[GOLD] correct grouping of stubs
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 const unsigned char* prelocs, size_t reloc_count,
635 unsigned char* view, section_size_type view_size,
636 std::string* from, std::string* to) const;
637
638 // Relocate a section.
639 void
640 relocate_section(const Relocate_info<size, big_endian>*,
641 unsigned int sh_type,
642 const unsigned char* prelocs,
643 size_t reloc_count,
644 Output_section* output_section,
645 bool needs_special_offset_handling,
646 unsigned char* view,
647 Address view_address,
648 section_size_type view_size,
649 const Reloc_symbol_changes*);
650
651 // Scan the relocs during a relocatable link.
652 void
653 scan_relocatable_relocs(Symbol_table* symtab,
654 Layout* layout,
655 Sized_relobj_file<size, big_endian>* object,
656 unsigned int data_shndx,
657 unsigned int sh_type,
658 const unsigned char* prelocs,
659 size_t reloc_count,
660 Output_section* output_section,
661 bool needs_special_offset_handling,
662 size_t local_symbol_count,
663 const unsigned char* plocal_symbols,
664 Relocatable_relocs*);
665
666 // Scan the relocs for --emit-relocs.
667 void
668 emit_relocs_scan(Symbol_table* symtab,
669 Layout* layout,
670 Sized_relobj_file<size, big_endian>* object,
671 unsigned int data_shndx,
672 unsigned int sh_type,
673 const unsigned char* prelocs,
674 size_t reloc_count,
675 Output_section* output_section,
676 bool needs_special_offset_handling,
677 size_t local_symbol_count,
678 const unsigned char* plocal_syms,
679 Relocatable_relocs* rr);
680
681 // Emit relocations for a section.
682 void
683 relocate_relocs(const Relocate_info<size, big_endian>*,
684 unsigned int sh_type,
685 const unsigned char* prelocs,
686 size_t reloc_count,
687 Output_section* output_section,
688 typename elfcpp::Elf_types<size>::Elf_Off
689 offset_in_output_section,
690 unsigned char*,
691 Address view_address,
692 section_size_type,
693 unsigned char* reloc_view,
694 section_size_type reloc_view_size);
695
696 // Return whether SYM is defined by the ABI.
697 bool
698 do_is_defined_by_abi(const Symbol* sym) const
699 {
700 return strcmp(sym->name(), "__tls_get_addr") == 0;
701 }
702
703 // Return the size of the GOT section.
704 section_size_type
705 got_size() const
706 {
707 gold_assert(this->got_ != NULL);
708 return this->got_->data_size();
709 }
710
711 // Get the PLT section.
712 const Output_data_plt_powerpc<size, big_endian>*
713 plt_section() const
714 {
715 gold_assert(this->plt_ != NULL);
716 return this->plt_;
717 }
718
719 // Get the IPLT section.
720 const Output_data_plt_powerpc<size, big_endian>*
721 iplt_section() const
722 {
723 gold_assert(this->iplt_ != NULL);
724 return this->iplt_;
725 }
726
727 // Get the .glink section.
728 const Output_data_glink<size, big_endian>*
729 glink_section() const
730 {
731 gold_assert(this->glink_ != NULL);
732 return this->glink_;
733 }
734
735 Output_data_glink<size, big_endian>*
736 glink_section()
737 {
738 gold_assert(this->glink_ != NULL);
739 return this->glink_;
740 }
741
742 bool has_glink() const
743 { return this->glink_ != NULL; }
744
745 // Get the GOT section.
746 const Output_data_got_powerpc<size, big_endian>*
747 got_section() const
748 {
749 gold_assert(this->got_ != NULL);
750 return this->got_;
751 }
752
753 // Get the GOT section, creating it if necessary.
754 Output_data_got_powerpc<size, big_endian>*
755 got_section(Symbol_table*, Layout*);
756
757 Object*
758 do_make_elf_object(const std::string&, Input_file*, off_t,
759 const elfcpp::Ehdr<size, big_endian>&);
760
761 // Return the number of entries in the GOT.
762 unsigned int
763 got_entry_count() const
764 {
765 if (this->got_ == NULL)
766 return 0;
767 return this->got_size() / (size / 8);
768 }
769
770 // Return the number of entries in the PLT.
771 unsigned int
772 plt_entry_count() const;
773
774 // Return the offset of the first non-reserved PLT entry.
775 unsigned int
776 first_plt_entry_offset() const
777 {
778 if (size == 32)
779 return 0;
780 if (this->abiversion() >= 2)
781 return 16;
782 return 24;
783 }
784
785 // Return the size of each PLT entry.
786 unsigned int
787 plt_entry_size() const
788 {
789 if (size == 32)
790 return 4;
791 if (this->abiversion() >= 2)
792 return 8;
793 return 24;
794 }
795
796 Output_data_save_res<size, big_endian>*
797 savres_section() const
798 {
799 return this->savres_section_;
800 }
801
802 // Add any special sections for this symbol to the gc work list.
803 // For powerpc64, this adds the code section of a function
804 // descriptor.
805 void
806 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808 // Handle target specific gc actions when adding a gc reference from
809 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810 // and DST_OFF. For powerpc64, this adds a referenc to the code
811 // section of a function descriptor.
812 void
813 do_gc_add_reference(Symbol_table* symtab,
814 Relobj* src_obj,
815 unsigned int src_shndx,
816 Relobj* dst_obj,
817 unsigned int dst_shndx,
818 Address dst_off) const;
819
820 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821 const Stub_tables&
822 stub_tables() const
823 { return this->stub_tables_; }
824
825 const Output_data_brlt_powerpc<size, big_endian>*
826 brlt_section() const
827 { return this->brlt_section_; }
828
829 void
830 add_branch_lookup_table(Address to)
831 {
832 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833 this->branch_lookup_table_.insert(std::make_pair(to, off));
834 }
835
836 Address
837 find_branch_lookup_table(Address to)
838 {
839 typename Branch_lookup_table::const_iterator p
840 = this->branch_lookup_table_.find(to);
841 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842 }
843
844 void
845 write_branch_lookup_table(unsigned char *oview)
846 {
847 for (typename Branch_lookup_table::const_iterator p
848 = this->branch_lookup_table_.begin();
849 p != this->branch_lookup_table_.end();
850 ++p)
851 {
852 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853 }
854 }
855
856 bool
857 plt_thread_safe() const
858 { return this->plt_thread_safe_; }
859
860 int
861 abiversion () const
862 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864 void
865 set_abiversion (int ver)
866 {
867 elfcpp::Elf_Word flags = this->processor_specific_flags();
868 flags &= ~elfcpp::EF_PPC64_ABI;
869 flags |= ver & elfcpp::EF_PPC64_ABI;
870 this->set_processor_specific_flags(flags);
871 }
872
873 // Offset to to save stack slot
874 int
875 stk_toc () const
876 { return this->abiversion() < 2 ? 40 : 24; }
877
878 private:
879
880 class Track_tls
881 {
882 public:
883 enum Tls_get_addr
884 {
885 NOT_EXPECTED = 0,
886 EXPECTED = 1,
887 SKIP = 2,
888 NORMAL = 3
889 };
890
891 Track_tls()
892 : tls_get_addr_(NOT_EXPECTED),
893 relinfo_(NULL), relnum_(0), r_offset_(0)
894 { }
895
896 ~Track_tls()
897 {
898 if (this->tls_get_addr_ != NOT_EXPECTED)
899 this->missing();
900 }
901
902 void
903 missing(void)
904 {
905 if (this->relinfo_ != NULL)
906 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907 _("missing expected __tls_get_addr call"));
908 }
909
910 void
911 expect_tls_get_addr_call(
912 const Relocate_info<size, big_endian>* relinfo,
913 size_t relnum,
914 Address r_offset)
915 {
916 this->tls_get_addr_ = EXPECTED;
917 this->relinfo_ = relinfo;
918 this->relnum_ = relnum;
919 this->r_offset_ = r_offset;
920 }
921
922 void
923 expect_tls_get_addr_call()
924 { this->tls_get_addr_ = EXPECTED; }
925
926 void
927 skip_next_tls_get_addr_call()
928 {this->tls_get_addr_ = SKIP; }
929
930 Tls_get_addr
931 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932 {
933 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934 || r_type == elfcpp::R_PPC_PLTREL24)
935 && gsym != NULL
936 && strcmp(gsym->name(), "__tls_get_addr") == 0);
937 Tls_get_addr last_tls = this->tls_get_addr_;
938 this->tls_get_addr_ = NOT_EXPECTED;
939 if (is_tls_call && last_tls != EXPECTED)
940 return last_tls;
941 else if (!is_tls_call && last_tls != NOT_EXPECTED)
942 {
943 this->missing();
944 return EXPECTED;
945 }
946 return NORMAL;
947 }
948
949 private:
950 // What we're up to regarding calls to __tls_get_addr.
951 // On powerpc, the branch and link insn making a call to
952 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955 // The marker relocation always comes first, and has the same
956 // symbol as the reloc on the insn setting up the __tls_get_addr
957 // argument. This ties the arg setup insn with the call insn,
958 // allowing ld to safely optimize away the call. We check that
959 // every call to __tls_get_addr has a marker relocation, and that
960 // every marker relocation is on a call to __tls_get_addr.
961 Tls_get_addr tls_get_addr_;
962 // Info about the last reloc for error message.
