[GOLD] R_PPC64_ENTRY support
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 unsigned char* view, section_size_type view_size,
635 std::string* from, std::string* to) const;
636
637 // Relocate a section.
638 void
639 relocate_section(const Relocate_info<size, big_endian>*,
640 unsigned int sh_type,
641 const unsigned char* prelocs,
642 size_t reloc_count,
643 Output_section* output_section,
644 bool needs_special_offset_handling,
645 unsigned char* view,
646 Address view_address,
647 section_size_type view_size,
648 const Reloc_symbol_changes*);
649
650 // Scan the relocs during a relocatable link.
651 void
652 scan_relocatable_relocs(Symbol_table* symtab,
653 Layout* layout,
654 Sized_relobj_file<size, big_endian>* object,
655 unsigned int data_shndx,
656 unsigned int sh_type,
657 const unsigned char* prelocs,
658 size_t reloc_count,
659 Output_section* output_section,
660 bool needs_special_offset_handling,
661 size_t local_symbol_count,
662 const unsigned char* plocal_symbols,
663 Relocatable_relocs*);
664
665 // Emit relocations for a section.
666 void
667 relocate_relocs(const Relocate_info<size, big_endian>*,
668 unsigned int sh_type,
669 const unsigned char* prelocs,
670 size_t reloc_count,
671 Output_section* output_section,
672 typename elfcpp::Elf_types<size>::Elf_Off
673 offset_in_output_section,
674 const Relocatable_relocs*,
675 unsigned char*,
676 Address view_address,
677 section_size_type,
678 unsigned char* reloc_view,
679 section_size_type reloc_view_size);
680
681 // Return whether SYM is defined by the ABI.
682 bool
683 do_is_defined_by_abi(const Symbol* sym) const
684 {
685 return strcmp(sym->name(), "__tls_get_addr") == 0;
686 }
687
688 // Return the size of the GOT section.
689 section_size_type
690 got_size() const
691 {
692 gold_assert(this->got_ != NULL);
693 return this->got_->data_size();
694 }
695
696 // Get the PLT section.
697 const Output_data_plt_powerpc<size, big_endian>*
698 plt_section() const
699 {
700 gold_assert(this->plt_ != NULL);
701 return this->plt_;
702 }
703
704 // Get the IPLT section.
705 const Output_data_plt_powerpc<size, big_endian>*
706 iplt_section() const
707 {
708 gold_assert(this->iplt_ != NULL);
709 return this->iplt_;
710 }
711
712 // Get the .glink section.
713 const Output_data_glink<size, big_endian>*
714 glink_section() const
715 {
716 gold_assert(this->glink_ != NULL);
717 return this->glink_;
718 }
719
720 Output_data_glink<size, big_endian>*
721 glink_section()
722 {
723 gold_assert(this->glink_ != NULL);
724 return this->glink_;
725 }
726
727 bool has_glink() const
728 { return this->glink_ != NULL; }
729
730 // Get the GOT section.
731 const Output_data_got_powerpc<size, big_endian>*
732 got_section() const
733 {
734 gold_assert(this->got_ != NULL);
735 return this->got_;
736 }
737
738 // Get the GOT section, creating it if necessary.
739 Output_data_got_powerpc<size, big_endian>*
740 got_section(Symbol_table*, Layout*);
741
742 Object*
743 do_make_elf_object(const std::string&, Input_file*, off_t,
744 const elfcpp::Ehdr<size, big_endian>&);
745
746 // Return the number of entries in the GOT.
747 unsigned int
748 got_entry_count() const
749 {
750 if (this->got_ == NULL)
751 return 0;
752 return this->got_size() / (size / 8);
753 }
754
755 // Return the number of entries in the PLT.
756 unsigned int
757 plt_entry_count() const;
758
759 // Return the offset of the first non-reserved PLT entry.
760 unsigned int
761 first_plt_entry_offset() const
762 {
763 if (size == 32)
764 return 0;
765 if (this->abiversion() >= 2)
766 return 16;
767 return 24;
768 }
769
770 // Return the size of each PLT entry.
771 unsigned int
772 plt_entry_size() const
773 {
774 if (size == 32)
775 return 4;
776 if (this->abiversion() >= 2)
777 return 8;
778 return 24;
779 }
780
781 Output_data_save_res<size, big_endian>*
782 savres_section() const
783 {
784 return this->savres_section_;
785 }
786
787 // Add any special sections for this symbol to the gc work list.
788 // For powerpc64, this adds the code section of a function
789 // descriptor.
790 void
791 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793 // Handle target specific gc actions when adding a gc reference from
794 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795 // and DST_OFF. For powerpc64, this adds a referenc to the code
796 // section of a function descriptor.
797 void
798 do_gc_add_reference(Symbol_table* symtab,
799 Relobj* src_obj,
800 unsigned int src_shndx,
801 Relobj* dst_obj,
802 unsigned int dst_shndx,
803 Address dst_off) const;
804
805 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806 const Stub_tables&
807 stub_tables() const
808 { return this->stub_tables_; }
809
810 const Output_data_brlt_powerpc<size, big_endian>*
811 brlt_section() const
812 { return this->brlt_section_; }
813
814 void
815 add_branch_lookup_table(Address to)
816 {
817 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818 this->branch_lookup_table_.insert(std::make_pair(to, off));
819 }
820
821 Address
822 find_branch_lookup_table(Address to)
823 {
824 typename Branch_lookup_table::const_iterator p
825 = this->branch_lookup_table_.find(to);
826 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827 }
828
829 void
830 write_branch_lookup_table(unsigned char *oview)
831 {
832 for (typename Branch_lookup_table::const_iterator p
833 = this->branch_lookup_table_.begin();
834 p != this->branch_lookup_table_.end();
835 ++p)
836 {
837 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838 }
839 }
840
841 bool
842 plt_thread_safe() const
843 { return this->plt_thread_safe_; }
844
845 int
846 abiversion () const
847 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849 void
850 set_abiversion (int ver)
851 {
852 elfcpp::Elf_Word flags = this->processor_specific_flags();
853 flags &= ~elfcpp::EF_PPC64_ABI;
854 flags |= ver & elfcpp::EF_PPC64_ABI;
855 this->set_processor_specific_flags(flags);
856 }
857
858 // Offset to to save stack slot
859 int
860 stk_toc () const
861 { return this->abiversion() < 2 ? 40 : 24; }
862
863 private:
864
865 class Track_tls
866 {
867 public:
868 enum Tls_get_addr
869 {
870 NOT_EXPECTED = 0,
871 EXPECTED = 1,
872 SKIP = 2,
873 NORMAL = 3
874 };
875
876 Track_tls()
877 : tls_get_addr_(NOT_EXPECTED),
878 relinfo_(NULL), relnum_(0), r_offset_(0)
879 { }
880
881 ~Track_tls()
882 {
883 if (this->tls_get_addr_ != NOT_EXPECTED)
884 this->missing();
885 }
886
887 void
888 missing(void)
889 {
890 if (this->relinfo_ != NULL)
891 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892 _("missing expected __tls_get_addr call"));
893 }
894
895 void
896 expect_tls_get_addr_call(
897 const Relocate_info<size, big_endian>* relinfo,
898 size_t relnum,
899 Address r_offset)
900 {
901 this->tls_get_addr_ = EXPECTED;
902 this->relinfo_ = relinfo;
903 this->relnum_ = relnum;
904 this->r_offset_ = r_offset;
905 }
906
907 void
908 expect_tls_get_addr_call()
909 { this->tls_get_addr_ = EXPECTED; }
910
911 void
912 skip_next_tls_get_addr_call()
913 {this->tls_get_addr_ = SKIP; }
914
915 Tls_get_addr
916 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917 {
918 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919 || r_type == elfcpp::R_PPC_PLTREL24)
920 && gsym != NULL
921 && strcmp(gsym->name(), "__tls_get_addr") == 0);
922 Tls_get_addr last_tls = this->tls_get_addr_;
923 this->tls_get_addr_ = NOT_EXPECTED;
924 if (is_tls_call && last_tls != EXPECTED)
925 return last_tls;
926 else if (!is_tls_call && last_tls != NOT_EXPECTED)
927 {
928 this->missing();
929 return EXPECTED;
930 }
931 return NORMAL;
932 }
933
934 private:
935 // What we're up to regarding calls to __tls_get_addr.
936 // On powerpc, the branch and link insn making a call to
937 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940 // The marker relocation always comes first, and has the same
941 // symbol as the reloc on the insn setting up the __tls_get_addr
942 // argument. This ties the arg setup insn with the call insn,
943 // allowing ld to safely optimize away the call. We check that
944 // every call to __tls_get_addr has a marker relocation, and that
945 // every marker relocation is on a call to __tls_get_addr.
946 Tls_get_addr tls_get_addr_;
947 // Info about the last reloc for error message.
948 const Relocate_info<size, big_endian>* relinfo_;
949 size_t relnum_;
950 Address r_offset_;
951 };
952
953 // The class which scans relocations.
954 class Scan : protected Track_tls
955 {
956 public:
957 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959 Scan()
960 : Track_tls(), issued_non_pic_error_(false)
961 { }
962
963 static inline int
964 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966 inline void
967 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968 Sized_relobj_file<size, big_endian>* object,
969 unsigned int data_shndx,
970 Output_section* output_section,
971 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972 const elfcpp::Sym<size, big_endian>& lsym,
973 bool is_discarded);
974
975 inline void
976 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977 Sized_relobj_file<size, big_endian>* object,
978 unsigned int data_shndx,
979 Output_section* output_section,
980 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981 Symbol* gsym);
982
983 inline bool
984 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985 Target_powerpc* ,
986 Sized_relobj_file<size, big_endian>* relobj,
987 unsigned int ,
988 Output_section* ,
989 const elfcpp::Rela<size, big_endian>& ,
990 unsigned int r_type,
991 const elfcpp::Sym<size, big_endian>&)
992 {
993 // PowerPC64 .opd is not folded, so any identical function text
994 // may be folded and we'll still keep function addresses distinct.
995 // That means no reloc is of concern here.
996 if (size == 64)
997 {
998 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999 <Powerpc_relobj<size, big_endian>*>(relobj);
1000 if (ppcobj->abiversion() == 1)
1001 return false;
1002 }
1003 // For 32-bit and ELFv2, conservatively assume anything but calls to
1004 // function code might be taking the address of the function.
1005 return !is_branch_reloc(r_type);
1006 }
1007
1008 inline bool
1009 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010 Target_powerpc* ,
1011 Sized_relobj_file<size, big_endian>* relobj,
1012 unsigned int ,
1013 Output_section* ,
1014 const elfcpp::Rela<size, big_endian>& ,
1015 unsigned int r_type,
1016 Symbol*)
1017 {
1018 // As above.
1019 if (size == 64)
1020 {
1021 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022 <Powerpc_relobj<size, big_endian>*>(relobj);
1023 if (ppcobj->abiversion() == 1)
1024 return false;
1025 }
1026 return !is_branch_reloc(r_type);
1027 }
1028
1029 static bool
1030 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031 Sized_relobj_file<size, big_endian>* object,
1032 unsigned int r_type, bool report_err);
1033
1034 private:
1035 static void
1036 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037 unsigned int r_type);
1038
1039 static void
1040 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041 unsigned int r_type, Symbol*);
1042
1043 static void
1044 generate_tls_call(Symbol_table* symtab, Layout* layout,
1045 Target_powerpc* target);
1046
1047 void
1048 check_non_pic(Relobj*, unsigned int r_type);
1049
1050 // Whether we have issued an error about a non-PIC compilation.
1051 bool issued_non_pic_error_;
1052 };
1053
1054 bool
1055 symval_for_branch(const Symbol_table* symtab,
1056 const Sized_symbol<size>* gsym,
1057 Powerpc_relobj<size, big_endian>* object,
1058 Address *value, unsigned int *dest_shndx);
1059
1060 // The class which implements relocation.
1061 class Relocate : protected Track_tls
1062 {
1063 public:
1064 // Use 'at' branch hints when true, 'y' when false.
1065 // FIXME maybe: set this with an option.
1066 static const bool is_isa_v2 = true;
1067
1068 Relocate()
1069 : Track_tls()
1070 { }
1071
1072 // Do a relocation. Return false if the caller should not issue
1073 // any warnings about this relocation.
1074 inline bool
1075 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076 Output_section*, size_t relnum,
1077 const elfcpp::Rela<size, big_endian>&,
1078 unsigned int r_type, const Sized_symbol<size>*,
1079 const Symbol_value<size>*,
1080 unsigned char*,
1081 typename elfcpp::Elf_types<size>::Elf_Addr,
1082 section_size_type);
1083 };
1084
1085 class Relocate_comdat_behavior
1086 {
1087 public:
1088 // Decide what the linker should do for relocations that refer to
1089 // discarded comdat sections.
1090 inline Comdat_behavior
1091 get(const char* name)
1092 {
1093 gold::Default_comdat_behavior default_behavior;
1094 Comdat_behavior ret = default_behavior.get(name);
1095 if (ret == CB_WARNING)
1096 {
1097 if (size == 32
1098 && (strcmp(name, ".fixup") == 0
1099 || strcmp(name, ".got2") == 0))
1100 ret = CB_IGNORE;
1101 if (size == 64
1102 && (strcmp(name, ".opd") == 0
1103 || strcmp(name, ".toc") == 0
1104 || strcmp(name, ".toc1") == 0))
1105 ret = CB_IGNORE;
1106 }
1107 return ret;
1108 }
1109 };
1110
1111 // A class which returns the size required for a relocation type,
1112 // used while scanning relocs during a relocatable link.
1113 class Relocatable_size_for_reloc
1114 {
1115 public:
1116 unsigned int
1117 get_size_for_reloc(unsigned int, Relobj*)
1118 {
1119 gold_unreachable();
1120 return 0;
1121 }
1122 };
1123
1124 // Optimize the TLS relocation type based on what we know about the
1125 // symbol. IS_FINAL is true if the final address of this symbol is
1126 // known at link time.
1127
1128 tls::Tls_optimization
1129 optimize_tls_gd(bool is_final)
1130 {
1131 // If we are generating a shared library, then we can't do anything
1132 // in the linker.
1133 if (parameters->options().shared())
1134 return tls::TLSOPT_NONE;
1135
1136 if (!is_final)
1137 return tls::TLSOPT_TO_IE;
1138 return tls::TLSOPT_TO_LE;
1139 }
1140
1141 tls::Tls_optimization
1142 optimize_tls_ld()
1143 {
1144 if (parameters->options().shared())
1145 return tls::TLSOPT_NONE;
1146
1147 return tls::TLSOPT_TO_LE;
1148 }
1149
1150 tls::Tls_optimization
1151 optimize_tls_ie(bool is_final)
1152 {
1153 if (!is_final || parameters->options().shared())
1154 return tls::TLSOPT_NONE;
1155
1156 return tls::TLSOPT_TO_LE;
1157 }
1158
1159 // Create glink.
1160 void
1161 make_glink_section(Layout*);
1162
1163 // Create the PLT section.
1164 void
1165 make_plt_section(Symbol_table*, Layout*);
1166
1167 void
1168 make_iplt_section(Symbol_table*, Layout*);
1169
1170 void
1171 make_brlt_section(Layout*);
1172
1173 // Create a PLT entry for a global symbol.
1174 void
1175 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177 // Create a PLT entry for a local IFUNC symbol.
1178 void
1179 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180 Sized_relobj_file<size, big_endian>*,
1181 unsigned int);
1182
1183
1184 // Create a GOT entry for local dynamic __tls_get_addr.
1185 unsigned int
1186 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187 Sized_relobj_file<size, big_endian>* object);
1188
1189 unsigned int
1190 tlsld_got_offset() const
1191 {
1192 return this->tlsld_got_offset_;
1193 }
1194
1195 // Get the dynamic reloc section, creating it if necessary.
1196 Reloc_section*
1197 rela_dyn_section(Layout*);
1198
1199 // Similarly, but for ifunc symbols get the one for ifunc.
1200 Reloc_section*
1201 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203 // Copy a relocation against a global symbol.
1204 void
1205 copy_reloc(Symbol_table* symtab, Layout* layout,
1206 Sized_relobj_file<size, big_endian>* object,
1207 unsigned int shndx, Output_section* output_section,
1208 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209 {
1210 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1211 this->copy_relocs_.copy_reloc(symtab, layout,
1212 symtab->get_sized_symbol<size>(sym),
1213 object, shndx, output_section,
1214 r_type, reloc.get_r_offset(),
1215 reloc.get_r_addend(),
1216 this->rela_dyn_section(layout));
1217 }
1218
1219 // Look over all the input sections, deciding where to place stubs.
1220 void
1221 group_sections(Layout*, const Task*, bool);
1222
1223 // Sort output sections by address.
1224 struct Sort_sections
1225 {
1226 bool
1227 operator()(const Output_section* sec1, const Output_section* sec2)
1228 { return sec1->address() < sec2->address(); }
1229 };
1230
1231 class Branch_info
1232 {
1233 public:
1234 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1235 unsigned int data_shndx,
1236 Address r_offset,
1237 unsigned int r_type,
1238 unsigned int r_sym,
1239 Address addend)
1240 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1241 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1242 { }
1243
1244 ~Branch_info()
1245 { }
1246
1247 // If this branch needs a plt call stub, or a long branch stub, make one.
1248 bool
1249 make_stub(Stub_table<size, big_endian>*,
1250 Stub_table<size, big_endian>*,
1251 Symbol_table*) const;
1252
1253 private:
1254 // The branch location..
1255 Powerpc_relobj<size, big_endian>* object_;
1256 unsigned int shndx_;
1257 Address offset_;
1258 // ..and the branch type and destination.
1259 unsigned int r_type_;
1260 unsigned int r_sym_;
1261 Address addend_;
1262 };
1263
1264 // Information about this specific target which we pass to the
1265 // general Target structure.
1266 static Target::Target_info powerpc_info;
1267
1268 // The types of GOT entries needed for this platform.
1269 // These values are exposed to the ABI in an incremental link.
1270 // Do not renumber existing values without changing the version
1271 // number of the .gnu_incremental_inputs section.
1272 enum Got_type
1273 {
1274 GOT_TYPE_STANDARD,
1275 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1276 GOT_TYPE_DTPREL, // entry for @got@dtprel
1277 GOT_TYPE_TPREL // entry for @got@tprel
1278 };
1279
1280 // The GOT section.
1281 Output_data_got_powerpc<size, big_endian>* got_;
1282 // The PLT section. This is a container for a table of addresses,
1283 // and their relocations. Each address in the PLT has a dynamic
1284 // relocation (R_*_JMP_SLOT) and each address will have a
1285 // corresponding entry in .glink for lazy resolution of the PLT.
1286 // ppc32 initialises the PLT to point at the .glink entry, while
1287 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1288 // linker adds a stub that loads the PLT entry into ctr then
1289 // branches to ctr. There may be more than one stub for each PLT
1290 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1291 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1292 Output_data_plt_powerpc<size, big_endian>* plt_;
1293 // The IPLT section. Like plt_, this is a container for a table of
1294 // addresses and their relocations, specifically for STT_GNU_IFUNC
1295 // functions that resolve locally (STT_GNU_IFUNC functions that
1296 // don't resolve locally go in PLT). Unlike plt_, these have no
1297 // entry in .glink for lazy resolution, and the relocation section
1298 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1299 // the relocation section may contain relocations against
1300 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1301 // relocation section will appear at the end of other dynamic
1302 // relocations, so that ld.so applies these relocations after other
1303 // dynamic relocations. In a static executable, the relocation
1304 // section is emitted and marked with __rela_iplt_start and
1305 // __rela_iplt_end symbols.
1306 Output_data_plt_powerpc<size, big_endian>* iplt_;
1307 // Section holding long branch destinations.
1308 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1309 // The .glink section.
1310 Output_data_glink<size, big_endian>* glink_;
1311 // The dynamic reloc section.
1312 Reloc_section* rela_dyn_;
1313 // Relocs saved to avoid a COPY reloc.
1314 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1315 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1316 unsigned int tlsld_got_offset_;
1317
1318 Stub_tables stub_tables_;
1319 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1320 Branch_lookup_table branch_lookup_table_;
1321
1322 typedef std::vector<Branch_info> Branches;
1323 Branches branch_info_;
1324
1325 bool plt_thread_safe_;
1326
1327 bool relax_failed_;
1328 int relax_fail_count_;
1329 int32_t stub_group_size_;
1330
1331 Output_data_save_res<size, big_endian> *savres_section_;
1332 };
1333
1334 template<>
1335 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1336 {
1337 32, // size
1338 true, // is_big_endian
1339 elfcpp::EM_PPC, // machine_code
1340 false, // has_make_symbol
1341 false, // has_resolve
1342 false, // has_code_fill
1343 true, // is_default_stack_executable
1344 false, // can_icf_inline_merge_sections
1345 '\0', // wrap_char
1346 "/usr/lib/ld.so.1", // dynamic_linker
1347 0x10000000, // default_text_segment_address
1348 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1349 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1350 false, // isolate_execinstr
1351 0, // rosegment_gap
1352 elfcpp::SHN_UNDEF, // small_common_shndx
1353 elfcpp::SHN_UNDEF, // large_common_shndx
1354 0, // small_common_section_flags
1355 0, // large_common_section_flags
1356 NULL, // attributes_section
1357 NULL, // attributes_vendor
1358 "_start", // entry_symbol_name
1359 32, // hash_entry_size
1360 };
1361
1362 template<>
1363 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1364 {
1365 32, // size
1366 false, // is_big_endian
1367 elfcpp::EM_PPC, // machine_code
1368 false, // has_make_symbol
1369 false, // has_resolve
1370 false, // has_code_fill
1371 true, // is_default_stack_executable
1372 false, // can_icf_inline_merge_sections
1373 '\0', // wrap_char
1374 "/usr/lib/ld.so.1", // dynamic_linker
1375 0x10000000, // default_text_segment_address
1376 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1377 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1378 false, // isolate_execinstr
1379 0, // rosegment_gap
1380 elfcpp::SHN_UNDEF, // small_common_shndx
1381 elfcpp::SHN_UNDEF, // large_common_shndx
1382 0, // small_common_section_flags
1383 0, // large_common_section_flags
1384 NULL, // attributes_section
1385 NULL, // attributes_vendor
1386 "_start", // entry_symbol_name
1387 32, // hash_entry_size
1388 };
1389
1390 template<>
1391 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1392 {
1393 64, // size
1394 true, // is_big_endian
1395 elfcpp::EM_PPC64, // machine_code
1396 false, // has_make_symbol
1397 false, // has_resolve
1398 false, // has_code_fill
1399 true, // is_default_stack_executable
1400 false, // can_icf_inline_merge_sections
1401 '\0', // wrap_char
1402 "/usr/lib/ld.so.1", // dynamic_linker
1403 0x10000000, // default_text_segment_address
1404 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1405 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1406 false, // isolate_execinstr
1407 0, // rosegment_gap
1408 elfcpp::SHN_UNDEF, // small_common_shndx
1409 elfcpp::SHN_UNDEF, // large_common_shndx
1410 0, // small_common_section_flags
1411 0, // large_common_section_flags
1412 NULL, // attributes_section
1413 NULL, // attributes_vendor
1414 "_start", // entry_symbol_name
1415 32, // hash_entry_size
1416 };
1417
1418 template<>
1419 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1420 {
1421 64, // size
1422 false, // is_big_endian
1423 elfcpp::EM_PPC64, // machine_code
1424 false, // has_make_symbol
1425 false, // has_resolve
1426 false, // has_code_fill
1427 true, // is_default_stack_executable
1428 false, // can_icf_inline_merge_sections
1429 '\0', // wrap_char
1430 "/usr/lib/ld.so.1", // dynamic_linker
1431 0x10000000, // default_text_segment_address
1432 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1433 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1434 false, // isolate_execinstr
1435 0, // rosegment_gap
1436 elfcpp::SHN_UNDEF, // small_common_shndx
1437 elfcpp::SHN_UNDEF, // large_common_shndx
1438 0, // small_common_section_flags
1439 0, // large_common_section_flags
1440 NULL, // attributes_section
1441 NULL, // attributes_vendor
1442 "_start", // entry_symbol_name
1443 32, // hash_entry_size
1444 };
1445
1446 inline bool
1447 is_branch_reloc(unsigned int r_type)
1448 {
1449 return (r_type == elfcpp::R_POWERPC_REL24
1450 || r_type == elfcpp::R_PPC_PLTREL24
1451 || r_type == elfcpp::R_PPC_LOCAL24PC
1452 || r_type == elfcpp::R_POWERPC_REL14
1453 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1454 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1455 || r_type == elfcpp::R_POWERPC_ADDR24
1456 || r_type == elfcpp::R_POWERPC_ADDR14
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1458 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1459 }
1460
1461 // If INSN is an opcode that may be used with an @tls operand, return
1462 // the transformed insn for TLS optimisation, otherwise return 0. If
1463 // REG is non-zero only match an insn with RB or RA equal to REG.
1464 uint32_t
1465 at_tls_transform(uint32_t insn, unsigned int reg)
1466 {
1467 if ((insn & (0x3f << 26)) != 31 << 26)
1468 return 0;
1469
1470 unsigned int rtra;
1471 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1472 rtra = insn & ((1 << 26) - (1 << 16));
1473 else if (((insn >> 16) & 0x1f) == reg)
1474 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1475 else
1476 return 0;
1477
1478 if ((insn & (0x3ff << 1)) == 266 << 1)
1479 // add -> addi
1480 insn = 14 << 26;
1481 else if ((insn & (0x1f << 1)) == 23 << 1
1482 && ((insn & (0x1f << 6)) < 14 << 6
1483 || ((insn & (0x1f << 6)) >= 16 << 6
1484 && (insn & (0x1f << 6)) < 24 << 6)))
1485 // load and store indexed -> dform
1486 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1487 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1488 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1489 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1490 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1491 // lwax -> lwa
1492 insn = (58 << 26) | 2;
1493 else
1494 return 0;
1495 insn |= rtra;
1496 return insn;
1497 }
1498
1499
1500 template<int size, bool big_endian>
1501 class Powerpc_relocate_functions
1502 {
1503 public:
1504 enum Overflow_check
1505 {
1506 CHECK_NONE,
1507 CHECK_SIGNED,
1508 CHECK_UNSIGNED,
1509 CHECK_BITFIELD,
1510 CHECK_LOW_INSN,
1511 CHECK_HIGH_INSN
1512 };
1513
1514 enum Status
1515 {
1516 STATUS_OK,
1517 STATUS_OVERFLOW
1518 };
1519
1520 private:
1521 typedef Powerpc_relocate_functions<size, big_endian> This;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1524
1525 template<int valsize>
1526 static inline bool
1527 has_overflow_signed(Address value)
1528 {
1529 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1530 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) >> 1);
1532 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1533 return value + limit > (limit << 1) - 1;
1534 }
1535
1536 template<int valsize>
1537 static inline bool
1538 has_overflow_unsigned(Address value)
1539 {
1540 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) >> 1);
1542 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1543 return value > (limit << 1) - 1;
1544 }
1545
1546 template<int valsize>
1547 static inline bool
1548 has_overflow_bitfield(Address value)
1549 {
1550 return (has_overflow_unsigned<valsize>(value)
1551 && has_overflow_signed<valsize>(value));
1552 }
1553
1554 template<int valsize>
1555 static inline Status
1556 overflowed(Address value, Overflow_check overflow)
1557 {
1558 if (overflow == CHECK_SIGNED)
1559 {
1560 if (has_overflow_signed<valsize>(value))
1561 return STATUS_OVERFLOW;
1562 }
1563 else if (overflow == CHECK_UNSIGNED)
1564 {
1565 if (has_overflow_unsigned<valsize>(value))
1566 return STATUS_OVERFLOW;
1567 }
1568 else if (overflow == CHECK_BITFIELD)
1569 {
1570 if (has_overflow_bitfield<valsize>(value))
1571 return STATUS_OVERFLOW;
1572 }
1573 return STATUS_OK;
1574 }
1575
1576 // Do a simple RELA relocation
1577 template<int fieldsize, int valsize>
1578 static inline Status
1579 rela(unsigned char* view, Address value, Overflow_check overflow)
1580 {
1581 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1582 Valtype* wv = reinterpret_cast<Valtype*>(view);
1583 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1584 return overflowed<valsize>(value, overflow);
1585 }
1586
1587 template<int fieldsize, int valsize>
1588 static inline Status
1589 rela(unsigned char* view,
1590 unsigned int right_shift,
1591 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1592 Address value,
1593 Overflow_check overflow)
1594 {
1595 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1596 Valtype* wv = reinterpret_cast<Valtype*>(view);
1597 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1598 Valtype reloc = value >> right_shift;
1599 val &= ~dst_mask;
1600 reloc &= dst_mask;
1601 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1602 return overflowed<valsize>(value >> right_shift, overflow);
1603 }
1604
1605 // Do a simple RELA relocation, unaligned.
1606 template<int fieldsize, int valsize>
1607 static inline Status
1608 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1609 {
1610 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1611 return overflowed<valsize>(value, overflow);
1612 }
1613
1614 template<int fieldsize, int valsize>
1615 static inline Status
1616 rela_ua(unsigned char* view,
1617 unsigned int right_shift,
1618 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1619 Address value,
1620 Overflow_check overflow)
1621 {
1622 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1623 Valtype;
1624 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1625 Valtype reloc = value >> right_shift;
1626 val &= ~dst_mask;
1627 reloc &= dst_mask;
1628 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1629 return overflowed<valsize>(value >> right_shift, overflow);
1630 }
1631
1632 public:
1633 // R_PPC64_ADDR64: (Symbol + Addend)
1634 static inline void
1635 addr64(unsigned char* view, Address value)
1636 { This::template rela<64,64>(view, value, CHECK_NONE); }
1637
1638 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1639 static inline void
1640 addr64_u(unsigned char* view, Address value)
1641 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1642
1643 // R_POWERPC_ADDR32: (Symbol + Addend)
1644 static inline Status
1645 addr32(unsigned char* view, Address value, Overflow_check overflow)
1646 { return This::template rela<32,32>(view, value, overflow); }
1647
1648 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1649 static inline Status
1650 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1651 { return This::template rela_ua<32,32>(view, value, overflow); }
1652
1653 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1654 static inline Status
1655 addr24(unsigned char* view, Address value, Overflow_check overflow)
1656 {
1657 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1658 value, overflow);
1659 if (overflow != CHECK_NONE && (value & 3) != 0)
1660 stat = STATUS_OVERFLOW;
1661 return stat;
1662 }
1663
1664 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1665 static inline Status
1666 addr16(unsigned char* view, Address value, Overflow_check overflow)
1667 { return This::template rela<16,16>(view, value, overflow); }
1668
1669 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1670 static inline Status
1671 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1672 { return This::template rela_ua<16,16>(view, value, overflow); }
1673
1674 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1675 static inline Status
1676 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1677 {
1678 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1679 if ((value & 3) != 0)
1680 stat = STATUS_OVERFLOW;
1681 return stat;
1682 }
1683
1684 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1685 static inline Status
1686 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1687 {
1688 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1689 if ((value & 15) != 0)
1690 stat = STATUS_OVERFLOW;
1691 return stat;
1692 }
1693
1694 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1695 static inline void
1696 addr16_hi(unsigned char* view, Address value)
1697 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1698
1699 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1700 static inline void
1701 addr16_ha(unsigned char* view, Address value)
1702 { This::addr16_hi(view, value + 0x8000); }
1703
1704 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1705 static inline void
1706 addr16_hi2(unsigned char* view, Address value)
1707 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1708
1709 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1710 static inline void
1711 addr16_ha2(unsigned char* view, Address value)
1712 { This::addr16_hi2(view, value + 0x8000); }
1713
1714 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1715 static inline void
1716 addr16_hi3(unsigned char* view, Address value)
1717 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1718
1719 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1720 static inline void
1721 addr16_ha3(unsigned char* view, Address value)
1722 { This::addr16_hi3(view, value + 0x8000); }
1723
1724 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1725 static inline Status
1726 addr14(unsigned char* view, Address value, Overflow_check overflow)
1727 {
1728 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1729 if (overflow != CHECK_NONE && (value & 3) != 0)
1730 stat = STATUS_OVERFLOW;
1731 return stat;
1732 }
1733
1734 // R_POWERPC_REL16DX_HA
1735 static inline Status
1736 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1737 {
1738 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1739 Valtype* wv = reinterpret_cast<Valtype*>(view);
1740 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1741 value += 0x8000;
1742 value = static_cast<SignedAddress>(value) >> 16;
1743 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1744 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1745 return overflowed<16>(value, overflow);
1746 }
1747 };
1748
1749 // Set ABI version for input and output.
