Fix "PowerPC64 ELFv2 entry code" for big-endian
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 const unsigned char* prelocs, size_t reloc_count,
635 unsigned char* view, section_size_type view_size,
636 std::string* from, std::string* to) const;
637
638 // Relocate a section.
639 void
640 relocate_section(const Relocate_info<size, big_endian>*,
641 unsigned int sh_type,
642 const unsigned char* prelocs,
643 size_t reloc_count,
644 Output_section* output_section,
645 bool needs_special_offset_handling,
646 unsigned char* view,
647 Address view_address,
648 section_size_type view_size,
649 const Reloc_symbol_changes*);
650
651 // Scan the relocs during a relocatable link.
652 void
653 scan_relocatable_relocs(Symbol_table* symtab,
654 Layout* layout,
655 Sized_relobj_file<size, big_endian>* object,
656 unsigned int data_shndx,
657 unsigned int sh_type,
658 const unsigned char* prelocs,
659 size_t reloc_count,
660 Output_section* output_section,
661 bool needs_special_offset_handling,
662 size_t local_symbol_count,
663 const unsigned char* plocal_symbols,
664 Relocatable_relocs*);
665
666 // Scan the relocs for --emit-relocs.
667 void
668 emit_relocs_scan(Symbol_table* symtab,
669 Layout* layout,
670 Sized_relobj_file<size, big_endian>* object,
671 unsigned int data_shndx,
672 unsigned int sh_type,
673 const unsigned char* prelocs,
674 size_t reloc_count,
675 Output_section* output_section,
676 bool needs_special_offset_handling,
677 size_t local_symbol_count,
678 const unsigned char* plocal_syms,
679 Relocatable_relocs* rr);
680
681 // Emit relocations for a section.
682 void
683 relocate_relocs(const Relocate_info<size, big_endian>*,
684 unsigned int sh_type,
685 const unsigned char* prelocs,
686 size_t reloc_count,
687 Output_section* output_section,
688 typename elfcpp::Elf_types<size>::Elf_Off
689 offset_in_output_section,
690 unsigned char*,
691 Address view_address,
692 section_size_type,
693 unsigned char* reloc_view,
694 section_size_type reloc_view_size);
695
696 // Return whether SYM is defined by the ABI.
697 bool
698 do_is_defined_by_abi(const Symbol* sym) const
699 {
700 return strcmp(sym->name(), "__tls_get_addr") == 0;
701 }
702
703 // Return the size of the GOT section.
704 section_size_type
705 got_size() const
706 {
707 gold_assert(this->got_ != NULL);
708 return this->got_->data_size();
709 }
710
711 // Get the PLT section.
712 const Output_data_plt_powerpc<size, big_endian>*
713 plt_section() const
714 {
715 gold_assert(this->plt_ != NULL);
716 return this->plt_;
717 }
718
719 // Get the IPLT section.
720 const Output_data_plt_powerpc<size, big_endian>*
721 iplt_section() const
722 {
723 gold_assert(this->iplt_ != NULL);
724 return this->iplt_;
725 }
726
727 // Get the .glink section.
728 const Output_data_glink<size, big_endian>*
729 glink_section() const
730 {
731 gold_assert(this->glink_ != NULL);
732 return this->glink_;
733 }
734
735 Output_data_glink<size, big_endian>*
736 glink_section()
737 {
738 gold_assert(this->glink_ != NULL);
739 return this->glink_;
740 }
741
742 bool has_glink() const
743 { return this->glink_ != NULL; }
744
745 // Get the GOT section.
746 const Output_data_got_powerpc<size, big_endian>*
747 got_section() const
748 {
749 gold_assert(this->got_ != NULL);
750 return this->got_;
751 }
752
753 // Get the GOT section, creating it if necessary.
754 Output_data_got_powerpc<size, big_endian>*
755 got_section(Symbol_table*, Layout*);
756
757 Object*
758 do_make_elf_object(const std::string&, Input_file*, off_t,
759 const elfcpp::Ehdr<size, big_endian>&);
760
761 // Return the number of entries in the GOT.
762 unsigned int
763 got_entry_count() const
764 {
765 if (this->got_ == NULL)
766 return 0;
767 return this->got_size() / (size / 8);
768 }
769
770 // Return the number of entries in the PLT.
771 unsigned int
772 plt_entry_count() const;
773
774 // Return the offset of the first non-reserved PLT entry.
775 unsigned int
776 first_plt_entry_offset() const
777 {
778 if (size == 32)
779 return 0;
780 if (this->abiversion() >= 2)
781 return 16;
782 return 24;
783 }
784
785 // Return the size of each PLT entry.
786 unsigned int
787 plt_entry_size() const
788 {
789 if (size == 32)
790 return 4;
791 if (this->abiversion() >= 2)
792 return 8;
793 return 24;
794 }
795
796 Output_data_save_res<size, big_endian>*
797 savres_section() const
798 {
799 return this->savres_section_;
800 }
801
802 // Add any special sections for this symbol to the gc work list.
803 // For powerpc64, this adds the code section of a function
804 // descriptor.
805 void
806 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808 // Handle target specific gc actions when adding a gc reference from
809 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810 // and DST_OFF. For powerpc64, this adds a referenc to the code
811 // section of a function descriptor.
812 void
813 do_gc_add_reference(Symbol_table* symtab,
814 Relobj* src_obj,
815 unsigned int src_shndx,
816 Relobj* dst_obj,
817 unsigned int dst_shndx,
818 Address dst_off) const;
819
820 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821 const Stub_tables&
822 stub_tables() const
823 { return this->stub_tables_; }
824
825 const Output_data_brlt_powerpc<size, big_endian>*
826 brlt_section() const
827 { return this->brlt_section_; }
828
829 void
830 add_branch_lookup_table(Address to)
831 {
832 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833 this->branch_lookup_table_.insert(std::make_pair(to, off));
834 }
835
836 Address
837 find_branch_lookup_table(Address to)
838 {
839 typename Branch_lookup_table::const_iterator p
840 = this->branch_lookup_table_.find(to);
841 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842 }
843
844 void
845 write_branch_lookup_table(unsigned char *oview)
846 {
847 for (typename Branch_lookup_table::const_iterator p
848 = this->branch_lookup_table_.begin();
849 p != this->branch_lookup_table_.end();
850 ++p)
851 {
852 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853 }
854 }
855
856 bool
857 plt_thread_safe() const
858 { return this->plt_thread_safe_; }
859
860 int
861 abiversion () const
862 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864 void
865 set_abiversion (int ver)
866 {
867 elfcpp::Elf_Word flags = this->processor_specific_flags();
868 flags &= ~elfcpp::EF_PPC64_ABI;
869 flags |= ver & elfcpp::EF_PPC64_ABI;
870 this->set_processor_specific_flags(flags);
871 }
872
873 // Offset to to save stack slot
874 int
875 stk_toc () const
876 { return this->abiversion() < 2 ? 40 : 24; }
877
878 private:
879
880 class Track_tls
881 {
882 public:
883 enum Tls_get_addr
884 {
885 NOT_EXPECTED = 0,
886 EXPECTED = 1,
887 SKIP = 2,
888 NORMAL = 3
889 };
890
891 Track_tls()
892 : tls_get_addr_(NOT_EXPECTED),
893 relinfo_(NULL), relnum_(0), r_offset_(0)
894 { }
895
896 ~Track_tls()
897 {
898 if (this->tls_get_addr_ != NOT_EXPECTED)
899 this->missing();
900 }
901
902 void
903 missing(void)
904 {
905 if (this->relinfo_ != NULL)
906 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907 _("missing expected __tls_get_addr call"));
908 }
909
910 void
911 expect_tls_get_addr_call(
912 const Relocate_info<size, big_endian>* relinfo,
913 size_t relnum,
914 Address r_offset)
915 {
916 this->tls_get_addr_ = EXPECTED;
917 this->relinfo_ = relinfo;
918 this->relnum_ = relnum;
919 this->r_offset_ = r_offset;
920 }
921
922 void
923 expect_tls_get_addr_call()
924 { this->tls_get_addr_ = EXPECTED; }
925
926 void
927 skip_next_tls_get_addr_call()
928 {this->tls_get_addr_ = SKIP; }
929
930 Tls_get_addr
931 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932 {
933 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934 || r_type == elfcpp::R_PPC_PLTREL24)
935 && gsym != NULL
936 && strcmp(gsym->name(), "__tls_get_addr") == 0);
937 Tls_get_addr last_tls = this->tls_get_addr_;
938 this->tls_get_addr_ = NOT_EXPECTED;
939 if (is_tls_call && last_tls != EXPECTED)
940 return last_tls;
941 else if (!is_tls_call && last_tls != NOT_EXPECTED)
942 {
943 this->missing();
944 return EXPECTED;
945 }
946 return NORMAL;
947 }
948
949 private:
950 // What we're up to regarding calls to __tls_get_addr.
951 // On powerpc, the branch and link insn making a call to
952 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955 // The marker relocation always comes first, and has the same
956 // symbol as the reloc on the insn setting up the __tls_get_addr
957 // argument. This ties the arg setup insn with the call insn,
958 // allowing ld to safely optimize away the call. We check that
959 // every call to __tls_get_addr has a marker relocation, and that
960 // every marker relocation is on a call to __tls_get_addr.
961 Tls_get_addr tls_get_addr_;
962 // Info about the last reloc for error message.
963 const Relocate_info<size, big_endian>* relinfo_;
964 size_t relnum_;
965 Address r_offset_;
966 };
967
968 // The class which scans relocations.
969 class Scan : protected Track_tls
970 {
971 public:
972 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974 Scan()
975 : Track_tls(), issued_non_pic_error_(false)
976 { }
977
978 static inline int
979 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981 inline void
982 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983 Sized_relobj_file<size, big_endian>* object,
984 unsigned int data_shndx,
985 Output_section* output_section,
986 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987 const elfcpp::Sym<size, big_endian>& lsym,
988 bool is_discarded);
989
990 inline void
991 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992 Sized_relobj_file<size, big_endian>* object,
993 unsigned int data_shndx,
994 Output_section* output_section,
995 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996 Symbol* gsym);
997
998 inline bool
999 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000 Target_powerpc* ,
1001 Sized_relobj_file<size, big_endian>* relobj,
1002 unsigned int ,
1003 Output_section* ,
1004 const elfcpp::Rela<size, big_endian>& ,
1005 unsigned int r_type,
1006 const elfcpp::Sym<size, big_endian>&)
1007 {
1008 // PowerPC64 .opd is not folded, so any identical function text
1009 // may be folded and we'll still keep function addresses distinct.
1010 // That means no reloc is of concern here.
1011 if (size == 64)
1012 {
1013 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014 <Powerpc_relobj<size, big_endian>*>(relobj);
1015 if (ppcobj->abiversion() == 1)
1016 return false;
1017 }
1018 // For 32-bit and ELFv2, conservatively assume anything but calls to
1019 // function code might be taking the address of the function.
1020 return !is_branch_reloc(r_type);
1021 }
1022
1023 inline bool
1024 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025 Target_powerpc* ,
1026 Sized_relobj_file<size, big_endian>* relobj,
1027 unsigned int ,
1028 Output_section* ,
1029 const elfcpp::Rela<size, big_endian>& ,
1030 unsigned int r_type,
1031 Symbol*)
1032 {
1033 // As above.
1034 if (size == 64)
1035 {
1036 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037 <Powerpc_relobj<size, big_endian>*>(relobj);
1038 if (ppcobj->abiversion() == 1)
1039 return false;
1040 }
1041 return !is_branch_reloc(r_type);
1042 }
1043
1044 static bool
1045 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046 Sized_relobj_file<size, big_endian>* object,
1047 unsigned int r_type, bool report_err);
1048
1049 private:
1050 static void
1051 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052 unsigned int r_type);
1053
1054 static void
1055 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type, Symbol*);
1057
1058 static void
1059 generate_tls_call(Symbol_table* symtab, Layout* layout,
1060 Target_powerpc* target);
1061
1062 void
1063 check_non_pic(Relobj*, unsigned int r_type);
1064
1065 // Whether we have issued an error about a non-PIC compilation.
1066 bool issued_non_pic_error_;
1067 };
1068
1069 bool
1070 symval_for_branch(const Symbol_table* symtab,
1071 const Sized_symbol<size>* gsym,
1072 Powerpc_relobj<size, big_endian>* object,
1073 Address *value, unsigned int *dest_shndx);
1074
1075 // The class which implements relocation.
1076 class Relocate : protected Track_tls
1077 {
1078 public:
1079 // Use 'at' branch hints when true, 'y' when false.
1080 // FIXME maybe: set this with an option.
1081 static const bool is_isa_v2 = true;
1082
1083 Relocate()
1084 : Track_tls()
1085 { }
1086
1087 // Do a relocation. Return false if the caller should not issue
1088 // any warnings about this relocation.
1089 inline bool
1090 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092 const Sized_symbol<size>*, const Symbol_value<size>*,
1093 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094 section_size_type);
1095 };
1096
1097 class Relocate_comdat_behavior
1098 {
1099 public:
1100 // Decide what the linker should do for relocations that refer to
1101 // discarded comdat sections.
1102 inline Comdat_behavior
1103 get(const char* name)
1104 {
1105 gold::Default_comdat_behavior default_behavior;
1106 Comdat_behavior ret = default_behavior.get(name);
1107 if (ret == CB_WARNING)
1108 {
1109 if (size == 32
1110 && (strcmp(name, ".fixup") == 0
1111 || strcmp(name, ".got2") == 0))
1112 ret = CB_IGNORE;
1113 if (size == 64
1114 && (strcmp(name, ".opd") == 0
1115 || strcmp(name, ".toc") == 0
1116 || strcmp(name, ".toc1") == 0))
1117 ret = CB_IGNORE;
1118 }
1119 return ret;
1120 }
1121 };
1122
1123 // Optimize the TLS relocation type based on what we know about the
1124 // symbol. IS_FINAL is true if the final address of this symbol is
1125 // known at link time.
1126
1127 tls::Tls_optimization
1128 optimize_tls_gd(bool is_final)
1129 {
1130 // If we are generating a shared library, then we can't do anything
1131 // in the linker.
1132 if (parameters->options().shared())
1133 return tls::TLSOPT_NONE;
1134
1135 if (!is_final)
1136 return tls::TLSOPT_TO_IE;
1137 return tls::TLSOPT_TO_LE;
1138 }
1139
1140 tls::Tls_optimization
1141 optimize_tls_ld()
1142 {
1143 if (parameters->options().shared())
1144 return tls::TLSOPT_NONE;
1145
1146 return tls::TLSOPT_TO_LE;
1147 }
1148
1149 tls::Tls_optimization
1150 optimize_tls_ie(bool is_final)
1151 {
1152 if (!is_final || parameters->options().shared())
1153 return tls::TLSOPT_NONE;
1154
1155 return tls::TLSOPT_TO_LE;
1156 }
1157
1158 // Create glink.
1159 void
1160 make_glink_section(Layout*);
1161
1162 // Create the PLT section.
1163 void
1164 make_plt_section(Symbol_table*, Layout*);
1165
1166 void
1167 make_iplt_section(Symbol_table*, Layout*);
1168
1169 void
1170 make_brlt_section(Layout*);
1171
1172 // Create a PLT entry for a global symbol.
1173 void
1174 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176 // Create a PLT entry for a local IFUNC symbol.
1177 void
1178 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179 Sized_relobj_file<size, big_endian>*,
1180 unsigned int);
1181
1182
1183 // Create a GOT entry for local dynamic __tls_get_addr.
1184 unsigned int
1185 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186 Sized_relobj_file<size, big_endian>* object);
1187
1188 unsigned int
1189 tlsld_got_offset() const
1190 {
1191 return this->tlsld_got_offset_;
1192 }
1193
1194 // Get the dynamic reloc section, creating it if necessary.
1195 Reloc_section*
1196 rela_dyn_section(Layout*);
1197
1198 // Similarly, but for ifunc symbols get the one for ifunc.
1199 Reloc_section*
1200 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202 // Copy a relocation against a global symbol.
1203 void
1204 copy_reloc(Symbol_table* symtab, Layout* layout,
1205 Sized_relobj_file<size, big_endian>* object,
1206 unsigned int shndx, Output_section* output_section,
1207 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208 {
1209 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210 this->copy_relocs_.copy_reloc(symtab, layout,
1211 symtab->get_sized_symbol<size>(sym),
1212 object, shndx, output_section,
1213 r_type, reloc.get_r_offset(),
1214 reloc.get_r_addend(),
1215 this->rela_dyn_section(layout));
1216 }
1217
1218 // Look over all the input sections, deciding where to place stubs.
1219 void
1220 group_sections(Layout*, const Task*, bool);
1221
1222 // Sort output sections by address.
1223 struct Sort_sections
1224 {
1225 bool
1226 operator()(const Output_section* sec1, const Output_section* sec2)
1227 { return sec1->address() < sec2->address(); }
1228 };
1229
1230 class Branch_info
1231 {
1232 public:
1233 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234 unsigned int data_shndx,
1235 Address r_offset,
1236 unsigned int r_type,
1237 unsigned int r_sym,
1238 Address addend)
1239 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241 { }
1242
1243 ~Branch_info()
1244 { }
1245
1246 // If this branch needs a plt call stub, or a long branch stub, make one.
1247 bool
1248 make_stub(Stub_table<size, big_endian>*,
1249 Stub_table<size, big_endian>*,
1250 Symbol_table*) const;
1251
1252 private:
1253 // The branch location..
1254 Powerpc_relobj<size, big_endian>* object_;
1255 unsigned int shndx_;
1256 Address offset_;
1257 // ..and the branch type and destination.
1258 unsigned int r_type_;
1259 unsigned int r_sym_;
1260 Address addend_;
1261 };
1262
1263 // Information about this specific target which we pass to the
1264 // general Target structure.
1265 static Target::Target_info powerpc_info;
1266
1267 // The types of GOT entries needed for this platform.
1268 // These values are exposed to the ABI in an incremental link.
1269 // Do not renumber existing values without changing the version
1270 // number of the .gnu_incremental_inputs section.
1271 enum Got_type
1272 {
1273 GOT_TYPE_STANDARD,
1274 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1275 GOT_TYPE_DTPREL, // entry for @got@dtprel
1276 GOT_TYPE_TPREL // entry for @got@tprel
1277 };
1278
1279 // The GOT section.
1280 Output_data_got_powerpc<size, big_endian>* got_;
1281 // The PLT section. This is a container for a table of addresses,
1282 // and their relocations. Each address in the PLT has a dynamic
1283 // relocation (R_*_JMP_SLOT) and each address will have a
1284 // corresponding entry in .glink for lazy resolution of the PLT.
1285 // ppc32 initialises the PLT to point at the .glink entry, while
1286 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1287 // linker adds a stub that loads the PLT entry into ctr then
1288 // branches to ctr. There may be more than one stub for each PLT
1289 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1290 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291 Output_data_plt_powerpc<size, big_endian>* plt_;
1292 // The IPLT section. Like plt_, this is a container for a table of
1293 // addresses and their relocations, specifically for STT_GNU_IFUNC
1294 // functions that resolve locally (STT_GNU_IFUNC functions that
1295 // don't resolve locally go in PLT). Unlike plt_, these have no
1296 // entry in .glink for lazy resolution, and the relocation section
1297 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1298 // the relocation section may contain relocations against
1299 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1300 // relocation section will appear at the end of other dynamic
1301 // relocations, so that ld.so applies these relocations after other
1302 // dynamic relocations. In a static executable, the relocation
1303 // section is emitted and marked with __rela_iplt_start and
1304 // __rela_iplt_end symbols.
1305 Output_data_plt_powerpc<size, big_endian>* iplt_;
1306 // Section holding long branch destinations.
1307 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308 // The .glink section.
1309 Output_data_glink<size, big_endian>* glink_;
1310 // The dynamic reloc section.
1311 Reloc_section* rela_dyn_;
1312 // Relocs saved to avoid a COPY reloc.
1313 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315 unsigned int tlsld_got_offset_;
1316
1317 Stub_tables stub_tables_;
1318 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319 Branch_lookup_table branch_lookup_table_;
1320
1321 typedef std::vector<Branch_info> Branches;
1322 Branches branch_info_;
1323
1324 bool plt_thread_safe_;
1325
1326 bool relax_failed_;
1327 int relax_fail_count_;
1328 int32_t stub_group_size_;
1329
1330 Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336 32, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start", // entry_symbol_name
1358 32, // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364 32, // size
1365 false, // is_big_endian
1366 elfcpp::EM_PPC, // machine_code
1367 false, // has_make_symbol
1368 false, // has_resolve
1369 false, // has_code_fill
1370 true, // is_default_stack_executable
1371 false, // can_icf_inline_merge_sections
1372 '\0', // wrap_char
1373 "/usr/lib/ld.so.1", // dynamic_linker
1374 0x10000000, // default_text_segment_address
1375 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1376 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1377 false, // isolate_execinstr
1378 0, // rosegment_gap
1379 elfcpp::SHN_UNDEF, // small_common_shndx
1380 elfcpp::SHN_UNDEF, // large_common_shndx
1381 0, // small_common_section_flags
1382 0, // large_common_section_flags
1383 NULL, // attributes_section
1384 NULL, // attributes_vendor
1385 "_start", // entry_symbol_name
1386 32, // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392 64, // size
1393 true, // is_big_endian
1394 elfcpp::EM_PPC64, // machine_code
1395 false, // has_make_symbol
1396 false, // has_resolve
1397 false, // has_code_fill
1398 true, // is_default_stack_executable
1399 false, // can_icf_inline_merge_sections
1400 '\0', // wrap_char
1401 "/usr/lib/ld.so.1", // dynamic_linker
1402 0x10000000, // default_text_segment_address
1403 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1404 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1405 false, // isolate_execinstr
1406 0, // rosegment_gap
1407 elfcpp::SHN_UNDEF, // small_common_shndx
1408 elfcpp::SHN_UNDEF, // large_common_shndx
1409 0, // small_common_section_flags
1410 0, // large_common_section_flags
1411 NULL, // attributes_section
1412 NULL, // attributes_vendor
1413 "_start", // entry_symbol_name
1414 32, // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420 64, // size
1421 false, // is_big_endian
1422 elfcpp::EM_PPC64, // machine_code
1423 false, // has_make_symbol
1424 false, // has_resolve
1425 false, // has_code_fill
1426 true, // is_default_stack_executable
1427 false, // can_icf_inline_merge_sections
1428 '\0', // wrap_char
1429 "/usr/lib/ld.so.1", // dynamic_linker
1430 0x10000000, // default_text_segment_address
1431 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1432 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1433 false, // isolate_execinstr
1434 0, // rosegment_gap
1435 elfcpp::SHN_UNDEF, // small_common_shndx
1436 elfcpp::SHN_UNDEF, // large_common_shndx
1437 0, // small_common_section_flags
1438 0, // large_common_section_flags
1439 NULL, // attributes_section
1440 NULL, // attributes_vendor
1441 "_start", // entry_symbol_name
1442 32, // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448 return (r_type == elfcpp::R_POWERPC_REL24
1449 || r_type == elfcpp::R_PPC_PLTREL24
1450 || r_type == elfcpp::R_PPC_LOCAL24PC
1451 || r_type == elfcpp::R_POWERPC_REL14
1452 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454 || r_type == elfcpp::R_POWERPC_ADDR24
1455 || r_type == elfcpp::R_POWERPC_ADDR14
1456 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0. If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466 if ((insn & (0x3f << 26)) != 31 << 26)
1467 return 0;
1468
1469 unsigned int rtra;
1470 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471 rtra = insn & ((1 << 26) - (1 << 16));
1472 else if (((insn >> 16) & 0x1f) == reg)
1473 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474 else
1475 return 0;
1476
1477 if ((insn & (0x3ff << 1)) == 266 << 1)
1478 // add -> addi
1479 insn = 14 << 26;
1480 else if ((insn & (0x1f << 1)) == 23 << 1
1481 && ((insn & (0x1f << 6)) < 14 << 6
1482 || ((insn & (0x1f << 6)) >= 16 << 6
1483 && (insn & (0x1f << 6)) < 24 << 6)))
1484 // load and store indexed -> dform
1485 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490 // lwax -> lwa
1491 insn = (58 << 26) | 2;
1492 else
1493 return 0;
1494 insn |= rtra;
1495 return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503 enum Overflow_check
1504 {
1505 CHECK_NONE,
1506 CHECK_SIGNED,
1507 CHECK_UNSIGNED,
1508 CHECK_BITFIELD,
1509 CHECK_LOW_INSN,
1510 CHECK_HIGH_INSN
1511 };
1512
1513 enum Status
1514 {
1515 STATUS_OK,
1516 STATUS_OVERFLOW
1517 };
1518
1519 private:
1520 typedef Powerpc_relocate_functions<size, big_endian> This;
1521 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524 template<int valsize>
1525 static inline bool
1526 has_overflow_signed(Address value)
1527 {
1528 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530 limit <<= ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532 return value + limit > (limit << 1) - 1;
1533 }
1534
1535 template<int valsize>
1536 static inline bool
1537 has_overflow_unsigned(Address value)
1538 {
1539 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540 limit <<= ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542 return value > (limit << 1) - 1;
1543 }
1544
1545 template<int valsize>
1546 static inline bool
1547 has_overflow_bitfield(Address value)
1548 {
1549 return (has_overflow_unsigned<valsize>(value)
1550 && has_overflow_signed<valsize>(value));
1551 }
1552
1553 template<int valsize>
1554 static inline Status
1555 overflowed(Address value, Overflow_check overflow)
1556 {
1557 if (overflow == CHECK_SIGNED)
1558 {
1559 if (has_overflow_signed<valsize>(value))
1560 return STATUS_OVERFLOW;
1561 }
1562 else if (overflow == CHECK_UNSIGNED)
1563 {
1564 if (has_overflow_unsigned<valsize>(value))
1565 return STATUS_OVERFLOW;
1566 }
1567 else if (overflow == CHECK_BITFIELD)
1568 {
1569 if (has_overflow_bitfield<valsize>(value))
1570 return STATUS_OVERFLOW;
1571 }
1572 return STATUS_OK;
1573 }
1574
1575 // Do a simple RELA relocation
1576 template<int fieldsize, int valsize>
1577 static inline Status
1578 rela(unsigned char* view, Address value, Overflow_check overflow)
1579 {
1580 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581 Valtype* wv = reinterpret_cast<Valtype*>(view);
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583 return overflowed<valsize>(value, overflow);
1584 }
1585
1586 template<int fieldsize, int valsize>
1587 static inline Status
1588 rela(unsigned char* view,
1589 unsigned int right_shift,
1590 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591 Address value,
1592 Overflow_check overflow)
1593 {
1594 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595 Valtype* wv = reinterpret_cast<Valtype*>(view);
1596 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597 Valtype reloc = value >> right_shift;
1598 val &= ~dst_mask;
1599 reloc &= dst_mask;
1600 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601 return overflowed<valsize>(value >> right_shift, overflow);
1602 }
1603
1604 // Do a simple RELA relocation, unaligned.