963 const Relocate_info<size, big_endian>* relinfo_;
964 size_t relnum_;
965 Address r_offset_;
966 };
967
968 // The class which scans relocations.
969 class Scan : protected Track_tls
970 {
971 public:
972 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974 Scan()
975 : Track_tls(), issued_non_pic_error_(false)
976 { }
977
978 static inline int
979 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981 inline void
982 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983 Sized_relobj_file<size, big_endian>* object,
984 unsigned int data_shndx,
985 Output_section* output_section,
986 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987 const elfcpp::Sym<size, big_endian>& lsym,
988 bool is_discarded);
989
990 inline void
991 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992 Sized_relobj_file<size, big_endian>* object,
993 unsigned int data_shndx,
994 Output_section* output_section,
995 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996 Symbol* gsym);
997
998 inline bool
999 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000 Target_powerpc* ,
1001 Sized_relobj_file<size, big_endian>* relobj,
1002 unsigned int ,
1003 Output_section* ,
1004 const elfcpp::Rela<size, big_endian>& ,
1005 unsigned int r_type,
1006 const elfcpp::Sym<size, big_endian>&)
1007 {
1008 // PowerPC64 .opd is not folded, so any identical function text
1009 // may be folded and we'll still keep function addresses distinct.
1010 // That means no reloc is of concern here.
1011 if (size == 64)
1012 {
1013 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014 <Powerpc_relobj<size, big_endian>*>(relobj);
1015 if (ppcobj->abiversion() == 1)
1016 return false;
1017 }
1018 // For 32-bit and ELFv2, conservatively assume anything but calls to
1019 // function code might be taking the address of the function.
1020 return !is_branch_reloc(r_type);
1021 }
1022
1023 inline bool
1024 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025 Target_powerpc* ,
1026 Sized_relobj_file<size, big_endian>* relobj,
1027 unsigned int ,
1028 Output_section* ,
1029 const elfcpp::Rela<size, big_endian>& ,
1030 unsigned int r_type,
1031 Symbol*)
1032 {
1033 // As above.
1034 if (size == 64)
1035 {
1036 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037 <Powerpc_relobj<size, big_endian>*>(relobj);
1038 if (ppcobj->abiversion() == 1)
1039 return false;
1040 }
1041 return !is_branch_reloc(r_type);
1042 }
1043
1044 static bool
1045 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046 Sized_relobj_file<size, big_endian>* object,
1047 unsigned int r_type, bool report_err);
1048
1049 private:
1050 static void
1051 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052 unsigned int r_type);
1053
1054 static void
1055 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type, Symbol*);
1057
1058 static void
1059 generate_tls_call(Symbol_table* symtab, Layout* layout,
1060 Target_powerpc* target);
1061
1062 void
1063 check_non_pic(Relobj*, unsigned int r_type);
1064
1065 // Whether we have issued an error about a non-PIC compilation.
1066 bool issued_non_pic_error_;
1067 };
1068
1069 bool
1070 symval_for_branch(const Symbol_table* symtab,
1071 const Sized_symbol<size>* gsym,
1072 Powerpc_relobj<size, big_endian>* object,
1073 Address *value, unsigned int *dest_shndx);
1074
1075 // The class which implements relocation.
1076 class Relocate : protected Track_tls
1077 {
1078 public:
1079 // Use 'at' branch hints when true, 'y' when false.
1080 // FIXME maybe: set this with an option.
1081 static const bool is_isa_v2 = true;
1082
1083 Relocate()
1084 : Track_tls()
1085 { }
1086
1087 // Do a relocation. Return false if the caller should not issue
1088 // any warnings about this relocation.
1089 inline bool
1090 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092 const Sized_symbol<size>*, const Symbol_value<size>*,
1093 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094 section_size_type);
1095 };
1096
1097 class Relocate_comdat_behavior
1098 {
1099 public:
1100 // Decide what the linker should do for relocations that refer to
1101 // discarded comdat sections.
1102 inline Comdat_behavior
1103 get(const char* name)
1104 {
1105 gold::Default_comdat_behavior default_behavior;
1106 Comdat_behavior ret = default_behavior.get(name);
1107 if (ret == CB_WARNING)
1108 {
1109 if (size == 32
1110 && (strcmp(name, ".fixup") == 0
1111 || strcmp(name, ".got2") == 0))
1112 ret = CB_IGNORE;
1113 if (size == 64
1114 && (strcmp(name, ".opd") == 0
1115 || strcmp(name, ".toc") == 0
1116 || strcmp(name, ".toc1") == 0))
1117 ret = CB_IGNORE;
1118 }
1119 return ret;
1120 }
1121 };
1122
1123 // Optimize the TLS relocation type based on what we know about the
1124 // symbol. IS_FINAL is true if the final address of this symbol is
1125 // known at link time.
1126
1127 tls::Tls_optimization
1128 optimize_tls_gd(bool is_final)
1129 {
1130 // If we are generating a shared library, then we can't do anything
1131 // in the linker.
1132 if (parameters->options().shared())
1133 return tls::TLSOPT_NONE;
1134
1135 if (!is_final)
1136 return tls::TLSOPT_TO_IE;
1137 return tls::TLSOPT_TO_LE;
1138 }
1139
1140 tls::Tls_optimization
1141 optimize_tls_ld()
1142 {
1143 if (parameters->options().shared())
1144 return tls::TLSOPT_NONE;
1145
1146 return tls::TLSOPT_TO_LE;
1147 }
1148
1149 tls::Tls_optimization
1150 optimize_tls_ie(bool is_final)
1151 {
1152 if (!is_final || parameters->options().shared())
1153 return tls::TLSOPT_NONE;
1154
1155 return tls::TLSOPT_TO_LE;
1156 }
1157
1158 // Create glink.
1159 void
1160 make_glink_section(Layout*);
1161
1162 // Create the PLT section.
1163 void
1164 make_plt_section(Symbol_table*, Layout*);
1165
1166 void
1167 make_iplt_section(Symbol_table*, Layout*);
1168
1169 void
1170 make_brlt_section(Layout*);
1171
1172 // Create a PLT entry for a global symbol.
1173 void
1174 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176 // Create a PLT entry for a local IFUNC symbol.
1177 void
1178 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179 Sized_relobj_file<size, big_endian>*,
1180 unsigned int);
1181
1182
1183 // Create a GOT entry for local dynamic __tls_get_addr.
1184 unsigned int
1185 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186 Sized_relobj_file<size, big_endian>* object);
1187
1188 unsigned int
1189 tlsld_got_offset() const
1190 {
1191 return this->tlsld_got_offset_;
1192 }
1193
1194 // Get the dynamic reloc section, creating it if necessary.
1195 Reloc_section*
1196 rela_dyn_section(Layout*);
1197
1198 // Similarly, but for ifunc symbols get the one for ifunc.
1199 Reloc_section*
1200 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202 // Copy a relocation against a global symbol.
1203 void
1204 copy_reloc(Symbol_table* symtab, Layout* layout,
1205 Sized_relobj_file<size, big_endian>* object,
1206 unsigned int shndx, Output_section* output_section,
1207 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208 {
1209 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210 this->copy_relocs_.copy_reloc(symtab, layout,
1211 symtab->get_sized_symbol<size>(sym),
1212 object, shndx, output_section,
1213 r_type, reloc.get_r_offset(),
1214 reloc.get_r_addend(),
1215 this->rela_dyn_section(layout));
1216 }
1217
1218 // Look over all the input sections, deciding where to place stubs.
1219 void
1220 group_sections(Layout*, const Task*, bool);
1221
1222 // Sort output sections by address.
1223 struct Sort_sections
1224 {
1225 bool
1226 operator()(const Output_section* sec1, const Output_section* sec2)
1227 { return sec1->address() < sec2->address(); }
1228 };
1229
1230 class Branch_info
1231 {
1232 public:
1233 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234 unsigned int data_shndx,
1235 Address r_offset,
1236 unsigned int r_type,
1237 unsigned int r_sym,
1238 Address addend)
1239 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241 { }
1242
1243 ~Branch_info()
1244 { }
1245
1246 // If this branch needs a plt call stub, or a long branch stub, make one.
1247 bool
1248 make_stub(Stub_table<size, big_endian>*,
1249 Stub_table<size, big_endian>*,
1250 Symbol_table*) const;
1251
1252 private:
1253 // The branch location..
1254 Powerpc_relobj<size, big_endian>* object_;
1255 unsigned int shndx_;
1256 Address offset_;
1257 // ..and the branch type and destination.
1258 unsigned int r_type_;
1259 unsigned int r_sym_;
1260 Address addend_;
1261 };
1262
1263 // Information about this specific target which we pass to the
1264 // general Target structure.
1265 static Target::Target_info powerpc_info;
1266
1267 // The types of GOT entries needed for this platform.
1268 // These values are exposed to the ABI in an incremental link.
1269 // Do not renumber existing values without changing the version
1270 // number of the .gnu_incremental_inputs section.
1271 enum Got_type
1272 {
1273 GOT_TYPE_STANDARD,
1274 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1275 GOT_TYPE_DTPREL, // entry for @got@dtprel
1276 GOT_TYPE_TPREL // entry for @got@tprel
1277 };
1278
1279 // The GOT section.