1750
1751 template<int size, bool big_endian>
1752 void
1753 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1754 {
1755 this->e_flags_ |= ver;
1756 if (this->abiversion() != 0)
1757 {
1758 Target_powerpc<size, big_endian>* target =
1759 static_cast<Target_powerpc<size, big_endian>*>(
1760 parameters->sized_target<size, big_endian>());
1761 if (target->abiversion() == 0)
1762 target->set_abiversion(this->abiversion());
1763 else if (target->abiversion() != this->abiversion())
1764 gold_error(_("%s: ABI version %d is not compatible "
1765 "with ABI version %d output"),
1766 this->name().c_str(),
1767 this->abiversion(), target->abiversion());
1768
1769 }
1770 }
1771
1772 // Stash away the index of .got2 or .opd in a relocatable object, if
1773 // such a section exists.
1774
1775 template<int size, bool big_endian>
1776 bool
1777 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1778 Read_symbols_data* sd)
1779 {
1780 const unsigned char* const pshdrs = sd->section_headers->data();
1781 const unsigned char* namesu = sd->section_names->data();
1782 const char* names = reinterpret_cast<const char*>(namesu);
1783 section_size_type names_size = sd->section_names_size;
1784 const unsigned char* s;
1785
1786 s = this->template find_shdr<size, big_endian>(pshdrs,
1787 size == 32 ? ".got2" : ".opd",
1788 names, names_size, NULL);
1789 if (s != NULL)
1790 {
1791 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1792 this->special_ = ndx;
1793 if (size == 64)
1794 {
1795 if (this->abiversion() == 0)
1796 this->set_abiversion(1);
1797 else if (this->abiversion() > 1)
1798 gold_error(_("%s: .opd invalid in abiv%d"),
1799 this->name().c_str(), this->abiversion());
1800 }
1801 }
1802 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1803 }
1804
1805 // Examine .rela.opd to build info about function entry points.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1810 size_t reloc_count,
1811 const unsigned char* prelocs,
1812 const unsigned char* plocal_syms)
1813 {
1814 if (size == 64)
1815 {
1816 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1817 Reltype;
1818 const int reloc_size
1819 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1820 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1821 Address expected_off = 0;
1822 bool regular = true;
1823 unsigned int opd_ent_size = 0;
1824
1825 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1826 {
1827 Reltype reloc(prelocs);
1828 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1829 = reloc.get_r_info();
1830 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1831 if (r_type == elfcpp::R_PPC64_ADDR64)
1832 {
1833 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1834 typename elfcpp::Elf_types<size>::Elf_Addr value;
1835 bool is_ordinary;
1836 unsigned int shndx;
1837 if (r_sym < this->local_symbol_count())
1838 {
1839 typename elfcpp::Sym<size, big_endian>
1840 lsym(plocal_syms + r_sym * sym_size);
1841 shndx = lsym.get_st_shndx();
1842 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1843 value = lsym.get_st_value();
1844 }
1845 else
1846 shndx = this->symbol_section_and_value(r_sym, &value,
1847 &is_ordinary);
1848 this->set_opd_ent(reloc.get_r_offset(), shndx,
1849 value + reloc.get_r_addend());
1850 if (i == 2)
1851 {
1852 expected_off = reloc.get_r_offset();
1853 opd_ent_size = expected_off;
1854 }
1855 else if (expected_off != reloc.get_r_offset())
1856 regular = false;
1857 expected_off += opd_ent_size;
1858 }
1859 else if (r_type == elfcpp::R_PPC64_TOC)
1860 {
1861 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1862 regular = false;
1863 }
1864 else
1865 {
1866 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1867 this->name().c_str(), r_type);
1868 regular = false;
1869 }
1870 }
1871 if (reloc_count <= 2)
1872 opd_ent_size = this->section_size(this->opd_shndx());
1873 if (opd_ent_size != 24 && opd_ent_size != 16)
1874 regular = false;
1875 if (!regular)
1876 {
1877 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1878 this->name().c_str());
1879 opd_ent_size = 0;
1880 }
1881 }
1882 }
1883
1884 template<int size, bool big_endian>
1885 void
1886 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1887 {
1888 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1889 if (size == 64)
1890 {
1891 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1892 p != rd->relocs.end();
1893 ++p)
1894 {
1895 if (p->data_shndx == this->opd_shndx())
1896 {
1897 uint64_t opd_size = this->section_size(this->opd_shndx());
1898 gold_assert(opd_size == static_cast<size_t>(opd_size));
1899 if (opd_size != 0)
1900 {
1901 this->init_opd(opd_size);
1902 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1903 rd->local_symbols->data());
1904 }
1905 break;
1906 }
1907 }
1908 }
1909 }
1910
1911 // Read the symbols then set up st_other vector.
1912
1913 template<int size, bool big_endian>
1914 void
1915 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1916 {
1917 this->base_read_symbols(sd);
1918 if (size == 64)
1919 {
1920 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1921 const unsigned char* const pshdrs = sd->section_headers->data();
1922 const unsigned int loccount = this->do_local_symbol_count();
1923 if (loccount != 0)
1924 {
1925 this->st_other_.resize(loccount);
1926 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1927 off_t locsize = loccount * sym_size;
1928 const unsigned int symtab_shndx = this->symtab_shndx();
1929 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1930 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1931 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1932 locsize, true, false);
1933 psyms += sym_size;
1934 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1935 {
1936 elfcpp::Sym<size, big_endian> sym(psyms);
1937 unsigned char st_other = sym.get_st_other();
1938 this->st_other_[i] = st_other;
1939 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1940 {
1941 if (this->abiversion() == 0)
1942 this->set_abiversion(2);
1943 else if (this->abiversion() < 2)
1944 gold_error(_("%s: local symbol %d has invalid st_other"
1945 " for ABI version 1"),
1946 this->name().c_str(), i);
1947 }
1948 }
1949 }
1950 }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1956 {
1957 this->e_flags_ |= ver;
1958 if (this->abiversion() != 0)
1959 {
1960 Target_powerpc<size, big_endian>* target =
1961 static_cast<Target_powerpc<size, big_endian>*>(
1962 parameters->sized_target<size, big_endian>());
1963 if (target->abiversion() == 0)
1964 target->set_abiversion(this->abiversion());
1965 else if (target->abiversion() != this->abiversion())
1966 gold_error(_("%s: ABI version %d is not compatible "
1967 "with ABI version %d output"),
1968 this->name().c_str(),
1969 this->abiversion(), target->abiversion());
1970
1971 }
1972 }
1973
1974 // Call Sized_dynobj::base_read_symbols to read the symbols then
1975 // read .opd from a dynamic object, filling in opd_ent_ vector,
1976
1977 template<int size, bool big_endian>
1978 void
1979 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1980 {
1981 this->base_read_symbols(sd);
1982 if (size == 64)
1983 {
1984 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1985 const unsigned char* const pshdrs = sd->section_headers->data();
1986 const unsigned char* namesu = sd->section_names->data();
1987 const char* names = reinterpret_cast<const char*>(namesu);
1988 const unsigned char* s = NULL;
1989 const unsigned char* opd;
1990 section_size_type opd_size;
1991
1992 // Find and read .opd section.
1993 while (1)
1994 {
1995 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1996 sd->section_names_size,
1997 s);
1998 if (s == NULL)
1999 return;
2000
2001 typename elfcpp::Shdr<size, big_endian> shdr(s);
2002 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2003 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2004 {
2005 if (this->abiversion() == 0)
2006 this->set_abiversion(1);
2007 else if (this->abiversion() > 1)
2008 gold_error(_("%s: .opd invalid in abiv%d"),
2009 this->name().c_str(), this->abiversion());
2010
2011 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2012 this->opd_address_ = shdr.get_sh_addr();
2013 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2014 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2015 true, false);
2016 break;
2017 }
2018 }
2019
2020 // Build set of executable sections.
2021 // Using a set is probably overkill. There is likely to be only
2022 // a few executable sections, typically .init, .text and .fini,
2023 // and they are generally grouped together.
2024 typedef std::set<Sec_info> Exec_sections;
2025 Exec_sections exec_sections;
2026 s = pshdrs;
2027 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2028 {
2029 typename elfcpp::Shdr<size, big_endian> shdr(s);
2030 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2031 && ((shdr.get_sh_flags()
2032 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2034 && shdr.get_sh_size() != 0)
2035 {
2036 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2037 shdr.get_sh_size(), i));
2038 }
2039 }
2040 if (exec_sections.empty())
2041 return;
2042
2043 // Look over the OPD entries. This is complicated by the fact
2044 // that some binaries will use two-word entries while others
2045 // will use the standard three-word entries. In most cases
2046 // the third word (the environment pointer for languages like
2047 // Pascal) is unused and will be zero. If the third word is
2048 // used it should not be pointing into executable sections,
2049 // I think.
2050 this->init_opd(opd_size);
2051 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2052 {
2053 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2054 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2055 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2056 if (val == 0)
2057 // Chances are that this is the third word of an OPD entry.
2058 continue;
2059 typename Exec_sections::const_iterator e
2060 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2061 if (e != exec_sections.begin())
2062 {
2063 --e;
2064 if (e->start <= val && val < e->start + e->len)
2065 {
2066 // We have an address in an executable section.
2067 // VAL ought to be the function entry, set it up.
2068 this->set_opd_ent(p - opd, e->shndx, val);
2069 // Skip second word of OPD entry, the TOC pointer.
2070 p += 8;
2071 }
2072 }
2073 // If we didn't match any executable sections, we likely
2074 // have a non-zero third word in the OPD entry.
2075 }
2076 }
2077 }
2078
2079 // Set up some symbols.
2080
2081 template<int size, bool big_endian>
2082 void
2083 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2084 Symbol_table* symtab,
2085 Layout* layout)
2086 {
2087 if (size == 32)
2088 {
2089 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2090 // undefined when scanning relocs (and thus requires
2091 // non-relative dynamic relocs). The proper value will be
2092 // updated later.
2093 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2094 if (gotsym != NULL && gotsym->is_undefined())
2095 {
2096 Target_powerpc<size, big_endian>* target =
2097 static_cast<Target_powerpc<size, big_endian>*>(
2098 parameters->sized_target<size, big_endian>());
2099 Output_data_got_powerpc<size, big_endian>* got
2100 = target->got_section(symtab, layout);
2101 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2102 Symbol_table::PREDEFINED,
2103 got, 0, 0,
2104 elfcpp::STT_OBJECT,
2105 elfcpp::STB_LOCAL,
2106 elfcpp::STV_HIDDEN, 0,
2107 false, false);
2108 }
2109
2110 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2111 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2112 if (sdasym != NULL && sdasym->is_undefined())
2113 {
2114 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2115 Output_section* os
2116 = layout->add_output_section_data(".sdata", 0,
2117 elfcpp::SHF_ALLOC
2118 | elfcpp::SHF_WRITE,
2119 sdata, ORDER_SMALL_DATA, false);
2120 symtab->define_in_output_data("_SDA_BASE_", NULL,
2121 Symbol_table::PREDEFINED,
2122 os, 32768, 0, elfcpp::STT_OBJECT,
2123 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2124 0, false, false);
2125 }
2126 }
2127 else
2128 {
2129 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2130 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2131 if (gotsym != NULL && gotsym->is_undefined())
2132 {
2133 Target_powerpc<size, big_endian>* target =
2134 static_cast<Target_powerpc<size, big_endian>*>(
2135 parameters->sized_target<size, big_endian>());
2136 Output_data_got_powerpc<size, big_endian>* got
2137 = target->got_section(symtab, layout);
2138 symtab->define_in_output_data(".TOC.", NULL,
2139 Symbol_table::PREDEFINED,
2140 got, 0x8000, 0,
2141 elfcpp::STT_OBJECT,
2142 elfcpp::STB_LOCAL,
2143 elfcpp::STV_HIDDEN, 0,
2144 false, false);
2145 }
2146 }
2147 }
2148
2149 // Set up PowerPC target specific relobj.
2150
2151 template<int size, bool big_endian>
2152 Object*
2153 Target_powerpc<size, big_endian>::do_make_elf_object(
2154 const std::string& name,
2155 Input_file* input_file,
2156 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2157 {
2158 int et = ehdr.get_e_type();
2159 // ET_EXEC files are valid input for --just-symbols/-R,
2160 // and we treat them as relocatable objects.
2161 if (et == elfcpp::ET_REL
2162 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2163 {
2164 Powerpc_relobj<size, big_endian>* obj =
2165 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2166 obj->setup();
2167 return obj;
2168 }
2169 else if (et == elfcpp::ET_DYN)
2170 {
2171 Powerpc_dynobj<size, big_endian>* obj =
2172 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2173 obj->setup();
2174 return obj;
2175 }
2176 else
2177 {
2178 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2179 return NULL;
2180 }
2181 }
2182
2183 template<int size, bool big_endian>
2184 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2185 {
2186 public:
2187 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2188 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2189
2190 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2191 : Output_data_got<size, big_endian>(),
2192 symtab_(symtab), layout_(layout),
2193 header_ent_cnt_(size == 32 ? 3 : 1),
2194 header_index_(size == 32 ? 0x2000 : 0)
2195 {
2196 if (size == 64)
2197 this->set_addralign(256);
2198 }
2199
2200 // Override all the Output_data_got methods we use so as to first call
2201 // reserve_ent().
2202 bool
2203 add_global(Symbol* gsym, unsigned int got_type)
2204 {
2205 this->reserve_ent();
2206 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2207 }
2208
2209 bool
2210 add_global_plt(Symbol* gsym, unsigned int got_type)
2211 {
2212 this->reserve_ent();
2213 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2214 }
2215
2216 bool
2217 add_global_tls(Symbol* gsym, unsigned int got_type)
2218 { return this->add_global_plt(gsym, got_type); }
2219
2220 void
2221 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2222 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2223 {
2224 this->reserve_ent();
2225 Output_data_got<size, big_endian>::
2226 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2227 }
2228
2229 void
2230 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2231 Output_data_reloc_generic* rel_dyn,
2232 unsigned int r_type_1, unsigned int r_type_2)
2233 {
2234 this->reserve_ent(2);
2235 Output_data_got<size, big_endian>::
2236 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2237 }
2238
2239 bool
2240 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2241 {
2242 this->reserve_ent();
2243 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2244 got_type);
2245 }
2246
2247 bool
2248 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2249 {
2250 this->reserve_ent();
2251 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2252 got_type);
2253 }
2254
2255 bool
2256 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2257 { return this->add_local_plt(object, sym_index, got_type); }
2258
2259 void
2260 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2261 unsigned int got_type,
2262 Output_data_reloc_generic* rel_dyn,
2263 unsigned int r_type)
2264 {
2265 this->reserve_ent(2);
2266 Output_data_got<size, big_endian>::
2267 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2268 }
2269
2270 unsigned int
2271 add_constant(Valtype constant)
2272 {
2273 this->reserve_ent();
2274 return Output_data_got<size, big_endian>::add_constant(constant);
2275 }
2276
2277 unsigned int
2278 add_constant_pair(Valtype c1, Valtype c2)
2279 {
2280 this->reserve_ent(2);
2281 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2282 }
2283
2284 // Offset of _GLOBAL_OFFSET_TABLE_.
2285 unsigned int
2286 g_o_t() const
2287 {
2288 return this->got_offset(this->header_index_);
2289 }
2290
2291 // Offset of base used to access the GOT/TOC.
2292 // The got/toc pointer reg will be set to this value.
2293 Valtype
2294 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2295 {
2296 if (size == 32)
2297 return this->g_o_t();
2298 else
2299 return (this->output_section()->address()
2300 + object->toc_base_offset()
2301 - this->address());
2302 }
2303
2304 // Ensure our GOT has a header.
2305 void
2306 set_final_data_size()
2307 {
2308 if (this->header_ent_cnt_ != 0)
2309 this->make_header();
2310 Output_data_got<size, big_endian>::set_final_data_size();
2311 }
2312
2313 // First word of GOT header needs some values that are not
2314 // handled by Output_data_got so poke them in here.
2315 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2316 void
2317 do_write(Output_file* of)
2318 {
2319 Valtype val = 0;
2320 if (size == 32 && this->layout_->dynamic_data() != NULL)
2321 val = this->layout_->dynamic_section()->address();
2322 if (size == 64)
2323 val = this->output_section()->address() + 0x8000;
2324 this->replace_constant(this->header_index_, val);
2325 Output_data_got<size, big_endian>::do_write(of);
2326 }
2327
2328 private:
2329 void
2330 reserve_ent(unsigned int cnt = 1)
2331 {
2332 if (this->header_ent_cnt_ == 0)
2333 return;
2334 if (this->num_entries() + cnt > this->header_index_)
2335 this->make_header();
2336 }
2337
2338 void
2339 make_header()
2340 {
2341 this->header_ent_cnt_ = 0;
2342 this->header_index_ = this->num_entries();
2343 if (size == 32)
2344 {
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347 Output_data_got<size, big_endian>::add_constant(0);
2348
2349 // Define _GLOBAL_OFFSET_TABLE_ at the header
2350 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2351 if (gotsym != NULL)
2352 {
2353 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2354 sym->set_value(this->g_o_t());
2355 }
2356 else
2357 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2358 Symbol_table::PREDEFINED,
2359 this, this->g_o_t(), 0,
2360 elfcpp::STT_OBJECT,
2361 elfcpp::STB_LOCAL,
2362 elfcpp::STV_HIDDEN, 0,
2363 false, false);
2364 }
2365 else
2366 Output_data_got<size, big_endian>::add_constant(0);
2367 }
2368
2369 // Stashed pointers.
2370 Symbol_table* symtab_;
2371 Layout* layout_;
2372
2373 // GOT header size.
2374 unsigned int header_ent_cnt_;
2375 // GOT header index.
2376 unsigned int header_index_;
2377 };
2378
2379 // Get the GOT section, creating it if necessary.
2380
2381 template<int size, bool big_endian>
2382 Output_data_got_powerpc<size, big_endian>*
2383 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2384 Layout* layout)
2385 {
2386 if (this->got_ == NULL)
2387 {
2388 gold_assert(symtab != NULL && layout != NULL);
2389
2390 this->got_
2391 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2392
2393 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2394 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2395 this->got_, ORDER_DATA, false);
2396 }
2397
2398 return this->got_;
2399 }
2400
2401 // Get the dynamic reloc section, creating it if necessary.
2402
2403 template<int size, bool big_endian>
2404 typename Target_powerpc<size, big_endian>::Reloc_section*
2405 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2406 {
2407 if (this->rela_dyn_ == NULL)
2408 {
2409 gold_assert(layout != NULL);
2410 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2411 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2412 elfcpp::SHF_ALLOC, this->rela_dyn_,
2413 ORDER_DYNAMIC_RELOCS, false);
2414 }
2415 return this->rela_dyn_;
2416 }
2417
2418 // Similarly, but for ifunc symbols get the one for ifunc.
2419
2420 template<int size, bool big_endian>
2421 typename Target_powerpc<size, big_endian>::Reloc_section*
2422 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2423 Layout* layout,
2424 bool for_ifunc)
2425 {
2426 if (!for_ifunc)
2427 return this->rela_dyn_section(layout);
2428
2429 if (this->iplt_ == NULL)
2430 this->make_iplt_section(symtab, layout);
2431 return this->iplt_->rel_plt();
2432 }
2433
2434 class Stub_control
2435 {
2436 public:
2437 // Determine the stub group size. The group size is the absolute
2438 // value of the parameter --stub-group-size. If --stub-group-size
2439 // is passed a negative value, we restrict stubs to be always before
2440 // the stubbed branches.
2441 Stub_control(int32_t size, bool no_size_errors)
2442 : state_(NO_GROUP), stub_group_size_(abs(size)),
2443 stub14_group_size_(abs(size) >> 10),
2444 stubs_always_before_branch_(size < 0),
2445 suppress_size_errors_(no_size_errors),
2446 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2447 {
2448 }
2449
2450 // Return true iff input section can be handled by current stub
2451 // group.
2452 bool
2453 can_add_to_stub_group(Output_section* o,
2454 const Output_section::Input_section* i,
2455 bool has14);
2456
2457 const Output_section::Input_section*
2458 owner()
2459 { return owner_; }
2460
2461 Output_section*
2462 output_section()
2463 { return output_section_; }
2464
2465 void
2466 set_output_and_owner(Output_section* o,
2467 const Output_section::Input_section* i)
2468 {
2469 this->output_section_ = o;
2470 this->owner_ = i;
2471 }
2472
2473 private:
2474 typedef enum
2475 {
2476 NO_GROUP,
2477 FINDING_STUB_SECTION,
2478 HAS_STUB_SECTION
2479 } State;
2480
2481 State state_;
2482 uint32_t stub_group_size_;
2483 uint32_t stub14_group_size_;
2484 bool stubs_always_before_branch_;
2485 bool suppress_size_errors_;
2486 uint64_t group_end_addr_;
2487 const Output_section::Input_section* owner_;
2488 Output_section* output_section_;
2489 };
2490
2491 // Return true iff input section can be handled by current stub
2492 // group.
2493
2494 bool
2495 Stub_control::can_add_to_stub_group(Output_section* o,
2496 const Output_section::Input_section* i,
2497 bool has14)
2498 {
2499 uint32_t group_size
2500 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2501 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2502 uint64_t this_size;
2503 uint64_t start_addr = o->address();
2504
2505 if (whole_sec)
2506 // .init and .fini sections are pasted together to form a single
2507 // function. We can't be adding stubs in the middle of the function.
2508 this_size = o->data_size();
2509 else
2510 {
2511 start_addr += i->relobj()->output_section_offset(i->shndx());
2512 this_size = i->data_size();
2513 }
2514 uint64_t end_addr = start_addr + this_size;
2515 bool toobig = this_size > group_size;
2516
2517 if (toobig && !this->suppress_size_errors_)
2518 gold_warning(_("%s:%s exceeds group size"),
2519 i->relobj()->name().c_str(),
2520 i->relobj()->section_name(i->shndx()).c_str());
2521
2522 if (this->state_ != HAS_STUB_SECTION
2523 && (!whole_sec || this->output_section_ != o)
2524 && (this->state_ == NO_GROUP
2525 || this->group_end_addr_ - end_addr < group_size))
2526 {
2527 this->owner_ = i;
2528 this->output_section_ = o;
2529 }
2530
2531 if (this->state_ == NO_GROUP)
2532 {
2533 this->state_ = FINDING_STUB_SECTION;
2534 this->group_end_addr_ = end_addr;
2535 }
2536 else if (this->group_end_addr_ - start_addr < group_size)
2537 ;
2538 // Adding this section would make the group larger than GROUP_SIZE.
2539 else if (this->state_ == FINDING_STUB_SECTION
2540 && !this->stubs_always_before_branch_
2541 && !toobig)
2542 {
2543 // But wait, there's more! Input sections up to GROUP_SIZE
2544 // bytes before the stub table can be handled by it too.
2545 this->state_ = HAS_STUB_SECTION;
2546 this->group_end_addr_ = end_addr;
2547 }
2548 else
2549 {
2550 this->state_ = NO_GROUP;
2551 return false;
2552 }
2553 return true;
2554 }
2555
2556 // Look over all the input sections, deciding where to place stubs.
2557
2558 template<int size, bool big_endian>
2559 void
2560 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2561 const Task*,
2562 bool no_size_errors)
2563 {
2564 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2565
2566 // Group input sections and insert stub table
2567 Stub_table_owner* table_owner = NULL;
2568 std::vector<Stub_table_owner*> tables;
2569 Layout::Section_list section_list;
2570 layout->get_executable_sections(&section_list);
2571 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2572 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2573 o != section_list.rend();
2574 ++o)
2575 {
2576 typedef Output_section::Input_section_list Input_section_list;
2577 for (Input_section_list::const_reverse_iterator i
2578 = (*o)->input_sections().rbegin();
2579 i != (*o)->input_sections().rend();
2580 ++i)
2581 {
2582 if (i->is_input_section()
2583 || i->is_relaxed_input_section())
2584 {
2585 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2586 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2587 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2588 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2589 {
2590 table_owner->output_section = stub_control.output_section();
2591 table_owner->owner = stub_control.owner();
2592 stub_control.set_output_and_owner(*o, &*i);
2593 table_owner = NULL;
2594 }
2595 if (table_owner == NULL)
2596 {
2597 table_owner = new Stub_table_owner;
2598 tables.push_back(table_owner);
2599 }
2600 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2601 }
2602 }
2603 }
2604 if (table_owner != NULL)
2605 {
2606 const Output_section::Input_section* i = stub_control.owner();
2607
2608 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2609 {
2610 // Corner case. A new stub group was made for the first
2611 // section (last one looked at here) for some reason, but
2612 // the first section is already being used as the owner for
2613 // a stub table for following sections. Force it into that
2614 // stub group.
2615 tables.pop_back();
2616 delete table_owner;
2617 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2618 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2619 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2620 }
2621 else
2622 {
2623 table_owner->output_section = stub_control.output_section();
2624 table_owner->owner = i;
2625 }
2626 }
2627 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2628 t != tables.end();
2629 ++t)
2630 {
2631 Stub_table<size, big_endian>* stub_table;
2632
2633 if ((*t)->owner->is_input_section())
2634 stub_table = new Stub_table<size, big_endian>(this,
2635 (*t)->output_section,
2636 (*t)->owner);
2637 else if ((*t)->owner->is_relaxed_input_section())
2638 stub_table = static_cast<Stub_table<size, big_endian>*>(
2639 (*t)->owner->relaxed_input_section());
2640 else
2641 gold_unreachable();
2642 this->stub_tables_.push_back(stub_table);
2643 delete *t;
2644 }
2645 }
2646
2647 static unsigned long
2648 max_branch_delta (unsigned int r_type)
2649 {
2650 if (r_type == elfcpp::R_POWERPC_REL14
2651 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2652 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2653 return 1L << 15;
2654 if (r_type == elfcpp::R_POWERPC_REL24
2655 || r_type == elfcpp::R_PPC_PLTREL24
2656 || r_type == elfcpp::R_PPC_LOCAL24PC)
2657 return 1L << 25;
2658 return 0;
2659 }
2660
2661 // If this branch needs a plt call stub, or a long branch stub, make one.
2662
2663 template<int size, bool big_endian>
2664 bool
2665 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2666 Stub_table<size, big_endian>* stub_table,
2667 Stub_table<size, big_endian>* ifunc_stub_table,
2668 Symbol_table* symtab) const
2669 {
2670 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2671 if (sym != NULL && sym->is_forwarder())
2672 sym = symtab->resolve_forwards(sym);
2673 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2674 Target_powerpc<size, big_endian>* target =
2675 static_cast<Target_powerpc<size, big_endian>*>(
2676 parameters->sized_target<size, big_endian>());
2677 if (gsym != NULL
2678 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2679 : this->object_->local_has_plt_offset(this->r_sym_))
2680 {
2681 if (size == 64
2682 && gsym != NULL
2683 && target->abiversion() >= 2
2684 && !parameters->options().output_is_position_independent()
2685 && !is_branch_reloc(this->r_type_))
2686 target->glink_section()->add_global_entry(gsym);
2687 else
2688 {
2689 if (stub_table == NULL)
2690 stub_table = this->object_->stub_table(this->shndx_);
2691 if (stub_table == NULL)
2692 {
2693 // This is a ref from a data section to an ifunc symbol.
2694 stub_table = ifunc_stub_table;
2695 }
2696 gold_assert(stub_table != NULL);
2697 Address from = this->object_->get_output_section_offset(this->shndx_);
2698 if (from != invalid_address)
2699 from += (this->object_->output_section(this->shndx_)->address()
2700 + this->offset_);
2701 if (gsym != NULL)
2702 return stub_table->add_plt_call_entry(from,
2703 this->object_, gsym,
2704 this->r_type_, this->addend_);
2705 else
2706 return stub_table->add_plt_call_entry(from,
2707 this->object_, this->r_sym_,
2708 this->r_type_, this->addend_);
2709 }
2710 }
2711 else
2712 {
2713 Address max_branch_offset = max_branch_delta(this->r_type_);
2714 if (max_branch_offset == 0)
2715 return true;
2716 Address from = this->object_->get_output_section_offset(this->shndx_);
2717 gold_assert(from != invalid_address);
2718 from += (this->object_->output_section(this->shndx_)->address()
2719 + this->offset_);
2720 Address to;
2721 if (gsym != NULL)
2722 {
2723 switch (gsym->source())
2724 {
2725 case Symbol::FROM_OBJECT:
2726 {
2727 Object* symobj = gsym->object();
2728 if (symobj->is_dynamic()
2729 || symobj->pluginobj() != NULL)
2730 return true;
2731 bool is_ordinary;
2732 unsigned int shndx = gsym->shndx(&is_ordinary);
2733 if (shndx == elfcpp::SHN_UNDEF)
2734 return true;
2735 }
2736 break;
2737
2738 case Symbol::IS_UNDEFINED:
2739 return true;
2740
2741 default:
2742 break;
2743 }
2744 Symbol_table::Compute_final_value_status status;
2745 to = symtab->compute_final_value<size>(gsym, &status);
2746 if (status != Symbol_table::CFVS_OK)
2747 return true;
2748 if (size == 64)
2749 to += this->object_->ppc64_local_entry_offset(gsym);
2750 }
2751 else
2752 {
2753 const Symbol_value<size>* psymval
2754 = this->object_->local_symbol(this->r_sym_);
2755 Symbol_value<size> symval;
2756 typedef Sized_relobj_file<size, big_endian> ObjType;
2757 typename ObjType::Compute_final_local_value_status status
2758 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2759 &symval, symtab);
2760 if (status != ObjType::CFLV_OK
2761 || !symval.has_output_value())
2762 return true;
2763 to = symval.value(this->object_, 0);
2764 if (size == 64)
2765 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2766 }
2767 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2768 to += this->addend_;
2769 if (stub_table == NULL)
2770 stub_table = this->object_->stub_table(this->shndx_);
2771 if (size == 64 && target->abiversion() < 2)
2772 {
2773 unsigned int dest_shndx;
2774 if (!target->symval_for_branch(symtab, gsym, this->object_,
2775 &to, &dest_shndx))
2776 return true;
2777 }
2778 Address delta = to - from;
2779 if (delta + max_branch_offset >= 2 * max_branch_offset)
2780 {
2781 if (stub_table == NULL)
2782 {
2783 gold_warning(_("%s:%s: branch in non-executable section,"
2784 " no long branch stub for you"),
2785 this->object_->name().c_str(),
2786 this->object_->section_name(this->shndx_).c_str());
2787 return true;
2788 }
2789 bool save_res = (size == 64
2790 && gsym != NULL
2791 && gsym->source() == Symbol::IN_OUTPUT_DATA
2792 && gsym->output_data() == target->savres_section());
2793 return stub_table->add_long_branch_entry(this->object_,
2794 this->r_type_,
2795 from, to, save_res);
2796 }
2797 }
2798 return true;
2799 }
2800
2801 // Relaxation hook. This is where we do stub generation.
