break;
2349 }
2350 }
2351
2352 // Build set of executable sections.
2353 // Using a set is probably overkill. There is likely to be only
2354 // a few executable sections, typically .init, .text and .fini,
2355 // and they are generally grouped together.
2356 typedef std::set<Sec_info> Exec_sections;
2357 Exec_sections exec_sections;
2358 s = pshdrs;
2359 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2360 {
2361 typename elfcpp::Shdr<size, big_endian> shdr(s);
2362 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2363 && ((shdr.get_sh_flags()
2364 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2365 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2366 && shdr.get_sh_size() != 0)
2367 {
2368 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2369 shdr.get_sh_size(), i));
2370 }
2371 }
2372 if (exec_sections.empty())
2373 return;
2374
2375 // Look over the OPD entries. This is complicated by the fact
2376 // that some binaries will use two-word entries while others
2377 // will use the standard three-word entries. In most cases
2378 // the third word (the environment pointer for languages like
2379 // Pascal) is unused and will be zero. If the third word is
2380 // used it should not be pointing into executable sections,
2381 // I think.
2382 this->init_opd(opd_size);
2383 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2384 {
2385 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2386 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2387 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2388 if (val == 0)
2389 // Chances are that this is the third word of an OPD entry.
2390 continue;
2391 typename Exec_sections::const_iterator e
2392 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2393 if (e != exec_sections.begin())
2394 {
2395 --e;
2396 if (e->start <= val && val < e->start + e->len)
2397 {
2398 // We have an address in an executable section.
2399 // VAL ought to be the function entry, set it up.
2400 this->set_opd_ent(p - opd, e->shndx, val);
2401 // Skip second word of OPD entry, the TOC pointer.
2402 p += 8;
2403 }
2404 }
2405 // If we didn't match any executable sections, we likely
2406 // have a non-zero third word in the OPD entry.
2407 }
2408 }
2409 }
2410
2411 // Relocate sections.
2412
2413 template<int size, bool big_endian>
2414 void
2415 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2416 const Symbol_table* symtab, const Layout* layout,
2417 const unsigned char* pshdrs, Output_file* of,
2418 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2419 {
2420 unsigned int start = 1;
2421 if (size == 64
2422 && this->relatoc_ != 0
2423 && !parameters->options().relocatable())
2424 {
2425 // Relocate .toc first.
2426 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2427 this->relatoc_, this->relatoc_);
2428 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2429 1, this->relatoc_ - 1);
2430 start = this->relatoc_ + 1;
2431 }
2432 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2433 start, this->shnum() - 1);
2434 }
2435
2436 // Set up some symbols.
2437
2438 template<int size, bool big_endian>
2439 void
2440 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2441 Symbol_table* symtab,
2442 Layout* layout)
2443 {
2444 if (size == 32)
2445 {
2446 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2447 // undefined when scanning relocs (and thus requires
2448 // non-relative dynamic relocs). The proper value will be
2449 // updated later.
2450 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2451 if (gotsym != NULL && gotsym->is_undefined())
2452 {
2453 Target_powerpc<size, big_endian>* target =
2454 static_cast<Target_powerpc<size, big_endian>*>(
2455 parameters->sized_target<size, big_endian>());
2456 Output_data_got_powerpc<size, big_endian>* got
2457 = target->got_section(symtab, layout);
2458 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2459 Symbol_table::PREDEFINED,
2460 got, 0, 0,
2461 elfcpp::STT_OBJECT,
2462 elfcpp::STB_LOCAL,
2463 elfcpp::STV_HIDDEN, 0,
2464 false, false);
2465 }
2466
2467 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2468 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2469 if (sdasym != NULL && sdasym->is_undefined())
2470 {
2471 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2472 Output_section* os
2473 = layout->add_output_section_data(".sdata", 0,
2474 elfcpp::SHF_ALLOC
2475 | elfcpp::SHF_WRITE,
2476 sdata, ORDER_SMALL_DATA, false);
2477 symtab->define_in_output_data("_SDA_BASE_", NULL,
2478 Symbol_table::PREDEFINED,
2479 os, 32768, 0, elfcpp::STT_OBJECT,
2480 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2481 0, false, false);
2482 }
2483 }
2484 else
2485 {
2486 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2487 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2488 if (gotsym != NULL && gotsym->is_undefined())
2489 {
2490 Target_powerpc<size, big_endian>* target =
2491 static_cast<Target_powerpc<size, big_endian>*>(
2492 parameters->sized_target<size, big_endian>());
2493 Output_data_got_powerpc<size, big_endian>* got
2494 = target->got_section(symtab, layout);
2495 symtab->define_in_output_data(".TOC.", NULL,
2496 Symbol_table::PREDEFINED,
2497 got, 0x8000, 0,
2498 elfcpp::STT_OBJECT,
2499 elfcpp::STB_LOCAL,
2500 elfcpp::STV_HIDDEN, 0,
2501 false, false);
2502 }
2503 }
2504
2505 this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2506 if (parameters->options().tls_get_addr_optimize()
2507 && this->tls_get_addr_ != NULL
2508 && this->tls_get_addr_->in_reg())
2509 this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2510 if (this->tls_get_addr_opt_ != NULL)
2511 {
2512 if (this->tls_get_addr_->is_undefined()
2513 || this->tls_get_addr_->is_from_dynobj())
2514 {
2515 // Make it seem as if references to __tls_get_addr are
2516 // really to __tls_get_addr_opt, so the latter symbol is
2517 // made dynamic, not the former.
2518 this->tls_get_addr_->clear_in_reg();
2519 this->tls_get_addr_opt_->set_in_reg();
2520 }
2521 // We have a non-dynamic definition for __tls_get_addr.
2522 // Make __tls_get_addr_opt the same, if it does not already have
2523 // a non-dynamic definition.
2524 else if (this->tls_get_addr_opt_->is_undefined()
2525 || this->tls_get_addr_opt_->is_from_dynobj())
2526 {
2527 Sized_symbol<size>* from
2528 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2529 Sized_symbol<size>* to
2530 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2531 symtab->clone<size>(to, from);
2532 }
2533 }
2534 }
2535
2536 // Set up PowerPC target specific relobj.
2537
2538 template<int size, bool big_endian>
2539 Object*
2540 Target_powerpc<size, big_endian>::do_make_elf_object(
2541 const std::string& name,
2542 Input_file* input_file,
2543 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2544 {
2545 int et = ehdr.get_e_type();
2546 // ET_EXEC files are valid input for --just-symbols/-R,
2547 // and we treat them as relocatable objects.
2548 if (et == elfcpp::ET_REL
2549 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2550 {
2551 Powerpc_relobj<size, big_endian>* obj =
2552 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2553 obj->setup();
2554 return obj;
2555 }
2556 else if (et == elfcpp::ET_DYN)
2557 {
2558 Powerpc_dynobj<size, big_endian>* obj =
2559 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2560 obj->setup();
2561 return obj;
2562 }
2563 else
2564 {
2565 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2566 return NULL;
2567 }
2568 }
2569
2570 template<int size, bool big_endian>
2571 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2572 {
2573 public:
2574 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2575 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2576
2577 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2578 : Output_data_got<size, big_endian>(),
2579 symtab_(symtab), layout_(layout),
2580 header_ent_cnt_(size == 32 ? 3 : 1),
2581 header_index_(size == 32 ? 0x2000 : 0)
2582 {
2583 if (size == 64)
2584 this->set_addralign(256);
2585 }
2586
2587 // Override all the Output_data_got methods we use so as to first call
2588 // reserve_ent().
2589 bool
2590 add_global(Symbol* gsym, unsigned int got_type)
2591 {
2592 this->reserve_ent();
2593 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2594 }
2595
2596 bool
2597 add_global_plt(Symbol* gsym, unsigned int got_type)
2598 {
2599 this->reserve_ent();
2600 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2601 }
2602
2603 bool
2604 add_global_tls(Symbol* gsym, unsigned int got_type)
2605 { return this->add_global_plt(gsym, got_type); }
2606
2607 void
2608 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2609 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2610 {
2611 this->reserve_ent();
2612 Output_data_got<size, big_endian>::
2613 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2614 }
2615
2616 void
2617 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2618 Output_data_reloc_generic* rel_dyn,
2619 unsigned int r_type_1, unsigned int r_type_2)
2620 {
2621 if (gsym->has_got_offset(got_type))
2622 return;
2623
2624 this->reserve_ent(2);
2625 Output_data_got<size, big_endian>::
2626 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2627 }
2628
2629 bool
2630 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2631 {
2632 this->reserve_ent();
2633 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2634 got_type);
2635 }
2636
2637 bool
2638 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2639 {
2640 this->reserve_ent();
2641 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2642 got_type);
2643 }
2644
2645 bool
2646 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2647 { return this->add_local_plt(object, sym_index, got_type); }
2648
2649 void
2650 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2651 unsigned int got_type,
2652 Output_data_reloc_generic* rel_dyn,
2653 unsigned int r_type)
2654 {
2655 if (object->local_has_got_offset(sym_index, got_type))
2656 return;
2657
2658 this->reserve_ent(2);
2659 Output_data_got<size, big_endian>::
2660 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2661 }
2662
2663 unsigned int
2664 add_constant(Valtype constant)
2665 {
2666 this->reserve_ent();
2667 return Output_data_got<size, big_endian>::add_constant(constant);
2668 }
2669
2670 unsigned int
2671 add_constant_pair(Valtype c1, Valtype c2)
2672 {
2673 this->reserve_ent(2);
2674 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2675 }
2676
2677 // Offset of _GLOBAL_OFFSET_TABLE_.
2678 unsigned int
2679 g_o_t() const
2680 {
2681 return this->got_offset(this->header_index_);
2682 }
2683
2684 // Offset of base used to access the GOT/TOC.
2685 // The got/toc pointer reg will be set to this value.
2686 Valtype
2687 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2688 {
2689 if (size == 32)
2690 return this->g_o_t();
2691 else
2692 return (this->output_section()->address()
2693 + object->toc_base_offset()
2694 - this->address());
2695 }
2696
2697 // Ensure our GOT has a header.
2698 void
2699 set_final_data_size()
2700 {
2701 if (this->header_ent_cnt_ != 0)
2702 this->make_header();
2703 Output_data_got<size, big_endian>::set_final_data_size();
2704 }
2705
2706 // First word of GOT header needs some values that are not
2707 // handled by Output_data_got so poke them in here.
2708 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2709 void
2710 do_write(Output_file* of)
2711 {
2712 Valtype val = 0;
2713 if (size == 32 && this->layout_->dynamic_data() != NULL)
2714 val = this->layout_->dynamic_section()->address();
2715 if (size == 64)
2716 val = this->output_section()->address() + 0x8000;
2717 this->replace_constant(this->header_index_, val);
2718 Output_data_got<size, big_endian>::do_write(of);
2719 }
2720
2721 private:
2722 void
2723 reserve_ent(unsigned int cnt = 1)
2724 {
2725 if (this->header_ent_cnt_ == 0)
2726 return;
2727 if (this->num_entries() + cnt > this->header_index_)
2728 this->make_header();
2729 }
2730
2731 void
2732 make_header()
2733 {
2734 this->header_ent_cnt_ = 0;
2735 this->header_index_ = this->num_entries();
2736 if (size == 32)
2737 {
2738 Output_data_got<size, big_endian>::add_constant(0);
2739 Output_data_got<size, big_endian>::add_constant(0);
2740 Output_data_got<size, big_endian>::add_constant(0);
2741
2742 // Define _GLOBAL_OFFSET_TABLE_ at the header
2743 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2744 if (gotsym != NULL)
2745 {
2746 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2747 sym->set_value(this->g_o_t());
2748 }
2749 else
2750 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2751 Symbol_table::PREDEFINED,
2752 this, this->g_o_t(), 0,
2753 elfcpp::STT_OBJECT,
2754 elfcpp::STB_LOCAL,
2755 elfcpp::STV_HIDDEN, 0,
2756 false, false);
2757 }
2758 else
2759 Output_data_got<size, big_endian>::add_constant(0);
2760 }
2761
2762 // Stashed pointers.
2763 Symbol_table* symtab_;
2764 Layout* layout_;
2765
2766 // GOT header size.
2767 unsigned int header_ent_cnt_;
2768 // GOT header index.
2769 unsigned int header_index_;
2770 };
2771
2772 // Get the GOT section, creating it if necessary.
2773
2774 template<int size, bool big_endian>
2775 Output_data_got_powerpc<size, big_endian>*
2776 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2777 Layout* layout)
2778 {
2779 if (this->got_ == NULL)
2780 {
2781 gold_assert(symtab != NULL && layout != NULL);
2782
2783 this->got_
2784 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2785
2786 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2787 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2788 this->got_, ORDER_DATA, false);
2789 }
2790
2791 return this->got_;
2792 }
2793
2794 // Get the dynamic reloc section, creating it if necessary.
2795
2796 template<int size, bool big_endian>
2797 typename Target_powerpc<size, big_endian>::Reloc_section*
2798 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2799 {
2800 if (this->rela_dyn_ == NULL)
2801 {
2802 gold_assert(layout != NULL);
2803 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2804 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2805 elfcpp::SHF_ALLOC, this->rela_dyn_,
2806 ORDER_DYNAMIC_RELOCS, false);
2807 }
2808 return this->rela_dyn_;
2809 }
2810
2811 // Similarly, but for ifunc symbols get the one for ifunc.
2812
2813 template<int size, bool big_endian>
2814 typename Target_powerpc<size, big_endian>::Reloc_section*
2815 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2816 Layout* layout,
2817 bool for_ifunc)
2818 {
2819 if (!for_ifunc)
2820 return this->rela_dyn_section(layout);
2821
2822 if (this->iplt_ == NULL)
2823 this->make_iplt_section(symtab, layout);
2824 return this->iplt_->rel_plt();
2825 }
2826
2827 class Stub_control
2828 {
2829 public:
2830 // Determine the stub group size. The group size is the absolute
2831 // value of the parameter --stub-group-size. If --stub-group-size
2832 // is passed a negative value, we restrict stubs to be always after
2833 // the stubbed branches.
2834 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2835 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2836 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2837 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2838 owner_(NULL), output_section_(NULL)
2839 {
2840 }
2841
2842 // Return true iff input section can be handled by current stub
2843 // group.
2844 bool
2845 can_add_to_stub_group(Output_section* o,
2846 const Output_section::Input_section* i,
2847 bool has14);
2848
2849 const Output_section::Input_section*
2850 owner()
2851 { return owner_; }
2852
2853 Output_section*
2854 output_section()
2855 { return output_section_; }
2856
2857 void
2858 set_output_and_owner(Output_section* o,
2859 const Output_section::Input_section* i)
2860 {
2861 this->output_section_ = o;
2862 this->owner_ = i;
2863 }
2864
2865 private:
2866 typedef enum
2867 {
2868 // Initial state.
2869 NO_GROUP,
2870 // Adding group sections before the stubs.
2871 FINDING_STUB_SECTION,
2872 // Adding group sections after the stubs.
2873 HAS_STUB_SECTION
2874 } State;
2875
2876 uint32_t stub_group_size_;
2877 bool stubs_always_after_branch_;
2878 bool suppress_size_errors_;
2879 // True if a stub group can serve multiple output sections.
2880 bool multi_os_;
2881 State state_;
2882 // Current max size of group. Starts at stub_group_size_ but is
2883 // reduced to stub_group_size_/1024 on seeing a section with
2884 // external conditional branches.
2885 uint32_t group_size_;
2886 uint64_t group_start_addr_;
2887 // owner_ and output_section_ specify the section to which stubs are
2888 // attached. The stubs are placed at the end of this section.
2889 const Output_section::Input_section* owner_;
2890 Output_section* output_section_;
2891 };
2892
2893 // Return true iff input section can be handled by current stub
2894 // group. Sections are presented to this function in order,
2895 // so the first section is the head of the group.
2896
2897 bool
2898 Stub_control::can_add_to_stub_group(Output_section* o,
2899 const Output_section::Input_section* i,
2900 bool has14)
2901 {
2902 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2903 uint64_t this_size;
2904 uint64_t start_addr = o->address();
2905
2906 if (whole_sec)
2907 // .init and .fini sections are pasted together to form a single
2908 // function. We can't be adding stubs in the middle of the function.
2909 this_size = o->data_size();
2910 else
2911 {
2912 start_addr += i->relobj()->output_section_offset(i->shndx());
2913 this_size = i->data_size();
2914 }
2915
2916 uint64_t end_addr = start_addr + this_size;
2917 uint32_t group_size = this->stub_group_size_;
2918 if (has14)
2919 this->group_size_ = group_size = group_size >> 10;
2920
2921 if (this_size > group_size && !this->suppress_size_errors_)
2922 gold_warning(_("%s:%s exceeds group size"),
2923 i->relobj()->name().c_str(),
2924 i->relobj()->section_name(i->shndx()).c_str());
2925
2926 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2927 has14 ? " 14bit" : "",
2928 i->relobj()->name().c_str(),
2929 i->relobj()->section_name(i->shndx()).c_str(),
2930 (long long) this_size,
2931 (this->state_ == NO_GROUP
2932 ? this_size
2933 : (long long) end_addr - this->group_start_addr_));
2934
2935 if (this->state_ == NO_GROUP)
2936 {
2937 // Only here on very first use of Stub_control
2938 this->owner_ = i;
2939 this->output_section_ = o;
2940 this->state_ = FINDING_STUB_SECTION;
2941 this->group_size_ = group_size;
2942 this->group_start_addr_ = start_addr;
2943 return true;
2944 }
2945 else if (!this->multi_os_ && this->output_section_ != o)
2946 ;
2947 else if (this->state_ == HAS_STUB_SECTION)
2948 {
2949 // Can we add this section, which is after the stubs, to the
2950 // group?
2951 if (end_addr - this->group_start_addr_ <= this->group_size_)
2952 return true;
2953 }
2954 else if (this->state_ == FINDING_STUB_SECTION)
2955 {
2956 if ((whole_sec && this->output_section_ == o)
2957 || end_addr - this->group_start_addr_ <= this->group_size_)
2958 {
2959 // Stubs are added at the end of "owner_".
2960 this->owner_ = i;
2961 this->output_section_ = o;
2962 return true;
2963 }
2964 // The group before the stubs has reached maximum size.
2965 // Now see about adding sections after the stubs to the
2966 // group. If the current section has a 14-bit branch and
2967 // the group before the stubs exceeds group_size_ (because
2968 // they didn't have 14-bit branches), don't add sections
2969 // after the stubs: The size of stubs for such a large
2970 // group may exceed the reach of a 14-bit branch.
2971 if (!this->stubs_always_after_branch_
2972 && this_size <= this->group_size_
2973 && start_addr - this->group_start_addr_ <= this->group_size_)
2974 {
2975 gold_debug(DEBUG_TARGET, "adding after stubs");
2976 this->state_ = HAS_STUB_SECTION;
2977 this->group_start_addr_ = start_addr;
2978 return true;
2979 }
2980 }
2981 else
2982 gold_unreachable();
2983
2984 gold_debug(DEBUG_TARGET,
2985 !this->multi_os_ && this->output_section_ != o
2986 ? "nope, new output section\n"
2987 : "nope, didn't fit\n");
2988
2989 // The section fails to fit in the current group. Set up a few
2990 // things for the next group. owner_ and output_section_ will be
2991 // set later after we've retrieved those values for the current
2992 // group.
2993 this->state_ = FINDING_STUB_SECTION;
2994 this->group_size_ = group_size;
2995 this->group_start_addr_ = start_addr;
2996 return false;
2997 }
2998
2999 // Look over all the input sections, deciding where to place stubs.
3000
3001 template<int size, bool big_endian>
3002 void
3003 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3004 const Task*,
3005 bool no_size_errors)
3006 {
3007 Stub_control stub_control(this->stub_group_size_, no_size_errors,
3008 parameters->options().stub_group_multi());
3009
3010 // Group input sections and insert stub table
3011 Stub_table_owner* table_owner = NULL;
3012 std::vector<Stub_table_owner*> tables;
3013 Layout::Section_list section_list;
3014 layout->get_executable_sections(&section_list);
3015 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3016 for (Layout::Section_list::iterator o = section_list.begin();
3017 o != section_list.end();
3018 ++o)
3019 {
3020 typedef Output_section::Input_section_list Input_section_list;
3021 for (Input_section_list::const_iterator i
3022 = (*o)->input_sections().begin();
3023 i != (*o)->input_sections().end();
3024 ++i)
3025 {
3026 if (i->is_input_section()
3027 || i->is_relaxed_input_section())
3028 {
3029 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3030 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3031 bool has14 = ppcobj->has_14bit_branch(i->shndx());
3032 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3033 {
3034 table_owner->output_section = stub_control.output_section();
3035 table_owner->owner = stub_control.owner();
3036 stub_control.set_output_and_owner(*o, &*i);
3037 table_owner = NULL;
3038 }
3039 if (table_owner == NULL)
3040 {
3041 table_owner = new Stub_table_owner;
3042 tables.push_back(table_owner);
3043 }
3044 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3045 }
3046 }
3047 }
3048 if (table_owner != NULL)
3049 {
3050 table_owner->output_section = stub_control.output_section();
3051 table_owner->owner = stub_control.owner();;
3052 }
3053 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3054 t != tables.end();
3055 ++t)
3056 {
3057 Stub_table<size, big_endian>* stub_table;
3058
3059 if ((*t)->owner->is_input_section())
3060 stub_table = new Stub_table<size, big_endian>(this,
3061 (*t)->output_section,
3062 (*t)->owner,
3063 this->stub_tables_.size());
3064 else if ((*t)->owner->is_relaxed_input_section())
3065 stub_table = static_cast<Stub_table<size, big_endian>*>(
3066 (*t)->owner->relaxed_input_section());
3067 else
3068 gold_unreachable();
3069 this->stub_tables_.push_back(stub_table);
3070 delete *t;
3071 }
3072 }
3073
3074 static unsigned long
3075 max_branch_delta (unsigned int r_type)
3076 {
3077 if (r_type == elfcpp::R_POWERPC_REL14
3078 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3079 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3080 return 1L << 15;
3081 if (r_type == elfcpp::R_POWERPC_REL24
3082 || r_type == elfcpp::R_PPC_PLTREL24
3083 || r_type == elfcpp::R_PPC_LOCAL24PC)
3084 return 1L << 25;
3085 return 0;
3086 }
3087
3088 // Return whether this branch is going via a plt call stub.
3089
3090 template<int size, bool big_endian>
3091 bool
3092 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3093 Powerpc_relobj<size, big_endian>* ppc_object,
3094 unsigned int shndx,
3095 Address offset,
3096 Target_powerpc* target,
3097 Symbol_table* symtab)
3098 {
3099 if (this->object_ != ppc_object
3100 || this->shndx_ != shndx
3101 || this->offset_ != offset)
3102 return false;
3103
3104 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3105 if (sym != NULL && sym->is_forwarder())
3106 sym = symtab->resolve_forwards(sym);
3107 if (target->replace_tls_get_addr(sym))
3108 sym = target->tls_get_addr_opt();
3109 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3110 if (gsym != NULL
3111 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3112 && !target->is_elfv2_localentry0(gsym))
3113 : (this->object_->local_has_plt_offset(this->r_sym_)
3114 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3115 {
3116 this->tocsave_ = 1;
3117 return true;
3118 }
3119 return false;
3120 }
3121
3122 // If this branch needs a plt call stub, or a long branch stub, make one.
3123
3124 template<int size, bool big_endian>
3125 bool
3126 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3127 Stub_table<size, big_endian>* stub_table,
3128 Stub_table<size, big_endian>* ifunc_stub_table,
3129 Symbol_table* symtab) const
3130 {
3131 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3132 Target_powerpc<size, big_endian>* target =
3133 static_cast<Target_powerpc<size, big_endian>*>(
3134 parameters->sized_target<size, big_endian>());
3135 if (sym != NULL && sym->is_forwarder())
3136 sym = symtab->resolve_forwards(sym);
3137 if (target->replace_tls_get_addr(sym))
3138 sym = target->tls_get_addr_opt();
3139 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3140 bool ok = true;
3141
3142 if (gsym != NULL
3143 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3144 : this->object_->local_has_plt_offset(this->r_sym_))
3145 {
3146 if (size == 64
3147 && gsym != NULL
3148 && target->abiversion() >= 2
3149 && !parameters->options().output_is_position_independent()
3150 && !is_branch_reloc(this->r_type_))
3151 target->glink_section()->add_global_entry(gsym);
3152 else
3153 {
3154 if (stub_table == NULL
3155 && !(size == 32
3156 && gsym != NULL
3157 && !parameters->options().output_is_position_independent()
3158 && !is_branch_reloc(this->r_type_)))
3159 stub_table = this->object_->stub_table(this->shndx_);
3160 if (stub_table == NULL)
3161 {
3162 // This is a ref from a data section to an ifunc symbol,
3163 // or a non-branch reloc for which we always want to use
3164 // one set of stubs for resolving function addresses.
3165 stub_table = ifunc_stub_table;
3166 }
3167 gold_assert(stub_table != NULL);
3168 Address from = this->object_->get_output_section_offset(this->shndx_);
3169 if (from != invalid_address)
3170 from += (this->object_->output_section(this->shndx_)->address()
3171 + this->offset_);
3172 if (gsym != NULL)
3173 ok = stub_table->add_plt_call_entry(from,
3174 this->object_, gsym,
3175 this->r_type_, this->addend_,
3176 this->tocsave_);
3177 else
3178 ok = stub_table->add_plt_call_entry(from,
3179 this->object_, this->r_sym_,
3180 this->r_type_, this->addend_,
3181 this->tocsave_);
3182 }
3183 }
3184 else
3185 {
3186 Address max_branch_offset = max_branch_delta(this->r_type_);
3187 if (max_branch_offset == 0)
3188 return true;
3189 Address from = this->object_->get_output_section_offset(this->shndx_);
3190 gold_assert(from != invalid_address);
3191 from += (this->object_->output_section(this->shndx_)->address()
3192 + this->offset_);
3193 Address to;
3194 if (gsym != NULL)
3195 {
3196 switch (gsym->source())
3197 {
3198 case Symbol::FROM_OBJECT:
3199 {
3200 Object* symobj = gsym->object();
3201 if (symobj->is_dynamic()
3202 || symobj->pluginobj() != NULL)
3203 return true;
3204 bool is_ordinary;
3205 unsigned int shndx = gsym->shndx(&is_ordinary);
3206 if (shndx == elfcpp::SHN_UNDEF)
3207 return true;
3208 }
3209 break;
3210
3211 case Symbol::IS_UNDEFINED:
3212 return true;
3213
3214 default:
3215 break;
3216 }
3217 Symbol_table::Compute_final_value_status status;
3218 to = symtab->compute_final_value<size>(gsym, &status);
3219 if (status != Symbol_table::CFVS_OK)
3220 return true;
3221 if (size == 64)
3222 to += this->object_->ppc64_local_entry_offset(gsym);
3223 }
3224 else
3225 {
3226 const Symbol_value<size>* psymval
3227 = this->object_->local_symbol(this->r_sym_);
3228 Symbol_value<size> symval;
3229 if (psymval->is_section_symbol())
3230 symval.set_is_section_symbol();
3231 typedef Sized_relobj_file<size, big_endian> ObjType;
3232 typename ObjType::Compute_final_local_value_status status
3233 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3234 &symval, symtab);
3235 if (status != ObjType::CFLV_OK
3236 || !symval.has_output_value())
3237 return true;
3238 to = symval.value(this->object_, 0);
3239 if (size == 64)
3240 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3241 }
3242 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3243 to += this->addend_;
3244 if (stub_table == NULL)
3245 stub_table = this->object_->stub_table(this->shndx_);
3246 if (size == 64 && target->abiversion() < 2)
3247 {
3248 unsigned int dest_shndx;
3249 if (!target->symval_for_branch(symtab, gsym, this->object_,
3250 &to, &dest_shndx))
3251 return true;
3252 }
3253 Address delta = to - from;
3254 if (delta + max_branch_offset >= 2 * max_branch_offset)
3255 {
3256 if (stub_table == NULL)
3257 {
3258 gold_warning(_("%s:%s: branch in non-executable section,"
3259 " no long branch stub for you"),
3260 this->object_->name().c_str(),
3261 this->object_->section_name(this->shndx_).c_str());
3262 return true;
3263 }
3264 bool save_res = (size == 64
3265 && gsym != NULL
3266 && gsym->source() == Symbol::IN_OUTPUT_DATA
3267 && gsym->output_data() == target->savres_section());
3268 ok = stub_table->add_long_branch_entry(this->object_,
3269 this->r_type_,
3270 from, to, save_res);
3271 }
3272 }
3273 if (!ok)
3274 gold_debug(DEBUG_TARGET,
3275 "branch at %s:%s+%#lx\n"
3276 "can't reach stub attached to %s:%s",
3277 this->object_->name().c_str(),
3278 this->object_->section_name(this->shndx_).c_str(),
3279 (unsigned long) this->offset_,
3280 stub_table->relobj()->name().c_str(),
3281 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3282
3283 return ok;
3284 }
3285
3286 // Relaxation hook. This is where we do stub generation.
3287
3288 template<int size, bool big_endian>
3289 bool
3290 Target_powerpc<size, big_endian>::do_relax(int pass,
3291 const Input_objects*,
3292 Symbol_table* symtab,
3293 Layout* layout,
3294 const Task* task)
3295 {
3296 unsigned int prev_brlt_size = 0;
3297 if (pass == 1)
3298 {
3299 bool thread_safe
3300 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3301 if (size == 64
3302 && this->abiversion() < 2
3303 && !thread_safe
3304 && !parameters->options().user_set_plt_thread_safe())
3305 {
3306 static const char* const thread_starter[] =
3307 {
3308 "pthread_create",
3309 /* libstdc++ */
3310 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3311 /* librt */
3312 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3313 "mq_notify", "create_timer",
3314 /* libanl */
3315 "getaddrinfo_a",
3316 /* libgomp */
3317 "GOMP_parallel",
3318 "GOMP_parallel_start",
3319 "GOMP_parallel_loop_static",
3320 "GOMP_parallel_loop_static_start",
3321 "GOMP_parallel_loop_dynamic",
3322 "GOMP_parallel_loop_dynamic_start",
3323 "GOMP_parallel_loop_guided",
3324 "GOMP_parallel_loop_guided_start",
3325 "GOMP_parallel_loop_runtime",
3326 "GOMP_parallel_loop_runtime_start",
3327 "GOMP_parallel_sections",
3328 "GOMP_parallel_sections_start",
3329 /* libgo */
3330 "__go_go",
3331 };
3332
3333 if (parameters->options().shared())
3334 thread_safe = true;
3335 else
3336 {
3337 for (unsigned int i = 0;
3338 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3339 i++)
3340 {
3341 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3342 thread_safe = (sym != NULL
3343 && sym->in_reg()
3344 && sym->in_real_elf());
3345 if (thread_safe)
3346 break;
3347 }
3348 }
3349 }
3350 this->plt_thread_safe_ = thread_safe;
3351 }
3352
3353 if (pass == 1)
3354 {
3355 this->stub_group_size_ = parameters->options().stub_group_size();
3356 bool no_size_errors = true;
3357 if (this->stub_group_size_ == 1)
3358 this->stub_group_size_ = 0x1c00000;
3359 else if (this->stub_group_size_ == -1)
3360 this->stub_group_size_ = -0x1e00000;
3361 else
3362 no_size_errors = false;
3363 this->group_sections(layout, task, no_size_errors);
3364 }
3365 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3366 {
3367 this->branch_lookup_table_.clear();
3368 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3369 p != this->stub_tables_.end();
3370 ++p)
3371 {
3372 (*p)->clear_stubs(true);
3373 }
3374 this->stub_tables_.clear();
3375 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3376 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3377 program_name, this->stub_group_size_);
3378 this->group_sections(layout, task, true);
3379 }
3380
3381 // We need address of stub tables valid for make_stub.