1280 Output_data_got_powerpc<size, big_endian>* got_;
1281 // The PLT section. This is a container for a table of addresses,
1282 // and their relocations. Each address in the PLT has a dynamic
1283 // relocation (R_*_JMP_SLOT) and each address will have a
1284 // corresponding entry in .glink for lazy resolution of the PLT.
1285 // ppc32 initialises the PLT to point at the .glink entry, while
1286 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1287 // linker adds a stub that loads the PLT entry into ctr then
1288 // branches to ctr. There may be more than one stub for each PLT
1289 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1290 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291 Output_data_plt_powerpc<size, big_endian>* plt_;
1292 // The IPLT section. Like plt_, this is a container for a table of
1293 // addresses and their relocations, specifically for STT_GNU_IFUNC
1294 // functions that resolve locally (STT_GNU_IFUNC functions that
1295 // don't resolve locally go in PLT). Unlike plt_, these have no
1296 // entry in .glink for lazy resolution, and the relocation section
1297 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1298 // the relocation section may contain relocations against
1299 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1300 // relocation section will appear at the end of other dynamic
1301 // relocations, so that ld.so applies these relocations after other
1302 // dynamic relocations. In a static executable, the relocation
1303 // section is emitted and marked with __rela_iplt_start and
1304 // __rela_iplt_end symbols.
1305 Output_data_plt_powerpc<size, big_endian>* iplt_;
1306 // Section holding long branch destinations.
1307 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308 // The .glink section.
1309 Output_data_glink<size, big_endian>* glink_;
1310 // The dynamic reloc section.
1311 Reloc_section* rela_dyn_;
1312 // Relocs saved to avoid a COPY reloc.
1313 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315 unsigned int tlsld_got_offset_;
1316
1317 Stub_tables stub_tables_;
1318 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319 Branch_lookup_table branch_lookup_table_;
1320
1321 typedef std::vector<Branch_info> Branches;
1322 Branches branch_info_;
1323
1324 bool plt_thread_safe_;
1325
1326 bool relax_failed_;
1327 int relax_fail_count_;
1328 int32_t stub_group_size_;
1329
1330 Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336 32, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start", // entry_symbol_name
1358 32, // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364 32, // size
1365 false, // is_big_endian
1366 elfcpp::EM_PPC, // machine_code
1367 false, // has_make_symbol
1368 false, // has_resolve
1369 false, // has_code_fill
1370 true, // is_default_stack_executable
1371 false, // can_icf_inline_merge_sections
1372 '\0', // wrap_char
1373 "/usr/lib/ld.so.1", // dynamic_linker
1374 0x10000000, // default_text_segment_address
1375 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1376 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1377 false, // isolate_execinstr
1378 0, // rosegment_gap
1379 elfcpp::SHN_UNDEF, // small_common_shndx
1380 elfcpp::SHN_UNDEF, // large_common_shndx
1381 0, // small_common_section_flags
1382 0, // large_common_section_flags
1383 NULL, // attributes_section
1384 NULL, // attributes_vendor
1385 "_start", // entry_symbol_name
1386 32, // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392 64, // size
1393 true, // is_big_endian
1394 elfcpp::EM_PPC64, // machine_code
1395 false, // has_make_symbol
1396 false, // has_resolve
1397 false, // has_code_fill
1398 true, // is_default_stack_executable
1399 false, // can_icf_inline_merge_sections
1400 '\0', // wrap_char
1401 "/usr/lib/ld.so.1", // dynamic_linker
1402 0x10000000, // default_text_segment_address
1403 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1404 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1405 false, // isolate_execinstr
1406 0, // rosegment_gap
1407 elfcpp::SHN_UNDEF, // small_common_shndx
1408 elfcpp::SHN_UNDEF, // large_common_shndx
1409 0, // small_common_section_flags
1410 0, // large_common_section_flags
1411 NULL, // attributes_section
1412 NULL, // attributes_vendor
1413 "_start", // entry_symbol_name
1414 32, // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420 64, // size
1421 false, // is_big_endian
1422 elfcpp::EM_PPC64, // machine_code
1423 false, // has_make_symbol
1424 false, // has_resolve
1425 false, // has_code_fill
1426 true, // is_default_stack_executable
1427 false, // can_icf_inline_merge_sections
1428 '\0', // wrap_char
1429 "/usr/lib/ld.so.1", // dynamic_linker
1430 0x10000000, // default_text_segment_address
1431 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1432 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1433 false, // isolate_execinstr
1434 0, // rosegment_gap
1435 elfcpp::SHN_UNDEF, // small_common_shndx
1436 elfcpp::SHN_UNDEF, // large_common_shndx
1437 0, // small_common_section_flags
1438 0, // large_common_section_flags
1439 NULL, // attributes_section
1440 NULL, // attributes_vendor
1441 "_start", // entry_symbol_name
1442 32, // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448 return (r_type == elfcpp::R_POWERPC_REL24
1449 || r_type == elfcpp::R_PPC_PLTREL24
1450 || r_type == elfcpp::R_PPC_LOCAL24PC
1451 || r_type == elfcpp::R_POWERPC_REL14
1452 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454 || r_type == elfcpp::R_POWERPC_ADDR24
1455 || r_type == elfcpp::R_POWERPC_ADDR14
1456 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0. If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466 if ((insn & (0x3f << 26)) != 31 << 26)
1467 return 0;
1468
1469 unsigned int rtra;
1470 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471 rtra = insn & ((1 << 26) - (1 << 16));
1472 else if (((insn >> 16) & 0x1f) == reg)
1473 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474 else
1475 return 0;
1476
1477 if ((insn & (0x3ff << 1)) == 266 << 1)
1478 // add -> addi
1479 insn = 14 << 26;
1480 else if ((insn & (0x1f << 1)) == 23 << 1
1481 && ((insn & (0x1f << 6)) < 14 << 6
1482 || ((insn & (0x1f << 6)) >= 16 << 6
1483 && (insn & (0x1f << 6)) < 24 << 6)))
1484 // load and store indexed -> dform
1485 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490 // lwax -> lwa
1491 insn = (58 << 26) | 2;
1492 else
1493 return 0;
1494 insn |= rtra;
1495 return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503 enum Overflow_check
1504 {
1505 CHECK_NONE,
1506 CHECK_SIGNED,
1507 CHECK_UNSIGNED,
1508 CHECK_BITFIELD,
1509 CHECK_LOW_INSN,
1510 CHECK_HIGH_INSN
1511 };
1512
1513 enum Status
1514 {
1515 STATUS_OK,
1516 STATUS_OVERFLOW
1517 };
1518
1519 private:
1520 typedef Powerpc_relocate_functions<size, big_endian> This;
1521 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524 template<int valsize>
1525 static inline bool
1526 has_overflow_signed(Address value)
1527 {
1528 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530 limit <<= ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532 return value + limit > (limit << 1) - 1;
1533 }
1534
1535 template<int valsize>
1536 static inline bool
1537 has_overflow_unsigned(Address value)
1538 {
1539 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540 limit <<= ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542 return value > (limit << 1) - 1;
1543 }
1544
1545 template<int valsize>
1546 static inline bool
1547 has_overflow_bitfield(Address value)
1548 {
1549 return (has_overflow_unsigned<valsize>(value)
1550 && has_overflow_signed<valsize>(value));
1551 }
1552
1553 template<int valsize>
1554 static inline Status
1555 overflowed(Address value, Overflow_check overflow)
1556 {
1557 if (overflow == CHECK_SIGNED)
1558 {
1559 if (has_overflow_signed<valsize>(value))
1560 return STATUS_OVERFLOW;
1561 }
1562 else if (overflow == CHECK_UNSIGNED)
1563 {
1564 if (has_overflow_unsigned<valsize>(value))
1565 return STATUS_OVERFLOW;
1566 }
1567 else if (overflow == CHECK_BITFIELD)
1568 {
1569 if (has_overflow_bitfield<valsize>(value))
1570 return STATUS_OVERFLOW;
1571 }
1572 return STATUS_OK;
1573 }
1574
1575 // Do a simple RELA relocation
1576 template<int fieldsize, int valsize>
1577 static inline Status
1578 rela(unsigned char* view, Address value, Overflow_check overflow)
1579 {
1580 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581 Valtype* wv = reinterpret_cast<Valtype*>(view);
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583 return overflowed<valsize>(value, overflow);
1584 }
1585
1586 template<int fieldsize, int valsize>
1587 static inline Status
1588 rela(unsigned char* view,
1589 unsigned int right_shift,
1590 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591 Address value,
1592 Overflow_check overflow)
1593 {
1594 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595 Valtype* wv = reinterpret_cast<Valtype*>(view);
1596 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597 Valtype reloc = value >> right_shift;
1598 val &= ~dst_mask;
1599 reloc &= dst_mask;
1600 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601 return overflowed<valsize>(value >> right_shift, overflow);
1602 }
1603
1604 // Do a simple RELA relocation, unaligned.