2802
2803 template<int size, bool big_endian>
2804 bool
2805 Target_powerpc<size, big_endian>::do_relax(int pass,
2806 const Input_objects*,
2807 Symbol_table* symtab,
2808 Layout* layout,
2809 const Task* task)
2810 {
2811 unsigned int prev_brlt_size = 0;
2812 if (pass == 1)
2813 {
2814 bool thread_safe
2815 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2816 if (size == 64
2817 && this->abiversion() < 2
2818 && !thread_safe
2819 && !parameters->options().user_set_plt_thread_safe())
2820 {
2821 static const char* const thread_starter[] =
2822 {
2823 "pthread_create",
2824 /* libstdc++ */
2825 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2826 /* librt */
2827 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2828 "mq_notify", "create_timer",
2829 /* libanl */
2830 "getaddrinfo_a",
2831 /* libgomp */
2832 "GOMP_parallel",
2833 "GOMP_parallel_start",
2834 "GOMP_parallel_loop_static",
2835 "GOMP_parallel_loop_static_start",
2836 "GOMP_parallel_loop_dynamic",
2837 "GOMP_parallel_loop_dynamic_start",
2838 "GOMP_parallel_loop_guided",
2839 "GOMP_parallel_loop_guided_start",
2840 "GOMP_parallel_loop_runtime",
2841 "GOMP_parallel_loop_runtime_start",
2842 "GOMP_parallel_sections",
2843 "GOMP_parallel_sections_start",
2844 /* libgo */
2845 "__go_go",
2846 };
2847
2848 if (parameters->options().shared())
2849 thread_safe = true;
2850 else
2851 {
2852 for (unsigned int i = 0;
2853 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2854 i++)
2855 {
2856 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2857 thread_safe = (sym != NULL
2858 && sym->in_reg()
2859 && sym->in_real_elf());
2860 if (thread_safe)
2861 break;
2862 }
2863 }
2864 }
2865 this->plt_thread_safe_ = thread_safe;
2866 }
2867
2868 if (pass == 1)
2869 {
2870 this->stub_group_size_ = parameters->options().stub_group_size();
2871 bool no_size_errors = true;
2872 if (this->stub_group_size_ == 1)
2873 this->stub_group_size_ = 0x1c00000;
2874 else if (this->stub_group_size_ == -1)
2875 this->stub_group_size_ = -0x1e00000;
2876 else
2877 no_size_errors = false;
2878 this->group_sections(layout, task, no_size_errors);
2879 }
2880 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2881 {
2882 this->branch_lookup_table_.clear();
2883 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2884 p != this->stub_tables_.end();
2885 ++p)
2886 {
2887 (*p)->clear_stubs(true);
2888 }
2889 this->stub_tables_.clear();
2890 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2891 gold_info(_("%s: stub group size is too large; retrying with %d"),
2892 program_name, this->stub_group_size_);
2893 this->group_sections(layout, task, true);
2894 }
2895
2896 // We need address of stub tables valid for make_stub.
2897 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2898 p != this->stub_tables_.end();
2899 ++p)
2900 {
2901 const Powerpc_relobj<size, big_endian>* object
2902 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2903 Address off = object->get_output_section_offset((*p)->shndx());
2904 gold_assert(off != invalid_address);
2905 Output_section* os = (*p)->output_section();
2906 (*p)->set_address_and_size(os, off);
2907 }
2908
2909 if (pass != 1)
2910 {
2911 // Clear plt call stubs, long branch stubs and branch lookup table.
2912 prev_brlt_size = this->branch_lookup_table_.size();
2913 this->branch_lookup_table_.clear();
2914 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2915 p != this->stub_tables_.end();
2916 ++p)
2917 {
2918 (*p)->clear_stubs(false);
2919 }
2920 }
2921
2922 // Build all the stubs.
2923 this->relax_failed_ = false;
2924 Stub_table<size, big_endian>* ifunc_stub_table
2925 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2926 Stub_table<size, big_endian>* one_stub_table
2927 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2928 for (typename Branches::const_iterator b = this->branch_info_.begin();
2929 b != this->branch_info_.end();
2930 b++)
2931 {
2932 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2933 && !this->relax_failed_)
2934 {
2935 this->relax_failed_ = true;
2936 this->relax_fail_count_++;
2937 if (this->relax_fail_count_ < 3)
2938 return true;
2939 }
2940 }
2941
2942 // Did anything change size?
2943 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2944 bool again = num_huge_branches != prev_brlt_size;
2945 if (size == 64 && num_huge_branches != 0)
2946 this->make_brlt_section(layout);
2947 if (size == 64 && again)
2948 this->brlt_section_->set_current_size(num_huge_branches);
2949
2950 typedef Unordered_set<Output_section*> Output_sections;
2951 Output_sections os_need_update;
2952 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2953 p != this->stub_tables_.end();
2954 ++p)
2955 {
2956 if ((*p)->size_update())
2957 {
2958 again = true;
2959 (*p)->add_eh_frame(layout);
2960 os_need_update.insert((*p)->output_section());
2961 }
2962 }
2963
2964 // Set output section offsets for all input sections in an output
2965 // section that just changed size. Anything past the stubs will
2966 // need updating.
2967 for (typename Output_sections::iterator p = os_need_update.begin();
2968 p != os_need_update.end();
2969 p++)
2970 {
2971 Output_section* os = *p;
2972 Address off = 0;
2973 typedef Output_section::Input_section_list Input_section_list;
2974 for (Input_section_list::const_iterator i = os->input_sections().begin();
2975 i != os->input_sections().end();
2976 ++i)
2977 {
2978 off = align_address(off, i->addralign());
2979 if (i->is_input_section() || i->is_relaxed_input_section())
2980 i->relobj()->set_section_offset(i->shndx(), off);
2981 if (i->is_relaxed_input_section())
2982 {
2983 Stub_table<size, big_endian>* stub_table
2984 = static_cast<Stub_table<size, big_endian>*>(
2985 i->relaxed_input_section());
2986 off += stub_table->set_address_and_size(os, off);
2987 }
2988 else
2989 off += i->data_size();
2990 }
2991 // If .branch_lt is part of this output section, then we have
2992 // just done the offset adjustment.
2993 os->clear_section_offsets_need_adjustment();
2994 }
2995
2996 if (size == 64
2997 && !again
2998 && num_huge_branches != 0
2999 && parameters->options().output_is_position_independent())
3000 {
3001 // Fill in the BRLT relocs.
3002 this->brlt_section_->reset_brlt_sizes();
3003 for (typename Branch_lookup_table::const_iterator p
3004 = this->branch_lookup_table_.begin();
3005 p != this->branch_lookup_table_.end();
3006 ++p)
3007 {
3008 this->brlt_section_->add_reloc(p->first, p->second);
3009 }
3010 this->brlt_section_->finalize_brlt_sizes();
3011 }
3012 return again;
3013 }
3014
3015 template<int size, bool big_endian>
3016 void
3017 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3018 unsigned char* oview,
3019 uint64_t* paddress,
3020 off_t* plen) const
3021 {
3022 uint64_t address = plt->address();
3023 off_t len = plt->data_size();
3024
3025 if (plt == this->glink_)
3026 {
3027 // See Output_data_glink::do_write() for glink contents.
3028 if (len == 0)
3029 {
3030 gold_assert(parameters->doing_static_link());
3031 // Static linking may need stubs, to support ifunc and long
3032 // branches. We need to create an output section for
3033 // .eh_frame early in the link process, to have a place to
3034 // attach stub .eh_frame info. We also need to have
3035 // registered a CIE that matches the stub CIE. Both of
3036 // these requirements are satisfied by creating an FDE and
3037 // CIE for .glink, even though static linking will leave
3038 // .glink zero length.
3039 // ??? Hopefully generating an FDE with a zero address range
3040 // won't confuse anything that consumes .eh_frame info.
3041 }
3042 else if (size == 64)
3043 {
3044 // There is one word before __glink_PLTresolve
3045 address += 8;
3046 len -= 8;
3047 }
3048 else if (parameters->options().output_is_position_independent())
3049 {
3050 // There are two FDEs for a position independent glink.
3051 // The first covers the branch table, the second
3052 // __glink_PLTresolve at the end of glink.
3053 off_t resolve_size = this->glink_->pltresolve_size;
3054 if (oview[9] == elfcpp::DW_CFA_nop)
3055 len -= resolve_size;
3056 else
3057 {
3058 address += len - resolve_size;
3059 len = resolve_size;
3060 }
3061 }
3062 }
3063 else
3064 {
3065 // Must be a stub table.
3066 const Stub_table<size, big_endian>* stub_table
3067 = static_cast<const Stub_table<size, big_endian>*>(plt);
3068 uint64_t stub_address = stub_table->stub_address();
3069 len -= stub_address - address;
3070 address = stub_address;
3071 }
3072
3073 *paddress = address;
3074 *plen = len;
3075 }
3076
3077 // A class to handle the PLT data.
3078
3079 template<int size, bool big_endian>
3080 class Output_data_plt_powerpc : public Output_section_data_build
3081 {
3082 public:
3083 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3084 size, big_endian> Reloc_section;
3085
3086 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3087 Reloc_section* plt_rel,
3088 const char* name)
3089 : Output_section_data_build(size == 32 ? 4 : 8),
3090 rel_(plt_rel),
3091 targ_(targ),
3092 name_(name)
3093 { }
3094
3095 // Add an entry to the PLT.
3096 void
3097 add_entry(Symbol*);
3098
3099 void
3100 add_ifunc_entry(Symbol*);
3101
3102 void
3103 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3104
3105 // Return the .rela.plt section data.
3106 Reloc_section*
3107 rel_plt() const
3108 {
3109 return this->rel_;
3110 }
3111
3112 // Return the number of PLT entries.
3113 unsigned int
3114 entry_count() const
3115 {
3116 if (this->current_data_size() == 0)
3117 return 0;
3118 return ((this->current_data_size() - this->first_plt_entry_offset())
3119 / this->plt_entry_size());
3120 }
3121
3122 protected:
3123 void
3124 do_adjust_output_section(Output_section* os)
3125 {
3126 os->set_entsize(0);
3127 }
3128
3129 // Write to a map file.
3130 void
3131 do_print_to_mapfile(Mapfile* mapfile) const
3132 { mapfile->print_output_data(this, this->name_); }
3133
3134 private:
3135 // Return the offset of the first non-reserved PLT entry.
3136 unsigned int
3137 first_plt_entry_offset() const
3138 {
3139 // IPLT has no reserved entry.
3140 if (this->name_[3] == 'I')
3141 return 0;
3142 return this->targ_->first_plt_entry_offset();
3143 }
3144
3145 // Return the size of each PLT entry.
3146 unsigned int
3147 plt_entry_size() const
3148 {
3149 return this->targ_->plt_entry_size();
3150 }
3151
3152 // Write out the PLT data.
3153 void
3154 do_write(Output_file*);
3155
3156 // The reloc section.
3157 Reloc_section* rel_;
3158 // Allows access to .glink for do_write.
3159 Target_powerpc<size, big_endian>* targ_;
3160 // What to report in map file.
3161 const char *name_;
3162 };
3163
3164 // Add an entry to the PLT.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3169 {
3170 if (!gsym->has_plt_offset())
3171 {
3172 section_size_type off = this->current_data_size();
3173 if (off == 0)
3174 off += this->first_plt_entry_offset();
3175 gsym->set_plt_offset(off);
3176 gsym->set_needs_dynsym_entry();
3177 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3178 this->rel_->add_global(gsym, dynrel, this, off, 0);
3179 off += this->plt_entry_size();
3180 this->set_current_data_size(off);
3181 }
3182 }
3183
3184 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3185
3186 template<int size, bool big_endian>
3187 void
3188 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3189 {
3190 if (!gsym->has_plt_offset())
3191 {
3192 section_size_type off = this->current_data_size();
3193 gsym->set_plt_offset(off);
3194 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3195 if (size == 64 && this->targ_->abiversion() < 2)
3196 dynrel = elfcpp::R_PPC64_JMP_IREL;
3197 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3198 off += this->plt_entry_size();
3199 this->set_current_data_size(off);
3200 }
3201 }
3202
3203 // Add an entry for a local ifunc symbol to the IPLT.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3208 Sized_relobj_file<size, big_endian>* relobj,
3209 unsigned int local_sym_index)
3210 {
3211 if (!relobj->local_has_plt_offset(local_sym_index))
3212 {
3213 section_size_type off = this->current_data_size();
3214 relobj->set_local_plt_offset(local_sym_index, off);
3215 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3216 if (size == 64 && this->targ_->abiversion() < 2)
3217 dynrel = elfcpp::R_PPC64_JMP_IREL;
3218 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3219 this, off, 0);
3220 off += this->plt_entry_size();
3221 this->set_current_data_size(off);
3222 }
3223 }
3224
3225 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3226 static const uint32_t add_2_2_11 = 0x7c425a14;
3227 static const uint32_t add_2_2_12 = 0x7c426214;
3228 static const uint32_t add_3_3_2 = 0x7c631214;
3229 static const uint32_t add_3_3_13 = 0x7c636a14;
3230 static const uint32_t add_11_0_11 = 0x7d605a14;
3231 static const uint32_t add_11_2_11 = 0x7d625a14;
3232 static const uint32_t add_11_11_2 = 0x7d6b1214;
3233 static const uint32_t addi_0_12 = 0x380c0000;
3234 static const uint32_t addi_2_2 = 0x38420000;
3235 static const uint32_t addi_3_3 = 0x38630000;
3236 static const uint32_t addi_11_11 = 0x396b0000;
3237 static const uint32_t addi_12_1 = 0x39810000;
3238 static const uint32_t addi_12_12 = 0x398c0000;
3239 static const uint32_t addis_0_2 = 0x3c020000;
3240 static const uint32_t addis_0_13 = 0x3c0d0000;
3241 static const uint32_t addis_2_12 = 0x3c4c0000;
3242 static const uint32_t addis_11_2 = 0x3d620000;
3243 static const uint32_t addis_11_11 = 0x3d6b0000;
3244 static const uint32_t addis_11_30 = 0x3d7e0000;
3245 static const uint32_t addis_12_1 = 0x3d810000;
3246 static const uint32_t addis_12_2 = 0x3d820000;
3247 static const uint32_t addis_12_12 = 0x3d8c0000;
3248 static const uint32_t b = 0x48000000;
3249 static const uint32_t bcl_20_31 = 0x429f0005;
3250 static const uint32_t bctr = 0x4e800420;
3251 static const uint32_t blr = 0x4e800020;
3252 static const uint32_t bnectr_p4 = 0x4ce20420;
3253 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3254 static const uint32_t cmpldi_2_0 = 0x28220000;
3255 static const uint32_t cror_15_15_15 = 0x4def7b82;
3256 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3257 static const uint32_t ld_0_1 = 0xe8010000;
3258 static const uint32_t ld_0_12 = 0xe80c0000;
3259 static const uint32_t ld_2_1 = 0xe8410000;
3260 static const uint32_t ld_2_2 = 0xe8420000;
3261 static const uint32_t ld_2_11 = 0xe84b0000;
3262 static const uint32_t ld_2_12 = 0xe84c0000;
3263 static const uint32_t ld_11_2 = 0xe9620000;
3264 static const uint32_t ld_11_11 = 0xe96b0000;
3265 static const uint32_t ld_12_2 = 0xe9820000;
3266 static const uint32_t ld_12_11 = 0xe98b0000;
3267 static const uint32_t ld_12_12 = 0xe98c0000;
3268 static const uint32_t lfd_0_1 = 0xc8010000;
3269 static const uint32_t li_0_0 = 0x38000000;
3270 static const uint32_t li_12_0 = 0x39800000;
3271 static const uint32_t lis_0 = 0x3c000000;
3272 static const uint32_t lis_2 = 0x3c400000;
3273 static const uint32_t lis_11 = 0x3d600000;
3274 static const uint32_t lis_12 = 0x3d800000;
3275 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3276 static const uint32_t lwz_0_12 = 0x800c0000;
3277 static const uint32_t lwz_11_11 = 0x816b0000;
3278 static const uint32_t lwz_11_30 = 0x817e0000;
3279 static const uint32_t lwz_12_12 = 0x818c0000;
3280 static const uint32_t lwzu_0_12 = 0x840c0000;
3281 static const uint32_t mflr_0 = 0x7c0802a6;
3282 static const uint32_t mflr_11 = 0x7d6802a6;
3283 static const uint32_t mflr_12 = 0x7d8802a6;
3284 static const uint32_t mtctr_0 = 0x7c0903a6;
3285 static const uint32_t mtctr_11 = 0x7d6903a6;
3286 static const uint32_t mtctr_12 = 0x7d8903a6;
3287 static const uint32_t mtlr_0 = 0x7c0803a6;
3288 static const uint32_t mtlr_12 = 0x7d8803a6;
3289 static const uint32_t nop = 0x60000000;
3290 static const uint32_t ori_0_0_0 = 0x60000000;
3291 static const uint32_t srdi_0_0_2 = 0x7800f082;
3292 static const uint32_t std_0_1 = 0xf8010000;
3293 static const uint32_t std_0_12 = 0xf80c0000;
3294 static const uint32_t std_2_1 = 0xf8410000;
3295 static const uint32_t stfd_0_1 = 0xd8010000;
3296 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3297 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3298 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3299 static const uint32_t xor_2_12_12 = 0x7d826278;
3300 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3301
3302 // Write out the PLT.
3303
3304 template<int size, bool big_endian>
3305 void
3306 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3307 {
3308 if (size == 32 && this->name_[3] != 'I')
3309 {
3310 const section_size_type offset = this->offset();
3311 const section_size_type oview_size
3312 = convert_to_section_size_type(this->data_size());
3313 unsigned char* const oview = of->get_output_view(offset, oview_size);
3314 unsigned char* pov = oview;
3315 unsigned char* endpov = oview + oview_size;
3316
3317 // The address of the .glink branch table
3318 const Output_data_glink<size, big_endian>* glink
3319 = this->targ_->glink_section();
3320 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3321
3322 while (pov < endpov)
3323 {
3324 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3325 pov += 4;
3326 branch_tab += 4;
3327 }
3328
3329 of->write_output_view(offset, oview_size, oview);
3330 }
3331 }
3332
3333 // Create the PLT section.
3334
3335 template<int size, bool big_endian>
3336 void
3337 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3338 Layout* layout)
3339 {
3340 if (this->plt_ == NULL)
3341 {
3342 if (this->got_ == NULL)
3343 this->got_section(symtab, layout);
3344
3345 if (this->glink_ == NULL)
3346 make_glink_section(layout);
3347
3348 // Ensure that .rela.dyn always appears before .rela.plt This is
3349 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3350 // needs to include .rela.plt in its range.
3351 this->rela_dyn_section(layout);
3352
3353 Reloc_section* plt_rel = new Reloc_section(false);
3354 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3355 elfcpp::SHF_ALLOC, plt_rel,
3356 ORDER_DYNAMIC_PLT_RELOCS, false);
3357 this->plt_
3358 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3359 "** PLT");
3360 layout->add_output_section_data(".plt",
3361 (size == 32
3362 ? elfcpp::SHT_PROGBITS
3363 : elfcpp::SHT_NOBITS),
3364 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3365 this->plt_,
3366 (size == 32
3367 ? ORDER_SMALL_DATA
3368 : ORDER_SMALL_BSS),
3369 false);
3370 }
3371 }
3372
3373 // Create the IPLT section.
3374
3375 template<int size, bool big_endian>
3376 void
3377 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3378 Layout* layout)
3379 {
3380 if (this->iplt_ == NULL)
3381 {
3382 this->make_plt_section(symtab, layout);
3383
3384 Reloc_section* iplt_rel = new Reloc_section(false);
3385 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3386 this->iplt_
3387 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3388 "** IPLT");
3389 this->plt_->output_section()->add_output_section_data(this->iplt_);
3390 }
3391 }
3392
3393 // A section for huge long branch addresses, similar to plt section.
3394
3395 template<int size, bool big_endian>
3396 class Output_data_brlt_powerpc : public Output_section_data_build
3397 {
3398 public:
3399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3400 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3401 size, big_endian> Reloc_section;
3402
3403 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3404 Reloc_section* brlt_rel)
3405 : Output_section_data_build(size == 32 ? 4 : 8),
3406 rel_(brlt_rel),
3407 targ_(targ)
3408 { }
3409
3410 void
3411 reset_brlt_sizes()
3412 {
3413 this->reset_data_size();
3414 this->rel_->reset_data_size();
3415 }
3416
3417 void
3418 finalize_brlt_sizes()
3419 {
3420 this->finalize_data_size();
3421 this->rel_->finalize_data_size();
3422 }
3423
3424 // Add a reloc for an entry in the BRLT.
3425 void
3426 add_reloc(Address to, unsigned int off)
3427 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3428
3429 // Update section and reloc section size.
3430 void
3431 set_current_size(unsigned int num_branches)
3432 {
3433 this->reset_address_and_file_offset();
3434 this->set_current_data_size(num_branches * 16);
3435 this->finalize_data_size();
3436 Output_section* os = this->output_section();
3437 os->set_section_offsets_need_adjustment();
3438 if (this->rel_ != NULL)
3439 {
3440 unsigned int reloc_size
3441 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3442 this->rel_->reset_address_and_file_offset();
3443 this->rel_->set_current_data_size(num_branches * reloc_size);
3444 this->rel_->finalize_data_size();
3445 Output_section* os = this->rel_->output_section();
3446 os->set_section_offsets_need_adjustment();
3447 }
3448 }
3449
3450 protected:
3451 void
3452 do_adjust_output_section(Output_section* os)
3453 {
3454 os->set_entsize(0);
3455 }
3456
3457 // Write to a map file.
3458 void
3459 do_print_to_mapfile(Mapfile* mapfile) const
3460 { mapfile->print_output_data(this, "** BRLT"); }
3461
3462 private:
3463 // Write out the BRLT data.
3464 void
3465 do_write(Output_file*);
3466
3467 // The reloc section.
3468 Reloc_section* rel_;
3469 Target_powerpc<size, big_endian>* targ_;
3470 };
3471
3472 // Make the branch lookup table section.
3473
3474 template<int size, bool big_endian>
3475 void
3476 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3477 {
3478 if (size == 64 && this->brlt_section_ == NULL)
3479 {
3480 Reloc_section* brlt_rel = NULL;
3481 bool is_pic = parameters->options().output_is_position_independent();
3482 if (is_pic)
3483 {
3484 // When PIC we can't fill in .branch_lt (like .plt it can be
3485 // a bss style section) but must initialise at runtime via
3486 // dynamic relocats.
3487 this->rela_dyn_section(layout);
3488 brlt_rel = new Reloc_section(false);
3489 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3490 }
3491 this->brlt_section_
3492 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3493 if (this->plt_ && is_pic)
3494 this->plt_->output_section()
3495 ->add_output_section_data(this->brlt_section_);
3496 else
3497 layout->add_output_section_data(".branch_lt",
3498 (is_pic ? elfcpp::SHT_NOBITS
3499 : elfcpp::SHT_PROGBITS),
3500 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3501 this->brlt_section_,
3502 (is_pic ? ORDER_SMALL_BSS
3503 : ORDER_SMALL_DATA),
3504 false);
3505 }
3506 }
3507
3508 // Write out .branch_lt when non-PIC.
3509
3510 template<int size, bool big_endian>
3511 void
3512 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3513 {
3514 if (size == 64 && !parameters->options().output_is_position_independent())
3515 {
3516 const section_size_type offset = this->offset();
3517 const section_size_type oview_size
3518 = convert_to_section_size_type(this->data_size());
3519 unsigned char* const oview = of->get_output_view(offset, oview_size);
3520
3521 this->targ_->write_branch_lookup_table(oview);
3522 of->write_output_view(offset, oview_size, oview);
3523 }
3524 }
3525
3526 static inline uint32_t
3527 l(uint32_t a)
3528 {
3529 return a & 0xffff;
3530 }
3531
3532 static inline uint32_t
3533 hi(uint32_t a)
3534 {
3535 return l(a >> 16);
3536 }
3537
3538 static inline uint32_t
3539 ha(uint32_t a)
3540 {
3541 return hi(a + 0x8000);
3542 }
3543
3544 template<int size>
3545 struct Eh_cie
3546 {
3547 static const unsigned char eh_frame_cie[12];
3548 };
3549
3550 template<int size>
3551 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3552 {
3553 1, // CIE version.
3554 'z', 'R', 0, // Augmentation string.
3555 4, // Code alignment.
3556 0x80 - size / 8 , // Data alignment.
3557 65, // RA reg.
3558 1, // Augmentation size.
3559 (elfcpp::DW_EH_PE_pcrel
3560 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3561 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3562 };
3563
3564 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3565 static const unsigned char glink_eh_frame_fde_64v1[] =
3566 {
3567 0, 0, 0, 0, // Replaced with offset to .glink.
3568 0, 0, 0, 0, // Replaced with size of .glink.
3569 0, // Augmentation size.
3570 elfcpp::DW_CFA_advance_loc + 1,
3571 elfcpp::DW_CFA_register, 65, 12,
3572 elfcpp::DW_CFA_advance_loc + 4,
3573 elfcpp::DW_CFA_restore_extended, 65
3574 };
3575
3576 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3577 static const unsigned char glink_eh_frame_fde_64v2[] =
3578 {
3579 0, 0, 0, 0, // Replaced with offset to .glink.
3580 0, 0, 0, 0, // Replaced with size of .glink.
3581 0, // Augmentation size.
3582 elfcpp::DW_CFA_advance_loc + 1,
3583 elfcpp::DW_CFA_register, 65, 0,
3584 elfcpp::DW_CFA_advance_loc + 4,
3585 elfcpp::DW_CFA_restore_extended, 65
3586 };
3587
3588 // Describe __glink_PLTresolve use of LR, 32-bit version.
3589 static const unsigned char glink_eh_frame_fde_32[] =
3590 {
3591 0, 0, 0, 0, // Replaced with offset to .glink.
3592 0, 0, 0, 0, // Replaced with size of .glink.
3593 0, // Augmentation size.
3594 elfcpp::DW_CFA_advance_loc + 2,
3595 elfcpp::DW_CFA_register, 65, 0,
3596 elfcpp::DW_CFA_advance_loc + 4,
3597 elfcpp::DW_CFA_restore_extended, 65
3598 };
3599
3600 static const unsigned char default_fde[] =
3601 {
3602 0, 0, 0, 0, // Replaced with offset to stubs.
3603 0, 0, 0, 0, // Replaced with size of stubs.
3604 0, // Augmentation size.
3605 elfcpp::DW_CFA_nop, // Pad.
3606 elfcpp::DW_CFA_nop,
3607 elfcpp::DW_CFA_nop
3608 };
3609
3610 template<bool big_endian>
3611 static inline void
3612 write_insn(unsigned char* p, uint32_t v)
3613 {
3614 elfcpp::Swap<32, big_endian>::writeval(p, v);
3615 }
3616
3617 // Stub_table holds information about plt and long branch stubs.
3618 // Stubs are built in an area following some input section determined
3619 // by group_sections(). This input section is converted to a relaxed
3620 // input section allowing it to be resized to accommodate the stubs
3621
3622 template<int size, bool big_endian>
3623 class Stub_table : public Output_relaxed_input_section
3624 {
3625 public:
3626 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3627 static const Address invalid_address = static_cast<Address>(0) - 1;
3628
3629 Stub_table(Target_powerpc<size, big_endian>* targ,
3630 Output_section* output_section,
3631 const Output_section::Input_section* owner)
3632 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3633 owner->relobj()
3634 ->section_addralign(owner->shndx())),
3635 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3636 orig_data_size_(owner->current_data_size()),
3637 plt_size_(0), last_plt_size_(0),
3638 branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3639 need_save_res_(false)
3640 {
3641 this->set_output_section(output_section);
3642
3643 std::vector<Output_relaxed_input_section*> new_relaxed;
3644 new_relaxed.push_back(this);
3645 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3646 }
3647
3648 // Add a plt call stub.
3649 bool
3650 add_plt_call_entry(Address,
3651 const Sized_relobj_file<size, big_endian>*,
3652 const Symbol*,
3653 unsigned int,
3654 Address);
3655
3656 bool
3657 add_plt_call_entry(Address,
3658 const Sized_relobj_file<size, big_endian>*,
3659 unsigned int,
3660 unsigned int,
3661 Address);
3662
3663 // Find a given plt call stub.
3664 Address
3665 find_plt_call_entry(const Symbol*) const;
3666
3667 Address
3668 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3669 unsigned int) const;
3670
3671 Address
3672 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3673 const Symbol*,
3674 unsigned int,
3675 Address) const;
3676
3677 Address
3678 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3679 unsigned int,
3680 unsigned int,
3681 Address) const;
3682
3683 // Add a long branch stub.
3684 bool
3685 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3686 unsigned int, Address, Address, bool);
3687
3688 Address
3689 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3690 Address) const;
3691
3692 bool
3693 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3694 {
3695 Address max_branch_offset = max_branch_delta(r_type);
3696 if (max_branch_offset == 0)
3697 return true;
3698 gold_assert(from != invalid_address);
3699 Address loc = off + this->stub_address();
3700 return loc - from + max_branch_offset < 2 * max_branch_offset;
3701 }
3702
3703 void
3704 clear_stubs(bool all)
3705 {
3706 this->plt_call_stubs_.clear();
3707 this->plt_size_ = 0;
3708 this->long_branch_stubs_.clear();
3709 this->branch_size_ = 0;
3710 this->need_save_res_ = false;
3711 if (all)
3712 {
3713 this->last_plt_size_ = 0;
3714 this->last_branch_size_ = 0;
3715 }
3716 }
3717
3718 Address
3719 set_address_and_size(const Output_section* os, Address off)
3720 {
3721 Address start_off = off;
3722 off += this->orig_data_size_;
3723 Address my_size = this->plt_size_ + this->branch_size_;
3724 if (this->need_save_res_)
3725 my_size += this->targ_->savres_section()->data_size();
3726 if (my_size != 0)
3727 off = align_address(off, this->stub_align());
3728 // Include original section size and alignment padding in size
3729 my_size += off - start_off;
3730 this->reset_address_and_file_offset();
3731 this->set_current_data_size(my_size);
3732 this->set_address_and_file_offset(os->address() + start_off,
3733 os->offset() + start_off);
3734 return my_size;
3735 }
3736
3737 Address
3738 stub_address() const
3739 {
3740 return align_address(this->address() + this->orig_data_size_,
3741 this->stub_align());
3742 }
3743
3744 Address
3745 stub_offset() const
3746 {
3747 return align_address(this->offset() + this->orig_data_size_,
3748 this->stub_align());
3749 }
3750
3751 section_size_type
3752 plt_size() const
3753 { return this->plt_size_; }
3754
3755 bool
3756 size_update()
3757 {
3758 Output_section* os = this->output_section();
3759 if (os->addralign() < this->stub_align())
3760 {
3761 os->set_addralign(this->stub_align());
3762 // FIXME: get rid of the insane checkpointing.