1605 template<int fieldsize, int valsize>
1606 static inline Status
1607 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608 {
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610 return overflowed<valsize>(value, overflow);
1611 }
1612
1613 template<int fieldsize, int valsize>
1614 static inline Status
1615 rela_ua(unsigned char* view,
1616 unsigned int right_shift,
1617 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618 Address value,
1619 Overflow_check overflow)
1620 {
1621 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622 Valtype;
1623 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624 Valtype reloc = value >> right_shift;
1625 val &= ~dst_mask;
1626 reloc &= dst_mask;
1627 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628 return overflowed<valsize>(value >> right_shift, overflow);
1629 }
1630
1631 public:
1632 // R_PPC64_ADDR64: (Symbol + Addend)
1633 static inline void
1634 addr64(unsigned char* view, Address value)
1635 { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638 static inline void
1639 addr64_u(unsigned char* view, Address value)
1640 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642 // R_POWERPC_ADDR32: (Symbol + Addend)
1643 static inline Status
1644 addr32(unsigned char* view, Address value, Overflow_check overflow)
1645 { return This::template rela<32,32>(view, value, overflow); }
1646
1647 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648 static inline Status
1649 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650 { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653 static inline Status
1654 addr24(unsigned char* view, Address value, Overflow_check overflow)
1655 {
1656 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657 value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662
1663 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664 static inline Status
1665 addr16(unsigned char* view, Address value, Overflow_check overflow)
1666 { return This::template rela<16,16>(view, value, overflow); }
1667
1668 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669 static inline Status
1670 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671 { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674 static inline Status
1675 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676 {
1677 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678 if ((value & 3) != 0)
1679 stat = STATUS_OVERFLOW;
1680 return stat;
1681 }
1682
1683 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684 static inline Status
1685 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686 {
1687 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688 if ((value & 15) != 0)
1689 stat = STATUS_OVERFLOW;
1690 return stat;
1691 }
1692
1693 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694 static inline void
1695 addr16_hi(unsigned char* view, Address value)
1696 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699 static inline void
1700 addr16_ha(unsigned char* view, Address value)
1701 { This::addr16_hi(view, value + 0x8000); }
1702
1703 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704 static inline void
1705 addr16_hi2(unsigned char* view, Address value)
1706 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709 static inline void
1710 addr16_ha2(unsigned char* view, Address value)
1711 { This::addr16_hi2(view, value + 0x8000); }
1712
1713 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714 static inline void
1715 addr16_hi3(unsigned char* view, Address value)
1716 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719 static inline void
1720 addr16_ha3(unsigned char* view, Address value)
1721 { This::addr16_hi3(view, value + 0x8000); }
1722
1723 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724 static inline Status
1725 addr14(unsigned char* view, Address value, Overflow_check overflow)
1726 {
1727 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728 if (overflow != CHECK_NONE && (value & 3) != 0)
1729 stat = STATUS_OVERFLOW;
1730 return stat;
1731 }
1732
1733 // R_POWERPC_REL16DX_HA
1734 static inline Status
1735 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736 {
1737 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738 Valtype* wv = reinterpret_cast<Valtype*>(view);
1739 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740 value += 0x8000;
1741 value = static_cast<SignedAddress>(value) >> 16;
1742 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744 return overflowed<16>(value, overflow);
1745 }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754 this->e_flags_ |= ver;
1755 if (this->abiversion() != 0)
1756 {
1757 Target_powerpc<size, big_endian>* target =
1758 static_cast<Target_powerpc<size, big_endian>*>(
1759 parameters->sized_target<size, big_endian>());
1760 if (target->abiversion() == 0)
1761 target->set_abiversion(this->abiversion());
1762 else if (target->abiversion() != this->abiversion())
1763 gold_error(_("%s: ABI version %d is not compatible "
1764 "with ABI version %d output"),
1765 this->name().c_str(),
1766 this->abiversion(), target->abiversion());
1767
1768 }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777 Read_symbols_data* sd)
1778 {
1779 const unsigned char* const pshdrs = sd->section_headers->data();
1780 const unsigned char* namesu = sd->section_names->data();
1781 const char* names = reinterpret_cast<const char*>(namesu);
1782 section_size_type names_size = sd->section_names_size;
1783 const unsigned char* s;
1784
1785 s = this->template find_shdr<size, big_endian>(pshdrs,
1786 size == 32 ? ".got2" : ".opd",
1787 names, names_size, NULL);
1788 if (s != NULL)
1789 {
1790 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791 this->special_ = ndx;
1792 if (size == 64)
1793 {
1794 if (this->abiversion() == 0)
1795 this->set_abiversion(1);
1796 else if (this->abiversion() > 1)
1797 gold_error(_("%s: .opd invalid in abiv%d"),
1798 this->name().c_str(), this->abiversion());
1799 }
1800 }
1801 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809 size_t reloc_count,
1810 const unsigned char* prelocs,
1811 const unsigned char* plocal_syms)
1812 {
1813 if (size == 64)
1814 {
1815 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816 Reltype;
1817 const int reloc_size
1818 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820 Address expected_off = 0;
1821 bool regular = true;
1822 unsigned int opd_ent_size = 0;
1823
1824 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825 {
1826 Reltype reloc(prelocs);
1827 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828 = reloc.get_r_info();
1829 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830 if (r_type == elfcpp::R_PPC64_ADDR64)
1831 {
1832 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833 typename elfcpp::Elf_types<size>::Elf_Addr value;
1834 bool is_ordinary;
1835 unsigned int shndx;
1836 if (r_sym < this->local_symbol_count())
1837 {
1838 typename elfcpp::Sym<size, big_endian>
1839 lsym(plocal_syms + r_sym * sym_size);
1840 shndx = lsym.get_st_shndx();
1841 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842 value = lsym.get_st_value();
1843 }
1844 else
1845 shndx = this->symbol_section_and_value(r_sym, &value,
1846 &is_ordinary);
1847 this->set_opd_ent(reloc.get_r_offset(), shndx,
1848 value + reloc.get_r_addend());
1849 if (i == 2)
1850 {
1851 expected_off = reloc.get_r_offset();
1852 opd_ent_size = expected_off;
1853 }
1854 else if (expected_off != reloc.get_r_offset())
1855 regular = false;
1856 expected_off += opd_ent_size;
1857 }
1858 else if (r_type == elfcpp::R_PPC64_TOC)
1859 {
1860 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861 regular = false;
1862 }
1863 else
1864 {
1865 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866 this->name().c_str(), r_type);
1867 regular = false;
1868 }
1869 }
1870 if (reloc_count <= 2)
1871 opd_ent_size = this->section_size(this->opd_shndx());
1872 if (opd_ent_size != 24 && opd_ent_size != 16)
1873 regular = false;
1874 if (!regular)
1875 {
1876 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877 this->name().c_str());
1878 opd_ent_size = 0;
1879 }
1880 }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888 if (size == 64)
1889 {
1890 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891 p != rd->relocs.end();
1892 ++p)
1893 {
1894 if (p->data_shndx == this->opd_shndx())
1895 {
1896 uint64_t opd_size = this->section_size(this->opd_shndx());
1897 gold_assert(opd_size == static_cast<size_t>(opd_size));
1898 if (opd_size != 0)
1899 {
1900 this->init_opd(opd_size);
1901 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902 rd->local_symbols->data());
1903 }
1904 break;
1905 }
1906 }
1907 }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916 this->base_read_symbols(sd);
1917 if (size == 64)
1918 {
1919 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920 const unsigned char* const pshdrs = sd->section_headers->data();
1921 const unsigned int loccount = this->do_local_symbol_count();
1922 if (loccount != 0)
1923 {
1924 this->st_other_.resize(loccount);
1925 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926 off_t locsize = loccount * sym_size;
1927 const unsigned int symtab_shndx = this->symtab_shndx();
1928 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931 locsize, true, false);
1932 psyms += sym_size;
1933 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934 {
1935 elfcpp::Sym<size, big_endian> sym(psyms);
1936 unsigned char st_other = sym.get_st_other();
1937 this->st_other_[i] = st_other;
1938 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939 {
1940 if (this->abiversion() == 0)
1941 this->set_abiversion(2);
1942 else if (this->abiversion() < 2)
1943 gold_error(_("%s: local symbol %d has invalid st_other"
1944 " for ABI version 1"),
1945 this->name().c_str(), i);
1946 }
1947 }
1948 }
1949 }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956 this->e_flags_ |= ver;
1957 if (this->abiversion() != 0)
1958 {
1959 Target_powerpc<size, big_endian>* target =
1960 static_cast<Target_powerpc<size, big_endian>*>(
1961 parameters->sized_target<size, big_endian>());
1962 if (target->abiversion() == 0)
1963 target->set_abiversion(this->abiversion());
1964 else if (target->abiversion() != this->abiversion())
1965 gold_error(_("%s: ABI version %d is not compatible "
1966 "with ABI version %d output"),
1967 this->name().c_str(),
1968 this->abiversion(), target->abiversion());
1969
1970 }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980 this->base_read_symbols(sd);
1981 if (size == 64)
1982 {
1983 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984 const unsigned char* const pshdrs = sd->section_headers->data();
1985 const unsigned char* namesu = sd->section_names->data();
1986 const char* names = reinterpret_cast<const char*>(namesu);
1987 const unsigned char* s = NULL;
1988 const unsigned char* opd;
1989 section_size_type opd_size;
1990
1991 // Find and read .opd section.
1992 while (1)
1993 {
1994 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995 sd->section_names_size,
1996 s);
1997 if (s == NULL)
1998 return;
1999
2000 typename elfcpp::Shdr<size, big_endian> shdr(s);
2001 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003 {
2004 if (this->abiversion() == 0)
2005 this->set_abiversion(1);
2006 else if (this->abiversion() > 1)
2007 gold_error(_("%s: .opd invalid in abiv%d"),
2008 this->name().c_str(), this->abiversion());
2009
2010 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011 this->opd_address_ = shdr.get_sh_addr();
2012 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014 true, false);
2015 break;
2016 }
2017 }
2018
2019 // Build set of executable sections.
2020 // Using a set is probably overkill. There is likely to be only
2021 // a few executable sections, typically .init, .text and .fini,
2022 // and they are generally grouped together.
2023 typedef std::set<Sec_info> Exec_sections;
2024 Exec_sections exec_sections;
2025 s = pshdrs;
2026 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027 {
2028 typename elfcpp::Shdr<size, big_endian> shdr(s);
2029 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030 && ((shdr.get_sh_flags()
2031 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 && shdr.get_sh_size() != 0)
2034 {
2035 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036 shdr.get_sh_size(), i));
2037 }
2038 }
2039 if (exec_sections.empty())
2040 return;
2041
2042 // Look over the OPD entries. This is complicated by the fact
2043 // that some binaries will use two-word entries while others
2044 // will use the standard three-word entries. In most cases
2045 // the third word (the environment pointer for languages like
2046 // Pascal) is unused and will be zero. If the third word is
2047 // used it should not be pointing into executable sections,
2048 // I think.
2049 this->init_opd(opd_size);
2050 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051 {
2052 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055 if (val == 0)
2056 // Chances are that this is the third word of an OPD entry.
2057 continue;
2058 typename Exec_sections::const_iterator e
2059 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060 if (e != exec_sections.begin())
2061 {
2062 --e;
2063 if (e->start <= val && val < e->start + e->len)
2064 {
2065 // We have an address in an executable section.
2066 // VAL ought to be the function entry, set it up.
2067 this->set_opd_ent(p - opd, e->shndx, val);
2068 // Skip second word of OPD entry, the TOC pointer.
2069 p += 8;
2070 }
2071 }
2072 // If we didn't match any executable sections, we likely
2073 // have a non-zero third word in the OPD entry.
2074 }
2075 }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083 Symbol_table* symtab,
2084 Layout* layout)
2085 {
2086 if (size == 32)
2087 {
2088 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089 // undefined when scanning relocs (and thus requires
2090 // non-relative dynamic relocs). The proper value will be
2091 // updated later.
2092 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093 if (gotsym != NULL && gotsym->is_undefined())
2094 {
2095 Target_powerpc<size, big_endian>* target =
2096 static_cast<Target_powerpc<size, big_endian>*>(
2097 parameters->sized_target<size, big_endian>());
2098 Output_data_got_powerpc<size, big_endian>* got
2099 = target->got_section(symtab, layout);
2100 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101 Symbol_table::PREDEFINED,
2102 got, 0, 0,
2103 elfcpp::STT_OBJECT,
2104 elfcpp::STB_LOCAL,
2105 elfcpp::STV_HIDDEN, 0,
2106 false, false);
2107 }
2108
2109 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111 if (sdasym != NULL && sdasym->is_undefined())
2112 {
2113 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114 Output_section* os
2115 = layout->add_output_section_data(".sdata", 0,
2116 elfcpp::SHF_ALLOC
2117 | elfcpp::SHF_WRITE,
2118 sdata, ORDER_SMALL_DATA, false);
2119 symtab->define_in_output_data("_SDA_BASE_", NULL,
2120 Symbol_table::PREDEFINED,
2121 os, 32768, 0, elfcpp::STT_OBJECT,
2122 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123 0, false, false);
2124 }
2125 }
2126 else
2127 {
2128 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130 if (gotsym != NULL && gotsym->is_undefined())
2131 {
2132 Target_powerpc<size, big_endian>* target =
2133 static_cast<Target_powerpc<size, big_endian>*>(
2134 parameters->sized_target<size, big_endian>());
2135 Output_data_got_powerpc<size, big_endian>* got
2136 = target->got_section(symtab, layout);
2137 symtab->define_in_output_data(".TOC.", NULL,
2138 Symbol_table::PREDEFINED,
2139 got, 0x8000, 0,
2140 elfcpp::STT_OBJECT,
2141 elfcpp::STB_LOCAL,
2142 elfcpp::STV_HIDDEN, 0,
2143 false, false);
2144 }
2145 }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153 const std::string& name,
2154 Input_file* input_file,
2155 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157 int et = ehdr.get_e_type();
2158 // ET_EXEC files are valid input for --just-symbols/-R,
2159 // and we treat them as relocatable objects.
2160 if (et == elfcpp::ET_REL
2161 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162 {
2163 Powerpc_relobj<size, big_endian>* obj =
2164 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165 obj->setup();
2166 return obj;
2167 }
2168 else if (et == elfcpp::ET_DYN)
2169 {
2170 Powerpc_dynobj<size, big_endian>* obj =
2171 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172 obj->setup();
2173 return obj;
2174 }
2175 else
2176 {
2177 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178 return NULL;
2179 }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190 : Output_data_got<size, big_endian>(),
2191 symtab_(symtab), layout_(layout),
2192 header_ent_cnt_(size == 32 ? 3 : 1),
2193 header_index_(size == 32 ? 0x2000 : 0)
2194 {
2195 if (size == 64)
2196 this->set_addralign(256);
2197 }
2198
2199 // Override all the Output_data_got methods we use so as to first call
2200 // reserve_ent().
2201 bool
2202 add_global(Symbol* gsym, unsigned int got_type)
2203 {
2204 this->reserve_ent();
2205 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206 }
2207
2208 bool
2209 add_global_plt(Symbol* gsym, unsigned int got_type)
2210 {
2211 this->reserve_ent();
2212 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213 }
2214
2215 bool
2216 add_global_tls(Symbol* gsym, unsigned int got_type)
2217 { return this->add_global_plt(gsym, got_type); }
2218
2219 void
2220 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222 {
2223 this->reserve_ent();
2224 Output_data_got<size, big_endian>::
2225 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226 }
2227
2228 void
2229 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230 Output_data_reloc_generic* rel_dyn,
2231 unsigned int r_type_1, unsigned int r_type_2)
2232 {
2233 this->reserve_ent(2);
2234 Output_data_got<size, big_endian>::
2235 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236 }
2237
2238 bool
2239 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240 {
2241 this->reserve_ent();
2242 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243 got_type);
2244 }
2245
2246 bool
2247 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248 {
2249 this->reserve_ent();
2250 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251 got_type);
2252 }
2253
2254 bool
2255 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256 { return this->add_local_plt(object, sym_index, got_type); }
2257
2258 void
2259 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260 unsigned int got_type,
2261 Output_data_reloc_generic* rel_dyn,
2262 unsigned int r_type)
2263 {
2264 this->reserve_ent(2);
2265 Output_data_got<size, big_endian>::
2266 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267 }
2268
2269 unsigned int
2270 add_constant(Valtype constant)
2271 {
2272 this->reserve_ent();
2273 return Output_data_got<size, big_endian>::add_constant(constant);
2274 }
2275
2276 unsigned int
2277 add_constant_pair(Valtype c1, Valtype c2)
2278 {
2279 this->reserve_ent(2);
2280 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281 }
2282
2283 // Offset of _GLOBAL_OFFSET_TABLE_.
2284 unsigned int
2285 g_o_t() const
2286 {
2287 return this->got_offset(this->header_index_);
2288 }
2289
2290 // Offset of base used to access the GOT/TOC.
2291 // The got/toc pointer reg will be set to this value.
2292 Valtype
2293 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294 {
2295 if (size == 32)
2296 return this->g_o_t();
2297 else
2298 return (this->output_section()->address()
2299 + object->toc_base_offset()
2300 - this->address());
2301 }
2302
2303 // Ensure our GOT has a header.
2304 void
2305 set_final_data_size()
2306 {
2307 if (this->header_ent_cnt_ != 0)
2308 this->make_header();
2309 Output_data_got<size, big_endian>::set_final_data_size();
2310 }
2311
2312 // First word of GOT header needs some values that are not
2313 // handled by Output_data_got so poke them in here.
2314 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315 void
2316 do_write(Output_file* of)
2317 {
2318 Valtype val = 0;
2319 if (size == 32 && this->layout_->dynamic_data() != NULL)
2320 val = this->layout_->dynamic_section()->address();
2321 if (size == 64)
2322 val = this->output_section()->address() + 0x8000;
2323 this->replace_constant(this->header_index_, val);
2324 Output_data_got<size, big_endian>::do_write(of);
2325 }
2326
2327 private:
2328 void
2329 reserve_ent(unsigned int cnt = 1)
2330 {
2331 if (this->header_ent_cnt_ == 0)
2332 return;
2333 if (this->num_entries() + cnt > this->header_index_)
2334 this->make_header();
2335 }
2336
2337 void
2338 make_header()
2339 {
2340 this->header_ent_cnt_ = 0;
2341 this->header_index_ = this->num_entries();
2342 if (size == 32)
2343 {
2344 Output_data_got<size, big_endian>::add_constant(0);
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347
2348 // Define _GLOBAL_OFFSET_TABLE_ at the header
2349 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350 if (gotsym != NULL)
2351 {
2352 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353 sym->set_value(this->g_o_t());
2354 }
2355 else
2356 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357 Symbol_table::PREDEFINED,
2358 this, this->g_o_t(), 0,
2359 elfcpp::STT_OBJECT,
2360 elfcpp::STB_LOCAL,
2361 elfcpp::STV_HIDDEN, 0,
2362 false, false);
2363 }
2364 else
2365 Output_data_got<size, big_endian>::add_constant(0);
2366 }
2367
2368 // Stashed pointers.
2369 Symbol_table* symtab_;
2370 Layout* layout_;
2371
2372 // GOT header size.
2373 unsigned int header_ent_cnt_;
2374 // GOT header index.
2375 unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383 Layout* layout)
2384 {
2385 if (this->got_ == NULL)
2386 {
2387 gold_assert(symtab != NULL && layout != NULL);
2388
2389 this->got_
2390 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394 this->got_, ORDER_DATA, false);
2395 }
2396
2397 return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406 if (this->rela_dyn_ == NULL)
2407 {
2408 gold_assert(layout != NULL);
2409 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411 elfcpp::SHF_ALLOC, this->rela_dyn_,
2412 ORDER_DYNAMIC_RELOCS, false);
2413 }
2414 return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422 Layout* layout,
2423 bool for_ifunc)
2424 {
2425 if (!for_ifunc)
2426 return this->rela_dyn_section(layout);
2427
2428 if (this->iplt_ == NULL)
2429 this->make_iplt_section(symtab, layout);
2430 return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435 public:
2436 // Determine the stub group size. The group size is the absolute
2437 // value of the parameter --stub-group-size. If --stub-group-size
2438 // is passed a negative value, we restrict stubs to be always before
2439 // the stubbed branches.
2440 Stub_control(int32_t size, bool no_size_errors)
2441 : state_(NO_GROUP), stub_group_size_(abs(size)),
2442 stub14_group_size_(abs(size) >> 10),
2443 stubs_always_before_branch_(size < 0),
2444 suppress_size_errors_(no_size_errors),
2445 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2446 {
2447 }
2448
2449 // Return true iff input section can be handled by current stub
2450 // group.
2451 bool
2452 can_add_to_stub_group(Output_section* o,
2453 const Output_section::Input_section* i,
2454 bool has14);
2455
2456 const Output_section::Input_section*
2457 owner()
2458 { return owner_; }
2459
2460 Output_section*
2461 output_section()
2462 { return output_section_; }
2463
2464 void
2465 set_output_and_owner(Output_section* o,
2466 const Output_section::Input_section* i)
2467 {
2468 this->output_section_ = o;
2469 this->owner_ = i;
2470 }
2471
2472 private:
2473 typedef enum
2474 {
2475 NO_GROUP,
2476 FINDING_STUB_SECTION,
2477 HAS_STUB_SECTION
2478 } State;
2479
2480 State state_;
2481 uint32_t stub_group_size_;
2482 uint32_t stub14_group_size_;
2483 bool stubs_always_before_branch_;
2484 bool suppress_size_errors_;
2485 uint64_t group_end_addr_;
2486 const Output_section::Input_section* owner_;
2487 Output_section* output_section_;
2488 };
2489
2490 // Return true iff input section can be handled by current stub
2491 // group.
2492
2493 bool
2494 Stub_control::can_add_to_stub_group(Output_section* o,
2495 const Output_section::Input_section* i,
2496 bool has14)
2497 {
2498 uint32_t group_size
2499 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2500 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2501 uint64_t this_size;
2502 uint64_t start_addr = o->address();
2503
2504 if (whole_sec)
2505 // .init and .fini sections are pasted together to form a single
2506 // function. We can't be adding stubs in the middle of the function.
2507 this_size = o->data_size();
2508 else
2509 {
2510 start_addr += i->relobj()->output_section_offset(i->shndx());
2511 this_size = i->data_size();
2512 }
2513 uint64_t end_addr = start_addr + this_size;
2514 bool toobig = this_size > group_size;
2515
2516 if (toobig && !this->suppress_size_errors_)
2517 gold_warning(_("%s:%s exceeds group size"),
2518 i->relobj()->name().c_str(),
2519 i->relobj()->section_name(i->shndx()).c_str());
2520
2521 if (this->state_ != HAS_STUB_SECTION
2522 && (!whole_sec || this->output_section_ != o)
2523 && (this->state_ == NO_GROUP
2524 || this->group_end_addr_ - end_addr < group_size))
2525 {
2526 this->owner_ = i;
2527 this->output_section_ = o;
2528 }
2529
2530 if (this->state_ == NO_GROUP)
2531 {
2532 this->state_ = FINDING_STUB_SECTION;
2533 this->group_end_addr_ = end_addr;
2534 }
2535 else if (this->group_end_addr_ - start_addr < group_size)
2536 ;
2537 // Adding this section would make the group larger than GROUP_SIZE.
2538 else if (this->state_ == FINDING_STUB_SECTION
2539 && !this->stubs_always_before_branch_
2540 && !toobig)
2541 {
2542 // But wait, there's more! Input sections up to GROUP_SIZE
2543 // bytes before the stub table can be handled by it too.
2544 this->state_ = HAS_STUB_SECTION;
2545 this->group_end_addr_ = end_addr;
2546 }
2547 else
2548 {
2549 this->state_ = NO_GROUP;
2550 return false;
2551 }
2552 return true;
2553 }
2554
2555 // Look over all the input sections, deciding where to place stubs.
2556
2557 template<int size, bool big_endian>
2558 void
2559 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2560 const Task*,
2561 bool no_size_errors)
2562 {
2563 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2564
2565 // Group input sections and insert stub table
2566 Stub_table_owner* table_owner = NULL;
2567 std::vector<Stub_table_owner*> tables;
2568 Layout::Section_list section_list;
2569 layout->get_executable_sections(&section_list);
2570 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2571 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2572 o != section_list.rend();
2573 ++o)
2574 {
2575 typedef Output_section::Input_section_list Input_section_list;
2576 for (Input_section_list::const_reverse_iterator i
2577 = (*o)->input_sections().rbegin();
2578 i != (*o)->input_sections().rend();
2579 ++i)
2580 {
2581 if (i->is_input_section()
2582 || i->is_relaxed_input_section())
2583 {
2584 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2585 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2586 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2587 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2588 {
2589 table_owner->output_section = stub_control.output_section();
2590 table_owner->owner = stub_control.owner();
2591 stub_control.set_output_and_owner(*o, &*i);
2592 table_owner = NULL;
2593 }
2594 if (table_owner == NULL)
2595 {
2596 table_owner = new Stub_table_owner;
2597 tables.push_back(table_owner);
2598 }
2599 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2600 }
2601 }
2602 }
2603 if (table_owner != NULL)
2604 {
2605 const Output_section::Input_section* i = stub_control.owner();
2606
2607 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2608 {
2609 // Corner case. A new stub group was made for the first
2610 // section (last one looked at here) for some reason, but
2611 // the first section is already being used as the owner for
2612 // a stub table for following sections. Force it into that
2613 // stub group.
2614 tables.pop_back();
2615 delete table_owner;
2616 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2617 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2618 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2619 }
2620 else
2621 {
2622 table_owner->output_section = stub_control.output_section();
2623 table_owner->owner = i;
2624 }
2625 }
2626 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2627 t != tables.end();
2628 ++t)
2629 {
2630 Stub_table<size, big_endian>* stub_table;
2631
2632 if ((*t)->owner->is_input_section())
2633 stub_table = new Stub_table<size, big_endian>(this,
2634 (*t)->output_section,
2635 (*t)->owner);
2636 else if ((*t)->owner->is_relaxed_input_section())
2637 stub_table = static_cast<Stub_table<size, big_endian>*>(
2638 (*t)->owner->relaxed_input_section());
2639 else
2640 gold_unreachable();
2641 this->stub_tables_.push_back(stub_table);
2642 delete *t;
2643 }
2644 }
2645
2646 static unsigned long
2647 max_branch_delta (unsigned int r_type)
2648 {
2649 if (r_type == elfcpp::R_POWERPC_REL14
2650 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2651 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2652 return 1L << 15;
2653 if (r_type == elfcpp::R_POWERPC_REL24
2654 || r_type == elfcpp::R_PPC_PLTREL24
2655 || r_type == elfcpp::R_PPC_LOCAL24PC)
2656 return 1L << 25;
2657 return 0;
2658 }
2659
2660 // If this branch needs a plt call stub, or a long branch stub, make one.
2661
2662 template<int size, bool big_endian>
2663 bool
2664 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2665 Stub_table<size, big_endian>* stub_table,
2666 Stub_table<size, big_endian>* ifunc_stub_table,
2667 Symbol_table* symtab) const
2668 {
2669 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2670 if (sym != NULL && sym->is_forwarder())
2671 sym = symtab->resolve_forwards(sym);
2672 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2673 Target_powerpc<size, big_endian>* target =
2674 static_cast<Target_powerpc<size, big_endian>*>(
2675 parameters->sized_target<size, big_endian>());
2676 if (gsym != NULL
2677 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2678 : this->object_->local_has_plt_offset(this->r_sym_))
2679 {
2680 if (size == 64
2681 && gsym != NULL
2682 && target->abiversion() >= 2
2683 && !parameters->options().output_is_position_independent()
2684 && !is_branch_reloc(this->r_type_))
2685 target->glink_section()->add_global_entry(gsym);
2686 else
2687 {
2688 if (stub_table == NULL)
2689 stub_table = this->object_->stub_table(this->shndx_);
2690 if (stub_table == NULL)
2691 {
2692 // This is a ref from a data section to an ifunc symbol.
2693 stub_table = ifunc_stub_table;
2694 }
2695 gold_assert(stub_table != NULL);
2696 Address from = this->object_->get_output_section_offset(this->shndx_);
2697 if (from != invalid_address)
2698 from += (this->object_->output_section(this->shndx_)->address()
2699 + this->offset_);
2700 if (gsym != NULL)
2701 return stub_table->add_plt_call_entry(from,
2702 this->object_, gsym,
2703 this->r_type_, this->addend_);
2704 else
2705 return stub_table->add_plt_call_entry(from,
2706 this->object_, this->r_sym_,
2707 this->r_type_, this->addend_);
2708 }
2709 }
2710 else
2711 {
2712 Address max_branch_offset = max_branch_delta(this->r_type_);
2713 if (max_branch_offset == 0)
2714 return true;
2715 Address from = this->object_->get_output_section_offset(this->shndx_);
2716 gold_assert(from != invalid_address);
2717 from += (this->object_->output_section(this->shndx_)->address()
2718 + this->offset_);
2719 Address to;
2720 if (gsym != NULL)
2721 {
2722 switch (gsym->source())
2723 {
2724 case Symbol::FROM_OBJECT:
2725 {
2726 Object* symobj = gsym->object();
2727 if (symobj->is_dynamic()
2728 || symobj->pluginobj() != NULL)
2729 return true;
2730 bool is_ordinary;
2731 unsigned int shndx = gsym->shndx(&is_ordinary);
2732 if (shndx == elfcpp::SHN_UNDEF)
2733 return true;
2734 }
2735 break;
2736
2737 case Symbol::IS_UNDEFINED:
2738 return true;
2739
2740 default:
2741 break;
2742 }
2743 Symbol_table::Compute_final_value_status status;
2744 to = symtab->compute_final_value<size>(gsym, &status);
2745 if (status != Symbol_table::CFVS_OK)
2746 return true;
2747 if (size == 64)
2748 to += this->object_->ppc64_local_entry_offset(gsym);
2749 }
2750 else
2751 {
2752 const Symbol_value<size>* psymval
2753 = this->object_->local_symbol(this->r_sym_);
2754 Symbol_value<size> symval;
2755 typedef Sized_relobj_file<size, big_endian> ObjType;
2756 typename ObjType::Compute_final_local_value_status status
2757 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2758 &symval, symtab);
2759 if (status != ObjType::CFLV_OK
2760 || !symval.has_output_value())
2761 return true;
2762 to = symval.value(this->object_, 0);
2763 if (size == 64)
2764 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2765 }
2766 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2767 to += this->addend_;
2768 if (stub_table == NULL)
2769 stub_table = this->object_->stub_table(this->shndx_);
2770 if (size == 64 && target->abiversion() < 2)
2771 {
2772 unsigned int dest_shndx;
2773 if (!target->symval_for_branch(symtab, gsym, this->object_,
2774 &to, &dest_shndx))
2775 return true;
2776 }
2777 Address delta = to - from;
2778 if (delta + max_branch_offset >= 2 * max_branch_offset)
2779 {
2780 if (stub_table == NULL)
2781 {
2782 gold_warning(_("%s:%s: branch in non-executable section,"
2783 " no long branch stub for you"),
2784 this->object_->name().c_str(),
2785 this->object_->section_name(this->shndx_).c_str());
2786 return true;
2787 }
2788 bool save_res = (size == 64
2789 && gsym != NULL
2790 && gsym->source() == Symbol::IN_OUTPUT_DATA
2791 && gsym->output_data() == target->savres_section());
2792 return stub_table->add_long_branch_entry(this->object_,
2793 this->r_type_,
2794 from, to, save_res);
2795 }
2796 }
2797 return true;
2798 }
2799
2800 // Relaxation hook. This is where we do stub generation.
2801
2802 template<int size, bool big_endian>
2803 bool
2804 Target_powerpc<size, big_endian>::do_relax(int pass,
2805 const Input_objects*,
2806 Symbol_table* symtab,
2807 Layout* layout,
2808 const Task* task)
2809 {
2810 unsigned int prev_brlt_size = 0;
2811 if (pass == 1)
2812 {
2813 bool thread_safe
2814 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2815 if (size == 64
2816 && this->abiversion() < 2
2817 && !thread_safe
2818 && !parameters->options().user_set_plt_thread_safe())
2819 {
2820 static const char* const thread_starter[] =
2821 {
2822 "pthread_create",
2823 /* libstdc++ */
2824 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2825 /* librt */
2826 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2827 "mq_notify", "create_timer",
2828 /* libanl */
2829 "getaddrinfo_a",
2830 /* libgomp */
2831 "GOMP_parallel",
2832 "GOMP_parallel_start",
2833 "GOMP_parallel_loop_static",
2834 "GOMP_parallel_loop_static_start",
2835 "GOMP_parallel_loop_dynamic",
2836 "GOMP_parallel_loop_dynamic_start",
2837 "GOMP_parallel_loop_guided",
2838 "GOMP_parallel_loop_guided_start",
2839 "GOMP_parallel_loop_runtime",
2840 "GOMP_parallel_loop_runtime_start",
2841 "GOMP_parallel_sections",
2842 "GOMP_parallel_sections_start",
2843 /* libgo */
2844 "__go_go",
2845 };
2846
2847 if (parameters->options().shared())
2848 thread_safe = true;
2849 else
2850 {
2851 for (unsigned int i = 0;
2852 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2853 i++)
2854 {
2855 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2856 thread_safe = (sym != NULL
2857 && sym->in_reg()
2858 && sym->in_real_elf());
2859 if (thread_safe)
2860 break;
2861 }
2862 }
2863 }
2864 this->plt_thread_safe_ = thread_safe;
2865 }
2866
2867 if (pass == 1)
2868 {
2869 this->stub_group_size_ = parameters->options().stub_group_size();
2870 bool no_size_errors = true;
2871 if (this->stub_group_size_ == 1)
2872 this->stub_group_size_ = 0x1c00000;
2873 else if (this->stub_group_size_ == -1)
2874 this->stub_group_size_ = -0x1e00000;
2875 else
2876 no_size_errors = false;
2877 this->group_sections(layout, task, no_size_errors);
2878 }
2879 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2880 {
2881 this->branch_lookup_table_.clear();
2882 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2883 p != this->stub_tables_.end();
2884 ++p)
2885 {
2886 (*p)->clear_stubs(true);
2887 }
2888 this->stub_tables_.clear();
2889 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2890 gold_info(_("%s: stub group size is too large; retrying with %d"),
2891 program_name, this->stub_group_size_);
2892 this->group_sections(layout, task, true);
2893 }
2894
2895 // We need address of stub tables valid for make_stub.
2896 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2897 p != this->stub_tables_.end();
2898 ++p)
2899 {
2900 const Powerpc_relobj<size, big_endian>* object
2901 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2902 Address off = object->get_output_section_offset((*p)->shndx());
2903 gold_assert(off != invalid_address);
2904 Output_section* os = (*p)->output_section();
2905 (*p)->set_address_and_size(os, off);
2906 }
2907
2908 if (pass != 1)
2909 {
2910 // Clear plt call stubs, long branch stubs and branch lookup table.
2911 prev_brlt_size = this->branch_lookup_table_.size();
2912 this->branch_lookup_table_.clear();
2913 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2914 p != this->stub_tables_.end();
2915 ++p)
2916 {
2917 (*p)->clear_stubs(false);
2918 }
2919 }
2920
2921 // Build all the stubs.