1605 template<int fieldsize, int valsize>
1606 static inline Status
1607 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608 {
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610 return overflowed<valsize>(value, overflow);
1611 }
1612
1613 template<int fieldsize, int valsize>
1614 static inline Status
1615 rela_ua(unsigned char* view,
1616 unsigned int right_shift,
1617 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618 Address value,
1619 Overflow_check overflow)
1620 {
1621 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622 Valtype;
1623 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624 Valtype reloc = value >> right_shift;
1625 val &= ~dst_mask;
1626 reloc &= dst_mask;
1627 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628 return overflowed<valsize>(value >> right_shift, overflow);
1629 }
1630
1631 public:
1632 // R_PPC64_ADDR64: (Symbol + Addend)
1633 static inline void
1634 addr64(unsigned char* view, Address value)
1635 { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638 static inline void
1639 addr64_u(unsigned char* view, Address value)
1640 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642 // R_POWERPC_ADDR32: (Symbol + Addend)
1643 static inline Status
1644 addr32(unsigned char* view, Address value, Overflow_check overflow)
1645 { return This::template rela<32,32>(view, value, overflow); }
1646
1647 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648 static inline Status
1649 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650 { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653 static inline Status
1654 addr24(unsigned char* view, Address value, Overflow_check overflow)
1655 {
1656 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657 value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662
1663 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664 static inline Status
1665 addr16(unsigned char* view, Address value, Overflow_check overflow)
1666 { return This::template rela<16,16>(view, value, overflow); }
1667
1668 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669 static inline Status
1670 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671 { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674 static inline Status
1675 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676 {
1677 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678 if ((value & 3) != 0)
1679 stat = STATUS_OVERFLOW;
1680 return stat;
1681 }
1682
1683 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684 static inline Status
1685 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686 {
1687 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688 if ((value & 15) != 0)
1689 stat = STATUS_OVERFLOW;
1690 return stat;
1691 }
1692
1693 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694 static inline void
1695 addr16_hi(unsigned char* view, Address value)
1696 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699 static inline void
1700 addr16_ha(unsigned char* view, Address value)
1701 { This::addr16_hi(view, value + 0x8000); }
1702
1703 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704 static inline void
1705 addr16_hi2(unsigned char* view, Address value)
1706 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709 static inline void
1710 addr16_ha2(unsigned char* view, Address value)
1711 { This::addr16_hi2(view, value + 0x8000); }
1712
1713 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714 static inline void
1715 addr16_hi3(unsigned char* view, Address value)
1716 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719 static inline void
1720 addr16_ha3(unsigned char* view, Address value)
1721 { This::addr16_hi3(view, value + 0x8000); }
1722
1723 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724 static inline Status
1725 addr14(unsigned char* view, Address value, Overflow_check overflow)
1726 {
1727 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728 if (overflow != CHECK_NONE && (value & 3) != 0)
1729 stat = STATUS_OVERFLOW;
1730 return stat;
1731 }
1732
1733 // R_POWERPC_REL16DX_HA
1734 static inline Status
1735 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736 {
1737 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738 Valtype* wv = reinterpret_cast<Valtype*>(view);
1739 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740 value += 0x8000;
1741 value = static_cast<SignedAddress>(value) >> 16;
1742 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744 return overflowed<16>(value, overflow);
1745 }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754 this->e_flags_ |= ver;
1755 if (this->abiversion() != 0)
1756 {
1757 Target_powerpc<size, big_endian>* target =
1758 static_cast<Target_powerpc<size, big_endian>*>(
1759 parameters->sized_target<size, big_endian>());
1760 if (target->abiversion() == 0)
1761 target->set_abiversion(this->abiversion());
1762 else if (target->abiversion() != this->abiversion())
1763 gold_error(_("%s: ABI version %d is not compatible "
1764 "with ABI version %d output"),
1765 this->name().c_str(),
1766 this->abiversion(), target->abiversion());
1767
1768 }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777 Read_symbols_data* sd)
1778 {
1779 const unsigned char* const pshdrs = sd->section_headers->data();
1780 const unsigned char* namesu = sd->section_names->data();
1781 const char* names = reinterpret_cast<const char*>(namesu);
1782 section_size_type names_size = sd->section_names_size;
1783 const unsigned char* s;
1784
1785 s = this->template find_shdr<size, big_endian>(pshdrs,
1786 size == 32 ? ".got2" : ".opd",
1787 names, names_size, NULL);
1788 if (s != NULL)
1789 {
1790 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791 this->special_ = ndx;
1792 if (size == 64)
1793 {
1794 if (this->abiversion() == 0)
1795 this->set_abiversion(1);
1796 else if (this->abiversion() > 1)
1797 gold_error(_("%s: .opd invalid in abiv%d"),
1798 this->name().c_str(), this->abiversion());
1799 }
1800 }
1801 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809 size_t reloc_count,
1810 const unsigned char* prelocs,
1811 const unsigned char* plocal_syms)
1812 {
1813 if (size == 64)
1814 {
1815 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816 Reltype;
1817 const int reloc_size
1818 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820 Address expected_off = 0;
1821 bool regular = true;
1822 unsigned int opd_ent_size = 0;
1823
1824 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825 {
1826 Reltype reloc(prelocs);
1827 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828 = reloc.get_r_info();
1829 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830 if (r_type == elfcpp::R_PPC64_ADDR64)
1831 {
1832 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833 typename elfcpp::Elf_types<size>::Elf_Addr value;
1834 bool is_ordinary;
1835 unsigned int shndx;
1836 if (r_sym < this->local_symbol_count())
1837 {
1838 typename elfcpp::Sym<size, big_endian>
1839 lsym(plocal_syms + r_sym * sym_size);
1840 shndx = lsym.get_st_shndx();
1841 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842 value = lsym.get_st_value();
1843 }
1844 else
1845 shndx = this->symbol_section_and_value(r_sym, &value,
1846 &is_ordinary);
1847 this->set_opd_ent(reloc.get_r_offset(), shndx,
1848 value + reloc.get_r_addend());
1849 if (i == 2)
1850 {
1851 expected_off = reloc.get_r_offset();
1852 opd_ent_size = expected_off;
1853 }
1854 else if (expected_off != reloc.get_r_offset())
1855 regular = false;
1856 expected_off += opd_ent_size;
1857 }
1858 else if (r_type == elfcpp::R_PPC64_TOC)
1859 {
1860 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861 regular = false;
1862 }
1863 else
1864 {
1865 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866 this->name().c_str(), r_type);
1867 regular = false;
1868 }
1869 }
1870 if (reloc_count <= 2)
1871 opd_ent_size = this->section_size(this->opd_shndx());
1872 if (opd_ent_size != 24 && opd_ent_size != 16)
1873 regular = false;
1874 if (!regular)
1875 {
1876 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877 this->name().c_str());
1878 opd_ent_size = 0;
1879 }
1880 }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888 if (size == 64)
1889 {
1890 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891 p != rd->relocs.end();
1892 ++p)
1893 {
1894 if (p->data_shndx == this->opd_shndx())
1895 {
1896 uint64_t opd_size = this->section_size(this->opd_shndx());
1897 gold_assert(opd_size == static_cast<size_t>(opd_size));
1898 if (opd_size != 0)
1899 {
1900 this->init_opd(opd_size);
1901 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902 rd->local_symbols->data());
1903 }
1904 break;
1905 }
1906 }
1907 }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916 this->base_read_symbols(sd);
1917 if (size == 64)
1918 {
1919 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920 const unsigned char* const pshdrs = sd->section_headers->data();
1921 const unsigned int loccount = this->do_local_symbol_count();
1922 if (loccount != 0)
1923 {
1924 this->st_other_.resize(loccount);
1925 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926 off_t locsize = loccount * sym_size;
1927 const unsigned int symtab_shndx = this->symtab_shndx();
1928 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931 locsize, true, false);
1932 psyms += sym_size;
1933 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934 {
1935 elfcpp::Sym<size, big_endian> sym(psyms);
1936 unsigned char st_other = sym.get_st_other();
1937 this->st_other_[i] = st_other;
1938 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939 {
1940 if (this->abiversion() == 0)
1941 this->set_abiversion(2);
1942 else if (this->abiversion() < 2)
1943 gold_error(_("%s: local symbol %d has invalid st_other"
1944 " for ABI version 1"),
1945 this->name().c_str(), i);
1946 }
1947 }
1948 }
1949 }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956 this->e_flags_ |= ver;
1957 if (this->abiversion() != 0)
1958 {
1959 Target_powerpc<size, big_endian>* target =
1960 static_cast<Target_powerpc<size, big_endian>*>(
1961 parameters->sized_target<size, big_endian>());
1962 if (target->abiversion() == 0)
1963 target->set_abiversion(this->abiversion());
1964 else if (target->abiversion() != this->abiversion())
1965 gold_error(_("%s: ABI version %d is not compatible "
1966 "with ABI version %d output"),
1967 this->name().c_str(),
1968 this->abiversion(), target->abiversion());
1969
1970 }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980 this->base_read_symbols(sd);
1981 if (size == 64)
1982 {
1983 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984 const unsigned char* const pshdrs = sd->section_headers->data();
1985 const unsigned char* namesu = sd->section_names->data();
1986 const char* names = reinterpret_cast<const char*>(namesu);
1987 const unsigned char* s = NULL;
1988 const unsigned char* opd;
1989 section_size_type opd_size;
1990
1991 // Find and read .opd section.
1992 while (1)
1993 {
1994 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995 sd->section_names_size,
1996 s);
1997 if (s == NULL)
1998 return;
1999
2000 typename elfcpp::Shdr<size, big_endian> shdr(s);
2001 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003 {
2004 if (this->abiversion() == 0)
2005 this->set_abiversion(1);
2006 else if (this->abiversion() > 1)
2007 gold_error(_("%s: .opd invalid in abiv%d"),
2008 this->name().c_str(), this->abiversion());
2009
2010 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011 this->opd_address_ = shdr.get_sh_addr();
2012 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014 true, false);
2015 break;
2016 }
2017 }
2018
2019 // Build set of executable sections.