3763 // We can't increase alignment of the input section to which
3764 // stubs are attached; The input section may be .init which
3765 // is pasted together with other .init sections to form a
3766 // function. Aligning might insert zero padding resulting in
3767 // sigill. However we do need to increase alignment of the
3768 // output section so that the align_address() on offset in
3769 // set_address_and_size() adds the same padding as the
3770 // align_address() on address in stub_address().
3771 // What's more, we need this alignment for the layout done in
3772 // relaxation_loop_body() so that the output section starts at
3773 // a suitably aligned address.
3774 os->checkpoint_set_addralign(this->stub_align());
3775 }
3776 if (this->last_plt_size_ != this->plt_size_
3777 || this->last_branch_size_ != this->branch_size_)
3778 {
3779 this->last_plt_size_ = this->plt_size_;
3780 this->last_branch_size_ = this->branch_size_;
3781 return true;
3782 }
3783 return false;
3784 }
3785
3786 // Add .eh_frame info for this stub section. Unlike other linker
3787 // generated .eh_frame this is added late in the link, because we
3788 // only want the .eh_frame info if this particular stub section is
3789 // non-empty.
3790 void
3791 add_eh_frame(Layout* layout)
3792 {
3793 if (!this->eh_frame_added_)
3794 {
3795 if (!parameters->options().ld_generated_unwind_info())
3796 return;
3797
3798 // Since we add stub .eh_frame info late, it must be placed
3799 // after all other linker generated .eh_frame info so that
3800 // merge mapping need not be updated for input sections.
3801 // There is no provision to use a different CIE to that used
3802 // by .glink.
3803 if (!this->targ_->has_glink())
3804 return;
3805
3806 layout->add_eh_frame_for_plt(this,
3807 Eh_cie<size>::eh_frame_cie,
3808 sizeof (Eh_cie<size>::eh_frame_cie),
3809 default_fde,
3810 sizeof (default_fde));
3811 this->eh_frame_added_ = true;
3812 }
3813 }
3814
3815 Target_powerpc<size, big_endian>*
3816 targ() const
3817 { return targ_; }
3818
3819 private:
3820 class Plt_stub_ent;
3821 class Plt_stub_ent_hash;
3822 typedef Unordered_map<Plt_stub_ent, unsigned int,
3823 Plt_stub_ent_hash> Plt_stub_entries;
3824
3825 // Alignment of stub section.
3826 unsigned int
3827 stub_align() const
3828 {
3829 if (size == 32)
3830 return 16;
3831 unsigned int min_align = 32;
3832 unsigned int user_align = 1 << parameters->options().plt_align();
3833 return std::max(user_align, min_align);
3834 }
3835
3836 // Return the plt offset for the given call stub.
3837 Address
3838 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3839 {
3840 const Symbol* gsym = p->first.sym_;
3841 if (gsym != NULL)
3842 {
3843 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3844 && gsym->can_use_relative_reloc(false));
3845 return gsym->plt_offset();
3846 }
3847 else
3848 {
3849 *is_iplt = true;
3850 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3851 unsigned int local_sym_index = p->first.locsym_;
3852 return relobj->local_plt_offset(local_sym_index);
3853 }
3854 }
3855
3856 // Size of a given plt call stub.
3857 unsigned int
3858 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3859 {
3860 if (size == 32)
3861 return 16;
3862
3863 bool is_iplt;
3864 Address plt_addr = this->plt_off(p, &is_iplt);
3865 if (is_iplt)
3866 plt_addr += this->targ_->iplt_section()->address();
3867 else
3868 plt_addr += this->targ_->plt_section()->address();
3869 Address got_addr = this->targ_->got_section()->output_section()->address();
3870 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3871 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3872 got_addr += ppcobj->toc_base_offset();
3873 Address off = plt_addr - got_addr;
3874 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3875 if (this->targ_->abiversion() < 2)
3876 {
3877 bool static_chain = parameters->options().plt_static_chain();
3878 bool thread_safe = this->targ_->plt_thread_safe();
3879 bytes += (4
3880 + 4 * static_chain
3881 + 8 * thread_safe
3882 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3883 }
3884 unsigned int align = 1 << parameters->options().plt_align();
3885 if (align > 1)
3886 bytes = (bytes + align - 1) & -align;
3887 return bytes;
3888 }
3889
3890 // Return long branch stub size.
3891 unsigned int
3892 branch_stub_size(Address to)
3893 {
3894 Address loc
3895 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3896 if (to - loc + (1 << 25) < 2 << 25)
3897 return 4;
3898 if (size == 64 || !parameters->options().output_is_position_independent())
3899 return 16;
3900 return 32;
3901 }
3902
3903 // Write out stubs.
3904 void
3905 do_write(Output_file*);
3906
3907 // Plt call stub keys.
3908 class Plt_stub_ent
3909 {
3910 public:
3911 Plt_stub_ent(const Symbol* sym)
3912 : sym_(sym), object_(0), addend_(0), locsym_(0)
3913 { }
3914
3915 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3916 unsigned int locsym_index)
3917 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3918 { }
3919
3920 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3921 const Symbol* sym,
3922 unsigned int r_type,
3923 Address addend)
3924 : sym_(sym), object_(0), addend_(0), locsym_(0)
3925 {
3926 if (size != 32)
3927 this->addend_ = addend;
3928 else if (parameters->options().output_is_position_independent()
3929 && r_type == elfcpp::R_PPC_PLTREL24)
3930 {
3931 this->addend_ = addend;
3932 if (this->addend_ >= 32768)
3933 this->object_ = object;
3934 }
3935 }
3936
3937 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3938 unsigned int locsym_index,
3939 unsigned int r_type,
3940 Address addend)
3941 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3942 {
3943 if (size != 32)
3944 this->addend_ = addend;
3945 else if (parameters->options().output_is_position_independent()
3946 && r_type == elfcpp::R_PPC_PLTREL24)
3947 this->addend_ = addend;
3948 }
3949
3950 bool operator==(const Plt_stub_ent& that) const
3951 {
3952 return (this->sym_ == that.sym_
3953 && this->object_ == that.object_
3954 && this->addend_ == that.addend_
3955 && this->locsym_ == that.locsym_);
3956 }
3957
3958 const Symbol* sym_;
3959 const Sized_relobj_file<size, big_endian>* object_;
3960 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3961 unsigned int locsym_;
3962 };
3963
3964 class Plt_stub_ent_hash
3965 {
3966 public:
3967 size_t operator()(const Plt_stub_ent& ent) const
3968 {
3969 return (reinterpret_cast<uintptr_t>(ent.sym_)
3970 ^ reinterpret_cast<uintptr_t>(ent.object_)
3971 ^ ent.addend_
3972 ^ ent.locsym_);
3973 }
3974 };
3975
3976 // Long branch stub keys.
3977 class Branch_stub_ent
3978 {
3979 public:
3980 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3981 Address to, bool save_res)
3982 : dest_(to), toc_base_off_(0), save_res_(save_res)
3983 {
3984 if (size == 64)
3985 toc_base_off_ = obj->toc_base_offset();
3986 }
3987
3988 bool operator==(const Branch_stub_ent& that) const
3989 {
3990 return (this->dest_ == that.dest_
3991 && (size == 32
3992 || this->toc_base_off_ == that.toc_base_off_));
3993 }
3994
3995 Address dest_;
3996 unsigned int toc_base_off_;
3997 bool save_res_;
3998 };
3999
4000 class Branch_stub_ent_hash
4001 {
4002 public:
4003 size_t operator()(const Branch_stub_ent& ent) const
4004 { return ent.dest_ ^ ent.toc_base_off_; }
4005 };
4006
4007 // In a sane world this would be a global.
4008 Target_powerpc<size, big_endian>* targ_;
4009 // Map sym/object/addend to stub offset.
4010 Plt_stub_entries plt_call_stubs_;
4011 // Map destination address to stub offset.
4012 typedef Unordered_map<Branch_stub_ent, unsigned int,
4013 Branch_stub_ent_hash> Branch_stub_entries;
4014 Branch_stub_entries long_branch_stubs_;
4015 // size of input section
4016 section_size_type orig_data_size_;
4017 // size of stubs
4018 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4019 // Whether .eh_frame info has been created for this stub section.
4020 bool eh_frame_added_;
4021 // Set if this stub group needs a copy of out-of-line register
4022 // save/restore functions.
4023 bool need_save_res_;
4024 };
4025
4026 // Add a plt call stub, if we do not already have one for this
4027 // sym/object/addend combo.
4028
4029 template<int size, bool big_endian>
4030 bool
4031 Stub_table<size, big_endian>::add_plt_call_entry(
4032 Address from,
4033 const Sized_relobj_file<size, big_endian>* object,
4034 const Symbol* gsym,
4035 unsigned int r_type,
4036 Address addend)
4037 {
4038 Plt_stub_ent ent(object, gsym, r_type, addend);
4039 unsigned int off = this->plt_size_;
4040 std::pair<typename Plt_stub_entries::iterator, bool> p
4041 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4042 if (p.second)
4043 this->plt_size_ = off + this->plt_call_size(p.first);
4044 return this->can_reach_stub(from, off, r_type);
4045 }
4046
4047 template<int size, bool big_endian>
4048 bool
4049 Stub_table<size, big_endian>::add_plt_call_entry(
4050 Address from,
4051 const Sized_relobj_file<size, big_endian>* object,
4052 unsigned int locsym_index,
4053 unsigned int r_type,
4054 Address addend)
4055 {
4056 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4057 unsigned int off = this->plt_size_;
4058 std::pair<typename Plt_stub_entries::iterator, bool> p
4059 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4060 if (p.second)
4061 this->plt_size_ = off + this->plt_call_size(p.first);
4062 return this->can_reach_stub(from, off, r_type);
4063 }
4064
4065 // Find a plt call stub.
4066
4067 template<int size, bool big_endian>
4068 typename Stub_table<size, big_endian>::Address
4069 Stub_table<size, big_endian>::find_plt_call_entry(
4070 const Sized_relobj_file<size, big_endian>* object,
4071 const Symbol* gsym,
4072 unsigned int r_type,
4073 Address addend) const
4074 {
4075 Plt_stub_ent ent(object, gsym, r_type, addend);
4076 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4077 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4078 }
4079
4080 template<int size, bool big_endian>
4081 typename Stub_table<size, big_endian>::Address
4082 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4083 {
4084 Plt_stub_ent ent(gsym);
4085 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4086 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4087 }
4088
4089 template<int size, bool big_endian>
4090 typename Stub_table<size, big_endian>::Address
4091 Stub_table<size, big_endian>::find_plt_call_entry(
4092 const Sized_relobj_file<size, big_endian>* object,
4093 unsigned int locsym_index,
4094 unsigned int r_type,
4095 Address addend) const
4096 {
4097 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4098 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4099 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4100 }
4101
4102 template<int size, bool big_endian>
4103 typename Stub_table<size, big_endian>::Address
4104 Stub_table<size, big_endian>::find_plt_call_entry(
4105 const Sized_relobj_file<size, big_endian>* object,
4106 unsigned int locsym_index) const
4107 {
4108 Plt_stub_ent ent(object, locsym_index);
4109 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4110 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4111 }
4112
4113 // Add a long branch stub if we don't already have one to given
4114 // destination.
4115
4116 template<int size, bool big_endian>
4117 bool
4118 Stub_table<size, big_endian>::add_long_branch_entry(
4119 const Powerpc_relobj<size, big_endian>* object,
4120 unsigned int r_type,
4121 Address from,
4122 Address to,
4123 bool save_res)
4124 {
4125 Branch_stub_ent ent(object, to, save_res);
4126 Address off = this->branch_size_;
4127 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4128 {
4129 if (save_res)
4130 this->need_save_res_ = true;
4131 else
4132 {
4133 unsigned int stub_size = this->branch_stub_size(to);
4134 this->branch_size_ = off + stub_size;
4135 if (size == 64 && stub_size != 4)
4136 this->targ_->add_branch_lookup_table(to);
4137 }
4138 }
4139 return this->can_reach_stub(from, off, r_type);
4140 }
4141
4142 // Find long branch stub offset.
4143
4144 template<int size, bool big_endian>
4145 typename Stub_table<size, big_endian>::Address
4146 Stub_table<size, big_endian>::find_long_branch_entry(
4147 const Powerpc_relobj<size, big_endian>* object,
4148 Address to) const
4149 {
4150 Branch_stub_ent ent(object, to, false);
4151 typename Branch_stub_entries::const_iterator p
4152 = this->long_branch_stubs_.find(ent);
4153 if (p == this->long_branch_stubs_.end())
4154 return invalid_address;
4155 if (p->first.save_res_)
4156 return to - this->targ_->savres_section()->address() + this->branch_size_;
4157 return p->second;
4158 }
4159
4160 // A class to handle .glink.
4161
4162 template<int size, bool big_endian>
4163 class Output_data_glink : public Output_section_data
4164 {
4165 public:
4166 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4167 static const Address invalid_address = static_cast<Address>(0) - 1;
4168 static const int pltresolve_size = 16*4;
4169
4170 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4171 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4172 end_branch_table_(), ge_size_(0)
4173 { }
4174
4175 void
4176 add_eh_frame(Layout* layout);
4177
4178 void
4179 add_global_entry(const Symbol*);
4180
4181 Address
4182 find_global_entry(const Symbol*) const;
4183
4184 Address
4185 global_entry_address() const
4186 {
4187 gold_assert(this->is_data_size_valid());
4188 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4189 return this->address() + global_entry_off;
4190 }
4191
4192 protected:
4193 // Write to a map file.
4194 void
4195 do_print_to_mapfile(Mapfile* mapfile) const
4196 { mapfile->print_output_data(this, _("** glink")); }
4197
4198 private:
4199 void
4200 set_final_data_size();
4201
4202 // Write out .glink
4203 void
4204 do_write(Output_file*);
4205
4206 // Allows access to .got and .plt for do_write.
4207 Target_powerpc<size, big_endian>* targ_;
4208
4209 // Map sym to stub offset.
4210 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4211 Global_entry_stub_entries global_entry_stubs_;
4212
4213 unsigned int end_branch_table_, ge_size_;
4214 };
4215
4216 template<int size, bool big_endian>
4217 void
4218 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4219 {
4220 if (!parameters->options().ld_generated_unwind_info())
4221 return;
4222
4223 if (size == 64)
4224 {
4225 if (this->targ_->abiversion() < 2)
4226 layout->add_eh_frame_for_plt(this,
4227 Eh_cie<64>::eh_frame_cie,
4228 sizeof (Eh_cie<64>::eh_frame_cie),
4229 glink_eh_frame_fde_64v1,
4230 sizeof (glink_eh_frame_fde_64v1));
4231 else
4232 layout->add_eh_frame_for_plt(this,
4233 Eh_cie<64>::eh_frame_cie,
4234 sizeof (Eh_cie<64>::eh_frame_cie),
4235 glink_eh_frame_fde_64v2,
4236 sizeof (glink_eh_frame_fde_64v2));
4237 }
4238 else
4239 {
4240 // 32-bit .glink can use the default since the CIE return
4241 // address reg, LR, is valid.
4242 layout->add_eh_frame_for_plt(this,
4243 Eh_cie<32>::eh_frame_cie,
4244 sizeof (Eh_cie<32>::eh_frame_cie),
4245 default_fde,
4246 sizeof (default_fde));
4247 // Except where LR is used in a PIC __glink_PLTresolve.
4248 if (parameters->options().output_is_position_independent())
4249 layout->add_eh_frame_for_plt(this,
4250 Eh_cie<32>::eh_frame_cie,
4251 sizeof (Eh_cie<32>::eh_frame_cie),
4252 glink_eh_frame_fde_32,
4253 sizeof (glink_eh_frame_fde_32));
4254 }
4255 }
4256
4257 template<int size, bool big_endian>
4258 void
4259 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4260 {
4261 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4262 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4263 if (p.second)
4264 this->ge_size_ += 16;
4265 }
4266
4267 template<int size, bool big_endian>
4268 typename Output_data_glink<size, big_endian>::Address
4269 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4270 {
4271 typename Global_entry_stub_entries::const_iterator p
4272 = this->global_entry_stubs_.find(gsym);
4273 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4274 }
4275
4276 template<int size, bool big_endian>
4277 void
4278 Output_data_glink<size, big_endian>::set_final_data_size()
4279 {
4280 unsigned int count = this->targ_->plt_entry_count();
4281 section_size_type total = 0;
4282
4283 if (count != 0)
4284 {
4285 if (size == 32)
4286 {
4287 // space for branch table
4288 total += 4 * (count - 1);
4289
4290 total += -total & 15;
4291 total += this->pltresolve_size;
4292 }
4293 else
4294 {
4295 total += this->pltresolve_size;
4296
4297 // space for branch table
4298 total += 4 * count;
4299 if (this->targ_->abiversion() < 2)
4300 {
4301 total += 4 * count;
4302 if (count > 0x8000)
4303 total += 4 * (count - 0x8000);
4304 }
4305 }
4306 }
4307 this->end_branch_table_ = total;
4308 total = (total + 15) & -16;
4309 total += this->ge_size_;
4310
4311 this->set_data_size(total);
4312 }
4313
4314 // Write out plt and long branch stub code.
4315
4316 template<int size, bool big_endian>
4317 void
4318 Stub_table<size, big_endian>::do_write(Output_file* of)
4319 {
4320 if (this->plt_call_stubs_.empty()
4321 && this->long_branch_stubs_.empty())
4322 return;
4323
4324 const section_size_type start_off = this->offset();
4325 const section_size_type off = this->stub_offset();
4326 const section_size_type oview_size =
4327 convert_to_section_size_type(this->data_size() - (off - start_off));
4328 unsigned char* const oview = of->get_output_view(off, oview_size);
4329 unsigned char* p;
4330
4331 if (size == 64)
4332 {
4333 const Output_data_got_powerpc<size, big_endian>* got
4334 = this->targ_->got_section();
4335 Address got_os_addr = got->output_section()->address();
4336
4337 if (!this->plt_call_stubs_.empty())
4338 {
4339 // The base address of the .plt section.
4340 Address plt_base = this->targ_->plt_section()->address();
4341 Address iplt_base = invalid_address;
4342
4343 // Write out plt call stubs.
4344 typename Plt_stub_entries::const_iterator cs;
4345 for (cs = this->plt_call_stubs_.begin();
4346 cs != this->plt_call_stubs_.end();
4347 ++cs)
4348 {
4349 bool is_iplt;
4350 Address pltoff = this->plt_off(cs, &is_iplt);
4351 Address plt_addr = pltoff;
4352 if (is_iplt)
4353 {
4354 if (iplt_base == invalid_address)
4355 iplt_base = this->targ_->iplt_section()->address();
4356 plt_addr += iplt_base;
4357 }
4358 else
4359 plt_addr += plt_base;
4360 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4361 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4362 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4363 Address off = plt_addr - got_addr;
4364
4365 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4366 gold_error(_("%s: linkage table error against `%s'"),
4367 cs->first.object_->name().c_str(),
4368 cs->first.sym_->demangled_name().c_str());
4369
4370 bool plt_load_toc = this->targ_->abiversion() < 2;
4371 bool static_chain
4372 = plt_load_toc && parameters->options().plt_static_chain();
4373 bool thread_safe
4374 = plt_load_toc && this->targ_->plt_thread_safe();
4375 bool use_fake_dep = false;
4376 Address cmp_branch_off = 0;
4377 if (thread_safe)
4378 {
4379 unsigned int pltindex
4380 = ((pltoff - this->targ_->first_plt_entry_offset())
4381 / this->targ_->plt_entry_size());
4382 Address glinkoff
4383 = (this->targ_->glink_section()->pltresolve_size
4384 + pltindex * 8);
4385 if (pltindex > 32768)
4386 glinkoff += (pltindex - 32768) * 4;
4387 Address to
4388 = this->targ_->glink_section()->address() + glinkoff;
4389 Address from
4390 = (this->stub_address() + cs->second + 24
4391 + 4 * (ha(off) != 0)
4392 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4393 + 4 * static_chain);
4394 cmp_branch_off = to - from;
4395 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4396 }
4397
4398 p = oview + cs->second;
4399 if (ha(off) != 0)
4400 {
4401 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4402 p += 4;
4403 if (plt_load_toc)
4404 {
4405 write_insn<big_endian>(p, addis_11_2 + ha(off));
4406 p += 4;
4407 write_insn<big_endian>(p, ld_12_11 + l(off));
4408 p += 4;
4409 }
4410 else
4411 {
4412 write_insn<big_endian>(p, addis_12_2 + ha(off));
4413 p += 4;
4414 write_insn<big_endian>(p, ld_12_12 + l(off));
4415 p += 4;
4416 }
4417 if (plt_load_toc
4418 && ha(off + 8 + 8 * static_chain) != ha(off))
4419 {
4420 write_insn<big_endian>(p, addi_11_11 + l(off));
4421 p += 4;
4422 off = 0;
4423 }
4424 write_insn<big_endian>(p, mtctr_12);
4425 p += 4;
4426 if (plt_load_toc)
4427 {
4428 if (use_fake_dep)
4429 {
4430 write_insn<big_endian>(p, xor_2_12_12);
4431 p += 4;
4432 write_insn<big_endian>(p, add_11_11_2);
4433 p += 4;
4434 }
4435 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4436 p += 4;
4437 if (static_chain)
4438 {
4439 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4440 p += 4;
4441 }
4442 }
4443 }
4444 else
4445 {
4446 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4447 p += 4;
4448 write_insn<big_endian>(p, ld_12_2 + l(off));
4449 p += 4;
4450 if (plt_load_toc
4451 && ha(off + 8 + 8 * static_chain) != ha(off))
4452 {
4453 write_insn<big_endian>(p, addi_2_2 + l(off));
4454 p += 4;
4455 off = 0;
4456 }
4457 write_insn<big_endian>(p, mtctr_12);
4458 p += 4;
4459 if (plt_load_toc)
4460 {
4461 if (use_fake_dep)
4462 {
4463 write_insn<big_endian>(p, xor_11_12_12);
4464 p += 4;
4465 write_insn<big_endian>(p, add_2_2_11);
4466 p += 4;
4467 }
4468 if (static_chain)
4469 {
4470 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4471 p += 4;
4472 }
4473 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4474 p += 4;
4475 }
4476 }
4477 if (thread_safe && !use_fake_dep)
4478 {
4479 write_insn<big_endian>(p, cmpldi_2_0);
4480 p += 4;
4481 write_insn<big_endian>(p, bnectr_p4);
4482 p += 4;
4483 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4484 }
4485 else
4486 write_insn<big_endian>(p, bctr);
4487 }
4488 }
4489
4490 // Write out long branch stubs.
4491 typename Branch_stub_entries::const_iterator bs;
4492 for (bs = this->long_branch_stubs_.begin();
4493 bs != this->long_branch_stubs_.end();
4494 ++bs)
4495 {
4496 if (bs->first.save_res_)
4497 continue;
4498 p = oview + this->plt_size_ + bs->second;
4499 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4500 Address delta = bs->first.dest_ - loc;
4501 if (delta + (1 << 25) < 2 << 25)
4502 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4503 else
4504 {
4505 Address brlt_addr
4506 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4507 gold_assert(brlt_addr != invalid_address);
4508 brlt_addr += this->targ_->brlt_section()->address();
4509 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4510 Address brltoff = brlt_addr - got_addr;
4511 if (ha(brltoff) == 0)
4512 {
4513 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4514 }
4515 else
4516 {
4517 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4518 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4519 }
4520 write_insn<big_endian>(p, mtctr_12), p += 4;
4521 write_insn<big_endian>(p, bctr);
4522 }
4523 }
4524 }
4525 else
4526 {
4527 if (!this->plt_call_stubs_.empty())
4528 {
4529 // The base address of the .plt section.
4530 Address plt_base = this->targ_->plt_section()->address();
4531 Address iplt_base = invalid_address;
4532 // The address of _GLOBAL_OFFSET_TABLE_.
4533 Address g_o_t = invalid_address;
4534
4535 // Write out plt call stubs.
4536 typename Plt_stub_entries::const_iterator cs;
4537 for (cs = this->plt_call_stubs_.begin();
4538 cs != this->plt_call_stubs_.end();
4539 ++cs)
4540 {
4541 bool is_iplt;
4542 Address plt_addr = this->plt_off(cs, &is_iplt);
4543 if (is_iplt)
4544 {
4545 if (iplt_base == invalid_address)
4546 iplt_base = this->targ_->iplt_section()->address();
4547 plt_addr += iplt_base;
4548 }
4549 else
4550 plt_addr += plt_base;
4551
4552 p = oview + cs->second;
4553 if (parameters->options().output_is_position_independent())
4554 {
4555 Address got_addr;
4556 const Powerpc_relobj<size, big_endian>* ppcobj
4557 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4558 (cs->first.object_));
4559 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4560 {
4561 unsigned int got2 = ppcobj->got2_shndx();
4562 got_addr = ppcobj->get_output_section_offset(got2);
4563 gold_assert(got_addr != invalid_address);
4564 got_addr += (ppcobj->output_section(got2)->address()
4565 + cs->first.addend_);
4566 }
4567 else
4568 {
4569 if (g_o_t == invalid_address)
4570 {
4571 const Output_data_got_powerpc<size, big_endian>* got
4572 = this->targ_->got_section();
4573 g_o_t = got->address() + got->g_o_t();
4574 }
4575 got_addr = g_o_t;
4576 }
4577
4578 Address off = plt_addr - got_addr;
4579 if (ha(off) == 0)
4580 {
4581 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4582 write_insn<big_endian>(p + 4, mtctr_11);
4583 write_insn<big_endian>(p + 8, bctr);
4584 }
4585 else
4586 {
4587 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4588 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4589 write_insn<big_endian>(p + 8, mtctr_11);
4590 write_insn<big_endian>(p + 12, bctr);
4591 }
4592 }
4593 else
4594 {
4595 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4596 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4597 write_insn<big_endian>(p + 8, mtctr_11);
4598 write_insn<big_endian>(p + 12, bctr);
4599 }
4600 }
4601 }
4602
4603 // Write out long branch stubs.
4604 typename Branch_stub_entries::const_iterator bs;
4605 for (bs = this->long_branch_stubs_.begin();
4606 bs != this->long_branch_stubs_.end();
4607 ++bs)
4608 {
4609 if (bs->first.save_res_)
4610 continue;
4611 p = oview + this->plt_size_ + bs->second;
4612 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4613 Address delta = bs->first.dest_ - loc;
4614 if (delta + (1 << 25) < 2 << 25)
4615 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4616 else if (!parameters->options().output_is_position_independent())
4617 {
4618 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4619 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4620 write_insn<big_endian>(p + 8, mtctr_12);
4621 write_insn<big_endian>(p + 12, bctr);
4622 }
4623 else
4624 {
4625 delta -= 8;
4626 write_insn<big_endian>(p + 0, mflr_0);
4627 write_insn<big_endian>(p + 4, bcl_20_31);
4628 write_insn<big_endian>(p + 8, mflr_12);
4629 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4630 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4631 write_insn<big_endian>(p + 20, mtlr_0);
4632 write_insn<big_endian>(p + 24, mtctr_12);
4633 write_insn<big_endian>(p + 28, bctr);
4634 }
4635 }
4636 }
4637 if (this->need_save_res_)
4638 {
4639 p = oview + this->plt_size_ + this->branch_size_;
4640 memcpy (p, this->targ_->savres_section()->contents(),
4641 this->targ_->savres_section()->data_size());
4642 }
4643 }
4644
4645 // Write out .glink.
4646
4647 template<int size, bool big_endian>
4648 void
4649 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4650 {
4651 const section_size_type off = this->offset();
4652 const section_size_type oview_size =
4653 convert_to_section_size_type(this->data_size());
4654 unsigned char* const oview = of->get_output_view(off, oview_size);
4655 unsigned char* p;
4656
4657 // The base address of the .plt section.
4658 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4659 Address plt_base = this->targ_->plt_section()->address();
4660
4661 if (size == 64)
4662 {
4663 if (this->end_branch_table_ != 0)
4664 {
4665 // Write pltresolve stub.
4666 p = oview;
4667 Address after_bcl = this->address() + 16;
4668 Address pltoff = plt_base - after_bcl;
4669
4670 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4671
4672 if (this->targ_->abiversion() < 2)
4673 {
4674 write_insn<big_endian>(p, mflr_12), p += 4;
4675 write_insn<big_endian>(p, bcl_20_31), p += 4;
4676 write_insn<big_endian>(p, mflr_11), p += 4;
4677 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4678 write_insn<big_endian>(p, mtlr_12), p += 4;
4679 write_insn<big_endian>(p, add_11_2_11), p += 4;
4680 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4681 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4682 write_insn<big_endian>(p, mtctr_12), p += 4;
4683 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4684 }
4685 else
4686 {
4687 write_insn<big_endian>(p, mflr_0), p += 4;
4688 write_insn<big_endian>(p, bcl_20_31), p += 4;
4689 write_insn<big_endian>(p, mflr_11), p += 4;
4690 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4691 write_insn<big_endian>(p, mtlr_0), p += 4;
4692 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4693 write_insn<big_endian>(p, add_11_2_11), p += 4;
4694 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4695 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4696 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4697 write_insn<big_endian>(p, mtctr_12), p += 4;
4698 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4699 }
4700 write_insn<big_endian>(p, bctr), p += 4;
4701 while (p < oview + this->pltresolve_size)
4702 write_insn<big_endian>(p, nop), p += 4;
4703
4704 // Write lazy link call stubs.
4705 uint32_t indx = 0;
4706 while (p < oview + this->end_branch_table_)
4707 {
4708 if (this->targ_->abiversion() < 2)
4709 {
4710 if (indx < 0x8000)
4711 {
4712 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4713 }
4714 else
4715 {
4716 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4717 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4718 }
4719 }
4720 uint32_t branch_off = 8 - (p - oview);
4721 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4722 indx++;
4723 }
4724 }
4725
4726 Address plt_base = this->targ_->plt_section()->address();
4727 Address iplt_base = invalid_address;
4728 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4729 Address global_entry_base = this->address() + global_entry_off;
4730 typename Global_entry_stub_entries::const_iterator ge;
4731 for (ge = this->global_entry_stubs_.begin();
4732 ge != this->global_entry_stubs_.end();
4733 ++ge)
4734 {
4735 p = oview + global_entry_off + ge->second;
4736 Address plt_addr = ge->first->plt_offset();
4737 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4738 && ge->first->can_use_relative_reloc(false))
4739 {
4740 if (iplt_base == invalid_address)
4741 iplt_base = this->targ_->iplt_section()->address();
4742 plt_addr += iplt_base;
4743 }
4744 else
4745 plt_addr += plt_base;
4746 Address my_addr = global_entry_base + ge->second;
4747 Address off = plt_addr - my_addr;
4748
4749 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4750 gold_error(_("%s: linkage table error against `%s'"),
4751 ge->first->object()->name().c_str(),
4752 ge->first->demangled_name().c_str());
4753
4754 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4755 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4756 write_insn<big_endian>(p, mtctr_12), p += 4;
4757 write_insn<big_endian>(p, bctr);
4758 }
4759 }
4760 else
4761 {
4762 const Output_data_got_powerpc<size, big_endian>* got
4763 = this->targ_->got_section();
4764 // The address of _GLOBAL_OFFSET_TABLE_.