3382 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3383 p != this->stub_tables_.end();
3384 ++p)
3385 {
3386 const Powerpc_relobj<size, big_endian>* object
3387 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3388 Address off = object->get_output_section_offset((*p)->shndx());
3389 gold_assert(off != invalid_address);
3390 Output_section* os = (*p)->output_section();
3391 (*p)->set_address_and_size(os, off);
3392 }
3393
3394 if (pass != 1)
3395 {
3396 // Clear plt call stubs, long branch stubs and branch lookup table.
3397 prev_brlt_size = this->branch_lookup_table_.size();
3398 this->branch_lookup_table_.clear();
3399 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3400 p != this->stub_tables_.end();
3401 ++p)
3402 {
3403 (*p)->clear_stubs(false);
3404 }
3405 }
3406
3407 // Build all the stubs.
3408 this->relax_failed_ = false;
3409 Stub_table<size, big_endian>* ifunc_stub_table
3410 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3411 Stub_table<size, big_endian>* one_stub_table
3412 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3413 for (typename Branches::const_iterator b = this->branch_info_.begin();
3414 b != this->branch_info_.end();
3415 b++)
3416 {
3417 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3418 && !this->relax_failed_)
3419 {
3420 this->relax_failed_ = true;
3421 this->relax_fail_count_++;
3422 if (this->relax_fail_count_ < 3)
3423 return true;
3424 }
3425 }
3426
3427 // Did anything change size?
3428 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3429 bool again = num_huge_branches != prev_brlt_size;
3430 if (size == 64 && num_huge_branches != 0)
3431 this->make_brlt_section(layout);
3432 if (size == 64 && again)
3433 this->brlt_section_->set_current_size(num_huge_branches);
3434
3435 for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3436 p != this->stub_tables_.rend();
3437 ++p)
3438 (*p)->remove_eh_frame(layout);
3439
3440 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3441 p != this->stub_tables_.end();
3442 ++p)
3443 (*p)->add_eh_frame(layout);
3444
3445 typedef Unordered_set<Output_section*> Output_sections;
3446 Output_sections os_need_update;
3447 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3448 p != this->stub_tables_.end();
3449 ++p)
3450 {
3451 if ((*p)->size_update())
3452 {
3453 again = true;
3454 os_need_update.insert((*p)->output_section());
3455 }
3456 }
3457
3458 // Set output section offsets for all input sections in an output
3459 // section that just changed size. Anything past the stubs will
3460 // need updating.
3461 for (typename Output_sections::iterator p = os_need_update.begin();
3462 p != os_need_update.end();
3463 p++)
3464 {
3465 Output_section* os = *p;
3466 Address off = 0;
3467 typedef Output_section::Input_section_list Input_section_list;
3468 for (Input_section_list::const_iterator i = os->input_sections().begin();
3469 i != os->input_sections().end();
3470 ++i)
3471 {
3472 off = align_address(off, i->addralign());
3473 if (i->is_input_section() || i->is_relaxed_input_section())
3474 i->relobj()->set_section_offset(i->shndx(), off);
3475 if (i->is_relaxed_input_section())
3476 {
3477 Stub_table<size, big_endian>* stub_table
3478 = static_cast<Stub_table<size, big_endian>*>(
3479 i->relaxed_input_section());
3480 Address stub_table_size = stub_table->set_address_and_size(os, off);
3481 off += stub_table_size;
3482 // After a few iterations, set current stub table size
3483 // as min size threshold, so later stub tables can only
3484 // grow in size.
3485 if (pass >= 4)
3486 stub_table->set_min_size_threshold(stub_table_size);
3487 }
3488 else
3489 off += i->data_size();
3490 }
3491 // If .branch_lt is part of this output section, then we have
3492 // just done the offset adjustment.
3493 os->clear_section_offsets_need_adjustment();
3494 }
3495
3496 if (size == 64
3497 && !again
3498 && num_huge_branches != 0
3499 && parameters->options().output_is_position_independent())
3500 {
3501 // Fill in the BRLT relocs.
3502 this->brlt_section_->reset_brlt_sizes();
3503 for (typename Branch_lookup_table::const_iterator p
3504 = this->branch_lookup_table_.begin();
3505 p != this->branch_lookup_table_.end();
3506 ++p)
3507 {
3508 this->brlt_section_->add_reloc(p->first, p->second);
3509 }
3510 this->brlt_section_->finalize_brlt_sizes();
3511 }
3512
3513 if (!again
3514 && (parameters->options().user_set_emit_stub_syms()
3515 ? parameters->options().emit_stub_syms()
3516 : (size == 64
3517 || parameters->options().output_is_position_independent()
3518 || parameters->options().emit_relocs())))
3519 {
3520 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3521 p != this->stub_tables_.end();
3522 ++p)
3523 (*p)->define_stub_syms(symtab);
3524
3525 if (this->glink_ != NULL)
3526 {
3527 int stub_size = this->glink_->pltresolve_size();
3528 Address value = -stub_size;
3529 if (size == 64)
3530 {
3531 value = 8;
3532 stub_size -= 8;
3533 }
3534 this->define_local(symtab, "__glink_PLTresolve",
3535 this->glink_, value, stub_size);
3536
3537 if (size != 64)
3538 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3539 }
3540 }
3541
3542 return again;
3543 }
3544
3545 template<int size, bool big_endian>
3546 void
3547 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3548 unsigned char* oview,
3549 uint64_t* paddress,
3550 off_t* plen) const
3551 {
3552 uint64_t address = plt->address();
3553 off_t len = plt->data_size();
3554
3555 if (plt == this->glink_)
3556 {
3557 // See Output_data_glink::do_write() for glink contents.
3558 if (len == 0)
3559 {
3560 gold_assert(parameters->doing_static_link());
3561 // Static linking may need stubs, to support ifunc and long
3562 // branches. We need to create an output section for
3563 // .eh_frame early in the link process, to have a place to
3564 // attach stub .eh_frame info. We also need to have
3565 // registered a CIE that matches the stub CIE. Both of
3566 // these requirements are satisfied by creating an FDE and
3567 // CIE for .glink, even though static linking will leave
3568 // .glink zero length.
3569 // ??? Hopefully generating an FDE with a zero address range
3570 // won't confuse anything that consumes .eh_frame info.
3571 }
3572 else if (size == 64)
3573 {
3574 // There is one word before __glink_PLTresolve
3575 address += 8;
3576 len -= 8;
3577 }
3578 else if (parameters->options().output_is_position_independent())
3579 {
3580 // There are two FDEs for a position independent glink.
3581 // The first covers the branch table, the second
3582 // __glink_PLTresolve at the end of glink.
3583 off_t resolve_size = this->glink_->pltresolve_size();
3584 if (oview[9] == elfcpp::DW_CFA_nop)
3585 len -= resolve_size;
3586 else
3587 {
3588 address += len - resolve_size;
3589 len = resolve_size;
3590 }
3591 }
3592 }
3593 else
3594 {
3595 // Must be a stub table.
3596 const Stub_table<size, big_endian>* stub_table
3597 = static_cast<const Stub_table<size, big_endian>*>(plt);
3598 uint64_t stub_address = stub_table->stub_address();
3599 len -= stub_address - address;
3600 address = stub_address;
3601 }
3602
3603 *paddress = address;
3604 *plen = len;
3605 }
3606
3607 // A class to handle the PLT data.
3608
3609 template<int size, bool big_endian>
3610 class Output_data_plt_powerpc : public Output_section_data_build
3611 {
3612 public:
3613 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3614 size, big_endian> Reloc_section;
3615
3616 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3617 Reloc_section* plt_rel,
3618 const char* name)
3619 : Output_section_data_build(size == 32 ? 4 : 8),
3620 rel_(plt_rel),
3621 targ_(targ),
3622 name_(name)
3623 { }
3624
3625 // Add an entry to the PLT.
3626 void
3627 add_entry(Symbol*);
3628
3629 void
3630 add_ifunc_entry(Symbol*);
3631
3632 void
3633 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3634
3635 // Return the .rela.plt section data.
3636 Reloc_section*
3637 rel_plt() const
3638 {
3639 return this->rel_;
3640 }
3641
3642 // Return the number of PLT entries.
3643 unsigned int
3644 entry_count() const
3645 {
3646 if (this->current_data_size() == 0)
3647 return 0;
3648 return ((this->current_data_size() - this->first_plt_entry_offset())
3649 / this->plt_entry_size());
3650 }
3651
3652 protected:
3653 void
3654 do_adjust_output_section(Output_section* os)
3655 {
3656 os->set_entsize(0);
3657 }
3658
3659 // Write to a map file.
3660 void
3661 do_print_to_mapfile(Mapfile* mapfile) const
3662 { mapfile->print_output_data(this, this->name_); }
3663
3664 private:
3665 // Return the offset of the first non-reserved PLT entry.
3666 unsigned int
3667 first_plt_entry_offset() const
3668 {
3669 // IPLT has no reserved entry.
3670 if (this->name_[3] == 'I')
3671 return 0;
3672 return this->targ_->first_plt_entry_offset();
3673 }
3674
3675 // Return the size of each PLT entry.
3676 unsigned int
3677 plt_entry_size() const
3678 {
3679 return this->targ_->plt_entry_size();
3680 }
3681
3682 // Write out the PLT data.
3683 void
3684 do_write(Output_file*);
3685
3686 // The reloc section.
3687 Reloc_section* rel_;
3688 // Allows access to .glink for do_write.
3689 Target_powerpc<size, big_endian>* targ_;
3690 // What to report in map file.
3691 const char *name_;
3692 };
3693
3694 // Add an entry to the PLT.
3695
3696 template<int size, bool big_endian>
3697 void
3698 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3699 {
3700 if (!gsym->has_plt_offset())
3701 {
3702 section_size_type off = this->current_data_size();
3703 if (off == 0)
3704 off += this->first_plt_entry_offset();
3705 gsym->set_plt_offset(off);
3706 gsym->set_needs_dynsym_entry();
3707 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3708 this->rel_->add_global(gsym, dynrel, this, off, 0);
3709 off += this->plt_entry_size();
3710 this->set_current_data_size(off);
3711 }
3712 }
3713
3714 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3715
3716 template<int size, bool big_endian>
3717 void
3718 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3719 {
3720 if (!gsym->has_plt_offset())
3721 {
3722 section_size_type off = this->current_data_size();
3723 gsym->set_plt_offset(off);
3724 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3725 if (size == 64 && this->targ_->abiversion() < 2)
3726 dynrel = elfcpp::R_PPC64_JMP_IREL;
3727 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3728 off += this->plt_entry_size();
3729 this->set_current_data_size(off);
3730 }
3731 }
3732
3733 // Add an entry for a local ifunc symbol to the IPLT.
3734
3735 template<int size, bool big_endian>
3736 void
3737 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3738 Sized_relobj_file<size, big_endian>* relobj,
3739 unsigned int local_sym_index)
3740 {
3741 if (!relobj->local_has_plt_offset(local_sym_index))
3742 {
3743 section_size_type off = this->current_data_size();
3744 relobj->set_local_plt_offset(local_sym_index, off);
3745 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3746 if (size == 64 && this->targ_->abiversion() < 2)
3747 dynrel = elfcpp::R_PPC64_JMP_IREL;
3748 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3749 this, off, 0);
3750 off += this->plt_entry_size();
3751 this->set_current_data_size(off);
3752 }
3753 }
3754
3755 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3756 static const uint32_t add_2_2_11 = 0x7c425a14;
3757 static const uint32_t add_2_2_12 = 0x7c426214;
3758 static const uint32_t add_3_3_2 = 0x7c631214;
3759 static const uint32_t add_3_3_13 = 0x7c636a14;
3760 static const uint32_t add_3_12_2 = 0x7c6c1214;
3761 static const uint32_t add_3_12_13 = 0x7c6c6a14;
3762 static const uint32_t add_11_0_11 = 0x7d605a14;
3763 static const uint32_t add_11_2_11 = 0x7d625a14;
3764 static const uint32_t add_11_11_2 = 0x7d6b1214;
3765 static const uint32_t addi_0_12 = 0x380c0000;
3766 static const uint32_t addi_2_2 = 0x38420000;
3767 static const uint32_t addi_3_3 = 0x38630000;
3768 static const uint32_t addi_11_11 = 0x396b0000;
3769 static const uint32_t addi_12_1 = 0x39810000;
3770 static const uint32_t addi_12_12 = 0x398c0000;
3771 static const uint32_t addis_0_2 = 0x3c020000;
3772 static const uint32_t addis_0_13 = 0x3c0d0000;
3773 static const uint32_t addis_2_12 = 0x3c4c0000;
3774 static const uint32_t addis_11_2 = 0x3d620000;
3775 static const uint32_t addis_11_11 = 0x3d6b0000;
3776 static const uint32_t addis_11_30 = 0x3d7e0000;
3777 static const uint32_t addis_12_1 = 0x3d810000;
3778 static const uint32_t addis_12_2 = 0x3d820000;
3779 static const uint32_t addis_12_12 = 0x3d8c0000;
3780 static const uint32_t b = 0x48000000;
3781 static const uint32_t bcl_20_31 = 0x429f0005;
3782 static const uint32_t bctr = 0x4e800420;
3783 static const uint32_t bctrl = 0x4e800421;
3784 static const uint32_t beqlr = 0x4d820020;
3785 static const uint32_t blr = 0x4e800020;
3786 static const uint32_t bnectr_p4 = 0x4ce20420;
3787 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3788 static const uint32_t cmpldi_2_0 = 0x28220000;
3789 static const uint32_t cmpdi_11_0 = 0x2c2b0000;
3790 static const uint32_t cmpwi_11_0 = 0x2c0b0000;
3791 static const uint32_t cror_15_15_15 = 0x4def7b82;
3792 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3793 static const uint32_t ld_0_1 = 0xe8010000;
3794 static const uint32_t ld_0_12 = 0xe80c0000;
3795 static const uint32_t ld_2_1 = 0xe8410000;
3796 static const uint32_t ld_2_2 = 0xe8420000;
3797 static const uint32_t ld_2_11 = 0xe84b0000;
3798 static const uint32_t ld_2_12 = 0xe84c0000;
3799 static const uint32_t ld_11_1 = 0xe9610000;
3800 static const uint32_t ld_11_2 = 0xe9620000;
3801 static const uint32_t ld_11_3 = 0xe9630000;
3802 static const uint32_t ld_11_11 = 0xe96b0000;
3803 static const uint32_t ld_12_2 = 0xe9820000;
3804 static const uint32_t ld_12_3 = 0xe9830000;
3805 static const uint32_t ld_12_11 = 0xe98b0000;
3806 static const uint32_t ld_12_12 = 0xe98c0000;
3807 static const uint32_t lfd_0_1 = 0xc8010000;
3808 static const uint32_t li_0_0 = 0x38000000;
3809 static const uint32_t li_12_0 = 0x39800000;
3810 static const uint32_t lis_0 = 0x3c000000;
3811 static const uint32_t lis_2 = 0x3c400000;
3812 static const uint32_t lis_11 = 0x3d600000;
3813 static const uint32_t lis_12 = 0x3d800000;
3814 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3815 static const uint32_t lwz_0_12 = 0x800c0000;
3816 static const uint32_t lwz_11_3 = 0x81630000;
3817 static const uint32_t lwz_11_11 = 0x816b0000;
3818 static const uint32_t lwz_11_30 = 0x817e0000;
3819 static const uint32_t lwz_12_3 = 0x81830000;
3820 static const uint32_t lwz_12_12 = 0x818c0000;
3821 static const uint32_t lwzu_0_12 = 0x840c0000;
3822 static const uint32_t mflr_0 = 0x7c0802a6;
3823 static const uint32_t mflr_11 = 0x7d6802a6;
3824 static const uint32_t mflr_12 = 0x7d8802a6;
3825 static const uint32_t mr_0_3 = 0x7c601b78;
3826 static const uint32_t mr_3_0 = 0x7c030378;
3827 static const uint32_t mtctr_0 = 0x7c0903a6;
3828 static const uint32_t mtctr_11 = 0x7d6903a6;
3829 static const uint32_t mtctr_12 = 0x7d8903a6;
3830 static const uint32_t mtlr_0 = 0x7c0803a6;
3831 static const uint32_t mtlr_11 = 0x7d6803a6;
3832 static const uint32_t mtlr_12 = 0x7d8803a6;
3833 static const uint32_t nop = 0x60000000;
3834 static const uint32_t ori_0_0_0 = 0x60000000;
3835 static const uint32_t srdi_0_0_2 = 0x7800f082;
3836 static const uint32_t std_0_1 = 0xf8010000;
3837 static const uint32_t std_0_12 = 0xf80c0000;
3838 static const uint32_t std_2_1 = 0xf8410000;
3839 static const uint32_t std_11_1 = 0xf9610000;
3840 static const uint32_t stfd_0_1 = 0xd8010000;
3841 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3842 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3843 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3844 static const uint32_t xor_2_12_12 = 0x7d826278;
3845 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3846
3847 // Write out the PLT.
3848
3849 template<int size, bool big_endian>
3850 void
3851 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3852 {
3853 if (size == 32 && this->name_[3] != 'I')
3854 {
3855 const section_size_type offset = this->offset();
3856 const section_size_type oview_size
3857 = convert_to_section_size_type(this->data_size());
3858 unsigned char* const oview = of->get_output_view(offset, oview_size);
3859 unsigned char* pov = oview;
3860 unsigned char* endpov = oview + oview_size;
3861
3862 // The address of the .glink branch table
3863 const Output_data_glink<size, big_endian>* glink
3864 = this->targ_->glink_section();
3865 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3866
3867 while (pov < endpov)
3868 {
3869 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3870 pov += 4;
3871 branch_tab += 4;
3872 }
3873
3874 of->write_output_view(offset, oview_size, oview);
3875 }
3876 }
3877
3878 // Create the PLT section.
3879
3880 template<int size, bool big_endian>
3881 void
3882 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3883 Layout* layout)
3884 {
3885 if (this->plt_ == NULL)
3886 {
3887 if (this->got_ == NULL)
3888 this->got_section(symtab, layout);
3889
3890 if (this->glink_ == NULL)
3891 make_glink_section(layout);
3892
3893 // Ensure that .rela.dyn always appears before .rela.plt This is
3894 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3895 // needs to include .rela.plt in its range.
3896 this->rela_dyn_section(layout);
3897
3898 Reloc_section* plt_rel = new Reloc_section(false);
3899 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3900 elfcpp::SHF_ALLOC, plt_rel,
3901 ORDER_DYNAMIC_PLT_RELOCS, false);
3902 this->plt_
3903 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3904 "** PLT");
3905 layout->add_output_section_data(".plt",
3906 (size == 32
3907 ? elfcpp::SHT_PROGBITS
3908 : elfcpp::SHT_NOBITS),
3909 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3910 this->plt_,
3911 (size == 32
3912 ? ORDER_SMALL_DATA
3913 : ORDER_SMALL_BSS),
3914 false);
3915
3916 Output_section* rela_plt_os = plt_rel->output_section();
3917 rela_plt_os->set_info_section(this->plt_->output_section());
3918 }
3919 }
3920
3921 // Create the IPLT section.
3922
3923 template<int size, bool big_endian>
3924 void
3925 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3926 Layout* layout)
3927 {
3928 if (this->iplt_ == NULL)
3929 {
3930 this->make_plt_section(symtab, layout);
3931
3932 Reloc_section* iplt_rel = new Reloc_section(false);
3933 if (this->rela_dyn_->output_section())
3934 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3935 this->iplt_
3936 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3937 "** IPLT");
3938 if (this->plt_->output_section())
3939 this->plt_->output_section()->add_output_section_data(this->iplt_);
3940 }
3941 }
3942
3943 // A section for huge long branch addresses, similar to plt section.
3944
3945 template<int size, bool big_endian>
3946 class Output_data_brlt_powerpc : public Output_section_data_build
3947 {
3948 public:
3949 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3950 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3951 size, big_endian> Reloc_section;
3952
3953 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3954 Reloc_section* brlt_rel)
3955 : Output_section_data_build(size == 32 ? 4 : 8),
3956 rel_(brlt_rel),
3957 targ_(targ)
3958 { }
3959
3960 void
3961 reset_brlt_sizes()
3962 {
3963 this->reset_data_size();
3964 this->rel_->reset_data_size();
3965 }
3966
3967 void
3968 finalize_brlt_sizes()
3969 {
3970 this->finalize_data_size();
3971 this->rel_->finalize_data_size();
3972 }
3973
3974 // Add a reloc for an entry in the BRLT.
3975 void
3976 add_reloc(Address to, unsigned int off)
3977 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3978
3979 // Update section and reloc section size.
3980 void
3981 set_current_size(unsigned int num_branches)
3982 {
3983 this->reset_address_and_file_offset();
3984 this->set_current_data_size(num_branches * 16);
3985 this->finalize_data_size();
3986 Output_section* os = this->output_section();
3987 os->set_section_offsets_need_adjustment();
3988 if (this->rel_ != NULL)
3989 {
3990 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3991 this->rel_->reset_address_and_file_offset();
3992 this->rel_->set_current_data_size(num_branches * reloc_size);
3993 this->rel_->finalize_data_size();
3994 Output_section* os = this->rel_->output_section();
3995 os->set_section_offsets_need_adjustment();
3996 }
3997 }
3998
3999 protected:
4000 void
4001 do_adjust_output_section(Output_section* os)
4002 {
4003 os->set_entsize(0);
4004 }
4005
4006 // Write to a map file.
4007 void
4008 do_print_to_mapfile(Mapfile* mapfile) const
4009 { mapfile->print_output_data(this, "** BRLT"); }
4010
4011 private:
4012 // Write out the BRLT data.
4013 void
4014 do_write(Output_file*);
4015
4016 // The reloc section.
4017 Reloc_section* rel_;
4018 Target_powerpc<size, big_endian>* targ_;
4019 };
4020
4021 // Make the branch lookup table section.
4022
4023 template<int size, bool big_endian>
4024 void
4025 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4026 {
4027 if (size == 64 && this->brlt_section_ == NULL)
4028 {
4029 Reloc_section* brlt_rel = NULL;
4030 bool is_pic = parameters->options().output_is_position_independent();
4031 if (is_pic)
4032 {
4033 // When PIC we can't fill in .branch_lt (like .plt it can be
4034 // a bss style section) but must initialise at runtime via
4035 // dynamic relocations.
4036 this->rela_dyn_section(layout);
4037 brlt_rel = new Reloc_section(false);
4038 if (this->rela_dyn_->output_section())
4039 this->rela_dyn_->output_section()
4040 ->add_output_section_data(brlt_rel);
4041 }
4042 this->brlt_section_
4043 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4044 if (this->plt_ && is_pic && this->plt_->output_section())
4045 this->plt_->output_section()
4046 ->add_output_section_data(this->brlt_section_);
4047 else
4048 layout->add_output_section_data(".branch_lt",
4049 (is_pic ? elfcpp::SHT_NOBITS
4050 : elfcpp::SHT_PROGBITS),
4051 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4052 this->brlt_section_,
4053 (is_pic ? ORDER_SMALL_BSS
4054 : ORDER_SMALL_DATA),
4055 false);
4056 }
4057 }
4058
4059 // Write out .branch_lt when non-PIC.
4060
4061 template<int size, bool big_endian>
4062 void
4063 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4064 {
4065 if (size == 64 && !parameters->options().output_is_position_independent())
4066 {
4067 const section_size_type offset = this->offset();
4068 const section_size_type oview_size
4069 = convert_to_section_size_type(this->data_size());
4070 unsigned char* const oview = of->get_output_view(offset, oview_size);
4071
4072 this->targ_->write_branch_lookup_table(oview);
4073 of->write_output_view(offset, oview_size, oview);
4074 }
4075 }
4076
4077 static inline uint32_t
4078 l(uint32_t a)
4079 {
4080 return a & 0xffff;
4081 }
4082
4083 static inline uint32_t
4084 hi(uint32_t a)
4085 {
4086 return l(a >> 16);
4087 }
4088
4089 static inline uint32_t
4090 ha(uint32_t a)
4091 {
4092 return hi(a + 0x8000);
4093 }
4094
4095 template<int size>
4096 struct Eh_cie
4097 {
4098 static const unsigned char eh_frame_cie[12];
4099 };
4100
4101 template<int size>
4102 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4103 {
4104 1, // CIE version.
4105 'z', 'R', 0, // Augmentation string.
4106 4, // Code alignment.
4107 0x80 - size / 8 , // Data alignment.
4108 65, // RA reg.
4109 1, // Augmentation size.
4110 (elfcpp::DW_EH_PE_pcrel
4111 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
4112 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
4113 };
4114
4115 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4116 static const unsigned char glink_eh_frame_fde_64v1[] =
4117 {
4118 0, 0, 0, 0, // Replaced with offset to .glink.
4119 0, 0, 0, 0, // Replaced with size of .glink.
4120 0, // Augmentation size.
4121 elfcpp::DW_CFA_advance_loc + 1,
4122 elfcpp::DW_CFA_register, 65, 12,
4123 elfcpp::DW_CFA_advance_loc + 5,
4124 elfcpp::DW_CFA_restore_extended, 65
4125 };
4126
4127 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4128 static const unsigned char glink_eh_frame_fde_64v2[] =
4129 {
4130 0, 0, 0, 0, // Replaced with offset to .glink.
4131 0, 0, 0, 0, // Replaced with size of .glink.
4132 0, // Augmentation size.
4133 elfcpp::DW_CFA_advance_loc + 1,
4134 elfcpp::DW_CFA_register, 65, 0,
4135 elfcpp::DW_CFA_advance_loc + 7,
4136 elfcpp::DW_CFA_restore_extended, 65
4137 };
4138
4139 // Describe __glink_PLTresolve use of LR, 32-bit version.
4140 static const unsigned char glink_eh_frame_fde_32[] =
4141 {
4142 0, 0, 0, 0, // Replaced with offset to .glink.
4143 0, 0, 0, 0, // Replaced with size of .glink.
4144 0, // Augmentation size.
4145 elfcpp::DW_CFA_advance_loc + 2,
4146 elfcpp::DW_CFA_register, 65, 0,
4147 elfcpp::DW_CFA_advance_loc + 4,
4148 elfcpp::DW_CFA_restore_extended, 65
4149 };
4150
4151 static const unsigned char default_fde[] =
4152 {
4153 0, 0, 0, 0, // Replaced with offset to stubs.
4154 0, 0, 0, 0, // Replaced with size of stubs.
4155 0, // Augmentation size.
4156 elfcpp::DW_CFA_nop, // Pad.
4157 elfcpp::DW_CFA_nop,
4158 elfcpp::DW_CFA_nop
4159 };
4160
4161 template<bool big_endian>
4162 static inline void
4163 write_insn(unsigned char* p, uint32_t v)
4164 {
4165 elfcpp::Swap<32, big_endian>::writeval(p, v);
4166 }
4167
4168 template<int size>
4169 static inline unsigned int
4170 param_plt_align()
4171 {
4172 if (!parameters->options().user_set_plt_align())
4173 return size == 64 ? 32 : 8;
4174 return 1 << parameters->options().plt_align();
4175 }
4176
4177 // Stub_table holds information about plt and long branch stubs.
4178 // Stubs are built in an area following some input section determined
4179 // by group_sections(). This input section is converted to a relaxed
4180 // input section allowing it to be resized to accommodate the stubs
4181
4182 template<int size, bool big_endian>
4183 class Stub_table : public Output_relaxed_input_section
4184 {
4185 public:
4186 struct Plt_stub_ent
4187 {
4188 Plt_stub_ent(unsigned int off, unsigned int indx)
4189 : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4190 { }
4191
4192 unsigned int off_;
4193 unsigned int indx_ : 30;
4194 unsigned int r2save_ : 1;
4195 unsigned int localentry0_ : 1;
4196 };
4197 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4198 static const Address invalid_address = static_cast<Address>(0) - 1;
4199
4200 Stub_table(Target_powerpc<size, big_endian>* targ,
4201 Output_section* output_section,
4202 const Output_section::Input_section* owner,
4203 uint32_t id)
4204 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4205 owner->relobj()
4206 ->section_addralign(owner->shndx())),
4207 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4208 orig_data_size_(owner->current_data_size()),
4209 plt_size_(0), last_plt_size_(0),
4210 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4211 need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4212 plt_fde_len_(0)
4213 {
4214 this->set_output_section(output_section);
4215
4216 std::vector<Output_relaxed_input_section*> new_relaxed;
4217 new_relaxed.push_back(this);
4218 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4219 }
4220
4221 // Add a plt call stub.
4222 bool
4223 add_plt_call_entry(Address,
4224 const Sized_relobj_file<size, big_endian>*,
4225 const Symbol*,
4226 unsigned int,
4227 Address,
4228 bool);
4229
4230 bool
4231 add_plt_call_entry(Address,
4232 const Sized_relobj_file<size, big_endian>*,
4233 unsigned int,
4234 unsigned int,
4235 Address,
4236 bool);
4237
4238 // Find a given plt call stub.
4239 const Plt_stub_ent*
4240 find_plt_call_entry(const Symbol*) const;
4241
4242 const Plt_stub_ent*
4243 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4244 unsigned int) const;
4245
4246 const Plt_stub_ent*
4247 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4248 const Symbol*,
4249 unsigned int,
4250 Address) const;
4251
4252 const Plt_stub_ent*
4253 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4254 unsigned int,
4255 unsigned int,
4256 Address) const;
4257
4258 // Add a long branch stub.
4259 bool
4260 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4261 unsigned int, Address, Address, bool);
4262
4263 Address
4264 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4265 Address) const;
4266
4267 bool
4268 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4269 {
4270 Address max_branch_offset = max_branch_delta(r_type);
4271 if (max_branch_offset == 0)
4272 return true;
4273 gold_assert(from != invalid_address);
4274 Address loc = off + this->stub_address();
4275 return loc - from + max_branch_offset < 2 * max_branch_offset;
4276 }
4277
4278 void
4279 clear_stubs(bool all)
4280 {
4281 this->plt_call_stubs_.clear();
4282 this->plt_size_ = 0;
4283 this->long_branch_stubs_.clear();
4284 this->branch_size_ = 0;
4285 this->need_save_res_ = false;
4286 if (all)
4287 {
4288 this->last_plt_size_ = 0;
4289 this->last_branch_size_ = 0;
4290 }
4291 }
4292
4293 Address
4294 set_address_and_size(const Output_section* os, Address off)
4295 {
4296 Address start_off = off;
4297 off += this->orig_data_size_;
4298 Address my_size = this->plt_size_ + this->branch_size_;
4299 if (this->need_save_res_)
4300 my_size += this->targ_->savres_section()->data_size();
4301 if (my_size != 0)
4302 off = align_address(off, this->stub_align());
4303 // Include original section size and alignment padding in size
4304 my_size += off - start_off;
4305 // Ensure new size is always larger than min size
4306 // threshold. Alignment requirement is included in "my_size", so
4307 // increase "my_size" does not invalidate alignment.