2020 // Using a set is probably overkill. There is likely to be only
2021 // a few executable sections, typically .init, .text and .fini,
2022 // and they are generally grouped together.
2023 typedef std::set<Sec_info> Exec_sections;
2024 Exec_sections exec_sections;
2025 s = pshdrs;
2026 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027 {
2028 typename elfcpp::Shdr<size, big_endian> shdr(s);
2029 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030 && ((shdr.get_sh_flags()
2031 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 && shdr.get_sh_size() != 0)
2034 {
2035 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036 shdr.get_sh_size(), i));
2037 }
2038 }
2039 if (exec_sections.empty())
2040 return;
2041
2042 // Look over the OPD entries. This is complicated by the fact
2043 // that some binaries will use two-word entries while others
2044 // will use the standard three-word entries. In most cases
2045 // the third word (the environment pointer for languages like
2046 // Pascal) is unused and will be zero. If the third word is
2047 // used it should not be pointing into executable sections,
2048 // I think.
2049 this->init_opd(opd_size);
2050 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051 {
2052 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055 if (val == 0)
2056 // Chances are that this is the third word of an OPD entry.
2057 continue;
2058 typename Exec_sections::const_iterator e
2059 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060 if (e != exec_sections.begin())
2061 {
2062 --e;
2063 if (e->start <= val && val < e->start + e->len)
2064 {
2065 // We have an address in an executable section.
2066 // VAL ought to be the function entry, set it up.
2067 this->set_opd_ent(p - opd, e->shndx, val);
2068 // Skip second word of OPD entry, the TOC pointer.
2069 p += 8;
2070 }
2071 }
2072 // If we didn't match any executable sections, we likely
2073 // have a non-zero third word in the OPD entry.
2074 }
2075 }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083 Symbol_table* symtab,
2084 Layout* layout)
2085 {
2086 if (size == 32)
2087 {
2088 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089 // undefined when scanning relocs (and thus requires
2090 // non-relative dynamic relocs). The proper value will be
2091 // updated later.
2092 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093 if (gotsym != NULL && gotsym->is_undefined())
2094 {
2095 Target_powerpc<size, big_endian>* target =
2096 static_cast<Target_powerpc<size, big_endian>*>(
2097 parameters->sized_target<size, big_endian>());
2098 Output_data_got_powerpc<size, big_endian>* got
2099 = target->got_section(symtab, layout);
2100 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101 Symbol_table::PREDEFINED,
2102 got, 0, 0,
2103 elfcpp::STT_OBJECT,
2104 elfcpp::STB_LOCAL,
2105 elfcpp::STV_HIDDEN, 0,
2106 false, false);
2107 }
2108
2109 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111 if (sdasym != NULL && sdasym->is_undefined())
2112 {
2113 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114 Output_section* os
2115 = layout->add_output_section_data(".sdata", 0,
2116 elfcpp::SHF_ALLOC
2117 | elfcpp::SHF_WRITE,
2118 sdata, ORDER_SMALL_DATA, false);
2119 symtab->define_in_output_data("_SDA_BASE_", NULL,
2120 Symbol_table::PREDEFINED,
2121 os, 32768, 0, elfcpp::STT_OBJECT,
2122 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123 0, false, false);
2124 }
2125 }
2126 else
2127 {
2128 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130 if (gotsym != NULL && gotsym->is_undefined())
2131 {
2132 Target_powerpc<size, big_endian>* target =
2133 static_cast<Target_powerpc<size, big_endian>*>(
2134 parameters->sized_target<size, big_endian>());
2135 Output_data_got_powerpc<size, big_endian>* got
2136 = target->got_section(symtab, layout);
2137 symtab->define_in_output_data(".TOC.", NULL,
2138 Symbol_table::PREDEFINED,
2139 got, 0x8000, 0,
2140 elfcpp::STT_OBJECT,
2141 elfcpp::STB_LOCAL,
2142 elfcpp::STV_HIDDEN, 0,
2143 false, false);
2144 }
2145 }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153 const std::string& name,
2154 Input_file* input_file,
2155 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157 int et = ehdr.get_e_type();
2158 // ET_EXEC files are valid input for --just-symbols/-R,
2159 // and we treat them as relocatable objects.
2160 if (et == elfcpp::ET_REL
2161 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162 {
2163 Powerpc_relobj<size, big_endian>* obj =
2164 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165 obj->setup();
2166 return obj;
2167 }
2168 else if (et == elfcpp::ET_DYN)
2169 {
2170 Powerpc_dynobj<size, big_endian>* obj =
2171 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172 obj->setup();
2173 return obj;
2174 }
2175 else
2176 {
2177 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178 return NULL;
2179 }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190 : Output_data_got<size, big_endian>(),
2191 symtab_(symtab), layout_(layout),
2192 header_ent_cnt_(size == 32 ? 3 : 1),
2193 header_index_(size == 32 ? 0x2000 : 0)
2194 {
2195 if (size == 64)
2196 this->set_addralign(256);
2197 }
2198
2199 // Override all the Output_data_got methods we use so as to first call
2200 // reserve_ent().
2201 bool
2202 add_global(Symbol* gsym, unsigned int got_type)
2203 {
2204 this->reserve_ent();
2205 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206 }
2207
2208 bool
2209 add_global_plt(Symbol* gsym, unsigned int got_type)
2210 {
2211 this->reserve_ent();
2212 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213 }
2214
2215 bool
2216 add_global_tls(Symbol* gsym, unsigned int got_type)
2217 { return this->add_global_plt(gsym, got_type); }
2218
2219 void
2220 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222 {
2223 this->reserve_ent();
2224 Output_data_got<size, big_endian>::
2225 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226 }
2227
2228 void
2229 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230 Output_data_reloc_generic* rel_dyn,
2231 unsigned int r_type_1, unsigned int r_type_2)
2232 {
2233 this->reserve_ent(2);
2234 Output_data_got<size, big_endian>::
2235 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236 }
2237
2238 bool
2239 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240 {
2241 this->reserve_ent();
2242 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243 got_type);
2244 }
2245
2246 bool
2247 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248 {
2249 this->reserve_ent();
2250 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251 got_type);
2252 }
2253
2254 bool
2255 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256 { return this->add_local_plt(object, sym_index, got_type); }
2257
2258 void
2259 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260 unsigned int got_type,
2261 Output_data_reloc_generic* rel_dyn,
2262 unsigned int r_type)
2263 {
2264 this->reserve_ent(2);
2265 Output_data_got<size, big_endian>::
2266 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267 }
2268
2269 unsigned int
2270 add_constant(Valtype constant)
2271 {
2272 this->reserve_ent();
2273 return Output_data_got<size, big_endian>::add_constant(constant);
2274 }
2275
2276 unsigned int
2277 add_constant_pair(Valtype c1, Valtype c2)
2278 {
2279 this->reserve_ent(2);
2280 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281 }
2282
2283 // Offset of _GLOBAL_OFFSET_TABLE_.
2284 unsigned int
2285 g_o_t() const
2286 {
2287 return this->got_offset(this->header_index_);
2288 }
2289
2290 // Offset of base used to access the GOT/TOC.
2291 // The got/toc pointer reg will be set to this value.
2292 Valtype
2293 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294 {
2295 if (size == 32)
2296 return this->g_o_t();
2297 else
2298 return (this->output_section()->address()
2299 + object->toc_base_offset()
2300 - this->address());
2301 }
2302
2303 // Ensure our GOT has a header.
2304 void
2305 set_final_data_size()
2306 {
2307 if (this->header_ent_cnt_ != 0)
2308 this->make_header();
2309 Output_data_got<size, big_endian>::set_final_data_size();
2310 }
2311
2312 // First word of GOT header needs some values that are not
2313 // handled by Output_data_got so poke them in here.
2314 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315 void
2316 do_write(Output_file* of)
2317 {
2318 Valtype val = 0;
2319 if (size == 32 && this->layout_->dynamic_data() != NULL)
2320 val = this->layout_->dynamic_section()->address();
2321 if (size == 64)
2322 val = this->output_section()->address() + 0x8000;
2323 this->replace_constant(this->header_index_, val);
2324 Output_data_got<size, big_endian>::do_write(of);
2325 }
2326
2327 private:
2328 void
2329 reserve_ent(unsigned int cnt = 1)
2330 {
2331 if (this->header_ent_cnt_ == 0)
2332 return;
2333 if (this->num_entries() + cnt > this->header_index_)
2334 this->make_header();
2335 }
2336
2337 void
2338 make_header()
2339 {
2340 this->header_ent_cnt_ = 0;
2341 this->header_index_ = this->num_entries();
2342 if (size == 32)
2343 {
2344 Output_data_got<size, big_endian>::add_constant(0);
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347
2348 // Define _GLOBAL_OFFSET_TABLE_ at the header
2349 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350 if (gotsym != NULL)
2351 {
2352 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353 sym->set_value(this->g_o_t());
2354 }
2355 else
2356 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357 Symbol_table::PREDEFINED,
2358 this, this->g_o_t(), 0,
2359 elfcpp::STT_OBJECT,
2360 elfcpp::STB_LOCAL,
2361 elfcpp::STV_HIDDEN, 0,
2362 false, false);
2363 }
2364 else
2365 Output_data_got<size, big_endian>::add_constant(0);
2366 }
2367
2368 // Stashed pointers.