4765 Address g_o_t = got->address() + got->g_o_t();
4766
4767 // Write out pltresolve branch table.
4768 p = oview;
4769 unsigned int the_end = oview_size - this->pltresolve_size;
4770 unsigned char* end_p = oview + the_end;
4771 while (p < end_p - 8 * 4)
4772 write_insn<big_endian>(p, b + end_p - p), p += 4;
4773 while (p < end_p)
4774 write_insn<big_endian>(p, nop), p += 4;
4775
4776 // Write out pltresolve call stub.
4777 if (parameters->options().output_is_position_independent())
4778 {
4779 Address res0_off = 0;
4780 Address after_bcl_off = the_end + 12;
4781 Address bcl_res0 = after_bcl_off - res0_off;
4782
4783 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4784 write_insn<big_endian>(p + 4, mflr_0);
4785 write_insn<big_endian>(p + 8, bcl_20_31);
4786 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4787 write_insn<big_endian>(p + 16, mflr_12);
4788 write_insn<big_endian>(p + 20, mtlr_0);
4789 write_insn<big_endian>(p + 24, sub_11_11_12);
4790
4791 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4792
4793 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4794 if (ha(got_bcl) == ha(got_bcl + 4))
4795 {
4796 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4797 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4798 }
4799 else
4800 {
4801 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4802 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4803 }
4804 write_insn<big_endian>(p + 40, mtctr_0);
4805 write_insn<big_endian>(p + 44, add_0_11_11);
4806 write_insn<big_endian>(p + 48, add_11_0_11);
4807 write_insn<big_endian>(p + 52, bctr);
4808 write_insn<big_endian>(p + 56, nop);
4809 write_insn<big_endian>(p + 60, nop);
4810 }
4811 else
4812 {
4813 Address res0 = this->address();
4814
4815 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4816 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4817 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4818 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4819 else
4820 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4821 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4822 write_insn<big_endian>(p + 16, mtctr_0);
4823 write_insn<big_endian>(p + 20, add_0_11_11);
4824 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4825 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4826 else
4827 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4828 write_insn<big_endian>(p + 28, add_11_0_11);
4829 write_insn<big_endian>(p + 32, bctr);
4830 write_insn<big_endian>(p + 36, nop);
4831 write_insn<big_endian>(p + 40, nop);
4832 write_insn<big_endian>(p + 44, nop);
4833 write_insn<big_endian>(p + 48, nop);
4834 write_insn<big_endian>(p + 52, nop);
4835 write_insn<big_endian>(p + 56, nop);
4836 write_insn<big_endian>(p + 60, nop);
4837 }
4838 p += 64;
4839 }
4840
4841 of->write_output_view(off, oview_size, oview);
4842 }
4843
4844
4845 // A class to handle linker generated save/restore functions.
4846
4847 template<int size, bool big_endian>
4848 class Output_data_save_res : public Output_section_data_build
4849 {
4850 public:
4851 Output_data_save_res(Symbol_table* symtab);
4852
4853 const unsigned char*
4854 contents() const
4855 {
4856 return contents_;
4857 }
4858
4859 protected:
4860 // Write to a map file.
4861 void
4862 do_print_to_mapfile(Mapfile* mapfile) const
4863 { mapfile->print_output_data(this, _("** save/restore")); }
4864
4865 void
4866 do_write(Output_file*);
4867
4868 private:
4869 // The maximum size of save/restore contents.
4870 static const unsigned int savres_max = 218*4;
4871
4872 void
4873 savres_define(Symbol_table* symtab,
4874 const char *name,
4875 unsigned int lo, unsigned int hi,
4876 unsigned char* write_ent(unsigned char*, int),
4877 unsigned char* write_tail(unsigned char*, int));
4878
4879 unsigned char *contents_;
4880 };
4881
4882 template<bool big_endian>
4883 static unsigned char*
4884 savegpr0(unsigned char* p, int r)
4885 {
4886 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4887 write_insn<big_endian>(p, insn);
4888 return p + 4;
4889 }
4890
4891 template<bool big_endian>
4892 static unsigned char*
4893 savegpr0_tail(unsigned char* p, int r)
4894 {
4895 p = savegpr0<big_endian>(p, r);
4896 uint32_t insn = std_0_1 + 16;
4897 write_insn<big_endian>(p, insn);
4898 p = p + 4;
4899 write_insn<big_endian>(p, blr);
4900 return p + 4;
4901 }
4902
4903 template<bool big_endian>
4904 static unsigned char*
4905 restgpr0(unsigned char* p, int r)
4906 {
4907 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4908 write_insn<big_endian>(p, insn);
4909 return p + 4;
4910 }
4911
4912 template<bool big_endian>
4913 static unsigned char*
4914 restgpr0_tail(unsigned char* p, int r)
4915 {
4916 uint32_t insn = ld_0_1 + 16;
4917 write_insn<big_endian>(p, insn);
4918 p = p + 4;
4919 p = restgpr0<big_endian>(p, r);
4920 write_insn<big_endian>(p, mtlr_0);
4921 p = p + 4;
4922 if (r == 29)
4923 {
4924 p = restgpr0<big_endian>(p, 30);
4925 p = restgpr0<big_endian>(p, 31);
4926 }
4927 write_insn<big_endian>(p, blr);
4928 return p + 4;
4929 }
4930
4931 template<bool big_endian>
4932 static unsigned char*
4933 savegpr1(unsigned char* p, int r)
4934 {
4935 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4936 write_insn<big_endian>(p, insn);
4937 return p + 4;
4938 }
4939
4940 template<bool big_endian>
4941 static unsigned char*
4942 savegpr1_tail(unsigned char* p, int r)
4943 {
4944 p = savegpr1<big_endian>(p, r);
4945 write_insn<big_endian>(p, blr);
4946 return p + 4;
4947 }
4948
4949 template<bool big_endian>
4950 static unsigned char*
4951 restgpr1(unsigned char* p, int r)
4952 {
4953 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4954 write_insn<big_endian>(p, insn);
4955 return p + 4;
4956 }
4957
4958 template<bool big_endian>
4959 static unsigned char*
4960 restgpr1_tail(unsigned char* p, int r)
4961 {
4962 p = restgpr1<big_endian>(p, r);
4963 write_insn<big_endian>(p, blr);
4964 return p + 4;
4965 }
4966
4967 template<bool big_endian>
4968 static unsigned char*
4969 savefpr(unsigned char* p, int r)
4970 {
4971 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4972 write_insn<big_endian>(p, insn);
4973 return p + 4;
4974 }
4975
4976 template<bool big_endian>
4977 static unsigned char*
4978 savefpr0_tail(unsigned char* p, int r)
4979 {
4980 p = savefpr<big_endian>(p, r);
4981 write_insn<big_endian>(p, std_0_1 + 16);
4982 p = p + 4;
4983 write_insn<big_endian>(p, blr);
4984 return p + 4;
4985 }
4986
4987 template<bool big_endian>
4988 static unsigned char*
4989 restfpr(unsigned char* p, int r)
4990 {
4991 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4992 write_insn<big_endian>(p, insn);
4993 return p + 4;
4994 }
4995
4996 template<bool big_endian>
4997 static unsigned char*
4998 restfpr0_tail(unsigned char* p, int r)
4999 {
5000 write_insn<big_endian>(p, ld_0_1 + 16);
5001 p = p + 4;
5002 p = restfpr<big_endian>(p, r);
5003 write_insn<big_endian>(p, mtlr_0);
5004 p = p + 4;
5005 if (r == 29)
5006 {
5007 p = restfpr<big_endian>(p, 30);
5008 p = restfpr<big_endian>(p, 31);
5009 }
5010 write_insn<big_endian>(p, blr);
5011 return p + 4;
5012 }
5013
5014 template<bool big_endian>
5015 static unsigned char*
5016 savefpr1_tail(unsigned char* p, int r)
5017 {
5018 p = savefpr<big_endian>(p, r);
5019 write_insn<big_endian>(p, blr);
5020 return p + 4;
5021 }
5022
5023 template<bool big_endian>
5024 static unsigned char*
5025 restfpr1_tail(unsigned char* p, int r)
5026 {
5027 p = restfpr<big_endian>(p, r);
5028 write_insn<big_endian>(p, blr);
5029 return p + 4;
5030 }
5031
5032 template<bool big_endian>
5033 static unsigned char*
5034 savevr(unsigned char* p, int r)
5035 {
5036 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5037 write_insn<big_endian>(p, insn);
5038 p = p + 4;
5039 insn = stvx_0_12_0 + (r << 21);
5040 write_insn<big_endian>(p, insn);
5041 return p + 4;
5042 }
5043
5044 template<bool big_endian>
5045 static unsigned char*
5046 savevr_tail(unsigned char* p, int r)
5047 {
5048 p = savevr<big_endian>(p, r);
5049 write_insn<big_endian>(p, blr);
5050 return p + 4;
5051 }
5052
5053 template<bool big_endian>
5054 static unsigned char*
5055 restvr(unsigned char* p, int r)
5056 {
5057 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5058 write_insn<big_endian>(p, insn);
5059 p = p + 4;
5060 insn = lvx_0_12_0 + (r << 21);
5061 write_insn<big_endian>(p, insn);
5062 return p + 4;
5063 }
5064
5065 template<bool big_endian>
5066 static unsigned char*
5067 restvr_tail(unsigned char* p, int r)
5068 {
5069 p = restvr<big_endian>(p, r);
5070 write_insn<big_endian>(p, blr);
5071 return p + 4;
5072 }
5073
5074
5075 template<int size, bool big_endian>
5076 Output_data_save_res<size, big_endian>::Output_data_save_res(
5077 Symbol_table* symtab)
5078 : Output_section_data_build(4),
5079 contents_(NULL)
5080 {
5081 this->savres_define(symtab,
5082 "_savegpr0_", 14, 31,
5083 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5084 this->savres_define(symtab,
5085 "_restgpr0_", 14, 29,
5086 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5087 this->savres_define(symtab,
5088 "_restgpr0_", 30, 31,
5089 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5090 this->savres_define(symtab,
5091 "_savegpr1_", 14, 31,
5092 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5093 this->savres_define(symtab,
5094 "_restgpr1_", 14, 31,
5095 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5096 this->savres_define(symtab,
5097 "_savefpr_", 14, 31,
5098 savefpr<big_endian>, savefpr0_tail<big_endian>);
5099 this->savres_define(symtab,
5100 "_restfpr_", 14, 29,
5101 restfpr<big_endian>, restfpr0_tail<big_endian>);
5102 this->savres_define(symtab,
5103 "_restfpr_", 30, 31,
5104 restfpr<big_endian>, restfpr0_tail<big_endian>);
5105 this->savres_define(symtab,
5106 "._savef", 14, 31,
5107 savefpr<big_endian>, savefpr1_tail<big_endian>);
5108 this->savres_define(symtab,
5109 "._restf", 14, 31,
5110 restfpr<big_endian>, restfpr1_tail<big_endian>);
5111 this->savres_define(symtab,
5112 "_savevr_", 20, 31,
5113 savevr<big_endian>, savevr_tail<big_endian>);
5114 this->savres_define(symtab,
5115 "_restvr_", 20, 31,
5116 restvr<big_endian>, restvr_tail<big_endian>);
5117 }
5118
5119 template<int size, bool big_endian>
5120 void
5121 Output_data_save_res<size, big_endian>::savres_define(
5122 Symbol_table* symtab,
5123 const char *name,
5124 unsigned int lo, unsigned int hi,
5125 unsigned char* write_ent(unsigned char*, int),
5126 unsigned char* write_tail(unsigned char*, int))
5127 {
5128 size_t len = strlen(name);
5129 bool writing = false;
5130 char sym[16];
5131
5132 memcpy(sym, name, len);
5133 sym[len + 2] = 0;
5134
5135 for (unsigned int i = lo; i <= hi; i++)
5136 {
5137 sym[len + 0] = i / 10 + '0';
5138 sym[len + 1] = i % 10 + '0';
5139 Symbol* gsym = symtab->lookup(sym);
5140 bool refd = gsym != NULL && gsym->is_undefined();
5141 writing = writing || refd;
5142 if (writing)
5143 {
5144 if (this->contents_ == NULL)
5145 this->contents_ = new unsigned char[this->savres_max];
5146
5147 section_size_type value = this->current_data_size();
5148 unsigned char* p = this->contents_ + value;
5149 if (i != hi)
5150 p = write_ent(p, i);
5151 else
5152 p = write_tail(p, i);
5153 section_size_type cur_size = p - this->contents_;
5154 this->set_current_data_size(cur_size);
5155 if (refd)
5156 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5157 this, value, cur_size - value,
5158 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5159 elfcpp::STV_HIDDEN, 0, false, false);
5160 }
5161 }
5162 }
5163
5164 // Write out save/restore.
5165
5166 template<int size, bool big_endian>
5167 void
5168 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5169 {
5170 const section_size_type off = this->offset();
5171 const section_size_type oview_size =
5172 convert_to_section_size_type(this->data_size());
5173 unsigned char* const oview = of->get_output_view(off, oview_size);
5174 memcpy(oview, this->contents_, oview_size);
5175 of->write_output_view(off, oview_size, oview);
5176 }
5177
5178
5179 // Create the glink section.
5180
5181 template<int size, bool big_endian>
5182 void
5183 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5184 {
5185 if (this->glink_ == NULL)
5186 {
5187 this->glink_ = new Output_data_glink<size, big_endian>(this);
5188 this->glink_->add_eh_frame(layout);
5189 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5190 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5191 this->glink_, ORDER_TEXT, false);
5192 }
5193 }
5194
5195 // Create a PLT entry for a global symbol.
5196
5197 template<int size, bool big_endian>
5198 void
5199 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5200 Layout* layout,
5201 Symbol* gsym)
5202 {
5203 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5204 && gsym->can_use_relative_reloc(false))
5205 {
5206 if (this->iplt_ == NULL)
5207 this->make_iplt_section(symtab, layout);
5208 this->iplt_->add_ifunc_entry(gsym);
5209 }
5210 else
5211 {
5212 if (this->plt_ == NULL)
5213 this->make_plt_section(symtab, layout);
5214 this->plt_->add_entry(gsym);
5215 }
5216 }
5217
5218 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5219
5220 template<int size, bool big_endian>
5221 void
5222 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5223 Symbol_table* symtab,
5224 Layout* layout,
5225 Sized_relobj_file<size, big_endian>* relobj,
5226 unsigned int r_sym)
5227 {
5228 if (this->iplt_ == NULL)
5229 this->make_iplt_section(symtab, layout);
5230 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5231 }
5232
5233 // Return the number of entries in the PLT.
5234
5235 template<int size, bool big_endian>
5236 unsigned int
5237 Target_powerpc<size, big_endian>::plt_entry_count() const
5238 {
5239 if (this->plt_ == NULL)
5240 return 0;
5241 return this->plt_->entry_count();
5242 }
5243
5244 // Create a GOT entry for local dynamic __tls_get_addr calls.
5245
5246 template<int size, bool big_endian>
5247 unsigned int
5248 Target_powerpc<size, big_endian>::tlsld_got_offset(
5249 Symbol_table* symtab,
5250 Layout* layout,
5251 Sized_relobj_file<size, big_endian>* object)
5252 {
5253 if (this->tlsld_got_offset_ == -1U)
5254 {
5255 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5256 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5257 Output_data_got_powerpc<size, big_endian>* got
5258 = this->got_section(symtab, layout);
5259 unsigned int got_offset = got->add_constant_pair(0, 0);
5260 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5261 got_offset, 0);
5262 this->tlsld_got_offset_ = got_offset;
5263 }
5264 return this->tlsld_got_offset_;
5265 }
5266
5267 // Get the Reference_flags for a particular relocation.
5268
5269 template<int size, bool big_endian>
5270 int
5271 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5272 unsigned int r_type,
5273 const Target_powerpc* target)
5274 {
5275 int ref = 0;
5276
5277 switch (r_type)
5278 {
5279 case elfcpp::R_POWERPC_NONE:
5280 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5281 case elfcpp::R_POWERPC_GNU_VTENTRY:
5282 case elfcpp::R_PPC64_TOC:
5283 // No symbol reference.
5284 break;
5285
5286 case elfcpp::R_PPC64_ADDR64:
5287 case elfcpp::R_PPC64_UADDR64:
5288 case elfcpp::R_POWERPC_ADDR32:
5289 case elfcpp::R_POWERPC_UADDR32:
5290 case elfcpp::R_POWERPC_ADDR16:
5291 case elfcpp::R_POWERPC_UADDR16:
5292 case elfcpp::R_POWERPC_ADDR16_LO:
5293 case elfcpp::R_POWERPC_ADDR16_HI:
5294 case elfcpp::R_POWERPC_ADDR16_HA:
5295 ref = Symbol::ABSOLUTE_REF;
5296 break;
5297
5298 case elfcpp::R_POWERPC_ADDR24:
5299 case elfcpp::R_POWERPC_ADDR14:
5300 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5301 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5302 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5303 break;
5304
5305 case elfcpp::R_PPC64_REL64:
5306 case elfcpp::R_POWERPC_REL32:
5307 case elfcpp::R_PPC_LOCAL24PC:
5308 case elfcpp::R_POWERPC_REL16:
5309 case elfcpp::R_POWERPC_REL16_LO:
5310 case elfcpp::R_POWERPC_REL16_HI:
5311 case elfcpp::R_POWERPC_REL16_HA:
5312 ref = Symbol::RELATIVE_REF;
5313 break;
5314
5315 case elfcpp::R_POWERPC_REL24:
5316 case elfcpp::R_PPC_PLTREL24:
5317 case elfcpp::R_POWERPC_REL14:
5318 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5319 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5320 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5321 break;
5322
5323 case elfcpp::R_POWERPC_GOT16:
5324 case elfcpp::R_POWERPC_GOT16_LO:
5325 case elfcpp::R_POWERPC_GOT16_HI:
5326 case elfcpp::R_POWERPC_GOT16_HA:
5327 case elfcpp::R_PPC64_GOT16_DS:
5328 case elfcpp::R_PPC64_GOT16_LO_DS:
5329 case elfcpp::R_PPC64_TOC16:
5330 case elfcpp::R_PPC64_TOC16_LO:
5331 case elfcpp::R_PPC64_TOC16_HI:
5332 case elfcpp::R_PPC64_TOC16_HA:
5333 case elfcpp::R_PPC64_TOC16_DS:
5334 case elfcpp::R_PPC64_TOC16_LO_DS:
5335 ref = Symbol::RELATIVE_REF;
5336 break;
5337
5338 case elfcpp::R_POWERPC_GOT_TPREL16:
5339 case elfcpp::R_POWERPC_TLS:
5340 ref = Symbol::TLS_REF;
5341 break;
5342
5343 case elfcpp::R_POWERPC_COPY:
5344 case elfcpp::R_POWERPC_GLOB_DAT:
5345 case elfcpp::R_POWERPC_JMP_SLOT:
5346 case elfcpp::R_POWERPC_RELATIVE:
5347 case elfcpp::R_POWERPC_DTPMOD:
5348 default:
5349 // Not expected. We will give an error later.
5350 break;
5351 }
5352
5353 if (size == 64 && target->abiversion() < 2)
5354 ref |= Symbol::FUNC_DESC_ABI;
5355 return ref;
5356 }
5357
5358 // Report an unsupported relocation against a local symbol.
5359
5360 template<int size, bool big_endian>
5361 void
5362 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5363 Sized_relobj_file<size, big_endian>* object,
5364 unsigned int r_type)
5365 {
5366 gold_error(_("%s: unsupported reloc %u against local symbol"),
5367 object->name().c_str(), r_type);
5368 }
5369
5370 // We are about to emit a dynamic relocation of type R_TYPE. If the
5371 // dynamic linker does not support it, issue an error.
5372
5373 template<int size, bool big_endian>
5374 void
5375 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5376 unsigned int r_type)
5377 {
5378 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5379
5380 // These are the relocation types supported by glibc for both 32-bit
5381 // and 64-bit powerpc.
5382 switch (r_type)
5383 {
5384 case elfcpp::R_POWERPC_NONE:
5385 case elfcpp::R_POWERPC_RELATIVE:
5386 case elfcpp::R_POWERPC_GLOB_DAT:
5387 case elfcpp::R_POWERPC_DTPMOD:
5388 case elfcpp::R_POWERPC_DTPREL:
5389 case elfcpp::R_POWERPC_TPREL:
5390 case elfcpp::R_POWERPC_JMP_SLOT:
5391 case elfcpp::R_POWERPC_COPY:
5392 case elfcpp::R_POWERPC_IRELATIVE:
5393 case elfcpp::R_POWERPC_ADDR32:
5394 case elfcpp::R_POWERPC_UADDR32:
5395 case elfcpp::R_POWERPC_ADDR24:
5396 case elfcpp::R_POWERPC_ADDR16:
5397 case elfcpp::R_POWERPC_UADDR16:
5398 case elfcpp::R_POWERPC_ADDR16_LO:
5399 case elfcpp::R_POWERPC_ADDR16_HI:
5400 case elfcpp::R_POWERPC_ADDR16_HA:
5401 case elfcpp::R_POWERPC_ADDR14:
5402 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5403 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5404 case elfcpp::R_POWERPC_REL32:
5405 case elfcpp::R_POWERPC_REL24:
5406 case elfcpp::R_POWERPC_TPREL16:
5407 case elfcpp::R_POWERPC_TPREL16_LO:
5408 case elfcpp::R_POWERPC_TPREL16_HI:
5409 case elfcpp::R_POWERPC_TPREL16_HA:
5410 return;
5411
5412 default:
5413 break;
5414 }
5415
5416 if (size == 64)
5417 {
5418 switch (r_type)
5419 {
5420 // These are the relocation types supported only on 64-bit.
5421 case elfcpp::R_PPC64_ADDR64:
5422 case elfcpp::R_PPC64_UADDR64:
5423 case elfcpp::R_PPC64_JMP_IREL:
5424 case elfcpp::R_PPC64_ADDR16_DS:
5425 case elfcpp::R_PPC64_ADDR16_LO_DS:
5426 case elfcpp::R_PPC64_ADDR16_HIGH:
5427 case elfcpp::R_PPC64_ADDR16_HIGHA:
5428 case elfcpp::R_PPC64_ADDR16_HIGHER:
5429 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5430 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5431 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5432 case elfcpp::R_PPC64_REL64:
5433 case elfcpp::R_POWERPC_ADDR30:
5434 case elfcpp::R_PPC64_TPREL16_DS:
5435 case elfcpp::R_PPC64_TPREL16_LO_DS:
5436 case elfcpp::R_PPC64_TPREL16_HIGH:
5437 case elfcpp::R_PPC64_TPREL16_HIGHA:
5438 case elfcpp::R_PPC64_TPREL16_HIGHER:
5439 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5440 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5441 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5442 return;
5443
5444 default:
5445 break;
5446 }
5447 }
5448 else
5449 {
5450 switch (r_type)
5451 {
5452 // These are the relocation types supported only on 32-bit.
5453 // ??? glibc ld.so doesn't need to support these.
5454 case elfcpp::R_POWERPC_DTPREL16:
5455 case elfcpp::R_POWERPC_DTPREL16_LO:
5456 case elfcpp::R_POWERPC_DTPREL16_HI:
5457 case elfcpp::R_POWERPC_DTPREL16_HA:
5458 return;
5459
5460 default:
5461 break;
5462 }
5463 }
5464
5465 // This prevents us from issuing more than one error per reloc
5466 // section. But we can still wind up issuing more than one
5467 // error per object file.
5468 if (this->issued_non_pic_error_)
5469 return;
5470 gold_assert(parameters->options().output_is_position_independent());
5471 object->error(_("requires unsupported dynamic reloc; "
5472 "recompile with -fPIC"));
5473 this->issued_non_pic_error_ = true;
5474 return;
5475 }
5476
5477 // Return whether we need to make a PLT entry for a relocation of the
5478 // given type against a STT_GNU_IFUNC symbol.
5479
5480 template<int size, bool big_endian>
5481 bool
5482 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5483 Target_powerpc<size, big_endian>* target,
5484 Sized_relobj_file<size, big_endian>* object,
5485 unsigned int r_type,
5486 bool report_err)
5487 {
5488 // In non-pic code any reference will resolve to the plt call stub
5489 // for the ifunc symbol.
5490 if ((size == 32 || target->abiversion() >= 2)
5491 && !parameters->options().output_is_position_independent())
5492 return true;
5493
5494 switch (r_type)
5495 {
5496 // Word size refs from data sections are OK, but don't need a PLT entry.
5497 case elfcpp::R_POWERPC_ADDR32:
5498 case elfcpp::R_POWERPC_UADDR32:
5499 if (size == 32)
5500 return false;
5501 break;
5502
5503 case elfcpp::R_PPC64_ADDR64:
5504 case elfcpp::R_PPC64_UADDR64:
5505 if (size == 64)
5506 return false;
5507 break;
5508
5509 // GOT refs are good, but also don't need a PLT entry.
5510 case elfcpp::R_POWERPC_GOT16:
5511 case elfcpp::R_POWERPC_GOT16_LO:
5512 case elfcpp::R_POWERPC_GOT16_HI:
5513 case elfcpp::R_POWERPC_GOT16_HA:
5514 case elfcpp::R_PPC64_GOT16_DS:
5515 case elfcpp::R_PPC64_GOT16_LO_DS:
5516 return false;
5517
5518 // Function calls are good, and these do need a PLT entry.
5519 case elfcpp::R_POWERPC_ADDR24:
5520 case elfcpp::R_POWERPC_ADDR14:
5521 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5522 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5523 case elfcpp::R_POWERPC_REL24:
5524 case elfcpp::R_PPC_PLTREL24:
5525 case elfcpp::R_POWERPC_REL14:
5526 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5527 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5528 return true;
5529
5530 default:
5531 break;
5532 }
5533
5534 // Anything else is a problem.
5535 // If we are building a static executable, the libc startup function
5536 // responsible for applying indirect function relocations is going
5537 // to complain about the reloc type.
5538 // If we are building a dynamic executable, we will have a text
5539 // relocation. The dynamic loader will set the text segment
5540 // writable and non-executable to apply text relocations. So we'll
5541 // segfault when trying to run the indirection function to resolve
5542 // the reloc.
5543 if (report_err)
5544 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5545 object->name().c_str(), r_type);
5546 return false;
5547 }
5548
5549 // Scan a relocation for a local symbol.
5550
5551 template<int size, bool big_endian>
5552 inline void
5553 Target_powerpc<size, big_endian>::Scan::local(
5554 Symbol_table* symtab,
5555 Layout* layout,
5556 Target_powerpc<size, big_endian>* target,
5557 Sized_relobj_file<size, big_endian>* object,
5558 unsigned int data_shndx,
5559 Output_section* output_section,
5560 const elfcpp::Rela<size, big_endian>& reloc,
5561 unsigned int r_type,
5562 const elfcpp::Sym<size, big_endian>& lsym,
5563 bool is_discarded)
5564 {
5565 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5566
5567 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5568 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5569 {
5570 this->expect_tls_get_addr_call();
5571 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5572 if (tls_type != tls::TLSOPT_NONE)
5573 this->skip_next_tls_get_addr_call();
5574 }
5575 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5576 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5577 {
5578 this->expect_tls_get_addr_call();
5579 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5580 if (tls_type != tls::TLSOPT_NONE)
5581 this->skip_next_tls_get_addr_call();
5582 }
5583
5584 Powerpc_relobj<size, big_endian>* ppc_object
5585 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5586
5587 if (is_discarded)
5588 {
5589 if (size == 64
5590 && data_shndx == ppc_object->opd_shndx()
5591 && r_type == elfcpp::R_PPC64_ADDR64)
5592 ppc_object->set_opd_discard(reloc.get_r_offset());
5593 return;
5594 }
5595
5596 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5597 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5598 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5599 {
5600 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5601 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5602 r_type, r_sym, reloc.get_r_addend());
5603 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5604 }
5605
5606 switch (r_type)
5607 {
5608 case elfcpp::R_POWERPC_NONE:
5609 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5610 case elfcpp::R_POWERPC_GNU_VTENTRY:
5611 case elfcpp::R_PPC64_TOCSAVE:
5612 case elfcpp::R_POWERPC_TLS:
5613 case elfcpp::R_PPC64_ENTRY:
5614 break;
5615
5616 case elfcpp::R_PPC64_TOC:
5617 {
5618 Output_data_got_powerpc<size, big_endian>* got
5619 = target->got_section(symtab, layout);
5620 if (parameters->options().output_is_position_independent())
5621 {
5622 Address off = reloc.get_r_offset();
5623 if (size == 64
5624 && target->abiversion() < 2
5625 && data_shndx == ppc_object->opd_shndx()
5626 && ppc_object->get_opd_discard(off - 8))
5627 break;
5628
5629 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5630 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5631 rela_dyn->add_output_section_relative(got->output_section(),
5632 elfcpp::R_POWERPC_RELATIVE,
5633 output_section,
5634 object, data_shndx, off,
5635 symobj->toc_base_offset());
5636 }
5637 }
5638 break;
5639
5640 case elfcpp::R_PPC64_ADDR64:
5641 case elfcpp::R_PPC64_UADDR64:
5642 case elfcpp::R_POWERPC_ADDR32:
5643 case elfcpp::R_POWERPC_UADDR32:
5644 case elfcpp::R_POWERPC_ADDR24:
5645 case elfcpp::R_POWERPC_ADDR16:
5646 case elfcpp::R_POWERPC_ADDR16_LO:
5647 case elfcpp::R_POWERPC_ADDR16_HI:
5648 case elfcpp::R_POWERPC_ADDR16_HA:
5649 case elfcpp::R_POWERPC_UADDR16:
5650 case elfcpp::R_PPC64_ADDR16_HIGH:
5651 case elfcpp::R_PPC64_ADDR16_HIGHA:
5652 case elfcpp::R_PPC64_ADDR16_HIGHER:
5653 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5654 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5655 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5656 case elfcpp::R_PPC64_ADDR16_DS:
5657 case elfcpp::R_PPC64_ADDR16_LO_DS:
5658 case elfcpp::R_POWERPC_ADDR14:
5659 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5660 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5661 // If building a shared library (or a position-independent
5662 // executable), we need to create a dynamic relocation for
5663 // this location.