4308 if (my_size < this->min_size_threshold_)
4309 my_size = this->min_size_threshold_;
4310 this->reset_address_and_file_offset();
4311 this->set_current_data_size(my_size);
4312 this->set_address_and_file_offset(os->address() + start_off,
4313 os->offset() + start_off);
4314 return my_size;
4315 }
4316
4317 Address
4318 stub_address() const
4319 {
4320 return align_address(this->address() + this->orig_data_size_,
4321 this->stub_align());
4322 }
4323
4324 Address
4325 stub_offset() const
4326 {
4327 return align_address(this->offset() + this->orig_data_size_,
4328 this->stub_align());
4329 }
4330
4331 section_size_type
4332 plt_size() const
4333 { return this->plt_size_; }
4334
4335 void
4336 set_min_size_threshold(Address min_size)
4337 { this->min_size_threshold_ = min_size; }
4338
4339 void
4340 define_stub_syms(Symbol_table*);
4341
4342 bool
4343 size_update()
4344 {
4345 Output_section* os = this->output_section();
4346 if (os->addralign() < this->stub_align())
4347 {
4348 os->set_addralign(this->stub_align());
4349 // FIXME: get rid of the insane checkpointing.
4350 // We can't increase alignment of the input section to which
4351 // stubs are attached; The input section may be .init which
4352 // is pasted together with other .init sections to form a
4353 // function. Aligning might insert zero padding resulting in
4354 // sigill. However we do need to increase alignment of the
4355 // output section so that the align_address() on offset in
4356 // set_address_and_size() adds the same padding as the
4357 // align_address() on address in stub_address().
4358 // What's more, we need this alignment for the layout done in
4359 // relaxation_loop_body() so that the output section starts at
4360 // a suitably aligned address.
4361 os->checkpoint_set_addralign(this->stub_align());
4362 }
4363 if (this->last_plt_size_ != this->plt_size_
4364 || this->last_branch_size_ != this->branch_size_)
4365 {
4366 this->last_plt_size_ = this->plt_size_;
4367 this->last_branch_size_ = this->branch_size_;
4368 return true;
4369 }
4370 return false;
4371 }
4372
4373 // Generate a suitable FDE to describe code in this stub group.
4374 void
4375 init_plt_fde();
4376
4377 // Add .eh_frame info for this stub section.
4378 void
4379 add_eh_frame(Layout* layout);
4380
4381 // Remove .eh_frame info for this stub section.
4382 void
4383 remove_eh_frame(Layout* layout);
4384
4385 Target_powerpc<size, big_endian>*
4386 targ() const
4387 { return targ_; }
4388
4389 private:
4390 class Plt_stub_key;
4391 class Plt_stub_key_hash;
4392 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4393 Plt_stub_key_hash> Plt_stub_entries;
4394 class Branch_stub_ent;
4395 class Branch_stub_ent_hash;
4396 typedef Unordered_map<Branch_stub_ent, unsigned int,
4397 Branch_stub_ent_hash> Branch_stub_entries;
4398
4399 // Alignment of stub section.
4400 unsigned int
4401 stub_align() const
4402 {
4403 unsigned int min_align = size == 64 ? 32 : 16;
4404 unsigned int user_align = 1 << parameters->options().plt_align();
4405 return std::max(user_align, min_align);
4406 }
4407
4408 // Return the plt offset for the given call stub.
4409 Address
4410 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4411 {
4412 const Symbol* gsym = p->first.sym_;
4413 if (gsym != NULL)
4414 {
4415 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4416 && gsym->can_use_relative_reloc(false));
4417 return gsym->plt_offset();
4418 }
4419 else
4420 {
4421 *is_iplt = true;
4422 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4423 unsigned int local_sym_index = p->first.locsym_;
4424 return relobj->local_plt_offset(local_sym_index);
4425 }
4426 }
4427
4428 // Size of a given plt call stub.
4429 unsigned int
4430 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4431 {
4432 if (size == 32)
4433 {
4434 const Symbol* gsym = p->first.sym_;
4435 return (4 * 4
4436 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4437 }
4438
4439 bool is_iplt;
4440 Address plt_addr = this->plt_off(p, &is_iplt);
4441 if (is_iplt)
4442 plt_addr += this->targ_->iplt_section()->address();
4443 else
4444 plt_addr += this->targ_->plt_section()->address();
4445 Address got_addr = this->targ_->got_section()->output_section()->address();
4446 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4447 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4448 got_addr += ppcobj->toc_base_offset();
4449 Address off = plt_addr - got_addr;
4450 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4451 const Symbol* gsym = p->first.sym_;
4452 if (this->targ_->is_tls_get_addr_opt(gsym))
4453 bytes += 13 * 4;
4454 if (this->targ_->abiversion() < 2)
4455 {
4456 bool static_chain = parameters->options().plt_static_chain();
4457 bool thread_safe = this->targ_->plt_thread_safe();
4458 bytes += (4
4459 + 4 * static_chain
4460 + 8 * thread_safe
4461 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4462 }
4463 return bytes;
4464 }
4465
4466 unsigned int
4467 plt_call_align(unsigned int bytes) const
4468 {
4469 unsigned int align = param_plt_align<size>();
4470 return (bytes + align - 1) & -align;
4471 }
4472
4473 // Return long branch stub size.
4474 unsigned int
4475 branch_stub_size(typename Branch_stub_entries::const_iterator p)
4476 {
4477 Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4478 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4479 return 4;
4480 unsigned int bytes = 16;
4481 if (size == 32 && parameters->options().output_is_position_independent())
4482 bytes += 16;
4483 return bytes;
4484 }
4485
4486 // Write out stubs.
4487 void
4488 do_write(Output_file*);
4489
4490 // Plt call stub keys.
4491 class Plt_stub_key
4492 {
4493 public:
4494 Plt_stub_key(const Symbol* sym)
4495 : sym_(sym), object_(0), addend_(0), locsym_(0)
4496 { }
4497
4498 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4499 unsigned int locsym_index)
4500 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4501 { }
4502
4503 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4504 const Symbol* sym,
4505 unsigned int r_type,
4506 Address addend)
4507 : sym_(sym), object_(0), addend_(0), locsym_(0)
4508 {
4509 if (size != 32)
4510 this->addend_ = addend;
4511 else if (parameters->options().output_is_position_independent()
4512 && r_type == elfcpp::R_PPC_PLTREL24)
4513 {
4514 this->addend_ = addend;
4515 if (this->addend_ >= 32768)
4516 this->object_ = object;
4517 }
4518 }
4519
4520 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4521 unsigned int locsym_index,
4522 unsigned int r_type,
4523 Address addend)
4524 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4525 {
4526 if (size != 32)
4527 this->addend_ = addend;
4528 else if (parameters->options().output_is_position_independent()
4529 && r_type == elfcpp::R_PPC_PLTREL24)
4530 this->addend_ = addend;
4531 }
4532
4533 bool operator==(const Plt_stub_key& that) const
4534 {
4535 return (this->sym_ == that.sym_
4536 && this->object_ == that.object_
4537 && this->addend_ == that.addend_
4538 && this->locsym_ == that.locsym_);
4539 }
4540
4541 const Symbol* sym_;
4542 const Sized_relobj_file<size, big_endian>* object_;
4543 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4544 unsigned int locsym_;
4545 };
4546
4547 class Plt_stub_key_hash
4548 {
4549 public:
4550 size_t operator()(const Plt_stub_key& ent) const
4551 {
4552 return (reinterpret_cast<uintptr_t>(ent.sym_)
4553 ^ reinterpret_cast<uintptr_t>(ent.object_)
4554 ^ ent.addend_
4555 ^ ent.locsym_);
4556 }
4557 };
4558
4559 // Long branch stub keys.
4560 class Branch_stub_ent
4561 {
4562 public:
4563 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4564 Address to, bool save_res)
4565 : dest_(to), toc_base_off_(0), save_res_(save_res)
4566 {
4567 if (size == 64)
4568 toc_base_off_ = obj->toc_base_offset();
4569 }
4570
4571 bool operator==(const Branch_stub_ent& that) const
4572 {
4573 return (this->dest_ == that.dest_
4574 && (size == 32
4575 || this->toc_base_off_ == that.toc_base_off_));
4576 }
4577
4578 Address dest_;
4579 unsigned int toc_base_off_;
4580 bool save_res_;
4581 };
4582
4583 class Branch_stub_ent_hash
4584 {
4585 public:
4586 size_t operator()(const Branch_stub_ent& ent) const
4587 { return ent.dest_ ^ ent.toc_base_off_; }
4588 };
4589
4590 // In a sane world this would be a global.
4591 Target_powerpc<size, big_endian>* targ_;
4592 // Map sym/object/addend to stub offset.
4593 Plt_stub_entries plt_call_stubs_;
4594 // Map destination address to stub offset.
4595 Branch_stub_entries long_branch_stubs_;
4596 // size of input section
4597 section_size_type orig_data_size_;
4598 // size of stubs
4599 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4600 // Some rare cases cause (PR/20529) fluctuation in stub table
4601 // size, which leads to an endless relax loop. This is to be fixed
4602 // by, after the first few iterations, allowing only increase of
4603 // stub table size. This variable sets the minimal possible size of
4604 // a stub table, it is zero for the first few iterations, then
4605 // increases monotonically.
4606 Address min_size_threshold_;
4607 // Set if this stub group needs a copy of out-of-line register
4608 // save/restore functions.
4609 bool need_save_res_;
4610 // Per stub table unique identifier.
4611 uint32_t uniq_;
4612 // The bctrl in the __tls_get_addr_opt stub, if present.
4613 unsigned int tls_get_addr_opt_bctrl_;
4614 // FDE unwind info for this stub group.
4615 unsigned int plt_fde_len_;
4616 unsigned char plt_fde_[20];
4617 };
4618
4619 // Add a plt call stub, if we do not already have one for this
4620 // sym/object/addend combo.
4621
4622 template<int size, bool big_endian>
4623 bool
4624 Stub_table<size, big_endian>::add_plt_call_entry(
4625 Address from,
4626 const Sized_relobj_file<size, big_endian>* object,
4627 const Symbol* gsym,
4628 unsigned int r_type,
4629 Address addend,
4630 bool tocsave)
4631 {
4632 Plt_stub_key key(object, gsym, r_type, addend);
4633 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4634 std::pair<typename Plt_stub_entries::iterator, bool> p
4635 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4636 if (p.second)
4637 {
4638 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4639 if (size == 64
4640 && this->targ_->is_elfv2_localentry0(gsym))
4641 {
4642 p.first->second.localentry0_ = 1;
4643 this->targ_->set_has_localentry0();
4644 }
4645 if (this->targ_->is_tls_get_addr_opt(gsym))
4646 {
4647 this->targ_->set_has_tls_get_addr_opt();
4648 this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4649 }
4650 this->plt_size_ = this->plt_call_align(this->plt_size_);
4651 }
4652 if (size == 64
4653 && !tocsave
4654 && !p.first->second.localentry0_)
4655 p.first->second.r2save_ = 1;
4656 return this->can_reach_stub(from, ent.off_, r_type);
4657 }
4658
4659 template<int size, bool big_endian>
4660 bool
4661 Stub_table<size, big_endian>::add_plt_call_entry(
4662 Address from,
4663 const Sized_relobj_file<size, big_endian>* object,
4664 unsigned int locsym_index,
4665 unsigned int r_type,
4666 Address addend,
4667 bool tocsave)
4668 {
4669 Plt_stub_key key(object, locsym_index, r_type, addend);
4670 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4671 std::pair<typename Plt_stub_entries::iterator, bool> p
4672 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4673 if (p.second)
4674 {
4675 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4676 this->plt_size_ = this->plt_call_align(this->plt_size_);
4677 if (size == 64
4678 && this->targ_->is_elfv2_localentry0(object, locsym_index))
4679 {
4680 p.first->second.localentry0_ = 1;
4681 this->targ_->set_has_localentry0();
4682 }
4683 }
4684 if (size == 64
4685 && !tocsave
4686 && !p.first->second.localentry0_)
4687 p.first->second.r2save_ = 1;
4688 return this->can_reach_stub(from, ent.off_, r_type);
4689 }
4690
4691 // Find a plt call stub.
4692
4693 template<int size, bool big_endian>
4694 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4695 Stub_table<size, big_endian>::find_plt_call_entry(
4696 const Sized_relobj_file<size, big_endian>* object,
4697 const Symbol* gsym,
4698 unsigned int r_type,
4699 Address addend) const
4700 {
4701 Plt_stub_key key(object, gsym, r_type, addend);
4702 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4703 if (p == this->plt_call_stubs_.end())
4704 return NULL;
4705 return &p->second;
4706 }
4707
4708 template<int size, bool big_endian>
4709 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4710 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4711 {
4712 Plt_stub_key key(gsym);
4713 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4714 if (p == this->plt_call_stubs_.end())
4715 return NULL;
4716 return &p->second;
4717 }
4718
4719 template<int size, bool big_endian>
4720 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4721 Stub_table<size, big_endian>::find_plt_call_entry(
4722 const Sized_relobj_file<size, big_endian>* object,
4723 unsigned int locsym_index,
4724 unsigned int r_type,
4725 Address addend) const
4726 {
4727 Plt_stub_key key(object, locsym_index, r_type, addend);
4728 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4729 if (p == this->plt_call_stubs_.end())
4730 return NULL;
4731 return &p->second;
4732 }
4733
4734 template<int size, bool big_endian>
4735 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4736 Stub_table<size, big_endian>::find_plt_call_entry(
4737 const Sized_relobj_file<size, big_endian>* object,
4738 unsigned int locsym_index) const
4739 {
4740 Plt_stub_key key(object, locsym_index);
4741 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4742 if (p == this->plt_call_stubs_.end())
4743 return NULL;
4744 return &p->second;
4745 }
4746
4747 // Add a long branch stub if we don't already have one to given
4748 // destination.
4749
4750 template<int size, bool big_endian>
4751 bool
4752 Stub_table<size, big_endian>::add_long_branch_entry(
4753 const Powerpc_relobj<size, big_endian>* object,
4754 unsigned int r_type,
4755 Address from,
4756 Address to,
4757 bool save_res)
4758 {
4759 Branch_stub_ent ent(object, to, save_res);
4760 Address off = this->branch_size_;
4761 std::pair<typename Branch_stub_entries::iterator, bool> p
4762 = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4763 if (p.second)
4764 {
4765 if (save_res)
4766 this->need_save_res_ = true;
4767 else
4768 {
4769 unsigned int stub_size = this->branch_stub_size(p.first);
4770 this->branch_size_ = off + stub_size;
4771 if (size == 64 && stub_size != 4)
4772 this->targ_->add_branch_lookup_table(to);
4773 }
4774 }
4775 return this->can_reach_stub(from, off, r_type);
4776 }
4777
4778 // Find long branch stub offset.
4779
4780 template<int size, bool big_endian>
4781 typename Stub_table<size, big_endian>::Address
4782 Stub_table<size, big_endian>::find_long_branch_entry(
4783 const Powerpc_relobj<size, big_endian>* object,
4784 Address to) const
4785 {
4786 Branch_stub_ent ent(object, to, false);
4787 typename Branch_stub_entries::const_iterator p
4788 = this->long_branch_stubs_.find(ent);
4789 if (p == this->long_branch_stubs_.end())
4790 return invalid_address;
4791 if (p->first.save_res_)
4792 return to - this->targ_->savres_section()->address() + this->branch_size_;
4793 return p->second;
4794 }
4795
4796 // Generate a suitable FDE to describe code in this stub group.
4797 // The __tls_get_addr_opt call stub needs to describe where it saves
4798 // LR, to support exceptions that might be thrown from __tls_get_addr.
4799
4800 template<int size, bool big_endian>
4801 void
4802 Stub_table<size, big_endian>::init_plt_fde()
4803 {
4804 unsigned char* p = this->plt_fde_;
4805 // offset pcrel sdata4, size udata4, and augmentation size byte.
4806 memset (p, 0, 9);
4807 p += 9;
4808 if (this->tls_get_addr_opt_bctrl_ != -1u)
4809 {
4810 unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
4811 if (to_bctrl < 64)
4812 *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
4813 else if (to_bctrl < 256)
4814 {
4815 *p++ = elfcpp::DW_CFA_advance_loc1;
4816 *p++ = to_bctrl;
4817 }
4818 else if (to_bctrl < 65536)
4819 {
4820 *p++ = elfcpp::DW_CFA_advance_loc2;
4821 elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
4822 p += 2;
4823 }
4824 else
4825 {
4826 *p++ = elfcpp::DW_CFA_advance_loc4;
4827 elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
4828 p += 4;
4829 }
4830 *p++ = elfcpp::DW_CFA_offset_extended_sf;
4831 *p++ = 65;
4832 *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
4833 *p++ = elfcpp::DW_CFA_advance_loc + 4;
4834 *p++ = elfcpp::DW_CFA_restore_extended;
4835 *p++ = 65;
4836 }
4837 this->plt_fde_len_ = p - this->plt_fde_;
4838 }
4839
4840 // Add .eh_frame info for this stub section. Unlike other linker
4841 // generated .eh_frame this is added late in the link, because we
4842 // only want the .eh_frame info if this particular stub section is
4843 // non-empty.
4844
4845 template<int size, bool big_endian>
4846 void
4847 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
4848 {
4849 if (!parameters->options().ld_generated_unwind_info())
4850 return;
4851
4852 // Since we add stub .eh_frame info late, it must be placed
4853 // after all other linker generated .eh_frame info so that
4854 // merge mapping need not be updated for input sections.
4855 // There is no provision to use a different CIE to that used
4856 // by .glink.
4857 if (!this->targ_->has_glink())
4858 return;
4859
4860 if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
4861 return;
4862
4863 this->init_plt_fde();
4864 layout->add_eh_frame_for_plt(this,
4865 Eh_cie<size>::eh_frame_cie,
4866 sizeof (Eh_cie<size>::eh_frame_cie),
4867 this->plt_fde_, this->plt_fde_len_);
4868 }
4869
4870 template<int size, bool big_endian>
4871 void
4872 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
4873 {
4874 if (this->plt_fde_len_ != 0)
4875 {
4876 layout->remove_eh_frame_for_plt(this,
4877 Eh_cie<size>::eh_frame_cie,
4878 sizeof (Eh_cie<size>::eh_frame_cie),
4879 this->plt_fde_, this->plt_fde_len_);
4880 this->plt_fde_len_ = 0;
4881 }
4882 }
4883
4884 // A class to handle .glink.
4885
4886 template<int size, bool big_endian>
4887 class Output_data_glink : public Output_section_data
4888 {
4889 public:
4890 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4891 static const Address invalid_address = static_cast<Address>(0) - 1;
4892
4893 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4894 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4895 end_branch_table_(), ge_size_(0)
4896 { }
4897
4898 void
4899 add_eh_frame(Layout* layout);
4900
4901 void
4902 add_global_entry(const Symbol*);
4903
4904 Address
4905 find_global_entry(const Symbol*) const;
4906
4907 unsigned int
4908 global_entry_align(unsigned int off) const
4909 {
4910 unsigned int align = param_plt_align<size>();
4911 return (off + align - 1) & -align;
4912 }
4913
4914 unsigned int
4915 global_entry_off() const
4916 {
4917 return this->global_entry_align(this->end_branch_table_);
4918 }
4919
4920 Address
4921 global_entry_address() const
4922 {
4923 gold_assert(this->is_data_size_valid());
4924 return this->address() + this->global_entry_off();
4925 }
4926
4927 int
4928 pltresolve_size() const
4929 {
4930 if (size == 64)
4931 return (8
4932 + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
4933 return 16 * 4;
4934 }
4935
4936 protected:
4937 // Write to a map file.
4938 void
4939 do_print_to_mapfile(Mapfile* mapfile) const
4940 { mapfile->print_output_data(this, _("** glink")); }
4941
4942 private:
4943 void
4944 set_final_data_size();
4945
4946 // Write out .glink
4947 void
4948 do_write(Output_file*);
4949
4950 // Allows access to .got and .plt for do_write.
4951 Target_powerpc<size, big_endian>* targ_;
4952
4953 // Map sym to stub offset.
4954 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4955 Global_entry_stub_entries global_entry_stubs_;
4956
4957 unsigned int end_branch_table_, ge_size_;
4958 };
4959
4960 template<int size, bool big_endian>
4961 void
4962 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4963 {
4964 if (!parameters->options().ld_generated_unwind_info())
4965 return;
4966
4967 if (size == 64)
4968 {
4969 if (this->targ_->abiversion() < 2)
4970 layout->add_eh_frame_for_plt(this,
4971 Eh_cie<64>::eh_frame_cie,
4972 sizeof (Eh_cie<64>::eh_frame_cie),
4973 glink_eh_frame_fde_64v1,
4974 sizeof (glink_eh_frame_fde_64v1));
4975 else
4976 layout->add_eh_frame_for_plt(this,
4977 Eh_cie<64>::eh_frame_cie,
4978 sizeof (Eh_cie<64>::eh_frame_cie),
4979 glink_eh_frame_fde_64v2,
4980 sizeof (glink_eh_frame_fde_64v2));
4981 }
4982 else
4983 {
4984 // 32-bit .glink can use the default since the CIE return
4985 // address reg, LR, is valid.
4986 layout->add_eh_frame_for_plt(this,
4987 Eh_cie<32>::eh_frame_cie,
4988 sizeof (Eh_cie<32>::eh_frame_cie),
4989 default_fde,
4990 sizeof (default_fde));
4991 // Except where LR is used in a PIC __glink_PLTresolve.
4992 if (parameters->options().output_is_position_independent())
4993 layout->add_eh_frame_for_plt(this,
4994 Eh_cie<32>::eh_frame_cie,
4995 sizeof (Eh_cie<32>::eh_frame_cie),
4996 glink_eh_frame_fde_32,
4997 sizeof (glink_eh_frame_fde_32));
4998 }
4999 }
5000
5001 template<int size, bool big_endian>
5002 void
5003 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5004 {
5005 unsigned int off = this->global_entry_align(this->ge_size_);
5006 std::pair<typename Global_entry_stub_entries::iterator, bool> p
5007 = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5008 if (p.second)
5009 this->ge_size_ = off + 16;
5010 }
5011
5012 template<int size, bool big_endian>
5013 typename Output_data_glink<size, big_endian>::Address
5014 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5015 {
5016 typename Global_entry_stub_entries::const_iterator p
5017 = this->global_entry_stubs_.find(gsym);
5018 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5019 }
5020
5021 template<int size, bool big_endian>
5022 void
5023 Output_data_glink<size, big_endian>::set_final_data_size()
5024 {
5025 unsigned int count = this->targ_->plt_entry_count();
5026 section_size_type total = 0;
5027
5028 if (count != 0)
5029 {
5030 if (size == 32)
5031 {
5032 // space for branch table
5033 total += 4 * (count - 1);
5034
5035 total += -total & 15;
5036 total += this->pltresolve_size();
5037 }
5038 else
5039 {
5040 total += this->pltresolve_size();
5041
5042 // space for branch table
5043 total += 4 * count;
5044 if (this->targ_->abiversion() < 2)
5045 {
5046 total += 4 * count;
5047 if (count > 0x8000)
5048 total += 4 * (count - 0x8000);
5049 }
5050 }
5051 }
5052 this->end_branch_table_ = total;
5053 total = this->global_entry_align(total);
5054 total += this->ge_size_;
5055
5056 this->set_data_size(total);
5057 }
5058
5059 // Define symbols on stubs, identifying the stub.
5060
5061 template<int size, bool big_endian>
5062 void
5063 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5064 {
5065 if (!this->plt_call_stubs_.empty())
5066 {
5067 // The key for the plt call stub hash table includes addresses,
5068 // therefore traversal order depends on those addresses, which
5069 // can change between runs if gold is a PIE. Unfortunately the
5070 // output .symtab ordering depends on the order in which symbols
5071 // are added to the linker symtab. We want reproducible output
5072 // so must sort the call stub symbols.
5073 typedef typename Plt_stub_entries::const_iterator plt_iter;
5074 std::vector<plt_iter> sorted;
5075 sorted.resize(this->plt_call_stubs_.size());
5076
5077 for (plt_iter cs = this->plt_call_stubs_.begin();
5078 cs != this->plt_call_stubs_.end();
5079 ++cs)
5080 sorted[cs->second.indx_] = cs;
5081
5082 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5083 {
5084 plt_iter cs = sorted[i];
5085 char add[10];
5086 add[0] = 0;
5087 if (cs->first.addend_ != 0)
5088 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5089 char obj[10];
5090 obj[0] = 0;
5091 if (cs->first.object_)
5092 {
5093 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5094 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5095 sprintf(obj, "%x:", ppcobj->uniq());
5096 }
5097 char localname[9];
5098 const char *symname;
5099 if (cs->first.sym_ == NULL)
5100 {
5101 sprintf(localname, "%x", cs->first.locsym_);
5102 symname = localname;
5103 }
5104 else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5105 symname = this->targ_->tls_get_addr_opt()->name();
5106 else
5107 symname = cs->first.sym_->name();
5108 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5109 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5110 Address value
5111 = this->stub_address() - this->address() + cs->second.off_;
5112 unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5113 this->targ_->define_local(symtab, name, this, value, stub_size);
5114 }
5115 }
5116
5117 typedef typename Branch_stub_entries::const_iterator branch_iter;
5118 for (branch_iter bs = this->long_branch_stubs_.begin();
5119 bs != this->long_branch_stubs_.end();
5120 ++bs)
5121 {
5122 if (bs->first.save_res_)
5123 continue;
5124
5125 char* name = new char[8 + 13 + 16 + 1];
5126 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5127 static_cast<unsigned long long>(bs->first.dest_));
5128 Address value = (this->stub_address() - this->address()
5129 + this->plt_size_ + bs->second);
5130 unsigned int stub_size = this->branch_stub_size(bs);
5131 this->targ_->define_local(symtab, name, this, value, stub_size);
5132 }
5133 }
5134
5135 // Write out plt and long branch stub code.
5136
5137 template<int size, bool big_endian>
5138 void
5139 Stub_table<size, big_endian>::do_write(Output_file* of)
5140 {
5141 if (this->plt_call_stubs_.empty()
5142 && this->long_branch_stubs_.empty())
5143 return;
5144
5145 const section_size_type start_off = this->offset();
5146 const section_size_type off = this->stub_offset();
5147 const section_size_type oview_size =
5148 convert_to_section_size_type(this->data_size() - (off - start_off));
5149 unsigned char* const oview = of->get_output_view(off, oview_size);
5150 unsigned char* p;
5151
5152 if (size == 64)
5153 {
5154 const Output_data_got_powerpc<size, big_endian>* got
5155 = this->targ_->got_section();
5156 Address got_os_addr = got->output_section()->address();
5157
5158 if (!this->plt_call_stubs_.empty())
5159 {
5160 // The base address of the .plt section.
5161 Address plt_base = this->targ_->plt_section()->address();
5162 Address iplt_base = invalid_address;
5163
5164 // Write out plt call stubs.
5165 typename Plt_stub_entries::const_iterator cs;
5166 for (cs = this->plt_call_stubs_.begin();
5167 cs != this->plt_call_stubs_.end();
5168 ++cs)
5169 {
5170 bool is_iplt;
5171 Address pltoff = this->plt_off(cs, &is_iplt);
5172 Address plt_addr = pltoff;
5173 if (is_iplt)
5174 {
5175 if (iplt_base == invalid_address)
5176 iplt_base = this->targ_->iplt_section()->address();
5177 plt_addr += iplt_base;
5178 }
5179 else
5180 plt_addr += plt_base;
5181 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5182 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5183 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5184 Address off = plt_addr - got_addr;
5185
5186 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5187 gold_error(_("%s: linkage table error against `%s'"),
5188 cs->first.object_->name().c_str(),
5189 cs->first.sym_->demangled_name().c_str());
5190
5191 bool plt_load_toc = this->targ_->abiversion() < 2;
5192 bool static_chain
5193 = plt_load_toc && parameters->options().plt_static_chain();
5194 bool thread_safe
5195 = plt_load_toc && this->targ_->plt_thread_safe();
5196 bool use_fake_dep = false;
5197 Address cmp_branch_off = 0;
5198 if (thread_safe)
5199 {
5200 unsigned int pltindex
5201 = ((pltoff - this->targ_->first_plt_entry_offset())
5202 / this->targ_->plt_entry_size());
5203 Address glinkoff
5204 = (this->targ_->glink_section()->pltresolve_size()
5205 + pltindex * 8);
5206 if (pltindex > 32768)
5207 glinkoff += (pltindex - 32768) * 4;
5208 Address to
5209 = this->targ_->glink_section()->address() + glinkoff;
5210 Address from
5211 = (this->stub_address() + cs->second.off_ + 20
5212 + 4 * cs->second.r2save_
5213 + 4 * (ha(off) != 0)
5214 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5215 + 4 * static_chain);
5216 cmp_branch_off = to - from;
5217 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5218 }
5219
5220 p = oview + cs->second.off_;
5221 const Symbol* gsym = cs->first.sym_;
5222 if (this->targ_->is_tls_get_addr_opt(gsym))
5223 {
5224 write_insn<big_endian>(p, ld_11_3 + 0);
5225 p += 4;
5226 write_insn<big_endian>(p, ld_12_3 + 8);
5227 p += 4;
5228 write_insn<big_endian>(p, mr_0_3);
5229 p += 4;
5230 write_insn<big_endian>(p, cmpdi_11_0);
5231 p += 4;
5232 write_insn<big_endian>(p, add_3_12_13);
5233 p += 4;
5234 write_insn<big_endian>(p, beqlr);
5235 p += 4;
5236 write_insn<big_endian>(p, mr_3_0);
5237 p += 4;
5238 if (!cs->second.localentry0_)
5239 {
5240 write_insn<big_endian>(p, mflr_11);
5241 p += 4;
5242 write_insn<big_endian>(p, (std_11_1
5243 + this->targ_->stk_linker()));
5244 p += 4;
5245 }
5246 use_fake_dep = thread_safe;
5247 }
5248 if (ha(off) != 0)
5249 {
5250 if (cs->second.r2save_)
5251 {
5252 write_insn<big_endian>(p,
5253 std_2_1 + this->targ_->stk_toc());
5254 p += 4;
5255 }
5256 if (plt_load_toc)
5257 {
5258 write_insn<big_endian>(p, addis_11_2 + ha(off));
5259 p += 4;
5260 write_insn<big_endian>(p, ld_12_11 + l(off));
5261 p += 4;
5262 }
5263 else
5264 {
5265 write_insn<big_endian>(p, addis_12_2 + ha(off));
5266 p += 4;
5267 write_insn<big_endian>(p, ld_12_12 + l(off));
5268 p += 4;
5269 }
5270 if (plt_load_toc
5271 && ha(off + 8 + 8 * static_chain) != ha(off))
5272 {
5273 write_insn<big_endian>(p, addi_11_11 + l(off));
5274 p += 4;
5275 off = 0;
5276 }
5277 write_insn<big_endian>(p, mtctr_12);
5278 p += 4;
5279 if (plt_load_toc)
5280 {
5281 if (use_fake_dep)
5282 {
5283 write_insn<big_endian>(p, xor_2_12_12);
5284 p += 4;
5285 write_insn<big_endian>(p, add_11_11_2);
5286 p += 4;
5287 }
5288 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5289 p += 4;
5290 if (static_chain)
5291 {
5292 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5293 p += 4;
5294 }
5295 }
5296 }
5297 else
5298 {
5299 if (cs->second.r2save_)
5300 {
5301 write_insn<big_endian>(p,
5302 std_2_1 + this->targ_->stk_toc());
5303 p += 4;
5304 }
5305 write_insn<big_endian>(p, ld_12_2 + l(off));
5306 p += 4;
5307 if (plt_load_toc
5308 && ha(off + 8 + 8 * static_chain) != ha(off))
5309 {
5310 write_insn<big_endian>(p, addi_2_2 + l(off));
5311 p += 4;
5312 off = 0;
5313 }
5314 write_insn<big_endian>(p, mtctr_12);
5315 p += 4;
5316 if (plt_load_toc)
5317 {
5318 if (use_fake_dep)
5319 {
5320 write_insn<big_endian>(p, xor_11_12_12);
5321 p += 4;
5322 write_insn<big_endian>(p, add_2_2_11);
5323 p += 4;
5324 }
5325 if (static_chain)
5326 {
5327 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5328 p += 4;
5329 }
5330 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5331 p += 4;
5332 }
5333 }
5334 if (!cs->second.localentry0_
5335 && this->targ_->is_tls_get_addr_opt(gsym))
5336 {
5337 write_insn<big_endian>(p, bctrl);
5338 p += 4;
5339 write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5340 p += 4;
5341 write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5342 p += 4;
5343 write_insn<big_endian>(p, mtlr_11);
5344 p += 4;
5345 write_insn<big_endian>(p, blr);
5346 }
5347 else if (thread_safe && !use_fake_dep)
5348 {
5349 write_insn<big_endian>(p, cmpldi_2_0);
5350 p += 4;
5351 write_insn<big_endian>(p, bnectr_p4);
5352 p += 4;
5353 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5354 }
5355 else
5356 write_insn<big_endian>(p, bctr);
5357 }
5358 }
5359
5360 // Write out long branch stubs.