2369 Symbol_table* symtab_;
2370 Layout* layout_;
2371
2372 // GOT header size.
2373 unsigned int header_ent_cnt_;
2374 // GOT header index.
2375 unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383 Layout* layout)
2384 {
2385 if (this->got_ == NULL)
2386 {
2387 gold_assert(symtab != NULL && layout != NULL);
2388
2389 this->got_
2390 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394 this->got_, ORDER_DATA, false);
2395 }
2396
2397 return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406 if (this->rela_dyn_ == NULL)
2407 {
2408 gold_assert(layout != NULL);
2409 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411 elfcpp::SHF_ALLOC, this->rela_dyn_,
2412 ORDER_DYNAMIC_RELOCS, false);
2413 }
2414 return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422 Layout* layout,
2423 bool for_ifunc)
2424 {
2425 if (!for_ifunc)
2426 return this->rela_dyn_section(layout);
2427
2428 if (this->iplt_ == NULL)
2429 this->make_iplt_section(symtab, layout);
2430 return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435 public:
2436 // Determine the stub group size. The group size is the absolute
2437 // value of the parameter --stub-group-size. If --stub-group-size
2438 // is passed a negative value, we restrict stubs to be always before
2439 // the stubbed branches.
2440 Stub_control(int32_t size, bool no_size_errors)
2441 : state_(NO_GROUP), stub_group_size_(abs(size)),
2442 stub14_group_size_(abs(size) >> 10),
2443 stubs_always_before_branch_(size < 0),
2444 suppress_size_errors_(no_size_errors), has14_(false),
2445 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2446 {
2447 }
2448
2449 // Return true iff input section can be handled by current stub
2450 // group.
2451 bool
2452 can_add_to_stub_group(Output_section* o,
2453 const Output_section::Input_section* i,
2454 bool has14);
2455
2456 const Output_section::Input_section*
2457 owner()
2458 { return owner_; }
2459
2460 Output_section*
2461 output_section()
2462 { return output_section_; }
2463
2464 void
2465 set_output_and_owner(Output_section* o,
2466 const Output_section::Input_section* i)
2467 {
2468 this->output_section_ = o;
2469 this->owner_ = i;
2470 }
2471
2472 private:
2473 typedef enum
2474 {
2475 NO_GROUP,
2476 FINDING_STUB_SECTION,
2477 HAS_STUB_SECTION
2478 } State;
2479
2480 State state_;
2481 uint32_t stub_group_size_;
2482 uint32_t stub14_group_size_;
2483 bool stubs_always_before_branch_;
2484 bool suppress_size_errors_;
2485 bool has14_;
2486 uint64_t group_end_addr_;
2487 // owner_ and output_section_ specify the section to which stubs are
2488 // attached. The stubs are placed at the end of this section.
2489 const Output_section::Input_section* owner_;
2490 Output_section* output_section_;
2491 };
2492
2493 // Return true iff input section can be handled by current stub
2494 // group. Sections are presented to this function in reverse order,
2495 // so the first section is the tail of the group.
2496
2497 bool
2498 Stub_control::can_add_to_stub_group(Output_section* o,
2499 const Output_section::Input_section* i,
2500 bool has14)
2501 {
2502 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2503 uint64_t this_size;
2504 uint64_t start_addr = o->address();
2505
2506 if (whole_sec)
2507 // .init and .fini sections are pasted together to form a single
2508 // function. We can't be adding stubs in the middle of the function.
2509 this_size = o->data_size();
2510 else
2511 {
2512 start_addr += i->relobj()->output_section_offset(i->shndx());
2513 this_size = i->data_size();
2514 }
2515
2516 uint32_t group_size
2517 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2518 uint64_t end_addr = start_addr + this_size;
2519
2520 if (this_size > group_size && !this->suppress_size_errors_)
2521 gold_warning(_("%s:%s exceeds group size"),
2522 i->relobj()->name().c_str(),
2523 i->relobj()->section_name(i->shndx()).c_str());
2524
2525 this->has14_ = this->has14_ || has14;
2526 group_size = this->has14_ ? this->stub14_group_size_ : this->stub_group_size_;
2527
2528 if (this->state_ == HAS_STUB_SECTION)
2529 {
2530 // Can we add this section, which is before the stubs, to the
2531 // group?
2532 if (this->group_end_addr_ - start_addr <= group_size)
2533 return true;
2534 }
2535 else
2536 {
2537 // Stubs are added at the end of "owner_".
2538 // The current section can always be the stub owner, except when
2539 // whole_sec is true and the current section isn't the last of
2540 // the pasted sections. (This restriction for the whole_sec
2541 // case is just to simplify the corner case mentioned in
2542 // group_sections.)
2543 // Note that "owner_" itself is not necessarily part of the
2544 // group of sections served by these stubs!
2545 if (!whole_sec || this->output_section_ != o)
2546 {
2547 this->owner_ = i;
2548 this->output_section_ = o;
2549 }
2550
2551 if (this->state_ == FINDING_STUB_SECTION)
2552 {
2553 if (this->group_end_addr_ - start_addr <= group_size)
2554 return true;
2555 // The group after the stubs has reached maximum size.
2556 // Now see about adding sections before the stubs to the
2557 // group. If the current section has a 14-bit branch and
2558 // the group after the stubs exceeds stub14_group_size_
2559 // (because they didn't have 14-bit branches), don't add
2560 // sections before the stubs: The size of stubs for such a
2561 // large group may exceed the reach of a 14-bit branch.
2562 if (!this->stubs_always_before_branch_
2563 && this_size <= group_size
2564 && this->group_end_addr_ - end_addr <= group_size)
2565 {
2566 this->state_ = HAS_STUB_SECTION;
2567 this->group_end_addr_ = end_addr;
2568 return true;
2569 }
2570 }
2571 else if (this->state_ == NO_GROUP)
2572 {
2573 // Only here on very first use of Stub_control
2574 this->state_ = FINDING_STUB_SECTION;
2575 this->group_end_addr_ = end_addr;
2576 return true;
2577 }
2578 else
2579 gold_unreachable();
2580 }
2581
2582 // The section fails to fit in the current group. Set up a few
2583 // things for the next group. owner_ and output_section_ will be
2584 // set later after we've retrieved those values for the current
2585 // group.
2586 this->state_ = FINDING_STUB_SECTION;
2587 this->has14_ = has14;
2588 this->group_end_addr_ = end_addr;
2589 return false;
2590 }
2591
2592 // Look over all the input sections, deciding where to place stubs.
2593
2594 template<int size, bool big_endian>
2595 void
2596 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2597 const Task*,
2598 bool no_size_errors)
2599 {
2600 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2601
2602 // Group input sections and insert stub table
2603 Stub_table_owner* table_owner = NULL;
2604 std::vector<Stub_table_owner*> tables;
2605 Layout::Section_list section_list;
2606 layout->get_executable_sections(&section_list);
2607 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2608 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2609 o != section_list.rend();
2610 ++o)
2611 {
2612 typedef Output_section::Input_section_list Input_section_list;
2613 for (Input_section_list::const_reverse_iterator i
2614 = (*o)->input_sections().rbegin();
2615 i != (*o)->input_sections().rend();
2616 ++i)
2617 {
2618 if (i->is_input_section()
2619 || i->is_relaxed_input_section())
2620 {
2621 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2622 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2623 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2624 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2625 {
2626 table_owner->output_section = stub_control.output_section();
2627 table_owner->owner = stub_control.owner();
2628 stub_control.set_output_and_owner(*o, &*i);
2629 table_owner = NULL;
2630 }
2631 if (table_owner == NULL)
2632 {
2633 table_owner = new Stub_table_owner;
2634 tables.push_back(table_owner);
2635 }
2636 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2637 }
2638 }
2639 }
2640 if (table_owner != NULL)
2641 {
2642 const Output_section::Input_section* i = stub_control.owner();
2643
2644 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2645 {
2646 // Corner case. A new stub group was made for the first
2647 // section (last one looked at here) for some reason, but
2648 // the first section is already being used as the owner for
2649 // a stub table for following sections. Force it into that
2650 // stub group.
2651 tables.pop_back();
2652 delete table_owner;
2653 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2654 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2655 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2656 }
2657 else
2658 {
2659 table_owner->output_section = stub_control.output_section();
2660 table_owner->owner = i;
2661 }
2662 }
2663 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2664 t != tables.end();
2665 ++t)
2666 {
2667 Stub_table<size, big_endian>* stub_table;
2668
2669 if ((*t)->owner->is_input_section())
2670 stub_table = new Stub_table<size, big_endian>(this,
2671 (*t)->output_section,
2672 (*t)->owner);
2673 else if ((*t)->owner->is_relaxed_input_section())
2674 stub_table = static_cast<Stub_table<size, big_endian>*>(
2675 (*t)->owner->relaxed_input_section());
2676 else
2677 gold_unreachable();
2678 this->stub_tables_.push_back(stub_table);
2679 delete *t;
2680 }
2681 }
2682
2683 static unsigned long
2684 max_branch_delta (unsigned int r_type)
2685 {
2686 if (r_type == elfcpp::R_POWERPC_REL14
2687 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2688 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2689 return 1L << 15;
2690 if (r_type == elfcpp::R_POWERPC_REL24
2691 || r_type == elfcpp::R_PPC_PLTREL24
2692 || r_type == elfcpp::R_PPC_LOCAL24PC)
2693 return 1L << 25;
2694 return 0;
2695 }
2696
2697 // If this branch needs a plt call stub, or a long branch stub, make one.