2922 this->relax_failed_ = false;
2923 Stub_table<size, big_endian>* ifunc_stub_table
2924 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2925 Stub_table<size, big_endian>* one_stub_table
2926 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2927 for (typename Branches::const_iterator b = this->branch_info_.begin();
2928 b != this->branch_info_.end();
2929 b++)
2930 {
2931 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2932 && !this->relax_failed_)
2933 {
2934 this->relax_failed_ = true;
2935 this->relax_fail_count_++;
2936 if (this->relax_fail_count_ < 3)
2937 return true;
2938 }
2939 }
2940
2941 // Did anything change size?
2942 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2943 bool again = num_huge_branches != prev_brlt_size;
2944 if (size == 64 && num_huge_branches != 0)
2945 this->make_brlt_section(layout);
2946 if (size == 64 && again)
2947 this->brlt_section_->set_current_size(num_huge_branches);
2948
2949 typedef Unordered_set<Output_section*> Output_sections;
2950 Output_sections os_need_update;
2951 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2952 p != this->stub_tables_.end();
2953 ++p)
2954 {
2955 if ((*p)->size_update())
2956 {
2957 again = true;
2958 (*p)->add_eh_frame(layout);
2959 os_need_update.insert((*p)->output_section());
2960 }
2961 }
2962
2963 // Set output section offsets for all input sections in an output
2964 // section that just changed size. Anything past the stubs will
2965 // need updating.
2966 for (typename Output_sections::iterator p = os_need_update.begin();
2967 p != os_need_update.end();
2968 p++)
2969 {
2970 Output_section* os = *p;
2971 Address off = 0;
2972 typedef Output_section::Input_section_list Input_section_list;
2973 for (Input_section_list::const_iterator i = os->input_sections().begin();
2974 i != os->input_sections().end();
2975 ++i)
2976 {
2977 off = align_address(off, i->addralign());
2978 if (i->is_input_section() || i->is_relaxed_input_section())
2979 i->relobj()->set_section_offset(i->shndx(), off);
2980 if (i->is_relaxed_input_section())
2981 {
2982 Stub_table<size, big_endian>* stub_table
2983 = static_cast<Stub_table<size, big_endian>*>(
2984 i->relaxed_input_section());
2985 off += stub_table->set_address_and_size(os, off);
2986 }
2987 else
2988 off += i->data_size();
2989 }
2990 // If .branch_lt is part of this output section, then we have
2991 // just done the offset adjustment.
2992 os->clear_section_offsets_need_adjustment();
2993 }
2994
2995 if (size == 64
2996 && !again
2997 && num_huge_branches != 0
2998 && parameters->options().output_is_position_independent())
2999 {
3000 // Fill in the BRLT relocs.
3001 this->brlt_section_->reset_brlt_sizes();
3002 for (typename Branch_lookup_table::const_iterator p
3003 = this->branch_lookup_table_.begin();
3004 p != this->branch_lookup_table_.end();
3005 ++p)
3006 {
3007 this->brlt_section_->add_reloc(p->first, p->second);
3008 }
3009 this->brlt_section_->finalize_brlt_sizes();
3010 }
3011 return again;
3012 }
3013
3014 template<int size, bool big_endian>
3015 void
3016 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3017 unsigned char* oview,
3018 uint64_t* paddress,
3019 off_t* plen) const
3020 {
3021 uint64_t address = plt->address();
3022 off_t len = plt->data_size();
3023
3024 if (plt == this->glink_)
3025 {
3026 // See Output_data_glink::do_write() for glink contents.
3027 if (len == 0)
3028 {
3029 gold_assert(parameters->doing_static_link());
3030 // Static linking may need stubs, to support ifunc and long
3031 // branches. We need to create an output section for
3032 // .eh_frame early in the link process, to have a place to
3033 // attach stub .eh_frame info. We also need to have
3034 // registered a CIE that matches the stub CIE. Both of
3035 // these requirements are satisfied by creating an FDE and
3036 // CIE for .glink, even though static linking will leave
3037 // .glink zero length.
3038 // ??? Hopefully generating an FDE with a zero address range
3039 // won't confuse anything that consumes .eh_frame info.
3040 }
3041 else if (size == 64)
3042 {
3043 // There is one word before __glink_PLTresolve
3044 address += 8;
3045 len -= 8;
3046 }
3047 else if (parameters->options().output_is_position_independent())
3048 {
3049 // There are two FDEs for a position independent glink.
3050 // The first covers the branch table, the second
3051 // __glink_PLTresolve at the end of glink.
3052 off_t resolve_size = this->glink_->pltresolve_size;
3053 if (oview[9] == elfcpp::DW_CFA_nop)
3054 len -= resolve_size;
3055 else
3056 {
3057 address += len - resolve_size;
3058 len = resolve_size;
3059 }
3060 }
3061 }
3062 else
3063 {
3064 // Must be a stub table.
3065 const Stub_table<size, big_endian>* stub_table
3066 = static_cast<const Stub_table<size, big_endian>*>(plt);
3067 uint64_t stub_address = stub_table->stub_address();
3068 len -= stub_address - address;
3069 address = stub_address;
3070 }
3071
3072 *paddress = address;
3073 *plen = len;
3074 }
3075
3076 // A class to handle the PLT data.
3077
3078 template<int size, bool big_endian>
3079 class Output_data_plt_powerpc : public Output_section_data_build
3080 {
3081 public:
3082 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3083 size, big_endian> Reloc_section;
3084
3085 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3086 Reloc_section* plt_rel,
3087 const char* name)
3088 : Output_section_data_build(size == 32 ? 4 : 8),
3089 rel_(plt_rel),
3090 targ_(targ),
3091 name_(name)
3092 { }
3093
3094 // Add an entry to the PLT.
3095 void
3096 add_entry(Symbol*);
3097
3098 void
3099 add_ifunc_entry(Symbol*);
3100
3101 void
3102 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3103
3104 // Return the .rela.plt section data.
3105 Reloc_section*
3106 rel_plt() const
3107 {
3108 return this->rel_;
3109 }
3110
3111 // Return the number of PLT entries.
3112 unsigned int
3113 entry_count() const
3114 {
3115 if (this->current_data_size() == 0)
3116 return 0;
3117 return ((this->current_data_size() - this->first_plt_entry_offset())
3118 / this->plt_entry_size());
3119 }
3120
3121 protected:
3122 void
3123 do_adjust_output_section(Output_section* os)
3124 {
3125 os->set_entsize(0);
3126 }
3127
3128 // Write to a map file.
3129 void
3130 do_print_to_mapfile(Mapfile* mapfile) const
3131 { mapfile->print_output_data(this, this->name_); }
3132
3133 private:
3134 // Return the offset of the first non-reserved PLT entry.
3135 unsigned int
3136 first_plt_entry_offset() const
3137 {
3138 // IPLT has no reserved entry.
3139 if (this->name_[3] == 'I')
3140 return 0;
3141 return this->targ_->first_plt_entry_offset();
3142 }
3143
3144 // Return the size of each PLT entry.
3145 unsigned int
3146 plt_entry_size() const
3147 {
3148 return this->targ_->plt_entry_size();
3149 }
3150
3151 // Write out the PLT data.
3152 void
3153 do_write(Output_file*);
3154
3155 // The reloc section.
3156 Reloc_section* rel_;
3157 // Allows access to .glink for do_write.
3158 Target_powerpc<size, big_endian>* targ_;
3159 // What to report in map file.
3160 const char *name_;
3161 };
3162
3163 // Add an entry to the PLT.
3164
3165 template<int size, bool big_endian>
3166 void
3167 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3168 {
3169 if (!gsym->has_plt_offset())
3170 {
3171 section_size_type off = this->current_data_size();
3172 if (off == 0)
3173 off += this->first_plt_entry_offset();
3174 gsym->set_plt_offset(off);
3175 gsym->set_needs_dynsym_entry();
3176 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3177 this->rel_->add_global(gsym, dynrel, this, off, 0);
3178 off += this->plt_entry_size();
3179 this->set_current_data_size(off);
3180 }
3181 }
3182
3183 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3184
3185 template<int size, bool big_endian>
3186 void
3187 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3188 {
3189 if (!gsym->has_plt_offset())
3190 {
3191 section_size_type off = this->current_data_size();
3192 gsym->set_plt_offset(off);
3193 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3194 if (size == 64 && this->targ_->abiversion() < 2)
3195 dynrel = elfcpp::R_PPC64_JMP_IREL;
3196 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3197 off += this->plt_entry_size();
3198 this->set_current_data_size(off);
3199 }
3200 }
3201
3202 // Add an entry for a local ifunc symbol to the IPLT.
3203
3204 template<int size, bool big_endian>
3205 void
3206 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3207 Sized_relobj_file<size, big_endian>* relobj,
3208 unsigned int local_sym_index)
3209 {
3210 if (!relobj->local_has_plt_offset(local_sym_index))
3211 {
3212 section_size_type off = this->current_data_size();
3213 relobj->set_local_plt_offset(local_sym_index, off);
3214 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3215 if (size == 64 && this->targ_->abiversion() < 2)
3216 dynrel = elfcpp::R_PPC64_JMP_IREL;
3217 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3218 this, off, 0);
3219 off += this->plt_entry_size();
3220 this->set_current_data_size(off);
3221 }
3222 }
3223
3224 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3225 static const uint32_t add_2_2_11 = 0x7c425a14;
3226 static const uint32_t add_2_2_12 = 0x7c426214;
3227 static const uint32_t add_3_3_2 = 0x7c631214;
3228 static const uint32_t add_3_3_13 = 0x7c636a14;
3229 static const uint32_t add_11_0_11 = 0x7d605a14;
3230 static const uint32_t add_11_2_11 = 0x7d625a14;
3231 static const uint32_t add_11_11_2 = 0x7d6b1214;
3232 static const uint32_t addi_0_12 = 0x380c0000;
3233 static const uint32_t addi_2_2 = 0x38420000;
3234 static const uint32_t addi_3_3 = 0x38630000;
3235 static const uint32_t addi_11_11 = 0x396b0000;
3236 static const uint32_t addi_12_1 = 0x39810000;
3237 static const uint32_t addi_12_12 = 0x398c0000;
3238 static const uint32_t addis_0_2 = 0x3c020000;
3239 static const uint32_t addis_0_13 = 0x3c0d0000;
3240 static const uint32_t addis_2_12 = 0x3c4c0000;
3241 static const uint32_t addis_11_2 = 0x3d620000;
3242 static const uint32_t addis_11_11 = 0x3d6b0000;
3243 static const uint32_t addis_11_30 = 0x3d7e0000;
3244 static const uint32_t addis_12_1 = 0x3d810000;
3245 static const uint32_t addis_12_2 = 0x3d820000;
3246 static const uint32_t addis_12_12 = 0x3d8c0000;
3247 static const uint32_t b = 0x48000000;
3248 static const uint32_t bcl_20_31 = 0x429f0005;
3249 static const uint32_t bctr = 0x4e800420;
3250 static const uint32_t blr = 0x4e800020;
3251 static const uint32_t bnectr_p4 = 0x4ce20420;
3252 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3253 static const uint32_t cmpldi_2_0 = 0x28220000;
3254 static const uint32_t cror_15_15_15 = 0x4def7b82;
3255 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3256 static const uint32_t ld_0_1 = 0xe8010000;
3257 static const uint32_t ld_0_12 = 0xe80c0000;
3258 static const uint32_t ld_2_1 = 0xe8410000;
3259 static const uint32_t ld_2_2 = 0xe8420000;
3260 static const uint32_t ld_2_11 = 0xe84b0000;
3261 static const uint32_t ld_2_12 = 0xe84c0000;
3262 static const uint32_t ld_11_2 = 0xe9620000;
3263 static const uint32_t ld_11_11 = 0xe96b0000;
3264 static const uint32_t ld_12_2 = 0xe9820000;
3265 static const uint32_t ld_12_11 = 0xe98b0000;
3266 static const uint32_t ld_12_12 = 0xe98c0000;
3267 static const uint32_t lfd_0_1 = 0xc8010000;
3268 static const uint32_t li_0_0 = 0x38000000;
3269 static const uint32_t li_12_0 = 0x39800000;
3270 static const uint32_t lis_0 = 0x3c000000;
3271 static const uint32_t lis_2 = 0x3c400000;
3272 static const uint32_t lis_11 = 0x3d600000;
3273 static const uint32_t lis_12 = 0x3d800000;
3274 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3275 static const uint32_t lwz_0_12 = 0x800c0000;
3276 static const uint32_t lwz_11_11 = 0x816b0000;
3277 static const uint32_t lwz_11_30 = 0x817e0000;
3278 static const uint32_t lwz_12_12 = 0x818c0000;
3279 static const uint32_t lwzu_0_12 = 0x840c0000;
3280 static const uint32_t mflr_0 = 0x7c0802a6;
3281 static const uint32_t mflr_11 = 0x7d6802a6;
3282 static const uint32_t mflr_12 = 0x7d8802a6;
3283 static const uint32_t mtctr_0 = 0x7c0903a6;
3284 static const uint32_t mtctr_11 = 0x7d6903a6;
3285 static const uint32_t mtctr_12 = 0x7d8903a6;
3286 static const uint32_t mtlr_0 = 0x7c0803a6;
3287 static const uint32_t mtlr_12 = 0x7d8803a6;
3288 static const uint32_t nop = 0x60000000;
3289 static const uint32_t ori_0_0_0 = 0x60000000;
3290 static const uint32_t srdi_0_0_2 = 0x7800f082;
3291 static const uint32_t std_0_1 = 0xf8010000;
3292 static const uint32_t std_0_12 = 0xf80c0000;
3293 static const uint32_t std_2_1 = 0xf8410000;
3294 static const uint32_t stfd_0_1 = 0xd8010000;
3295 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3296 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3297 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3298 static const uint32_t xor_2_12_12 = 0x7d826278;
3299 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3300
3301 // Write out the PLT.
3302
3303 template<int size, bool big_endian>
3304 void
3305 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3306 {
3307 if (size == 32 && this->name_[3] != 'I')
3308 {
3309 const section_size_type offset = this->offset();
3310 const section_size_type oview_size
3311 = convert_to_section_size_type(this->data_size());
3312 unsigned char* const oview = of->get_output_view(offset, oview_size);
3313 unsigned char* pov = oview;
3314 unsigned char* endpov = oview + oview_size;
3315
3316 // The address of the .glink branch table
3317 const Output_data_glink<size, big_endian>* glink
3318 = this->targ_->glink_section();
3319 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3320
3321 while (pov < endpov)
3322 {
3323 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3324 pov += 4;
3325 branch_tab += 4;
3326 }
3327
3328 of->write_output_view(offset, oview_size, oview);
3329 }
3330 }
3331
3332 // Create the PLT section.
3333
3334 template<int size, bool big_endian>
3335 void
3336 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3337 Layout* layout)
3338 {
3339 if (this->plt_ == NULL)
3340 {
3341 if (this->got_ == NULL)
3342 this->got_section(symtab, layout);
3343
3344 if (this->glink_ == NULL)
3345 make_glink_section(layout);
3346
3347 // Ensure that .rela.dyn always appears before .rela.plt This is
3348 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3349 // needs to include .rela.plt in its range.
3350 this->rela_dyn_section(layout);
3351
3352 Reloc_section* plt_rel = new Reloc_section(false);
3353 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3354 elfcpp::SHF_ALLOC, plt_rel,
3355 ORDER_DYNAMIC_PLT_RELOCS, false);
3356 this->plt_
3357 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3358 "** PLT");
3359 layout->add_output_section_data(".plt",
3360 (size == 32
3361 ? elfcpp::SHT_PROGBITS
3362 : elfcpp::SHT_NOBITS),
3363 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3364 this->plt_,
3365 (size == 32
3366 ? ORDER_SMALL_DATA
3367 : ORDER_SMALL_BSS),
3368 false);
3369 }
3370 }
3371
3372 // Create the IPLT section.
3373
3374 template<int size, bool big_endian>
3375 void
3376 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3377 Layout* layout)
3378 {
3379 if (this->iplt_ == NULL)
3380 {
3381 this->make_plt_section(symtab, layout);
3382
3383 Reloc_section* iplt_rel = new Reloc_section(false);
3384 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3385 this->iplt_
3386 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3387 "** IPLT");
3388 this->plt_->output_section()->add_output_section_data(this->iplt_);
3389 }
3390 }
3391
3392 // A section for huge long branch addresses, similar to plt section.
3393
3394 template<int size, bool big_endian>
3395 class Output_data_brlt_powerpc : public Output_section_data_build
3396 {
3397 public:
3398 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3399 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3400 size, big_endian> Reloc_section;
3401
3402 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3403 Reloc_section* brlt_rel)
3404 : Output_section_data_build(size == 32 ? 4 : 8),
3405 rel_(brlt_rel),
3406 targ_(targ)
3407 { }
3408
3409 void
3410 reset_brlt_sizes()
3411 {
3412 this->reset_data_size();
3413 this->rel_->reset_data_size();
3414 }
3415
3416 void
3417 finalize_brlt_sizes()
3418 {
3419 this->finalize_data_size();
3420 this->rel_->finalize_data_size();
3421 }
3422
3423 // Add a reloc for an entry in the BRLT.
3424 void
3425 add_reloc(Address to, unsigned int off)
3426 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3427
3428 // Update section and reloc section size.
3429 void
3430 set_current_size(unsigned int num_branches)
3431 {
3432 this->reset_address_and_file_offset();
3433 this->set_current_data_size(num_branches * 16);
3434 this->finalize_data_size();
3435 Output_section* os = this->output_section();
3436 os->set_section_offsets_need_adjustment();
3437 if (this->rel_ != NULL)
3438 {
3439 unsigned int reloc_size
3440 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3441 this->rel_->reset_address_and_file_offset();
3442 this->rel_->set_current_data_size(num_branches * reloc_size);
3443 this->rel_->finalize_data_size();
3444 Output_section* os = this->rel_->output_section();
3445 os->set_section_offsets_need_adjustment();
3446 }
3447 }
3448
3449 protected:
3450 void
3451 do_adjust_output_section(Output_section* os)
3452 {
3453 os->set_entsize(0);
3454 }
3455
3456 // Write to a map file.
3457 void
3458 do_print_to_mapfile(Mapfile* mapfile) const
3459 { mapfile->print_output_data(this, "** BRLT"); }
3460
3461 private:
3462 // Write out the BRLT data.
3463 void
3464 do_write(Output_file*);
3465
3466 // The reloc section.
3467 Reloc_section* rel_;
3468 Target_powerpc<size, big_endian>* targ_;
3469 };
3470
3471 // Make the branch lookup table section.
3472
3473 template<int size, bool big_endian>
3474 void
3475 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3476 {
3477 if (size == 64 && this->brlt_section_ == NULL)
3478 {
3479 Reloc_section* brlt_rel = NULL;
3480 bool is_pic = parameters->options().output_is_position_independent();
3481 if (is_pic)
3482 {
3483 // When PIC we can't fill in .branch_lt (like .plt it can be
3484 // a bss style section) but must initialise at runtime via
3485 // dynamic relocats.
3486 this->rela_dyn_section(layout);
3487 brlt_rel = new Reloc_section(false);
3488 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3489 }
3490 this->brlt_section_
3491 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3492 if (this->plt_ && is_pic)
3493 this->plt_->output_section()
3494 ->add_output_section_data(this->brlt_section_);
3495 else
3496 layout->add_output_section_data(".branch_lt",
3497 (is_pic ? elfcpp::SHT_NOBITS
3498 : elfcpp::SHT_PROGBITS),
3499 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3500 this->brlt_section_,
3501 (is_pic ? ORDER_SMALL_BSS
3502 : ORDER_SMALL_DATA),
3503 false);
3504 }
3505 }
3506
3507 // Write out .branch_lt when non-PIC.
3508
3509 template<int size, bool big_endian>
3510 void
3511 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3512 {
3513 if (size == 64 && !parameters->options().output_is_position_independent())
3514 {
3515 const section_size_type offset = this->offset();
3516 const section_size_type oview_size
3517 = convert_to_section_size_type(this->data_size());
3518 unsigned char* const oview = of->get_output_view(offset, oview_size);
3519
3520 this->targ_->write_branch_lookup_table(oview);
3521 of->write_output_view(offset, oview_size, oview);
3522 }
3523 }
3524
3525 static inline uint32_t
3526 l(uint32_t a)
3527 {
3528 return a & 0xffff;
3529 }
3530
3531 static inline uint32_t
3532 hi(uint32_t a)
3533 {
3534 return l(a >> 16);
3535 }
3536
3537 static inline uint32_t
3538 ha(uint32_t a)
3539 {
3540 return hi(a + 0x8000);
3541 }
3542
3543 template<int size>
3544 struct Eh_cie
3545 {
3546 static const unsigned char eh_frame_cie[12];
3547 };
3548
3549 template<int size>
3550 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3551 {
3552 1, // CIE version.
3553 'z', 'R', 0, // Augmentation string.
3554 4, // Code alignment.
3555 0x80 - size / 8 , // Data alignment.
3556 65, // RA reg.
3557 1, // Augmentation size.
3558 (elfcpp::DW_EH_PE_pcrel
3559 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3560 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3561 };
3562
3563 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3564 static const unsigned char glink_eh_frame_fde_64v1[] =
3565 {
3566 0, 0, 0, 0, // Replaced with offset to .glink.
3567 0, 0, 0, 0, // Replaced with size of .glink.
3568 0, // Augmentation size.
3569 elfcpp::DW_CFA_advance_loc + 1,
3570 elfcpp::DW_CFA_register, 65, 12,
3571 elfcpp::DW_CFA_advance_loc + 4,
3572 elfcpp::DW_CFA_restore_extended, 65
3573 };
3574
3575 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3576 static const unsigned char glink_eh_frame_fde_64v2[] =
3577 {
3578 0, 0, 0, 0, // Replaced with offset to .glink.
3579 0, 0, 0, 0, // Replaced with size of .glink.
3580 0, // Augmentation size.
3581 elfcpp::DW_CFA_advance_loc + 1,
3582 elfcpp::DW_CFA_register, 65, 0,
3583 elfcpp::DW_CFA_advance_loc + 4,
3584 elfcpp::DW_CFA_restore_extended, 65
3585 };
3586
3587 // Describe __glink_PLTresolve use of LR, 32-bit version.
3588 static const unsigned char glink_eh_frame_fde_32[] =
3589 {
3590 0, 0, 0, 0, // Replaced with offset to .glink.
3591 0, 0, 0, 0, // Replaced with size of .glink.
3592 0, // Augmentation size.
3593 elfcpp::DW_CFA_advance_loc + 2,
3594 elfcpp::DW_CFA_register, 65, 0,
3595 elfcpp::DW_CFA_advance_loc + 4,
3596 elfcpp::DW_CFA_restore_extended, 65
3597 };
3598
3599 static const unsigned char default_fde[] =
3600 {
3601 0, 0, 0, 0, // Replaced with offset to stubs.
3602 0, 0, 0, 0, // Replaced with size of stubs.
3603 0, // Augmentation size.
3604 elfcpp::DW_CFA_nop, // Pad.
3605 elfcpp::DW_CFA_nop,
3606 elfcpp::DW_CFA_nop
3607 };
3608
3609 template<bool big_endian>
3610 static inline void
3611 write_insn(unsigned char* p, uint32_t v)
3612 {
3613 elfcpp::Swap<32, big_endian>::writeval(p, v);
3614 }
3615
3616 // Stub_table holds information about plt and long branch stubs.
3617 // Stubs are built in an area following some input section determined
3618 // by group_sections(). This input section is converted to a relaxed
3619 // input section allowing it to be resized to accommodate the stubs
3620
3621 template<int size, bool big_endian>
3622 class Stub_table : public Output_relaxed_input_section
3623 {
3624 public:
3625 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3626 static const Address invalid_address = static_cast<Address>(0) - 1;
3627
3628 Stub_table(Target_powerpc<size, big_endian>* targ,
3629 Output_section* output_section,
3630 const Output_section::Input_section* owner)
3631 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3632 owner->relobj()
3633 ->section_addralign(owner->shndx())),
3634 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3635 orig_data_size_(owner->current_data_size()),
3636 plt_size_(0), last_plt_size_(0),
3637 branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3638 need_save_res_(false)
3639 {
3640 this->set_output_section(output_section);
3641
3642 std::vector<Output_relaxed_input_section*> new_relaxed;
3643 new_relaxed.push_back(this);
3644 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3645 }
3646
3647 // Add a plt call stub.
3648 bool
3649 add_plt_call_entry(Address,
3650 const Sized_relobj_file<size, big_endian>*,
3651 const Symbol*,
3652 unsigned int,
3653 Address);
3654
3655 bool
3656 add_plt_call_entry(Address,
3657 const Sized_relobj_file<size, big_endian>*,
3658 unsigned int,
3659 unsigned int,
3660 Address);
3661
3662 // Find a given plt call stub.
3663 Address
3664 find_plt_call_entry(const Symbol*) const;
3665
3666 Address
3667 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3668 unsigned int) const;
3669
3670 Address
3671 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3672 const Symbol*,
3673 unsigned int,
3674 Address) const;
3675
3676 Address
3677 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3678 unsigned int,
3679 unsigned int,
3680 Address) const;
3681
3682 // Add a long branch stub.
3683 bool
3684 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3685 unsigned int, Address, Address, bool);
3686
3687 Address
3688 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3689 Address) const;
3690
3691 bool
3692 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3693 {
3694 Address max_branch_offset = max_branch_delta(r_type);
3695 if (max_branch_offset == 0)
3696 return true;
3697 gold_assert(from != invalid_address);
3698 Address loc = off + this->stub_address();
3699 return loc - from + max_branch_offset < 2 * max_branch_offset;
3700 }
3701
3702 void
3703 clear_stubs(bool all)
3704 {
3705 this->plt_call_stubs_.clear();
3706 this->plt_size_ = 0;
3707 this->long_branch_stubs_.clear();
3708 this->branch_size_ = 0;
3709 this->need_save_res_ = false;
3710 if (all)
3711 {
3712 this->last_plt_size_ = 0;
3713 this->last_branch_size_ = 0;
3714 }
3715 }
3716
3717 Address
3718 set_address_and_size(const Output_section* os, Address off)
3719 {
3720 Address start_off = off;
3721 off += this->orig_data_size_;
3722 Address my_size = this->plt_size_ + this->branch_size_;
3723 if (this->need_save_res_)
3724 my_size += this->targ_->savres_section()->data_size();
3725 if (my_size != 0)
3726 off = align_address(off, this->stub_align());
3727 // Include original section size and alignment padding in size
3728 my_size += off - start_off;
3729 this->reset_address_and_file_offset();
3730 this->set_current_data_size(my_size);
3731 this->set_address_and_file_offset(os->address() + start_off,
3732 os->offset() + start_off);
3733 return my_size;
3734 }
3735
3736 Address
3737 stub_address() const
3738 {
3739 return align_address(this->address() + this->orig_data_size_,
3740 this->stub_align());
3741 }
3742
3743 Address
3744 stub_offset() const
3745 {
3746 return align_address(this->offset() + this->orig_data_size_,
3747 this->stub_align());
3748 }
3749
3750 section_size_type
3751 plt_size() const
3752 { return this->plt_size_; }
3753
3754 bool
3755 size_update()
3756 {
3757 Output_section* os = this->output_section();
3758 if (os->addralign() < this->stub_align())
3759 {
3760 os->set_addralign(this->stub_align());
3761 // FIXME: get rid of the insane checkpointing.
3762 // We can't increase alignment of the input section to which
3763 // stubs are attached; The input section may be .init which
3764 // is pasted together with other .init sections to form a
3765 // function. Aligning might insert zero padding resulting in
3766 // sigill. However we do need to increase alignment of the
3767 // output section so that the align_address() on offset in
3768 // set_address_and_size() adds the same padding as the
3769 // align_address() on address in stub_address().
3770 // What's more, we need this alignment for the layout done in
3771 // relaxation_loop_body() so that the output section starts at
3772 // a suitably aligned address.
3773 os->checkpoint_set_addralign(this->stub_align());
3774 }
3775 if (this->last_plt_size_ != this->plt_size_
3776 || this->last_branch_size_ != this->branch_size_)
3777 {
3778 this->last_plt_size_ = this->plt_size_;
3779 this->last_branch_size_ = this->branch_size_;
3780 return true;
3781 }
3782 return false;
3783 }
3784
3785 // Add .eh_frame info for this stub section. Unlike other linker
3786 // generated .eh_frame this is added late in the link, because we
3787 // only want the .eh_frame info if this particular stub section is
3788 // non-empty.
3789 void
3790 add_eh_frame(Layout* layout)
3791 {
3792 if (!this->eh_frame_added_)
3793 {
3794 if (!parameters->options().ld_generated_unwind_info())
3795 return;
3796
3797 // Since we add stub .eh_frame info late, it must be placed
3798 // after all other linker generated .eh_frame info so that
3799 // merge mapping need not be updated for input sections.
3800 // There is no provision to use a different CIE to that used
3801 // by .glink.
3802 if (!this->targ_->has_glink())
3803 return;
3804
3805 layout->add_eh_frame_for_plt(this,
3806 Eh_cie<size>::eh_frame_cie,
3807 sizeof (Eh_cie<size>::eh_frame_cie),
3808 default_fde,
3809 sizeof (default_fde));
3810 this->eh_frame_added_ = true;
3811 }
3812 }
3813
3814 Target_powerpc<size, big_endian>*
3815 targ() const
3816 { return targ_; }
3817
3818 private:
3819 class Plt_stub_ent;
3820 class Plt_stub_ent_hash;
3821 typedef Unordered_map<Plt_stub_ent, unsigned int,
3822 Plt_stub_ent_hash> Plt_stub_entries;
3823
3824 // Alignment of stub section.
3825 unsigned int
3826 stub_align() const
3827 {
3828 if (size == 32)
3829 return 16;
3830 unsigned int min_align = 32;
3831 unsigned int user_align = 1 << parameters->options().plt_align();
3832 return std::max(user_align, min_align);
3833 }
3834
3835 // Return the plt offset for the given call stub.
3836 Address
3837 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3838 {
3839 const Symbol* gsym = p->first.sym_;
3840 if (gsym != NULL)
3841 {
3842 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3843 && gsym->can_use_relative_reloc(false));
3844 return gsym->plt_offset();
3845 }
3846 else
3847 {
3848 *is_iplt = true;
3849 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3850 unsigned int local_sym_index = p->first.locsym_;
3851 return relobj->local_plt_offset(local_sym_index);
3852 }
3853 }
3854
3855 // Size of a given plt call stub.
3856 unsigned int
3857 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3858 {
3859 if (size == 32)
3860 return 16;
3861
3862 bool is_iplt;
3863 Address plt_addr = this->plt_off(p, &is_iplt);
3864 if (is_iplt)
3865 plt_addr += this->targ_->iplt_section()->address();
3866 else
3867 plt_addr += this->targ_->plt_section()->address();
3868 Address got_addr = this->targ_->got_section()->output_section()->address();
3869 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3870 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3871 got_addr += ppcobj->toc_base_offset();
3872 Address off = plt_addr - got_addr;
3873 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3874 if (this->targ_->abiversion() < 2)
3875 {
3876 bool static_chain = parameters->options().plt_static_chain();
3877 bool thread_safe = this->targ_->plt_thread_safe();
3878 bytes += (4
3879 + 4 * static_chain
3880 + 8 * thread_safe
3881 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3882 }
3883 unsigned int align = 1 << parameters->options().plt_align();
3884 if (align > 1)
3885 bytes = (bytes + align - 1) & -align;
3886 return bytes;
3887 }
3888
3889 // Return long branch stub size.