5361 typename Branch_stub_entries::const_iterator bs;
5362 for (bs = this->long_branch_stubs_.begin();
5363 bs != this->long_branch_stubs_.end();
5364 ++bs)
5365 {
5366 if (bs->first.save_res_)
5367 continue;
5368 p = oview + this->plt_size_ + bs->second;
5369 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5370 Address delta = bs->first.dest_ - loc;
5371 if (delta + (1 << 25) < 2 << 25)
5372 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5373 else
5374 {
5375 Address brlt_addr
5376 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5377 gold_assert(brlt_addr != invalid_address);
5378 brlt_addr += this->targ_->brlt_section()->address();
5379 Address got_addr = got_os_addr + bs->first.toc_base_off_;
5380 Address brltoff = brlt_addr - got_addr;
5381 if (ha(brltoff) == 0)
5382 {
5383 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
5384 }
5385 else
5386 {
5387 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
5388 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
5389 }
5390 write_insn<big_endian>(p, mtctr_12), p += 4;
5391 write_insn<big_endian>(p, bctr);
5392 }
5393 }
5394 }
5395 else
5396 {
5397 if (!this->plt_call_stubs_.empty())
5398 {
5399 // The base address of the .plt section.
5400 Address plt_base = this->targ_->plt_section()->address();
5401 Address iplt_base = invalid_address;
5402 // The address of _GLOBAL_OFFSET_TABLE_.
5403 Address g_o_t = invalid_address;
5404
5405 // Write out plt call stubs.
5406 typename Plt_stub_entries::const_iterator cs;
5407 for (cs = this->plt_call_stubs_.begin();
5408 cs != this->plt_call_stubs_.end();
5409 ++cs)
5410 {
5411 bool is_iplt;
5412 Address plt_addr = this->plt_off(cs, &is_iplt);
5413 if (is_iplt)
5414 {
5415 if (iplt_base == invalid_address)
5416 iplt_base = this->targ_->iplt_section()->address();
5417 plt_addr += iplt_base;
5418 }
5419 else
5420 plt_addr += plt_base;
5421
5422 p = oview + cs->second.off_;
5423 const Symbol* gsym = cs->first.sym_;
5424 if (this->targ_->is_tls_get_addr_opt(gsym))
5425 {
5426 write_insn<big_endian>(p, lwz_11_3 + 0);
5427 p += 4;
5428 write_insn<big_endian>(p, lwz_12_3 + 4);
5429 p += 4;
5430 write_insn<big_endian>(p, mr_0_3);
5431 p += 4;
5432 write_insn<big_endian>(p, cmpwi_11_0);
5433 p += 4;
5434 write_insn<big_endian>(p, add_3_12_2);
5435 p += 4;
5436 write_insn<big_endian>(p, beqlr);
5437 p += 4;
5438 write_insn<big_endian>(p, mr_3_0);
5439 p += 4;
5440 write_insn<big_endian>(p, nop);
5441 p += 4;
5442 }
5443 if (parameters->options().output_is_position_independent())
5444 {
5445 Address got_addr;
5446 const Powerpc_relobj<size, big_endian>* ppcobj
5447 = (static_cast<const Powerpc_relobj<size, big_endian>*>
5448 (cs->first.object_));
5449 if (ppcobj != NULL && cs->first.addend_ >= 32768)
5450 {
5451 unsigned int got2 = ppcobj->got2_shndx();
5452 got_addr = ppcobj->get_output_section_offset(got2);
5453 gold_assert(got_addr != invalid_address);
5454 got_addr += (ppcobj->output_section(got2)->address()
5455 + cs->first.addend_);
5456 }
5457 else
5458 {
5459 if (g_o_t == invalid_address)
5460 {
5461 const Output_data_got_powerpc<size, big_endian>* got
5462 = this->targ_->got_section();
5463 g_o_t = got->address() + got->g_o_t();
5464 }
5465 got_addr = g_o_t;
5466 }
5467
5468 Address off = plt_addr - got_addr;
5469 if (ha(off) == 0)
5470 write_insn<big_endian>(p, lwz_11_30 + l(off));
5471 else
5472 {
5473 write_insn<big_endian>(p, addis_11_30 + ha(off));
5474 p += 4;
5475 write_insn<big_endian>(p, lwz_11_11 + l(off));
5476 }
5477 }
5478 else
5479 {
5480 write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5481 p += 4;
5482 write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5483 }
5484 p += 4;
5485 write_insn<big_endian>(p, mtctr_11);
5486 p += 4;
5487 write_insn<big_endian>(p, bctr);
5488 }
5489 }
5490
5491 // Write out long branch stubs.
5492 typename Branch_stub_entries::const_iterator bs;
5493 for (bs = this->long_branch_stubs_.begin();
5494 bs != this->long_branch_stubs_.end();
5495 ++bs)
5496 {
5497 if (bs->first.save_res_)
5498 continue;
5499 p = oview + this->plt_size_ + bs->second;
5500 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5501 Address delta = bs->first.dest_ - loc;
5502 if (delta + (1 << 25) < 2 << 25)
5503 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5504 else if (!parameters->options().output_is_position_independent())
5505 {
5506 write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5507 p += 4;
5508 write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5509 }
5510 else
5511 {
5512 delta -= 8;
5513 write_insn<big_endian>(p, mflr_0);
5514 p += 4;
5515 write_insn<big_endian>(p, bcl_20_31);
5516 p += 4;
5517 write_insn<big_endian>(p, mflr_12);
5518 p += 4;
5519 write_insn<big_endian>(p, addis_12_12 + ha(delta));
5520 p += 4;
5521 write_insn<big_endian>(p, addi_12_12 + l(delta));
5522 p += 4;
5523 write_insn<big_endian>(p, mtlr_0);
5524 }
5525 p += 4;
5526 write_insn<big_endian>(p, mtctr_12);
5527 p += 4;
5528 write_insn<big_endian>(p, bctr);
5529 }
5530 }
5531 if (this->need_save_res_)
5532 {
5533 p = oview + this->plt_size_ + this->branch_size_;
5534 memcpy (p, this->targ_->savres_section()->contents(),
5535 this->targ_->savres_section()->data_size());
5536 }
5537 }
5538
5539 // Write out .glink.
5540
5541 template<int size, bool big_endian>
5542 void
5543 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5544 {
5545 const section_size_type off = this->offset();
5546 const section_size_type oview_size =
5547 convert_to_section_size_type(this->data_size());
5548 unsigned char* const oview = of->get_output_view(off, oview_size);
5549 unsigned char* p;
5550
5551 // The base address of the .plt section.
5552 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5553 Address plt_base = this->targ_->plt_section()->address();
5554
5555 if (size == 64)
5556 {
5557 if (this->end_branch_table_ != 0)
5558 {
5559 // Write pltresolve stub.
5560 p = oview;
5561 Address after_bcl = this->address() + 16;
5562 Address pltoff = plt_base - after_bcl;
5563
5564 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
5565
5566 if (this->targ_->abiversion() < 2)
5567 {
5568 write_insn<big_endian>(p, mflr_12), p += 4;
5569 write_insn<big_endian>(p, bcl_20_31), p += 4;
5570 write_insn<big_endian>(p, mflr_11), p += 4;
5571 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5572 write_insn<big_endian>(p, mtlr_12), p += 4;
5573 write_insn<big_endian>(p, add_11_2_11), p += 4;
5574 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5575 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
5576 write_insn<big_endian>(p, mtctr_12), p += 4;
5577 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
5578 }
5579 else
5580 {
5581 write_insn<big_endian>(p, mflr_0), p += 4;
5582 write_insn<big_endian>(p, bcl_20_31), p += 4;
5583 write_insn<big_endian>(p, mflr_11), p += 4;
5584 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
5585 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5586 write_insn<big_endian>(p, mtlr_0), p += 4;
5587 write_insn<big_endian>(p, sub_12_12_11), p += 4;
5588 write_insn<big_endian>(p, add_11_2_11), p += 4;
5589 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
5590 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5591 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
5592 write_insn<big_endian>(p, mtctr_12), p += 4;
5593 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
5594 }
5595 write_insn<big_endian>(p, bctr), p += 4;
5596 gold_assert(p == oview + this->pltresolve_size());
5597
5598 // Write lazy link call stubs.
5599 uint32_t indx = 0;
5600 while (p < oview + this->end_branch_table_)
5601 {
5602 if (this->targ_->abiversion() < 2)
5603 {
5604 if (indx < 0x8000)
5605 {
5606 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
5607 }
5608 else
5609 {
5610 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
5611 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
5612 }
5613 }
5614 uint32_t branch_off = 8 - (p - oview);
5615 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
5616 indx++;
5617 }
5618 }
5619
5620 Address plt_base = this->targ_->plt_section()->address();
5621 Address iplt_base = invalid_address;
5622 unsigned int global_entry_off = this->global_entry_off();
5623 Address global_entry_base = this->address() + global_entry_off;
5624 typename Global_entry_stub_entries::const_iterator ge;
5625 for (ge = this->global_entry_stubs_.begin();
5626 ge != this->global_entry_stubs_.end();
5627 ++ge)
5628 {
5629 p = oview + global_entry_off + ge->second;
5630 Address plt_addr = ge->first->plt_offset();
5631 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5632 && ge->first->can_use_relative_reloc(false))
5633 {
5634 if (iplt_base == invalid_address)
5635 iplt_base = this->targ_->iplt_section()->address();
5636 plt_addr += iplt_base;
5637 }
5638 else
5639 plt_addr += plt_base;
5640 Address my_addr = global_entry_base + ge->second;
5641 Address off = plt_addr - my_addr;
5642
5643 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5644 gold_error(_("%s: linkage table error against `%s'"),
5645 ge->first->object()->name().c_str(),
5646 ge->first->demangled_name().c_str());
5647
5648 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
5649 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5650 write_insn<big_endian>(p, mtctr_12), p += 4;
5651 write_insn<big_endian>(p, bctr);
5652 }
5653 }
5654 else
5655 {
5656 const Output_data_got_powerpc<size, big_endian>* got
5657 = this->targ_->got_section();
5658 // The address of _GLOBAL_OFFSET_TABLE_.
5659 Address g_o_t = got->address() + got->g_o_t();
5660
5661 // Write out pltresolve branch table.
5662 p = oview;
5663 unsigned int the_end = oview_size - this->pltresolve_size();
5664 unsigned char* end_p = oview + the_end;
5665 while (p < end_p - 8 * 4)
5666 write_insn<big_endian>(p, b + end_p - p), p += 4;
5667 while (p < end_p)
5668 write_insn<big_endian>(p, nop), p += 4;
5669
5670 // Write out pltresolve call stub.
5671 end_p = oview + oview_size;
5672 if (parameters->options().output_is_position_independent())
5673 {
5674 Address res0_off = 0;
5675 Address after_bcl_off = the_end + 12;
5676 Address bcl_res0 = after_bcl_off - res0_off;
5677
5678 write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5679 p += 4;
5680 write_insn<big_endian>(p, mflr_0);
5681 p += 4;
5682 write_insn<big_endian>(p, bcl_20_31);
5683 p += 4;
5684 write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5685 p += 4;
5686 write_insn<big_endian>(p, mflr_12);
5687 p += 4;
5688 write_insn<big_endian>(p, mtlr_0);
5689 p += 4;
5690 write_insn<big_endian>(p, sub_11_11_12);
5691 p += 4;
5692
5693 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5694
5695 write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5696 p += 4;
5697 if (ha(got_bcl) == ha(got_bcl + 4))
5698 {
5699 write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5700 p += 4;
5701 write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5702 }
5703 else
5704 {
5705 write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5706 p += 4;
5707 write_insn<big_endian>(p, lwz_12_12 + 4);
5708 }
5709 p += 4;
5710 write_insn<big_endian>(p, mtctr_0);
5711 p += 4;
5712 write_insn<big_endian>(p, add_0_11_11);
5713 p += 4;
5714 write_insn<big_endian>(p, add_11_0_11);
5715 }
5716 else
5717 {
5718 Address res0 = this->address();
5719
5720 write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5721 p += 4;
5722 write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5723 p += 4;
5724 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5725 write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5726 else
5727 write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5728 p += 4;
5729 write_insn<big_endian>(p, addi_11_11 + l(-res0));
5730 p += 4;
5731 write_insn<big_endian>(p, mtctr_0);
5732 p += 4;
5733 write_insn<big_endian>(p, add_0_11_11);
5734 p += 4;
5735 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5736 write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5737 else
5738 write_insn<big_endian>(p, lwz_12_12 + 4);
5739 p += 4;
5740 write_insn<big_endian>(p, add_11_0_11);
5741 }
5742 p += 4;
5743 write_insn<big_endian>(p, bctr);
5744 p += 4;
5745 while (p < end_p)
5746 {
5747 write_insn<big_endian>(p, nop);
5748 p += 4;
5749 }
5750 }
5751
5752 of->write_output_view(off, oview_size, oview);
5753 }
5754
5755
5756 // A class to handle linker generated save/restore functions.
5757
5758 template<int size, bool big_endian>
5759 class Output_data_save_res : public Output_section_data_build
5760 {
5761 public:
5762 Output_data_save_res(Symbol_table* symtab);
5763
5764 const unsigned char*
5765 contents() const
5766 {
5767 return contents_;
5768 }
5769
5770 protected:
5771 // Write to a map file.
5772 void
5773 do_print_to_mapfile(Mapfile* mapfile) const
5774 { mapfile->print_output_data(this, _("** save/restore")); }
5775
5776 void
5777 do_write(Output_file*);
5778
5779 private:
5780 // The maximum size of save/restore contents.
5781 static const unsigned int savres_max = 218*4;
5782
5783 void
5784 savres_define(Symbol_table* symtab,
5785 const char *name,
5786 unsigned int lo, unsigned int hi,
5787 unsigned char* write_ent(unsigned char*, int),
5788 unsigned char* write_tail(unsigned char*, int));
5789
5790 unsigned char *contents_;
5791 };
5792
5793 template<bool big_endian>
5794 static unsigned char*
5795 savegpr0(unsigned char* p, int r)
5796 {
5797 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5798 write_insn<big_endian>(p, insn);
5799 return p + 4;
5800 }
5801
5802 template<bool big_endian>
5803 static unsigned char*
5804 savegpr0_tail(unsigned char* p, int r)
5805 {
5806 p = savegpr0<big_endian>(p, r);
5807 uint32_t insn = std_0_1 + 16;
5808 write_insn<big_endian>(p, insn);
5809 p = p + 4;
5810 write_insn<big_endian>(p, blr);
5811 return p + 4;
5812 }
5813
5814 template<bool big_endian>
5815 static unsigned char*
5816 restgpr0(unsigned char* p, int r)
5817 {
5818 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5819 write_insn<big_endian>(p, insn);
5820 return p + 4;
5821 }
5822
5823 template<bool big_endian>
5824 static unsigned char*
5825 restgpr0_tail(unsigned char* p, int r)
5826 {
5827 uint32_t insn = ld_0_1 + 16;
5828 write_insn<big_endian>(p, insn);
5829 p = p + 4;
5830 p = restgpr0<big_endian>(p, r);
5831 write_insn<big_endian>(p, mtlr_0);
5832 p = p + 4;
5833 if (r == 29)
5834 {
5835 p = restgpr0<big_endian>(p, 30);
5836 p = restgpr0<big_endian>(p, 31);
5837 }
5838 write_insn<big_endian>(p, blr);
5839 return p + 4;
5840 }
5841
5842 template<bool big_endian>
5843 static unsigned char*
5844 savegpr1(unsigned char* p, int r)
5845 {
5846 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5847 write_insn<big_endian>(p, insn);
5848 return p + 4;
5849 }
5850
5851 template<bool big_endian>
5852 static unsigned char*
5853 savegpr1_tail(unsigned char* p, int r)
5854 {
5855 p = savegpr1<big_endian>(p, r);
5856 write_insn<big_endian>(p, blr);
5857 return p + 4;
5858 }
5859
5860 template<bool big_endian>
5861 static unsigned char*
5862 restgpr1(unsigned char* p, int r)
5863 {
5864 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5865 write_insn<big_endian>(p, insn);
5866 return p + 4;
5867 }
5868
5869 template<bool big_endian>
5870 static unsigned char*
5871 restgpr1_tail(unsigned char* p, int r)
5872 {
5873 p = restgpr1<big_endian>(p, r);
5874 write_insn<big_endian>(p, blr);
5875 return p + 4;
5876 }
5877
5878 template<bool big_endian>
5879 static unsigned char*
5880 savefpr(unsigned char* p, int r)
5881 {
5882 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5883 write_insn<big_endian>(p, insn);
5884 return p + 4;
5885 }
5886
5887 template<bool big_endian>
5888 static unsigned char*
5889 savefpr0_tail(unsigned char* p, int r)
5890 {
5891 p = savefpr<big_endian>(p, r);
5892 write_insn<big_endian>(p, std_0_1 + 16);
5893 p = p + 4;
5894 write_insn<big_endian>(p, blr);
5895 return p + 4;
5896 }
5897
5898 template<bool big_endian>
5899 static unsigned char*
5900 restfpr(unsigned char* p, int r)
5901 {
5902 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5903 write_insn<big_endian>(p, insn);
5904 return p + 4;
5905 }
5906
5907 template<bool big_endian>
5908 static unsigned char*
5909 restfpr0_tail(unsigned char* p, int r)
5910 {
5911 write_insn<big_endian>(p, ld_0_1 + 16);
5912 p = p + 4;
5913 p = restfpr<big_endian>(p, r);
5914 write_insn<big_endian>(p, mtlr_0);
5915 p = p + 4;
5916 if (r == 29)
5917 {
5918 p = restfpr<big_endian>(p, 30);
5919 p = restfpr<big_endian>(p, 31);
5920 }
5921 write_insn<big_endian>(p, blr);
5922 return p + 4;
5923 }
5924
5925 template<bool big_endian>
5926 static unsigned char*
5927 savefpr1_tail(unsigned char* p, int r)
5928 {
5929 p = savefpr<big_endian>(p, r);
5930 write_insn<big_endian>(p, blr);
5931 return p + 4;
5932 }
5933
5934 template<bool big_endian>
5935 static unsigned char*
5936 restfpr1_tail(unsigned char* p, int r)
5937 {
5938 p = restfpr<big_endian>(p, r);
5939 write_insn<big_endian>(p, blr);
5940 return p + 4;
5941 }
5942
5943 template<bool big_endian>
5944 static unsigned char*
5945 savevr(unsigned char* p, int r)
5946 {
5947 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5948 write_insn<big_endian>(p, insn);
5949 p = p + 4;
5950 insn = stvx_0_12_0 + (r << 21);
5951 write_insn<big_endian>(p, insn);
5952 return p + 4;
5953 }
5954
5955 template<bool big_endian>
5956 static unsigned char*
5957 savevr_tail(unsigned char* p, int r)
5958 {
5959 p = savevr<big_endian>(p, r);
5960 write_insn<big_endian>(p, blr);
5961 return p + 4;
5962 }
5963
5964 template<bool big_endian>
5965 static unsigned char*
5966 restvr(unsigned char* p, int r)
5967 {
5968 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5969 write_insn<big_endian>(p, insn);
5970 p = p + 4;
5971 insn = lvx_0_12_0 + (r << 21);
5972 write_insn<big_endian>(p, insn);
5973 return p + 4;
5974 }
5975
5976 template<bool big_endian>
5977 static unsigned char*
5978 restvr_tail(unsigned char* p, int r)
5979 {
5980 p = restvr<big_endian>(p, r);
5981 write_insn<big_endian>(p, blr);
5982 return p + 4;
5983 }
5984
5985
5986 template<int size, bool big_endian>
5987 Output_data_save_res<size, big_endian>::Output_data_save_res(
5988 Symbol_table* symtab)
5989 : Output_section_data_build(4),
5990 contents_(NULL)
5991 {
5992 this->savres_define(symtab,
5993 "_savegpr0_", 14, 31,
5994 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5995 this->savres_define(symtab,
5996 "_restgpr0_", 14, 29,
5997 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5998 this->savres_define(symtab,
5999 "_restgpr0_", 30, 31,
6000 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6001 this->savres_define(symtab,
6002 "_savegpr1_", 14, 31,
6003 savegpr1<big_endian>, savegpr1_tail<big_endian>);
6004 this->savres_define(symtab,
6005 "_restgpr1_", 14, 31,
6006 restgpr1<big_endian>, restgpr1_tail<big_endian>);
6007 this->savres_define(symtab,
6008 "_savefpr_", 14, 31,
6009 savefpr<big_endian>, savefpr0_tail<big_endian>);
6010 this->savres_define(symtab,
6011 "_restfpr_", 14, 29,
6012 restfpr<big_endian>, restfpr0_tail<big_endian>);
6013 this->savres_define(symtab,
6014 "_restfpr_", 30, 31,
6015 restfpr<big_endian>, restfpr0_tail<big_endian>);
6016 this->savres_define(symtab,
6017 "._savef", 14, 31,
6018 savefpr<big_endian>, savefpr1_tail<big_endian>);
6019 this->savres_define(symtab,
6020 "._restf", 14, 31,
6021 restfpr<big_endian>, restfpr1_tail<big_endian>);
6022 this->savres_define(symtab,
6023 "_savevr_", 20, 31,
6024 savevr<big_endian>, savevr_tail<big_endian>);
6025 this->savres_define(symtab,
6026 "_restvr_", 20, 31,
6027 restvr<big_endian>, restvr_tail<big_endian>);
6028 }
6029
6030 template<int size, bool big_endian>
6031 void
6032 Output_data_save_res<size, big_endian>::savres_define(
6033 Symbol_table* symtab,
6034 const char *name,
6035 unsigned int lo, unsigned int hi,
6036 unsigned char* write_ent(unsigned char*, int),
6037 unsigned char* write_tail(unsigned char*, int))
6038 {
6039 size_t len = strlen(name);
6040 bool writing = false;
6041 char sym[16];
6042
6043 memcpy(sym, name, len);
6044 sym[len + 2] = 0;
6045
6046 for (unsigned int i = lo; i <= hi; i++)
6047 {
6048 sym[len + 0] = i / 10 + '0';
6049 sym[len + 1] = i % 10 + '0';
6050 Symbol* gsym = symtab->lookup(sym);
6051 bool refd = gsym != NULL && gsym->is_undefined();
6052 writing = writing || refd;
6053 if (writing)
6054 {
6055 if (this->contents_ == NULL)
6056 this->contents_ = new unsigned char[this->savres_max];
6057
6058 section_size_type value = this->current_data_size();
6059 unsigned char* p = this->contents_ + value;
6060 if (i != hi)
6061 p = write_ent(p, i);
6062 else
6063 p = write_tail(p, i);
6064 section_size_type cur_size = p - this->contents_;
6065 this->set_current_data_size(cur_size);
6066 if (refd)
6067 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6068 this, value, cur_size - value,
6069 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6070 elfcpp::STV_HIDDEN, 0, false, false);
6071 }
6072 }
6073 }
6074
6075 // Write out save/restore.
6076
6077 template<int size, bool big_endian>
6078 void
6079 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6080 {
6081 const section_size_type off = this->offset();
6082 const section_size_type oview_size =
6083 convert_to_section_size_type(this->data_size());
6084 unsigned char* const oview = of->get_output_view(off, oview_size);
6085 memcpy(oview, this->contents_, oview_size);
6086 of->write_output_view(off, oview_size, oview);
6087 }
6088
6089
6090 // Create the glink section.
6091
6092 template<int size, bool big_endian>
6093 void
6094 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6095 {
6096 if (this->glink_ == NULL)
6097 {
6098 this->glink_ = new Output_data_glink<size, big_endian>(this);
6099 this->glink_->add_eh_frame(layout);
6100 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6101 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6102 this->glink_, ORDER_TEXT, false);
6103 }
6104 }
6105
6106 // Create a PLT entry for a global symbol.
6107
6108 template<int size, bool big_endian>
6109 void
6110 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6111 Layout* layout,
6112 Symbol* gsym)
6113 {
6114 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6115 && gsym->can_use_relative_reloc(false))
6116 {
6117 if (this->iplt_ == NULL)
6118 this->make_iplt_section(symtab, layout);
6119 this->iplt_->add_ifunc_entry(gsym);
6120 }
6121 else
6122 {
6123 if (this->plt_ == NULL)
6124 this->make_plt_section(symtab, layout);
6125 this->plt_->add_entry(gsym);
6126 }
6127 }
6128
6129 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6130
6131 template<int size, bool big_endian>
6132 void
6133 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6134 Symbol_table* symtab,
6135 Layout* layout,
6136 Sized_relobj_file<size, big_endian>* relobj,
6137 unsigned int r_sym)
6138 {
6139 if (this->iplt_ == NULL)
6140 this->make_iplt_section(symtab, layout);
6141 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6142 }
6143
6144 // Return the number of entries in the PLT.
6145
6146 template<int size, bool big_endian>
6147 unsigned int
6148 Target_powerpc<size, big_endian>::plt_entry_count() const
6149 {
6150 if (this->plt_ == NULL)
6151 return 0;
6152 return this->plt_->entry_count();
6153 }
6154
6155 // Create a GOT entry for local dynamic __tls_get_addr calls.
6156
6157 template<int size, bool big_endian>
6158 unsigned int
6159 Target_powerpc<size, big_endian>::tlsld_got_offset(
6160 Symbol_table* symtab,
6161 Layout* layout,
6162 Sized_relobj_file<size, big_endian>* object)
6163 {
6164 if (this->tlsld_got_offset_ == -1U)
6165 {
6166 gold_assert(symtab != NULL && layout != NULL && object != NULL);
6167 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6168 Output_data_got_powerpc<size, big_endian>* got
6169 = this->got_section(symtab, layout);
6170 unsigned int got_offset = got->add_constant_pair(0, 0);
6171 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6172 got_offset, 0);
6173 this->tlsld_got_offset_ = got_offset;
6174 }
6175 return this->tlsld_got_offset_;
6176 }
6177
6178 // Get the Reference_flags for a particular relocation.
6179
6180 template<int size, bool big_endian>
6181 int
6182 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6183 unsigned int r_type,
6184 const Target_powerpc* target)
6185 {
6186 int ref = 0;
6187
6188 switch (r_type)
6189 {
6190 case elfcpp::R_POWERPC_NONE:
6191 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6192 case elfcpp::R_POWERPC_GNU_VTENTRY:
6193 case elfcpp::R_PPC64_TOC:
6194 // No symbol reference.
6195 break;
6196
6197 case elfcpp::R_PPC64_ADDR64:
6198 case elfcpp::R_PPC64_UADDR64:
6199 case elfcpp::R_POWERPC_ADDR32:
6200 case elfcpp::R_POWERPC_UADDR32:
6201 case elfcpp::R_POWERPC_ADDR16:
6202 case elfcpp::R_POWERPC_UADDR16:
6203 case elfcpp::R_POWERPC_ADDR16_LO:
6204 case elfcpp::R_POWERPC_ADDR16_HI:
6205 case elfcpp::R_POWERPC_ADDR16_HA:
6206 ref = Symbol::ABSOLUTE_REF;
6207 break;
6208
6209 case elfcpp::R_POWERPC_ADDR24:
6210 case elfcpp::R_POWERPC_ADDR14:
6211 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6212 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6213 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6214 break;
6215
6216 case elfcpp::R_PPC64_REL64:
6217 case elfcpp::R_POWERPC_REL32:
6218 case elfcpp::R_PPC_LOCAL24PC:
6219 case elfcpp::R_POWERPC_REL16:
6220 case elfcpp::R_POWERPC_REL16_LO:
6221 case elfcpp::R_POWERPC_REL16_HI:
6222 case elfcpp::R_POWERPC_REL16_HA:
6223 ref = Symbol::RELATIVE_REF;
6224 break;
6225
6226 case elfcpp::R_POWERPC_REL24:
6227 case elfcpp::R_PPC_PLTREL24:
6228 case elfcpp::R_POWERPC_REL14:
6229 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6230 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6231 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6232 break;
6233
6234 case elfcpp::R_POWERPC_GOT16:
6235 case elfcpp::R_POWERPC_GOT16_LO:
6236 case elfcpp::R_POWERPC_GOT16_HI:
6237 case elfcpp::R_POWERPC_GOT16_HA:
6238 case elfcpp::R_PPC64_GOT16_DS:
6239 case elfcpp::R_PPC64_GOT16_LO_DS:
6240 case elfcpp::R_PPC64_TOC16:
6241 case elfcpp::R_PPC64_TOC16_LO:
6242 case elfcpp::R_PPC64_TOC16_HI:
6243 case elfcpp::R_PPC64_TOC16_HA:
6244 case elfcpp::R_PPC64_TOC16_DS:
6245 case elfcpp::R_PPC64_TOC16_LO_DS:
6246 ref = Symbol::RELATIVE_REF;
6247 break;
6248
6249 case elfcpp::R_POWERPC_GOT_TPREL16:
6250 case elfcpp::R_POWERPC_TLS:
6251 ref = Symbol::TLS_REF;
6252 break;
6253
6254 case elfcpp::R_POWERPC_COPY:
6255 case elfcpp::R_POWERPC_GLOB_DAT:
6256 case elfcpp::R_POWERPC_JMP_SLOT:
6257 case elfcpp::R_POWERPC_RELATIVE:
6258 case elfcpp::R_POWERPC_DTPMOD:
6259 default:
6260 // Not expected. We will give an error later.
6261 break;
6262 }
6263
6264 if (size == 64 && target->abiversion() < 2)
6265 ref |= Symbol::FUNC_DESC_ABI;
6266 return ref;
6267 }
6268
6269 // Report an unsupported relocation against a local symbol.
6270
6271 template<int size, bool big_endian>
6272 void
6273 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6274 Sized_relobj_file<size, big_endian>* object,
6275 unsigned int r_type)
6276 {
6277 gold_error(_("%s: unsupported reloc %u against local symbol"),
6278 object->name().c_str(), r_type);
6279 }
6280
6281 // We are about to emit a dynamic relocation of type R_TYPE. If the
6282 // dynamic linker does not support it, issue an error.
6283
6284 template<int size, bool big_endian>
6285 void
6286 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6287 unsigned int r_type)
6288 {
6289 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6290
6291 // These are the relocation types supported by glibc for both 32-bit
6292 // and 64-bit powerpc.