2698
2699 template<int size, bool big_endian>
2700 bool
2701 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2702 Stub_table<size, big_endian>* stub_table,
2703 Stub_table<size, big_endian>* ifunc_stub_table,
2704 Symbol_table* symtab) const
2705 {
2706 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2707 if (sym != NULL && sym->is_forwarder())
2708 sym = symtab->resolve_forwards(sym);
2709 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2710 Target_powerpc<size, big_endian>* target =
2711 static_cast<Target_powerpc<size, big_endian>*>(
2712 parameters->sized_target<size, big_endian>());
2713 if (gsym != NULL
2714 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2715 : this->object_->local_has_plt_offset(this->r_sym_))
2716 {
2717 if (size == 64
2718 && gsym != NULL
2719 && target->abiversion() >= 2
2720 && !parameters->options().output_is_position_independent()
2721 && !is_branch_reloc(this->r_type_))
2722 target->glink_section()->add_global_entry(gsym);
2723 else
2724 {
2725 if (stub_table == NULL)
2726 stub_table = this->object_->stub_table(this->shndx_);
2727 if (stub_table == NULL)
2728 {
2729 // This is a ref from a data section to an ifunc symbol.
2730 stub_table = ifunc_stub_table;
2731 }
2732 gold_assert(stub_table != NULL);
2733 Address from = this->object_->get_output_section_offset(this->shndx_);
2734 if (from != invalid_address)
2735 from += (this->object_->output_section(this->shndx_)->address()
2736 + this->offset_);
2737 if (gsym != NULL)
2738 return stub_table->add_plt_call_entry(from,
2739 this->object_, gsym,
2740 this->r_type_, this->addend_);
2741 else
2742 return stub_table->add_plt_call_entry(from,
2743 this->object_, this->r_sym_,
2744 this->r_type_, this->addend_);
2745 }
2746 }
2747 else
2748 {
2749 Address max_branch_offset = max_branch_delta(this->r_type_);
2750 if (max_branch_offset == 0)
2751 return true;
2752 Address from = this->object_->get_output_section_offset(this->shndx_);
2753 gold_assert(from != invalid_address);
2754 from += (this->object_->output_section(this->shndx_)->address()
2755 + this->offset_);
2756 Address to;
2757 if (gsym != NULL)
2758 {
2759 switch (gsym->source())
2760 {
2761 case Symbol::FROM_OBJECT:
2762 {
2763 Object* symobj = gsym->object();
2764 if (symobj->is_dynamic()
2765 || symobj->pluginobj() != NULL)
2766 return true;
2767 bool is_ordinary;
2768 unsigned int shndx = gsym->shndx(&is_ordinary);
2769 if (shndx == elfcpp::SHN_UNDEF)
2770 return true;
2771 }
2772 break;
2773
2774 case Symbol::IS_UNDEFINED:
2775 return true;
2776
2777 default:
2778 break;
2779 }
2780 Symbol_table::Compute_final_value_status status;
2781 to = symtab->compute_final_value<size>(gsym, &status);
2782 if (status != Symbol_table::CFVS_OK)
2783 return true;
2784 if (size == 64)
2785 to += this->object_->ppc64_local_entry_offset(gsym);
2786 }
2787 else
2788 {
2789 const Symbol_value<size>* psymval
2790 = this->object_->local_symbol(this->r_sym_);
2791 Symbol_value<size> symval;
2792 typedef Sized_relobj_file<size, big_endian> ObjType;
2793 typename ObjType::Compute_final_local_value_status status
2794 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2795 &symval, symtab);
2796 if (status != ObjType::CFLV_OK
2797 || !symval.has_output_value())
2798 return true;
2799 to = symval.value(this->object_, 0);
2800 if (size == 64)
2801 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2802 }
2803 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2804 to += this->addend_;
2805 if (stub_table == NULL)
2806 stub_table = this->object_->stub_table(this->shndx_);
2807 if (size == 64 && target->abiversion() < 2)
2808 {
2809 unsigned int dest_shndx;
2810 if (!target->symval_for_branch(symtab, gsym, this->object_,
2811 &to, &dest_shndx))
2812 return true;
2813 }
2814 Address delta = to - from;
2815 if (delta + max_branch_offset >= 2 * max_branch_offset)
2816 {
2817 if (stub_table == NULL)
2818 {
2819 gold_warning(_("%s:%s: branch in non-executable section,"
2820 " no long branch stub for you"),
2821 this->object_->name().c_str(),
2822 this->object_->section_name(this->shndx_).c_str());
2823 return true;
2824 }
2825 bool save_res = (size == 64
2826 && gsym != NULL
2827 && gsym->source() == Symbol::IN_OUTPUT_DATA
2828 && gsym->output_data() == target->savres_section());
2829 return stub_table->add_long_branch_entry(this->object_,
2830 this->r_type_,
2831 from, to, save_res);
2832 }
2833 }
2834 return true;
2835 }
2836
2837 // Relaxation hook. This is where we do stub generation.
2838
2839 template<int size, bool big_endian>
2840 bool
2841 Target_powerpc<size, big_endian>::do_relax(int pass,
2842 const Input_objects*,
2843 Symbol_table* symtab,
2844 Layout* layout,
2845 const Task* task)
2846 {
2847 unsigned int prev_brlt_size = 0;
2848 if (pass == 1)
2849 {
2850 bool thread_safe
2851 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2852 if (size == 64
2853 && this->abiversion() < 2
2854 && !thread_safe
2855 && !parameters->options().user_set_plt_thread_safe())
2856 {
2857 static const char* const thread_starter[] =
2858 {
2859 "pthread_create",
2860 /* libstdc++ */
2861 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2862 /* librt */
2863 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2864 "mq_notify", "create_timer",
2865 /* libanl */
2866 "getaddrinfo_a",
2867 /* libgomp */
2868 "GOMP_parallel",
2869 "GOMP_parallel_start",
2870 "GOMP_parallel_loop_static",
2871 "GOMP_parallel_loop_static_start",
2872 "GOMP_parallel_loop_dynamic",
2873 "GOMP_parallel_loop_dynamic_start",
2874 "GOMP_parallel_loop_guided",
2875 "GOMP_parallel_loop_guided_start",
2876 "GOMP_parallel_loop_runtime",
2877 "GOMP_parallel_loop_runtime_start",
2878 "GOMP_parallel_sections",
2879 "GOMP_parallel_sections_start",
2880 /* libgo */
2881 "__go_go",
2882 };
2883
2884 if (parameters->options().shared())
2885 thread_safe = true;
2886 else
2887 {
2888 for (unsigned int i = 0;
2889 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2890 i++)
2891 {
2892 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2893 thread_safe = (sym != NULL
2894 && sym->in_reg()
2895 && sym->in_real_elf());
2896 if (thread_safe)
2897 break;
2898 }
2899 }
2900 }
2901 this->plt_thread_safe_ = thread_safe;
2902 }
2903
2904 if (pass == 1)
2905 {
2906 this->stub_group_size_ = parameters->options().stub_group_size();
2907 bool no_size_errors = true;
2908 if (this->stub_group_size_ == 1)
2909 this->stub_group_size_ = 0x1c00000;
2910 else if (this->stub_group_size_ == -1)
2911 this->stub_group_size_ = -0x1e00000;
2912 else
2913 no_size_errors = false;
2914 this->group_sections(layout, task, no_size_errors);
2915 }
2916 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2917 {
2918 this->branch_lookup_table_.clear();
2919 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2920 p != this->stub_tables_.end();
2921 ++p)
2922 {
2923 (*p)->clear_stubs(true);
2924 }
2925 this->stub_tables_.clear();
2926 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2927 gold_info(_("%s: stub group size is too large; retrying with %#x"),
2928 program_name, this->stub_group_size_);
2929 this->group_sections(layout, task, true);
2930 }
2931
2932 // We need address of stub tables valid for make_stub.
2933 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2934 p != this->stub_tables_.end();
2935 ++p)
2936 {
2937 const Powerpc_relobj<size, big_endian>* object
2938 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2939 Address off = object->get_output_section_offset((*p)->shndx());
2940 gold_assert(off != invalid_address);
2941 Output_section* os = (*p)->output_section();
2942 (*p)->set_address_and_size(os, off);
2943 }
2944
2945 if (pass != 1)
2946 {
2947 // Clear plt call stubs, long branch stubs and branch lookup table.
2948 prev_brlt_size = this->branch_lookup_table_.size();
2949 this->branch_lookup_table_.clear();
2950 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2951 p != this->stub_tables_.end();
2952 ++p)
2953 {
2954 (*p)->clear_stubs(false);
2955 }
2956 }
2957
2958 // Build all the stubs.
2959 this->relax_failed_ = false;
2960 Stub_table<size, big_endian>* ifunc_stub_table
2961 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2962 Stub_table<size, big_endian>* one_stub_table
2963 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2964 for (typename Branches::const_iterator b = this->branch_info_.begin();
2965 b != this->branch_info_.end();
2966 b++)
2967 {
2968 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2969 && !this->relax_failed_)
2970 {
2971 this->relax_failed_ = true;
2972 this->relax_fail_count_++;
2973 if (this->relax_fail_count_ < 3)
2974 return true;
2975 }
2976 }
2977
2978 // Did anything change size?