3890 unsigned int
3891 branch_stub_size(Address to)
3892 {
3893 Address loc
3894 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3895 if (to - loc + (1 << 25) < 2 << 25)
3896 return 4;
3897 if (size == 64 || !parameters->options().output_is_position_independent())
3898 return 16;
3899 return 32;
3900 }
3901
3902 // Write out stubs.
3903 void
3904 do_write(Output_file*);
3905
3906 // Plt call stub keys.
3907 class Plt_stub_ent
3908 {
3909 public:
3910 Plt_stub_ent(const Symbol* sym)
3911 : sym_(sym), object_(0), addend_(0), locsym_(0)
3912 { }
3913
3914 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3915 unsigned int locsym_index)
3916 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3917 { }
3918
3919 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3920 const Symbol* sym,
3921 unsigned int r_type,
3922 Address addend)
3923 : sym_(sym), object_(0), addend_(0), locsym_(0)
3924 {
3925 if (size != 32)
3926 this->addend_ = addend;
3927 else if (parameters->options().output_is_position_independent()
3928 && r_type == elfcpp::R_PPC_PLTREL24)
3929 {
3930 this->addend_ = addend;
3931 if (this->addend_ >= 32768)
3932 this->object_ = object;
3933 }
3934 }
3935
3936 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3937 unsigned int locsym_index,
3938 unsigned int r_type,
3939 Address addend)
3940 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3941 {
3942 if (size != 32)
3943 this->addend_ = addend;
3944 else if (parameters->options().output_is_position_independent()
3945 && r_type == elfcpp::R_PPC_PLTREL24)
3946 this->addend_ = addend;
3947 }
3948
3949 bool operator==(const Plt_stub_ent& that) const
3950 {
3951 return (this->sym_ == that.sym_
3952 && this->object_ == that.object_
3953 && this->addend_ == that.addend_
3954 && this->locsym_ == that.locsym_);
3955 }
3956
3957 const Symbol* sym_;
3958 const Sized_relobj_file<size, big_endian>* object_;
3959 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3960 unsigned int locsym_;
3961 };
3962
3963 class Plt_stub_ent_hash
3964 {
3965 public:
3966 size_t operator()(const Plt_stub_ent& ent) const
3967 {
3968 return (reinterpret_cast<uintptr_t>(ent.sym_)
3969 ^ reinterpret_cast<uintptr_t>(ent.object_)
3970 ^ ent.addend_
3971 ^ ent.locsym_);
3972 }
3973 };
3974
3975 // Long branch stub keys.
3976 class Branch_stub_ent
3977 {
3978 public:
3979 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3980 Address to, bool save_res)
3981 : dest_(to), toc_base_off_(0), save_res_(save_res)
3982 {
3983 if (size == 64)
3984 toc_base_off_ = obj->toc_base_offset();
3985 }
3986
3987 bool operator==(const Branch_stub_ent& that) const
3988 {
3989 return (this->dest_ == that.dest_
3990 && (size == 32
3991 || this->toc_base_off_ == that.toc_base_off_));
3992 }
3993
3994 Address dest_;
3995 unsigned int toc_base_off_;
3996 bool save_res_;
3997 };
3998
3999 class Branch_stub_ent_hash
4000 {
4001 public:
4002 size_t operator()(const Branch_stub_ent& ent) const
4003 { return ent.dest_ ^ ent.toc_base_off_; }
4004 };
4005
4006 // In a sane world this would be a global.
4007 Target_powerpc<size, big_endian>* targ_;
4008 // Map sym/object/addend to stub offset.
4009 Plt_stub_entries plt_call_stubs_;
4010 // Map destination address to stub offset.
4011 typedef Unordered_map<Branch_stub_ent, unsigned int,
4012 Branch_stub_ent_hash> Branch_stub_entries;
4013 Branch_stub_entries long_branch_stubs_;
4014 // size of input section
4015 section_size_type orig_data_size_;
4016 // size of stubs
4017 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4018 // Whether .eh_frame info has been created for this stub section.
4019 bool eh_frame_added_;
4020 // Set if this stub group needs a copy of out-of-line register
4021 // save/restore functions.
4022 bool need_save_res_;
4023 };
4024
4025 // Add a plt call stub, if we do not already have one for this
4026 // sym/object/addend combo.
4027
4028 template<int size, bool big_endian>
4029 bool
4030 Stub_table<size, big_endian>::add_plt_call_entry(
4031 Address from,
4032 const Sized_relobj_file<size, big_endian>* object,
4033 const Symbol* gsym,
4034 unsigned int r_type,
4035 Address addend)
4036 {
4037 Plt_stub_ent ent(object, gsym, r_type, addend);
4038 unsigned int off = this->plt_size_;
4039 std::pair<typename Plt_stub_entries::iterator, bool> p
4040 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4041 if (p.second)
4042 this->plt_size_ = off + this->plt_call_size(p.first);
4043 return this->can_reach_stub(from, off, r_type);
4044 }
4045
4046 template<int size, bool big_endian>
4047 bool
4048 Stub_table<size, big_endian>::add_plt_call_entry(
4049 Address from,
4050 const Sized_relobj_file<size, big_endian>* object,
4051 unsigned int locsym_index,
4052 unsigned int r_type,
4053 Address addend)
4054 {
4055 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4056 unsigned int off = this->plt_size_;
4057 std::pair<typename Plt_stub_entries::iterator, bool> p
4058 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4059 if (p.second)
4060 this->plt_size_ = off + this->plt_call_size(p.first);
4061 return this->can_reach_stub(from, off, r_type);
4062 }
4063
4064 // Find a plt call stub.
4065
4066 template<int size, bool big_endian>
4067 typename Stub_table<size, big_endian>::Address
4068 Stub_table<size, big_endian>::find_plt_call_entry(
4069 const Sized_relobj_file<size, big_endian>* object,
4070 const Symbol* gsym,
4071 unsigned int r_type,
4072 Address addend) const
4073 {
4074 Plt_stub_ent ent(object, gsym, r_type, addend);
4075 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4076 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4077 }
4078
4079 template<int size, bool big_endian>
4080 typename Stub_table<size, big_endian>::Address
4081 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4082 {
4083 Plt_stub_ent ent(gsym);
4084 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4085 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4086 }
4087
4088 template<int size, bool big_endian>
4089 typename Stub_table<size, big_endian>::Address
4090 Stub_table<size, big_endian>::find_plt_call_entry(
4091 const Sized_relobj_file<size, big_endian>* object,
4092 unsigned int locsym_index,
4093 unsigned int r_type,
4094 Address addend) const
4095 {
4096 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4097 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4098 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4099 }
4100
4101 template<int size, bool big_endian>
4102 typename Stub_table<size, big_endian>::Address
4103 Stub_table<size, big_endian>::find_plt_call_entry(
4104 const Sized_relobj_file<size, big_endian>* object,
4105 unsigned int locsym_index) const
4106 {
4107 Plt_stub_ent ent(object, locsym_index);
4108 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4109 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4110 }
4111
4112 // Add a long branch stub if we don't already have one to given
4113 // destination.
4114
4115 template<int size, bool big_endian>
4116 bool
4117 Stub_table<size, big_endian>::add_long_branch_entry(
4118 const Powerpc_relobj<size, big_endian>* object,
4119 unsigned int r_type,
4120 Address from,
4121 Address to,
4122 bool save_res)
4123 {
4124 Branch_stub_ent ent(object, to, save_res);
4125 Address off = this->branch_size_;
4126 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4127 {
4128 if (save_res)
4129 this->need_save_res_ = true;
4130 else
4131 {
4132 unsigned int stub_size = this->branch_stub_size(to);
4133 this->branch_size_ = off + stub_size;
4134 if (size == 64 && stub_size != 4)
4135 this->targ_->add_branch_lookup_table(to);
4136 }
4137 }
4138 return this->can_reach_stub(from, off, r_type);
4139 }
4140
4141 // Find long branch stub offset.
4142
4143 template<int size, bool big_endian>
4144 typename Stub_table<size, big_endian>::Address
4145 Stub_table<size, big_endian>::find_long_branch_entry(
4146 const Powerpc_relobj<size, big_endian>* object,
4147 Address to) const
4148 {
4149 Branch_stub_ent ent(object, to, false);
4150 typename Branch_stub_entries::const_iterator p
4151 = this->long_branch_stubs_.find(ent);
4152 if (p == this->long_branch_stubs_.end())
4153 return invalid_address;
4154 if (p->first.save_res_)
4155 return to - this->targ_->savres_section()->address() + this->branch_size_;
4156 return p->second;
4157 }
4158
4159 // A class to handle .glink.
4160
4161 template<int size, bool big_endian>
4162 class Output_data_glink : public Output_section_data
4163 {
4164 public:
4165 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4166 static const Address invalid_address = static_cast<Address>(0) - 1;
4167 static const int pltresolve_size = 16*4;
4168
4169 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4170 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4171 end_branch_table_(), ge_size_(0)
4172 { }
4173
4174 void
4175 add_eh_frame(Layout* layout);
4176
4177 void
4178 add_global_entry(const Symbol*);
4179
4180 Address
4181 find_global_entry(const Symbol*) const;
4182
4183 Address
4184 global_entry_address() const
4185 {
4186 gold_assert(this->is_data_size_valid());
4187 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4188 return this->address() + global_entry_off;
4189 }
4190
4191 protected:
4192 // Write to a map file.
4193 void
4194 do_print_to_mapfile(Mapfile* mapfile) const
4195 { mapfile->print_output_data(this, _("** glink")); }
4196
4197 private:
4198 void
4199 set_final_data_size();
4200
4201 // Write out .glink
4202 void
4203 do_write(Output_file*);
4204
4205 // Allows access to .got and .plt for do_write.
4206 Target_powerpc<size, big_endian>* targ_;
4207
4208 // Map sym to stub offset.
4209 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4210 Global_entry_stub_entries global_entry_stubs_;
4211
4212 unsigned int end_branch_table_, ge_size_;
4213 };
4214
4215 template<int size, bool big_endian>
4216 void
4217 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4218 {
4219 if (!parameters->options().ld_generated_unwind_info())
4220 return;
4221
4222 if (size == 64)
4223 {
4224 if (this->targ_->abiversion() < 2)
4225 layout->add_eh_frame_for_plt(this,
4226 Eh_cie<64>::eh_frame_cie,
4227 sizeof (Eh_cie<64>::eh_frame_cie),
4228 glink_eh_frame_fde_64v1,
4229 sizeof (glink_eh_frame_fde_64v1));
4230 else
4231 layout->add_eh_frame_for_plt(this,
4232 Eh_cie<64>::eh_frame_cie,
4233 sizeof (Eh_cie<64>::eh_frame_cie),
4234 glink_eh_frame_fde_64v2,
4235 sizeof (glink_eh_frame_fde_64v2));
4236 }
4237 else
4238 {
4239 // 32-bit .glink can use the default since the CIE return
4240 // address reg, LR, is valid.
4241 layout->add_eh_frame_for_plt(this,
4242 Eh_cie<32>::eh_frame_cie,
4243 sizeof (Eh_cie<32>::eh_frame_cie),
4244 default_fde,
4245 sizeof (default_fde));
4246 // Except where LR is used in a PIC __glink_PLTresolve.
4247 if (parameters->options().output_is_position_independent())
4248 layout->add_eh_frame_for_plt(this,
4249 Eh_cie<32>::eh_frame_cie,
4250 sizeof (Eh_cie<32>::eh_frame_cie),
4251 glink_eh_frame_fde_32,
4252 sizeof (glink_eh_frame_fde_32));
4253 }
4254 }
4255
4256 template<int size, bool big_endian>
4257 void
4258 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4259 {
4260 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4261 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4262 if (p.second)
4263 this->ge_size_ += 16;
4264 }
4265
4266 template<int size, bool big_endian>
4267 typename Output_data_glink<size, big_endian>::Address
4268 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4269 {
4270 typename Global_entry_stub_entries::const_iterator p
4271 = this->global_entry_stubs_.find(gsym);
4272 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4273 }
4274
4275 template<int size, bool big_endian>
4276 void
4277 Output_data_glink<size, big_endian>::set_final_data_size()
4278 {
4279 unsigned int count = this->targ_->plt_entry_count();
4280 section_size_type total = 0;
4281
4282 if (count != 0)
4283 {
4284 if (size == 32)
4285 {
4286 // space for branch table
4287 total += 4 * (count - 1);
4288
4289 total += -total & 15;
4290 total += this->pltresolve_size;
4291 }
4292 else
4293 {
4294 total += this->pltresolve_size;
4295
4296 // space for branch table
4297 total += 4 * count;
4298 if (this->targ_->abiversion() < 2)
4299 {
4300 total += 4 * count;
4301 if (count > 0x8000)
4302 total += 4 * (count - 0x8000);
4303 }
4304 }
4305 }
4306 this->end_branch_table_ = total;
4307 total = (total + 15) & -16;
4308 total += this->ge_size_;
4309
4310 this->set_data_size(total);
4311 }
4312
4313 // Write out plt and long branch stub code.
4314
4315 template<int size, bool big_endian>
4316 void
4317 Stub_table<size, big_endian>::do_write(Output_file* of)
4318 {
4319 if (this->plt_call_stubs_.empty()
4320 && this->long_branch_stubs_.empty())
4321 return;
4322
4323 const section_size_type start_off = this->offset();
4324 const section_size_type off = this->stub_offset();
4325 const section_size_type oview_size =
4326 convert_to_section_size_type(this->data_size() - (off - start_off));
4327 unsigned char* const oview = of->get_output_view(off, oview_size);
4328 unsigned char* p;
4329
4330 if (size == 64)
4331 {
4332 const Output_data_got_powerpc<size, big_endian>* got
4333 = this->targ_->got_section();
4334 Address got_os_addr = got->output_section()->address();
4335
4336 if (!this->plt_call_stubs_.empty())
4337 {
4338 // The base address of the .plt section.
4339 Address plt_base = this->targ_->plt_section()->address();
4340 Address iplt_base = invalid_address;
4341
4342 // Write out plt call stubs.
4343 typename Plt_stub_entries::const_iterator cs;
4344 for (cs = this->plt_call_stubs_.begin();
4345 cs != this->plt_call_stubs_.end();
4346 ++cs)
4347 {
4348 bool is_iplt;
4349 Address pltoff = this->plt_off(cs, &is_iplt);
4350 Address plt_addr = pltoff;
4351 if (is_iplt)
4352 {
4353 if (iplt_base == invalid_address)
4354 iplt_base = this->targ_->iplt_section()->address();
4355 plt_addr += iplt_base;
4356 }
4357 else
4358 plt_addr += plt_base;
4359 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4360 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4361 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4362 Address off = plt_addr - got_addr;
4363
4364 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4365 gold_error(_("%s: linkage table error against `%s'"),
4366 cs->first.object_->name().c_str(),
4367 cs->first.sym_->demangled_name().c_str());
4368
4369 bool plt_load_toc = this->targ_->abiversion() < 2;
4370 bool static_chain
4371 = plt_load_toc && parameters->options().plt_static_chain();
4372 bool thread_safe
4373 = plt_load_toc && this->targ_->plt_thread_safe();
4374 bool use_fake_dep = false;
4375 Address cmp_branch_off = 0;
4376 if (thread_safe)
4377 {
4378 unsigned int pltindex
4379 = ((pltoff - this->targ_->first_plt_entry_offset())
4380 / this->targ_->plt_entry_size());
4381 Address glinkoff
4382 = (this->targ_->glink_section()->pltresolve_size
4383 + pltindex * 8);
4384 if (pltindex > 32768)
4385 glinkoff += (pltindex - 32768) * 4;
4386 Address to
4387 = this->targ_->glink_section()->address() + glinkoff;
4388 Address from
4389 = (this->stub_address() + cs->second + 24
4390 + 4 * (ha(off) != 0)
4391 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4392 + 4 * static_chain);
4393 cmp_branch_off = to - from;
4394 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4395 }
4396
4397 p = oview + cs->second;
4398 if (ha(off) != 0)
4399 {
4400 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4401 p += 4;
4402 if (plt_load_toc)
4403 {
4404 write_insn<big_endian>(p, addis_11_2 + ha(off));
4405 p += 4;
4406 write_insn<big_endian>(p, ld_12_11 + l(off));
4407 p += 4;
4408 }
4409 else
4410 {
4411 write_insn<big_endian>(p, addis_12_2 + ha(off));
4412 p += 4;
4413 write_insn<big_endian>(p, ld_12_12 + l(off));
4414 p += 4;
4415 }
4416 if (plt_load_toc
4417 && ha(off + 8 + 8 * static_chain) != ha(off))
4418 {
4419 write_insn<big_endian>(p, addi_11_11 + l(off));
4420 p += 4;
4421 off = 0;
4422 }
4423 write_insn<big_endian>(p, mtctr_12);
4424 p += 4;
4425 if (plt_load_toc)
4426 {
4427 if (use_fake_dep)
4428 {
4429 write_insn<big_endian>(p, xor_2_12_12);
4430 p += 4;
4431 write_insn<big_endian>(p, add_11_11_2);
4432 p += 4;
4433 }
4434 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4435 p += 4;
4436 if (static_chain)
4437 {
4438 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4439 p += 4;
4440 }
4441 }
4442 }
4443 else
4444 {
4445 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4446 p += 4;
4447 write_insn<big_endian>(p, ld_12_2 + l(off));
4448 p += 4;
4449 if (plt_load_toc
4450 && ha(off + 8 + 8 * static_chain) != ha(off))
4451 {
4452 write_insn<big_endian>(p, addi_2_2 + l(off));
4453 p += 4;
4454 off = 0;
4455 }
4456 write_insn<big_endian>(p, mtctr_12);
4457 p += 4;
4458 if (plt_load_toc)
4459 {
4460 if (use_fake_dep)
4461 {
4462 write_insn<big_endian>(p, xor_11_12_12);
4463 p += 4;
4464 write_insn<big_endian>(p, add_2_2_11);
4465 p += 4;
4466 }
4467 if (static_chain)
4468 {
4469 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4470 p += 4;
4471 }
4472 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4473 p += 4;
4474 }
4475 }
4476 if (thread_safe && !use_fake_dep)
4477 {
4478 write_insn<big_endian>(p, cmpldi_2_0);
4479 p += 4;
4480 write_insn<big_endian>(p, bnectr_p4);
4481 p += 4;
4482 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4483 }
4484 else
4485 write_insn<big_endian>(p, bctr);
4486 }
4487 }
4488
4489 // Write out long branch stubs.
4490 typename Branch_stub_entries::const_iterator bs;
4491 for (bs = this->long_branch_stubs_.begin();
4492 bs != this->long_branch_stubs_.end();
4493 ++bs)
4494 {
4495 if (bs->first.save_res_)
4496 continue;
4497 p = oview + this->plt_size_ + bs->second;
4498 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4499 Address delta = bs->first.dest_ - loc;
4500 if (delta + (1 << 25) < 2 << 25)
4501 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4502 else
4503 {
4504 Address brlt_addr
4505 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4506 gold_assert(brlt_addr != invalid_address);
4507 brlt_addr += this->targ_->brlt_section()->address();
4508 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4509 Address brltoff = brlt_addr - got_addr;
4510 if (ha(brltoff) == 0)
4511 {
4512 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4513 }
4514 else
4515 {
4516 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4517 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4518 }
4519 write_insn<big_endian>(p, mtctr_12), p += 4;
4520 write_insn<big_endian>(p, bctr);
4521 }
4522 }
4523 }
4524 else
4525 {
4526 if (!this->plt_call_stubs_.empty())
4527 {
4528 // The base address of the .plt section.
4529 Address plt_base = this->targ_->plt_section()->address();
4530 Address iplt_base = invalid_address;
4531 // The address of _GLOBAL_OFFSET_TABLE_.
4532 Address g_o_t = invalid_address;
4533
4534 // Write out plt call stubs.
4535 typename Plt_stub_entries::const_iterator cs;
4536 for (cs = this->plt_call_stubs_.begin();
4537 cs != this->plt_call_stubs_.end();
4538 ++cs)
4539 {
4540 bool is_iplt;
4541 Address plt_addr = this->plt_off(cs, &is_iplt);
4542 if (is_iplt)
4543 {
4544 if (iplt_base == invalid_address)
4545 iplt_base = this->targ_->iplt_section()->address();
4546 plt_addr += iplt_base;
4547 }
4548 else
4549 plt_addr += plt_base;
4550
4551 p = oview + cs->second;
4552 if (parameters->options().output_is_position_independent())
4553 {
4554 Address got_addr;
4555 const Powerpc_relobj<size, big_endian>* ppcobj
4556 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4557 (cs->first.object_));
4558 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4559 {
4560 unsigned int got2 = ppcobj->got2_shndx();
4561 got_addr = ppcobj->get_output_section_offset(got2);
4562 gold_assert(got_addr != invalid_address);
4563 got_addr += (ppcobj->output_section(got2)->address()
4564 + cs->first.addend_);
4565 }
4566 else
4567 {
4568 if (g_o_t == invalid_address)
4569 {
4570 const Output_data_got_powerpc<size, big_endian>* got
4571 = this->targ_->got_section();
4572 g_o_t = got->address() + got->g_o_t();
4573 }
4574 got_addr = g_o_t;
4575 }
4576
4577 Address off = plt_addr - got_addr;
4578 if (ha(off) == 0)
4579 {
4580 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4581 write_insn<big_endian>(p + 4, mtctr_11);
4582 write_insn<big_endian>(p + 8, bctr);
4583 }
4584 else
4585 {
4586 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4587 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4588 write_insn<big_endian>(p + 8, mtctr_11);
4589 write_insn<big_endian>(p + 12, bctr);
4590 }
4591 }
4592 else
4593 {
4594 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4595 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4596 write_insn<big_endian>(p + 8, mtctr_11);
4597 write_insn<big_endian>(p + 12, bctr);
4598 }
4599 }
4600 }
4601
4602 // Write out long branch stubs.
4603 typename Branch_stub_entries::const_iterator bs;
4604 for (bs = this->long_branch_stubs_.begin();
4605 bs != this->long_branch_stubs_.end();
4606 ++bs)
4607 {
4608 if (bs->first.save_res_)
4609 continue;
4610 p = oview + this->plt_size_ + bs->second;
4611 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4612 Address delta = bs->first.dest_ - loc;
4613 if (delta + (1 << 25) < 2 << 25)
4614 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4615 else if (!parameters->options().output_is_position_independent())
4616 {
4617 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4618 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4619 write_insn<big_endian>(p + 8, mtctr_12);
4620 write_insn<big_endian>(p + 12, bctr);
4621 }
4622 else
4623 {
4624 delta -= 8;
4625 write_insn<big_endian>(p + 0, mflr_0);
4626 write_insn<big_endian>(p + 4, bcl_20_31);
4627 write_insn<big_endian>(p + 8, mflr_12);
4628 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4629 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4630 write_insn<big_endian>(p + 20, mtlr_0);
4631 write_insn<big_endian>(p + 24, mtctr_12);
4632 write_insn<big_endian>(p + 28, bctr);
4633 }
4634 }
4635 }
4636 if (this->need_save_res_)
4637 {
4638 p = oview + this->plt_size_ + this->branch_size_;
4639 memcpy (p, this->targ_->savres_section()->contents(),
4640 this->targ_->savres_section()->data_size());
4641 }
4642 }
4643
4644 // Write out .glink.
4645
4646 template<int size, bool big_endian>
4647 void
4648 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4649 {
4650 const section_size_type off = this->offset();
4651 const section_size_type oview_size =
4652 convert_to_section_size_type(this->data_size());
4653 unsigned char* const oview = of->get_output_view(off, oview_size);
4654 unsigned char* p;
4655
4656 // The base address of the .plt section.
4657 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4658 Address plt_base = this->targ_->plt_section()->address();
4659
4660 if (size == 64)
4661 {
4662 if (this->end_branch_table_ != 0)
4663 {
4664 // Write pltresolve stub.
4665 p = oview;
4666 Address after_bcl = this->address() + 16;
4667 Address pltoff = plt_base - after_bcl;
4668
4669 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4670
4671 if (this->targ_->abiversion() < 2)
4672 {
4673 write_insn<big_endian>(p, mflr_12), p += 4;
4674 write_insn<big_endian>(p, bcl_20_31), p += 4;
4675 write_insn<big_endian>(p, mflr_11), p += 4;
4676 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4677 write_insn<big_endian>(p, mtlr_12), p += 4;
4678 write_insn<big_endian>(p, add_11_2_11), p += 4;
4679 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4680 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4681 write_insn<big_endian>(p, mtctr_12), p += 4;
4682 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4683 }
4684 else
4685 {
4686 write_insn<big_endian>(p, mflr_0), p += 4;
4687 write_insn<big_endian>(p, bcl_20_31), p += 4;
4688 write_insn<big_endian>(p, mflr_11), p += 4;
4689 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4690 write_insn<big_endian>(p, mtlr_0), p += 4;
4691 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4692 write_insn<big_endian>(p, add_11_2_11), p += 4;
4693 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4694 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4695 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4696 write_insn<big_endian>(p, mtctr_12), p += 4;
4697 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4698 }
4699 write_insn<big_endian>(p, bctr), p += 4;
4700 while (p < oview + this->pltresolve_size)
4701 write_insn<big_endian>(p, nop), p += 4;
4702
4703 // Write lazy link call stubs.
4704 uint32_t indx = 0;
4705 while (p < oview + this->end_branch_table_)
4706 {
4707 if (this->targ_->abiversion() < 2)
4708 {
4709 if (indx < 0x8000)
4710 {
4711 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4712 }
4713 else
4714 {
4715 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4716 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4717 }
4718 }
4719 uint32_t branch_off = 8 - (p - oview);
4720 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4721 indx++;
4722 }
4723 }
4724
4725 Address plt_base = this->targ_->plt_section()->address();
4726 Address iplt_base = invalid_address;
4727 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4728 Address global_entry_base = this->address() + global_entry_off;
4729 typename Global_entry_stub_entries::const_iterator ge;
4730 for (ge = this->global_entry_stubs_.begin();
4731 ge != this->global_entry_stubs_.end();
4732 ++ge)
4733 {
4734 p = oview + global_entry_off + ge->second;
4735 Address plt_addr = ge->first->plt_offset();
4736 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4737 && ge->first->can_use_relative_reloc(false))
4738 {
4739 if (iplt_base == invalid_address)
4740 iplt_base = this->targ_->iplt_section()->address();
4741 plt_addr += iplt_base;
4742 }
4743 else
4744 plt_addr += plt_base;
4745 Address my_addr = global_entry_base + ge->second;
4746 Address off = plt_addr - my_addr;
4747
4748 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4749 gold_error(_("%s: linkage table error against `%s'"),
4750 ge->first->object()->name().c_str(),
4751 ge->first->demangled_name().c_str());
4752
4753 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4754 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4755 write_insn<big_endian>(p, mtctr_12), p += 4;
4756 write_insn<big_endian>(p, bctr);
4757 }
4758 }
4759 else
4760 {
4761 const Output_data_got_powerpc<size, big_endian>* got
4762 = this->targ_->got_section();
4763 // The address of _GLOBAL_OFFSET_TABLE_.
4764 Address g_o_t = got->address() + got->g_o_t();
4765
4766 // Write out pltresolve branch table.
4767 p = oview;
4768 unsigned int the_end = oview_size - this->pltresolve_size;
4769 unsigned char* end_p = oview + the_end;
4770 while (p < end_p - 8 * 4)
4771 write_insn<big_endian>(p, b + end_p - p), p += 4;
4772 while (p < end_p)
4773 write_insn<big_endian>(p, nop), p += 4;
4774
4775 // Write out pltresolve call stub.
4776 if (parameters->options().output_is_position_independent())
4777 {
4778 Address res0_off = 0;
4779 Address after_bcl_off = the_end + 12;
4780 Address bcl_res0 = after_bcl_off - res0_off;
4781
4782 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4783 write_insn<big_endian>(p + 4, mflr_0);
4784 write_insn<big_endian>(p + 8, bcl_20_31);
4785 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4786 write_insn<big_endian>(p + 16, mflr_12);
4787 write_insn<big_endian>(p + 20, mtlr_0);
4788 write_insn<big_endian>(p + 24, sub_11_11_12);
4789
4790 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4791
4792 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4793 if (ha(got_bcl) == ha(got_bcl + 4))
4794 {
4795 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4796 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4797 }
4798 else
4799 {
4800 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4801 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4802 }
4803 write_insn<big_endian>(p + 40, mtctr_0);
4804 write_insn<big_endian>(p + 44, add_0_11_11);
4805 write_insn<big_endian>(p + 48, add_11_0_11);
4806 write_insn<big_endian>(p + 52, bctr);
4807 write_insn<big_endian>(p + 56, nop);
4808 write_insn<big_endian>(p + 60, nop);
4809 }
4810 else
4811 {
4812 Address res0 = this->address();
4813
4814 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4815 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4816 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4817 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4818 else
4819 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4820 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4821 write_insn<big_endian>(p + 16, mtctr_0);
4822 write_insn<big_endian>(p + 20, add_0_11_11);
4823 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4824 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4825 else
4826 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4827 write_insn<big_endian>(p + 28, add_11_0_11);
4828 write_insn<big_endian>(p + 32, bctr);
4829 write_insn<big_endian>(p + 36, nop);
4830 write_insn<big_endian>(p + 40, nop);
4831 write_insn<big_endian>(p + 44, nop);
4832 write_insn<big_endian>(p + 48, nop);
4833 write_insn<big_endian>(p + 52, nop);
4834 write_insn<big_endian>(p + 56, nop);
4835 write_insn<big_endian>(p + 60, nop);
4836 }
4837 p += 64;
4838 }
4839
4840 of->write_output_view(off, oview_size, oview);
4841 }
4842
4843
4844 // A class to handle linker generated save/restore functions.
4845
4846 template<int size, bool big_endian>
4847 class Output_data_save_res : public Output_section_data_build
4848 {
4849 public:
4850 Output_data_save_res(Symbol_table* symtab);
4851
4852 const unsigned char*
4853 contents() const
4854 {
4855 return contents_;
4856 }
4857
4858 protected:
4859 // Write to a map file.
4860 void
4861 do_print_to_mapfile(Mapfile* mapfile) const
4862 { mapfile->print_output_data(this, _("** save/restore")); }
4863
4864 void
4865 do_write(Output_file*);
4866
4867 private:
4868 // The maximum size of save/restore contents.