6293 switch (r_type)
6294 {
6295 case elfcpp::R_POWERPC_NONE:
6296 case elfcpp::R_POWERPC_RELATIVE:
6297 case elfcpp::R_POWERPC_GLOB_DAT:
6298 case elfcpp::R_POWERPC_DTPMOD:
6299 case elfcpp::R_POWERPC_DTPREL:
6300 case elfcpp::R_POWERPC_TPREL:
6301 case elfcpp::R_POWERPC_JMP_SLOT:
6302 case elfcpp::R_POWERPC_COPY:
6303 case elfcpp::R_POWERPC_IRELATIVE:
6304 case elfcpp::R_POWERPC_ADDR32:
6305 case elfcpp::R_POWERPC_UADDR32:
6306 case elfcpp::R_POWERPC_ADDR24:
6307 case elfcpp::R_POWERPC_ADDR16:
6308 case elfcpp::R_POWERPC_UADDR16:
6309 case elfcpp::R_POWERPC_ADDR16_LO:
6310 case elfcpp::R_POWERPC_ADDR16_HI:
6311 case elfcpp::R_POWERPC_ADDR16_HA:
6312 case elfcpp::R_POWERPC_ADDR14:
6313 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6314 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6315 case elfcpp::R_POWERPC_REL32:
6316 case elfcpp::R_POWERPC_REL24:
6317 case elfcpp::R_POWERPC_TPREL16:
6318 case elfcpp::R_POWERPC_TPREL16_LO:
6319 case elfcpp::R_POWERPC_TPREL16_HI:
6320 case elfcpp::R_POWERPC_TPREL16_HA:
6321 return;
6322
6323 default:
6324 break;
6325 }
6326
6327 if (size == 64)
6328 {
6329 switch (r_type)
6330 {
6331 // These are the relocation types supported only on 64-bit.
6332 case elfcpp::R_PPC64_ADDR64:
6333 case elfcpp::R_PPC64_UADDR64:
6334 case elfcpp::R_PPC64_JMP_IREL:
6335 case elfcpp::R_PPC64_ADDR16_DS:
6336 case elfcpp::R_PPC64_ADDR16_LO_DS:
6337 case elfcpp::R_PPC64_ADDR16_HIGH:
6338 case elfcpp::R_PPC64_ADDR16_HIGHA:
6339 case elfcpp::R_PPC64_ADDR16_HIGHER:
6340 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6341 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6342 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6343 case elfcpp::R_PPC64_REL64:
6344 case elfcpp::R_POWERPC_ADDR30:
6345 case elfcpp::R_PPC64_TPREL16_DS:
6346 case elfcpp::R_PPC64_TPREL16_LO_DS:
6347 case elfcpp::R_PPC64_TPREL16_HIGH:
6348 case elfcpp::R_PPC64_TPREL16_HIGHA:
6349 case elfcpp::R_PPC64_TPREL16_HIGHER:
6350 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6351 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6352 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6353 return;
6354
6355 default:
6356 break;
6357 }
6358 }
6359 else
6360 {
6361 switch (r_type)
6362 {
6363 // These are the relocation types supported only on 32-bit.
6364 // ??? glibc ld.so doesn't need to support these.
6365 case elfcpp::R_POWERPC_DTPREL16:
6366 case elfcpp::R_POWERPC_DTPREL16_LO:
6367 case elfcpp::R_POWERPC_DTPREL16_HI:
6368 case elfcpp::R_POWERPC_DTPREL16_HA:
6369 return;
6370
6371 default:
6372 break;
6373 }
6374 }
6375
6376 // This prevents us from issuing more than one error per reloc
6377 // section. But we can still wind up issuing more than one
6378 // error per object file.
6379 if (this->issued_non_pic_error_)
6380 return;
6381 gold_assert(parameters->options().output_is_position_independent());
6382 object->error(_("requires unsupported dynamic reloc; "
6383 "recompile with -fPIC"));
6384 this->issued_non_pic_error_ = true;
6385 return;
6386 }
6387
6388 // Return whether we need to make a PLT entry for a relocation of the
6389 // given type against a STT_GNU_IFUNC symbol.
6390
6391 template<int size, bool big_endian>
6392 bool
6393 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6394 Target_powerpc<size, big_endian>* target,
6395 Sized_relobj_file<size, big_endian>* object,
6396 unsigned int r_type,
6397 bool report_err)
6398 {
6399 // In non-pic code any reference will resolve to the plt call stub
6400 // for the ifunc symbol.
6401 if ((size == 32 || target->abiversion() >= 2)
6402 && !parameters->options().output_is_position_independent())
6403 return true;
6404
6405 switch (r_type)
6406 {
6407 // Word size refs from data sections are OK, but don't need a PLT entry.
6408 case elfcpp::R_POWERPC_ADDR32:
6409 case elfcpp::R_POWERPC_UADDR32:
6410 if (size == 32)
6411 return false;
6412 break;
6413
6414 case elfcpp::R_PPC64_ADDR64:
6415 case elfcpp::R_PPC64_UADDR64:
6416 if (size == 64)
6417 return false;
6418 break;
6419
6420 // GOT refs are good, but also don't need a PLT entry.
6421 case elfcpp::R_POWERPC_GOT16:
6422 case elfcpp::R_POWERPC_GOT16_LO:
6423 case elfcpp::R_POWERPC_GOT16_HI:
6424 case elfcpp::R_POWERPC_GOT16_HA:
6425 case elfcpp::R_PPC64_GOT16_DS:
6426 case elfcpp::R_PPC64_GOT16_LO_DS:
6427 return false;
6428
6429 // Function calls are good, and these do need a PLT entry.
6430 case elfcpp::R_POWERPC_ADDR24:
6431 case elfcpp::R_POWERPC_ADDR14:
6432 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6433 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6434 case elfcpp::R_POWERPC_REL24:
6435 case elfcpp::R_PPC_PLTREL24:
6436 case elfcpp::R_POWERPC_REL14:
6437 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6438 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6439 return true;
6440
6441 default:
6442 break;
6443 }
6444
6445 // Anything else is a problem.
6446 // If we are building a static executable, the libc startup function
6447 // responsible for applying indirect function relocations is going
6448 // to complain about the reloc type.
6449 // If we are building a dynamic executable, we will have a text
6450 // relocation. The dynamic loader will set the text segment
6451 // writable and non-executable to apply text relocations. So we'll
6452 // segfault when trying to run the indirection function to resolve
6453 // the reloc.
6454 if (report_err)
6455 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6456 object->name().c_str(), r_type);
6457 return false;
6458 }
6459
6460 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6461 // reloc.
6462
6463 static bool
6464 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6465 {
6466 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6467 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6468 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6469 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6470 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6471 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6472 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6473 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6474 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6475 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6476 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6477 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6478 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6479 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6480 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6481 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6482 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6483 /* Exclude lfqu by testing reloc. If relocs are ever
6484 defined for the reduced D field in psq_lu then those
6485 will need testing too. */
6486 && r_type != elfcpp::R_PPC64_TOC16_LO
6487 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6488 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6489 && (insn & 1) == 0)
6490 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6491 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6492 /* Exclude stfqu. psq_stu as above for psq_lu. */
6493 && r_type != elfcpp::R_PPC64_TOC16_LO
6494 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6495 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6496 && (insn & 1) == 0));
6497 }
6498
6499 // Scan a relocation for a local symbol.
6500
6501 template<int size, bool big_endian>
6502 inline void
6503 Target_powerpc<size, big_endian>::Scan::local(
6504 Symbol_table* symtab,
6505 Layout* layout,
6506 Target_powerpc<size, big_endian>* target,
6507 Sized_relobj_file<size, big_endian>* object,
6508 unsigned int data_shndx,
6509 Output_section* output_section,
6510 const elfcpp::Rela<size, big_endian>& reloc,
6511 unsigned int r_type,
6512 const elfcpp::Sym<size, big_endian>& lsym,
6513 bool is_discarded)
6514 {
6515 this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6516
6517 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6518 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6519 {
6520 this->expect_tls_get_addr_call();
6521 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6522 if (tls_type != tls::TLSOPT_NONE)
6523 this->skip_next_tls_get_addr_call();
6524 }
6525 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6526 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6527 {
6528 this->expect_tls_get_addr_call();
6529 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6530 if (tls_type != tls::TLSOPT_NONE)
6531 this->skip_next_tls_get_addr_call();
6532 }
6533
6534 Powerpc_relobj<size, big_endian>* ppc_object
6535 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6536
6537 if (is_discarded)
6538 {
6539 if (size == 64
6540 && data_shndx == ppc_object->opd_shndx()
6541 && r_type == elfcpp::R_PPC64_ADDR64)
6542 ppc_object->set_opd_discard(reloc.get_r_offset());
6543 return;
6544 }
6545
6546 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6547 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6548 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6549 {
6550 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6551 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6552 r_type, r_sym, reloc.get_r_addend());
6553 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6554 }
6555
6556 switch (r_type)
6557 {
6558 case elfcpp::R_POWERPC_NONE:
6559 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6560 case elfcpp::R_POWERPC_GNU_VTENTRY:
6561 case elfcpp::R_POWERPC_TLS:
6562 case elfcpp::R_PPC64_ENTRY:
6563 break;
6564
6565 case elfcpp::R_PPC64_TOC:
6566 {
6567 Output_data_got_powerpc<size, big_endian>* got
6568 = target->got_section(symtab, layout);
6569 if (parameters->options().output_is_position_independent())
6570 {
6571 Address off = reloc.get_r_offset();
6572 if (size == 64
6573 && target->abiversion() < 2
6574 && data_shndx == ppc_object->opd_shndx()
6575 && ppc_object->get_opd_discard(off - 8))
6576 break;
6577
6578 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6579 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6580 rela_dyn->add_output_section_relative(got->output_section(),
6581 elfcpp::R_POWERPC_RELATIVE,
6582 output_section,
6583 object, data_shndx, off,
6584 symobj->toc_base_offset());
6585 }
6586 }
6587 break;
6588
6589 case elfcpp::R_PPC64_ADDR64:
6590 case elfcpp::R_PPC64_UADDR64:
6591 case elfcpp::R_POWERPC_ADDR32:
6592 case elfcpp::R_POWERPC_UADDR32:
6593 case elfcpp::R_POWERPC_ADDR24:
6594 case elfcpp::R_POWERPC_ADDR16:
6595 case elfcpp::R_POWERPC_ADDR16_LO:
6596 case elfcpp::R_POWERPC_ADDR16_HI:
6597 case elfcpp::R_POWERPC_ADDR16_HA:
6598 case elfcpp::R_POWERPC_UADDR16:
6599 case elfcpp::R_PPC64_ADDR16_HIGH:
6600 case elfcpp::R_PPC64_ADDR16_HIGHA:
6601 case elfcpp::R_PPC64_ADDR16_HIGHER:
6602 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6603 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6604 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6605 case elfcpp::R_PPC64_ADDR16_DS:
6606 case elfcpp::R_PPC64_ADDR16_LO_DS:
6607 case elfcpp::R_POWERPC_ADDR14:
6608 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6609 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6610 // If building a shared library (or a position-independent
6611 // executable), we need to create a dynamic relocation for
6612 // this location.
6613 if (parameters->options().output_is_position_independent()
6614 || (size == 64 && is_ifunc && target->abiversion() < 2))
6615 {
6616 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6617 is_ifunc);
6618 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6619 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6620 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6621 {
6622 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6623 : elfcpp::R_POWERPC_RELATIVE);
6624 rela_dyn->add_local_relative(object, r_sym, dynrel,
6625 output_section, data_shndx,
6626 reloc.get_r_offset(),
6627 reloc.get_r_addend(), false);
6628 }
6629 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6630 {
6631 check_non_pic(object, r_type);
6632 rela_dyn->add_local(object, r_sym, r_type, output_section,
6633 data_shndx, reloc.get_r_offset(),
6634 reloc.get_r_addend());
6635 }
6636 else
6637 {
6638 gold_assert(lsym.get_st_value() == 0);
6639 unsigned int shndx = lsym.get_st_shndx();
6640 bool is_ordinary;
6641 shndx = object->adjust_sym_shndx(r_sym, shndx,
6642 &is_ordinary);
6643 if (!is_ordinary)
6644 object->error(_("section symbol %u has bad shndx %u"),
6645 r_sym, shndx);
6646 else
6647 rela_dyn->add_local_section(object, shndx, r_type,
6648 output_section, data_shndx,
6649 reloc.get_r_offset());
6650 }
6651 }
6652 break;
6653
6654 case elfcpp::R_POWERPC_REL24:
6655 case elfcpp::R_PPC_PLTREL24:
6656 case elfcpp::R_PPC_LOCAL24PC:
6657 case elfcpp::R_POWERPC_REL14:
6658 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6659 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6660 if (!is_ifunc)
6661 {
6662 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6663 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6664 r_type, r_sym, reloc.get_r_addend());
6665 }
6666 break;
6667
6668 case elfcpp::R_PPC64_TOCSAVE:
6669 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6670 // caller has already saved r2 and thus a plt call stub need not
6671 // save r2.
6672 if (size == 64
6673 && target->mark_pltcall(ppc_object, data_shndx,
6674 reloc.get_r_offset() - 4, symtab))
6675 {
6676 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6677 unsigned int shndx = lsym.get_st_shndx();
6678 bool is_ordinary;
6679 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6680 if (!is_ordinary)
6681 object->error(_("tocsave symbol %u has bad shndx %u"),
6682 r_sym, shndx);
6683 else
6684 target->add_tocsave(ppc_object, shndx,
6685 lsym.get_st_value() + reloc.get_r_addend());
6686 }
6687 break;
6688
6689 case elfcpp::R_PPC64_REL64:
6690 case elfcpp::R_POWERPC_REL32:
6691 case elfcpp::R_POWERPC_REL16:
6692 case elfcpp::R_POWERPC_REL16_LO:
6693 case elfcpp::R_POWERPC_REL16_HI:
6694 case elfcpp::R_POWERPC_REL16_HA:
6695 case elfcpp::R_POWERPC_REL16DX_HA:
6696 case elfcpp::R_POWERPC_SECTOFF:
6697 case elfcpp::R_POWERPC_SECTOFF_LO:
6698 case elfcpp::R_POWERPC_SECTOFF_HI:
6699 case elfcpp::R_POWERPC_SECTOFF_HA:
6700 case elfcpp::R_PPC64_SECTOFF_DS:
6701 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6702 case elfcpp::R_POWERPC_TPREL16:
6703 case elfcpp::R_POWERPC_TPREL16_LO:
6704 case elfcpp::R_POWERPC_TPREL16_HI:
6705 case elfcpp::R_POWERPC_TPREL16_HA:
6706 case elfcpp::R_PPC64_TPREL16_DS:
6707 case elfcpp::R_PPC64_TPREL16_LO_DS:
6708 case elfcpp::R_PPC64_TPREL16_HIGH:
6709 case elfcpp::R_PPC64_TPREL16_HIGHA:
6710 case elfcpp::R_PPC64_TPREL16_HIGHER:
6711 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6712 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6713 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6714 case elfcpp::R_POWERPC_DTPREL16:
6715 case elfcpp::R_POWERPC_DTPREL16_LO:
6716 case elfcpp::R_POWERPC_DTPREL16_HI:
6717 case elfcpp::R_POWERPC_DTPREL16_HA:
6718 case elfcpp::R_PPC64_DTPREL16_DS:
6719 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6720 case elfcpp::R_PPC64_DTPREL16_HIGH:
6721 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6722 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6723 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6724 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6725 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6726 case elfcpp::R_PPC64_TLSGD:
6727 case elfcpp::R_PPC64_TLSLD:
6728 case elfcpp::R_PPC64_ADDR64_LOCAL:
6729 break;
6730
6731 case elfcpp::R_POWERPC_GOT16:
6732 case elfcpp::R_POWERPC_GOT16_LO:
6733 case elfcpp::R_POWERPC_GOT16_HI:
6734 case elfcpp::R_POWERPC_GOT16_HA:
6735 case elfcpp::R_PPC64_GOT16_DS:
6736 case elfcpp::R_PPC64_GOT16_LO_DS:
6737 {
6738 // The symbol requires a GOT entry.
6739 Output_data_got_powerpc<size, big_endian>* got
6740 = target->got_section(symtab, layout);
6741 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6742
6743 if (!parameters->options().output_is_position_independent())
6744 {
6745 if (is_ifunc
6746 && (size == 32 || target->abiversion() >= 2))
6747 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6748 else
6749 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6750 }
6751 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6752 {
6753 // If we are generating a shared object or a pie, this
6754 // symbol's GOT entry will be set by a dynamic relocation.
6755 unsigned int off;
6756 off = got->add_constant(0);
6757 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6758
6759 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6760 is_ifunc);
6761 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6762 : elfcpp::R_POWERPC_RELATIVE);
6763 rela_dyn->add_local_relative(object, r_sym, dynrel,
6764 got, off, 0, false);
6765 }
6766 }
6767 break;
6768
6769 case elfcpp::R_PPC64_TOC16:
6770 case elfcpp::R_PPC64_TOC16_LO:
6771 case elfcpp::R_PPC64_TOC16_HI:
6772 case elfcpp::R_PPC64_TOC16_HA:
6773 case elfcpp::R_PPC64_TOC16_DS:
6774 case elfcpp::R_PPC64_TOC16_LO_DS:
6775 // We need a GOT section.
6776 target->got_section(symtab, layout);
6777 break;
6778
6779 case elfcpp::R_POWERPC_GOT_TLSGD16:
6780 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6781 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6782 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6783 {
6784 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6785 if (tls_type == tls::TLSOPT_NONE)
6786 {
6787 Output_data_got_powerpc<size, big_endian>* got
6788 = target->got_section(symtab, layout);
6789 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6790 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6791 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6792 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6793 }
6794 else if (tls_type == tls::TLSOPT_TO_LE)
6795 {
6796 // no GOT relocs needed for Local Exec.
6797 }
6798 else
6799 gold_unreachable();
6800 }
6801 break;
6802
6803 case elfcpp::R_POWERPC_GOT_TLSLD16:
6804 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6805 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6806 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6807 {
6808 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6809 if (tls_type == tls::TLSOPT_NONE)
6810 target->tlsld_got_offset(symtab, layout, object);
6811 else if (tls_type == tls::TLSOPT_TO_LE)
6812 {
6813 // no GOT relocs needed for Local Exec.
6814 if (parameters->options().emit_relocs())
6815 {
6816 Output_section* os = layout->tls_segment()->first_section();
6817 gold_assert(os != NULL);
6818 os->set_needs_symtab_index();
6819 }
6820 }
6821 else
6822 gold_unreachable();
6823 }
6824 break;
6825
6826 case elfcpp::R_POWERPC_GOT_DTPREL16:
6827 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6828 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6829 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6830 {
6831 Output_data_got_powerpc<size, big_endian>* got
6832 = target->got_section(symtab, layout);
6833 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6834 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6835 }
6836 break;
6837
6838 case elfcpp::R_POWERPC_GOT_TPREL16:
6839 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6840 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6841 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6842 {
6843 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6844 if (tls_type == tls::TLSOPT_NONE)
6845 {
6846 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6847 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6848 {
6849 Output_data_got_powerpc<size, big_endian>* got
6850 = target->got_section(symtab, layout);
6851 unsigned int off = got->add_constant(0);
6852 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6853
6854 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6855 rela_dyn->add_symbolless_local_addend(object, r_sym,
6856 elfcpp::R_POWERPC_TPREL,
6857 got, off, 0);
6858 }
6859 }
6860 else if (tls_type == tls::TLSOPT_TO_LE)
6861 {
6862 // no GOT relocs needed for Local Exec.
6863 }
6864 else
6865 gold_unreachable();
6866 }
6867 break;
6868
6869 default:
6870 unsupported_reloc_local(object, r_type);
6871 break;
6872 }
6873
6874 if (size == 64
6875 && parameters->options().toc_optimize())
6876 {
6877 if (data_shndx == ppc_object->toc_shndx())
6878 {
6879 bool ok = true;
6880 if (r_type != elfcpp::R_PPC64_ADDR64
6881 || (is_ifunc && target->abiversion() < 2))
6882 ok = false;
6883 else if (parameters->options().output_is_position_independent())
6884 {
6885 if (is_ifunc)
6886 ok = false;
6887 else
6888 {
6889 unsigned int shndx = lsym.get_st_shndx();
6890 if (shndx >= elfcpp::SHN_LORESERVE
6891 && shndx != elfcpp::SHN_XINDEX)
6892 ok = false;
6893 }
6894 }
6895 if (!ok)
6896 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6897 }
6898
6899 enum {no_check, check_lo, check_ha} insn_check;
6900 switch (r_type)
6901 {
6902 default:
6903 insn_check = no_check;
6904 break;
6905
6906 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6907 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6908 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6909 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6910 case elfcpp::R_POWERPC_GOT16_HA:
6911 case elfcpp::R_PPC64_TOC16_HA:
6912 insn_check = check_ha;
6913 break;
6914
6915 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6916 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6917 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6918 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6919 case elfcpp::R_POWERPC_GOT16_LO:
6920 case elfcpp::R_PPC64_GOT16_LO_DS:
6921 case elfcpp::R_PPC64_TOC16_LO:
6922 case elfcpp::R_PPC64_TOC16_LO_DS:
6923 insn_check = check_lo;
6924 break;
6925 }
6926
6927 section_size_type slen;
6928 const unsigned char* view = NULL;
6929 if (insn_check != no_check)
6930 {
6931 view = ppc_object->section_contents(data_shndx, &slen, false);
6932 section_size_type off =
6933 convert_to_section_size_type(reloc.get_r_offset()) & -4;
6934 if (off < slen)
6935 {
6936 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6937 if (insn_check == check_lo
6938 ? !ok_lo_toc_insn(insn, r_type)
6939 : ((insn & ((0x3f << 26) | 0x1f << 16))
6940 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6941 {
6942 ppc_object->set_no_toc_opt();
6943 gold_warning(_("%s: toc optimization is not supported "
6944 "for %#08x instruction"),
6945 ppc_object->name().c_str(), insn);
6946 }
6947 }
6948 }
6949
6950 switch (r_type)
6951 {
6952 default:
6953 break;
6954 case elfcpp::R_PPC64_TOC16:
6955 case elfcpp::R_PPC64_TOC16_LO:
6956 case elfcpp::R_PPC64_TOC16_HI:
6957 case elfcpp::R_PPC64_TOC16_HA:
6958 case elfcpp::R_PPC64_TOC16_DS:
6959 case elfcpp::R_PPC64_TOC16_LO_DS:
6960 unsigned int shndx = lsym.get_st_shndx();
6961 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6962 bool is_ordinary;
6963 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6964 if (is_ordinary && shndx == ppc_object->toc_shndx())
6965 {
6966 Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
6967 if (dst_off < ppc_object->section_size(shndx))
6968 {
6969 bool ok = false;
6970 if (r_type == elfcpp::R_PPC64_TOC16_HA)
6971 ok = true;
6972 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6973 {
6974 // Need to check that the insn is a ld
6975 if (!view)
6976 view = ppc_object->section_contents(data_shndx,
6977 &slen,
6978 false);
6979 section_size_type off =
6980 (convert_to_section_size_type(reloc.get_r_offset())
6981 + (big_endian ? -2 : 3));
6982 if (off < slen
6983 && (view[off] & (0x3f << 2)) == 58u << 2)
6984 ok = true;
6985 }
6986 if (!ok)
6987 ppc_object->set_no_toc_opt(dst_off);
6988 }
6989 }
6990 break;
6991 }
6992 }
6993
6994 if (size == 32)
6995 {
6996 switch (r_type)
6997 {
6998 case elfcpp::R_POWERPC_REL32:
6999 if (ppc_object->got2_shndx() != 0
7000 && parameters->options().output_is_position_independent())
7001 {
7002 unsigned int shndx = lsym.get_st_shndx();
7003 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7004 bool is_ordinary;
7005 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7006 if (is_ordinary && shndx == ppc_object->got2_shndx()
7007 && (ppc_object->section_flags(data_shndx)
7008 & elfcpp::SHF_EXECINSTR) != 0)
7009 gold_error(_("%s: unsupported -mbss-plt code"),
7010 ppc_object->name().c_str());
7011 }
7012 break;
7013 default:
7014 break;
7015 }
7016 }
7017
7018 switch (r_type)
7019 {
7020 case elfcpp::R_POWERPC_GOT_TLSLD16:
7021 case elfcpp::R_POWERPC_GOT_TLSGD16:
7022 case elfcpp::R_POWERPC_GOT_TPREL16:
7023 case elfcpp::R_POWERPC_GOT_DTPREL16:
7024 case elfcpp::R_POWERPC_GOT16:
7025 case elfcpp::R_PPC64_GOT16_DS:
7026 case elfcpp::R_PPC64_TOC16:
7027 case elfcpp::R_PPC64_TOC16_DS:
7028 ppc_object->set_has_small_toc_reloc();
7029 default:
7030 break;
7031 }
7032 }
7033
7034 // Report an unsupported relocation against a global symbol.
7035
7036 template<int size, bool big_endian>
7037 void
7038 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7039 Sized_relobj_file<size, big_endian>* object,
7040 unsigned int r_type,
7041 Symbol* gsym)
7042 {
7043 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7044 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7045 }
7046
7047 // Scan a relocation for a global symbol.
7048
7049 template<int size, bool big_endian>
7050 inline void
7051 Target_powerpc<size, big_endian>::Scan::global(
7052 Symbol_table* symtab,
7053 Layout* layout,
7054 Target_powerpc<size, big_endian>* target,
7055 Sized_relobj_file<size, big_endian>* object,
7056 unsigned int data_shndx,
7057 Output_section* output_section,
7058 const elfcpp::Rela<size, big_endian>& reloc,
7059 unsigned int r_type,
7060 Symbol* gsym)
7061 {
7062 if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7063 == Track_tls::SKIP)
7064 return;
7065
7066 if (target->replace_tls_get_addr(gsym))
7067 // Change a __tls_get_addr reference to __tls_get_addr_opt
7068 // so dynamic relocs are emitted against the latter symbol.
7069 gsym = target->tls_get_addr_opt();
7070
7071 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7072 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7073 {
7074 this->expect_tls_get_addr_call();
7075 const bool final = gsym->final_value_is_known();
7076 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7077 if (tls_type != tls::TLSOPT_NONE)
7078 this->skip_next_tls_get_addr_call();
7079 }
7080 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7081 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7082 {
7083 this->expect_tls_get_addr_call();
7084 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7085 if (tls_type != tls::TLSOPT_NONE)
7086 this->skip_next_tls_get_addr_call();
7087 }
7088
7089 Powerpc_relobj<size, big_endian>* ppc_object
7090 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7091
7092 // A STT_GNU_IFUNC symbol may require a PLT entry.
7093 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7094 bool pushed_ifunc = false;
7095 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7096 {
7097 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7098 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7099 r_type, r_sym, reloc.get_r_addend());
7100 target->make_plt_entry(symtab, layout, gsym);
7101 pushed_ifunc = true;
7102 }
7103
7104 switch (r_type)
7105 {
7106 case elfcpp::R_POWERPC_NONE:
7107 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7108 case elfcpp::R_POWERPC_GNU_VTENTRY:
7109 case elfcpp::R_PPC_LOCAL24PC:
7110 case elfcpp::R_POWERPC_TLS:
7111 case elfcpp::R_PPC64_ENTRY:
7112 break;
7113
7114 case elfcpp::R_PPC64_TOC:
7115 {
7116 Output_data_got_powerpc<size, big_endian>* got
7117 = target->got_section(symtab, layout);
7118 if (parameters->options().output_is_position_independent())
7119 {
7120 Address off = reloc.get_r_offset();
7121 if (size == 64
7122 && data_shndx == ppc_object->opd_shndx()
7123 && ppc_object->get_opd_discard(off - 8))
7124 break;
7125
7126 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7127 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7128 if (data_shndx != ppc_object->opd_shndx())
7129 symobj = static_cast
7130 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7131 rela_dyn->add_output_section_relative(got->output_section(),
7132 elfcpp::R_POWERPC_RELATIVE,
7133 output_section,
7134 object, data_shndx, off,
7135 symobj->toc_base_offset());
7136 }
7137 }
7138 break;
7139
7140 case elfcpp::R_PPC64_ADDR64:
7141 if (size == 64
7142 && target->abiversion() < 2
7143 && data_shndx == ppc_object->opd_shndx()
7144 && (gsym->is_defined_in_discarded_section()
7145 || gsym->object() != object))
7146 {
7147 ppc_object->set_opd_discard(reloc.get_r_offset());
7148 break;
7149 }
7150 // Fall through.
7151 case elfcpp::R_PPC64_UADDR64:
7152 case elfcpp::R_POWERPC_ADDR32:
7153 case elfcpp::R_POWERPC_UADDR32:
7154 case elfcpp::R_POWERPC_ADDR24:
7155 case elfcpp::R_POWERPC_ADDR16:
7156 case elfcpp::R_POWERPC_ADDR16_LO:
7157 case elfcpp::R_POWERPC_ADDR16_HI:
7158 case elfcpp::R_POWERPC_ADDR16_HA:
7159 case elfcpp::R_POWERPC_UADDR16:
7160 case elfcpp::R_PPC64_ADDR16_HIGH:
7161 case elfcpp::R_PPC64_ADDR16_HIGHA:
7162 case elfcpp::R_PPC64_ADDR16_HIGHER:
7163 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7164 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7165 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7166 case elfcpp::R_PPC64_ADDR16_DS:
7167 case elfcpp::R_PPC64_ADDR16_LO_DS:
7168 case elfcpp::R_POWERPC_ADDR14:
7169 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7170 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7171 {
7172 // Make a PLT entry if necessary.
7173 if (gsym->needs_plt_entry())
7174 {
7175 // Since this is not a PC-relative relocation, we may be
7176 // taking the address of a function. In that case we need to
7177 // set the entry in the dynamic symbol table to the address of
7178 // the PLT call stub.
7179 bool need_ifunc_plt = false;
7180 if ((size == 32 || target->abiversion() >= 2)
7181 && gsym->is_from_dynobj()
7182 && !parameters->options().output_is_position_independent())
7183 {
7184 gsym->set_needs_dynsym_value();
7185 need_ifunc_plt = true;
7186 }
7187 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7188 {
7189 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7190 target->push_branch(ppc_object, data_shndx,
7191 reloc.get_r_offset(), r_type, r_sym,
7192 reloc.get_r_addend());
7193 target->make_plt_entry(symtab, layout, gsym);
7194 }
7195 }
7196 // Make a dynamic relocation if necessary.
7197 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7198 || (size == 64 && is_ifunc && target->abiversion() < 2))
7199 {
7200 if (!parameters->options().output_is_position_independent()
7201 && gsym->may_need_copy_reloc())
7202 {
7203 target->copy_reloc(symtab, layout, object,
7204 data_shndx, output_section, gsym, reloc);
7205 }
7206 else if ((((size == 32
7207 && r_type == elfcpp::R_POWERPC_ADDR32)
7208 || (size == 64
7209 && r_type == elfcpp::R_PPC64_ADDR64
7210 && target->abiversion() >= 2))
7211 && gsym->can_use_relative_reloc(false)
7212 && !(gsym->visibility() == elfcpp::STV_PROTECTED
7213 && parameters->options().shared()))
7214 || (size == 64
7215 && r_type == elfcpp::R_PPC64_ADDR64
7216 && target->abiversion() < 2
7217 && (gsym->can_use_relative_reloc(false)
7218 || data_shndx == ppc_object->opd_shndx())))
7219 {
7220 Reloc_section* rela_dyn
7221 = target->rela_dyn_section(symtab, layout, is_ifunc);
7222 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7223 : elfcpp::R_POWERPC_RELATIVE);
7224 rela_dyn->add_symbolless_global_addend(
7225 gsym, dynrel, output_section, object, data_shndx,
7226 reloc.get_r_offset(), reloc.get_r_addend());
7227 }
7228 else
7229 {
7230 Reloc_section* rela_dyn
7231 = target->rela_dyn_section(symtab, layout, is_ifunc);
7232 check_non_pic(object, r_type);
7233 rela_dyn->add_global(gsym, r_type, output_section,
7234 object, data_shndx,
7235 reloc.get_r_offset(),
7236 reloc.get_r_addend());
7237
7238 if (size == 64
7239 && parameters->options().toc_optimize()
7240 && data_shndx == ppc_object->toc_shndx())
7241 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7242 }
7243 }
7244 }
7245 break;
7246
7247 case elfcpp::R_PPC_PLTREL24:
7248 case elfcpp::R_POWERPC_REL24:
7249 if (!is_ifunc)
7250 {
7251 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7252 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7253 r_type, r_sym, reloc.get_r_addend());
7254 if (gsym->needs_plt_entry()
7255 || (!gsym->final_value_is_known()
7256 && (gsym->is_undefined()
7257 || gsym->is_from_dynobj()
7258 || gsym->is_preemptible())))
7259 target->make_plt_entry(symtab, layout, gsym);
7260 }
7261 // Fall through.