5664 if (parameters->options().output_is_position_independent()
5665 || (size == 64 && is_ifunc && target->abiversion() < 2))
5666 {
5667 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5668 is_ifunc);
5669 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5670 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5671 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5672 {
5673 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5674 : elfcpp::R_POWERPC_RELATIVE);
5675 rela_dyn->add_local_relative(object, r_sym, dynrel,
5676 output_section, data_shndx,
5677 reloc.get_r_offset(),
5678 reloc.get_r_addend(), false);
5679 }
5680 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5681 {
5682 check_non_pic(object, r_type);
5683 rela_dyn->add_local(object, r_sym, r_type, output_section,
5684 data_shndx, reloc.get_r_offset(),
5685 reloc.get_r_addend());
5686 }
5687 else
5688 {
5689 gold_assert(lsym.get_st_value() == 0);
5690 unsigned int shndx = lsym.get_st_shndx();
5691 bool is_ordinary;
5692 shndx = object->adjust_sym_shndx(r_sym, shndx,
5693 &is_ordinary);
5694 if (!is_ordinary)
5695 object->error(_("section symbol %u has bad shndx %u"),
5696 r_sym, shndx);
5697 else
5698 rela_dyn->add_local_section(object, shndx, r_type,
5699 output_section, data_shndx,
5700 reloc.get_r_offset());
5701 }
5702 }
5703 break;
5704
5705 case elfcpp::R_POWERPC_REL24:
5706 case elfcpp::R_PPC_PLTREL24:
5707 case elfcpp::R_PPC_LOCAL24PC:
5708 case elfcpp::R_POWERPC_REL14:
5709 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5710 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5711 if (!is_ifunc)
5712 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5713 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5714 reloc.get_r_addend());
5715 break;
5716
5717 case elfcpp::R_PPC64_REL64:
5718 case elfcpp::R_POWERPC_REL32:
5719 case elfcpp::R_POWERPC_REL16:
5720 case elfcpp::R_POWERPC_REL16_LO:
5721 case elfcpp::R_POWERPC_REL16_HI:
5722 case elfcpp::R_POWERPC_REL16_HA:
5723 case elfcpp::R_POWERPC_REL16DX_HA:
5724 case elfcpp::R_POWERPC_SECTOFF:
5725 case elfcpp::R_POWERPC_SECTOFF_LO:
5726 case elfcpp::R_POWERPC_SECTOFF_HI:
5727 case elfcpp::R_POWERPC_SECTOFF_HA:
5728 case elfcpp::R_PPC64_SECTOFF_DS:
5729 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5730 case elfcpp::R_POWERPC_TPREL16:
5731 case elfcpp::R_POWERPC_TPREL16_LO:
5732 case elfcpp::R_POWERPC_TPREL16_HI:
5733 case elfcpp::R_POWERPC_TPREL16_HA:
5734 case elfcpp::R_PPC64_TPREL16_DS:
5735 case elfcpp::R_PPC64_TPREL16_LO_DS:
5736 case elfcpp::R_PPC64_TPREL16_HIGH:
5737 case elfcpp::R_PPC64_TPREL16_HIGHA:
5738 case elfcpp::R_PPC64_TPREL16_HIGHER:
5739 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5740 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5741 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5742 case elfcpp::R_POWERPC_DTPREL16:
5743 case elfcpp::R_POWERPC_DTPREL16_LO:
5744 case elfcpp::R_POWERPC_DTPREL16_HI:
5745 case elfcpp::R_POWERPC_DTPREL16_HA:
5746 case elfcpp::R_PPC64_DTPREL16_DS:
5747 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5748 case elfcpp::R_PPC64_DTPREL16_HIGH:
5749 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5750 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5751 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5752 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5753 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5754 case elfcpp::R_PPC64_TLSGD:
5755 case elfcpp::R_PPC64_TLSLD:
5756 case elfcpp::R_PPC64_ADDR64_LOCAL:
5757 break;
5758
5759 case elfcpp::R_POWERPC_GOT16:
5760 case elfcpp::R_POWERPC_GOT16_LO:
5761 case elfcpp::R_POWERPC_GOT16_HI:
5762 case elfcpp::R_POWERPC_GOT16_HA:
5763 case elfcpp::R_PPC64_GOT16_DS:
5764 case elfcpp::R_PPC64_GOT16_LO_DS:
5765 {
5766 // The symbol requires a GOT entry.
5767 Output_data_got_powerpc<size, big_endian>* got
5768 = target->got_section(symtab, layout);
5769 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5770
5771 if (!parameters->options().output_is_position_independent())
5772 {
5773 if (is_ifunc
5774 && (size == 32 || target->abiversion() >= 2))
5775 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5776 else
5777 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5778 }
5779 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5780 {
5781 // If we are generating a shared object or a pie, this
5782 // symbol's GOT entry will be set by a dynamic relocation.
5783 unsigned int off;
5784 off = got->add_constant(0);
5785 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5786
5787 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5788 is_ifunc);
5789 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5790 : elfcpp::R_POWERPC_RELATIVE);
5791 rela_dyn->add_local_relative(object, r_sym, dynrel,
5792 got, off, 0, false);
5793 }
5794 }
5795 break;
5796
5797 case elfcpp::R_PPC64_TOC16:
5798 case elfcpp::R_PPC64_TOC16_LO:
5799 case elfcpp::R_PPC64_TOC16_HI:
5800 case elfcpp::R_PPC64_TOC16_HA:
5801 case elfcpp::R_PPC64_TOC16_DS:
5802 case elfcpp::R_PPC64_TOC16_LO_DS:
5803 // We need a GOT section.
5804 target->got_section(symtab, layout);
5805 break;
5806
5807 case elfcpp::R_POWERPC_GOT_TLSGD16:
5808 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5809 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5810 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5811 {
5812 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5813 if (tls_type == tls::TLSOPT_NONE)
5814 {
5815 Output_data_got_powerpc<size, big_endian>* got
5816 = target->got_section(symtab, layout);
5817 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5818 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5819 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5820 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5821 }
5822 else if (tls_type == tls::TLSOPT_TO_LE)
5823 {
5824 // no GOT relocs needed for Local Exec.
5825 }
5826 else
5827 gold_unreachable();
5828 }
5829 break;
5830
5831 case elfcpp::R_POWERPC_GOT_TLSLD16:
5832 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5833 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5834 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5835 {
5836 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5837 if (tls_type == tls::TLSOPT_NONE)
5838 target->tlsld_got_offset(symtab, layout, object);
5839 else if (tls_type == tls::TLSOPT_TO_LE)
5840 {
5841 // no GOT relocs needed for Local Exec.
5842 if (parameters->options().emit_relocs())
5843 {
5844 Output_section* os = layout->tls_segment()->first_section();
5845 gold_assert(os != NULL);
5846 os->set_needs_symtab_index();
5847 }
5848 }
5849 else
5850 gold_unreachable();
5851 }
5852 break;
5853
5854 case elfcpp::R_POWERPC_GOT_DTPREL16:
5855 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5856 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5857 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5858 {
5859 Output_data_got_powerpc<size, big_endian>* got
5860 = target->got_section(symtab, layout);
5861 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5862 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5863 }
5864 break;
5865
5866 case elfcpp::R_POWERPC_GOT_TPREL16:
5867 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5868 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5869 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5870 {
5871 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5872 if (tls_type == tls::TLSOPT_NONE)
5873 {
5874 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5875 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5876 {
5877 Output_data_got_powerpc<size, big_endian>* got
5878 = target->got_section(symtab, layout);
5879 unsigned int off = got->add_constant(0);
5880 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5881
5882 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5883 rela_dyn->add_symbolless_local_addend(object, r_sym,
5884 elfcpp::R_POWERPC_TPREL,
5885 got, off, 0);
5886 }
5887 }
5888 else if (tls_type == tls::TLSOPT_TO_LE)
5889 {
5890 // no GOT relocs needed for Local Exec.
5891 }
5892 else
5893 gold_unreachable();
5894 }
5895 break;
5896
5897 default:
5898 unsupported_reloc_local(object, r_type);
5899 break;
5900 }
5901
5902 switch (r_type)
5903 {
5904 case elfcpp::R_POWERPC_GOT_TLSLD16:
5905 case elfcpp::R_POWERPC_GOT_TLSGD16:
5906 case elfcpp::R_POWERPC_GOT_TPREL16:
5907 case elfcpp::R_POWERPC_GOT_DTPREL16:
5908 case elfcpp::R_POWERPC_GOT16:
5909 case elfcpp::R_PPC64_GOT16_DS:
5910 case elfcpp::R_PPC64_TOC16:
5911 case elfcpp::R_PPC64_TOC16_DS:
5912 ppc_object->set_has_small_toc_reloc();
5913 default:
5914 break;
5915 }
5916 }
5917
5918 // Report an unsupported relocation against a global symbol.
5919
5920 template<int size, bool big_endian>
5921 void
5922 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5923 Sized_relobj_file<size, big_endian>* object,
5924 unsigned int r_type,
5925 Symbol* gsym)
5926 {
5927 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5928 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5929 }
5930
5931 // Scan a relocation for a global symbol.
5932
5933 template<int size, bool big_endian>
5934 inline void
5935 Target_powerpc<size, big_endian>::Scan::global(
5936 Symbol_table* symtab,
5937 Layout* layout,
5938 Target_powerpc<size, big_endian>* target,
5939 Sized_relobj_file<size, big_endian>* object,
5940 unsigned int data_shndx,
5941 Output_section* output_section,
5942 const elfcpp::Rela<size, big_endian>& reloc,
5943 unsigned int r_type,
5944 Symbol* gsym)
5945 {
5946 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5947 return;
5948
5949 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5950 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5951 {
5952 this->expect_tls_get_addr_call();
5953 const bool final = gsym->final_value_is_known();
5954 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5955 if (tls_type != tls::TLSOPT_NONE)
5956 this->skip_next_tls_get_addr_call();
5957 }
5958 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5959 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5960 {
5961 this->expect_tls_get_addr_call();
5962 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5963 if (tls_type != tls::TLSOPT_NONE)
5964 this->skip_next_tls_get_addr_call();
5965 }
5966
5967 Powerpc_relobj<size, big_endian>* ppc_object
5968 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5969
5970 // A STT_GNU_IFUNC symbol may require a PLT entry.
5971 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5972 bool pushed_ifunc = false;
5973 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5974 {
5975 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5976 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5977 reloc.get_r_addend());
5978 target->make_plt_entry(symtab, layout, gsym);
5979 pushed_ifunc = true;
5980 }
5981
5982 switch (r_type)
5983 {
5984 case elfcpp::R_POWERPC_NONE:
5985 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5986 case elfcpp::R_POWERPC_GNU_VTENTRY:
5987 case elfcpp::R_PPC_LOCAL24PC:
5988 case elfcpp::R_POWERPC_TLS:
5989 case elfcpp::R_PPC64_ENTRY:
5990 break;
5991
5992 case elfcpp::R_PPC64_TOC:
5993 {
5994 Output_data_got_powerpc<size, big_endian>* got
5995 = target->got_section(symtab, layout);
5996 if (parameters->options().output_is_position_independent())
5997 {
5998 Address off = reloc.get_r_offset();
5999 if (size == 64
6000 && data_shndx == ppc_object->opd_shndx()
6001 && ppc_object->get_opd_discard(off - 8))
6002 break;
6003
6004 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6005 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6006 if (data_shndx != ppc_object->opd_shndx())
6007 symobj = static_cast
6008 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6009 rela_dyn->add_output_section_relative(got->output_section(),
6010 elfcpp::R_POWERPC_RELATIVE,
6011 output_section,
6012 object, data_shndx, off,
6013 symobj->toc_base_offset());
6014 }
6015 }
6016 break;
6017
6018 case elfcpp::R_PPC64_ADDR64:
6019 if (size == 64
6020 && target->abiversion() < 2
6021 && data_shndx == ppc_object->opd_shndx()
6022 && (gsym->is_defined_in_discarded_section()
6023 || gsym->object() != object))
6024 {
6025 ppc_object->set_opd_discard(reloc.get_r_offset());
6026 break;
6027 }
6028 // Fall thru
6029 case elfcpp::R_PPC64_UADDR64:
6030 case elfcpp::R_POWERPC_ADDR32:
6031 case elfcpp::R_POWERPC_UADDR32:
6032 case elfcpp::R_POWERPC_ADDR24:
6033 case elfcpp::R_POWERPC_ADDR16:
6034 case elfcpp::R_POWERPC_ADDR16_LO:
6035 case elfcpp::R_POWERPC_ADDR16_HI:
6036 case elfcpp::R_POWERPC_ADDR16_HA:
6037 case elfcpp::R_POWERPC_UADDR16:
6038 case elfcpp::R_PPC64_ADDR16_HIGH:
6039 case elfcpp::R_PPC64_ADDR16_HIGHA:
6040 case elfcpp::R_PPC64_ADDR16_HIGHER:
6041 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6042 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6043 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6044 case elfcpp::R_PPC64_ADDR16_DS:
6045 case elfcpp::R_PPC64_ADDR16_LO_DS:
6046 case elfcpp::R_POWERPC_ADDR14:
6047 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6048 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6049 {
6050 // Make a PLT entry if necessary.
6051 if (gsym->needs_plt_entry())
6052 {
6053 // Since this is not a PC-relative relocation, we may be
6054 // taking the address of a function. In that case we need to
6055 // set the entry in the dynamic symbol table to the address of
6056 // the PLT call stub.
6057 bool need_ifunc_plt = false;
6058 if ((size == 32 || target->abiversion() >= 2)
6059 && gsym->is_from_dynobj()
6060 && !parameters->options().output_is_position_independent())
6061 {
6062 gsym->set_needs_dynsym_value();
6063 need_ifunc_plt = true;
6064 }
6065 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6066 {
6067 target->push_branch(ppc_object, data_shndx,
6068 reloc.get_r_offset(), r_type,
6069 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6070 reloc.get_r_addend());
6071 target->make_plt_entry(symtab, layout, gsym);
6072 }
6073 }
6074 // Make a dynamic relocation if necessary.
6075 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6076 || (size == 64 && is_ifunc && target->abiversion() < 2))
6077 {
6078 if (!parameters->options().output_is_position_independent()
6079 && gsym->may_need_copy_reloc())
6080 {
6081 target->copy_reloc(symtab, layout, object,
6082 data_shndx, output_section, gsym, reloc);
6083 }
6084 else if ((((size == 32
6085 && r_type == elfcpp::R_POWERPC_ADDR32)
6086 || (size == 64
6087 && r_type == elfcpp::R_PPC64_ADDR64
6088 && target->abiversion() >= 2))
6089 && gsym->can_use_relative_reloc(false)
6090 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6091 && parameters->options().shared()))
6092 || (size == 64
6093 && r_type == elfcpp::R_PPC64_ADDR64
6094 && target->abiversion() < 2
6095 && (gsym->can_use_relative_reloc(false)
6096 || data_shndx == ppc_object->opd_shndx())))
6097 {
6098 Reloc_section* rela_dyn
6099 = target->rela_dyn_section(symtab, layout, is_ifunc);
6100 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6101 : elfcpp::R_POWERPC_RELATIVE);
6102 rela_dyn->add_symbolless_global_addend(
6103 gsym, dynrel, output_section, object, data_shndx,
6104 reloc.get_r_offset(), reloc.get_r_addend());
6105 }
6106 else
6107 {
6108 Reloc_section* rela_dyn
6109 = target->rela_dyn_section(symtab, layout, is_ifunc);
6110 check_non_pic(object, r_type);
6111 rela_dyn->add_global(gsym, r_type, output_section,
6112 object, data_shndx,
6113 reloc.get_r_offset(),
6114 reloc.get_r_addend());
6115 }
6116 }
6117 }
6118 break;
6119
6120 case elfcpp::R_PPC_PLTREL24:
6121 case elfcpp::R_POWERPC_REL24:
6122 if (!is_ifunc)
6123 {
6124 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6125 r_type,
6126 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6127 reloc.get_r_addend());
6128 if (gsym->needs_plt_entry()
6129 || (!gsym->final_value_is_known()
6130 && (gsym->is_undefined()
6131 || gsym->is_from_dynobj()
6132 || gsym->is_preemptible())))
6133 target->make_plt_entry(symtab, layout, gsym);
6134 }
6135 // Fall thru
6136
6137 case elfcpp::R_PPC64_REL64:
6138 case elfcpp::R_POWERPC_REL32:
6139 // Make a dynamic relocation if necessary.
6140 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6141 {
6142 if (!parameters->options().output_is_position_independent()
6143 && gsym->may_need_copy_reloc())
6144 {
6145 target->copy_reloc(symtab, layout, object,
6146 data_shndx, output_section, gsym,
6147 reloc);
6148 }
6149 else
6150 {
6151 Reloc_section* rela_dyn
6152 = target->rela_dyn_section(symtab, layout, is_ifunc);
6153 check_non_pic(object, r_type);
6154 rela_dyn->add_global(gsym, r_type, output_section, object,
6155 data_shndx, reloc.get_r_offset(),
6156 reloc.get_r_addend());
6157 }
6158 }
6159 break;
6160
6161 case elfcpp::R_POWERPC_REL14:
6162 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6163 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6164 if (!is_ifunc)
6165 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6166 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6167 reloc.get_r_addend());
6168 break;
6169
6170 case elfcpp::R_POWERPC_REL16:
6171 case elfcpp::R_POWERPC_REL16_LO:
6172 case elfcpp::R_POWERPC_REL16_HI:
6173 case elfcpp::R_POWERPC_REL16_HA:
6174 case elfcpp::R_POWERPC_REL16DX_HA:
6175 case elfcpp::R_POWERPC_SECTOFF:
6176 case elfcpp::R_POWERPC_SECTOFF_LO:
6177 case elfcpp::R_POWERPC_SECTOFF_HI:
6178 case elfcpp::R_POWERPC_SECTOFF_HA:
6179 case elfcpp::R_PPC64_SECTOFF_DS:
6180 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6181 case elfcpp::R_POWERPC_TPREL16:
6182 case elfcpp::R_POWERPC_TPREL16_LO:
6183 case elfcpp::R_POWERPC_TPREL16_HI:
6184 case elfcpp::R_POWERPC_TPREL16_HA:
6185 case elfcpp::R_PPC64_TPREL16_DS:
6186 case elfcpp::R_PPC64_TPREL16_LO_DS:
6187 case elfcpp::R_PPC64_TPREL16_HIGH:
6188 case elfcpp::R_PPC64_TPREL16_HIGHA:
6189 case elfcpp::R_PPC64_TPREL16_HIGHER:
6190 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6191 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6192 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6193 case elfcpp::R_POWERPC_DTPREL16:
6194 case elfcpp::R_POWERPC_DTPREL16_LO:
6195 case elfcpp::R_POWERPC_DTPREL16_HI:
6196 case elfcpp::R_POWERPC_DTPREL16_HA:
6197 case elfcpp::R_PPC64_DTPREL16_DS:
6198 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6199 case elfcpp::R_PPC64_DTPREL16_HIGH:
6200 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6201 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6202 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6203 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6204 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6205 case elfcpp::R_PPC64_TLSGD:
6206 case elfcpp::R_PPC64_TLSLD:
6207 case elfcpp::R_PPC64_ADDR64_LOCAL:
6208 break;
6209
6210 case elfcpp::R_POWERPC_GOT16:
6211 case elfcpp::R_POWERPC_GOT16_LO:
6212 case elfcpp::R_POWERPC_GOT16_HI:
6213 case elfcpp::R_POWERPC_GOT16_HA:
6214 case elfcpp::R_PPC64_GOT16_DS:
6215 case elfcpp::R_PPC64_GOT16_LO_DS:
6216 {
6217 // The symbol requires a GOT entry.
6218 Output_data_got_powerpc<size, big_endian>* got;
6219
6220 got = target->got_section(symtab, layout);
6221 if (gsym->final_value_is_known())
6222 {
6223 if (is_ifunc
6224 && (size == 32 || target->abiversion() >= 2))
6225 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6226 else
6227 got->add_global(gsym, GOT_TYPE_STANDARD);
6228 }
6229 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6230 {
6231 // If we are generating a shared object or a pie, this
6232 // symbol's GOT entry will be set by a dynamic relocation.
6233 unsigned int off = got->add_constant(0);
6234 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6235
6236 Reloc_section* rela_dyn
6237 = target->rela_dyn_section(symtab, layout, is_ifunc);
6238
6239 if (gsym->can_use_relative_reloc(false)
6240 && !((size == 32
6241 || target->abiversion() >= 2)
6242 && gsym->visibility() == elfcpp::STV_PROTECTED
6243 && parameters->options().shared()))
6244 {
6245 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6246 : elfcpp::R_POWERPC_RELATIVE);
6247 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6248 }
6249 else
6250 {
6251 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6252 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6253 }
6254 }
6255 }
6256 break;
6257
6258 case elfcpp::R_PPC64_TOC16:
6259 case elfcpp::R_PPC64_TOC16_LO:
6260 case elfcpp::R_PPC64_TOC16_HI:
6261 case elfcpp::R_PPC64_TOC16_HA:
6262 case elfcpp::R_PPC64_TOC16_DS:
6263 case elfcpp::R_PPC64_TOC16_LO_DS:
6264 // We need a GOT section.
6265 target->got_section(symtab, layout);
6266 break;
6267
6268 case elfcpp::R_POWERPC_GOT_TLSGD16:
6269 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6270 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6271 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6272 {
6273 const bool final = gsym->final_value_is_known();
6274 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6275 if (tls_type == tls::TLSOPT_NONE)
6276 {
6277 Output_data_got_powerpc<size, big_endian>* got
6278 = target->got_section(symtab, layout);
6279 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6280 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6281 elfcpp::R_POWERPC_DTPMOD,
6282 elfcpp::R_POWERPC_DTPREL);
6283 }
6284 else if (tls_type == tls::TLSOPT_TO_IE)
6285 {
6286 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6287 {
6288 Output_data_got_powerpc<size, big_endian>* got
6289 = target->got_section(symtab, layout);
6290 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6291 if (gsym->is_undefined()
6292 || gsym->is_from_dynobj())
6293 {
6294 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6295 elfcpp::R_POWERPC_TPREL);
6296 }
6297 else
6298 {
6299 unsigned int off = got->add_constant(0);
6300 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6301 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6302 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6303 got, off, 0);
6304 }
6305 }
6306 }
6307 else if (tls_type == tls::TLSOPT_TO_LE)
6308 {
6309 // no GOT relocs needed for Local Exec.
6310 }
6311 else
6312 gold_unreachable();
6313 }
6314 break;
6315
6316 case elfcpp::R_POWERPC_GOT_TLSLD16:
6317 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6318 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6319 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6320 {
6321 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6322 if (tls_type == tls::TLSOPT_NONE)
6323 target->tlsld_got_offset(symtab, layout, object);
6324 else if (tls_type == tls::TLSOPT_TO_LE)
6325 {
6326 // no GOT relocs needed for Local Exec.
6327 if (parameters->options().emit_relocs())
6328 {
6329 Output_section* os = layout->tls_segment()->first_section();
6330 gold_assert(os != NULL);
6331 os->set_needs_symtab_index();
6332 }
6333 }
6334 else
6335 gold_unreachable();
6336 }
6337 break;
6338
6339 case elfcpp::R_POWERPC_GOT_DTPREL16:
6340 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6341 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6342 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6343 {
6344 Output_data_got_powerpc<size, big_endian>* got
6345 = target->got_section(symtab, layout);
6346 if (!gsym->final_value_is_known()
6347 && (gsym->is_from_dynobj()
6348 || gsym->is_undefined()
6349 || gsym->is_preemptible()))
6350 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6351 target->rela_dyn_section(layout),
6352 elfcpp::R_POWERPC_DTPREL);
6353 else
6354 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6355 }
6356 break;
6357
6358 case elfcpp::R_POWERPC_GOT_TPREL16:
6359 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6360 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6361 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6362 {
6363 const bool final = gsym->final_value_is_known();
6364 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6365 if (tls_type == tls::TLSOPT_NONE)
6366 {
6367 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6368 {
6369 Output_data_got_powerpc<size, big_endian>* got
6370 = target->got_section(symtab, layout);
6371 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6372 if (gsym->is_undefined()
6373 || gsym->is_from_dynobj())
6374 {
6375 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6376 elfcpp::R_POWERPC_TPREL);
6377 }
6378 else
6379 {
6380 unsigned int off = got->add_constant(0);
6381 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6382 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6383 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6384 got, off, 0);
6385 }
6386 }
6387 }
6388 else if (tls_type == tls::TLSOPT_TO_LE)
6389 {
6390 // no GOT relocs needed for Local Exec.
6391 }
6392 else
6393 gold_unreachable();
6394 }
6395 break;
6396
6397 default:
6398 unsupported_reloc_global(object, r_type, gsym);
6399 break;
6400 }
6401
6402 switch (r_type)
6403 {
6404 case elfcpp::R_POWERPC_GOT_TLSLD16:
6405 case elfcpp::R_POWERPC_GOT_TLSGD16:
6406 case elfcpp::R_POWERPC_GOT_TPREL16:
6407 case elfcpp::R_POWERPC_GOT_DTPREL16:
6408 case elfcpp::R_POWERPC_GOT16:
6409 case elfcpp::R_PPC64_GOT16_DS:
6410 case elfcpp::R_PPC64_TOC16:
6411 case elfcpp::R_PPC64_TOC16_DS:
6412 ppc_object->set_has_small_toc_reloc();
6413 default:
6414 break;
6415 }
6416 }
6417
6418 // Process relocations for gc.
6419
6420 template<int size, bool big_endian>
6421 void
6422 Target_powerpc<size, big_endian>::gc_process_relocs(
6423 Symbol_table* symtab,
6424 Layout* layout,
6425 Sized_relobj_file<size, big_endian>* object,
6426 unsigned int data_shndx,
6427 unsigned int,
6428 const unsigned char* prelocs,
6429 size_t reloc_count,
6430 Output_section* output_section,
6431 bool needs_special_offset_handling,
6432 size_t local_symbol_count,
6433 const unsigned char* plocal_symbols)
6434 {
6435 typedef Target_powerpc<size, big_endian> Powerpc;
6436 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6437 Powerpc_relobj<size, big_endian>* ppc_object
6438 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6439 if (size == 64)
6440 ppc_object->set_opd_valid();
6441 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6442 {
6443 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6444 for (p = ppc_object->access_from_map()->begin();
6445 p != ppc_object->access_from_map()->end();
6446 ++p)
6447 {
6448 Address dst_off = p->first;
6449 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6450 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6451 for (s = p->second.begin(); s != p->second.end(); ++s)
6452 {
6453 Relobj* src_obj = s->first;
6454 unsigned int src_indx = s->second;
6455 symtab->gc()->add_reference(src_obj, src_indx,
6456 ppc_object, dst_indx);
6457 }
6458 p->second.clear();
6459 }
6460 ppc_object->access_from_map()->clear();
6461 ppc_object->process_gc_mark(symtab);
6462 // Don't look at .opd relocs as .opd will reference everything.
6463 return;
6464 }
6465
6466 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6467 typename Target_powerpc::Relocatable_size_for_reloc>(
6468 symtab,
6469 layout,
6470 this,
6471 object,
6472 data_shndx,
6473 prelocs,
6474 reloc_count,
6475 output_section,
6476 needs_special_offset_handling,
6477 local_symbol_count,
6478 plocal_symbols);
6479 }
6480
6481 // Handle target specific gc actions when adding a gc reference from
6482 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6483 // and DST_OFF. For powerpc64, this adds a referenc to the code
6484 // section of a function descriptor.
6485
6486 template<int size, bool big_endian>
6487 void
6488 Target_powerpc<size, big_endian>::do_gc_add_reference(
6489 Symbol_table* symtab,
6490 Relobj* src_obj,
6491 unsigned int src_shndx,
6492 Relobj* dst_obj,
6493 unsigned int dst_shndx,
6494 Address dst_off) const
6495 {
6496 if (size != 64 || dst_obj->is_dynamic())
6497 return;
6498
6499 Powerpc_relobj<size, big_endian>* ppc_object
6500 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6501 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6502 {
6503 if (ppc_object->opd_valid())
6504 {
6505 dst_shndx = ppc_object->get_opd_ent(dst_off);
6506 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6507 }
6508 else
6509 {
6510 // If we haven't run scan_opd_relocs, we must delay
6511 // processing this function descriptor reference.
6512 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6513 }
6514 }
6515 }
6516
6517 // Add any special sections for this symbol to the gc work list.
6518 // For powerpc64, this adds the code section of a function
6519 // descriptor.
6520
6521 template<int size, bool big_endian>
6522 void
6523 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6524 Symbol_table* symtab,
6525 Symbol* sym) const
6526 {
6527 if (size == 64)
6528 {
6529 Powerpc_relobj<size, big_endian>* ppc_object
6530 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6531 bool is_ordinary;
6532 unsigned int shndx = sym->shndx(&is_ordinary);
6533 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6534 {
6535 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6536 Address dst_off = gsym->value();
6537 if (ppc_object->opd_valid())
6538 {
6539 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6540 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6541 dst_indx));
6542 }
6543 else
6544 ppc_object->add_gc_mark(dst_off);
6545 }
6546 }
6547 }
6548
6549 // For a symbol location in .opd, set LOC to the location of the
6550 // function entry.
6551
6552 template<int size, bool big_endian>
6553 void
6554 Target_powerpc<size, big_endian>::do_function_location(
6555 Symbol_location* loc) const
6556 {
6557 if (size == 64 && loc->shndx != 0)
6558 {
6559 if (loc->object->is_dynamic())
6560 {
6561 Powerpc_dynobj<size, big_endian>* ppc_object
6562 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6563 if (loc->shndx == ppc_object->opd_shndx())
6564 {
6565 Address dest_off;
6566 Address off = loc->offset - ppc_object->opd_address();
6567 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6568 loc->offset = dest_off;
6569 }
6570 }
6571 else
6572 {
6573 const Powerpc_relobj<size, big_endian>* ppc_object
6574 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6575 if (loc->shndx == ppc_object->opd_shndx())
6576 {
6577 Address dest_off;
6578 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6579 loc->offset = dest_off;
6580 }
6581 }
6582 }
6583 }
6584
6585 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6586 // compiled with -fsplit-stack. The function calls non-split-stack
6587 // code. Change the function to ensure it has enough stack space to
6588 // call some random function.
6589
6590 template<int size, bool big_endian>
6591 void
6592 Target_powerpc<size, big_endian>::do_calls_non_split(
6593 Relobj* object,
6594 unsigned int shndx,
6595 section_offset_type fnoffset,
6596 section_size_type fnsize,
6597 unsigned char* view,
6598 section_size_type view_size,
6599 std::string* from,
6600 std::string* to) const
6601 {
6602 // 32-bit not supported.
6603 if (size == 32)
6604 {
6605 // warn
6606 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6607 view, view_size, from, to);
6608 return;
6609 }
6610
6611 // The function always starts with
6612 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6613 // addis %r12,%r1,-allocate@ha
6614 // addi %r12,%r12,-allocate@l
6615 // cmpld %r12,%r0
6616 // but note that the addis or addi may be replaced with a nop
6617
6618 unsigned char *entry = view + fnoffset;
6619 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6620
6621 if ((insn & 0xffff0000) == addis_2_12)
6622 {
6623 /* Skip ELFv2 global entry code. */
6624 entry += 8;
6625 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6626 }
6627
6628 unsigned char *pinsn = entry;
6629 bool ok = false;
6630 const uint32_t ld_private_ss = 0xe80d8fc0;
6631 if (insn == ld_private_ss)
6632 {
6633 int32_t allocate = 0;
6634 while (1)
6635 {
6636 pinsn += 4;
6637 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6638 if ((insn & 0xffff0000) == addis_12_1)
6639 allocate += (insn & 0xffff) << 16;
6640 else if ((insn & 0xffff0000) == addi_12_1
6641 || (insn & 0xffff0000) == addi_12_12)
6642 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6643 else if (insn != nop)
6644 break;
6645 }
6646 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6647 {
6648 int extra = parameters->options().split_stack_adjust_size();
6649 allocate -= extra;
6650 if (allocate >= 0 || extra < 0)
6651 {
6652 object->error(_("split-stack stack size overflow at "
6653 "section %u offset %0zx"),
6654 shndx, static_cast<size_t>(fnoffset));
6655 return;
6656 }
6657 pinsn = entry + 4;
6658 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6659 if (insn != addis_12_1)
6660 {
6661 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6662 pinsn += 4;
6663 insn = addi_12_12 | (allocate & 0xffff);
6664 if (insn != addi_12_12)
6665 {
6666 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6667 pinsn += 4;
6668 }
6669 }
6670 else
6671 {
6672 insn = addi_12_1 | (allocate & 0xffff);
6673 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6674 pinsn += 4;
6675 }
6676 if (pinsn != entry + 12)
6677 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6678
6679 ok = true;
6680 }
6681 }
6682
6683 if (!ok)
6684 {
6685 if (!object->has_no_split_stack())
6686 object->error(_("failed to match split-stack sequence at "
6687 "section %u offset %0zx"),
6688 shndx, static_cast<size_t>(fnoffset));
6689 }
6690 }
6691
6692 // Scan relocations for a section.