4869 static const unsigned int savres_max = 218*4;
4870
4871 void
4872 savres_define(Symbol_table* symtab,
4873 const char *name,
4874 unsigned int lo, unsigned int hi,
4875 unsigned char* write_ent(unsigned char*, int),
4876 unsigned char* write_tail(unsigned char*, int));
4877
4878 unsigned char *contents_;
4879 };
4880
4881 template<bool big_endian>
4882 static unsigned char*
4883 savegpr0(unsigned char* p, int r)
4884 {
4885 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4886 write_insn<big_endian>(p, insn);
4887 return p + 4;
4888 }
4889
4890 template<bool big_endian>
4891 static unsigned char*
4892 savegpr0_tail(unsigned char* p, int r)
4893 {
4894 p = savegpr0<big_endian>(p, r);
4895 uint32_t insn = std_0_1 + 16;
4896 write_insn<big_endian>(p, insn);
4897 p = p + 4;
4898 write_insn<big_endian>(p, blr);
4899 return p + 4;
4900 }
4901
4902 template<bool big_endian>
4903 static unsigned char*
4904 restgpr0(unsigned char* p, int r)
4905 {
4906 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4907 write_insn<big_endian>(p, insn);
4908 return p + 4;
4909 }
4910
4911 template<bool big_endian>
4912 static unsigned char*
4913 restgpr0_tail(unsigned char* p, int r)
4914 {
4915 uint32_t insn = ld_0_1 + 16;
4916 write_insn<big_endian>(p, insn);
4917 p = p + 4;
4918 p = restgpr0<big_endian>(p, r);
4919 write_insn<big_endian>(p, mtlr_0);
4920 p = p + 4;
4921 if (r == 29)
4922 {
4923 p = restgpr0<big_endian>(p, 30);
4924 p = restgpr0<big_endian>(p, 31);
4925 }
4926 write_insn<big_endian>(p, blr);
4927 return p + 4;
4928 }
4929
4930 template<bool big_endian>
4931 static unsigned char*
4932 savegpr1(unsigned char* p, int r)
4933 {
4934 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4935 write_insn<big_endian>(p, insn);
4936 return p + 4;
4937 }
4938
4939 template<bool big_endian>
4940 static unsigned char*
4941 savegpr1_tail(unsigned char* p, int r)
4942 {
4943 p = savegpr1<big_endian>(p, r);
4944 write_insn<big_endian>(p, blr);
4945 return p + 4;
4946 }
4947
4948 template<bool big_endian>
4949 static unsigned char*
4950 restgpr1(unsigned char* p, int r)
4951 {
4952 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4953 write_insn<big_endian>(p, insn);
4954 return p + 4;
4955 }
4956
4957 template<bool big_endian>
4958 static unsigned char*
4959 restgpr1_tail(unsigned char* p, int r)
4960 {
4961 p = restgpr1<big_endian>(p, r);
4962 write_insn<big_endian>(p, blr);
4963 return p + 4;
4964 }
4965
4966 template<bool big_endian>
4967 static unsigned char*
4968 savefpr(unsigned char* p, int r)
4969 {
4970 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4971 write_insn<big_endian>(p, insn);
4972 return p + 4;
4973 }
4974
4975 template<bool big_endian>
4976 static unsigned char*
4977 savefpr0_tail(unsigned char* p, int r)
4978 {
4979 p = savefpr<big_endian>(p, r);
4980 write_insn<big_endian>(p, std_0_1 + 16);
4981 p = p + 4;
4982 write_insn<big_endian>(p, blr);
4983 return p + 4;
4984 }
4985
4986 template<bool big_endian>
4987 static unsigned char*
4988 restfpr(unsigned char* p, int r)
4989 {
4990 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4991 write_insn<big_endian>(p, insn);
4992 return p + 4;
4993 }
4994
4995 template<bool big_endian>
4996 static unsigned char*
4997 restfpr0_tail(unsigned char* p, int r)
4998 {
4999 write_insn<big_endian>(p, ld_0_1 + 16);
5000 p = p + 4;
5001 p = restfpr<big_endian>(p, r);
5002 write_insn<big_endian>(p, mtlr_0);
5003 p = p + 4;
5004 if (r == 29)
5005 {
5006 p = restfpr<big_endian>(p, 30);
5007 p = restfpr<big_endian>(p, 31);
5008 }
5009 write_insn<big_endian>(p, blr);
5010 return p + 4;
5011 }
5012
5013 template<bool big_endian>
5014 static unsigned char*
5015 savefpr1_tail(unsigned char* p, int r)
5016 {
5017 p = savefpr<big_endian>(p, r);
5018 write_insn<big_endian>(p, blr);
5019 return p + 4;
5020 }
5021
5022 template<bool big_endian>
5023 static unsigned char*
5024 restfpr1_tail(unsigned char* p, int r)
5025 {
5026 p = restfpr<big_endian>(p, r);
5027 write_insn<big_endian>(p, blr);
5028 return p + 4;
5029 }
5030
5031 template<bool big_endian>
5032 static unsigned char*
5033 savevr(unsigned char* p, int r)
5034 {
5035 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5036 write_insn<big_endian>(p, insn);
5037 p = p + 4;
5038 insn = stvx_0_12_0 + (r << 21);
5039 write_insn<big_endian>(p, insn);
5040 return p + 4;
5041 }
5042
5043 template<bool big_endian>
5044 static unsigned char*
5045 savevr_tail(unsigned char* p, int r)
5046 {
5047 p = savevr<big_endian>(p, r);
5048 write_insn<big_endian>(p, blr);
5049 return p + 4;
5050 }
5051
5052 template<bool big_endian>
5053 static unsigned char*
5054 restvr(unsigned char* p, int r)
5055 {
5056 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5057 write_insn<big_endian>(p, insn);
5058 p = p + 4;
5059 insn = lvx_0_12_0 + (r << 21);
5060 write_insn<big_endian>(p, insn);
5061 return p + 4;
5062 }
5063
5064 template<bool big_endian>
5065 static unsigned char*
5066 restvr_tail(unsigned char* p, int r)
5067 {
5068 p = restvr<big_endian>(p, r);
5069 write_insn<big_endian>(p, blr);
5070 return p + 4;
5071 }
5072
5073
5074 template<int size, bool big_endian>
5075 Output_data_save_res<size, big_endian>::Output_data_save_res(
5076 Symbol_table* symtab)
5077 : Output_section_data_build(4),
5078 contents_(NULL)
5079 {
5080 this->savres_define(symtab,
5081 "_savegpr0_", 14, 31,
5082 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5083 this->savres_define(symtab,
5084 "_restgpr0_", 14, 29,
5085 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5086 this->savres_define(symtab,
5087 "_restgpr0_", 30, 31,
5088 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5089 this->savres_define(symtab,
5090 "_savegpr1_", 14, 31,
5091 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5092 this->savres_define(symtab,
5093 "_restgpr1_", 14, 31,
5094 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5095 this->savres_define(symtab,
5096 "_savefpr_", 14, 31,
5097 savefpr<big_endian>, savefpr0_tail<big_endian>);
5098 this->savres_define(symtab,
5099 "_restfpr_", 14, 29,
5100 restfpr<big_endian>, restfpr0_tail<big_endian>);
5101 this->savres_define(symtab,
5102 "_restfpr_", 30, 31,
5103 restfpr<big_endian>, restfpr0_tail<big_endian>);
5104 this->savres_define(symtab,
5105 "._savef", 14, 31,
5106 savefpr<big_endian>, savefpr1_tail<big_endian>);
5107 this->savres_define(symtab,
5108 "._restf", 14, 31,
5109 restfpr<big_endian>, restfpr1_tail<big_endian>);
5110 this->savres_define(symtab,
5111 "_savevr_", 20, 31,
5112 savevr<big_endian>, savevr_tail<big_endian>);
5113 this->savres_define(symtab,
5114 "_restvr_", 20, 31,
5115 restvr<big_endian>, restvr_tail<big_endian>);
5116 }
5117
5118 template<int size, bool big_endian>
5119 void
5120 Output_data_save_res<size, big_endian>::savres_define(
5121 Symbol_table* symtab,
5122 const char *name,
5123 unsigned int lo, unsigned int hi,
5124 unsigned char* write_ent(unsigned char*, int),
5125 unsigned char* write_tail(unsigned char*, int))
5126 {
5127 size_t len = strlen(name);
5128 bool writing = false;
5129 char sym[16];
5130
5131 memcpy(sym, name, len);
5132 sym[len + 2] = 0;
5133
5134 for (unsigned int i = lo; i <= hi; i++)
5135 {
5136 sym[len + 0] = i / 10 + '0';
5137 sym[len + 1] = i % 10 + '0';
5138 Symbol* gsym = symtab->lookup(sym);
5139 bool refd = gsym != NULL && gsym->is_undefined();
5140 writing = writing || refd;
5141 if (writing)
5142 {
5143 if (this->contents_ == NULL)
5144 this->contents_ = new unsigned char[this->savres_max];
5145
5146 section_size_type value = this->current_data_size();
5147 unsigned char* p = this->contents_ + value;
5148 if (i != hi)
5149 p = write_ent(p, i);
5150 else
5151 p = write_tail(p, i);
5152 section_size_type cur_size = p - this->contents_;
5153 this->set_current_data_size(cur_size);
5154 if (refd)
5155 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5156 this, value, cur_size - value,
5157 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5158 elfcpp::STV_HIDDEN, 0, false, false);
5159 }
5160 }
5161 }
5162
5163 // Write out save/restore.
5164
5165 template<int size, bool big_endian>
5166 void
5167 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5168 {
5169 const section_size_type off = this->offset();
5170 const section_size_type oview_size =
5171 convert_to_section_size_type(this->data_size());
5172 unsigned char* const oview = of->get_output_view(off, oview_size);
5173 memcpy(oview, this->contents_, oview_size);
5174 of->write_output_view(off, oview_size, oview);
5175 }
5176
5177
5178 // Create the glink section.
5179
5180 template<int size, bool big_endian>
5181 void
5182 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5183 {
5184 if (this->glink_ == NULL)
5185 {
5186 this->glink_ = new Output_data_glink<size, big_endian>(this);
5187 this->glink_->add_eh_frame(layout);
5188 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5189 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5190 this->glink_, ORDER_TEXT, false);
5191 }
5192 }
5193
5194 // Create a PLT entry for a global symbol.
5195
5196 template<int size, bool big_endian>
5197 void
5198 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5199 Layout* layout,
5200 Symbol* gsym)
5201 {
5202 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5203 && gsym->can_use_relative_reloc(false))
5204 {
5205 if (this->iplt_ == NULL)
5206 this->make_iplt_section(symtab, layout);
5207 this->iplt_->add_ifunc_entry(gsym);
5208 }
5209 else
5210 {
5211 if (this->plt_ == NULL)
5212 this->make_plt_section(symtab, layout);
5213 this->plt_->add_entry(gsym);
5214 }
5215 }
5216
5217 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5218
5219 template<int size, bool big_endian>
5220 void
5221 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5222 Symbol_table* symtab,
5223 Layout* layout,
5224 Sized_relobj_file<size, big_endian>* relobj,
5225 unsigned int r_sym)
5226 {
5227 if (this->iplt_ == NULL)
5228 this->make_iplt_section(symtab, layout);
5229 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5230 }
5231
5232 // Return the number of entries in the PLT.
5233
5234 template<int size, bool big_endian>
5235 unsigned int
5236 Target_powerpc<size, big_endian>::plt_entry_count() const
5237 {
5238 if (this->plt_ == NULL)
5239 return 0;
5240 return this->plt_->entry_count();
5241 }
5242
5243 // Create a GOT entry for local dynamic __tls_get_addr calls.
5244
5245 template<int size, bool big_endian>
5246 unsigned int
5247 Target_powerpc<size, big_endian>::tlsld_got_offset(
5248 Symbol_table* symtab,
5249 Layout* layout,
5250 Sized_relobj_file<size, big_endian>* object)
5251 {
5252 if (this->tlsld_got_offset_ == -1U)
5253 {
5254 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5255 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5256 Output_data_got_powerpc<size, big_endian>* got
5257 = this->got_section(symtab, layout);
5258 unsigned int got_offset = got->add_constant_pair(0, 0);
5259 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5260 got_offset, 0);
5261 this->tlsld_got_offset_ = got_offset;
5262 }
5263 return this->tlsld_got_offset_;
5264 }
5265
5266 // Get the Reference_flags for a particular relocation.
5267
5268 template<int size, bool big_endian>
5269 int
5270 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5271 unsigned int r_type,
5272 const Target_powerpc* target)
5273 {
5274 int ref = 0;
5275
5276 switch (r_type)
5277 {
5278 case elfcpp::R_POWERPC_NONE:
5279 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5280 case elfcpp::R_POWERPC_GNU_VTENTRY:
5281 case elfcpp::R_PPC64_TOC:
5282 // No symbol reference.
5283 break;
5284
5285 case elfcpp::R_PPC64_ADDR64:
5286 case elfcpp::R_PPC64_UADDR64:
5287 case elfcpp::R_POWERPC_ADDR32:
5288 case elfcpp::R_POWERPC_UADDR32:
5289 case elfcpp::R_POWERPC_ADDR16:
5290 case elfcpp::R_POWERPC_UADDR16:
5291 case elfcpp::R_POWERPC_ADDR16_LO:
5292 case elfcpp::R_POWERPC_ADDR16_HI:
5293 case elfcpp::R_POWERPC_ADDR16_HA:
5294 ref = Symbol::ABSOLUTE_REF;
5295 break;
5296
5297 case elfcpp::R_POWERPC_ADDR24:
5298 case elfcpp::R_POWERPC_ADDR14:
5299 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5300 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5301 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5302 break;
5303
5304 case elfcpp::R_PPC64_REL64:
5305 case elfcpp::R_POWERPC_REL32:
5306 case elfcpp::R_PPC_LOCAL24PC:
5307 case elfcpp::R_POWERPC_REL16:
5308 case elfcpp::R_POWERPC_REL16_LO:
5309 case elfcpp::R_POWERPC_REL16_HI:
5310 case elfcpp::R_POWERPC_REL16_HA:
5311 ref = Symbol::RELATIVE_REF;
5312 break;
5313
5314 case elfcpp::R_POWERPC_REL24:
5315 case elfcpp::R_PPC_PLTREL24:
5316 case elfcpp::R_POWERPC_REL14:
5317 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5318 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5319 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5320 break;
5321
5322 case elfcpp::R_POWERPC_GOT16:
5323 case elfcpp::R_POWERPC_GOT16_LO:
5324 case elfcpp::R_POWERPC_GOT16_HI:
5325 case elfcpp::R_POWERPC_GOT16_HA:
5326 case elfcpp::R_PPC64_GOT16_DS:
5327 case elfcpp::R_PPC64_GOT16_LO_DS:
5328 case elfcpp::R_PPC64_TOC16:
5329 case elfcpp::R_PPC64_TOC16_LO:
5330 case elfcpp::R_PPC64_TOC16_HI:
5331 case elfcpp::R_PPC64_TOC16_HA:
5332 case elfcpp::R_PPC64_TOC16_DS:
5333 case elfcpp::R_PPC64_TOC16_LO_DS:
5334 ref = Symbol::RELATIVE_REF;
5335 break;
5336
5337 case elfcpp::R_POWERPC_GOT_TPREL16:
5338 case elfcpp::R_POWERPC_TLS:
5339 ref = Symbol::TLS_REF;
5340 break;
5341
5342 case elfcpp::R_POWERPC_COPY:
5343 case elfcpp::R_POWERPC_GLOB_DAT:
5344 case elfcpp::R_POWERPC_JMP_SLOT:
5345 case elfcpp::R_POWERPC_RELATIVE:
5346 case elfcpp::R_POWERPC_DTPMOD:
5347 default:
5348 // Not expected. We will give an error later.
5349 break;
5350 }
5351
5352 if (size == 64 && target->abiversion() < 2)
5353 ref |= Symbol::FUNC_DESC_ABI;
5354 return ref;
5355 }
5356
5357 // Report an unsupported relocation against a local symbol.
5358
5359 template<int size, bool big_endian>
5360 void
5361 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5362 Sized_relobj_file<size, big_endian>* object,
5363 unsigned int r_type)
5364 {
5365 gold_error(_("%s: unsupported reloc %u against local symbol"),
5366 object->name().c_str(), r_type);
5367 }
5368
5369 // We are about to emit a dynamic relocation of type R_TYPE. If the
5370 // dynamic linker does not support it, issue an error.
5371
5372 template<int size, bool big_endian>
5373 void
5374 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5375 unsigned int r_type)
5376 {
5377 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5378
5379 // These are the relocation types supported by glibc for both 32-bit
5380 // and 64-bit powerpc.
5381 switch (r_type)
5382 {
5383 case elfcpp::R_POWERPC_NONE:
5384 case elfcpp::R_POWERPC_RELATIVE:
5385 case elfcpp::R_POWERPC_GLOB_DAT:
5386 case elfcpp::R_POWERPC_DTPMOD:
5387 case elfcpp::R_POWERPC_DTPREL:
5388 case elfcpp::R_POWERPC_TPREL:
5389 case elfcpp::R_POWERPC_JMP_SLOT:
5390 case elfcpp::R_POWERPC_COPY:
5391 case elfcpp::R_POWERPC_IRELATIVE:
5392 case elfcpp::R_POWERPC_ADDR32:
5393 case elfcpp::R_POWERPC_UADDR32:
5394 case elfcpp::R_POWERPC_ADDR24:
5395 case elfcpp::R_POWERPC_ADDR16:
5396 case elfcpp::R_POWERPC_UADDR16:
5397 case elfcpp::R_POWERPC_ADDR16_LO:
5398 case elfcpp::R_POWERPC_ADDR16_HI:
5399 case elfcpp::R_POWERPC_ADDR16_HA:
5400 case elfcpp::R_POWERPC_ADDR14:
5401 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5402 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5403 case elfcpp::R_POWERPC_REL32:
5404 case elfcpp::R_POWERPC_REL24:
5405 case elfcpp::R_POWERPC_TPREL16:
5406 case elfcpp::R_POWERPC_TPREL16_LO:
5407 case elfcpp::R_POWERPC_TPREL16_HI:
5408 case elfcpp::R_POWERPC_TPREL16_HA:
5409 return;
5410
5411 default:
5412 break;
5413 }
5414
5415 if (size == 64)
5416 {
5417 switch (r_type)
5418 {
5419 // These are the relocation types supported only on 64-bit.
5420 case elfcpp::R_PPC64_ADDR64:
5421 case elfcpp::R_PPC64_UADDR64:
5422 case elfcpp::R_PPC64_JMP_IREL:
5423 case elfcpp::R_PPC64_ADDR16_DS:
5424 case elfcpp::R_PPC64_ADDR16_LO_DS:
5425 case elfcpp::R_PPC64_ADDR16_HIGH:
5426 case elfcpp::R_PPC64_ADDR16_HIGHA:
5427 case elfcpp::R_PPC64_ADDR16_HIGHER:
5428 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5429 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5430 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5431 case elfcpp::R_PPC64_REL64:
5432 case elfcpp::R_POWERPC_ADDR30:
5433 case elfcpp::R_PPC64_TPREL16_DS:
5434 case elfcpp::R_PPC64_TPREL16_LO_DS:
5435 case elfcpp::R_PPC64_TPREL16_HIGH:
5436 case elfcpp::R_PPC64_TPREL16_HIGHA:
5437 case elfcpp::R_PPC64_TPREL16_HIGHER:
5438 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5439 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5440 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5441 return;
5442
5443 default:
5444 break;
5445 }
5446 }
5447 else
5448 {
5449 switch (r_type)
5450 {
5451 // These are the relocation types supported only on 32-bit.
5452 // ??? glibc ld.so doesn't need to support these.
5453 case elfcpp::R_POWERPC_DTPREL16:
5454 case elfcpp::R_POWERPC_DTPREL16_LO:
5455 case elfcpp::R_POWERPC_DTPREL16_HI:
5456 case elfcpp::R_POWERPC_DTPREL16_HA:
5457 return;
5458
5459 default:
5460 break;
5461 }
5462 }
5463
5464 // This prevents us from issuing more than one error per reloc
5465 // section. But we can still wind up issuing more than one
5466 // error per object file.
5467 if (this->issued_non_pic_error_)
5468 return;
5469 gold_assert(parameters->options().output_is_position_independent());
5470 object->error(_("requires unsupported dynamic reloc; "
5471 "recompile with -fPIC"));
5472 this->issued_non_pic_error_ = true;
5473 return;
5474 }
5475
5476 // Return whether we need to make a PLT entry for a relocation of the
5477 // given type against a STT_GNU_IFUNC symbol.
5478
5479 template<int size, bool big_endian>
5480 bool
5481 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5482 Target_powerpc<size, big_endian>* target,
5483 Sized_relobj_file<size, big_endian>* object,
5484 unsigned int r_type,
5485 bool report_err)
5486 {
5487 // In non-pic code any reference will resolve to the plt call stub
5488 // for the ifunc symbol.
5489 if ((size == 32 || target->abiversion() >= 2)
5490 && !parameters->options().output_is_position_independent())
5491 return true;
5492
5493 switch (r_type)
5494 {
5495 // Word size refs from data sections are OK, but don't need a PLT entry.
5496 case elfcpp::R_POWERPC_ADDR32:
5497 case elfcpp::R_POWERPC_UADDR32:
5498 if (size == 32)
5499 return false;
5500 break;
5501
5502 case elfcpp::R_PPC64_ADDR64:
5503 case elfcpp::R_PPC64_UADDR64:
5504 if (size == 64)
5505 return false;
5506 break;
5507
5508 // GOT refs are good, but also don't need a PLT entry.
5509 case elfcpp::R_POWERPC_GOT16:
5510 case elfcpp::R_POWERPC_GOT16_LO:
5511 case elfcpp::R_POWERPC_GOT16_HI:
5512 case elfcpp::R_POWERPC_GOT16_HA:
5513 case elfcpp::R_PPC64_GOT16_DS:
5514 case elfcpp::R_PPC64_GOT16_LO_DS:
5515 return false;
5516
5517 // Function calls are good, and these do need a PLT entry.
5518 case elfcpp::R_POWERPC_ADDR24:
5519 case elfcpp::R_POWERPC_ADDR14:
5520 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5521 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5522 case elfcpp::R_POWERPC_REL24:
5523 case elfcpp::R_PPC_PLTREL24:
5524 case elfcpp::R_POWERPC_REL14:
5525 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5526 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5527 return true;
5528
5529 default:
5530 break;
5531 }
5532
5533 // Anything else is a problem.
5534 // If we are building a static executable, the libc startup function
5535 // responsible for applying indirect function relocations is going
5536 // to complain about the reloc type.
5537 // If we are building a dynamic executable, we will have a text
5538 // relocation. The dynamic loader will set the text segment
5539 // writable and non-executable to apply text relocations. So we'll
5540 // segfault when trying to run the indirection function to resolve
5541 // the reloc.
5542 if (report_err)
5543 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5544 object->name().c_str(), r_type);
5545 return false;
5546 }
5547
5548 // Scan a relocation for a local symbol.
5549
5550 template<int size, bool big_endian>
5551 inline void
5552 Target_powerpc<size, big_endian>::Scan::local(
5553 Symbol_table* symtab,
5554 Layout* layout,
5555 Target_powerpc<size, big_endian>* target,
5556 Sized_relobj_file<size, big_endian>* object,
5557 unsigned int data_shndx,
5558 Output_section* output_section,
5559 const elfcpp::Rela<size, big_endian>& reloc,
5560 unsigned int r_type,
5561 const elfcpp::Sym<size, big_endian>& lsym,
5562 bool is_discarded)
5563 {
5564 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5565
5566 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5567 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5568 {
5569 this->expect_tls_get_addr_call();
5570 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5571 if (tls_type != tls::TLSOPT_NONE)
5572 this->skip_next_tls_get_addr_call();
5573 }
5574 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5575 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5576 {
5577 this->expect_tls_get_addr_call();
5578 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5579 if (tls_type != tls::TLSOPT_NONE)
5580 this->skip_next_tls_get_addr_call();
5581 }
5582
5583 Powerpc_relobj<size, big_endian>* ppc_object
5584 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5585
5586 if (is_discarded)
5587 {
5588 if (size == 64
5589 && data_shndx == ppc_object->opd_shndx()
5590 && r_type == elfcpp::R_PPC64_ADDR64)
5591 ppc_object->set_opd_discard(reloc.get_r_offset());
5592 return;
5593 }
5594
5595 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5596 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5597 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5598 {
5599 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5600 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5601 r_type, r_sym, reloc.get_r_addend());
5602 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5603 }
5604
5605 switch (r_type)
5606 {
5607 case elfcpp::R_POWERPC_NONE:
5608 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5609 case elfcpp::R_POWERPC_GNU_VTENTRY:
5610 case elfcpp::R_PPC64_TOCSAVE:
5611 case elfcpp::R_POWERPC_TLS:
5612 case elfcpp::R_PPC64_ENTRY:
5613 break;
5614
5615 case elfcpp::R_PPC64_TOC:
5616 {
5617 Output_data_got_powerpc<size, big_endian>* got
5618 = target->got_section(symtab, layout);
5619 if (parameters->options().output_is_position_independent())
5620 {
5621 Address off = reloc.get_r_offset();
5622 if (size == 64
5623 && target->abiversion() < 2
5624 && data_shndx == ppc_object->opd_shndx()
5625 && ppc_object->get_opd_discard(off - 8))
5626 break;
5627
5628 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5629 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5630 rela_dyn->add_output_section_relative(got->output_section(),
5631 elfcpp::R_POWERPC_RELATIVE,
5632 output_section,
5633 object, data_shndx, off,
5634 symobj->toc_base_offset());
5635 }
5636 }
5637 break;
5638
5639 case elfcpp::R_PPC64_ADDR64:
5640 case elfcpp::R_PPC64_UADDR64:
5641 case elfcpp::R_POWERPC_ADDR32:
5642 case elfcpp::R_POWERPC_UADDR32:
5643 case elfcpp::R_POWERPC_ADDR24:
5644 case elfcpp::R_POWERPC_ADDR16:
5645 case elfcpp::R_POWERPC_ADDR16_LO:
5646 case elfcpp::R_POWERPC_ADDR16_HI:
5647 case elfcpp::R_POWERPC_ADDR16_HA:
5648 case elfcpp::R_POWERPC_UADDR16:
5649 case elfcpp::R_PPC64_ADDR16_HIGH:
5650 case elfcpp::R_PPC64_ADDR16_HIGHA:
5651 case elfcpp::R_PPC64_ADDR16_HIGHER:
5652 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5653 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5654 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5655 case elfcpp::R_PPC64_ADDR16_DS:
5656 case elfcpp::R_PPC64_ADDR16_LO_DS:
5657 case elfcpp::R_POWERPC_ADDR14:
5658 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5659 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5660 // If building a shared library (or a position-independent
5661 // executable), we need to create a dynamic relocation for
5662 // this location.
5663 if (parameters->options().output_is_position_independent()
5664 || (size == 64 && is_ifunc && target->abiversion() < 2))
5665 {
5666 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5667 is_ifunc);
5668 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5669 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5670 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5671 {
5672 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5673 : elfcpp::R_POWERPC_RELATIVE);
5674 rela_dyn->add_local_relative(object, r_sym, dynrel,
5675 output_section, data_shndx,
5676 reloc.get_r_offset(),
5677 reloc.get_r_addend(), false);
5678 }
5679 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5680 {
5681 check_non_pic(object, r_type);
5682 rela_dyn->add_local(object, r_sym, r_type, output_section,
5683 data_shndx, reloc.get_r_offset(),
5684 reloc.get_r_addend());
5685 }
5686 else
5687 {
5688 gold_assert(lsym.get_st_value() == 0);
5689 unsigned int shndx = lsym.get_st_shndx();
5690 bool is_ordinary;
5691 shndx = object->adjust_sym_shndx(r_sym, shndx,
5692 &is_ordinary);
5693 if (!is_ordinary)
5694 object->error(_("section symbol %u has bad shndx %u"),
5695 r_sym, shndx);
5696 else
5697 rela_dyn->add_local_section(object, shndx, r_type,
5698 output_section, data_shndx,
5699 reloc.get_r_offset());
5700 }
5701 }
5702 break;
5703
5704 case elfcpp::R_POWERPC_REL24:
5705 case elfcpp::R_PPC_PLTREL24:
5706 case elfcpp::R_PPC_LOCAL24PC:
5707 case elfcpp::R_POWERPC_REL14:
5708 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5709 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5710 if (!is_ifunc)
5711 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5712 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5713 reloc.get_r_addend());
5714 break;
5715
5716 case elfcpp::R_PPC64_REL64:
5717 case elfcpp::R_POWERPC_REL32:
5718 case elfcpp::R_POWERPC_REL16:
5719 case elfcpp::R_POWERPC_REL16_LO:
5720 case elfcpp::R_POWERPC_REL16_HI:
5721 case elfcpp::R_POWERPC_REL16_HA:
5722 case elfcpp::R_POWERPC_REL16DX_HA:
5723 case elfcpp::R_POWERPC_SECTOFF:
5724 case elfcpp::R_POWERPC_SECTOFF_LO:
5725 case elfcpp::R_POWERPC_SECTOFF_HI:
5726 case elfcpp::R_POWERPC_SECTOFF_HA:
5727 case elfcpp::R_PPC64_SECTOFF_DS:
5728 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5729 case elfcpp::R_POWERPC_TPREL16:
5730 case elfcpp::R_POWERPC_TPREL16_LO:
5731 case elfcpp::R_POWERPC_TPREL16_HI:
5732 case elfcpp::R_POWERPC_TPREL16_HA:
5733 case elfcpp::R_PPC64_TPREL16_DS:
5734 case elfcpp::R_PPC64_TPREL16_LO_DS:
5735 case elfcpp::R_PPC64_TPREL16_HIGH:
5736 case elfcpp::R_PPC64_TPREL16_HIGHA:
5737 case elfcpp::R_PPC64_TPREL16_HIGHER:
5738 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5739 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5740 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5741 case elfcpp::R_POWERPC_DTPREL16:
5742 case elfcpp::R_POWERPC_DTPREL16_LO:
5743 case elfcpp::R_POWERPC_DTPREL16_HI:
5744 case elfcpp::R_POWERPC_DTPREL16_HA:
5745 case elfcpp::R_PPC64_DTPREL16_DS:
5746 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5747 case elfcpp::R_PPC64_DTPREL16_HIGH:
5748 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5749 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5750 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5751 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5752 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5753 case elfcpp::R_PPC64_TLSGD:
5754 case elfcpp::R_PPC64_TLSLD:
5755 case elfcpp::R_PPC64_ADDR64_LOCAL:
5756 break;
5757
5758 case elfcpp::R_POWERPC_GOT16:
5759 case elfcpp::R_POWERPC_GOT16_LO:
5760 case elfcpp::R_POWERPC_GOT16_HI:
5761 case elfcpp::R_POWERPC_GOT16_HA:
5762 case elfcpp::R_PPC64_GOT16_DS:
5763 case elfcpp::R_PPC64_GOT16_LO_DS:
5764 {
5765 // The symbol requires a GOT entry.
5766 Output_data_got_powerpc<size, big_endian>* got
5767 = target->got_section(symtab, layout);
5768 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5769
5770 if (!parameters->options().output_is_position_independent())
5771 {
5772 if (is_ifunc
5773 && (size == 32 || target->abiversion() >= 2))
5774 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5775 else
5776 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5777 }
5778 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5779 {
5780 // If we are generating a shared object or a pie, this
5781 // symbol's GOT entry will be set by a dynamic relocation.
5782 unsigned int off;
5783 off = got->add_constant(0);
5784 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5785
5786 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5787 is_ifunc);
5788 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5789 : elfcpp::R_POWERPC_RELATIVE);
5790 rela_dyn->add_local_relative(object, r_sym, dynrel,
5791 got, off, 0, false);
5792 }
5793 }
5794 break;
5795
5796 case elfcpp::R_PPC64_TOC16:
5797 case elfcpp::R_PPC64_TOC16_LO:
5798 case elfcpp::R_PPC64_TOC16_HI:
5799 case elfcpp::R_PPC64_TOC16_HA:
5800 case elfcpp::R_PPC64_TOC16_DS:
5801 case elfcpp::R_PPC64_TOC16_LO_DS:
5802 // We need a GOT section.