7262
7263 case elfcpp::R_PPC64_REL64:
7264 case elfcpp::R_POWERPC_REL32:
7265 // Make a dynamic relocation if necessary.
7266 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7267 {
7268 if (!parameters->options().output_is_position_independent()
7269 && gsym->may_need_copy_reloc())
7270 {
7271 target->copy_reloc(symtab, layout, object,
7272 data_shndx, output_section, gsym,
7273 reloc);
7274 }
7275 else
7276 {
7277 Reloc_section* rela_dyn
7278 = target->rela_dyn_section(symtab, layout, is_ifunc);
7279 check_non_pic(object, r_type);
7280 rela_dyn->add_global(gsym, r_type, output_section, object,
7281 data_shndx, reloc.get_r_offset(),
7282 reloc.get_r_addend());
7283 }
7284 }
7285 break;
7286
7287 case elfcpp::R_POWERPC_REL14:
7288 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7289 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7290 if (!is_ifunc)
7291 {
7292 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7293 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7294 r_type, r_sym, reloc.get_r_addend());
7295 }
7296 break;
7297
7298 case elfcpp::R_PPC64_TOCSAVE:
7299 // R_PPC64_TOCSAVE follows a call instruction to indicate the
7300 // caller has already saved r2 and thus a plt call stub need not
7301 // save r2.
7302 if (size == 64
7303 && target->mark_pltcall(ppc_object, data_shndx,
7304 reloc.get_r_offset() - 4, symtab))
7305 {
7306 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7307 bool is_ordinary;
7308 unsigned int shndx = gsym->shndx(&is_ordinary);
7309 if (!is_ordinary)
7310 object->error(_("tocsave symbol %u has bad shndx %u"),
7311 r_sym, shndx);
7312 else
7313 {
7314 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7315 target->add_tocsave(ppc_object, shndx,
7316 sym->value() + reloc.get_r_addend());
7317 }
7318 }
7319 break;
7320
7321 case elfcpp::R_POWERPC_REL16:
7322 case elfcpp::R_POWERPC_REL16_LO:
7323 case elfcpp::R_POWERPC_REL16_HI:
7324 case elfcpp::R_POWERPC_REL16_HA:
7325 case elfcpp::R_POWERPC_REL16DX_HA:
7326 case elfcpp::R_POWERPC_SECTOFF:
7327 case elfcpp::R_POWERPC_SECTOFF_LO:
7328 case elfcpp::R_POWERPC_SECTOFF_HI:
7329 case elfcpp::R_POWERPC_SECTOFF_HA:
7330 case elfcpp::R_PPC64_SECTOFF_DS:
7331 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7332 case elfcpp::R_POWERPC_TPREL16:
7333 case elfcpp::R_POWERPC_TPREL16_LO:
7334 case elfcpp::R_POWERPC_TPREL16_HI:
7335 case elfcpp::R_POWERPC_TPREL16_HA:
7336 case elfcpp::R_PPC64_TPREL16_DS:
7337 case elfcpp::R_PPC64_TPREL16_LO_DS:
7338 case elfcpp::R_PPC64_TPREL16_HIGH:
7339 case elfcpp::R_PPC64_TPREL16_HIGHA:
7340 case elfcpp::R_PPC64_TPREL16_HIGHER:
7341 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7342 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7343 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7344 case elfcpp::R_POWERPC_DTPREL16:
7345 case elfcpp::R_POWERPC_DTPREL16_LO:
7346 case elfcpp::R_POWERPC_DTPREL16_HI:
7347 case elfcpp::R_POWERPC_DTPREL16_HA:
7348 case elfcpp::R_PPC64_DTPREL16_DS:
7349 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7350 case elfcpp::R_PPC64_DTPREL16_HIGH:
7351 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7352 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7353 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7354 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7355 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7356 case elfcpp::R_PPC64_TLSGD:
7357 case elfcpp::R_PPC64_TLSLD:
7358 case elfcpp::R_PPC64_ADDR64_LOCAL:
7359 break;
7360
7361 case elfcpp::R_POWERPC_GOT16:
7362 case elfcpp::R_POWERPC_GOT16_LO:
7363 case elfcpp::R_POWERPC_GOT16_HI:
7364 case elfcpp::R_POWERPC_GOT16_HA:
7365 case elfcpp::R_PPC64_GOT16_DS:
7366 case elfcpp::R_PPC64_GOT16_LO_DS:
7367 {
7368 // The symbol requires a GOT entry.
7369 Output_data_got_powerpc<size, big_endian>* got;
7370
7371 got = target->got_section(symtab, layout);
7372 if (gsym->final_value_is_known())
7373 {
7374 if (is_ifunc
7375 && (size == 32 || target->abiversion() >= 2))
7376 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7377 else
7378 got->add_global(gsym, GOT_TYPE_STANDARD);
7379 }
7380 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7381 {
7382 // If we are generating a shared object or a pie, this
7383 // symbol's GOT entry will be set by a dynamic relocation.
7384 unsigned int off = got->add_constant(0);
7385 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7386
7387 Reloc_section* rela_dyn
7388 = target->rela_dyn_section(symtab, layout, is_ifunc);
7389
7390 if (gsym->can_use_relative_reloc(false)
7391 && !((size == 32
7392 || target->abiversion() >= 2)
7393 && gsym->visibility() == elfcpp::STV_PROTECTED
7394 && parameters->options().shared()))
7395 {
7396 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7397 : elfcpp::R_POWERPC_RELATIVE);
7398 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7399 }
7400 else
7401 {
7402 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7403 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7404 }
7405 }
7406 }
7407 break;
7408
7409 case elfcpp::R_PPC64_TOC16:
7410 case elfcpp::R_PPC64_TOC16_LO:
7411 case elfcpp::R_PPC64_TOC16_HI:
7412 case elfcpp::R_PPC64_TOC16_HA:
7413 case elfcpp::R_PPC64_TOC16_DS:
7414 case elfcpp::R_PPC64_TOC16_LO_DS:
7415 // We need a GOT section.
7416 target->got_section(symtab, layout);
7417 break;
7418
7419 case elfcpp::R_POWERPC_GOT_TLSGD16:
7420 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7421 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7422 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7423 {
7424 const bool final = gsym->final_value_is_known();
7425 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7426 if (tls_type == tls::TLSOPT_NONE)
7427 {
7428 Output_data_got_powerpc<size, big_endian>* got
7429 = target->got_section(symtab, layout);
7430 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7431 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7432 elfcpp::R_POWERPC_DTPMOD,
7433 elfcpp::R_POWERPC_DTPREL);
7434 }
7435 else if (tls_type == tls::TLSOPT_TO_IE)
7436 {
7437 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7438 {
7439 Output_data_got_powerpc<size, big_endian>* got
7440 = target->got_section(symtab, layout);
7441 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7442 if (gsym->is_undefined()
7443 || gsym->is_from_dynobj())
7444 {
7445 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7446 elfcpp::R_POWERPC_TPREL);
7447 }
7448 else
7449 {
7450 unsigned int off = got->add_constant(0);
7451 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7452 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7453 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7454 got, off, 0);
7455 }
7456 }
7457 }
7458 else if (tls_type == tls::TLSOPT_TO_LE)
7459 {
7460 // no GOT relocs needed for Local Exec.
7461 }
7462 else
7463 gold_unreachable();
7464 }
7465 break;
7466
7467 case elfcpp::R_POWERPC_GOT_TLSLD16:
7468 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7469 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7470 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7471 {
7472 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7473 if (tls_type == tls::TLSOPT_NONE)
7474 target->tlsld_got_offset(symtab, layout, object);
7475 else if (tls_type == tls::TLSOPT_TO_LE)
7476 {
7477 // no GOT relocs needed for Local Exec.
7478 if (parameters->options().emit_relocs())
7479 {
7480 Output_section* os = layout->tls_segment()->first_section();
7481 gold_assert(os != NULL);
7482 os->set_needs_symtab_index();
7483 }
7484 }
7485 else
7486 gold_unreachable();
7487 }
7488 break;
7489
7490 case elfcpp::R_POWERPC_GOT_DTPREL16:
7491 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7492 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7493 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7494 {
7495 Output_data_got_powerpc<size, big_endian>* got
7496 = target->got_section(symtab, layout);
7497 if (!gsym->final_value_is_known()
7498 && (gsym->is_from_dynobj()
7499 || gsym->is_undefined()
7500 || gsym->is_preemptible()))
7501 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7502 target->rela_dyn_section(layout),
7503 elfcpp::R_POWERPC_DTPREL);
7504 else
7505 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7506 }
7507 break;
7508
7509 case elfcpp::R_POWERPC_GOT_TPREL16:
7510 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7511 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7512 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7513 {
7514 const bool final = gsym->final_value_is_known();
7515 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7516 if (tls_type == tls::TLSOPT_NONE)
7517 {
7518 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7519 {
7520 Output_data_got_powerpc<size, big_endian>* got
7521 = target->got_section(symtab, layout);
7522 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7523 if (gsym->is_undefined()
7524 || gsym->is_from_dynobj())
7525 {
7526 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7527 elfcpp::R_POWERPC_TPREL);
7528 }
7529 else
7530 {
7531 unsigned int off = got->add_constant(0);
7532 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7533 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7534 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7535 got, off, 0);
7536 }
7537 }
7538 }
7539 else if (tls_type == tls::TLSOPT_TO_LE)
7540 {
7541 // no GOT relocs needed for Local Exec.
7542 }
7543 else
7544 gold_unreachable();
7545 }
7546 break;
7547
7548 default:
7549 unsupported_reloc_global(object, r_type, gsym);
7550 break;
7551 }
7552
7553 if (size == 64
7554 && parameters->options().toc_optimize())
7555 {
7556 if (data_shndx == ppc_object->toc_shndx())
7557 {
7558 bool ok = true;
7559 if (r_type != elfcpp::R_PPC64_ADDR64
7560 || (is_ifunc && target->abiversion() < 2))
7561 ok = false;
7562 else if (parameters->options().output_is_position_independent()
7563 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7564 ok = false;
7565 if (!ok)
7566 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7567 }
7568
7569 enum {no_check, check_lo, check_ha} insn_check;
7570 switch (r_type)
7571 {
7572 default:
7573 insn_check = no_check;
7574 break;
7575
7576 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7577 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7578 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7579 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7580 case elfcpp::R_POWERPC_GOT16_HA:
7581 case elfcpp::R_PPC64_TOC16_HA:
7582 insn_check = check_ha;
7583 break;
7584
7585 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7586 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7587 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7588 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7589 case elfcpp::R_POWERPC_GOT16_LO:
7590 case elfcpp::R_PPC64_GOT16_LO_DS:
7591 case elfcpp::R_PPC64_TOC16_LO:
7592 case elfcpp::R_PPC64_TOC16_LO_DS:
7593 insn_check = check_lo;
7594 break;
7595 }
7596
7597 section_size_type slen;
7598 const unsigned char* view = NULL;
7599 if (insn_check != no_check)
7600 {
7601 view = ppc_object->section_contents(data_shndx, &slen, false);
7602 section_size_type off =
7603 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7604 if (off < slen)
7605 {
7606 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7607 if (insn_check == check_lo
7608 ? !ok_lo_toc_insn(insn, r_type)
7609 : ((insn & ((0x3f << 26) | 0x1f << 16))
7610 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7611 {
7612 ppc_object->set_no_toc_opt();
7613 gold_warning(_("%s: toc optimization is not supported "
7614 "for %#08x instruction"),
7615 ppc_object->name().c_str(), insn);
7616 }
7617 }
7618 }
7619
7620 switch (r_type)
7621 {
7622 default:
7623 break;
7624 case elfcpp::R_PPC64_TOC16:
7625 case elfcpp::R_PPC64_TOC16_LO:
7626 case elfcpp::R_PPC64_TOC16_HI:
7627 case elfcpp::R_PPC64_TOC16_HA:
7628 case elfcpp::R_PPC64_TOC16_DS:
7629 case elfcpp::R_PPC64_TOC16_LO_DS:
7630 if (gsym->source() == Symbol::FROM_OBJECT
7631 && !gsym->object()->is_dynamic())
7632 {
7633 Powerpc_relobj<size, big_endian>* sym_object
7634 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7635 bool is_ordinary;
7636 unsigned int shndx = gsym->shndx(&is_ordinary);
7637 if (shndx == sym_object->toc_shndx())
7638 {
7639 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7640 Address dst_off = sym->value() + reloc.get_r_addend();
7641 if (dst_off < sym_object->section_size(shndx))
7642 {
7643 bool ok = false;
7644 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7645 ok = true;
7646 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7647 {
7648 // Need to check that the insn is a ld
7649 if (!view)
7650 view = ppc_object->section_contents(data_shndx,
7651 &slen,
7652 false);
7653 section_size_type off =
7654 (convert_to_section_size_type(reloc.get_r_offset())
7655 + (big_endian ? -2 : 3));
7656 if (off < slen
7657 && (view[off] & (0x3f << 2)) == (58u << 2))
7658 ok = true;
7659 }
7660 if (!ok)
7661 sym_object->set_no_toc_opt(dst_off);
7662 }
7663 }
7664 }
7665 break;
7666 }
7667 }
7668
7669 if (size == 32)
7670 {
7671 switch (r_type)
7672 {
7673 case elfcpp::R_PPC_LOCAL24PC:
7674 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7675 gold_error(_("%s: unsupported -mbss-plt code"),
7676 ppc_object->name().c_str());
7677 break;
7678 default:
7679 break;
7680 }
7681 }
7682
7683 switch (r_type)
7684 {
7685 case elfcpp::R_POWERPC_GOT_TLSLD16:
7686 case elfcpp::R_POWERPC_GOT_TLSGD16:
7687 case elfcpp::R_POWERPC_GOT_TPREL16:
7688 case elfcpp::R_POWERPC_GOT_DTPREL16:
7689 case elfcpp::R_POWERPC_GOT16:
7690 case elfcpp::R_PPC64_GOT16_DS:
7691 case elfcpp::R_PPC64_TOC16:
7692 case elfcpp::R_PPC64_TOC16_DS:
7693 ppc_object->set_has_small_toc_reloc();
7694 default:
7695 break;
7696 }
7697 }
7698
7699 // Process relocations for gc.
7700
7701 template<int size, bool big_endian>
7702 void
7703 Target_powerpc<size, big_endian>::gc_process_relocs(
7704 Symbol_table* symtab,
7705 Layout* layout,
7706 Sized_relobj_file<size, big_endian>* object,
7707 unsigned int data_shndx,
7708 unsigned int,
7709 const unsigned char* prelocs,
7710 size_t reloc_count,
7711 Output_section* output_section,
7712 bool needs_special_offset_handling,
7713 size_t local_symbol_count,
7714 const unsigned char* plocal_symbols)
7715 {
7716 typedef Target_powerpc<size, big_endian> Powerpc;
7717 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7718 Classify_reloc;
7719
7720 Powerpc_relobj<size, big_endian>* ppc_object
7721 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7722 if (size == 64)
7723 ppc_object->set_opd_valid();
7724 if (size == 64 && data_shndx == ppc_object->opd_shndx())
7725 {
7726 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7727 for (p = ppc_object->access_from_map()->begin();
7728 p != ppc_object->access_from_map()->end();
7729 ++p)
7730 {
7731 Address dst_off = p->first;
7732 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7733 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7734 for (s = p->second.begin(); s != p->second.end(); ++s)
7735 {
7736 Relobj* src_obj = s->first;
7737 unsigned int src_indx = s->second;
7738 symtab->gc()->add_reference(src_obj, src_indx,
7739 ppc_object, dst_indx);
7740 }
7741 p->second.clear();
7742 }
7743 ppc_object->access_from_map()->clear();
7744 ppc_object->process_gc_mark(symtab);
7745 // Don't look at .opd relocs as .opd will reference everything.
7746 return;
7747 }
7748
7749 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7750 symtab,
7751 layout,
7752 this,
7753 object,
7754 data_shndx,
7755 prelocs,
7756 reloc_count,
7757 output_section,
7758 needs_special_offset_handling,
7759 local_symbol_count,
7760 plocal_symbols);
7761 }
7762
7763 // Handle target specific gc actions when adding a gc reference from
7764 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7765 // and DST_OFF. For powerpc64, this adds a referenc to the code
7766 // section of a function descriptor.
7767
7768 template<int size, bool big_endian>
7769 void
7770 Target_powerpc<size, big_endian>::do_gc_add_reference(
7771 Symbol_table* symtab,
7772 Relobj* src_obj,
7773 unsigned int src_shndx,
7774 Relobj* dst_obj,
7775 unsigned int dst_shndx,
7776 Address dst_off) const
7777 {
7778 if (size != 64 || dst_obj->is_dynamic())
7779 return;
7780
7781 Powerpc_relobj<size, big_endian>* ppc_object
7782 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7783 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7784 {
7785 if (ppc_object->opd_valid())
7786 {
7787 dst_shndx = ppc_object->get_opd_ent(dst_off);
7788 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7789 }
7790 else
7791 {
7792 // If we haven't run scan_opd_relocs, we must delay
7793 // processing this function descriptor reference.
7794 ppc_object->add_reference(src_obj, src_shndx, dst_off);
7795 }
7796 }
7797 }
7798
7799 // Add any special sections for this symbol to the gc work list.
7800 // For powerpc64, this adds the code section of a function
7801 // descriptor.
7802
7803 template<int size, bool big_endian>
7804 void
7805 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7806 Symbol_table* symtab,
7807 Symbol* sym) const
7808 {
7809 if (size == 64)
7810 {
7811 Powerpc_relobj<size, big_endian>* ppc_object
7812 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7813 bool is_ordinary;
7814 unsigned int shndx = sym->shndx(&is_ordinary);
7815 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7816 {
7817 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7818 Address dst_off = gsym->value();
7819 if (ppc_object->opd_valid())
7820 {
7821 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7822 symtab->gc()->worklist().push_back(Section_id(ppc_object,
7823 dst_indx));
7824 }
7825 else
7826 ppc_object->add_gc_mark(dst_off);
7827 }
7828 }
7829 }
7830
7831 // For a symbol location in .opd, set LOC to the location of the
7832 // function entry.
7833
7834 template<int size, bool big_endian>
7835 void
7836 Target_powerpc<size, big_endian>::do_function_location(
7837 Symbol_location* loc) const
7838 {
7839 if (size == 64 && loc->shndx != 0)
7840 {
7841 if (loc->object->is_dynamic())
7842 {
7843 Powerpc_dynobj<size, big_endian>* ppc_object
7844 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7845 if (loc->shndx == ppc_object->opd_shndx())
7846 {
7847 Address dest_off;
7848 Address off = loc->offset - ppc_object->opd_address();
7849 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7850 loc->offset = dest_off;
7851 }
7852 }
7853 else
7854 {
7855 const Powerpc_relobj<size, big_endian>* ppc_object
7856 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7857 if (loc->shndx == ppc_object->opd_shndx())
7858 {
7859 Address dest_off;
7860 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7861 loc->offset = dest_off;
7862 }
7863 }
7864 }
7865 }
7866
7867 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7868 // compiled with -fsplit-stack. The function calls non-split-stack
7869 // code. Change the function to ensure it has enough stack space to
7870 // call some random function.
7871
7872 template<int size, bool big_endian>
7873 void
7874 Target_powerpc<size, big_endian>::do_calls_non_split(
7875 Relobj* object,
7876 unsigned int shndx,
7877 section_offset_type fnoffset,
7878 section_size_type fnsize,
7879 const unsigned char* prelocs,
7880 size_t reloc_count,
7881 unsigned char* view,
7882 section_size_type view_size,
7883 std::string* from,
7884 std::string* to) const
7885 {
7886 // 32-bit not supported.
7887 if (size == 32)
7888 {
7889 // warn
7890 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7891 prelocs, reloc_count, view, view_size,
7892 from, to);
7893 return;
7894 }
7895
7896 // The function always starts with
7897 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
7898 // addis %r12,%r1,-allocate@ha
7899 // addi %r12,%r12,-allocate@l
7900 // cmpld %r12,%r0
7901 // but note that the addis or addi may be replaced with a nop
7902
7903 unsigned char *entry = view + fnoffset;
7904 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7905
7906 if ((insn & 0xffff0000) == addis_2_12)
7907 {
7908 /* Skip ELFv2 global entry code. */
7909 entry += 8;
7910 insn = elfcpp::Swap<32, big_endian>::readval(entry);
7911 }
7912
7913 unsigned char *pinsn = entry;
7914 bool ok = false;
7915 const uint32_t ld_private_ss = 0xe80d8fc0;
7916 if (insn == ld_private_ss)
7917 {
7918 int32_t allocate = 0;
7919 while (1)
7920 {
7921 pinsn += 4;
7922 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7923 if ((insn & 0xffff0000) == addis_12_1)
7924 allocate += (insn & 0xffff) << 16;
7925 else if ((insn & 0xffff0000) == addi_12_1
7926 || (insn & 0xffff0000) == addi_12_12)
7927 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7928 else if (insn != nop)
7929 break;
7930 }
7931 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7932 {
7933 int extra = parameters->options().split_stack_adjust_size();
7934 allocate -= extra;
7935 if (allocate >= 0 || extra < 0)
7936 {
7937 object->error(_("split-stack stack size overflow at "
7938 "section %u offset %0zx"),
7939 shndx, static_cast<size_t>(fnoffset));
7940 return;
7941 }
7942 pinsn = entry + 4;
7943 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7944 if (insn != addis_12_1)
7945 {
7946 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7947 pinsn += 4;
7948 insn = addi_12_12 | (allocate & 0xffff);
7949 if (insn != addi_12_12)
7950 {
7951 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7952 pinsn += 4;
7953 }
7954 }
7955 else
7956 {
7957 insn = addi_12_1 | (allocate & 0xffff);
7958 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7959 pinsn += 4;
7960 }
7961 if (pinsn != entry + 12)
7962 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7963
7964 ok = true;
7965 }
7966 }
7967
7968 if (!ok)
7969 {
7970 if (!object->has_no_split_stack())
7971 object->error(_("failed to match split-stack sequence at "
7972 "section %u offset %0zx"),
7973 shndx, static_cast<size_t>(fnoffset));
7974 }
7975 }
7976
7977 // Scan relocations for a section.
7978
7979 template<int size, bool big_endian>
7980 void
7981 Target_powerpc<size, big_endian>::scan_relocs(
7982 Symbol_table* symtab,
7983 Layout* layout,
7984 Sized_relobj_file<size, big_endian>* object,
7985 unsigned int data_shndx,
7986 unsigned int sh_type,
7987 const unsigned char* prelocs,
7988 size_t reloc_count,
7989 Output_section* output_section,
7990 bool needs_special_offset_handling,
7991 size_t local_symbol_count,
7992 const unsigned char* plocal_symbols)
7993 {
7994 typedef Target_powerpc<size, big_endian> Powerpc;
7995 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7996 Classify_reloc;
7997
7998 if (!this->plt_localentry0_init_)
7999 {
8000 bool plt_localentry0 = false;
8001 if (size == 64
8002 && this->abiversion() >= 2)
8003 {
8004 if (parameters->options().user_set_plt_localentry())
8005 plt_localentry0 = parameters->options().plt_localentry();
8006 if (plt_localentry0
8007 && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8008 gold_warning(_("--plt-localentry is especially dangerous without "
8009 "ld.so support to detect ABI violations"));
8010 }
8011 this->plt_localentry0_ = plt_localentry0;
8012 this->plt_localentry0_init_ = true;
8013 }
8014
8015 if (sh_type == elfcpp::SHT_REL)
8016 {
8017 gold_error(_("%s: unsupported REL reloc section"),
8018 object->name().c_str());
8019 return;
8020 }
8021
8022 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8023 symtab,
8024 layout,
8025 this,
8026 object,
8027 data_shndx,
8028 prelocs,
8029 reloc_count,
8030 output_section,
8031 needs_special_offset_handling,
8032 local_symbol_count,
8033 plocal_symbols);
8034 }
8035
8036 // Functor class for processing the global symbol table.
8037 // Removes symbols defined on discarded opd entries.
8038
8039 template<bool big_endian>
8040 class Global_symbol_visitor_opd
8041 {
8042 public:
8043 Global_symbol_visitor_opd()
8044 { }
8045
8046 void
8047 operator()(Sized_symbol<64>* sym)
8048 {
8049 if (sym->has_symtab_index()
8050 || sym->source() != Symbol::FROM_OBJECT
8051 || !sym->in_real_elf())
8052 return;
8053
8054 if (sym->object()->is_dynamic())
8055 return;
8056
8057 Powerpc_relobj<64, big_endian>* symobj
8058 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8059 if (symobj->opd_shndx() == 0)
8060 return;
8061
8062 bool is_ordinary;
8063 unsigned int shndx = sym->shndx(&is_ordinary);
8064 if (shndx == symobj->opd_shndx()
8065 && symobj->get_opd_discard(sym->value()))
8066 {
8067 sym->set_undefined();
8068 sym->set_visibility(elfcpp::STV_DEFAULT);
8069 sym->set_is_defined_in_discarded_section();
8070 sym->set_symtab_index(-1U);
8071 }
8072 }
8073 };
8074
8075 template<int size, bool big_endian>
8076 void
8077 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8078 Layout* layout,
8079 Symbol_table* symtab)
8080 {
8081 if (size == 64)
8082 {
8083 Output_data_save_res<size, big_endian>* savres
8084 = new Output_data_save_res<size, big_endian>(symtab);
8085 this->savres_section_ = savres;
8086 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8087 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8088 savres, ORDER_TEXT, false);
8089 }
8090 }
8091
8092 // Sort linker created .got section first (for the header), then input
8093 // sections belonging to files using small model code.
8094
8095 template<bool big_endian>
8096 class Sort_toc_sections
8097 {
8098 public:
8099 bool
8100 operator()(const Output_section::Input_section& is1,
8101 const Output_section::Input_section& is2) const
8102 {
8103 if (!is1.is_input_section() && is2.is_input_section())
8104 return true;
8105 bool small1
8106 = (is1.is_input_section()
8107 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8108 ->has_small_toc_reloc()));
8109 bool small2
8110 = (is2.is_input_section()
8111 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8112 ->has_small_toc_reloc()));
8113 return small1 && !small2;
8114 }
8115 };
8116
8117 // Finalize the sections.
8118
8119 template<int size, bool big_endian>
8120 void
8121 Target_powerpc<size, big_endian>::do_finalize_sections(
8122 Layout* layout,
8123 const Input_objects*,
8124 Symbol_table* symtab)
8125 {
8126 if (parameters->doing_static_link())
8127 {
8128 // At least some versions of glibc elf-init.o have a strong
8129 // reference to __rela_iplt marker syms. A weak ref would be
8130 // better..
8131 if (this->iplt_ != NULL)
8132 {
8133 Reloc_section* rel = this->iplt_->rel_plt();
8134 symtab->define_in_output_data("__rela_iplt_start", NULL,
8135 Symbol_table::PREDEFINED, rel, 0, 0,
8136 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8137 elfcpp::STV_HIDDEN, 0, false, true);
8138 symtab->define_in_output_data("__rela_iplt_end", NULL,
8139 Symbol_table::PREDEFINED, rel, 0, 0,
8140 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8141 elfcpp::STV_HIDDEN, 0, true, true);
8142 }
8143 else
8144 {
8145 symtab->define_as_constant("__rela_iplt_start", NULL,
8146 Symbol_table::PREDEFINED, 0, 0,
8147 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8148 elfcpp::STV_HIDDEN, 0, true, false);
8149 symtab->define_as_constant("__rela_iplt_end", NULL,
8150 Symbol_table::PREDEFINED, 0, 0,
8151 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8152 elfcpp::STV_HIDDEN, 0, true, false);
8153 }
8154 }
8155
8156 if (size == 64)
8157 {
8158 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8159 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8160
8161 if (!parameters->options().relocatable())
8162 {
8163 this->define_save_restore_funcs(layout, symtab);
8164
8165 // Annoyingly, we need to make these sections now whether or
8166 // not we need them. If we delay until do_relax then we
8167 // need to mess with the relaxation machinery checkpointing.
8168 this->got_section(symtab, layout);
8169 this->make_brlt_section(layout);
8170
8171 if (parameters->options().toc_sort())
8172 {
8173 Output_section* os = this->got_->output_section();
8174 if (os != NULL && os->input_sections().size() > 1)
8175 std::stable_sort(os->input_sections().begin(),
8176 os->input_sections().end(),
8177 Sort_toc_sections<big_endian>());
8178 }
8179 }
8180 }
8181
8182 // Fill in some more dynamic tags.
8183 Output_data_dynamic* odyn = layout->dynamic_data();
8184 if (odyn != NULL)
8185 {
8186 const Reloc_section* rel_plt = (this->plt_ == NULL
8187 ? NULL
8188 : this->plt_->rel_plt());
8189 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8190 this->rela_dyn_, true, size == 32);
8191
8192 if (size == 32)
8193 {
8194 if (this->got_ != NULL)
8195 {
8196 this->got_->finalize_data_size();
8197 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8198 this->got_, this->got_->g_o_t());
8199 }
8200 if (this->has_tls_get_addr_opt_)
8201 odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8202 }
8203 else
8204 {
8205 if (this->glink_ != NULL)
8206 {
8207 this->glink_->finalize_data_size();
8208 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8209 this->glink_,
8210 (this->glink_->pltresolve_size()
8211 - 32));
8212 }
8213 if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8214 odyn->add_constant(elfcpp::DT_PPC64_OPT,
8215 ((this->has_localentry0_
8216 ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8217 | (this->has_tls_get_addr_opt_
8218 ? elfcpp::PPC64_OPT_TLS : 0)));
8219 }
8220 }
8221
8222 // Emit any relocs we saved in an attempt to avoid generating COPY
8223 // relocs.
8224 if (this->copy_relocs_.any_saved_relocs())
8225 this->copy_relocs_.emit(this->rela_dyn_section(layout));
8226 }
8227
8228 // Emit any saved relocs, and mark toc entries using any of these
8229 // relocs as not optimizable.
8230
8231 template<int sh_type, int size, bool big_endian>
8232 void
8233 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8234 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8235 {
8236 if (size == 64
8237 && parameters->options().toc_optimize())
8238 {
8239 for (typename Copy_relocs<sh_type, size, big_endian>::
8240 Copy_reloc_entries::iterator p = this->entries_.begin();
8241 p != this->entries_.end();
8242 ++p)
8243 {
8244 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8245 entry = *p;
8246
8247 // If the symbol is no longer defined in a dynamic object,
8248 // then we emitted a COPY relocation. If it is still
8249 // dynamic then we'll need dynamic relocations and thus
8250 // can't optimize toc entries.