6693
6694 template<int size, bool big_endian>
6695 void
6696 Target_powerpc<size, big_endian>::scan_relocs(
6697 Symbol_table* symtab,
6698 Layout* layout,
6699 Sized_relobj_file<size, big_endian>* object,
6700 unsigned int data_shndx,
6701 unsigned int sh_type,
6702 const unsigned char* prelocs,
6703 size_t reloc_count,
6704 Output_section* output_section,
6705 bool needs_special_offset_handling,
6706 size_t local_symbol_count,
6707 const unsigned char* plocal_symbols)
6708 {
6709 typedef Target_powerpc<size, big_endian> Powerpc;
6710 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6711
6712 if (sh_type == elfcpp::SHT_REL)
6713 {
6714 gold_error(_("%s: unsupported REL reloc section"),
6715 object->name().c_str());
6716 return;
6717 }
6718
6719 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6720 symtab,
6721 layout,
6722 this,
6723 object,
6724 data_shndx,
6725 prelocs,
6726 reloc_count,
6727 output_section,
6728 needs_special_offset_handling,
6729 local_symbol_count,
6730 plocal_symbols);
6731 }
6732
6733 // Functor class for processing the global symbol table.
6734 // Removes symbols defined on discarded opd entries.
6735
6736 template<bool big_endian>
6737 class Global_symbol_visitor_opd
6738 {
6739 public:
6740 Global_symbol_visitor_opd()
6741 { }
6742
6743 void
6744 operator()(Sized_symbol<64>* sym)
6745 {
6746 if (sym->has_symtab_index()
6747 || sym->source() != Symbol::FROM_OBJECT
6748 || !sym->in_real_elf())
6749 return;
6750
6751 if (sym->object()->is_dynamic())
6752 return;
6753
6754 Powerpc_relobj<64, big_endian>* symobj
6755 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6756 if (symobj->opd_shndx() == 0)
6757 return;
6758
6759 bool is_ordinary;
6760 unsigned int shndx = sym->shndx(&is_ordinary);
6761 if (shndx == symobj->opd_shndx()
6762 && symobj->get_opd_discard(sym->value()))
6763 {
6764 sym->set_undefined();
6765 sym->set_visibility(elfcpp::STV_DEFAULT);
6766 sym->set_is_defined_in_discarded_section();
6767 sym->set_symtab_index(-1U);
6768 }
6769 }
6770 };
6771
6772 template<int size, bool big_endian>
6773 void
6774 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6775 Layout* layout,
6776 Symbol_table* symtab)
6777 {
6778 if (size == 64)
6779 {
6780 Output_data_save_res<size, big_endian>* savres
6781 = new Output_data_save_res<size, big_endian>(symtab);
6782 this->savres_section_ = savres;
6783 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6784 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6785 savres, ORDER_TEXT, false);
6786 }
6787 }
6788
6789 // Sort linker created .got section first (for the header), then input
6790 // sections belonging to files using small model code.
6791
6792 template<bool big_endian>
6793 class Sort_toc_sections
6794 {
6795 public:
6796 bool
6797 operator()(const Output_section::Input_section& is1,
6798 const Output_section::Input_section& is2) const
6799 {
6800 if (!is1.is_input_section() && is2.is_input_section())
6801 return true;
6802 bool small1
6803 = (is1.is_input_section()
6804 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6805 ->has_small_toc_reloc()));
6806 bool small2
6807 = (is2.is_input_section()
6808 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6809 ->has_small_toc_reloc()));
6810 return small1 && !small2;
6811 }
6812 };
6813
6814 // Finalize the sections.
6815
6816 template<int size, bool big_endian>
6817 void
6818 Target_powerpc<size, big_endian>::do_finalize_sections(
6819 Layout* layout,
6820 const Input_objects*,
6821 Symbol_table* symtab)
6822 {
6823 if (parameters->doing_static_link())
6824 {
6825 // At least some versions of glibc elf-init.o have a strong
6826 // reference to __rela_iplt marker syms. A weak ref would be
6827 // better..
6828 if (this->iplt_ != NULL)
6829 {
6830 Reloc_section* rel = this->iplt_->rel_plt();
6831 symtab->define_in_output_data("__rela_iplt_start", NULL,
6832 Symbol_table::PREDEFINED, rel, 0, 0,
6833 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6834 elfcpp::STV_HIDDEN, 0, false, true);
6835 symtab->define_in_output_data("__rela_iplt_end", NULL,
6836 Symbol_table::PREDEFINED, rel, 0, 0,
6837 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6838 elfcpp::STV_HIDDEN, 0, true, true);
6839 }
6840 else
6841 {
6842 symtab->define_as_constant("__rela_iplt_start", NULL,
6843 Symbol_table::PREDEFINED, 0, 0,
6844 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6845 elfcpp::STV_HIDDEN, 0, true, false);
6846 symtab->define_as_constant("__rela_iplt_end", NULL,
6847 Symbol_table::PREDEFINED, 0, 0,
6848 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6849 elfcpp::STV_HIDDEN, 0, true, false);
6850 }
6851 }
6852
6853 if (size == 64)
6854 {
6855 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6856 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6857
6858 if (!parameters->options().relocatable())
6859 {
6860 this->define_save_restore_funcs(layout, symtab);
6861
6862 // Annoyingly, we need to make these sections now whether or
6863 // not we need them. If we delay until do_relax then we
6864 // need to mess with the relaxation machinery checkpointing.
6865 this->got_section(symtab, layout);
6866 this->make_brlt_section(layout);
6867
6868 if (parameters->options().toc_sort())
6869 {
6870 Output_section* os = this->got_->output_section();
6871 if (os != NULL && os->input_sections().size() > 1)
6872 std::stable_sort(os->input_sections().begin(),
6873 os->input_sections().end(),
6874 Sort_toc_sections<big_endian>());
6875 }
6876 }
6877 }
6878
6879 // Fill in some more dynamic tags.
6880 Output_data_dynamic* odyn = layout->dynamic_data();
6881 if (odyn != NULL)
6882 {
6883 const Reloc_section* rel_plt = (this->plt_ == NULL
6884 ? NULL
6885 : this->plt_->rel_plt());
6886 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6887 this->rela_dyn_, true, size == 32);
6888
6889 if (size == 32)
6890 {
6891 if (this->got_ != NULL)
6892 {
6893 this->got_->finalize_data_size();
6894 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6895 this->got_, this->got_->g_o_t());
6896 }
6897 }
6898 else
6899 {
6900 if (this->glink_ != NULL)
6901 {
6902 this->glink_->finalize_data_size();
6903 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6904 this->glink_,
6905 (this->glink_->pltresolve_size
6906 - 32));
6907 }
6908 }
6909 }
6910
6911 // Emit any relocs we saved in an attempt to avoid generating COPY
6912 // relocs.
6913 if (this->copy_relocs_.any_saved_relocs())
6914 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6915 }
6916
6917 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6918 // reloc.
6919
6920 static bool
6921 ok_lo_toc_insn(uint32_t insn)
6922 {
6923 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6924 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6925 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6926 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6927 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6928 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6929 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6930 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6931 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6932 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6933 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6934 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6935 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6936 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6937 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6938 && (insn & 3) != 1)
6939 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6940 && ((insn & 3) == 0 || (insn & 3) == 3))
6941 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6942 }
6943
6944 // Return the value to use for a branch relocation.
6945
6946 template<int size, bool big_endian>
6947 bool
6948 Target_powerpc<size, big_endian>::symval_for_branch(
6949 const Symbol_table* symtab,
6950 const Sized_symbol<size>* gsym,
6951 Powerpc_relobj<size, big_endian>* object,
6952 Address *value,
6953 unsigned int *dest_shndx)
6954 {
6955 if (size == 32 || this->abiversion() >= 2)
6956 gold_unreachable();
6957 *dest_shndx = 0;
6958
6959 // If the symbol is defined in an opd section, ie. is a function
6960 // descriptor, use the function descriptor code entry address
6961 Powerpc_relobj<size, big_endian>* symobj = object;
6962 if (gsym != NULL
6963 && gsym->source() != Symbol::FROM_OBJECT)
6964 return true;
6965 if (gsym != NULL)
6966 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6967 unsigned int shndx = symobj->opd_shndx();
6968 if (shndx == 0)
6969 return true;
6970 Address opd_addr = symobj->get_output_section_offset(shndx);
6971 if (opd_addr == invalid_address)
6972 return true;
6973 opd_addr += symobj->output_section_address(shndx);
6974 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6975 {
6976 Address sec_off;
6977 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6978 if (symtab->is_section_folded(symobj, *dest_shndx))
6979 {
6980 Section_id folded
6981 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6982 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6983 *dest_shndx = folded.second;
6984 }
6985 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6986 if (sec_addr == invalid_address)
6987 return false;
6988
6989 sec_addr += symobj->output_section(*dest_shndx)->address();
6990 *value = sec_addr + sec_off;
6991 }
6992 return true;
6993 }
6994
6995 // Perform a relocation.
6996
6997 template<int size, bool big_endian>
6998 inline bool
6999 Target_powerpc<size, big_endian>::Relocate::relocate(
7000 const Relocate_info<size, big_endian>* relinfo,
7001 Target_powerpc* target,
7002 Output_section* os,
7003 size_t relnum,
7004 const elfcpp::Rela<size, big_endian>& rela,
7005 unsigned int r_type,
7006 const Sized_symbol<size>* gsym,
7007 const Symbol_value<size>* psymval,
7008 unsigned char* view,
7009 Address address,
7010 section_size_type view_size)
7011 {
7012 if (view == NULL)
7013 return true;
7014
7015 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7016 {
7017 case Track_tls::NOT_EXPECTED:
7018 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7019 _("__tls_get_addr call lacks marker reloc"));
7020 break;
7021 case Track_tls::EXPECTED:
7022 // We have already complained.
7023 break;
7024 case Track_tls::SKIP:
7025 return true;
7026 case Track_tls::NORMAL:
7027 break;
7028 }
7029
7030 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7031 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7032 Powerpc_relobj<size, big_endian>* const object
7033 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7034 Address value = 0;
7035 bool has_stub_value = false;
7036 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7037 if ((gsym != NULL
7038 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7039 : object->local_has_plt_offset(r_sym))
7040 && (!psymval->is_ifunc_symbol()
7041 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7042 {
7043 if (size == 64
7044 && gsym != NULL
7045 && target->abiversion() >= 2
7046 && !parameters->options().output_is_position_independent()
7047 && !is_branch_reloc(r_type))
7048 {
7049 Address off = target->glink_section()->find_global_entry(gsym);
7050 if (off != invalid_address)
7051 {
7052 value = target->glink_section()->global_entry_address() + off;
7053 has_stub_value = true;
7054 }
7055 }
7056 else
7057 {
7058 Stub_table<size, big_endian>* stub_table
7059 = object->stub_table(relinfo->data_shndx);
7060 if (stub_table == NULL)
7061 {
7062 // This is a ref from a data section to an ifunc symbol.
7063 if (target->stub_tables().size() != 0)
7064 stub_table = target->stub_tables()[0];
7065 }
7066 if (stub_table != NULL)
7067 {
7068 Address off;
7069 if (gsym != NULL)
7070 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7071 rela.get_r_addend());
7072 else
7073 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7074 rela.get_r_addend());
7075 if (off != invalid_address)
7076 {
7077 value = stub_table->stub_address() + off;
7078 has_stub_value = true;
7079 }
7080 }
7081 }
7082 // We don't care too much about bogus debug references to
7083 // non-local functions, but otherwise there had better be a plt
7084 // call stub or global entry stub as appropriate.
7085 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7086 }
7087
7088 if (r_type == elfcpp::R_POWERPC_GOT16
7089 || r_type == elfcpp::R_POWERPC_GOT16_LO
7090 || r_type == elfcpp::R_POWERPC_GOT16_HI
7091 || r_type == elfcpp::R_POWERPC_GOT16_HA
7092 || r_type == elfcpp::R_PPC64_GOT16_DS
7093 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7094 {
7095 if (gsym != NULL)
7096 {
7097 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7098 value = gsym->got_offset(GOT_TYPE_STANDARD);
7099 }
7100 else
7101 {
7102 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7103 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7104 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7105 }
7106 value -= target->got_section()->got_base_offset(object);
7107 }
7108 else if (r_type == elfcpp::R_PPC64_TOC)
7109 {
7110 value = (target->got_section()->output_section()->address()
7111 + object->toc_base_offset());
7112 }
7113 else if (gsym != NULL
7114 && (r_type == elfcpp::R_POWERPC_REL24
7115 || r_type == elfcpp::R_PPC_PLTREL24)
7116 && has_stub_value)
7117 {
7118 if (size == 64)
7119 {
7120 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7121 Valtype* wv = reinterpret_cast<Valtype*>(view);
7122 bool can_plt_call = false;
7123 if (rela.get_r_offset() + 8 <= view_size)
7124 {
7125 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7126 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7127 if ((insn & 1) != 0
7128 && (insn2 == nop
7129 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7130 {
7131 elfcpp::Swap<32, big_endian>::
7132 writeval(wv + 1, ld_2_1 + target->stk_toc());
7133 can_plt_call = true;
7134 }
7135 }
7136 if (!can_plt_call)
7137 {
7138 // If we don't have a branch and link followed by a nop,
7139 // we can't go via the plt because there is no place to
7140 // put a toc restoring instruction.
7141 // Unless we know we won't be returning.
7142 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7143 can_plt_call = true;
7144 }
7145 if (!can_plt_call)
7146 {
7147 // g++ as of 20130507 emits self-calls without a
7148 // following nop. This is arguably wrong since we have
7149 // conflicting information. On the one hand a global
7150 // symbol and on the other a local call sequence, but
7151 // don't error for this special case.
7152 // It isn't possible to cheaply verify we have exactly
7153 // such a call. Allow all calls to the same section.
7154 bool ok = false;
7155 Address code = value;
7156 if (gsym->source() == Symbol::FROM_OBJECT
7157 && gsym->object() == object)
7158 {
7159 unsigned int dest_shndx = 0;
7160 if (target->abiversion() < 2)
7161 {
7162 Address addend = rela.get_r_addend();
7163 code = psymval->value(object, addend);
7164 target->symval_for_branch(relinfo->symtab, gsym, object,
7165 &code, &dest_shndx);
7166 }
7167 bool is_ordinary;
7168 if (dest_shndx == 0)
7169 dest_shndx = gsym->shndx(&is_ordinary);
7170 ok = dest_shndx == relinfo->data_shndx;
7171 }
7172 if (!ok)
7173 {
7174 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7175 _("call lacks nop, can't restore toc; "
7176 "recompile with -fPIC"));
7177 value = code;
7178 }
7179 }
7180 }
7181 }
7182 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7183 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7184 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7185 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7186 {
7187 // First instruction of a global dynamic sequence, arg setup insn.
7188 const bool final = gsym == NULL || gsym->final_value_is_known();
7189 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7190 enum Got_type got_type = GOT_TYPE_STANDARD;
7191 if (tls_type == tls::TLSOPT_NONE)
7192 got_type = GOT_TYPE_TLSGD;
7193 else if (tls_type == tls::TLSOPT_TO_IE)
7194 got_type = GOT_TYPE_TPREL;
7195 if (got_type != GOT_TYPE_STANDARD)
7196 {
7197 if (gsym != NULL)
7198 {
7199 gold_assert(gsym->has_got_offset(got_type));
7200 value = gsym->got_offset(got_type);
7201 }
7202 else
7203 {
7204 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7205 gold_assert(object->local_has_got_offset(r_sym, got_type));
7206 value = object->local_got_offset(r_sym, got_type);
7207 }
7208 value -= target->got_section()->got_base_offset(object);
7209 }
7210 if (tls_type == tls::TLSOPT_TO_IE)
7211 {
7212 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7213 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7214 {
7215 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7216 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7217 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7218 if (size == 32)
7219 insn |= 32 << 26; // lwz
7220 else
7221 insn |= 58 << 26; // ld
7222 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7223 }
7224 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7225 - elfcpp::R_POWERPC_GOT_TLSGD16);
7226 }
7227 else if (tls_type == tls::TLSOPT_TO_LE)
7228 {
7229 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7230 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7231 {
7232 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7233 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7234 insn &= (1 << 26) - (1 << 21); // extract rt
7235 if (size == 32)
7236 insn |= addis_0_2;
7237 else
7238 insn |= addis_0_13;
7239 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7240 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7241 value = psymval->value(object, rela.get_r_addend());
7242 }
7243 else
7244 {
7245 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7246 Insn insn = nop;
7247 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7248 r_type = elfcpp::R_POWERPC_NONE;
7249 }
7250 }
7251 }
7252 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7253 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7254 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7255 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7256 {
7257 // First instruction of a local dynamic sequence, arg setup insn.
7258 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7259 if (tls_type == tls::TLSOPT_NONE)
7260 {
7261 value = target->tlsld_got_offset();
7262 value -= target->got_section()->got_base_offset(object);
7263 }
7264 else
7265 {
7266 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7267 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7268 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7269 {
7270 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7271 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7272 insn &= (1 << 26) - (1 << 21); // extract rt
7273 if (size == 32)
7274 insn |= addis_0_2;
7275 else
7276 insn |= addis_0_13;
7277 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7278 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7279 value = dtp_offset;
7280 }
7281 else
7282 {
7283 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7284 Insn insn = nop;
7285 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7286 r_type = elfcpp::R_POWERPC_NONE;
7287 }
7288 }
7289 }
7290 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7291 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7292 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7293 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7294 {
7295 // Accesses relative to a local dynamic sequence address,
7296 // no optimisation here.
7297 if (gsym != NULL)
7298 {
7299 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7300 value = gsym->got_offset(GOT_TYPE_DTPREL);
7301 }
7302 else
7303 {
7304 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7305 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7306 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7307 }
7308 value -= target->got_section()->got_base_offset(object);
7309 }
7310 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7311 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7312 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7313 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7314 {
7315 // First instruction of initial exec sequence.
7316 const bool final = gsym == NULL || gsym->final_value_is_known();
7317 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7318 if (tls_type == tls::TLSOPT_NONE)
7319 {
7320 if (gsym != NULL)
7321 {
7322 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7323 value = gsym->got_offset(GOT_TYPE_TPREL);
7324 }
7325 else
7326 {
7327 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7328 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7329 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7330 }
7331 value -= target->got_section()->got_base_offset(object);
7332 }
7333 else
7334 {
7335 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7336 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7337 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7338 {
7339 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7340 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7341 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7342 if (size == 32)
7343 insn |= addis_0_2;
7344 else
7345 insn |= addis_0_13;
7346 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7347 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7348 value = psymval->value(object, rela.get_r_addend());
7349 }
7350 else
7351 {
7352 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7353 Insn insn = nop;
7354 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7355 r_type = elfcpp::R_POWERPC_NONE;
7356 }
7357 }
7358 }
7359 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7360 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7361 {
7362 // Second instruction of a global dynamic sequence,
7363 // the __tls_get_addr call
7364 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7365 const bool final = gsym == NULL || gsym->final_value_is_known();
7366 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7367 if (tls_type != tls::TLSOPT_NONE)
7368 {
7369 if (tls_type == tls::TLSOPT_TO_IE)
7370 {
7371 Insn* iview = reinterpret_cast<Insn*>(view);
7372 Insn insn = add_3_3_13;
7373 if (size == 32)
7374 insn = add_3_3_2;
7375 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7376 r_type = elfcpp::R_POWERPC_NONE;
7377 }
7378 else
7379 {
7380 Insn* iview = reinterpret_cast<Insn*>(view);
7381 Insn insn = addi_3_3;
7382 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7383 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7384 view += 2 * big_endian;
7385 value = psymval->value(object, rela.get_r_addend());
7386 }
7387 this->skip_next_tls_get_addr_call();
7388 }
7389 }
7390 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7391 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7392 {
7393 // Second instruction of a local dynamic sequence,
7394 // the __tls_get_addr call
7395 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7396 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7397 if (tls_type == tls::TLSOPT_TO_LE)
7398 {
7399 Insn* iview = reinterpret_cast<Insn*>(view);
7400 Insn insn = addi_3_3;
7401 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7402 this->skip_next_tls_get_addr_call();
7403 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7404 view += 2 * big_endian;
7405 value = dtp_offset;
7406 }
7407 }
7408 else if (r_type == elfcpp::R_POWERPC_TLS)
7409 {
7410 // Second instruction of an initial exec sequence
7411 const bool final = gsym == NULL || gsym->final_value_is_known();
7412 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7413 if (tls_type == tls::TLSOPT_TO_LE)
7414 {
7415 Insn* iview = reinterpret_cast<Insn*>(view);
7416 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7417 unsigned int reg = size == 32 ? 2 : 13;
7418 insn = at_tls_transform(insn, reg);
7419 gold_assert(insn != 0);
7420 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7421 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7422 view += 2 * big_endian;
7423 value = psymval->value(object, rela.get_r_addend());
7424 }
7425 }
7426 else if (!has_stub_value)
7427 {
7428 Address addend = 0;
7429 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7430 addend = rela.get_r_addend();
7431 value = psymval->value(object, addend);
7432 if (size == 64 && is_branch_reloc(r_type))
7433 {
7434 if (target->abiversion() >= 2)
7435 {
7436 if (gsym != NULL)
7437 value += object->ppc64_local_entry_offset(gsym);
7438 else
7439 value += object->ppc64_local_entry_offset(r_sym);
7440 }
7441 else
7442 {
7443 unsigned int dest_shndx;
7444 target->symval_for_branch(relinfo->symtab, gsym, object,
7445 &value, &dest_shndx);
7446 }
7447 }
7448 Address max_branch_offset = max_branch_delta(r_type);
7449 if (max_branch_offset != 0
7450 && value - address + max_branch_offset >= 2 * max_branch_offset)
7451 {
7452 Stub_table<size, big_endian>* stub_table
7453 = object->stub_table(relinfo->data_shndx);
7454 if (stub_table != NULL)
7455 {
7456 Address off = stub_table->find_long_branch_entry(object, value);
7457 if (off != invalid_address)
7458 {
7459 value = (stub_table->stub_address() + stub_table->plt_size()
7460 + off);
7461 has_stub_value = true;
7462 }
7463 }
7464 }
7465 }
7466
7467 switch (r_type)
7468 {
7469 case elfcpp::R_PPC64_REL64:
7470 case elfcpp::R_POWERPC_REL32:
7471 case elfcpp::R_POWERPC_REL24:
7472 case elfcpp::R_PPC_PLTREL24:
7473 case elfcpp::R_PPC_LOCAL24PC:
7474 case elfcpp::R_POWERPC_REL16:
7475 case elfcpp::R_POWERPC_REL16_LO:
7476 case elfcpp::R_POWERPC_REL16_HI:
7477 case elfcpp::R_POWERPC_REL16_HA:
7478 case elfcpp::R_POWERPC_REL16DX_HA:
7479 case elfcpp::R_POWERPC_REL14:
7480 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7481 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7482 value -= address;
7483 break;
7484
7485 case elfcpp::R_PPC64_TOC16:
7486 case elfcpp::R_PPC64_TOC16_LO:
7487 case elfcpp::R_PPC64_TOC16_HI:
7488 case elfcpp::R_PPC64_TOC16_HA:
7489 case elfcpp::R_PPC64_TOC16_DS:
7490 case elfcpp::R_PPC64_TOC16_LO_DS:
7491 // Subtract the TOC base address.
7492 value -= (target->got_section()->output_section()->address()
7493 + object->toc_base_offset());
7494 break;
7495
7496 case elfcpp::R_POWERPC_SECTOFF:
7497 case elfcpp::R_POWERPC_SECTOFF_LO:
7498 case elfcpp::R_POWERPC_SECTOFF_HI:
7499 case elfcpp::R_POWERPC_SECTOFF_HA:
7500 case elfcpp::R_PPC64_SECTOFF_DS:
7501 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7502 if (os != NULL)
7503 value -= os->address();
7504 break;
7505
7506 case elfcpp::R_PPC64_TPREL16_DS:
7507 case elfcpp::R_PPC64_TPREL16_LO_DS:
7508 case elfcpp::R_PPC64_TPREL16_HIGH:
7509 case elfcpp::R_PPC64_TPREL16_HIGHA:
7510 if (size != 64)
7511 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7512 break;
7513 case elfcpp::R_POWERPC_TPREL16:
7514 case elfcpp::R_POWERPC_TPREL16_LO:
7515 case elfcpp::R_POWERPC_TPREL16_HI:
7516 case elfcpp::R_POWERPC_TPREL16_HA:
7517 case elfcpp::R_POWERPC_TPREL:
7518 case elfcpp::R_PPC64_TPREL16_HIGHER:
7519 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7520 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7521 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7522 // tls symbol values are relative to tls_segment()->vaddr()
7523 value -= tp_offset;
7524 break;
7525
7526 case elfcpp::R_PPC64_DTPREL16_DS:
7527 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7528 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7529 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7530 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7531 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7532 if (size != 64)
7533 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7534 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7535 break;
7536 case elfcpp::R_POWERPC_DTPREL16:
7537 case elfcpp::R_POWERPC_DTPREL16_LO:
7538 case elfcpp::R_POWERPC_DTPREL16_HI:
7539 case elfcpp::R_POWERPC_DTPREL16_HA:
7540 case elfcpp::R_POWERPC_DTPREL:
7541 case elfcpp::R_PPC64_DTPREL16_HIGH:
7542 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7543 // tls symbol values are relative to tls_segment()->vaddr()
7544 value -= dtp_offset;
7545 break;
7546
7547 case elfcpp::R_PPC64_ADDR64_LOCAL:
7548 if (gsym != NULL)
7549 value += object->ppc64_local_entry_offset(gsym);
7550 else
7551 value += object->ppc64_local_entry_offset(r_sym);
7552 break;
7553
7554 default:
7555 break;
7556 }
7557
7558 Insn branch_bit = 0;
7559 switch (r_type)
7560 {
7561 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7562 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7563 branch_bit = 1 << 21;
7564 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7565 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7566 {
7567 Insn* iview = reinterpret_cast<Insn*>(view);
7568 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7569 insn &= ~(1 << 21);
7570 insn |= branch_bit;
7571 if (this->is_isa_v2)
7572 {
7573 // Set 'a' bit. This is 0b00010 in BO field for branch
7574 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7575 // for branch on CTR insns (BO == 1a00t or 1a01t).
7576 if ((insn & (0x14 << 21)) == (0x04 << 21))
7577 insn |= 0x02 << 21;
7578 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7579 insn |= 0x08 << 21;
7580 else
7581 break;
7582 }
7583 else
7584 {
7585 // Invert 'y' bit if not the default.
7586 if (static_cast<Signed_address>(value) < 0)
7587 insn ^= 1 << 21;
7588 }
7589 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7590 }
7591 break;
7592
7593 default:
7594 break;
7595 }
7596
7597 if (size == 64)
7598 {
7599 // Multi-instruction sequences that access the TOC can be
7600 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7601 // to nop; addi rb,r2,x;
7602 switch (r_type)
7603 {
7604 default:
7605 break;
7606
7607 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7608 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7609 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7610 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7611 case elfcpp::R_POWERPC_GOT16_HA:
7612 case elfcpp::R_PPC64_TOC16_HA:
7613 if (parameters->options().toc_optimize())
7614 {
7615 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7616 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7617 if ((insn & ((0x3f << 26) | 0x1f << 16))
7618 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7619 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7620 _("toc optimization is not supported "
7621 "for %#08x instruction"), insn);
7622 else if (value + 0x8000 < 0x10000)
7623 {
7624 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7625 return true;
7626 }
7627 }
7628 break;
7629
7630 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7631 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7632 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7633 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7634 case elfcpp::R_POWERPC_GOT16_LO:
7635 case elfcpp::R_PPC64_GOT16_LO_DS:
7636 case elfcpp::R_PPC64_TOC16_LO:
7637 case elfcpp::R_PPC64_TOC16_LO_DS:
7638 if (parameters->options().toc_optimize())
7639 {
7640 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7641 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7642 if (!ok_lo_toc_insn(insn))
7643 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7644 _("toc optimization is not supported "
7645 "for %#08x instruction"), insn);
7646 else if (value + 0x8000 < 0x10000)
7647 {
7648 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7649 {
7650 // Transform addic to addi when we change reg.
7651 insn &= ~((0x3f << 26) | (0x1f << 16));
7652 insn |= (14u << 26) | (2 << 16);
7653 }
7654 else
7655 {
7656 insn &= ~(0x1f << 16);
7657 insn |= 2 << 16;
7658 }
7659 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7660 }
7661 }
7662 break;
7663
7664 case elfcpp::R_PPC64_ENTRY:
7665 value = (target->got_section()->output_section()->address()
7666 + object->toc_base_offset());
7667 if (value + 0x80008000 <= 0xffffffff
7668 && !parameters->options().output_is_position_independent())
7669 {
7670 Insn* iview = reinterpret_cast<Insn*>(view);
7671 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7672 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7673
7674 if ((insn1 & ~0xfffc) == ld_2_12
7675 && insn2 == add_2_2_12)
7676 {
7677 insn1 = lis_2 + ha(value);
7678 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7679 insn2 = addi_2_2 + l(value);
7680 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7681 return true;
7682 }
7683 }
7684 else
7685 {
7686 value -= address;
7687 if (value + 0x80008000 <= 0xffffffff)
7688 {
7689 Insn* iview = reinterpret_cast<Insn*>(view);
7690 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7691 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7692
7693 if ((insn1 & ~0xfffc) == ld_2_12
7694 && insn2 == add_2_2_12)
7695 {
7696 insn1 = addis_2_12 + ha(value);
7697 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7698 insn2 = addi_2_2 + l(value);
7699 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7700 return true;
7701 }
7702 }
7703 }
7704 break;
7705 }
7706 }
7707
7708 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7709 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7710 switch (r_type)
7711 {
7712 case elfcpp::R_POWERPC_ADDR32:
7713 case elfcpp::R_POWERPC_UADDR32:
7714 if (size == 64)
7715 overflow = Reloc::CHECK_BITFIELD;
7716 break;
7717
7718 case elfcpp::R_POWERPC_REL32:
7719 case elfcpp::R_POWERPC_REL16DX_HA:
7720 if (size == 64)
7721 overflow = Reloc::CHECK_SIGNED;
7722 break;
7723
7724 case elfcpp::R_POWERPC_UADDR16:
7725 overflow = Reloc::CHECK_BITFIELD;
7726 break;
7727
7728 case elfcpp::R_POWERPC_ADDR16:
7729 // We really should have three separate relocations,
7730 // one for 16-bit data, one for insns with 16-bit signed fields,
7731 // and one for insns with 16-bit unsigned fields.