5803 target->got_section(symtab, layout);
5804 break;
5805
5806 case elfcpp::R_POWERPC_GOT_TLSGD16:
5807 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5808 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5809 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5810 {
5811 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5812 if (tls_type == tls::TLSOPT_NONE)
5813 {
5814 Output_data_got_powerpc<size, big_endian>* got
5815 = target->got_section(symtab, layout);
5816 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5817 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5818 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5819 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5820 }
5821 else if (tls_type == tls::TLSOPT_TO_LE)
5822 {
5823 // no GOT relocs needed for Local Exec.
5824 }
5825 else
5826 gold_unreachable();
5827 }
5828 break;
5829
5830 case elfcpp::R_POWERPC_GOT_TLSLD16:
5831 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5832 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5833 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5834 {
5835 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5836 if (tls_type == tls::TLSOPT_NONE)
5837 target->tlsld_got_offset(symtab, layout, object);
5838 else if (tls_type == tls::TLSOPT_TO_LE)
5839 {
5840 // no GOT relocs needed for Local Exec.
5841 if (parameters->options().emit_relocs())
5842 {
5843 Output_section* os = layout->tls_segment()->first_section();
5844 gold_assert(os != NULL);
5845 os->set_needs_symtab_index();
5846 }
5847 }
5848 else
5849 gold_unreachable();
5850 }
5851 break;
5852
5853 case elfcpp::R_POWERPC_GOT_DTPREL16:
5854 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5855 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5856 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5857 {
5858 Output_data_got_powerpc<size, big_endian>* got
5859 = target->got_section(symtab, layout);
5860 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5861 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5862 }
5863 break;
5864
5865 case elfcpp::R_POWERPC_GOT_TPREL16:
5866 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5867 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5868 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5869 {
5870 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5871 if (tls_type == tls::TLSOPT_NONE)
5872 {
5873 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5874 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5875 {
5876 Output_data_got_powerpc<size, big_endian>* got
5877 = target->got_section(symtab, layout);
5878 unsigned int off = got->add_constant(0);
5879 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5880
5881 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5882 rela_dyn->add_symbolless_local_addend(object, r_sym,
5883 elfcpp::R_POWERPC_TPREL,
5884 got, off, 0);
5885 }
5886 }
5887 else if (tls_type == tls::TLSOPT_TO_LE)
5888 {
5889 // no GOT relocs needed for Local Exec.
5890 }
5891 else
5892 gold_unreachable();
5893 }
5894 break;
5895
5896 default:
5897 unsupported_reloc_local(object, r_type);
5898 break;
5899 }
5900
5901 switch (r_type)
5902 {
5903 case elfcpp::R_POWERPC_GOT_TLSLD16:
5904 case elfcpp::R_POWERPC_GOT_TLSGD16:
5905 case elfcpp::R_POWERPC_GOT_TPREL16:
5906 case elfcpp::R_POWERPC_GOT_DTPREL16:
5907 case elfcpp::R_POWERPC_GOT16:
5908 case elfcpp::R_PPC64_GOT16_DS:
5909 case elfcpp::R_PPC64_TOC16:
5910 case elfcpp::R_PPC64_TOC16_DS:
5911 ppc_object->set_has_small_toc_reloc();
5912 default:
5913 break;
5914 }
5915 }
5916
5917 // Report an unsupported relocation against a global symbol.
5918
5919 template<int size, bool big_endian>
5920 void
5921 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5922 Sized_relobj_file<size, big_endian>* object,
5923 unsigned int r_type,
5924 Symbol* gsym)
5925 {
5926 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5927 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5928 }
5929
5930 // Scan a relocation for a global symbol.
5931
5932 template<int size, bool big_endian>
5933 inline void
5934 Target_powerpc<size, big_endian>::Scan::global(
5935 Symbol_table* symtab,
5936 Layout* layout,
5937 Target_powerpc<size, big_endian>* target,
5938 Sized_relobj_file<size, big_endian>* object,
5939 unsigned int data_shndx,
5940 Output_section* output_section,
5941 const elfcpp::Rela<size, big_endian>& reloc,
5942 unsigned int r_type,
5943 Symbol* gsym)
5944 {
5945 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5946 return;
5947
5948 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5949 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5950 {
5951 this->expect_tls_get_addr_call();
5952 const bool final = gsym->final_value_is_known();
5953 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5954 if (tls_type != tls::TLSOPT_NONE)
5955 this->skip_next_tls_get_addr_call();
5956 }
5957 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5958 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5959 {
5960 this->expect_tls_get_addr_call();
5961 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5962 if (tls_type != tls::TLSOPT_NONE)
5963 this->skip_next_tls_get_addr_call();
5964 }
5965
5966 Powerpc_relobj<size, big_endian>* ppc_object
5967 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5968
5969 // A STT_GNU_IFUNC symbol may require a PLT entry.
5970 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5971 bool pushed_ifunc = false;
5972 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5973 {
5974 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5975 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5976 reloc.get_r_addend());
5977 target->make_plt_entry(symtab, layout, gsym);
5978 pushed_ifunc = true;
5979 }
5980
5981 switch (r_type)
5982 {
5983 case elfcpp::R_POWERPC_NONE:
5984 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5985 case elfcpp::R_POWERPC_GNU_VTENTRY:
5986 case elfcpp::R_PPC_LOCAL24PC:
5987 case elfcpp::R_POWERPC_TLS:
5988 case elfcpp::R_PPC64_ENTRY:
5989 break;
5990
5991 case elfcpp::R_PPC64_TOC:
5992 {
5993 Output_data_got_powerpc<size, big_endian>* got
5994 = target->got_section(symtab, layout);
5995 if (parameters->options().output_is_position_independent())
5996 {
5997 Address off = reloc.get_r_offset();
5998 if (size == 64
5999 && data_shndx == ppc_object->opd_shndx()
6000 && ppc_object->get_opd_discard(off - 8))
6001 break;
6002
6003 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6004 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6005 if (data_shndx != ppc_object->opd_shndx())
6006 symobj = static_cast
6007 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6008 rela_dyn->add_output_section_relative(got->output_section(),
6009 elfcpp::R_POWERPC_RELATIVE,
6010 output_section,
6011 object, data_shndx, off,
6012 symobj->toc_base_offset());
6013 }
6014 }
6015 break;
6016
6017 case elfcpp::R_PPC64_ADDR64:
6018 if (size == 64
6019 && target->abiversion() < 2
6020 && data_shndx == ppc_object->opd_shndx()
6021 && (gsym->is_defined_in_discarded_section()
6022 || gsym->object() != object))
6023 {
6024 ppc_object->set_opd_discard(reloc.get_r_offset());
6025 break;
6026 }
6027 // Fall thru
6028 case elfcpp::R_PPC64_UADDR64:
6029 case elfcpp::R_POWERPC_ADDR32:
6030 case elfcpp::R_POWERPC_UADDR32:
6031 case elfcpp::R_POWERPC_ADDR24:
6032 case elfcpp::R_POWERPC_ADDR16:
6033 case elfcpp::R_POWERPC_ADDR16_LO:
6034 case elfcpp::R_POWERPC_ADDR16_HI:
6035 case elfcpp::R_POWERPC_ADDR16_HA:
6036 case elfcpp::R_POWERPC_UADDR16:
6037 case elfcpp::R_PPC64_ADDR16_HIGH:
6038 case elfcpp::R_PPC64_ADDR16_HIGHA:
6039 case elfcpp::R_PPC64_ADDR16_HIGHER:
6040 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6041 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6042 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6043 case elfcpp::R_PPC64_ADDR16_DS:
6044 case elfcpp::R_PPC64_ADDR16_LO_DS:
6045 case elfcpp::R_POWERPC_ADDR14:
6046 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6047 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6048 {
6049 // Make a PLT entry if necessary.
6050 if (gsym->needs_plt_entry())
6051 {
6052 // Since this is not a PC-relative relocation, we may be
6053 // taking the address of a function. In that case we need to
6054 // set the entry in the dynamic symbol table to the address of
6055 // the PLT call stub.
6056 bool need_ifunc_plt = false;
6057 if ((size == 32 || target->abiversion() >= 2)
6058 && gsym->is_from_dynobj()
6059 && !parameters->options().output_is_position_independent())
6060 {
6061 gsym->set_needs_dynsym_value();
6062 need_ifunc_plt = true;
6063 }
6064 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6065 {
6066 target->push_branch(ppc_object, data_shndx,
6067 reloc.get_r_offset(), r_type,
6068 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6069 reloc.get_r_addend());
6070 target->make_plt_entry(symtab, layout, gsym);
6071 }
6072 }
6073 // Make a dynamic relocation if necessary.
6074 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6075 || (size == 64 && is_ifunc && target->abiversion() < 2))
6076 {
6077 if (!parameters->options().output_is_position_independent()
6078 && gsym->may_need_copy_reloc())
6079 {
6080 target->copy_reloc(symtab, layout, object,
6081 data_shndx, output_section, gsym, reloc);
6082 }
6083 else if ((((size == 32
6084 && r_type == elfcpp::R_POWERPC_ADDR32)
6085 || (size == 64
6086 && r_type == elfcpp::R_PPC64_ADDR64
6087 && target->abiversion() >= 2))
6088 && gsym->can_use_relative_reloc(false)
6089 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6090 && parameters->options().shared()))
6091 || (size == 64
6092 && r_type == elfcpp::R_PPC64_ADDR64
6093 && target->abiversion() < 2
6094 && (gsym->can_use_relative_reloc(false)
6095 || data_shndx == ppc_object->opd_shndx())))
6096 {
6097 Reloc_section* rela_dyn
6098 = target->rela_dyn_section(symtab, layout, is_ifunc);
6099 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6100 : elfcpp::R_POWERPC_RELATIVE);
6101 rela_dyn->add_symbolless_global_addend(
6102 gsym, dynrel, output_section, object, data_shndx,
6103 reloc.get_r_offset(), reloc.get_r_addend());
6104 }
6105 else
6106 {
6107 Reloc_section* rela_dyn
6108 = target->rela_dyn_section(symtab, layout, is_ifunc);
6109 check_non_pic(object, r_type);
6110 rela_dyn->add_global(gsym, r_type, output_section,
6111 object, data_shndx,
6112 reloc.get_r_offset(),
6113 reloc.get_r_addend());
6114 }
6115 }
6116 }
6117 break;
6118
6119 case elfcpp::R_PPC_PLTREL24:
6120 case elfcpp::R_POWERPC_REL24:
6121 if (!is_ifunc)
6122 {
6123 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6124 r_type,
6125 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6126 reloc.get_r_addend());
6127 if (gsym->needs_plt_entry()
6128 || (!gsym->final_value_is_known()
6129 && (gsym->is_undefined()
6130 || gsym->is_from_dynobj()
6131 || gsym->is_preemptible())))
6132 target->make_plt_entry(symtab, layout, gsym);
6133 }
6134 // Fall thru
6135
6136 case elfcpp::R_PPC64_REL64:
6137 case elfcpp::R_POWERPC_REL32:
6138 // Make a dynamic relocation if necessary.
6139 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6140 {
6141 if (!parameters->options().output_is_position_independent()
6142 && gsym->may_need_copy_reloc())
6143 {
6144 target->copy_reloc(symtab, layout, object,
6145 data_shndx, output_section, gsym,
6146 reloc);
6147 }
6148 else
6149 {
6150 Reloc_section* rela_dyn
6151 = target->rela_dyn_section(symtab, layout, is_ifunc);
6152 check_non_pic(object, r_type);
6153 rela_dyn->add_global(gsym, r_type, output_section, object,
6154 data_shndx, reloc.get_r_offset(),
6155 reloc.get_r_addend());
6156 }
6157 }
6158 break;
6159
6160 case elfcpp::R_POWERPC_REL14:
6161 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6162 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6163 if (!is_ifunc)
6164 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6165 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6166 reloc.get_r_addend());
6167 break;
6168
6169 case elfcpp::R_POWERPC_REL16:
6170 case elfcpp::R_POWERPC_REL16_LO:
6171 case elfcpp::R_POWERPC_REL16_HI:
6172 case elfcpp::R_POWERPC_REL16_HA:
6173 case elfcpp::R_POWERPC_REL16DX_HA:
6174 case elfcpp::R_POWERPC_SECTOFF:
6175 case elfcpp::R_POWERPC_SECTOFF_LO:
6176 case elfcpp::R_POWERPC_SECTOFF_HI:
6177 case elfcpp::R_POWERPC_SECTOFF_HA:
6178 case elfcpp::R_PPC64_SECTOFF_DS:
6179 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6180 case elfcpp::R_POWERPC_TPREL16:
6181 case elfcpp::R_POWERPC_TPREL16_LO:
6182 case elfcpp::R_POWERPC_TPREL16_HI:
6183 case elfcpp::R_POWERPC_TPREL16_HA:
6184 case elfcpp::R_PPC64_TPREL16_DS:
6185 case elfcpp::R_PPC64_TPREL16_LO_DS:
6186 case elfcpp::R_PPC64_TPREL16_HIGH:
6187 case elfcpp::R_PPC64_TPREL16_HIGHA:
6188 case elfcpp::R_PPC64_TPREL16_HIGHER:
6189 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6190 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6191 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6192 case elfcpp::R_POWERPC_DTPREL16:
6193 case elfcpp::R_POWERPC_DTPREL16_LO:
6194 case elfcpp::R_POWERPC_DTPREL16_HI:
6195 case elfcpp::R_POWERPC_DTPREL16_HA:
6196 case elfcpp::R_PPC64_DTPREL16_DS:
6197 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6198 case elfcpp::R_PPC64_DTPREL16_HIGH:
6199 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6200 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6201 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6202 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6203 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6204 case elfcpp::R_PPC64_TLSGD:
6205 case elfcpp::R_PPC64_TLSLD:
6206 case elfcpp::R_PPC64_ADDR64_LOCAL:
6207 break;
6208
6209 case elfcpp::R_POWERPC_GOT16:
6210 case elfcpp::R_POWERPC_GOT16_LO:
6211 case elfcpp::R_POWERPC_GOT16_HI:
6212 case elfcpp::R_POWERPC_GOT16_HA:
6213 case elfcpp::R_PPC64_GOT16_DS:
6214 case elfcpp::R_PPC64_GOT16_LO_DS:
6215 {
6216 // The symbol requires a GOT entry.
6217 Output_data_got_powerpc<size, big_endian>* got;
6218
6219 got = target->got_section(symtab, layout);
6220 if (gsym->final_value_is_known())
6221 {
6222 if (is_ifunc
6223 && (size == 32 || target->abiversion() >= 2))
6224 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6225 else
6226 got->add_global(gsym, GOT_TYPE_STANDARD);
6227 }
6228 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6229 {
6230 // If we are generating a shared object or a pie, this
6231 // symbol's GOT entry will be set by a dynamic relocation.
6232 unsigned int off = got->add_constant(0);
6233 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6234
6235 Reloc_section* rela_dyn
6236 = target->rela_dyn_section(symtab, layout, is_ifunc);
6237
6238 if (gsym->can_use_relative_reloc(false)
6239 && !((size == 32
6240 || target->abiversion() >= 2)
6241 && gsym->visibility() == elfcpp::STV_PROTECTED
6242 && parameters->options().shared()))
6243 {
6244 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6245 : elfcpp::R_POWERPC_RELATIVE);
6246 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6247 }
6248 else
6249 {
6250 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6251 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6252 }
6253 }
6254 }
6255 break;
6256
6257 case elfcpp::R_PPC64_TOC16:
6258 case elfcpp::R_PPC64_TOC16_LO:
6259 case elfcpp::R_PPC64_TOC16_HI:
6260 case elfcpp::R_PPC64_TOC16_HA:
6261 case elfcpp::R_PPC64_TOC16_DS:
6262 case elfcpp::R_PPC64_TOC16_LO_DS:
6263 // We need a GOT section.
6264 target->got_section(symtab, layout);
6265 break;
6266
6267 case elfcpp::R_POWERPC_GOT_TLSGD16:
6268 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6269 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6270 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6271 {
6272 const bool final = gsym->final_value_is_known();
6273 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6274 if (tls_type == tls::TLSOPT_NONE)
6275 {
6276 Output_data_got_powerpc<size, big_endian>* got
6277 = target->got_section(symtab, layout);
6278 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6279 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6280 elfcpp::R_POWERPC_DTPMOD,
6281 elfcpp::R_POWERPC_DTPREL);
6282 }
6283 else if (tls_type == tls::TLSOPT_TO_IE)
6284 {
6285 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6286 {
6287 Output_data_got_powerpc<size, big_endian>* got
6288 = target->got_section(symtab, layout);
6289 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6290 if (gsym->is_undefined()
6291 || gsym->is_from_dynobj())
6292 {
6293 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6294 elfcpp::R_POWERPC_TPREL);
6295 }
6296 else
6297 {
6298 unsigned int off = got->add_constant(0);
6299 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6300 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6301 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6302 got, off, 0);
6303 }
6304 }
6305 }
6306 else if (tls_type == tls::TLSOPT_TO_LE)
6307 {
6308 // no GOT relocs needed for Local Exec.
6309 }
6310 else
6311 gold_unreachable();
6312 }
6313 break;
6314
6315 case elfcpp::R_POWERPC_GOT_TLSLD16:
6316 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6317 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6318 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6319 {
6320 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6321 if (tls_type == tls::TLSOPT_NONE)
6322 target->tlsld_got_offset(symtab, layout, object);
6323 else if (tls_type == tls::TLSOPT_TO_LE)
6324 {
6325 // no GOT relocs needed for Local Exec.
6326 if (parameters->options().emit_relocs())
6327 {
6328 Output_section* os = layout->tls_segment()->first_section();
6329 gold_assert(os != NULL);
6330 os->set_needs_symtab_index();
6331 }
6332 }
6333 else
6334 gold_unreachable();
6335 }
6336 break;
6337
6338 case elfcpp::R_POWERPC_GOT_DTPREL16:
6339 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6340 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6341 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6342 {
6343 Output_data_got_powerpc<size, big_endian>* got
6344 = target->got_section(symtab, layout);
6345 if (!gsym->final_value_is_known()
6346 && (gsym->is_from_dynobj()
6347 || gsym->is_undefined()
6348 || gsym->is_preemptible()))
6349 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6350 target->rela_dyn_section(layout),
6351 elfcpp::R_POWERPC_DTPREL);
6352 else
6353 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6354 }
6355 break;
6356
6357 case elfcpp::R_POWERPC_GOT_TPREL16:
6358 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6359 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6360 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6361 {
6362 const bool final = gsym->final_value_is_known();
6363 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6364 if (tls_type == tls::TLSOPT_NONE)
6365 {
6366 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6367 {
6368 Output_data_got_powerpc<size, big_endian>* got
6369 = target->got_section(symtab, layout);
6370 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6371 if (gsym->is_undefined()
6372 || gsym->is_from_dynobj())
6373 {
6374 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6375 elfcpp::R_POWERPC_TPREL);
6376 }
6377 else
6378 {
6379 unsigned int off = got->add_constant(0);
6380 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6381 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6382 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6383 got, off, 0);
6384 }
6385 }
6386 }
6387 else if (tls_type == tls::TLSOPT_TO_LE)
6388 {
6389 // no GOT relocs needed for Local Exec.
6390 }
6391 else
6392 gold_unreachable();
6393 }
6394 break;
6395
6396 default:
6397 unsupported_reloc_global(object, r_type, gsym);
6398 break;
6399 }
6400
6401 switch (r_type)
6402 {
6403 case elfcpp::R_POWERPC_GOT_TLSLD16:
6404 case elfcpp::R_POWERPC_GOT_TLSGD16:
6405 case elfcpp::R_POWERPC_GOT_TPREL16:
6406 case elfcpp::R_POWERPC_GOT_DTPREL16:
6407 case elfcpp::R_POWERPC_GOT16:
6408 case elfcpp::R_PPC64_GOT16_DS:
6409 case elfcpp::R_PPC64_TOC16:
6410 case elfcpp::R_PPC64_TOC16_DS:
6411 ppc_object->set_has_small_toc_reloc();
6412 default:
6413 break;
6414 }
6415 }
6416
6417 // Process relocations for gc.
6418
6419 template<int size, bool big_endian>
6420 void
6421 Target_powerpc<size, big_endian>::gc_process_relocs(
6422 Symbol_table* symtab,
6423 Layout* layout,
6424 Sized_relobj_file<size, big_endian>* object,
6425 unsigned int data_shndx,
6426 unsigned int,
6427 const unsigned char* prelocs,
6428 size_t reloc_count,
6429 Output_section* output_section,
6430 bool needs_special_offset_handling,
6431 size_t local_symbol_count,
6432 const unsigned char* plocal_symbols)
6433 {
6434 typedef Target_powerpc<size, big_endian> Powerpc;
6435 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6436 Classify_reloc;
6437
6438 Powerpc_relobj<size, big_endian>* ppc_object
6439 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6440 if (size == 64)
6441 ppc_object->set_opd_valid();
6442 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6443 {
6444 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6445 for (p = ppc_object->access_from_map()->begin();
6446 p != ppc_object->access_from_map()->end();
6447 ++p)
6448 {
6449 Address dst_off = p->first;
6450 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6451 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6452 for (s = p->second.begin(); s != p->second.end(); ++s)
6453 {
6454 Relobj* src_obj = s->first;
6455 unsigned int src_indx = s->second;
6456 symtab->gc()->add_reference(src_obj, src_indx,
6457 ppc_object, dst_indx);
6458 }
6459 p->second.clear();
6460 }
6461 ppc_object->access_from_map()->clear();
6462 ppc_object->process_gc_mark(symtab);
6463 // Don't look at .opd relocs as .opd will reference everything.
6464 return;
6465 }
6466
6467 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6468 symtab,
6469 layout,
6470 this,
6471 object,
6472 data_shndx,
6473 prelocs,
6474 reloc_count,
6475 output_section,
6476 needs_special_offset_handling,
6477 local_symbol_count,
6478 plocal_symbols);
6479 }
6480
6481 // Handle target specific gc actions when adding a gc reference from
6482 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6483 // and DST_OFF. For powerpc64, this adds a referenc to the code
6484 // section of a function descriptor.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_gc_add_reference(
6489 Symbol_table* symtab,
6490 Relobj* src_obj,
6491 unsigned int src_shndx,
6492 Relobj* dst_obj,
6493 unsigned int dst_shndx,
6494 Address dst_off) const
6495 {
6496 if (size != 64 || dst_obj->is_dynamic())
6497 return;
6498
6499 Powerpc_relobj<size, big_endian>* ppc_object
6500 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6501 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6502 {
6503 if (ppc_object->opd_valid())
6504 {
6505 dst_shndx = ppc_object->get_opd_ent(dst_off);
6506 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6507 }
6508 else
6509 {
6510 // If we haven't run scan_opd_relocs, we must delay
6511 // processing this function descriptor reference.
6512 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6513 }
6514 }
6515 }
6516
6517 // Add any special sections for this symbol to the gc work list.
6518 // For powerpc64, this adds the code section of a function
6519 // descriptor.
6520
6521 template<int size, bool big_endian>
6522 void
6523 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6524 Symbol_table* symtab,
6525 Symbol* sym) const
6526 {
6527 if (size == 64)
6528 {
6529 Powerpc_relobj<size, big_endian>* ppc_object
6530 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6531 bool is_ordinary;
6532 unsigned int shndx = sym->shndx(&is_ordinary);
6533 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6534 {
6535 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6536 Address dst_off = gsym->value();
6537 if (ppc_object->opd_valid())
6538 {
6539 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6540 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6541 dst_indx));
6542 }
6543 else
6544 ppc_object->add_gc_mark(dst_off);
6545 }
6546 }
6547 }
6548
6549 // For a symbol location in .opd, set LOC to the location of the
6550 // function entry.
6551
6552 template<int size, bool big_endian>
6553 void
6554 Target_powerpc<size, big_endian>::do_function_location(
6555 Symbol_location* loc) const
6556 {
6557 if (size == 64 && loc->shndx != 0)
6558 {
6559 if (loc->object->is_dynamic())
6560 {
6561 Powerpc_dynobj<size, big_endian>* ppc_object
6562 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6563 if (loc->shndx == ppc_object->opd_shndx())
6564 {
6565 Address dest_off;
6566 Address off = loc->offset - ppc_object->opd_address();
6567 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6568 loc->offset = dest_off;
6569 }
6570 }
6571 else
6572 {
6573 const Powerpc_relobj<size, big_endian>* ppc_object
6574 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6575 if (loc->shndx == ppc_object->opd_shndx())
6576 {
6577 Address dest_off;
6578 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6579 loc->offset = dest_off;
6580 }
6581 }
6582 }
6583 }
6584
6585 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6586 // compiled with -fsplit-stack. The function calls non-split-stack
6587 // code. Change the function to ensure it has enough stack space to
6588 // call some random function.
6589
6590 template<int size, bool big_endian>
6591 void
6592 Target_powerpc<size, big_endian>::do_calls_non_split(
6593 Relobj* object,
6594 unsigned int shndx,
6595 section_offset_type fnoffset,
6596 section_size_type fnsize,
6597 const unsigned char* prelocs,
6598 size_t reloc_count,
6599 unsigned char* view,
6600 section_size_type view_size,
6601 std::string* from,
6602 std::string* to) const
6603 {
6604 // 32-bit not supported.
6605 if (size == 32)
6606 {
6607 // warn
6608 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6609 prelocs, reloc_count, view, view_size,
6610 from, to);
6611 return;
6612 }
6613
6614 // The function always starts with
6615 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6616 // addis %r12,%r1,-allocate@ha
6617 // addi %r12,%r12,-allocate@l
6618 // cmpld %r12,%r0
6619 // but note that the addis or addi may be replaced with a nop
6620
6621 unsigned char *entry = view + fnoffset;
6622 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6623
6624 if ((insn & 0xffff0000) == addis_2_12)
6625 {
6626 /* Skip ELFv2 global entry code. */
6627 entry += 8;
6628 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6629 }
6630
6631 unsigned char *pinsn = entry;
6632 bool ok = false;
6633 const uint32_t ld_private_ss = 0xe80d8fc0;
6634 if (insn == ld_private_ss)
6635 {
6636 int32_t allocate = 0;
6637 while (1)
6638 {
6639 pinsn += 4;
6640 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6641 if ((insn & 0xffff0000) == addis_12_1)
6642 allocate += (insn & 0xffff) << 16;
6643 else if ((insn & 0xffff0000) == addi_12_1
6644 || (insn & 0xffff0000) == addi_12_12)
6645 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6646 else if (insn != nop)
6647 break;
6648 }
6649 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6650 {
6651 int extra = parameters->options().split_stack_adjust_size();
6652 allocate -= extra;
6653 if (allocate >= 0 || extra < 0)
6654 {
6655 object->error(_("split-stack stack size overflow at "
6656 "section %u offset %0zx"),
6657 shndx, static_cast<size_t>(fnoffset));
6658 return;
6659 }
6660 pinsn = entry + 4;
6661 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6662 if (insn != addis_12_1)
6663 {
6664 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6665 pinsn += 4;
6666 insn = addi_12_12 | (allocate & 0xffff);
6667 if (insn != addi_12_12)
6668 {
6669 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6670 pinsn += 4;
6671 }
6672 }
6673 else
6674 {
6675 insn = addi_12_1 | (allocate & 0xffff);
6676 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6677 pinsn += 4;
6678 }
6679 if (pinsn != entry + 12)
6680 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6681
6682 ok = true;
6683 }
6684 }
6685
6686 if (!ok)
6687 {
6688 if (!object->has_no_split_stack())
6689 object->error(_("failed to match split-stack sequence at "
6690 "section %u offset %0zx"),
6691 shndx, static_cast<size_t>(fnoffset));
6692 }
6693 }
6694
6695 // Scan relocations for a section.
6696
6697 template<int size, bool big_endian>
6698 void
6699 Target_powerpc<size, big_endian>::scan_relocs(
6700 Symbol_table* symtab,
6701 Layout* layout,
6702 Sized_relobj_file<size, big_endian>* object,
6703 unsigned int data_shndx,
6704 unsigned int sh_type,
6705 const unsigned char* prelocs,
6706 size_t reloc_count,
6707 Output_section* output_section,
6708 bool needs_special_offset_handling,
6709 size_t local_symbol_count,
6710 const unsigned char* plocal_symbols)
6711 {
6712 typedef Target_powerpc<size, big_endian> Powerpc;
6713 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6714 Classify_reloc;
6715
6716 if (sh_type == elfcpp::SHT_REL)
6717 {
6718 gold_error(_("%s: unsupported REL reloc section"),
6719 object->name().c_str());
6720 return;
6721 }
6722
6723 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6724 symtab,
6725 layout,
6726 this,
6727 object,
6728 data_shndx,
6729 prelocs,
6730 reloc_count,
6731 output_section,
6732 needs_special_offset_handling,
6733 local_symbol_count,
6734 plocal_symbols);
6735 }
6736
6737 // Functor class for processing the global symbol table.
6738 // Removes symbols defined on discarded opd entries.
6739
6740 template<bool big_endian>
6741 class Global_symbol_visitor_opd
6742 {
6743 public:
6744 Global_symbol_visitor_opd()
6745 { }
6746
6747 void
6748 operator()(Sized_symbol<64>* sym)
6749 {
6750 if (sym->has_symtab_index()
6751 || sym->source() != Symbol::FROM_OBJECT
6752 || !sym->in_real_elf())
6753 return;
6754
6755 if (sym->object()->is_dynamic())
6756 return;
6757
6758 Powerpc_relobj<64, big_endian>* symobj
6759 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6760 if (symobj->opd_shndx() == 0)
6761 return;
6762
6763 bool is_ordinary;
6764 unsigned int shndx = sym->shndx(&is_ordinary);
6765 if (shndx == symobj->opd_shndx()
6766 && symobj->get_opd_discard(sym->value()))
6767 {
6768 sym->set_undefined();
6769 sym->set_visibility(elfcpp::STV_DEFAULT);
6770 sym->set_is_defined_in_discarded_section();
6771 sym->set_symtab_index(-1U);
6772 }
6773 }
6774 };
6775
6776 template<int size, bool big_endian>
6777 void
6778 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6779 Layout* layout,
6780 Symbol_table* symtab)
6781 {
6782 if (size == 64)
6783 {
6784 Output_data_save_res<size, big_endian>* savres
6785 = new Output_data_save_res<size, big_endian>(symtab);
6786 this->savres_section_ = savres;
6787 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6788 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6789 savres, ORDER_TEXT, false);
6790 }
6791 }
6792
6793 // Sort linker created .got section first (for the header), then input
6794 // sections belonging to files using small model code.
6795
6796 template<bool big_endian>
6797 class Sort_toc_sections
6798 {
6799 public:
6800 bool
6801 operator()(const Output_section::Input_section& is1,
6802 const Output_section::Input_section& is2) const
6803 {
6804 if (!is1.is_input_section() && is2.is_input_section())
6805 return true;
6806 bool small1
6807 = (is1.is_input_section()
6808 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6809 ->has_small_toc_reloc()));
6810 bool small2
6811 = (is2.is_input_section()
6812 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6813 ->has_small_toc_reloc()));
6814 return small1 && !small2;
6815 }
6816 };
6817
6818 // Finalize the sections.