8251 if (entry.sym_->is_from_dynobj())
8252 {
8253 Powerpc_relobj<size, big_endian>* ppc_object
8254 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8255 if (entry.shndx_ == ppc_object->toc_shndx())
8256 ppc_object->set_no_toc_opt(entry.address_);
8257 }
8258 }
8259 }
8260
8261 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8262 }
8263
8264 // Return the value to use for a branch relocation.
8265
8266 template<int size, bool big_endian>
8267 bool
8268 Target_powerpc<size, big_endian>::symval_for_branch(
8269 const Symbol_table* symtab,
8270 const Sized_symbol<size>* gsym,
8271 Powerpc_relobj<size, big_endian>* object,
8272 Address *value,
8273 unsigned int *dest_shndx)
8274 {
8275 if (size == 32 || this->abiversion() >= 2)
8276 gold_unreachable();
8277 *dest_shndx = 0;
8278
8279 // If the symbol is defined in an opd section, ie. is a function
8280 // descriptor, use the function descriptor code entry address
8281 Powerpc_relobj<size, big_endian>* symobj = object;
8282 if (gsym != NULL
8283 && (gsym->source() != Symbol::FROM_OBJECT
8284 || gsym->object()->is_dynamic()))
8285 return true;
8286 if (gsym != NULL)
8287 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8288 unsigned int shndx = symobj->opd_shndx();
8289 if (shndx == 0)
8290 return true;
8291 Address opd_addr = symobj->get_output_section_offset(shndx);
8292 if (opd_addr == invalid_address)
8293 return true;
8294 opd_addr += symobj->output_section_address(shndx);
8295 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8296 {
8297 Address sec_off;
8298 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8299 if (symtab->is_section_folded(symobj, *dest_shndx))
8300 {
8301 Section_id folded
8302 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8303 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8304 *dest_shndx = folded.second;
8305 }
8306 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8307 if (sec_addr == invalid_address)
8308 return false;
8309
8310 sec_addr += symobj->output_section(*dest_shndx)->address();
8311 *value = sec_addr + sec_off;
8312 }
8313 return true;
8314 }
8315
8316 // Perform a relocation.
8317
8318 template<int size, bool big_endian>
8319 inline bool
8320 Target_powerpc<size, big_endian>::Relocate::relocate(
8321 const Relocate_info<size, big_endian>* relinfo,
8322 unsigned int,
8323 Target_powerpc* target,
8324 Output_section* os,
8325 size_t relnum,
8326 const unsigned char* preloc,
8327 const Sized_symbol<size>* gsym,
8328 const Symbol_value<size>* psymval,
8329 unsigned char* view,
8330 Address address,
8331 section_size_type view_size)
8332 {
8333 if (view == NULL)
8334 return true;
8335
8336 if (target->replace_tls_get_addr(gsym))
8337 gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8338
8339 const elfcpp::Rela<size, big_endian> rela(preloc);
8340 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8341 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8342 {
8343 case Track_tls::NOT_EXPECTED:
8344 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8345 _("__tls_get_addr call lacks marker reloc"));
8346 break;
8347 case Track_tls::EXPECTED:
8348 // We have already complained.
8349 break;
8350 case Track_tls::SKIP:
8351 return true;
8352 case Track_tls::NORMAL:
8353 break;
8354 }
8355
8356 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8357 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8358 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8359 // Offset from start of insn to d-field reloc.
8360 const int d_offset = big_endian ? 2 : 0;
8361
8362 Powerpc_relobj<size, big_endian>* const object
8363 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8364 Address value = 0;
8365 bool has_stub_value = false;
8366 bool localentry0 = false;
8367 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8368 if ((gsym != NULL
8369 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8370 : object->local_has_plt_offset(r_sym))
8371 && (!psymval->is_ifunc_symbol()
8372 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8373 {
8374 if (size == 64
8375 && gsym != NULL
8376 && target->abiversion() >= 2
8377 && !parameters->options().output_is_position_independent()
8378 && !is_branch_reloc(r_type))
8379 {
8380 Address off = target->glink_section()->find_global_entry(gsym);
8381 if (off != invalid_address)
8382 {
8383 value = target->glink_section()->global_entry_address() + off;
8384 has_stub_value = true;
8385 }
8386 }
8387 else
8388 {
8389 Stub_table<size, big_endian>* stub_table = NULL;
8390 if (target->stub_tables().size() == 1)
8391 stub_table = target->stub_tables()[0];
8392 if (stub_table == NULL
8393 && !(size == 32
8394 && gsym != NULL
8395 && !parameters->options().output_is_position_independent()
8396 && !is_branch_reloc(r_type)))
8397 stub_table = object->stub_table(relinfo->data_shndx);
8398 if (stub_table == NULL)
8399 {
8400 // This is a ref from a data section to an ifunc symbol,
8401 // or a non-branch reloc for which we always want to use
8402 // one set of stubs for resolving function addresses.
8403 if (target->stub_tables().size() != 0)
8404 stub_table = target->stub_tables()[0];
8405 }
8406 if (stub_table != NULL)
8407 {
8408 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8409 if (gsym != NULL)
8410 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8411 rela.get_r_addend());
8412 else
8413 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8414 rela.get_r_addend());
8415 if (ent != NULL)
8416 {
8417 value = stub_table->stub_address() + ent->off_;
8418 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8419 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8420 size_t reloc_count = shdr.get_sh_size() / reloc_size;
8421 if (size == 64
8422 && ent->r2save_
8423 && relnum + 1 < reloc_count)
8424 {
8425 Reltype next_rela(preloc + reloc_size);
8426 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8427 == elfcpp::R_PPC64_TOCSAVE
8428 && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8429 value += 4;
8430 }
8431 localentry0 = ent->localentry0_;
8432 has_stub_value = true;
8433 }
8434 }
8435 }
8436 // We don't care too much about bogus debug references to
8437 // non-local functions, but otherwise there had better be a plt
8438 // call stub or global entry stub as appropriate.
8439 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8440 }
8441
8442 if (r_type == elfcpp::R_POWERPC_GOT16
8443 || r_type == elfcpp::R_POWERPC_GOT16_LO
8444 || r_type == elfcpp::R_POWERPC_GOT16_HI
8445 || r_type == elfcpp::R_POWERPC_GOT16_HA
8446 || r_type == elfcpp::R_PPC64_GOT16_DS
8447 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8448 {
8449 if (gsym != NULL)
8450 {
8451 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8452 value = gsym->got_offset(GOT_TYPE_STANDARD);
8453 }
8454 else
8455 {
8456 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8457 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8458 }
8459 value -= target->got_section()->got_base_offset(object);
8460 }
8461 else if (r_type == elfcpp::R_PPC64_TOC)
8462 {
8463 value = (target->got_section()->output_section()->address()
8464 + object->toc_base_offset());
8465 }
8466 else if (gsym != NULL
8467 && (r_type == elfcpp::R_POWERPC_REL24
8468 || r_type == elfcpp::R_PPC_PLTREL24)
8469 && has_stub_value)
8470 {
8471 if (size == 64)
8472 {
8473 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8474 Valtype* wv = reinterpret_cast<Valtype*>(view);
8475 bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
8476 if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
8477 {
8478 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8479 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8480 if ((insn & 1) != 0
8481 && (insn2 == nop
8482 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8483 {
8484 elfcpp::Swap<32, big_endian>::
8485 writeval(wv + 1, ld_2_1 + target->stk_toc());
8486 can_plt_call = true;
8487 }
8488 }
8489 if (!can_plt_call)
8490 {
8491 // If we don't have a branch and link followed by a nop,
8492 // we can't go via the plt because there is no place to
8493 // put a toc restoring instruction.
8494 // Unless we know we won't be returning.
8495 if (strcmp(gsym->name(), "__libc_start_main") == 0)
8496 can_plt_call = true;
8497 }
8498 if (!can_plt_call)
8499 {
8500 // g++ as of 20130507 emits self-calls without a
8501 // following nop. This is arguably wrong since we have
8502 // conflicting information. On the one hand a global
8503 // symbol and on the other a local call sequence, but
8504 // don't error for this special case.
8505 // It isn't possible to cheaply verify we have exactly
8506 // such a call. Allow all calls to the same section.
8507 bool ok = false;
8508 Address code = value;
8509 if (gsym->source() == Symbol::FROM_OBJECT
8510 && gsym->object() == object)
8511 {
8512 unsigned int dest_shndx = 0;
8513 if (target->abiversion() < 2)
8514 {
8515 Address addend = rela.get_r_addend();
8516 code = psymval->value(object, addend);
8517 target->symval_for_branch(relinfo->symtab, gsym, object,
8518 &code, &dest_shndx);
8519 }
8520 bool is_ordinary;
8521 if (dest_shndx == 0)
8522 dest_shndx = gsym->shndx(&is_ordinary);
8523 ok = dest_shndx == relinfo->data_shndx;
8524 }
8525 if (!ok)
8526 {
8527 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8528 _("call lacks nop, can't restore toc; "
8529 "recompile with -fPIC"));
8530 value = code;
8531 }
8532 }
8533 }
8534 }
8535 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8536 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8537 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8538 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8539 {
8540 // First instruction of a global dynamic sequence, arg setup insn.
8541 const bool final = gsym == NULL || gsym->final_value_is_known();
8542 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8543 enum Got_type got_type = GOT_TYPE_STANDARD;
8544 if (tls_type == tls::TLSOPT_NONE)
8545 got_type = GOT_TYPE_TLSGD;
8546 else if (tls_type == tls::TLSOPT_TO_IE)
8547 got_type = GOT_TYPE_TPREL;
8548 if (got_type != GOT_TYPE_STANDARD)
8549 {
8550 if (gsym != NULL)
8551 {
8552 gold_assert(gsym->has_got_offset(got_type));
8553 value = gsym->got_offset(got_type);
8554 }
8555 else
8556 {
8557 gold_assert(object->local_has_got_offset(r_sym, got_type));
8558 value = object->local_got_offset(r_sym, got_type);
8559 }
8560 value -= target->got_section()->got_base_offset(object);
8561 }
8562 if (tls_type == tls::TLSOPT_TO_IE)
8563 {
8564 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8565 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8566 {
8567 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8568 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8569 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8570 if (size == 32)
8571 insn |= 32 << 26; // lwz
8572 else
8573 insn |= 58 << 26; // ld
8574 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8575 }
8576 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8577 - elfcpp::R_POWERPC_GOT_TLSGD16);
8578 }
8579 else if (tls_type == tls::TLSOPT_TO_LE)
8580 {
8581 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8582 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8583 {
8584 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8585 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8586 insn &= (1 << 26) - (1 << 21); // extract rt
8587 if (size == 32)
8588 insn |= addis_0_2;
8589 else
8590 insn |= addis_0_13;
8591 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8592 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8593 value = psymval->value(object, rela.get_r_addend());
8594 }
8595 else
8596 {
8597 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8598 Insn insn = nop;
8599 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8600 r_type = elfcpp::R_POWERPC_NONE;
8601 }
8602 }
8603 }
8604 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8605 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8606 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8607 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8608 {
8609 // First instruction of a local dynamic sequence, arg setup insn.
8610 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8611 if (tls_type == tls::TLSOPT_NONE)
8612 {
8613 value = target->tlsld_got_offset();
8614 value -= target->got_section()->got_base_offset(object);
8615 }
8616 else
8617 {
8618 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8619 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8620 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8621 {
8622 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8623 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8624 insn &= (1 << 26) - (1 << 21); // extract rt
8625 if (size == 32)
8626 insn |= addis_0_2;
8627 else
8628 insn |= addis_0_13;
8629 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8630 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8631 value = dtp_offset;
8632 }
8633 else
8634 {
8635 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8636 Insn insn = nop;
8637 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8638 r_type = elfcpp::R_POWERPC_NONE;
8639 }
8640 }
8641 }
8642 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8643 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8644 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8645 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8646 {
8647 // Accesses relative to a local dynamic sequence address,
8648 // no optimisation here.
8649 if (gsym != NULL)
8650 {
8651 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8652 value = gsym->got_offset(GOT_TYPE_DTPREL);
8653 }
8654 else
8655 {
8656 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8657 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8658 }
8659 value -= target->got_section()->got_base_offset(object);
8660 }
8661 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8662 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8663 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8664 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8665 {
8666 // First instruction of initial exec sequence.
8667 const bool final = gsym == NULL || gsym->final_value_is_known();
8668 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8669 if (tls_type == tls::TLSOPT_NONE)
8670 {
8671 if (gsym != NULL)
8672 {
8673 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8674 value = gsym->got_offset(GOT_TYPE_TPREL);
8675 }
8676 else
8677 {
8678 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8679 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8680 }
8681 value -= target->got_section()->got_base_offset(object);
8682 }
8683 else
8684 {
8685 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8686 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8687 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8688 {
8689 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8690 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8691 insn &= (1 << 26) - (1 << 21); // extract rt from ld
8692 if (size == 32)
8693 insn |= addis_0_2;
8694 else
8695 insn |= addis_0_13;
8696 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8697 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8698 value = psymval->value(object, rela.get_r_addend());
8699 }
8700 else
8701 {
8702 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8703 Insn insn = nop;
8704 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8705 r_type = elfcpp::R_POWERPC_NONE;
8706 }
8707 }
8708 }
8709 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8710 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8711 {
8712 // Second instruction of a global dynamic sequence,
8713 // the __tls_get_addr call
8714 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8715 const bool final = gsym == NULL || gsym->final_value_is_known();
8716 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8717 if (tls_type != tls::TLSOPT_NONE)
8718 {
8719 if (tls_type == tls::TLSOPT_TO_IE)
8720 {
8721 Insn* iview = reinterpret_cast<Insn*>(view);
8722 Insn insn = add_3_3_13;
8723 if (size == 32)
8724 insn = add_3_3_2;
8725 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8726 r_type = elfcpp::R_POWERPC_NONE;
8727 }
8728 else
8729 {
8730 Insn* iview = reinterpret_cast<Insn*>(view);
8731 Insn insn = addi_3_3;
8732 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8733 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8734 view += d_offset;
8735 value = psymval->value(object, rela.get_r_addend());
8736 }
8737 this->skip_next_tls_get_addr_call();
8738 }
8739 }
8740 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8741 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8742 {
8743 // Second instruction of a local dynamic sequence,
8744 // the __tls_get_addr call
8745 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8746 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8747 if (tls_type == tls::TLSOPT_TO_LE)
8748 {
8749 Insn* iview = reinterpret_cast<Insn*>(view);
8750 Insn insn = addi_3_3;
8751 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8752 this->skip_next_tls_get_addr_call();
8753 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8754 view += d_offset;
8755 value = dtp_offset;
8756 }
8757 }
8758 else if (r_type == elfcpp::R_POWERPC_TLS)
8759 {
8760 // Second instruction of an initial exec sequence
8761 const bool final = gsym == NULL || gsym->final_value_is_known();
8762 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8763 if (tls_type == tls::TLSOPT_TO_LE)
8764 {
8765 Insn* iview = reinterpret_cast<Insn*>(view);
8766 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8767 unsigned int reg = size == 32 ? 2 : 13;
8768 insn = at_tls_transform(insn, reg);
8769 gold_assert(insn != 0);
8770 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8771 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8772 view += d_offset;
8773 value = psymval->value(object, rela.get_r_addend());
8774 }
8775 }
8776 else if (!has_stub_value)
8777 {
8778 Address addend = 0;
8779 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8780 addend = rela.get_r_addend();
8781 value = psymval->value(object, addend);
8782 if (size == 64 && is_branch_reloc(r_type))
8783 {
8784 if (target->abiversion() >= 2)
8785 {
8786 if (gsym != NULL)
8787 value += object->ppc64_local_entry_offset(gsym);
8788 else
8789 value += object->ppc64_local_entry_offset(r_sym);
8790 }
8791 else
8792 {
8793 unsigned int dest_shndx;
8794 target->symval_for_branch(relinfo->symtab, gsym, object,
8795 &value, &dest_shndx);
8796 }
8797 }
8798 Address max_branch_offset = max_branch_delta(r_type);
8799 if (max_branch_offset != 0
8800 && value - address + max_branch_offset >= 2 * max_branch_offset)
8801 {
8802 Stub_table<size, big_endian>* stub_table
8803 = object->stub_table(relinfo->data_shndx);
8804 if (stub_table != NULL)
8805 {
8806 Address off = stub_table->find_long_branch_entry(object, value);
8807 if (off != invalid_address)
8808 {
8809 value = (stub_table->stub_address() + stub_table->plt_size()
8810 + off);
8811 has_stub_value = true;
8812 }
8813 }
8814 }
8815 }
8816
8817 switch (r_type)
8818 {
8819 case elfcpp::R_PPC64_REL64:
8820 case elfcpp::R_POWERPC_REL32:
8821 case elfcpp::R_POWERPC_REL24:
8822 case elfcpp::R_PPC_PLTREL24:
8823 case elfcpp::R_PPC_LOCAL24PC:
8824 case elfcpp::R_POWERPC_REL16:
8825 case elfcpp::R_POWERPC_REL16_LO:
8826 case elfcpp::R_POWERPC_REL16_HI:
8827 case elfcpp::R_POWERPC_REL16_HA:
8828 case elfcpp::R_POWERPC_REL16DX_HA:
8829 case elfcpp::R_POWERPC_REL14:
8830 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8831 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8832 value -= address;
8833 break;
8834
8835 case elfcpp::R_PPC64_TOC16:
8836 case elfcpp::R_PPC64_TOC16_LO:
8837 case elfcpp::R_PPC64_TOC16_HI:
8838 case elfcpp::R_PPC64_TOC16_HA:
8839 case elfcpp::R_PPC64_TOC16_DS:
8840 case elfcpp::R_PPC64_TOC16_LO_DS:
8841 // Subtract the TOC base address.
8842 value -= (target->got_section()->output_section()->address()
8843 + object->toc_base_offset());
8844 break;
8845
8846 case elfcpp::R_POWERPC_SECTOFF:
8847 case elfcpp::R_POWERPC_SECTOFF_LO:
8848 case elfcpp::R_POWERPC_SECTOFF_HI:
8849 case elfcpp::R_POWERPC_SECTOFF_HA:
8850 case elfcpp::R_PPC64_SECTOFF_DS:
8851 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8852 if (os != NULL)
8853 value -= os->address();
8854 break;
8855
8856 case elfcpp::R_PPC64_TPREL16_DS:
8857 case elfcpp::R_PPC64_TPREL16_LO_DS:
8858 case elfcpp::R_PPC64_TPREL16_HIGH:
8859 case elfcpp::R_PPC64_TPREL16_HIGHA:
8860 if (size != 64)
8861 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8862 break;
8863 // Fall through.
8864 case elfcpp::R_POWERPC_TPREL16:
8865 case elfcpp::R_POWERPC_TPREL16_LO:
8866 case elfcpp::R_POWERPC_TPREL16_HI:
8867 case elfcpp::R_POWERPC_TPREL16_HA:
8868 case elfcpp::R_POWERPC_TPREL:
8869 case elfcpp::R_PPC64_TPREL16_HIGHER:
8870 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8871 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8872 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8873 // tls symbol values are relative to tls_segment()->vaddr()
8874 value -= tp_offset;
8875 break;
8876
8877 case elfcpp::R_PPC64_DTPREL16_DS:
8878 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8879 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8880 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8881 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8882 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8883 if (size != 64)
8884 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8885 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8886 break;
8887 // Fall through.
8888 case elfcpp::R_POWERPC_DTPREL16:
8889 case elfcpp::R_POWERPC_DTPREL16_LO:
8890 case elfcpp::R_POWERPC_DTPREL16_HI:
8891 case elfcpp::R_POWERPC_DTPREL16_HA:
8892 case elfcpp::R_POWERPC_DTPREL:
8893 case elfcpp::R_PPC64_DTPREL16_HIGH:
8894 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8895 // tls symbol values are relative to tls_segment()->vaddr()
8896 value -= dtp_offset;
8897 break;
8898
8899 case elfcpp::R_PPC64_ADDR64_LOCAL:
8900 if (gsym != NULL)
8901 value += object->ppc64_local_entry_offset(gsym);
8902 else
8903 value += object->ppc64_local_entry_offset(r_sym);
8904 break;
8905
8906 default:
8907 break;
8908 }
8909
8910 Insn branch_bit = 0;
8911 switch (r_type)
8912 {
8913 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8914 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8915 branch_bit = 1 << 21;
8916 // Fall through.
8917 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8918 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8919 {
8920 Insn* iview = reinterpret_cast<Insn*>(view);
8921 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8922 insn &= ~(1 << 21);
8923 insn |= branch_bit;
8924 if (this->is_isa_v2)
8925 {
8926 // Set 'a' bit. This is 0b00010 in BO field for branch
8927 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8928 // for branch on CTR insns (BO == 1a00t or 1a01t).
8929 if ((insn & (0x14 << 21)) == (0x04 << 21))
8930 insn |= 0x02 << 21;
8931 else if ((insn & (0x14 << 21)) == (0x10 << 21))
8932 insn |= 0x08 << 21;
8933 else
8934 break;
8935 }
8936 else
8937 {
8938 // Invert 'y' bit if not the default.
8939 if (static_cast<Signed_address>(value) < 0)
8940 insn ^= 1 << 21;
8941 }
8942 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8943 }
8944 break;
8945
8946 default:
8947 break;
8948 }
8949
8950 if (size == 64)
8951 {
8952 switch (r_type)
8953 {
8954 default:
8955 break;
8956
8957 // Multi-instruction sequences that access the GOT/TOC can
8958 // be optimized, eg.
8959 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8960 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8961 // and
8962 // addis ra,r2,0; addi rb,ra,x@toc@l;
8963 // to nop; addi rb,r2,x@toc;
8964 // FIXME: the @got sequence shown above is not yet
8965 // optimized. Note that gcc as of 2017-01-07 doesn't use
8966 // the ELF @got relocs except for TLS, instead using the
8967 // PowerOpen variant of a compiler managed GOT (called TOC).
8968 // The PowerOpen TOC sequence equivalent to the first
8969 // example is optimized.
8970 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8971 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8972 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8973 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8974 case elfcpp::R_POWERPC_GOT16_HA:
8975 case elfcpp::R_PPC64_TOC16_HA:
8976 if (parameters->options().toc_optimize())
8977 {
8978 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8979 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8980 if (r_type == elfcpp::R_PPC64_TOC16_HA
8981 && object->make_toc_relative(target, &value))
8982 {
8983 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8984 == ((15u << 26) | (2 << 16)));
8985 }
8986 if (((insn & ((0x3f << 26) | 0x1f << 16))
8987 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8988 && value + 0x8000 < 0x10000)
8989 {
8990 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8991 return true;
8992 }
8993 }
8994 break;
8995
8996 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8997 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8998 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8999 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9000 case elfcpp::R_POWERPC_GOT16_LO:
9001 case elfcpp::R_PPC64_GOT16_LO_DS:
9002 case elfcpp::R_PPC64_TOC16_LO:
9003 case elfcpp::R_PPC64_TOC16_LO_DS:
9004 if (parameters->options().toc_optimize())
9005 {
9006 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9007 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9008 bool changed = false;
9009 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9010 && object->make_toc_relative(target, &value))
9011 {
9012 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9013 insn ^= (14u << 26) ^ (58u << 26);
9014 r_type = elfcpp::R_PPC64_TOC16_LO;
9015 changed = true;
9016 }
9017 if (ok_lo_toc_insn(insn, r_type)
9018 && value + 0x8000 < 0x10000)
9019 {
9020 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9021 {
9022 // Transform addic to addi when we change reg.
9023 insn &= ~((0x3f << 26) | (0x1f << 16));
9024 insn |= (14u << 26) | (2 << 16);
9025 }
9026 else
9027 {
9028 insn &= ~(0x1f << 16);
9029 insn |= 2 << 16;
9030 }
9031 changed = true;
9032 }
9033 if (changed)
9034 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9035 }
9036 break;
9037
9038 case elfcpp::R_POWERPC_TPREL16_HA:
9039 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9040 {
9041 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9042 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9043 if ((insn & ((0x3f << 26) | 0x1f << 16))
9044 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9045 ;
9046 else
9047 {
9048 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9049 return true;
9050 }
9051 }
9052 break;
9053
9054 case elfcpp::R_PPC64_TPREL16_LO_DS:
9055 if (size == 32)
9056 // R_PPC_TLSGD, R_PPC_TLSLD
9057 break;
9058 // Fall through.
9059 case elfcpp::R_POWERPC_TPREL16_LO:
9060 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9061 {
9062 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9063 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9064 insn &= ~(0x1f << 16);
9065 insn |= (size == 32 ? 2 : 13) << 16;
9066 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9067 }
9068 break;
9069
9070 case elfcpp::R_PPC64_ENTRY:
9071 value = (target->got_section()->output_section()->address()
9072 + object->toc_base_offset());
9073 if (value + 0x80008000 <= 0xffffffff
9074 && !parameters->options().output_is_position_independent())
9075 {
9076 Insn* iview = reinterpret_cast<Insn*>(view);
9077 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9078 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9079
9080 if ((insn1 & ~0xfffc) == ld_2_12
9081 && insn2 == add_2_2_12)
9082 {
9083 insn1 = lis_2 + ha(value);
9084 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9085 insn2 = addi_2_2 + l(value);
9086 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9087 return true;
9088 }
9089 }
9090 else
9091 {
9092 value -= address;
9093 if (value + 0x80008000 <= 0xffffffff)
9094 {
9095 Insn* iview = reinterpret_cast<Insn*>(view);
9096 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9097 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9098
9099 if ((insn1 & ~0xfffc) == ld_2_12
9100 && insn2 == add_2_2_12)
9101 {
9102 insn1 = addis_2_12 + ha(value);
9103 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9104 insn2 = addi_2_2 + l(value);
9105 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9106 return true;
9107 }
9108 }
9109 }
9110 break;
9111
9112 case elfcpp::R_POWERPC_REL16_LO:
9113 // If we are generating a non-PIC executable, edit
9114 // 0: addis 2,12,.TOC.-0b@ha
9115 // addi 2,2,.TOC.-0b@l
9116 // used by ELFv2 global entry points to set up r2, to
9117 // lis 2,.TOC.@ha
9118 // addi 2,2,.TOC.@l
9119 // if .TOC. is in range. */
9120 if (value + address - 4 + 0x80008000 <= 0xffffffff
9121 && relnum != 0
9122 && preloc != NULL
9123 && target->abiversion() >= 2
9124 && !parameters->options().output_is_position_independent()
9125 && rela.get_r_addend() == d_offset + 4
9126 && gsym != NULL
9127 && strcmp(gsym->name(), ".TOC.") == 0)
9128 {
9129 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9130 Reltype prev_rela(preloc - reloc_size);
9131 if ((prev_rela.get_r_info()
9132 == elfcpp::elf_r_info<size>(r_sym,
9133 elfcpp::R_POWERPC_REL16_HA))
9134 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9135 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9136 {
9137 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9138 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9139 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9140
9141 if ((insn1 & 0xffff0000) == addis_2_12
9142 && (insn2 & 0xffff0000) == addi_2_2)
9143 {
9144 insn1 = lis_2 + ha(value + address - 4);
9145 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9146 insn2 = addi_2_2 + l(value + address - 4);
9147 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9148 if (relinfo->rr)
9149 {
9150 relinfo->rr->set_strategy(relnum - 1,
9151 Relocatable_relocs::RELOC_SPECIAL);
9152 relinfo->rr->set_strategy(relnum,
9153 Relocatable_relocs::RELOC_SPECIAL);
9154 }
9155 return true;
9156 }
9157 }
9158 }
9159 break;
9160 }
9161 }
9162
9163 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9164 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9165 switch (r_type)
9166 {
9167 case elfcpp::R_POWERPC_ADDR32:
9168 case elfcpp::R_POWERPC_UADDR32:
9169 if (size == 64)
9170 overflow = Reloc::CHECK_BITFIELD;
9171 break;
9172
9173 case elfcpp::R_POWERPC_REL32:
9174 case elfcpp::R_POWERPC_REL16DX_HA:
9175 if (size == 64)
9176 overflow = Reloc::CHECK_SIGNED;
9177 break;
9178
9179 case elfcpp::R_POWERPC_UADDR16:
9180 overflow = Reloc::CHECK_BITFIELD;
9181 break;
9182
9183 case elfcpp::R_POWERPC_ADDR16:
9184 // We really should have three separate relocations,
9185 // one for 16-bit data, one for insns with 16-bit signed fields,
9186 // and one for insns with 16-bit unsigned fields.
9187 overflow = Reloc::CHECK_BITFIELD;
9188 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9189 overflow = Reloc::CHECK_LOW_INSN;
9190 break;
9191
9192 case elfcpp::R_POWERPC_ADDR16_HI:
9193 case elfcpp::R_POWERPC_ADDR16_HA:
9194 case elfcpp::R_POWERPC_GOT16_HI:
9195 case elfcpp::R_POWERPC_GOT16_HA:
9196 case elfcpp::R_POWERPC_PLT16_HI:
9197 case elfcpp::R_POWERPC_PLT16_HA:
9198 case elfcpp::R_POWERPC_SECTOFF_HI:
9199 case elfcpp::R_POWERPC_SECTOFF_HA:
9200 case elfcpp::R_PPC64_TOC16_HI:
9201 case elfcpp::R_PPC64_TOC16_HA:
9202 case elfcpp::R_PPC64_PLTGOT16_HI:
9203 case elfcpp::R_PPC64_PLTGOT16_HA:
9204 case elfcpp::R_POWERPC_TPREL16_HI:
9205 case elfcpp::R_POWERPC_TPREL16_HA:
9206 case elfcpp::R_POWERPC_DTPREL16_HI:
9207 case elfcpp::R_POWERPC_DTPREL16_HA:
9208 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9209 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9210 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9211 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9212 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9213 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9214 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9215 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9216 case elfcpp::R_POWERPC_REL16_HI:
9217 case elfcpp::R_POWERPC_REL16_HA:
9218 if (size != 32)
9219 overflow = Reloc::CHECK_HIGH_INSN;
9220 break;
9221
9222 case elfcpp::R_POWERPC_REL16:
9223 case elfcpp::R_PPC64_TOC16:
9224 case elfcpp::R_POWERPC_GOT16:
9225 case elfcpp::R_POWERPC_SECTOFF:
9226 case elfcpp::R_POWERPC_TPREL16:
9227 case elfcpp::R_POWERPC_DTPREL16:
9228 case elfcpp::R_POWERPC_GOT_TLSGD16:
9229 case elfcpp::R_POWERPC_GOT_TLSLD16:
9230 case elfcpp::R_POWERPC_GOT_TPREL16:
9231 case elfcpp::R_POWERPC_GOT_DTPREL16:
9232 overflow = Reloc::CHECK_LOW_INSN;
9233 break;
9234
9235 case elfcpp::R_POWERPC_ADDR24:
9236 case elfcpp::R_POWERPC_ADDR14:
9237 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9238 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9239 case elfcpp::R_PPC64_ADDR16_DS:
9240 case elfcpp::R_POWERPC_REL24:
9241 case elfcpp::R_PPC_PLTREL24:
9242 case elfcpp::R_PPC_LOCAL24PC:
9243 case elfcpp::R_PPC64_TPREL16_DS:
9244 case elfcpp::R_PPC64_DTPREL16_DS:
9245 case elfcpp::R_PPC64_TOC16_DS:
9246 case elfcpp::R_PPC64_GOT16_DS:
9247 case elfcpp::R_PPC64_SECTOFF_DS:
9248 case elfcpp::R_POWERPC_REL14:
9249 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9250 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9251 overflow = Reloc::CHECK_SIGNED;
9252 break;
9253 }
9254
9255 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9256 Insn insn = 0;
9257
9258 if (overflow == Reloc::CHECK_LOW_INSN
9259 || overflow == Reloc::CHECK_HIGH_INSN)
9260 {
9261 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9262
9263 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9264 overflow = Reloc::CHECK_BITFIELD;
9265 else if (overflow == Reloc::CHECK_LOW_INSN
9266 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9267 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9268 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9269 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9270 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9271 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9272 overflow = Reloc::CHECK_UNSIGNED;
9273 else
9274 overflow = Reloc::CHECK_SIGNED;
9275 }
9276
9277 bool maybe_dq_reloc = false;
9278 typename Powerpc_relocate_functions<size, big_endian>::Status status
9279 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9280 switch (r_type)
9281 {
9282 case elfcpp::R_POWERPC_NONE:
9283 case elfcpp::R_POWERPC_TLS:
9284 case elfcpp::R_POWERPC_GNU_VTINHERIT:
9285 case elfcpp::R_POWERPC_GNU_VTENTRY:
9286 break;
9287
9288 case elfcpp::R_PPC64_ADDR64:
9289 case elfcpp::R_PPC64_REL64:
9290 case elfcpp::R_PPC64_TOC:
9291 case elfcpp::R_PPC64_ADDR64_LOCAL:
9292 Reloc::addr64(view, value);
9293 break;
9294
9295 case elfcpp::R_POWERPC_TPREL:
9296 case elfcpp::R_POWERPC_DTPREL:
9297 if (size == 64)
9298 Reloc::addr64(view, value);
9299 else
9300 status = Reloc::addr32(view, value, overflow);
9301 break;
9302
9303 case elfcpp::R_PPC64_UADDR64:
9304 Reloc::addr64_u(view, value);
9305 break;
9306
9307 case elfcpp::R_POWERPC_ADDR32:
9308 status = Reloc::addr32(view, value, overflow);
9309 break;
9310
9311 case elfcpp::R_POWERPC_REL32:
9312 case elfcpp::R_POWERPC_UADDR32:
9313 status = Reloc::addr32_u(view, value, overflow);
9314 break;
9315
9316 case elfcpp::R_POWERPC_ADDR24:
9317 case elfcpp::R_POWERPC_REL24:
9318 case elfcpp::R_PPC_PLTREL24:
9319 case elfcpp::R_PPC_LOCAL24PC:
9320 status = Reloc::addr24(view, value, overflow);
9321 break;
9322
9323 case elfcpp::R_POWERPC_GOT_DTPREL16:
9324 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9325 case elfcpp::R_POWERPC_GOT_TPREL16:
9326 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9327 if (size == 64)
9328 {
9329 // On ppc64 these are all ds form
9330 maybe_dq_reloc = true;
9331 break;
9332 }
9333 // Fall through.