7732 overflow = Reloc::CHECK_BITFIELD;
7733 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7734 overflow = Reloc::CHECK_LOW_INSN;
7735 break;
7736
7737 case elfcpp::R_POWERPC_ADDR16_HI:
7738 case elfcpp::R_POWERPC_ADDR16_HA:
7739 case elfcpp::R_POWERPC_GOT16_HI:
7740 case elfcpp::R_POWERPC_GOT16_HA:
7741 case elfcpp::R_POWERPC_PLT16_HI:
7742 case elfcpp::R_POWERPC_PLT16_HA:
7743 case elfcpp::R_POWERPC_SECTOFF_HI:
7744 case elfcpp::R_POWERPC_SECTOFF_HA:
7745 case elfcpp::R_PPC64_TOC16_HI:
7746 case elfcpp::R_PPC64_TOC16_HA:
7747 case elfcpp::R_PPC64_PLTGOT16_HI:
7748 case elfcpp::R_PPC64_PLTGOT16_HA:
7749 case elfcpp::R_POWERPC_TPREL16_HI:
7750 case elfcpp::R_POWERPC_TPREL16_HA:
7751 case elfcpp::R_POWERPC_DTPREL16_HI:
7752 case elfcpp::R_POWERPC_DTPREL16_HA:
7753 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7754 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7755 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7756 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7757 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7758 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7759 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7760 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7761 case elfcpp::R_POWERPC_REL16_HI:
7762 case elfcpp::R_POWERPC_REL16_HA:
7763 if (size != 32)
7764 overflow = Reloc::CHECK_HIGH_INSN;
7765 break;
7766
7767 case elfcpp::R_POWERPC_REL16:
7768 case elfcpp::R_PPC64_TOC16:
7769 case elfcpp::R_POWERPC_GOT16:
7770 case elfcpp::R_POWERPC_SECTOFF:
7771 case elfcpp::R_POWERPC_TPREL16:
7772 case elfcpp::R_POWERPC_DTPREL16:
7773 case elfcpp::R_POWERPC_GOT_TLSGD16:
7774 case elfcpp::R_POWERPC_GOT_TLSLD16:
7775 case elfcpp::R_POWERPC_GOT_TPREL16:
7776 case elfcpp::R_POWERPC_GOT_DTPREL16:
7777 overflow = Reloc::CHECK_LOW_INSN;
7778 break;
7779
7780 case elfcpp::R_POWERPC_ADDR24:
7781 case elfcpp::R_POWERPC_ADDR14:
7782 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7783 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7784 case elfcpp::R_PPC64_ADDR16_DS:
7785 case elfcpp::R_POWERPC_REL24:
7786 case elfcpp::R_PPC_PLTREL24:
7787 case elfcpp::R_PPC_LOCAL24PC:
7788 case elfcpp::R_PPC64_TPREL16_DS:
7789 case elfcpp::R_PPC64_DTPREL16_DS:
7790 case elfcpp::R_PPC64_TOC16_DS:
7791 case elfcpp::R_PPC64_GOT16_DS:
7792 case elfcpp::R_PPC64_SECTOFF_DS:
7793 case elfcpp::R_POWERPC_REL14:
7794 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7795 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7796 overflow = Reloc::CHECK_SIGNED;
7797 break;
7798 }
7799
7800 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7801 Insn insn = 0;
7802
7803 if (overflow == Reloc::CHECK_LOW_INSN
7804 || overflow == Reloc::CHECK_HIGH_INSN)
7805 {
7806 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7807
7808 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7809 overflow = Reloc::CHECK_BITFIELD;
7810 else if (overflow == Reloc::CHECK_LOW_INSN
7811 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7812 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7813 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7814 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7815 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7816 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7817 overflow = Reloc::CHECK_UNSIGNED;
7818 else
7819 overflow = Reloc::CHECK_SIGNED;
7820 }
7821
7822 bool maybe_dq_reloc = false;
7823 typename Powerpc_relocate_functions<size, big_endian>::Status status
7824 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7825 switch (r_type)
7826 {
7827 case elfcpp::R_POWERPC_NONE:
7828 case elfcpp::R_POWERPC_TLS:
7829 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7830 case elfcpp::R_POWERPC_GNU_VTENTRY:
7831 break;
7832
7833 case elfcpp::R_PPC64_ADDR64:
7834 case elfcpp::R_PPC64_REL64:
7835 case elfcpp::R_PPC64_TOC:
7836 case elfcpp::R_PPC64_ADDR64_LOCAL:
7837 Reloc::addr64(view, value);
7838 break;
7839
7840 case elfcpp::R_POWERPC_TPREL:
7841 case elfcpp::R_POWERPC_DTPREL:
7842 if (size == 64)
7843 Reloc::addr64(view, value);
7844 else
7845 status = Reloc::addr32(view, value, overflow);
7846 break;
7847
7848 case elfcpp::R_PPC64_UADDR64:
7849 Reloc::addr64_u(view, value);
7850 break;
7851
7852 case elfcpp::R_POWERPC_ADDR32:
7853 status = Reloc::addr32(view, value, overflow);
7854 break;
7855
7856 case elfcpp::R_POWERPC_REL32:
7857 case elfcpp::R_POWERPC_UADDR32:
7858 status = Reloc::addr32_u(view, value, overflow);
7859 break;
7860
7861 case elfcpp::R_POWERPC_ADDR24:
7862 case elfcpp::R_POWERPC_REL24:
7863 case elfcpp::R_PPC_PLTREL24:
7864 case elfcpp::R_PPC_LOCAL24PC:
7865 status = Reloc::addr24(view, value, overflow);
7866 break;
7867
7868 case elfcpp::R_POWERPC_GOT_DTPREL16:
7869 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7870 case elfcpp::R_POWERPC_GOT_TPREL16:
7871 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7872 if (size == 64)
7873 {
7874 // On ppc64 these are all ds form
7875 maybe_dq_reloc = true;
7876 break;
7877 }
7878 case elfcpp::R_POWERPC_ADDR16:
7879 case elfcpp::R_POWERPC_REL16:
7880 case elfcpp::R_PPC64_TOC16:
7881 case elfcpp::R_POWERPC_GOT16:
7882 case elfcpp::R_POWERPC_SECTOFF:
7883 case elfcpp::R_POWERPC_TPREL16:
7884 case elfcpp::R_POWERPC_DTPREL16:
7885 case elfcpp::R_POWERPC_GOT_TLSGD16:
7886 case elfcpp::R_POWERPC_GOT_TLSLD16:
7887 case elfcpp::R_POWERPC_ADDR16_LO:
7888 case elfcpp::R_POWERPC_REL16_LO:
7889 case elfcpp::R_PPC64_TOC16_LO:
7890 case elfcpp::R_POWERPC_GOT16_LO:
7891 case elfcpp::R_POWERPC_SECTOFF_LO:
7892 case elfcpp::R_POWERPC_TPREL16_LO:
7893 case elfcpp::R_POWERPC_DTPREL16_LO:
7894 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7895 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7896 if (size == 64)
7897 status = Reloc::addr16(view, value, overflow);
7898 else
7899 maybe_dq_reloc = true;
7900 break;
7901
7902 case elfcpp::R_POWERPC_UADDR16:
7903 status = Reloc::addr16_u(view, value, overflow);
7904 break;
7905
7906 case elfcpp::R_PPC64_ADDR16_HIGH:
7907 case elfcpp::R_PPC64_TPREL16_HIGH:
7908 case elfcpp::R_PPC64_DTPREL16_HIGH:
7909 if (size == 32)
7910 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7911 goto unsupp;
7912 case elfcpp::R_POWERPC_ADDR16_HI:
7913 case elfcpp::R_POWERPC_REL16_HI:
7914 case elfcpp::R_PPC64_TOC16_HI:
7915 case elfcpp::R_POWERPC_GOT16_HI:
7916 case elfcpp::R_POWERPC_SECTOFF_HI:
7917 case elfcpp::R_POWERPC_TPREL16_HI:
7918 case elfcpp::R_POWERPC_DTPREL16_HI:
7919 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7920 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7921 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7922 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7923 Reloc::addr16_hi(view, value);
7924 break;
7925
7926 case elfcpp::R_PPC64_ADDR16_HIGHA:
7927 case elfcpp::R_PPC64_TPREL16_HIGHA:
7928 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7929 if (size == 32)
7930 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7931 goto unsupp;
7932 case elfcpp::R_POWERPC_ADDR16_HA:
7933 case elfcpp::R_POWERPC_REL16_HA:
7934 case elfcpp::R_PPC64_TOC16_HA:
7935 case elfcpp::R_POWERPC_GOT16_HA:
7936 case elfcpp::R_POWERPC_SECTOFF_HA:
7937 case elfcpp::R_POWERPC_TPREL16_HA:
7938 case elfcpp::R_POWERPC_DTPREL16_HA:
7939 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7940 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7941 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7942 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7943 Reloc::addr16_ha(view, value);
7944 break;
7945
7946 case elfcpp::R_POWERPC_REL16DX_HA:
7947 status = Reloc::addr16dx_ha(view, value, overflow);
7948 break;
7949
7950 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7951 if (size == 32)
7952 // R_PPC_EMB_NADDR16_LO
7953 goto unsupp;
7954 case elfcpp::R_PPC64_ADDR16_HIGHER:
7955 case elfcpp::R_PPC64_TPREL16_HIGHER:
7956 Reloc::addr16_hi2(view, value);
7957 break;
7958
7959 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7960 if (size == 32)
7961 // R_PPC_EMB_NADDR16_HI
7962 goto unsupp;
7963 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7964 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7965 Reloc::addr16_ha2(view, value);
7966 break;
7967
7968 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7969 if (size == 32)
7970 // R_PPC_EMB_NADDR16_HA
7971 goto unsupp;
7972 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7973 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7974 Reloc::addr16_hi3(view, value);
7975 break;
7976
7977 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7978 if (size == 32)
7979 // R_PPC_EMB_SDAI16
7980 goto unsupp;
7981 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7982 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7983 Reloc::addr16_ha3(view, value);
7984 break;
7985
7986 case elfcpp::R_PPC64_DTPREL16_DS:
7987 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7988 if (size == 32)
7989 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7990 goto unsupp;
7991 case elfcpp::R_PPC64_TPREL16_DS:
7992 case elfcpp::R_PPC64_TPREL16_LO_DS:
7993 if (size == 32)
7994 // R_PPC_TLSGD, R_PPC_TLSLD
7995 break;
7996 case elfcpp::R_PPC64_ADDR16_DS:
7997 case elfcpp::R_PPC64_ADDR16_LO_DS:
7998 case elfcpp::R_PPC64_TOC16_DS:
7999 case elfcpp::R_PPC64_TOC16_LO_DS:
8000 case elfcpp::R_PPC64_GOT16_DS:
8001 case elfcpp::R_PPC64_GOT16_LO_DS:
8002 case elfcpp::R_PPC64_SECTOFF_DS:
8003 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8004 maybe_dq_reloc = true;
8005 break;
8006
8007 case elfcpp::R_POWERPC_ADDR14:
8008 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8009 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8010 case elfcpp::R_POWERPC_REL14:
8011 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8012 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8013 status = Reloc::addr14(view, value, overflow);
8014 break;
8015
8016 case elfcpp::R_POWERPC_COPY:
8017 case elfcpp::R_POWERPC_GLOB_DAT:
8018 case elfcpp::R_POWERPC_JMP_SLOT:
8019 case elfcpp::R_POWERPC_RELATIVE:
8020 case elfcpp::R_POWERPC_DTPMOD:
8021 case elfcpp::R_PPC64_JMP_IREL:
8022 case elfcpp::R_POWERPC_IRELATIVE:
8023 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8024 _("unexpected reloc %u in object file"),
8025 r_type);
8026 break;
8027
8028 case elfcpp::R_PPC_EMB_SDA21:
8029 if (size == 32)
8030 goto unsupp;
8031 else
8032 {
8033 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8034 }
8035 break;
8036
8037 case elfcpp::R_PPC_EMB_SDA2I16:
8038 case elfcpp::R_PPC_EMB_SDA2REL:
8039 if (size == 32)
8040 goto unsupp;
8041 // R_PPC64_TLSGD, R_PPC64_TLSLD
8042 break;
8043
8044 case elfcpp::R_POWERPC_PLT32:
8045 case elfcpp::R_POWERPC_PLTREL32:
8046 case elfcpp::R_POWERPC_PLT16_LO:
8047 case elfcpp::R_POWERPC_PLT16_HI:
8048 case elfcpp::R_POWERPC_PLT16_HA:
8049 case elfcpp::R_PPC_SDAREL16:
8050 case elfcpp::R_POWERPC_ADDR30:
8051 case elfcpp::R_PPC64_PLT64:
8052 case elfcpp::R_PPC64_PLTREL64:
8053 case elfcpp::R_PPC64_PLTGOT16:
8054 case elfcpp::R_PPC64_PLTGOT16_LO:
8055 case elfcpp::R_PPC64_PLTGOT16_HI:
8056 case elfcpp::R_PPC64_PLTGOT16_HA:
8057 case elfcpp::R_PPC64_PLT16_LO_DS:
8058 case elfcpp::R_PPC64_PLTGOT16_DS:
8059 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8060 case elfcpp::R_PPC_EMB_RELSDA:
8061 case elfcpp::R_PPC_TOC16:
8062 default:
8063 unsupp:
8064 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8065 _("unsupported reloc %u"),
8066 r_type);
8067 break;
8068 }
8069
8070 if (maybe_dq_reloc)
8071 {
8072 if (insn == 0)
8073 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8074
8075 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8076 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8077 && (insn & 3) == 1))
8078 status = Reloc::addr16_dq(view, value, overflow);
8079 else if (size == 64
8080 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8081 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8082 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8083 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8084 status = Reloc::addr16_ds(view, value, overflow);
8085 else
8086 status = Reloc::addr16(view, value, overflow);
8087 }
8088
8089 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8090 && (has_stub_value
8091 || !(gsym != NULL
8092 && gsym->is_undefined()
8093 && is_branch_reloc(r_type))))
8094 {
8095 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8096 _("relocation overflow"));
8097 if (has_stub_value)
8098 gold_info(_("try relinking with a smaller --stub-group-size"));
8099 }
8100
8101 return true;
8102 }
8103
8104 // Relocate section data.
8105
8106 template<int size, bool big_endian>
8107 void
8108 Target_powerpc<size, big_endian>::relocate_section(
8109 const Relocate_info<size, big_endian>* relinfo,
8110 unsigned int sh_type,
8111 const unsigned char* prelocs,
8112 size_t reloc_count,
8113 Output_section* output_section,
8114 bool needs_special_offset_handling,
8115 unsigned char* view,
8116 Address address,
8117 section_size_type view_size,
8118 const Reloc_symbol_changes* reloc_symbol_changes)
8119 {
8120 typedef Target_powerpc<size, big_endian> Powerpc;
8121 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8122 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8123 Powerpc_comdat_behavior;
8124
8125 gold_assert(sh_type == elfcpp::SHT_RELA);
8126
8127 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8128 Powerpc_relocate, Powerpc_comdat_behavior>(
8129 relinfo,
8130 this,
8131 prelocs,
8132 reloc_count,
8133 output_section,
8134 needs_special_offset_handling,
8135 view,
8136 address,
8137 view_size,
8138 reloc_symbol_changes);
8139 }
8140
8141 class Powerpc_scan_relocatable_reloc
8142 {
8143 public:
8144 // Return the strategy to use for a local symbol which is not a
8145 // section symbol, given the relocation type.
8146 inline Relocatable_relocs::Reloc_strategy
8147 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8148 {
8149 if (r_type == 0 && r_sym == 0)
8150 return Relocatable_relocs::RELOC_DISCARD;
8151 return Relocatable_relocs::RELOC_COPY;
8152 }
8153
8154 // Return the strategy to use for a local symbol which is a section
8155 // symbol, given the relocation type.
8156 inline Relocatable_relocs::Reloc_strategy
8157 local_section_strategy(unsigned int, Relobj*)
8158 {
8159 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8160 }
8161
8162 // Return the strategy to use for a global symbol, given the
8163 // relocation type, the object, and the symbol index.
8164 inline Relocatable_relocs::Reloc_strategy
8165 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8166 {
8167 if (r_type == elfcpp::R_PPC_PLTREL24)
8168 return Relocatable_relocs::RELOC_SPECIAL;
8169 return Relocatable_relocs::RELOC_COPY;
8170 }
8171 };
8172
8173 // Scan the relocs during a relocatable link.
8174
8175 template<int size, bool big_endian>
8176 void
8177 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8178 Symbol_table* symtab,
8179 Layout* layout,
8180 Sized_relobj_file<size, big_endian>* object,
8181 unsigned int data_shndx,
8182 unsigned int sh_type,
8183 const unsigned char* prelocs,
8184 size_t reloc_count,
8185 Output_section* output_section,
8186 bool needs_special_offset_handling,
8187 size_t local_symbol_count,
8188 const unsigned char* plocal_symbols,
8189 Relocatable_relocs* rr)
8190 {
8191 gold_assert(sh_type == elfcpp::SHT_RELA);
8192
8193 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8194 Powerpc_scan_relocatable_reloc>(
8195 symtab,
8196 layout,
8197 object,
8198 data_shndx,
8199 prelocs,
8200 reloc_count,
8201 output_section,
8202 needs_special_offset_handling,
8203 local_symbol_count,
8204 plocal_symbols,
8205 rr);
8206 }
8207
8208 // Emit relocations for a section.
8209 // This is a modified version of the function by the same name in
8210 // target-reloc.h. Using relocate_special_relocatable for
8211 // R_PPC_PLTREL24 would require duplication of the entire body of the
8212 // loop, so we may as well duplicate the whole thing.
8213
8214 template<int size, bool big_endian>
8215 void
8216 Target_powerpc<size, big_endian>::relocate_relocs(
8217 const Relocate_info<size, big_endian>* relinfo,
8218 unsigned int sh_type,
8219 const unsigned char* prelocs,
8220 size_t reloc_count,
8221 Output_section* output_section,
8222 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8223 const Relocatable_relocs* rr,
8224 unsigned char*,
8225 Address view_address,
8226 section_size_type,
8227 unsigned char* reloc_view,
8228 section_size_type reloc_view_size)
8229 {
8230 gold_assert(sh_type == elfcpp::SHT_RELA);
8231
8232 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8233 Reltype;
8234 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8235 Reltype_write;
8236 const int reloc_size
8237 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8238
8239 Powerpc_relobj<size, big_endian>* const object
8240 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8241 const unsigned int local_count = object->local_symbol_count();
8242 unsigned int got2_shndx = object->got2_shndx();
8243 Address got2_addend = 0;
8244 if (got2_shndx != 0)
8245 {
8246 got2_addend = object->get_output_section_offset(got2_shndx);
8247 gold_assert(got2_addend != invalid_address);
8248 }
8249
8250 unsigned char* pwrite = reloc_view;
8251 bool zap_next = false;
8252 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8253 {
8254 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8255 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8256 continue;
8257
8258 Reltype reloc(prelocs);
8259 Reltype_write reloc_write(pwrite);
8260
8261 Address offset = reloc.get_r_offset();
8262 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8263 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8264 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8265 const unsigned int orig_r_sym = r_sym;
8266 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8267 = reloc.get_r_addend();
8268 const Symbol* gsym = NULL;
8269
8270 if (zap_next)
8271 {
8272 // We could arrange to discard these and other relocs for
8273 // tls optimised sequences in the strategy methods, but for
8274 // now do as BFD ld does.
8275 r_type = elfcpp::R_POWERPC_NONE;
8276 zap_next = false;
8277 }
8278
8279 // Get the new symbol index.
8280 Output_section* os = NULL;
8281 if (r_sym < local_count)
8282 {
8283 switch (strategy)
8284 {
8285 case Relocatable_relocs::RELOC_COPY:
8286 case Relocatable_relocs::RELOC_SPECIAL:
8287 if (r_sym != 0)
8288 {
8289 r_sym = object->symtab_index(r_sym);
8290 gold_assert(r_sym != -1U);
8291 }
8292 break;
8293
8294 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8295 {
8296 // We are adjusting a section symbol. We need to find
8297 // the symbol table index of the section symbol for
8298 // the output section corresponding to input section
8299 // in which this symbol is defined.
8300 gold_assert(r_sym < local_count);
8301 bool is_ordinary;
8302 unsigned int shndx =
8303 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8304 gold_assert(is_ordinary);
8305 os = object->output_section(shndx);
8306 gold_assert(os != NULL);
8307 gold_assert(os->needs_symtab_index());
8308 r_sym = os->symtab_index();
8309 }
8310 break;
8311
8312 default:
8313 gold_unreachable();
8314 }
8315 }
8316 else
8317 {
8318 gsym = object->global_symbol(r_sym);
8319 gold_assert(gsym != NULL);
8320 if (gsym->is_forwarder())
8321 gsym = relinfo->symtab->resolve_forwards(gsym);
8322
8323 gold_assert(gsym->has_symtab_index());
8324 r_sym = gsym->symtab_index();
8325 }
8326
8327 // Get the new offset--the location in the output section where
8328 // this relocation should be applied.
8329 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8330 offset += offset_in_output_section;
8331 else
8332 {
8333 section_offset_type sot_offset =
8334 convert_types<section_offset_type, Address>(offset);
8335 section_offset_type new_sot_offset =
8336 output_section->output_offset(object, relinfo->data_shndx,
8337 sot_offset);
8338 gold_assert(new_sot_offset != -1);
8339 offset = new_sot_offset;
8340 }
8341
8342 // In an object file, r_offset is an offset within the section.
8343 // In an executable or dynamic object, generated by
8344 // --emit-relocs, r_offset is an absolute address.
8345 if (!parameters->options().relocatable())
8346 {
8347 offset += view_address;
8348 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8349 offset -= offset_in_output_section;
8350 }
8351
8352 // Handle the reloc addend based on the strategy.
8353 if (strategy == Relocatable_relocs::RELOC_COPY)
8354 ;
8355 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8356 {
8357 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8358 gold_assert(os != NULL);
8359 addend = psymval->value(object, addend) - os->address();
8360 }
8361 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8362 {
8363 if (addend >= 32768)
8364 addend += got2_addend;
8365 }
8366 else
8367 gold_unreachable();
8368
8369 if (!parameters->options().relocatable())
8370 {
8371 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8372 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8373 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8374 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8375 {
8376 // First instruction of a global dynamic sequence,
8377 // arg setup insn.
8378 const bool final = gsym == NULL || gsym->final_value_is_known();
8379 switch (this->optimize_tls_gd(final))
8380 {
8381 case tls::TLSOPT_TO_IE:
8382 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8383 - elfcpp::R_POWERPC_GOT_TLSGD16);
8384 break;
8385 case tls::TLSOPT_TO_LE:
8386 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8387 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8388 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8389 else
8390 {
8391 r_type = elfcpp::R_POWERPC_NONE;
8392 offset -= 2 * big_endian;
8393 }
8394 break;
8395 default:
8396 break;
8397 }
8398 }
8399 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8400 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8401 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8402 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8403 {
8404 // First instruction of a local dynamic sequence,
8405 // arg setup insn.
8406 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8407 {
8408 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8409 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8410 {
8411 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8412 const Output_section* os = relinfo->layout->tls_segment()
8413 ->first_section();
8414 gold_assert(os != NULL);
8415 gold_assert(os->needs_symtab_index());
8416 r_sym = os->symtab_index();
8417 addend = dtp_offset;
8418 }
8419 else
8420 {
8421 r_type = elfcpp::R_POWERPC_NONE;
8422 offset -= 2 * big_endian;
8423 }
8424 }
8425 }
8426 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8427 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8428 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8429 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8430 {
8431 // First instruction of initial exec sequence.
8432 const bool final = gsym == NULL || gsym->final_value_is_known();
8433 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8434 {
8435 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8436 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8437 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8438 else
8439 {
8440 r_type = elfcpp::R_POWERPC_NONE;
8441 offset -= 2 * big_endian;
8442 }
8443 }
8444 }
8445 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8446 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8447 {
8448 // Second instruction of a global dynamic sequence,
8449 // the __tls_get_addr call
8450 const bool final = gsym == NULL || gsym->final_value_is_known();
8451 switch (this->optimize_tls_gd(final))
8452 {
8453 case tls::TLSOPT_TO_IE:
8454 r_type = elfcpp::R_POWERPC_NONE;
8455 zap_next = true;
8456 break;
8457 case tls::TLSOPT_TO_LE:
8458 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8459 offset += 2 * big_endian;
8460 zap_next = true;
8461 break;
8462 default:
8463 break;
8464 }
8465 }
8466 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8467 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8468 {
8469 // Second instruction of a local dynamic sequence,
8470 // the __tls_get_addr call
8471 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8472 {
8473 const Output_section* os = relinfo->layout->tls_segment()
8474 ->first_section();
8475 gold_assert(os != NULL);
8476 gold_assert(os->needs_symtab_index());
8477 r_sym = os->symtab_index();
8478 addend = dtp_offset;
8479 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8480 offset += 2 * big_endian;
8481 zap_next = true;
8482 }
8483 }
8484 else if (r_type == elfcpp::R_POWERPC_TLS)
8485 {
8486 // Second instruction of an initial exec sequence
8487 const bool final = gsym == NULL || gsym->final_value_is_known();
8488 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8489 {
8490 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8491 offset += 2 * big_endian;
8492 }
8493 }
8494 }
8495
8496 reloc_write.put_r_offset(offset);
8497 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8498 reloc_write.put_r_addend(addend);
8499
8500 pwrite += reloc_size;
8501 }
8502
8503 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8504 == reloc_view_size);
8505 }
8506
8507 // Return the value to use for a dynamic symbol which requires special
8508 // treatment. This is how we support equality comparisons of function
8509 // pointers across shared library boundaries, as described in the
8510 // processor specific ABI supplement.
8511
8512 template<int size, bool big_endian>
8513 uint64_t
8514 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8515 {
8516 if (size == 32)
8517 {
8518 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8519 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8520 p != this->stub_tables_.end();
8521 ++p)
8522 {
8523 Address off = (*p)->find_plt_call_entry(gsym);
8524 if (off != invalid_address)
8525 return (*p)->stub_address() + off;
8526 }
8527 }
8528 else if (this->abiversion() >= 2)
8529 {
8530 Address off = this->glink_section()->find_global_entry(gsym);
8531 if (off != invalid_address)
8532 return this->glink_section()->global_entry_address() + off;
8533 }
8534 gold_unreachable();
8535 }
8536
8537 // Return the PLT address to use for a local symbol.
8538 template<int size, bool big_endian>
8539 uint64_t
8540 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8541 const Relobj* object,
8542 unsigned int symndx) const
8543 {
8544 if (size == 32)
8545 {
8546 const Sized_relobj<size, big_endian>* relobj
8547 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8548 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8549 p != this->stub_tables_.end();
8550 ++p)
8551 {
8552 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8553 symndx);
8554 if (off != invalid_address)
8555 return (*p)->stub_address() + off;
8556 }
8557 }
8558 gold_unreachable();
8559 }
8560
8561 // Return the PLT address to use for a global symbol.
8562 template<int size, bool big_endian>
8563 uint64_t
8564 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8565 const Symbol* gsym) const
8566 {
8567 if (size == 32)
8568 {
8569 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8570 p != this->stub_tables_.end();
8571 ++p)
8572 {
8573 Address off = (*p)->find_plt_call_entry(gsym);
8574 if (off != invalid_address)
8575 return (*p)->stub_address() + off;
8576 }
8577 }
8578 else if (this->abiversion() >= 2)
8579 {
8580 Address off = this->glink_section()->find_global_entry(gsym);
8581 if (off != invalid_address)
8582 return this->glink_section()->global_entry_address() + off;
8583 }
8584 gold_unreachable();
8585 }
8586
8587 // Return the offset to use for the GOT_INDX'th got entry which is
8588 // for a local tls symbol specified by OBJECT, SYMNDX.
8589 template<int size, bool big_endian>
8590 int64_t
8591 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8592 const Relobj* object,
8593 unsigned int symndx,
8594 unsigned int got_indx) const
8595 {
8596 const Powerpc_relobj<size, big_endian>* ppc_object
8597 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8598 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8599 {
8600 for (Got_type got_type = GOT_TYPE_TLSGD;
8601 got_type <= GOT_TYPE_TPREL;
8602 got_type = Got_type(got_type + 1))
8603 if (ppc_object->local_has_got_offset(symndx, got_type))
8604 {
8605 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8606 if (got_type == GOT_TYPE_TLSGD)
8607 off += size / 8;
8608 if (off == got_indx * (size / 8))
8609 {
8610 if (got_type == GOT_TYPE_TPREL)
8611 return -tp_offset;
8612 else
8613 return -dtp_offset;
8614 }
8615 }
8616 }
8617 gold_unreachable();
8618 }
8619
8620 // Return the offset to use for the GOT_INDX'th got entry which is
8621 // for global tls symbol GSYM.
8622 template<int size, bool big_endian>
8623 int64_t
8624 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8625 Symbol* gsym,
8626 unsigned int got_indx) const
8627 {
8628 if (gsym->type() == elfcpp::STT_TLS)
8629 {
8630 for (Got_type got_type = GOT_TYPE_TLSGD;
8631 got_type <= GOT_TYPE_TPREL;
8632 got_type = Got_type(got_type + 1))
8633 if (gsym->has_got_offset(got_type))
8634 {
8635 unsigned int off = gsym->got_offset(got_type);
8636 if (got_type == GOT_TYPE_TLSGD)
8637 off += size / 8;
8638 if (off == got_indx * (size / 8))
8639 {
8640 if (got_type == GOT_TYPE_TPREL)
8641 return -tp_offset;
8642 else
8643 return -dtp_offset;
8644 }
8645 }
8646 }
8647 gold_unreachable();
8648 }
8649
8650 // The selector for powerpc object files.
8651
8652 template<int size, bool big_endian>
8653 class Target_selector_powerpc : public Target_selector
8654 {
8655 public:
8656 Target_selector_powerpc()
8657 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8658 size, big_endian,
8659 (size == 64
8660 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8661 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8662 (size == 64
8663 ? (big_endian ? "elf64ppc" : "elf64lppc")
8664 : (big_endian ? "elf32ppc" : "elf32lppc")))
8665 { }
8666
8667 virtual Target*
8668 do_instantiate_target()
8669 { return new Target_powerpc<size, big_endian>(); }
8670 };
8671
8672 Target_selector_powerpc<32, true> target_selector_ppc32;
8673 Target_selector_powerpc<32, false> target_selector_ppc32le;
8674 Target_selector_powerpc<64, true> target_selector_ppc64;
8675 Target_selector_powerpc<64, false> target_selector_ppc64le;
8676
8677 // Instantiate these constants for -O0
8678 template<int size, bool big_endian>
8679 const int Output_data_glink<size, big_endian>::pltresolve_size;
8680 template<int size, bool big_endian>
8681 const typename Output_data_glink<size, big_endian>::Address
8682 Output_data_glink<size, big_endian>::invalid_address;
8683 template<int size, bool big_endian>
8684 const typename Stub_table<size, big_endian>::Address
8685 Stub_table<size, big_endian>::invalid_address;
8686 template<int size, bool big_endian>
8687 const typename Target_powerpc<size, big_endian>::Address
8688 Target_powerpc<size, big_endian>::invalid_address;
8689
8690 } // End anonymous namespace.
This page took 0.281312 seconds and 5 git commands to generate.