6819
6820 template<int size, bool big_endian>
6821 void
6822 Target_powerpc<size, big_endian>::do_finalize_sections(
6823 Layout* layout,
6824 const Input_objects*,
6825 Symbol_table* symtab)
6826 {
6827 if (parameters->doing_static_link())
6828 {
6829 // At least some versions of glibc elf-init.o have a strong
6830 // reference to __rela_iplt marker syms. A weak ref would be
6831 // better..
6832 if (this->iplt_ != NULL)
6833 {
6834 Reloc_section* rel = this->iplt_->rel_plt();
6835 symtab->define_in_output_data("__rela_iplt_start", NULL,
6836 Symbol_table::PREDEFINED, rel, 0, 0,
6837 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6838 elfcpp::STV_HIDDEN, 0, false, true);
6839 symtab->define_in_output_data("__rela_iplt_end", NULL,
6840 Symbol_table::PREDEFINED, rel, 0, 0,
6841 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6842 elfcpp::STV_HIDDEN, 0, true, true);
6843 }
6844 else
6845 {
6846 symtab->define_as_constant("__rela_iplt_start", NULL,
6847 Symbol_table::PREDEFINED, 0, 0,
6848 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6849 elfcpp::STV_HIDDEN, 0, true, false);
6850 symtab->define_as_constant("__rela_iplt_end", NULL,
6851 Symbol_table::PREDEFINED, 0, 0,
6852 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6853 elfcpp::STV_HIDDEN, 0, true, false);
6854 }
6855 }
6856
6857 if (size == 64)
6858 {
6859 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6860 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6861
6862 if (!parameters->options().relocatable())
6863 {
6864 this->define_save_restore_funcs(layout, symtab);
6865
6866 // Annoyingly, we need to make these sections now whether or
6867 // not we need them. If we delay until do_relax then we
6868 // need to mess with the relaxation machinery checkpointing.
6869 this->got_section(symtab, layout);
6870 this->make_brlt_section(layout);
6871
6872 if (parameters->options().toc_sort())
6873 {
6874 Output_section* os = this->got_->output_section();
6875 if (os != NULL && os->input_sections().size() > 1)
6876 std::stable_sort(os->input_sections().begin(),
6877 os->input_sections().end(),
6878 Sort_toc_sections<big_endian>());
6879 }
6880 }
6881 }
6882
6883 // Fill in some more dynamic tags.
6884 Output_data_dynamic* odyn = layout->dynamic_data();
6885 if (odyn != NULL)
6886 {
6887 const Reloc_section* rel_plt = (this->plt_ == NULL
6888 ? NULL
6889 : this->plt_->rel_plt());
6890 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6891 this->rela_dyn_, true, size == 32);
6892
6893 if (size == 32)
6894 {
6895 if (this->got_ != NULL)
6896 {
6897 this->got_->finalize_data_size();
6898 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6899 this->got_, this->got_->g_o_t());
6900 }
6901 }
6902 else
6903 {
6904 if (this->glink_ != NULL)
6905 {
6906 this->glink_->finalize_data_size();
6907 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6908 this->glink_,
6909 (this->glink_->pltresolve_size
6910 - 32));
6911 }
6912 }
6913 }
6914
6915 // Emit any relocs we saved in an attempt to avoid generating COPY
6916 // relocs.
6917 if (this->copy_relocs_.any_saved_relocs())
6918 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6919 }
6920
6921 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6922 // reloc.
6923
6924 static bool
6925 ok_lo_toc_insn(uint32_t insn)
6926 {
6927 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6928 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6929 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6930 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6931 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6932 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6933 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6934 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6935 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6936 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6937 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6938 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6939 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6940 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6941 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6942 && (insn & 3) != 1)
6943 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6944 && ((insn & 3) == 0 || (insn & 3) == 3))
6945 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6946 }
6947
6948 // Return the value to use for a branch relocation.
6949
6950 template<int size, bool big_endian>
6951 bool
6952 Target_powerpc<size, big_endian>::symval_for_branch(
6953 const Symbol_table* symtab,
6954 const Sized_symbol<size>* gsym,
6955 Powerpc_relobj<size, big_endian>* object,
6956 Address *value,
6957 unsigned int *dest_shndx)
6958 {
6959 if (size == 32 || this->abiversion() >= 2)
6960 gold_unreachable();
6961 *dest_shndx = 0;
6962
6963 // If the symbol is defined in an opd section, ie. is a function
6964 // descriptor, use the function descriptor code entry address
6965 Powerpc_relobj<size, big_endian>* symobj = object;
6966 if (gsym != NULL
6967 && gsym->source() != Symbol::FROM_OBJECT)
6968 return true;
6969 if (gsym != NULL)
6970 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6971 unsigned int shndx = symobj->opd_shndx();
6972 if (shndx == 0)
6973 return true;
6974 Address opd_addr = symobj->get_output_section_offset(shndx);
6975 if (opd_addr == invalid_address)
6976 return true;
6977 opd_addr += symobj->output_section_address(shndx);
6978 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6979 {
6980 Address sec_off;
6981 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6982 if (symtab->is_section_folded(symobj, *dest_shndx))
6983 {
6984 Section_id folded
6985 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6986 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6987 *dest_shndx = folded.second;
6988 }
6989 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6990 if (sec_addr == invalid_address)
6991 return false;
6992
6993 sec_addr += symobj->output_section(*dest_shndx)->address();
6994 *value = sec_addr + sec_off;
6995 }
6996 return true;
6997 }
6998
6999 // Perform a relocation.
7000
7001 template<int size, bool big_endian>
7002 inline bool
7003 Target_powerpc<size, big_endian>::Relocate::relocate(
7004 const Relocate_info<size, big_endian>* relinfo,
7005 unsigned int,
7006 Target_powerpc* target,
7007 Output_section* os,
7008 size_t relnum,
7009 const unsigned char* preloc,
7010 const Sized_symbol<size>* gsym,
7011 const Symbol_value<size>* psymval,
7012 unsigned char* view,
7013 Address address,
7014 section_size_type view_size)
7015 {
7016 if (view == NULL)
7017 return true;
7018
7019 const elfcpp::Rela<size, big_endian> rela(preloc);
7020 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7021 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7022 {
7023 case Track_tls::NOT_EXPECTED:
7024 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7025 _("__tls_get_addr call lacks marker reloc"));
7026 break;
7027 case Track_tls::EXPECTED:
7028 // We have already complained.
7029 break;
7030 case Track_tls::SKIP:
7031 return true;
7032 case Track_tls::NORMAL:
7033 break;
7034 }
7035
7036 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7037 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7038 typedef typename Reloc_types<elfcpp::SHT_RELA,
7039 size, big_endian>::Reloc Reltype;
7040 // Offset from start of insn to d-field reloc.
7041 const int d_offset = big_endian ? 2 : 0;
7042
7043 Powerpc_relobj<size, big_endian>* const object
7044 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7045 Address value = 0;
7046 bool has_stub_value = false;
7047 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7048 if ((gsym != NULL
7049 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7050 : object->local_has_plt_offset(r_sym))
7051 && (!psymval->is_ifunc_symbol()
7052 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7053 {
7054 if (size == 64
7055 && gsym != NULL
7056 && target->abiversion() >= 2
7057 && !parameters->options().output_is_position_independent()
7058 && !is_branch_reloc(r_type))
7059 {
7060 Address off = target->glink_section()->find_global_entry(gsym);
7061 if (off != invalid_address)
7062 {
7063 value = target->glink_section()->global_entry_address() + off;
7064 has_stub_value = true;
7065 }
7066 }
7067 else
7068 {
7069 Stub_table<size, big_endian>* stub_table
7070 = object->stub_table(relinfo->data_shndx);
7071 if (stub_table == NULL)
7072 {
7073 // This is a ref from a data section to an ifunc symbol.
7074 if (target->stub_tables().size() != 0)
7075 stub_table = target->stub_tables()[0];
7076 }
7077 if (stub_table != NULL)
7078 {
7079 Address off;
7080 if (gsym != NULL)
7081 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7082 rela.get_r_addend());
7083 else
7084 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7085 rela.get_r_addend());
7086 if (off != invalid_address)
7087 {
7088 value = stub_table->stub_address() + off;
7089 has_stub_value = true;
7090 }
7091 }
7092 }
7093 // We don't care too much about bogus debug references to
7094 // non-local functions, but otherwise there had better be a plt
7095 // call stub or global entry stub as appropriate.
7096 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7097 }
7098
7099 if (r_type == elfcpp::R_POWERPC_GOT16
7100 || r_type == elfcpp::R_POWERPC_GOT16_LO
7101 || r_type == elfcpp::R_POWERPC_GOT16_HI
7102 || r_type == elfcpp::R_POWERPC_GOT16_HA
7103 || r_type == elfcpp::R_PPC64_GOT16_DS
7104 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7105 {
7106 if (gsym != NULL)
7107 {
7108 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7109 value = gsym->got_offset(GOT_TYPE_STANDARD);
7110 }
7111 else
7112 {
7113 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7114 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7115 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7116 }
7117 value -= target->got_section()->got_base_offset(object);
7118 }
7119 else if (r_type == elfcpp::R_PPC64_TOC)
7120 {
7121 value = (target->got_section()->output_section()->address()
7122 + object->toc_base_offset());
7123 }
7124 else if (gsym != NULL
7125 && (r_type == elfcpp::R_POWERPC_REL24
7126 || r_type == elfcpp::R_PPC_PLTREL24)
7127 && has_stub_value)
7128 {
7129 if (size == 64)
7130 {
7131 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7132 Valtype* wv = reinterpret_cast<Valtype*>(view);
7133 bool can_plt_call = false;
7134 if (rela.get_r_offset() + 8 <= view_size)
7135 {
7136 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7137 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7138 if ((insn & 1) != 0
7139 && (insn2 == nop
7140 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7141 {
7142 elfcpp::Swap<32, big_endian>::
7143 writeval(wv + 1, ld_2_1 + target->stk_toc());
7144 can_plt_call = true;
7145 }
7146 }
7147 if (!can_plt_call)
7148 {
7149 // If we don't have a branch and link followed by a nop,
7150 // we can't go via the plt because there is no place to
7151 // put a toc restoring instruction.
7152 // Unless we know we won't be returning.
7153 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7154 can_plt_call = true;
7155 }
7156 if (!can_plt_call)
7157 {
7158 // g++ as of 20130507 emits self-calls without a
7159 // following nop. This is arguably wrong since we have
7160 // conflicting information. On the one hand a global
7161 // symbol and on the other a local call sequence, but
7162 // don't error for this special case.
7163 // It isn't possible to cheaply verify we have exactly
7164 // such a call. Allow all calls to the same section.
7165 bool ok = false;
7166 Address code = value;
7167 if (gsym->source() == Symbol::FROM_OBJECT
7168 && gsym->object() == object)
7169 {
7170 unsigned int dest_shndx = 0;
7171 if (target->abiversion() < 2)
7172 {
7173 Address addend = rela.get_r_addend();
7174 code = psymval->value(object, addend);
7175 target->symval_for_branch(relinfo->symtab, gsym, object,
7176 &code, &dest_shndx);
7177 }
7178 bool is_ordinary;
7179 if (dest_shndx == 0)
7180 dest_shndx = gsym->shndx(&is_ordinary);
7181 ok = dest_shndx == relinfo->data_shndx;
7182 }
7183 if (!ok)
7184 {
7185 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7186 _("call lacks nop, can't restore toc; "
7187 "recompile with -fPIC"));
7188 value = code;
7189 }
7190 }
7191 }
7192 }
7193 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7194 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7195 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7196 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7197 {
7198 // First instruction of a global dynamic sequence, arg setup insn.
7199 const bool final = gsym == NULL || gsym->final_value_is_known();
7200 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7201 enum Got_type got_type = GOT_TYPE_STANDARD;
7202 if (tls_type == tls::TLSOPT_NONE)
7203 got_type = GOT_TYPE_TLSGD;
7204 else if (tls_type == tls::TLSOPT_TO_IE)
7205 got_type = GOT_TYPE_TPREL;
7206 if (got_type != GOT_TYPE_STANDARD)
7207 {
7208 if (gsym != NULL)
7209 {
7210 gold_assert(gsym->has_got_offset(got_type));
7211 value = gsym->got_offset(got_type);
7212 }
7213 else
7214 {
7215 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7216 gold_assert(object->local_has_got_offset(r_sym, got_type));
7217 value = object->local_got_offset(r_sym, got_type);
7218 }
7219 value -= target->got_section()->got_base_offset(object);
7220 }
7221 if (tls_type == tls::TLSOPT_TO_IE)
7222 {
7223 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7224 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7225 {
7226 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7227 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7228 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7229 if (size == 32)
7230 insn |= 32 << 26; // lwz
7231 else
7232 insn |= 58 << 26; // ld
7233 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7234 }
7235 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7236 - elfcpp::R_POWERPC_GOT_TLSGD16);
7237 }
7238 else if (tls_type == tls::TLSOPT_TO_LE)
7239 {
7240 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7241 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7242 {
7243 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7244 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7245 insn &= (1 << 26) - (1 << 21); // extract rt
7246 if (size == 32)
7247 insn |= addis_0_2;
7248 else
7249 insn |= addis_0_13;
7250 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7251 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7252 value = psymval->value(object, rela.get_r_addend());
7253 }
7254 else
7255 {
7256 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7257 Insn insn = nop;
7258 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7259 r_type = elfcpp::R_POWERPC_NONE;
7260 }
7261 }
7262 }
7263 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7264 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7265 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7266 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7267 {
7268 // First instruction of a local dynamic sequence, arg setup insn.
7269 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7270 if (tls_type == tls::TLSOPT_NONE)
7271 {
7272 value = target->tlsld_got_offset();
7273 value -= target->got_section()->got_base_offset(object);
7274 }
7275 else
7276 {
7277 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7278 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7279 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7280 {
7281 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7282 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7283 insn &= (1 << 26) - (1 << 21); // extract rt
7284 if (size == 32)
7285 insn |= addis_0_2;
7286 else
7287 insn |= addis_0_13;
7288 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7289 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7290 value = dtp_offset;
7291 }
7292 else
7293 {
7294 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7295 Insn insn = nop;
7296 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7297 r_type = elfcpp::R_POWERPC_NONE;
7298 }
7299 }
7300 }
7301 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7302 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7303 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7304 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7305 {
7306 // Accesses relative to a local dynamic sequence address,
7307 // no optimisation here.
7308 if (gsym != NULL)
7309 {
7310 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7311 value = gsym->got_offset(GOT_TYPE_DTPREL);
7312 }
7313 else
7314 {
7315 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7316 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7317 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7318 }
7319 value -= target->got_section()->got_base_offset(object);
7320 }
7321 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7322 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7323 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7324 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7325 {
7326 // First instruction of initial exec sequence.
7327 const bool final = gsym == NULL || gsym->final_value_is_known();
7328 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7329 if (tls_type == tls::TLSOPT_NONE)
7330 {
7331 if (gsym != NULL)
7332 {
7333 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7334 value = gsym->got_offset(GOT_TYPE_TPREL);
7335 }
7336 else
7337 {
7338 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7339 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7340 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7341 }
7342 value -= target->got_section()->got_base_offset(object);
7343 }
7344 else
7345 {
7346 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7347 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7348 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7349 {
7350 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7351 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7352 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7353 if (size == 32)
7354 insn |= addis_0_2;
7355 else
7356 insn |= addis_0_13;
7357 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7358 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7359 value = psymval->value(object, rela.get_r_addend());
7360 }
7361 else
7362 {
7363 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7364 Insn insn = nop;
7365 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7366 r_type = elfcpp::R_POWERPC_NONE;
7367 }
7368 }
7369 }
7370 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7371 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7372 {
7373 // Second instruction of a global dynamic sequence,
7374 // the __tls_get_addr call
7375 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7376 const bool final = gsym == NULL || gsym->final_value_is_known();
7377 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7378 if (tls_type != tls::TLSOPT_NONE)
7379 {
7380 if (tls_type == tls::TLSOPT_TO_IE)
7381 {
7382 Insn* iview = reinterpret_cast<Insn*>(view);
7383 Insn insn = add_3_3_13;
7384 if (size == 32)
7385 insn = add_3_3_2;
7386 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7387 r_type = elfcpp::R_POWERPC_NONE;
7388 }
7389 else
7390 {
7391 Insn* iview = reinterpret_cast<Insn*>(view);
7392 Insn insn = addi_3_3;
7393 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7394 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7395 view += d_offset;
7396 value = psymval->value(object, rela.get_r_addend());
7397 }
7398 this->skip_next_tls_get_addr_call();
7399 }
7400 }
7401 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7402 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7403 {
7404 // Second instruction of a local dynamic sequence,
7405 // the __tls_get_addr call
7406 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7407 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7408 if (tls_type == tls::TLSOPT_TO_LE)
7409 {
7410 Insn* iview = reinterpret_cast<Insn*>(view);
7411 Insn insn = addi_3_3;
7412 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7413 this->skip_next_tls_get_addr_call();
7414 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7415 view += d_offset;
7416 value = dtp_offset;
7417 }
7418 }
7419 else if (r_type == elfcpp::R_POWERPC_TLS)
7420 {
7421 // Second instruction of an initial exec sequence
7422 const bool final = gsym == NULL || gsym->final_value_is_known();
7423 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7424 if (tls_type == tls::TLSOPT_TO_LE)
7425 {
7426 Insn* iview = reinterpret_cast<Insn*>(view);
7427 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7428 unsigned int reg = size == 32 ? 2 : 13;
7429 insn = at_tls_transform(insn, reg);
7430 gold_assert(insn != 0);
7431 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7432 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7433 view += d_offset;
7434 value = psymval->value(object, rela.get_r_addend());
7435 }
7436 }
7437 else if (!has_stub_value)
7438 {
7439 Address addend = 0;
7440 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7441 addend = rela.get_r_addend();
7442 value = psymval->value(object, addend);
7443 if (size == 64 && is_branch_reloc(r_type))
7444 {
7445 if (target->abiversion() >= 2)
7446 {
7447 if (gsym != NULL)
7448 value += object->ppc64_local_entry_offset(gsym);
7449 else
7450 value += object->ppc64_local_entry_offset(r_sym);
7451 }
7452 else
7453 {
7454 unsigned int dest_shndx;
7455 target->symval_for_branch(relinfo->symtab, gsym, object,
7456 &value, &dest_shndx);
7457 }
7458 }
7459 Address max_branch_offset = max_branch_delta(r_type);
7460 if (max_branch_offset != 0
7461 && value - address + max_branch_offset >= 2 * max_branch_offset)
7462 {
7463 Stub_table<size, big_endian>* stub_table
7464 = object->stub_table(relinfo->data_shndx);
7465 if (stub_table != NULL)
7466 {
7467 Address off = stub_table->find_long_branch_entry(object, value);
7468 if (off != invalid_address)
7469 {
7470 value = (stub_table->stub_address() + stub_table->plt_size()
7471 + off);
7472 has_stub_value = true;
7473 }
7474 }
7475 }
7476 }
7477
7478 switch (r_type)
7479 {
7480 case elfcpp::R_PPC64_REL64:
7481 case elfcpp::R_POWERPC_REL32:
7482 case elfcpp::R_POWERPC_REL24:
7483 case elfcpp::R_PPC_PLTREL24:
7484 case elfcpp::R_PPC_LOCAL24PC:
7485 case elfcpp::R_POWERPC_REL16:
7486 case elfcpp::R_POWERPC_REL16_LO:
7487 case elfcpp::R_POWERPC_REL16_HI:
7488 case elfcpp::R_POWERPC_REL16_HA:
7489 case elfcpp::R_POWERPC_REL16DX_HA:
7490 case elfcpp::R_POWERPC_REL14:
7491 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7492 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7493 value -= address;
7494 break;
7495
7496 case elfcpp::R_PPC64_TOC16:
7497 case elfcpp::R_PPC64_TOC16_LO:
7498 case elfcpp::R_PPC64_TOC16_HI:
7499 case elfcpp::R_PPC64_TOC16_HA:
7500 case elfcpp::R_PPC64_TOC16_DS:
7501 case elfcpp::R_PPC64_TOC16_LO_DS:
7502 // Subtract the TOC base address.
7503 value -= (target->got_section()->output_section()->address()
7504 + object->toc_base_offset());
7505 break;
7506
7507 case elfcpp::R_POWERPC_SECTOFF:
7508 case elfcpp::R_POWERPC_SECTOFF_LO:
7509 case elfcpp::R_POWERPC_SECTOFF_HI:
7510 case elfcpp::R_POWERPC_SECTOFF_HA:
7511 case elfcpp::R_PPC64_SECTOFF_DS:
7512 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7513 if (os != NULL)
7514 value -= os->address();
7515 break;
7516
7517 case elfcpp::R_PPC64_TPREL16_DS:
7518 case elfcpp::R_PPC64_TPREL16_LO_DS:
7519 case elfcpp::R_PPC64_TPREL16_HIGH:
7520 case elfcpp::R_PPC64_TPREL16_HIGHA:
7521 if (size != 64)
7522 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7523 break;
7524 case elfcpp::R_POWERPC_TPREL16:
7525 case elfcpp::R_POWERPC_TPREL16_LO:
7526 case elfcpp::R_POWERPC_TPREL16_HI:
7527 case elfcpp::R_POWERPC_TPREL16_HA:
7528 case elfcpp::R_POWERPC_TPREL:
7529 case elfcpp::R_PPC64_TPREL16_HIGHER:
7530 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7531 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7532 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7533 // tls symbol values are relative to tls_segment()->vaddr()
7534 value -= tp_offset;
7535 break;
7536
7537 case elfcpp::R_PPC64_DTPREL16_DS:
7538 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7539 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7540 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7541 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7542 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7543 if (size != 64)
7544 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7545 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7546 break;
7547 case elfcpp::R_POWERPC_DTPREL16:
7548 case elfcpp::R_POWERPC_DTPREL16_LO:
7549 case elfcpp::R_POWERPC_DTPREL16_HI:
7550 case elfcpp::R_POWERPC_DTPREL16_HA:
7551 case elfcpp::R_POWERPC_DTPREL:
7552 case elfcpp::R_PPC64_DTPREL16_HIGH:
7553 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7554 // tls symbol values are relative to tls_segment()->vaddr()
7555 value -= dtp_offset;
7556 break;
7557
7558 case elfcpp::R_PPC64_ADDR64_LOCAL:
7559 if (gsym != NULL)
7560 value += object->ppc64_local_entry_offset(gsym);
7561 else
7562 value += object->ppc64_local_entry_offset(r_sym);
7563 break;
7564
7565 default:
7566 break;
7567 }
7568
7569 Insn branch_bit = 0;
7570 switch (r_type)
7571 {
7572 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7573 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7574 branch_bit = 1 << 21;
7575 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7576 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7577 {
7578 Insn* iview = reinterpret_cast<Insn*>(view);
7579 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7580 insn &= ~(1 << 21);
7581 insn |= branch_bit;
7582 if (this->is_isa_v2)
7583 {
7584 // Set 'a' bit. This is 0b00010 in BO field for branch
7585 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7586 // for branch on CTR insns (BO == 1a00t or 1a01t).
7587 if ((insn & (0x14 << 21)) == (0x04 << 21))
7588 insn |= 0x02 << 21;
7589 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7590 insn |= 0x08 << 21;
7591 else
7592 break;
7593 }
7594 else
7595 {
7596 // Invert 'y' bit if not the default.
7597 if (static_cast<Signed_address>(value) < 0)
7598 insn ^= 1 << 21;
7599 }
7600 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7601 }
7602 break;
7603
7604 default:
7605 break;
7606 }
7607
7608 if (size == 64)
7609 {
7610 // Multi-instruction sequences that access the TOC can be
7611 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7612 // to nop; addi rb,r2,x;
7613 switch (r_type)
7614 {
7615 default:
7616 break;
7617
7618 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7619 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7620 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7621 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7622 case elfcpp::R_POWERPC_GOT16_HA:
7623 case elfcpp::R_PPC64_TOC16_HA:
7624 if (parameters->options().toc_optimize())
7625 {
7626 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7627 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7628 if ((insn & ((0x3f << 26) | 0x1f << 16))
7629 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7630 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7631 _("toc optimization is not supported "
7632 "for %#08x instruction"), insn);
7633 else if (value + 0x8000 < 0x10000)
7634 {
7635 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7636 return true;
7637 }
7638 }
7639 break;
7640
7641 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7642 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7643 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7644 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7645 case elfcpp::R_POWERPC_GOT16_LO:
7646 case elfcpp::R_PPC64_GOT16_LO_DS:
7647 case elfcpp::R_PPC64_TOC16_LO:
7648 case elfcpp::R_PPC64_TOC16_LO_DS:
7649 if (parameters->options().toc_optimize())
7650 {
7651 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7652 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7653 if (!ok_lo_toc_insn(insn))
7654 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7655 _("toc optimization is not supported "
7656 "for %#08x instruction"), insn);
7657 else if (value + 0x8000 < 0x10000)
7658 {
7659 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7660 {
7661 // Transform addic to addi when we change reg.
7662 insn &= ~((0x3f << 26) | (0x1f << 16));
7663 insn |= (14u << 26) | (2 << 16);
7664 }
7665 else
7666 {
7667 insn &= ~(0x1f << 16);
7668 insn |= 2 << 16;
7669 }
7670 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7671 }
7672 }
7673 break;
7674
7675 case elfcpp::R_PPC64_ENTRY:
7676 value = (target->got_section()->output_section()->address()
7677 + object->toc_base_offset());
7678 if (value + 0x80008000 <= 0xffffffff
7679 && !parameters->options().output_is_position_independent())
7680 {
7681 Insn* iview = reinterpret_cast<Insn*>(view);
7682 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7683 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7684
7685 if ((insn1 & ~0xfffc) == ld_2_12
7686 && insn2 == add_2_2_12)
7687 {
7688 insn1 = lis_2 + ha(value);
7689 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7690 insn2 = addi_2_2 + l(value);
7691 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7692 return true;
7693 }
7694 }
7695 else
7696 {
7697 value -= address;
7698 if (value + 0x80008000 <= 0xffffffff)
7699 {
7700 Insn* iview = reinterpret_cast<Insn*>(view);
7701 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7702 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7703
7704 if ((insn1 & ~0xfffc) == ld_2_12
7705 && insn2 == add_2_2_12)
7706 {
7707 insn1 = addis_2_12 + ha(value);
7708 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7709 insn2 = addi_2_2 + l(value);
7710 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7711 return true;
7712 }
7713 }
7714 }
7715 break;
7716
7717 case elfcpp::R_POWERPC_REL16_LO:
7718 // If we are generating a non-PIC executable, edit
7719 // 0: addis 2,12,.TOC.-0b@ha
7720 // addi 2,2,.TOC.-0b@l
7721 // used by ELFv2 global entry points to set up r2, to
7722 // lis 2,.TOC.@ha
7723 // addi 2,2,.TOC.@l
7724 // if .TOC. is in range. */
7725 if (value + address - 4 + 0x80008000 <= 0xffffffff
7726 && relnum != 0
7727 && preloc != NULL
7728 && target->abiversion() >= 2
7729 && !parameters->options().output_is_position_independent()
7730 && rela.get_r_addend() == d_offset + 4
7731 && gsym != NULL
7732 && strcmp(gsym->name(), ".TOC.") == 0)
7733 {
7734 const int reloc_size
7735 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7736 Reltype prev_rela(preloc - reloc_size);
7737 if ((prev_rela.get_r_info()
7738 == elfcpp::elf_r_info<size>(r_sym,
7739 elfcpp::R_POWERPC_REL16_HA))
7740 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7741 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7742 {
7743 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7744 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7745 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7746
7747 if ((insn1 & 0xffff0000) == addis_2_12
7748 && (insn2 & 0xffff0000) == addi_2_2)
7749 {
7750 insn1 = lis_2 + ha(value + address - 4);
7751 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7752 insn2 = addi_2_2 + l(value + address - 4);
7753 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7754 if (relinfo->rr)
7755 {
7756 relinfo->rr->set_strategy(relnum - 1,
7757 Relocatable_relocs::RELOC_SPECIAL);
7758 relinfo->rr->set_strategy(relnum,
7759 Relocatable_relocs::RELOC_SPECIAL);
7760 }
7761 return true;
7762 }
7763 }
7764 }
7765 break;
7766 }
7767 }
7768
7769 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7770 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7771 switch (r_type)
7772 {
7773 case elfcpp::R_POWERPC_ADDR32:
7774 case elfcpp::R_POWERPC_UADDR32:
7775 if (size == 64)
7776 overflow = Reloc::CHECK_BITFIELD;
7777 break;
7778
7779 case elfcpp::R_POWERPC_REL32:
7780 case elfcpp::R_POWERPC_REL16DX_HA:
7781 if (size == 64)
7782 overflow = Reloc::CHECK_SIGNED;
7783 break;
7784
7785 case elfcpp::R_POWERPC_UADDR16:
7786 overflow = Reloc::CHECK_BITFIELD;
7787 break;
7788
7789 case elfcpp::R_POWERPC_ADDR16:
7790 // We really should have three separate relocations,
7791 // one for 16-bit data, one for insns with 16-bit signed fields,
7792 // and one for insns with 16-bit unsigned fields.