9334 case elfcpp::R_POWERPC_ADDR16:
9335 case elfcpp::R_POWERPC_REL16:
9336 case elfcpp::R_PPC64_TOC16:
9337 case elfcpp::R_POWERPC_GOT16:
9338 case elfcpp::R_POWERPC_SECTOFF:
9339 case elfcpp::R_POWERPC_TPREL16:
9340 case elfcpp::R_POWERPC_DTPREL16:
9341 case elfcpp::R_POWERPC_GOT_TLSGD16:
9342 case elfcpp::R_POWERPC_GOT_TLSLD16:
9343 case elfcpp::R_POWERPC_ADDR16_LO:
9344 case elfcpp::R_POWERPC_REL16_LO:
9345 case elfcpp::R_PPC64_TOC16_LO:
9346 case elfcpp::R_POWERPC_GOT16_LO:
9347 case elfcpp::R_POWERPC_SECTOFF_LO:
9348 case elfcpp::R_POWERPC_TPREL16_LO:
9349 case elfcpp::R_POWERPC_DTPREL16_LO:
9350 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9351 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9352 if (size == 64)
9353 status = Reloc::addr16(view, value, overflow);
9354 else
9355 maybe_dq_reloc = true;
9356 break;
9357
9358 case elfcpp::R_POWERPC_UADDR16:
9359 status = Reloc::addr16_u(view, value, overflow);
9360 break;
9361
9362 case elfcpp::R_PPC64_ADDR16_HIGH:
9363 case elfcpp::R_PPC64_TPREL16_HIGH:
9364 case elfcpp::R_PPC64_DTPREL16_HIGH:
9365 if (size == 32)
9366 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9367 goto unsupp;
9368 // Fall through.
9369 case elfcpp::R_POWERPC_ADDR16_HI:
9370 case elfcpp::R_POWERPC_REL16_HI:
9371 case elfcpp::R_PPC64_TOC16_HI:
9372 case elfcpp::R_POWERPC_GOT16_HI:
9373 case elfcpp::R_POWERPC_SECTOFF_HI:
9374 case elfcpp::R_POWERPC_TPREL16_HI:
9375 case elfcpp::R_POWERPC_DTPREL16_HI:
9376 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9377 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9378 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9379 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9380 Reloc::addr16_hi(view, value);
9381 break;
9382
9383 case elfcpp::R_PPC64_ADDR16_HIGHA:
9384 case elfcpp::R_PPC64_TPREL16_HIGHA:
9385 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9386 if (size == 32)
9387 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
9388 goto unsupp;
9389 // Fall through.
9390 case elfcpp::R_POWERPC_ADDR16_HA:
9391 case elfcpp::R_POWERPC_REL16_HA:
9392 case elfcpp::R_PPC64_TOC16_HA:
9393 case elfcpp::R_POWERPC_GOT16_HA:
9394 case elfcpp::R_POWERPC_SECTOFF_HA:
9395 case elfcpp::R_POWERPC_TPREL16_HA:
9396 case elfcpp::R_POWERPC_DTPREL16_HA:
9397 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9398 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9399 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9400 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9401 Reloc::addr16_ha(view, value);
9402 break;
9403
9404 case elfcpp::R_POWERPC_REL16DX_HA:
9405 status = Reloc::addr16dx_ha(view, value, overflow);
9406 break;
9407
9408 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9409 if (size == 32)
9410 // R_PPC_EMB_NADDR16_LO
9411 goto unsupp;
9412 // Fall through.
9413 case elfcpp::R_PPC64_ADDR16_HIGHER:
9414 case elfcpp::R_PPC64_TPREL16_HIGHER:
9415 Reloc::addr16_hi2(view, value);
9416 break;
9417
9418 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9419 if (size == 32)
9420 // R_PPC_EMB_NADDR16_HI
9421 goto unsupp;
9422 // Fall through.
9423 case elfcpp::R_PPC64_ADDR16_HIGHERA:
9424 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9425 Reloc::addr16_ha2(view, value);
9426 break;
9427
9428 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9429 if (size == 32)
9430 // R_PPC_EMB_NADDR16_HA
9431 goto unsupp;
9432 // Fall through.
9433 case elfcpp::R_PPC64_ADDR16_HIGHEST:
9434 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9435 Reloc::addr16_hi3(view, value);
9436 break;
9437
9438 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9439 if (size == 32)
9440 // R_PPC_EMB_SDAI16
9441 goto unsupp;
9442 // Fall through.
9443 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9444 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9445 Reloc::addr16_ha3(view, value);
9446 break;
9447
9448 case elfcpp::R_PPC64_DTPREL16_DS:
9449 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9450 if (size == 32)
9451 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9452 goto unsupp;
9453 // Fall through.
9454 case elfcpp::R_PPC64_TPREL16_DS:
9455 case elfcpp::R_PPC64_TPREL16_LO_DS:
9456 if (size == 32)
9457 // R_PPC_TLSGD, R_PPC_TLSLD
9458 break;
9459 // Fall through.
9460 case elfcpp::R_PPC64_ADDR16_DS:
9461 case elfcpp::R_PPC64_ADDR16_LO_DS:
9462 case elfcpp::R_PPC64_TOC16_DS:
9463 case elfcpp::R_PPC64_TOC16_LO_DS:
9464 case elfcpp::R_PPC64_GOT16_DS:
9465 case elfcpp::R_PPC64_GOT16_LO_DS:
9466 case elfcpp::R_PPC64_SECTOFF_DS:
9467 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9468 maybe_dq_reloc = true;
9469 break;
9470
9471 case elfcpp::R_POWERPC_ADDR14:
9472 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9473 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9474 case elfcpp::R_POWERPC_REL14:
9475 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9476 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9477 status = Reloc::addr14(view, value, overflow);
9478 break;
9479
9480 case elfcpp::R_POWERPC_COPY:
9481 case elfcpp::R_POWERPC_GLOB_DAT:
9482 case elfcpp::R_POWERPC_JMP_SLOT:
9483 case elfcpp::R_POWERPC_RELATIVE:
9484 case elfcpp::R_POWERPC_DTPMOD:
9485 case elfcpp::R_PPC64_JMP_IREL:
9486 case elfcpp::R_POWERPC_IRELATIVE:
9487 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9488 _("unexpected reloc %u in object file"),
9489 r_type);
9490 break;
9491
9492 case elfcpp::R_PPC64_TOCSAVE:
9493 if (size == 32)
9494 // R_PPC_EMB_SDA21
9495 goto unsupp;
9496 else
9497 {
9498 Symbol_location loc;
9499 loc.object = relinfo->object;
9500 loc.shndx = relinfo->data_shndx;
9501 loc.offset = rela.get_r_offset();
9502 Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9503 if (p != target->tocsave_loc().end())
9504 {
9505 // If we've generated plt calls using this tocsave, then
9506 // the nop needs to be changed to save r2.
9507 Insn* iview = reinterpret_cast<Insn*>(view);
9508 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9509 elfcpp::Swap<32, big_endian>::
9510 writeval(iview, std_2_1 + target->stk_toc());
9511 }
9512 }
9513 break;
9514
9515 case elfcpp::R_PPC_EMB_SDA2I16:
9516 case elfcpp::R_PPC_EMB_SDA2REL:
9517 if (size == 32)
9518 goto unsupp;
9519 // R_PPC64_TLSGD, R_PPC64_TLSLD
9520 break;
9521
9522 case elfcpp::R_POWERPC_PLT32:
9523 case elfcpp::R_POWERPC_PLTREL32:
9524 case elfcpp::R_POWERPC_PLT16_LO:
9525 case elfcpp::R_POWERPC_PLT16_HI:
9526 case elfcpp::R_POWERPC_PLT16_HA:
9527 case elfcpp::R_PPC_SDAREL16:
9528 case elfcpp::R_POWERPC_ADDR30:
9529 case elfcpp::R_PPC64_PLT64:
9530 case elfcpp::R_PPC64_PLTREL64:
9531 case elfcpp::R_PPC64_PLTGOT16:
9532 case elfcpp::R_PPC64_PLTGOT16_LO:
9533 case elfcpp::R_PPC64_PLTGOT16_HI:
9534 case elfcpp::R_PPC64_PLTGOT16_HA:
9535 case elfcpp::R_PPC64_PLT16_LO_DS:
9536 case elfcpp::R_PPC64_PLTGOT16_DS:
9537 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9538 case elfcpp::R_PPC_EMB_RELSDA:
9539 case elfcpp::R_PPC_TOC16:
9540 default:
9541 unsupp:
9542 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9543 _("unsupported reloc %u"),
9544 r_type);
9545 break;
9546 }
9547
9548 if (maybe_dq_reloc)
9549 {
9550 if (insn == 0)
9551 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9552
9553 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9554 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9555 && (insn & 3) == 1))
9556 status = Reloc::addr16_dq(view, value, overflow);
9557 else if (size == 64
9558 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9559 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9560 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9561 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9562 status = Reloc::addr16_ds(view, value, overflow);
9563 else
9564 status = Reloc::addr16(view, value, overflow);
9565 }
9566
9567 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9568 && (has_stub_value
9569 || !(gsym != NULL
9570 && gsym->is_undefined()
9571 && is_branch_reloc(r_type))))
9572 {
9573 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9574 _("relocation overflow"));
9575 if (has_stub_value)
9576 gold_info(_("try relinking with a smaller --stub-group-size"));
9577 }
9578
9579 return true;
9580 }
9581
9582 // Relocate section data.
9583
9584 template<int size, bool big_endian>
9585 void
9586 Target_powerpc<size, big_endian>::relocate_section(
9587 const Relocate_info<size, big_endian>* relinfo,
9588 unsigned int sh_type,
9589 const unsigned char* prelocs,
9590 size_t reloc_count,
9591 Output_section* output_section,
9592 bool needs_special_offset_handling,
9593 unsigned char* view,
9594 Address address,
9595 section_size_type view_size,
9596 const Reloc_symbol_changes* reloc_symbol_changes)
9597 {
9598 typedef Target_powerpc<size, big_endian> Powerpc;
9599 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9600 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9601 Powerpc_comdat_behavior;
9602 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9603 Classify_reloc;
9604
9605 gold_assert(sh_type == elfcpp::SHT_RELA);
9606
9607 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9608 Powerpc_comdat_behavior, Classify_reloc>(
9609 relinfo,
9610 this,
9611 prelocs,
9612 reloc_count,
9613 output_section,
9614 needs_special_offset_handling,
9615 view,
9616 address,
9617 view_size,
9618 reloc_symbol_changes);
9619 }
9620
9621 template<int size, bool big_endian>
9622 class Powerpc_scan_relocatable_reloc
9623 {
9624 public:
9625 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9626 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9627 static const int sh_type = elfcpp::SHT_RELA;
9628
9629 // Return the symbol referred to by the relocation.
9630 static inline unsigned int
9631 get_r_sym(const Reltype* reloc)
9632 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9633
9634 // Return the type of the relocation.
9635 static inline unsigned int
9636 get_r_type(const Reltype* reloc)
9637 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9638
9639 // Return the strategy to use for a local symbol which is not a
9640 // section symbol, given the relocation type.
9641 inline Relocatable_relocs::Reloc_strategy
9642 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9643 {
9644 if (r_type == 0 && r_sym == 0)
9645 return Relocatable_relocs::RELOC_DISCARD;
9646 return Relocatable_relocs::RELOC_COPY;
9647 }
9648
9649 // Return the strategy to use for a local symbol which is a section
9650 // symbol, given the relocation type.
9651 inline Relocatable_relocs::Reloc_strategy
9652 local_section_strategy(unsigned int, Relobj*)
9653 {
9654 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9655 }
9656
9657 // Return the strategy to use for a global symbol, given the
9658 // relocation type, the object, and the symbol index.
9659 inline Relocatable_relocs::Reloc_strategy
9660 global_strategy(unsigned int r_type, Relobj*, unsigned int)
9661 {
9662 if (r_type == elfcpp::R_PPC_PLTREL24)
9663 return Relocatable_relocs::RELOC_SPECIAL;
9664 return Relocatable_relocs::RELOC_COPY;
9665 }
9666 };
9667
9668 // Scan the relocs during a relocatable link.
9669
9670 template<int size, bool big_endian>
9671 void
9672 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9673 Symbol_table* symtab,
9674 Layout* layout,
9675 Sized_relobj_file<size, big_endian>* object,
9676 unsigned int data_shndx,
9677 unsigned int sh_type,
9678 const unsigned char* prelocs,
9679 size_t reloc_count,
9680 Output_section* output_section,
9681 bool needs_special_offset_handling,
9682 size_t local_symbol_count,
9683 const unsigned char* plocal_symbols,
9684 Relocatable_relocs* rr)
9685 {
9686 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9687
9688 gold_assert(sh_type == elfcpp::SHT_RELA);
9689
9690 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9691 symtab,
9692 layout,
9693 object,
9694 data_shndx,
9695 prelocs,
9696 reloc_count,
9697 output_section,
9698 needs_special_offset_handling,
9699 local_symbol_count,
9700 plocal_symbols,
9701 rr);
9702 }
9703
9704 // Scan the relocs for --emit-relocs.
9705
9706 template<int size, bool big_endian>
9707 void
9708 Target_powerpc<size, big_endian>::emit_relocs_scan(
9709 Symbol_table* symtab,
9710 Layout* layout,
9711 Sized_relobj_file<size, big_endian>* object,
9712 unsigned int data_shndx,
9713 unsigned int sh_type,
9714 const unsigned char* prelocs,
9715 size_t reloc_count,
9716 Output_section* output_section,
9717 bool needs_special_offset_handling,
9718 size_t local_symbol_count,
9719 const unsigned char* plocal_syms,
9720 Relocatable_relocs* rr)
9721 {
9722 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9723 Classify_reloc;
9724 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9725 Emit_relocs_strategy;
9726
9727 gold_assert(sh_type == elfcpp::SHT_RELA);
9728
9729 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9730 symtab,
9731 layout,
9732 object,
9733 data_shndx,
9734 prelocs,
9735 reloc_count,
9736 output_section,
9737 needs_special_offset_handling,
9738 local_symbol_count,
9739 plocal_syms,
9740 rr);
9741 }
9742
9743 // Emit relocations for a section.
9744 // This is a modified version of the function by the same name in
9745 // target-reloc.h. Using relocate_special_relocatable for
9746 // R_PPC_PLTREL24 would require duplication of the entire body of the
9747 // loop, so we may as well duplicate the whole thing.
9748
9749 template<int size, bool big_endian>
9750 void
9751 Target_powerpc<size, big_endian>::relocate_relocs(
9752 const Relocate_info<size, big_endian>* relinfo,
9753 unsigned int sh_type,
9754 const unsigned char* prelocs,
9755 size_t reloc_count,
9756 Output_section* output_section,
9757 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9758 unsigned char*,
9759 Address view_address,
9760 section_size_type,
9761 unsigned char* reloc_view,
9762 section_size_type reloc_view_size)
9763 {
9764 gold_assert(sh_type == elfcpp::SHT_RELA);
9765
9766 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9767 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9768 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9769 // Offset from start of insn to d-field reloc.
9770 const int d_offset = big_endian ? 2 : 0;
9771
9772 Powerpc_relobj<size, big_endian>* const object
9773 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9774 const unsigned int local_count = object->local_symbol_count();
9775 unsigned int got2_shndx = object->got2_shndx();
9776 Address got2_addend = 0;
9777 if (got2_shndx != 0)
9778 {
9779 got2_addend = object->get_output_section_offset(got2_shndx);
9780 gold_assert(got2_addend != invalid_address);
9781 }
9782
9783 const bool relocatable = parameters->options().relocatable();
9784
9785 unsigned char* pwrite = reloc_view;
9786 bool zap_next = false;
9787 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9788 {
9789 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9790 if (strategy == Relocatable_relocs::RELOC_DISCARD)
9791 continue;
9792
9793 Reltype reloc(prelocs);
9794 Reltype_write reloc_write(pwrite);
9795
9796 Address offset = reloc.get_r_offset();
9797 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9798 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9799 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9800 const unsigned int orig_r_sym = r_sym;
9801 typename elfcpp::Elf_types<size>::Elf_Swxword addend
9802 = reloc.get_r_addend();
9803 const Symbol* gsym = NULL;
9804
9805 if (zap_next)
9806 {
9807 // We could arrange to discard these and other relocs for
9808 // tls optimised sequences in the strategy methods, but for
9809 // now do as BFD ld does.
9810 r_type = elfcpp::R_POWERPC_NONE;
9811 zap_next = false;
9812 }
9813
9814 // Get the new symbol index.
9815 Output_section* os = NULL;
9816 if (r_sym < local_count)
9817 {
9818 switch (strategy)
9819 {
9820 case Relocatable_relocs::RELOC_COPY:
9821 case Relocatable_relocs::RELOC_SPECIAL:
9822 if (r_sym != 0)
9823 {
9824 r_sym = object->symtab_index(r_sym);
9825 gold_assert(r_sym != -1U);
9826 }
9827 break;
9828
9829 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9830 {
9831 // We are adjusting a section symbol. We need to find
9832 // the symbol table index of the section symbol for
9833 // the output section corresponding to input section
9834 // in which this symbol is defined.
9835 gold_assert(r_sym < local_count);
9836 bool is_ordinary;
9837 unsigned int shndx =
9838 object->local_symbol_input_shndx(r_sym, &is_ordinary);
9839 gold_assert(is_ordinary);
9840 os = object->output_section(shndx);
9841 gold_assert(os != NULL);
9842 gold_assert(os->needs_symtab_index());
9843 r_sym = os->symtab_index();
9844 }
9845 break;
9846
9847 default:
9848 gold_unreachable();
9849 }
9850 }
9851 else
9852 {
9853 gsym = object->global_symbol(r_sym);
9854 gold_assert(gsym != NULL);
9855 if (gsym->is_forwarder())
9856 gsym = relinfo->symtab->resolve_forwards(gsym);
9857
9858 gold_assert(gsym->has_symtab_index());
9859 r_sym = gsym->symtab_index();
9860 }
9861
9862 // Get the new offset--the location in the output section where
9863 // this relocation should be applied.
9864 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9865 offset += offset_in_output_section;
9866 else
9867 {
9868 section_offset_type sot_offset =
9869 convert_types<section_offset_type, Address>(offset);
9870 section_offset_type new_sot_offset =
9871 output_section->output_offset(object, relinfo->data_shndx,
9872 sot_offset);
9873 gold_assert(new_sot_offset != -1);
9874 offset = new_sot_offset;
9875 }
9876
9877 // In an object file, r_offset is an offset within the section.
9878 // In an executable or dynamic object, generated by
9879 // --emit-relocs, r_offset is an absolute address.
9880 if (!relocatable)
9881 {
9882 offset += view_address;
9883 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9884 offset -= offset_in_output_section;
9885 }
9886
9887 // Handle the reloc addend based on the strategy.
9888 if (strategy == Relocatable_relocs::RELOC_COPY)
9889 ;
9890 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9891 {
9892 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9893 addend = psymval->value(object, addend);
9894 // In a relocatable link, the symbol value is relative to
9895 // the start of the output section. For a non-relocatable
9896 // link, we need to adjust the addend.
9897 if (!relocatable)
9898 {
9899 gold_assert(os != NULL);
9900 addend -= os->address();
9901 }
9902 }
9903 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9904 {
9905 if (size == 32)
9906 {
9907 if (addend >= 32768)
9908 addend += got2_addend;
9909 }
9910 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9911 {
9912 r_type = elfcpp::R_POWERPC_ADDR16_HA;
9913 addend -= d_offset;
9914 }
9915 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9916 {
9917 r_type = elfcpp::R_POWERPC_ADDR16_LO;
9918 addend -= d_offset + 4;
9919 }
9920 }
9921 else
9922 gold_unreachable();
9923
9924 if (!relocatable)
9925 {
9926 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9927 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9928 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9929 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9930 {
9931 // First instruction of a global dynamic sequence,
9932 // arg setup insn.
9933 const bool final = gsym == NULL || gsym->final_value_is_known();
9934 switch (this->optimize_tls_gd(final))
9935 {
9936 case tls::TLSOPT_TO_IE:
9937 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9938 - elfcpp::R_POWERPC_GOT_TLSGD16);
9939 break;
9940 case tls::TLSOPT_TO_LE:
9941 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9942 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9943 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9944 else
9945 {
9946 r_type = elfcpp::R_POWERPC_NONE;
9947 offset -= d_offset;
9948 }
9949 break;
9950 default:
9951 break;
9952 }
9953 }
9954 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9955 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9956 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9957 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9958 {
9959 // First instruction of a local dynamic sequence,
9960 // arg setup insn.
9961 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9962 {
9963 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9964 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9965 {
9966 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9967 const Output_section* os = relinfo->layout->tls_segment()
9968 ->first_section();
9969 gold_assert(os != NULL);
9970 gold_assert(os->needs_symtab_index());
9971 r_sym = os->symtab_index();
9972 addend = dtp_offset;
9973 }
9974 else
9975 {
9976 r_type = elfcpp::R_POWERPC_NONE;
9977 offset -= d_offset;
9978 }
9979 }
9980 }
9981 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9982 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9983 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9984 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9985 {
9986 // First instruction of initial exec sequence.
9987 const bool final = gsym == NULL || gsym->final_value_is_known();
9988 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9989 {
9990 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9991 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9992 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9993 else
9994 {
9995 r_type = elfcpp::R_POWERPC_NONE;
9996 offset -= d_offset;
9997 }
9998 }
9999 }
10000 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10001 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10002 {
10003 // Second instruction of a global dynamic sequence,
10004 // the __tls_get_addr call
10005 const bool final = gsym == NULL || gsym->final_value_is_known();
10006 switch (this->optimize_tls_gd(final))
10007 {
10008 case tls::TLSOPT_TO_IE:
10009 r_type = elfcpp::R_POWERPC_NONE;
10010 zap_next = true;
10011 break;
10012 case tls::TLSOPT_TO_LE:
10013 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10014 offset += d_offset;
10015 zap_next = true;
10016 break;
10017 default:
10018 break;
10019 }
10020 }
10021 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10022 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10023 {
10024 // Second instruction of a local dynamic sequence,
10025 // the __tls_get_addr call
10026 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10027 {
10028 const Output_section* os = relinfo->layout->tls_segment()
10029 ->first_section();
10030 gold_assert(os != NULL);
10031 gold_assert(os->needs_symtab_index());
10032 r_sym = os->symtab_index();
10033 addend = dtp_offset;
10034 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10035 offset += d_offset;
10036 zap_next = true;
10037 }
10038 }
10039 else if (r_type == elfcpp::R_POWERPC_TLS)
10040 {
10041 // Second instruction of an initial exec sequence
10042 const bool final = gsym == NULL || gsym->final_value_is_known();
10043 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10044 {
10045 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10046 offset += d_offset;
10047 }
10048 }
10049 }
10050
10051 reloc_write.put_r_offset(offset);
10052 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10053 reloc_write.put_r_addend(addend);
10054
10055 pwrite += reloc_size;
10056 }
10057
10058 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10059 == reloc_view_size);
10060 }
10061
10062 // Return the value to use for a dynamic symbol which requires special
10063 // treatment. This is how we support equality comparisons of function
10064 // pointers across shared library boundaries, as described in the
10065 // processor specific ABI supplement.
10066
10067 template<int size, bool big_endian>
10068 uint64_t
10069 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10070 {
10071 if (size == 32)
10072 {
10073 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10074 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10075 p != this->stub_tables_.end();
10076 ++p)
10077 {
10078 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10079 = (*p)->find_plt_call_entry(gsym);
10080 if (ent != NULL)
10081 return (*p)->stub_address() + ent->off_;
10082 }
10083 }
10084 else if (this->abiversion() >= 2)
10085 {
10086 Address off = this->glink_section()->find_global_entry(gsym);
10087 if (off != invalid_address)
10088 return this->glink_section()->global_entry_address() + off;
10089 }
10090 gold_unreachable();
10091 }
10092
10093 // Return the PLT address to use for a local symbol.
10094 template<int size, bool big_endian>
10095 uint64_t
10096 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10097 const Relobj* object,
10098 unsigned int symndx) const
10099 {
10100 if (size == 32)
10101 {
10102 const Sized_relobj<size, big_endian>* relobj
10103 = static_cast<const Sized_relobj<size, big_endian>*>(object);
10104 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10105 p != this->stub_tables_.end();
10106 ++p)
10107 {
10108 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10109 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10110 if (ent != NULL)
10111 return (*p)->stub_address() + ent->off_;
10112 }
10113 }
10114 gold_unreachable();
10115 }
10116
10117 // Return the PLT address to use for a global symbol.
10118 template<int size, bool big_endian>
10119 uint64_t
10120 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10121 const Symbol* gsym) const
10122 {
10123 if (size == 32)
10124 {
10125 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10126 p != this->stub_tables_.end();
10127 ++p)
10128 {
10129 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10130 = (*p)->find_plt_call_entry(gsym);
10131 if (ent != NULL)
10132 return (*p)->stub_address() + ent->off_;
10133 }
10134 }
10135 else if (this->abiversion() >= 2)
10136 {
10137 Address off = this->glink_section()->find_global_entry(gsym);
10138 if (off != invalid_address)
10139 return this->glink_section()->global_entry_address() + off;
10140 }
10141 gold_unreachable();
10142 }
10143
10144 // Return the offset to use for the GOT_INDX'th got entry which is
10145 // for a local tls symbol specified by OBJECT, SYMNDX.
10146 template<int size, bool big_endian>
10147 int64_t
10148 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10149 const Relobj* object,
10150 unsigned int symndx,
10151 unsigned int got_indx) const
10152 {
10153 const Powerpc_relobj<size, big_endian>* ppc_object
10154 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10155 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10156 {
10157 for (Got_type got_type = GOT_TYPE_TLSGD;
10158 got_type <= GOT_TYPE_TPREL;
10159 got_type = Got_type(got_type + 1))
10160 if (ppc_object->local_has_got_offset(symndx, got_type))
10161 {
10162 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10163 if (got_type == GOT_TYPE_TLSGD)
10164 off += size / 8;
10165 if (off == got_indx * (size / 8))
10166 {
10167 if (got_type == GOT_TYPE_TPREL)
10168 return -tp_offset;
10169 else
10170 return -dtp_offset;
10171 }
10172 }
10173 }
10174 gold_unreachable();
10175 }
10176
10177 // Return the offset to use for the GOT_INDX'th got entry which is
10178 // for global tls symbol GSYM.
10179 template<int size, bool big_endian>
10180 int64_t
10181 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10182 Symbol* gsym,
10183 unsigned int got_indx) const
10184 {
10185 if (gsym->type() == elfcpp::STT_TLS)
10186 {
10187 for (Got_type got_type = GOT_TYPE_TLSGD;
10188 got_type <= GOT_TYPE_TPREL;
10189 got_type = Got_type(got_type + 1))
10190 if (gsym->has_got_offset(got_type))
10191 {
10192 unsigned int off = gsym->got_offset(got_type);
10193 if (got_type == GOT_TYPE_TLSGD)
10194 off += size / 8;
10195 if (off == got_indx * (size / 8))
10196 {
10197 if (got_type == GOT_TYPE_TPREL)
10198 return -tp_offset;
10199 else
10200 return -dtp_offset;
10201 }
10202 }
10203 }
10204 gold_unreachable();
10205 }
10206
10207 // The selector for powerpc object files.
10208
10209 template<int size, bool big_endian>
10210 class Target_selector_powerpc : public Target_selector
10211 {
10212 public:
10213 Target_selector_powerpc()
10214 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10215 size, big_endian,
10216 (size == 64
10217 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10218 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10219 (size == 64
10220 ? (big_endian ? "elf64ppc" : "elf64lppc")
10221 : (big_endian ? "elf32ppc" : "elf32lppc")))
10222 { }
10223
10224 virtual Target*
10225 do_instantiate_target()
10226 { return new Target_powerpc<size, big_endian>(); }
10227 };
10228
10229 Target_selector_powerpc<32, true> target_selector_ppc32;
10230 Target_selector_powerpc<32, false> target_selector_ppc32le;
10231 Target_selector_powerpc<64, true> target_selector_ppc64;
10232 Target_selector_powerpc<64, false> target_selector_ppc64le;
10233
10234 // Instantiate these constants for -O0
10235 template<int size, bool big_endian>
10236 const typename Output_data_glink<size, big_endian>::Address
10237 Output_data_glink<size, big_endian>::invalid_address;
10238 template<int size, bool big_endian>
10239 const typename Stub_table<size, big_endian>::Address
10240 Stub_table<size, big_endian>::invalid_address;
10241 template<int size, bool big_endian>
10242 const typename Target_powerpc<size, big_endian>::Address
10243 Target_powerpc<size, big_endian>::invalid_address;
10244
10245 } // End anonymous namespace.
This page took 0.251584 seconds and 5 git commands to generate.