7793 overflow = Reloc::CHECK_BITFIELD;
7794 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7795 overflow = Reloc::CHECK_LOW_INSN;
7796 break;
7797
7798 case elfcpp::R_POWERPC_ADDR16_HI:
7799 case elfcpp::R_POWERPC_ADDR16_HA:
7800 case elfcpp::R_POWERPC_GOT16_HI:
7801 case elfcpp::R_POWERPC_GOT16_HA:
7802 case elfcpp::R_POWERPC_PLT16_HI:
7803 case elfcpp::R_POWERPC_PLT16_HA:
7804 case elfcpp::R_POWERPC_SECTOFF_HI:
7805 case elfcpp::R_POWERPC_SECTOFF_HA:
7806 case elfcpp::R_PPC64_TOC16_HI:
7807 case elfcpp::R_PPC64_TOC16_HA:
7808 case elfcpp::R_PPC64_PLTGOT16_HI:
7809 case elfcpp::R_PPC64_PLTGOT16_HA:
7810 case elfcpp::R_POWERPC_TPREL16_HI:
7811 case elfcpp::R_POWERPC_TPREL16_HA:
7812 case elfcpp::R_POWERPC_DTPREL16_HI:
7813 case elfcpp::R_POWERPC_DTPREL16_HA:
7814 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7815 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7816 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7817 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7818 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7819 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7820 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7821 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7822 case elfcpp::R_POWERPC_REL16_HI:
7823 case elfcpp::R_POWERPC_REL16_HA:
7824 if (size != 32)
7825 overflow = Reloc::CHECK_HIGH_INSN;
7826 break;
7827
7828 case elfcpp::R_POWERPC_REL16:
7829 case elfcpp::R_PPC64_TOC16:
7830 case elfcpp::R_POWERPC_GOT16:
7831 case elfcpp::R_POWERPC_SECTOFF:
7832 case elfcpp::R_POWERPC_TPREL16:
7833 case elfcpp::R_POWERPC_DTPREL16:
7834 case elfcpp::R_POWERPC_GOT_TLSGD16:
7835 case elfcpp::R_POWERPC_GOT_TLSLD16:
7836 case elfcpp::R_POWERPC_GOT_TPREL16:
7837 case elfcpp::R_POWERPC_GOT_DTPREL16:
7838 overflow = Reloc::CHECK_LOW_INSN;
7839 break;
7840
7841 case elfcpp::R_POWERPC_ADDR24:
7842 case elfcpp::R_POWERPC_ADDR14:
7843 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7844 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7845 case elfcpp::R_PPC64_ADDR16_DS:
7846 case elfcpp::R_POWERPC_REL24:
7847 case elfcpp::R_PPC_PLTREL24:
7848 case elfcpp::R_PPC_LOCAL24PC:
7849 case elfcpp::R_PPC64_TPREL16_DS:
7850 case elfcpp::R_PPC64_DTPREL16_DS:
7851 case elfcpp::R_PPC64_TOC16_DS:
7852 case elfcpp::R_PPC64_GOT16_DS:
7853 case elfcpp::R_PPC64_SECTOFF_DS:
7854 case elfcpp::R_POWERPC_REL14:
7855 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7856 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7857 overflow = Reloc::CHECK_SIGNED;
7858 break;
7859 }
7860
7861 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7862 Insn insn = 0;
7863
7864 if (overflow == Reloc::CHECK_LOW_INSN
7865 || overflow == Reloc::CHECK_HIGH_INSN)
7866 {
7867 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7868
7869 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7870 overflow = Reloc::CHECK_BITFIELD;
7871 else if (overflow == Reloc::CHECK_LOW_INSN
7872 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7873 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7874 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7875 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7876 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7877 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7878 overflow = Reloc::CHECK_UNSIGNED;
7879 else
7880 overflow = Reloc::CHECK_SIGNED;
7881 }
7882
7883 bool maybe_dq_reloc = false;
7884 typename Powerpc_relocate_functions<size, big_endian>::Status status
7885 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7886 switch (r_type)
7887 {
7888 case elfcpp::R_POWERPC_NONE:
7889 case elfcpp::R_POWERPC_TLS:
7890 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7891 case elfcpp::R_POWERPC_GNU_VTENTRY:
7892 break;
7893
7894 case elfcpp::R_PPC64_ADDR64:
7895 case elfcpp::R_PPC64_REL64:
7896 case elfcpp::R_PPC64_TOC:
7897 case elfcpp::R_PPC64_ADDR64_LOCAL:
7898 Reloc::addr64(view, value);
7899 break;
7900
7901 case elfcpp::R_POWERPC_TPREL:
7902 case elfcpp::R_POWERPC_DTPREL:
7903 if (size == 64)
7904 Reloc::addr64(view, value);
7905 else
7906 status = Reloc::addr32(view, value, overflow);
7907 break;
7908
7909 case elfcpp::R_PPC64_UADDR64:
7910 Reloc::addr64_u(view, value);
7911 break;
7912
7913 case elfcpp::R_POWERPC_ADDR32:
7914 status = Reloc::addr32(view, value, overflow);
7915 break;
7916
7917 case elfcpp::R_POWERPC_REL32:
7918 case elfcpp::R_POWERPC_UADDR32:
7919 status = Reloc::addr32_u(view, value, overflow);
7920 break;
7921
7922 case elfcpp::R_POWERPC_ADDR24:
7923 case elfcpp::R_POWERPC_REL24:
7924 case elfcpp::R_PPC_PLTREL24:
7925 case elfcpp::R_PPC_LOCAL24PC:
7926 status = Reloc::addr24(view, value, overflow);
7927 break;
7928
7929 case elfcpp::R_POWERPC_GOT_DTPREL16:
7930 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7931 case elfcpp::R_POWERPC_GOT_TPREL16:
7932 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7933 if (size == 64)
7934 {
7935 // On ppc64 these are all ds form
7936 maybe_dq_reloc = true;
7937 break;
7938 }
7939 case elfcpp::R_POWERPC_ADDR16:
7940 case elfcpp::R_POWERPC_REL16:
7941 case elfcpp::R_PPC64_TOC16:
7942 case elfcpp::R_POWERPC_GOT16:
7943 case elfcpp::R_POWERPC_SECTOFF:
7944 case elfcpp::R_POWERPC_TPREL16:
7945 case elfcpp::R_POWERPC_DTPREL16:
7946 case elfcpp::R_POWERPC_GOT_TLSGD16:
7947 case elfcpp::R_POWERPC_GOT_TLSLD16:
7948 case elfcpp::R_POWERPC_ADDR16_LO:
7949 case elfcpp::R_POWERPC_REL16_LO:
7950 case elfcpp::R_PPC64_TOC16_LO:
7951 case elfcpp::R_POWERPC_GOT16_LO:
7952 case elfcpp::R_POWERPC_SECTOFF_LO:
7953 case elfcpp::R_POWERPC_TPREL16_LO:
7954 case elfcpp::R_POWERPC_DTPREL16_LO:
7955 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7956 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7957 if (size == 64)
7958 status = Reloc::addr16(view, value, overflow);
7959 else
7960 maybe_dq_reloc = true;
7961 break;
7962
7963 case elfcpp::R_POWERPC_UADDR16:
7964 status = Reloc::addr16_u(view, value, overflow);
7965 break;
7966
7967 case elfcpp::R_PPC64_ADDR16_HIGH:
7968 case elfcpp::R_PPC64_TPREL16_HIGH:
7969 case elfcpp::R_PPC64_DTPREL16_HIGH:
7970 if (size == 32)
7971 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7972 goto unsupp;
7973 case elfcpp::R_POWERPC_ADDR16_HI:
7974 case elfcpp::R_POWERPC_REL16_HI:
7975 case elfcpp::R_PPC64_TOC16_HI:
7976 case elfcpp::R_POWERPC_GOT16_HI:
7977 case elfcpp::R_POWERPC_SECTOFF_HI:
7978 case elfcpp::R_POWERPC_TPREL16_HI:
7979 case elfcpp::R_POWERPC_DTPREL16_HI:
7980 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7981 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7982 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7983 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7984 Reloc::addr16_hi(view, value);
7985 break;
7986
7987 case elfcpp::R_PPC64_ADDR16_HIGHA:
7988 case elfcpp::R_PPC64_TPREL16_HIGHA:
7989 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7990 if (size == 32)
7991 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7992 goto unsupp;
7993 case elfcpp::R_POWERPC_ADDR16_HA:
7994 case elfcpp::R_POWERPC_REL16_HA:
7995 case elfcpp::R_PPC64_TOC16_HA:
7996 case elfcpp::R_POWERPC_GOT16_HA:
7997 case elfcpp::R_POWERPC_SECTOFF_HA:
7998 case elfcpp::R_POWERPC_TPREL16_HA:
7999 case elfcpp::R_POWERPC_DTPREL16_HA:
8000 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8001 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8002 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8003 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8004 Reloc::addr16_ha(view, value);
8005 break;
8006
8007 case elfcpp::R_POWERPC_REL16DX_HA:
8008 status = Reloc::addr16dx_ha(view, value, overflow);
8009 break;
8010
8011 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8012 if (size == 32)
8013 // R_PPC_EMB_NADDR16_LO
8014 goto unsupp;
8015 case elfcpp::R_PPC64_ADDR16_HIGHER:
8016 case elfcpp::R_PPC64_TPREL16_HIGHER:
8017 Reloc::addr16_hi2(view, value);
8018 break;
8019
8020 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8021 if (size == 32)
8022 // R_PPC_EMB_NADDR16_HI
8023 goto unsupp;
8024 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8025 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8026 Reloc::addr16_ha2(view, value);
8027 break;
8028
8029 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8030 if (size == 32)
8031 // R_PPC_EMB_NADDR16_HA
8032 goto unsupp;
8033 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8034 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8035 Reloc::addr16_hi3(view, value);
8036 break;
8037
8038 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8039 if (size == 32)
8040 // R_PPC_EMB_SDAI16
8041 goto unsupp;
8042 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8043 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8044 Reloc::addr16_ha3(view, value);
8045 break;
8046
8047 case elfcpp::R_PPC64_DTPREL16_DS:
8048 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8049 if (size == 32)
8050 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8051 goto unsupp;
8052 case elfcpp::R_PPC64_TPREL16_DS:
8053 case elfcpp::R_PPC64_TPREL16_LO_DS:
8054 if (size == 32)
8055 // R_PPC_TLSGD, R_PPC_TLSLD
8056 break;
8057 case elfcpp::R_PPC64_ADDR16_DS:
8058 case elfcpp::R_PPC64_ADDR16_LO_DS:
8059 case elfcpp::R_PPC64_TOC16_DS:
8060 case elfcpp::R_PPC64_TOC16_LO_DS:
8061 case elfcpp::R_PPC64_GOT16_DS:
8062 case elfcpp::R_PPC64_GOT16_LO_DS:
8063 case elfcpp::R_PPC64_SECTOFF_DS:
8064 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8065 maybe_dq_reloc = true;
8066 break;
8067
8068 case elfcpp::R_POWERPC_ADDR14:
8069 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8070 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8071 case elfcpp::R_POWERPC_REL14:
8072 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8073 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8074 status = Reloc::addr14(view, value, overflow);
8075 break;
8076
8077 case elfcpp::R_POWERPC_COPY:
8078 case elfcpp::R_POWERPC_GLOB_DAT:
8079 case elfcpp::R_POWERPC_JMP_SLOT:
8080 case elfcpp::R_POWERPC_RELATIVE:
8081 case elfcpp::R_POWERPC_DTPMOD:
8082 case elfcpp::R_PPC64_JMP_IREL:
8083 case elfcpp::R_POWERPC_IRELATIVE:
8084 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8085 _("unexpected reloc %u in object file"),
8086 r_type);
8087 break;
8088
8089 case elfcpp::R_PPC_EMB_SDA21:
8090 if (size == 32)
8091 goto unsupp;
8092 else
8093 {
8094 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8095 }
8096 break;
8097
8098 case elfcpp::R_PPC_EMB_SDA2I16:
8099 case elfcpp::R_PPC_EMB_SDA2REL:
8100 if (size == 32)
8101 goto unsupp;
8102 // R_PPC64_TLSGD, R_PPC64_TLSLD
8103 break;
8104
8105 case elfcpp::R_POWERPC_PLT32:
8106 case elfcpp::R_POWERPC_PLTREL32:
8107 case elfcpp::R_POWERPC_PLT16_LO:
8108 case elfcpp::R_POWERPC_PLT16_HI:
8109 case elfcpp::R_POWERPC_PLT16_HA:
8110 case elfcpp::R_PPC_SDAREL16:
8111 case elfcpp::R_POWERPC_ADDR30:
8112 case elfcpp::R_PPC64_PLT64:
8113 case elfcpp::R_PPC64_PLTREL64:
8114 case elfcpp::R_PPC64_PLTGOT16:
8115 case elfcpp::R_PPC64_PLTGOT16_LO:
8116 case elfcpp::R_PPC64_PLTGOT16_HI:
8117 case elfcpp::R_PPC64_PLTGOT16_HA:
8118 case elfcpp::R_PPC64_PLT16_LO_DS:
8119 case elfcpp::R_PPC64_PLTGOT16_DS:
8120 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8121 case elfcpp::R_PPC_EMB_RELSDA:
8122 case elfcpp::R_PPC_TOC16:
8123 default:
8124 unsupp:
8125 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8126 _("unsupported reloc %u"),
8127 r_type);
8128 break;
8129 }
8130
8131 if (maybe_dq_reloc)
8132 {
8133 if (insn == 0)
8134 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8135
8136 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8137 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8138 && (insn & 3) == 1))
8139 status = Reloc::addr16_dq(view, value, overflow);
8140 else if (size == 64
8141 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8142 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8143 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8144 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8145 status = Reloc::addr16_ds(view, value, overflow);
8146 else
8147 status = Reloc::addr16(view, value, overflow);
8148 }
8149
8150 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8151 && (has_stub_value
8152 || !(gsym != NULL
8153 && gsym->is_undefined()
8154 && is_branch_reloc(r_type))))
8155 {
8156 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8157 _("relocation overflow"));
8158 if (has_stub_value)
8159 gold_info(_("try relinking with a smaller --stub-group-size"));
8160 }
8161
8162 return true;
8163 }
8164
8165 // Relocate section data.
8166
8167 template<int size, bool big_endian>
8168 void
8169 Target_powerpc<size, big_endian>::relocate_section(
8170 const Relocate_info<size, big_endian>* relinfo,
8171 unsigned int sh_type,
8172 const unsigned char* prelocs,
8173 size_t reloc_count,
8174 Output_section* output_section,
8175 bool needs_special_offset_handling,
8176 unsigned char* view,
8177 Address address,
8178 section_size_type view_size,
8179 const Reloc_symbol_changes* reloc_symbol_changes)
8180 {
8181 typedef Target_powerpc<size, big_endian> Powerpc;
8182 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8183 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8184 Powerpc_comdat_behavior;
8185 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8186 Classify_reloc;
8187
8188 gold_assert(sh_type == elfcpp::SHT_RELA);
8189
8190 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8191 Powerpc_comdat_behavior, Classify_reloc>(
8192 relinfo,
8193 this,
8194 prelocs,
8195 reloc_count,
8196 output_section,
8197 needs_special_offset_handling,
8198 view,
8199 address,
8200 view_size,
8201 reloc_symbol_changes);
8202 }
8203
8204 template<int size, bool big_endian>
8205 class Powerpc_scan_relocatable_reloc
8206 {
8207 public:
8208 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8209 Reltype;
8210 static const int reloc_size =
8211 Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8212 static const int sh_type = elfcpp::SHT_RELA;
8213
8214 // Return the symbol referred to by the relocation.
8215 static inline unsigned int
8216 get_r_sym(const Reltype* reloc)
8217 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8218
8219 // Return the type of the relocation.
8220 static inline unsigned int
8221 get_r_type(const Reltype* reloc)
8222 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8223
8224 // Return the strategy to use for a local symbol which is not a
8225 // section symbol, given the relocation type.
8226 inline Relocatable_relocs::Reloc_strategy
8227 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8228 {
8229 if (r_type == 0 && r_sym == 0)
8230 return Relocatable_relocs::RELOC_DISCARD;
8231 return Relocatable_relocs::RELOC_COPY;
8232 }
8233
8234 // Return the strategy to use for a local symbol which is a section
8235 // symbol, given the relocation type.
8236 inline Relocatable_relocs::Reloc_strategy
8237 local_section_strategy(unsigned int, Relobj*)
8238 {
8239 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8240 }
8241
8242 // Return the strategy to use for a global symbol, given the
8243 // relocation type, the object, and the symbol index.
8244 inline Relocatable_relocs::Reloc_strategy
8245 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8246 {
8247 if (r_type == elfcpp::R_PPC_PLTREL24)
8248 return Relocatable_relocs::RELOC_SPECIAL;
8249 return Relocatable_relocs::RELOC_COPY;
8250 }
8251 };
8252
8253 // Scan the relocs during a relocatable link.
8254
8255 template<int size, bool big_endian>
8256 void
8257 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8258 Symbol_table* symtab,
8259 Layout* layout,
8260 Sized_relobj_file<size, big_endian>* object,
8261 unsigned int data_shndx,
8262 unsigned int sh_type,
8263 const unsigned char* prelocs,
8264 size_t reloc_count,
8265 Output_section* output_section,
8266 bool needs_special_offset_handling,
8267 size_t local_symbol_count,
8268 const unsigned char* plocal_symbols,
8269 Relocatable_relocs* rr)
8270 {
8271 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8272
8273 gold_assert(sh_type == elfcpp::SHT_RELA);
8274
8275 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8276 symtab,
8277 layout,
8278 object,
8279 data_shndx,
8280 prelocs,
8281 reloc_count,
8282 output_section,
8283 needs_special_offset_handling,
8284 local_symbol_count,
8285 plocal_symbols,
8286 rr);
8287 }
8288
8289 // Scan the relocs for --emit-relocs.
8290
8291 template<int size, bool big_endian>
8292 void
8293 Target_powerpc<size, big_endian>::emit_relocs_scan(
8294 Symbol_table* symtab,
8295 Layout* layout,
8296 Sized_relobj_file<size, big_endian>* object,
8297 unsigned int data_shndx,
8298 unsigned int sh_type,
8299 const unsigned char* prelocs,
8300 size_t reloc_count,
8301 Output_section* output_section,
8302 bool needs_special_offset_handling,
8303 size_t local_symbol_count,
8304 const unsigned char* plocal_syms,
8305 Relocatable_relocs* rr)
8306 {
8307 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8308 Classify_reloc;
8309 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8310 Emit_relocs_strategy;
8311
8312 gold_assert(sh_type == elfcpp::SHT_RELA);
8313
8314 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8315 symtab,
8316 layout,
8317 object,
8318 data_shndx,
8319 prelocs,
8320 reloc_count,
8321 output_section,
8322 needs_special_offset_handling,
8323 local_symbol_count,
8324 plocal_syms,
8325 rr);
8326 }
8327
8328 // Emit relocations for a section.
8329 // This is a modified version of the function by the same name in
8330 // target-reloc.h. Using relocate_special_relocatable for
8331 // R_PPC_PLTREL24 would require duplication of the entire body of the
8332 // loop, so we may as well duplicate the whole thing.
8333
8334 template<int size, bool big_endian>
8335 void
8336 Target_powerpc<size, big_endian>::relocate_relocs(
8337 const Relocate_info<size, big_endian>* relinfo,
8338 unsigned int sh_type,
8339 const unsigned char* prelocs,
8340 size_t reloc_count,
8341 Output_section* output_section,
8342 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8343 unsigned char*,
8344 Address view_address,
8345 section_size_type,
8346 unsigned char* reloc_view,
8347 section_size_type reloc_view_size)
8348 {
8349 gold_assert(sh_type == elfcpp::SHT_RELA);
8350
8351 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8352 Reltype;
8353 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8354 Reltype_write;
8355 const int reloc_size
8356 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8357 // Offset from start of insn to d-field reloc.
8358 const int d_offset = big_endian ? 2 : 0;
8359
8360 Powerpc_relobj<size, big_endian>* const object
8361 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8362 const unsigned int local_count = object->local_symbol_count();
8363 unsigned int got2_shndx = object->got2_shndx();
8364 Address got2_addend = 0;
8365 if (got2_shndx != 0)
8366 {
8367 got2_addend = object->get_output_section_offset(got2_shndx);
8368 gold_assert(got2_addend != invalid_address);
8369 }
8370
8371 unsigned char* pwrite = reloc_view;
8372 bool zap_next = false;
8373 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8374 {
8375 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8376 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8377 continue;
8378
8379 Reltype reloc(prelocs);
8380 Reltype_write reloc_write(pwrite);
8381
8382 Address offset = reloc.get_r_offset();
8383 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8384 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8385 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8386 const unsigned int orig_r_sym = r_sym;
8387 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8388 = reloc.get_r_addend();
8389 const Symbol* gsym = NULL;
8390
8391 if (zap_next)
8392 {
8393 // We could arrange to discard these and other relocs for
8394 // tls optimised sequences in the strategy methods, but for
8395 // now do as BFD ld does.
8396 r_type = elfcpp::R_POWERPC_NONE;
8397 zap_next = false;
8398 }
8399
8400 // Get the new symbol index.
8401 Output_section* os = NULL;
8402 if (r_sym < local_count)
8403 {
8404 switch (strategy)
8405 {
8406 case Relocatable_relocs::RELOC_COPY:
8407 case Relocatable_relocs::RELOC_SPECIAL:
8408 if (r_sym != 0)
8409 {
8410 r_sym = object->symtab_index(r_sym);
8411 gold_assert(r_sym != -1U);
8412 }
8413 break;
8414
8415 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8416 {
8417 // We are adjusting a section symbol. We need to find
8418 // the symbol table index of the section symbol for
8419 // the output section corresponding to input section
8420 // in which this symbol is defined.
8421 gold_assert(r_sym < local_count);
8422 bool is_ordinary;
8423 unsigned int shndx =
8424 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8425 gold_assert(is_ordinary);
8426 os = object->output_section(shndx);
8427 gold_assert(os != NULL);
8428 gold_assert(os->needs_symtab_index());
8429 r_sym = os->symtab_index();
8430 }
8431 break;
8432
8433 default:
8434 gold_unreachable();
8435 }
8436 }
8437 else
8438 {
8439 gsym = object->global_symbol(r_sym);
8440 gold_assert(gsym != NULL);
8441 if (gsym->is_forwarder())
8442 gsym = relinfo->symtab->resolve_forwards(gsym);
8443
8444 gold_assert(gsym->has_symtab_index());
8445 r_sym = gsym->symtab_index();
8446 }
8447
8448 // Get the new offset--the location in the output section where
8449 // this relocation should be applied.
8450 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8451 offset += offset_in_output_section;
8452 else
8453 {
8454 section_offset_type sot_offset =
8455 convert_types<section_offset_type, Address>(offset);
8456 section_offset_type new_sot_offset =
8457 output_section->output_offset(object, relinfo->data_shndx,
8458 sot_offset);
8459 gold_assert(new_sot_offset != -1);
8460 offset = new_sot_offset;
8461 }
8462
8463 // In an object file, r_offset is an offset within the section.
8464 // In an executable or dynamic object, generated by
8465 // --emit-relocs, r_offset is an absolute address.
8466 if (!parameters->options().relocatable())
8467 {
8468 offset += view_address;
8469 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8470 offset -= offset_in_output_section;
8471 }
8472
8473 // Handle the reloc addend based on the strategy.
8474 if (strategy == Relocatable_relocs::RELOC_COPY)
8475 ;
8476 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8477 {
8478 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8479 gold_assert(os != NULL);
8480 addend = psymval->value(object, addend) - os->address();
8481 }
8482 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8483 {
8484 if (size == 32)
8485 {
8486 if (addend >= 32768)
8487 addend += got2_addend;
8488 }
8489 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8490 {
8491 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8492 addend -= d_offset;
8493 }
8494 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8495 {
8496 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8497 addend -= d_offset + 4;
8498 }
8499 }
8500 else
8501 gold_unreachable();
8502
8503 if (!parameters->options().relocatable())
8504 {
8505 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8506 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8507 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8508 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8509 {
8510 // First instruction of a global dynamic sequence,
8511 // arg setup insn.
8512 const bool final = gsym == NULL || gsym->final_value_is_known();
8513 switch (this->optimize_tls_gd(final))
8514 {
8515 case tls::TLSOPT_TO_IE:
8516 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8517 - elfcpp::R_POWERPC_GOT_TLSGD16);
8518 break;
8519 case tls::TLSOPT_TO_LE:
8520 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8521 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8522 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8523 else
8524 {
8525 r_type = elfcpp::R_POWERPC_NONE;
8526 offset -= d_offset;
8527 }
8528 break;
8529 default:
8530 break;
8531 }
8532 }
8533 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8534 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8535 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8536 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8537 {
8538 // First instruction of a local dynamic sequence,
8539 // arg setup insn.
8540 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8541 {
8542 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8543 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8544 {
8545 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8546 const Output_section* os = relinfo->layout->tls_segment()
8547 ->first_section();
8548 gold_assert(os != NULL);
8549 gold_assert(os->needs_symtab_index());
8550 r_sym = os->symtab_index();
8551 addend = dtp_offset;
8552 }
8553 else
8554 {
8555 r_type = elfcpp::R_POWERPC_NONE;
8556 offset -= d_offset;
8557 }
8558 }
8559 }
8560 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8561 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8562 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8563 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8564 {
8565 // First instruction of initial exec sequence.
8566 const bool final = gsym == NULL || gsym->final_value_is_known();
8567 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8568 {
8569 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8570 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8571 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8572 else
8573 {
8574 r_type = elfcpp::R_POWERPC_NONE;
8575 offset -= d_offset;
8576 }
8577 }
8578 }
8579 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8580 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8581 {
8582 // Second instruction of a global dynamic sequence,
8583 // the __tls_get_addr call
8584 const bool final = gsym == NULL || gsym->final_value_is_known();
8585 switch (this->optimize_tls_gd(final))
8586 {
8587 case tls::TLSOPT_TO_IE:
8588 r_type = elfcpp::R_POWERPC_NONE;
8589 zap_next = true;
8590 break;
8591 case tls::TLSOPT_TO_LE:
8592 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8593 offset += d_offset;
8594 zap_next = true;
8595 break;
8596 default:
8597 break;
8598 }
8599 }
8600 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8601 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8602 {
8603 // Second instruction of a local dynamic sequence,
8604 // the __tls_get_addr call
8605 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8606 {
8607 const Output_section* os = relinfo->layout->tls_segment()
8608 ->first_section();
8609 gold_assert(os != NULL);
8610 gold_assert(os->needs_symtab_index());
8611 r_sym = os->symtab_index();
8612 addend = dtp_offset;
8613 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8614 offset += d_offset;
8615 zap_next = true;
8616 }
8617 }
8618 else if (r_type == elfcpp::R_POWERPC_TLS)
8619 {
8620 // Second instruction of an initial exec sequence
8621 const bool final = gsym == NULL || gsym->final_value_is_known();
8622 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8623 {
8624 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8625 offset += d_offset;
8626 }
8627 }
8628 }
8629
8630 reloc_write.put_r_offset(offset);
8631 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8632 reloc_write.put_r_addend(addend);
8633
8634 pwrite += reloc_size;
8635 }
8636
8637 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8638 == reloc_view_size);
8639 }
8640
8641 // Return the value to use for a dynamic symbol which requires special
8642 // treatment. This is how we support equality comparisons of function
8643 // pointers across shared library boundaries, as described in the
8644 // processor specific ABI supplement.
8645
8646 template<int size, bool big_endian>
8647 uint64_t
8648 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8649 {
8650 if (size == 32)
8651 {
8652 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8653 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8654 p != this->stub_tables_.end();
8655 ++p)
8656 {
8657 Address off = (*p)->find_plt_call_entry(gsym);
8658 if (off != invalid_address)
8659 return (*p)->stub_address() + off;
8660 }
8661 }
8662 else if (this->abiversion() >= 2)
8663 {
8664 Address off = this->glink_section()->find_global_entry(gsym);
8665 if (off != invalid_address)
8666 return this->glink_section()->global_entry_address() + off;
8667 }
8668 gold_unreachable();
8669 }
8670
8671 // Return the PLT address to use for a local symbol.
8672 template<int size, bool big_endian>
8673 uint64_t
8674 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8675 const Relobj* object,
8676 unsigned int symndx) const
8677 {
8678 if (size == 32)
8679 {
8680 const Sized_relobj<size, big_endian>* relobj
8681 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8682 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8683 p != this->stub_tables_.end();
8684 ++p)
8685 {
8686 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8687 symndx);
8688 if (off != invalid_address)
8689 return (*p)->stub_address() + off;
8690 }
8691 }
8692 gold_unreachable();
8693 }
8694
8695 // Return the PLT address to use for a global symbol.
8696 template<int size, bool big_endian>
8697 uint64_t
8698 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8699 const Symbol* gsym) const
8700 {
8701 if (size == 32)
8702 {
8703 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8704 p != this->stub_tables_.end();
8705 ++p)
8706 {
8707 Address off = (*p)->find_plt_call_entry(gsym);
8708 if (off != invalid_address)
8709 return (*p)->stub_address() + off;
8710 }
8711 }
8712 else if (this->abiversion() >= 2)
8713 {
8714 Address off = this->glink_section()->find_global_entry(gsym);
8715 if (off != invalid_address)
8716 return this->glink_section()->global_entry_address() + off;
8717 }
8718 gold_unreachable();
8719 }
8720
8721 // Return the offset to use for the GOT_INDX'th got entry which is
8722 // for a local tls symbol specified by OBJECT, SYMNDX.
8723 template<int size, bool big_endian>
8724 int64_t
8725 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8726 const Relobj* object,
8727 unsigned int symndx,
8728 unsigned int got_indx) const
8729 {
8730 const Powerpc_relobj<size, big_endian>* ppc_object
8731 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8732 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8733 {
8734 for (Got_type got_type = GOT_TYPE_TLSGD;
8735 got_type <= GOT_TYPE_TPREL;
8736 got_type = Got_type(got_type + 1))
8737 if (ppc_object->local_has_got_offset(symndx, got_type))
8738 {
8739 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8740 if (got_type == GOT_TYPE_TLSGD)
8741 off += size / 8;
8742 if (off == got_indx * (size / 8))
8743 {
8744 if (got_type == GOT_TYPE_TPREL)
8745 return -tp_offset;
8746 else
8747 return -dtp_offset;
8748 }
8749 }
8750 }
8751 gold_unreachable();
8752 }
8753
8754 // Return the offset to use for the GOT_INDX'th got entry which is
8755 // for global tls symbol GSYM.
8756 template<int size, bool big_endian>
8757 int64_t
8758 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8759 Symbol* gsym,
8760 unsigned int got_indx) const
8761 {
8762 if (gsym->type() == elfcpp::STT_TLS)
8763 {
8764 for (Got_type got_type = GOT_TYPE_TLSGD;
8765 got_type <= GOT_TYPE_TPREL;
8766 got_type = Got_type(got_type + 1))
8767 if (gsym->has_got_offset(got_type))
8768 {
8769 unsigned int off = gsym->got_offset(got_type);
8770 if (got_type == GOT_TYPE_TLSGD)
8771 off += size / 8;
8772 if (off == got_indx * (size / 8))
8773 {
8774 if (got_type == GOT_TYPE_TPREL)
8775 return -tp_offset;
8776 else
8777 return -dtp_offset;
8778 }
8779 }
8780 }
8781 gold_unreachable();
8782 }
8783
8784 // The selector for powerpc object files.
8785
8786 template<int size, bool big_endian>
8787 class Target_selector_powerpc : public Target_selector
8788 {
8789 public:
8790 Target_selector_powerpc()
8791 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8792 size, big_endian,
8793 (size == 64
8794 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8795 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8796 (size == 64
8797 ? (big_endian ? "elf64ppc" : "elf64lppc")
8798 : (big_endian ? "elf32ppc" : "elf32lppc")))
8799 { }
8800
8801 virtual Target*
8802 do_instantiate_target()
8803 { return new Target_powerpc<size, big_endian>(); }
8804 };
8805
8806 Target_selector_powerpc<32, true> target_selector_ppc32;
8807 Target_selector_powerpc<32, false> target_selector_ppc32le;
8808 Target_selector_powerpc<64, true> target_selector_ppc64;
8809 Target_selector_powerpc<64, false> target_selector_ppc64le;
8810
8811 // Instantiate these constants for -O0
8812 template<int size, bool big_endian>
8813 const int Output_data_glink<size, big_endian>::pltresolve_size;
8814 template<int size, bool big_endian>
8815 const typename Output_data_glink<size, big_endian>::Address
8816 Output_data_glink<size, big_endian>::invalid_address;
8817 template<int size, bool big_endian>
8818 const typename Stub_table<size, big_endian>::Address
8819 Stub_table<size, big_endian>::invalid_address;
8820 template<int size, bool big_endian>
8821 const typename Target_powerpc<size, big_endian>::Address
8822 Target_powerpc<size, big_endian>::invalid_address;
8823
8824 } // End anonymous namespace.
This page took 0.200206 seconds and 5 git commands to generate.