2979 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2980 bool again = num_huge_branches != prev_brlt_size;
2981 if (size == 64 && num_huge_branches != 0)
2982 this->make_brlt_section(layout);
2983 if (size == 64 && again)
2984 this->brlt_section_->set_current_size(num_huge_branches);
2985
2986 typedef Unordered_set<Output_section*> Output_sections;
2987 Output_sections os_need_update;
2988 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2989 p != this->stub_tables_.end();
2990 ++p)
2991 {
2992 if ((*p)->size_update())
2993 {
2994 again = true;
2995 (*p)->add_eh_frame(layout);
2996 os_need_update.insert((*p)->output_section());
2997 }
2998 }
2999
3000 // Set output section offsets for all input sections in an output
3001 // section that just changed size. Anything past the stubs will
3002 // need updating.
3003 for (typename Output_sections::iterator p = os_need_update.begin();
3004 p != os_need_update.end();
3005 p++)
3006 {
3007 Output_section* os = *p;
3008 Address off = 0;
3009 typedef Output_section::Input_section_list Input_section_list;
3010 for (Input_section_list::const_iterator i = os->input_sections().begin();
3011 i != os->input_sections().end();
3012 ++i)
3013 {
3014 off = align_address(off, i->addralign());
3015 if (i->is_input_section() || i->is_relaxed_input_section())
3016 i->relobj()->set_section_offset(i->shndx(), off);
3017 if (i->is_relaxed_input_section())
3018 {
3019 Stub_table<size, big_endian>* stub_table
3020 = static_cast<Stub_table<size, big_endian>*>(
3021 i->relaxed_input_section());
3022 Address stub_table_size = stub_table->set_address_and_size(os, off);
3023 off += stub_table_size;
3024 // After a few iterations, set current stub table size
3025 // as min size threshold, so later stub tables can only
3026 // grow in size.
3027 if (pass >= 4)
3028 stub_table->set_min_size_threshold(stub_table_size);
3029 }
3030 else
3031 off += i->data_size();
3032 }
3033 // If .branch_lt is part of this output section, then we have
3034 // just done the offset adjustment.
3035 os->clear_section_offsets_need_adjustment();
3036 }
3037
3038 if (size == 64
3039 && !again
3040 && num_huge_branches != 0
3041 && parameters->options().output_is_position_independent())
3042 {
3043 // Fill in the BRLT relocs.
3044 this->brlt_section_->reset_brlt_sizes();
3045 for (typename Branch_lookup_table::const_iterator p
3046 = this->branch_lookup_table_.begin();
3047 p != this->branch_lookup_table_.end();
3048 ++p)
3049 {
3050 this->brlt_section_->add_reloc(p->first, p->second);
3051 }
3052 this->brlt_section_->finalize_brlt_sizes();
3053 }
3054 return again;
3055 }
3056
3057 template<int size, bool big_endian>
3058 void
3059 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3060 unsigned char* oview,
3061 uint64_t* paddress,
3062 off_t* plen) const
3063 {
3064 uint64_t address = plt->address();
3065 off_t len = plt->data_size();
3066
3067 if (plt == this->glink_)
3068 {
3069 // See Output_data_glink::do_write() for glink contents.
3070 if (len == 0)
3071 {
3072 gold_assert(parameters->doing_static_link());
3073 // Static linking may need stubs, to support ifunc and long
3074 // branches. We need to create an output section for
3075 // .eh_frame early in the link process, to have a place to
3076 // attach stub .eh_frame info. We also need to have
3077 // registered a CIE that matches the stub CIE. Both of
3078 // these requirements are satisfied by creating an FDE and
3079 // CIE for .glink, even though static linking will leave
3080 // .glink zero length.
3081 // ??? Hopefully generating an FDE with a zero address range
3082 // won't confuse anything that consumes .eh_frame info.
3083 }
3084 else if (size == 64)
3085 {
3086 // There is one word before __glink_PLTresolve
3087 address += 8;
3088 len -= 8;
3089 }
3090 else if (parameters->options().output_is_position_independent())
3091 {
3092 // There are two FDEs for a position independent glink.
3093 // The first covers the branch table, the second
3094 // __glink_PLTresolve at the end of glink.
3095 off_t resolve_size = this->glink_->pltresolve_size;
3096 if (oview[9] == elfcpp::DW_CFA_nop)
3097 len -= resolve_size;
3098 else
3099 {
3100 address += len - resolve_size;
3101 len = resolve_size;
3102 }
3103 }
3104 }
3105 else
3106 {
3107 // Must be a stub table.
3108 const Stub_table<size, big_endian>* stub_table
3109 = static_cast<const Stub_table<size, big_endian>*>(plt);
3110 uint64_t stub_address = stub_table->stub_address();
3111 len -= stub_address - address;
3112 address = stub_address;
3113 }
3114
3115 *paddress = address;
3116 *plen = len;
3117 }
3118
3119 // A class to handle the PLT data.
3120
3121 template<int size, bool big_endian>
3122 class Output_data_plt_powerpc : public Output_section_data_build
3123 {
3124 public:
3125 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3126 size, big_endian> Reloc_section;
3127
3128 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3129 Reloc_section* plt_rel,
3130 const char* name)
3131 : Output_section_data_build(size == 32 ? 4 : 8),
3132 rel_(plt_rel),
3133 targ_(targ),
3134 name_(name)
3135 { }
3136
3137 // Add an entry to the PLT.
3138 void
3139 add_entry(Symbol*);
3140
3141 void
3142 add_ifunc_entry(Symbol*);
3143
3144 void
3145 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3146
3147 // Return the .rela.plt section data.
3148 Reloc_section*
3149 rel_plt() const
3150 {
3151 return this->rel_;
3152 }
3153
3154 // Return the number of PLT entries.
3155 unsigned int
3156 entry_count() const
3157 {
3158 if (this->current_data_size() == 0)
3159 return 0;
3160 return ((this->current_data_size() - this->first_plt_entry_offset())
3161 / this->plt_entry_size());
3162 }
3163
3164 protected:
3165 void
3166 do_adjust_output_section(Output_section* os)
3167 {
3168 os->set_entsize(0);
3169 }
3170
3171 // Write to a map file.
3172 void
3173 do_print_to_mapfile(Mapfile* mapfile) const
3174 { mapfile->print_output_data(this, this->name_); }
3175
3176 private:
3177 // Return the offset of the first non-reserved PLT entry.
3178 unsigned int
3179 first_plt_entry_offset() const
3180 {
3181 // IPLT has no reserved entry.
3182 if (this->name_[3] == 'I')
3183 return 0;
3184 return this->targ_->first_plt_entry_offset();
3185 }
3186
3187 // Return the size of each PLT entry.
3188 unsigned int
3189 plt_entry_size() const
3190 {
3191 return this->targ_->plt_entry_size();
3192 }
3193
3194 // Write out the PLT data.
3195 void
3196 do_write(Output_file*);
3197
3198 // The reloc section.
3199 Reloc_section* rel_;
3200 // Allows access to .glink for do_write.
3201 Target_powerpc<size, big_endian>* targ_;
3202 // What to report in map file.
3203 const char *name_;
3204 };
3205
3206 // Add an entry to the PLT.
3207
3208 template<int size, bool big_endian>
3209 void
3210 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3211 {
3212 if (!gsym->has_plt_offset())
3213 {
3214 section_size_type off = this->current_data_size();
3215 if (off == 0)
3216 off += this->first_plt_entry_offset();
3217 gsym->set_plt_offset(off);
3218 gsym->set_needs_dynsym_entry();
3219 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3220 this->rel_->add_global(gsym, dynrel, this, off, 0);
3221 off += this->plt_entry_size();
3222 this->set_current_data_size(off);
3223 }
3224 }
3225
3226 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3227
3228 template<int size, bool big_endian>
3229 void
3230 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3231 {
3232 if (!gsym->has_plt_offset())
3233 {
3234 section_size_type off = this->current_data_size();
3235 gsym->set_plt_offset(off);
3236 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3237 if (size == 64 && this->targ_->abiversion() < 2)
3238 dynrel = elfcpp::R_PPC64_JMP_IREL;
3239 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3240 off += this->plt_entry_size();
3241 this->set_current_data_size(off);
3242 }
3243 }
3244
3245 // Add an entry for a local ifunc symbol to the IPLT.
3246
3247 template<int size, bool big_endian>
3248 void
3249 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3250 Sized_relobj_file<size, big_endian>* relobj,
3251 unsigned int local_sym_index)
3252 {
3253 if (!relobj->local_has_plt_offset(local_sym_index))
3254 {
3255 section_size_type off = this->current_data_size();
3256 relobj->set_local_plt_offset(local_sym_index, off);
3257 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3258 if (size == 64 && this->targ_->abiversion() < 2)
3259 dynrel = elfcpp::R_PPC64_JMP_IREL;
3260 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3261 this, off, 0);
3262 off += this->plt_entry_size();
3263 this->set_current_data_size(off);
3264 }
3265 }
3266
3267 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3268 static const uint32_t add_2_2_11 = 0x7c425a14;
3269 static const uint32_t add_2_2_12 = 0x7c426214;
3270 static const uint32_t add_3_3_2 = 0x7c631214;
3271 static const uint32_t add_3_3_13 = 0x7c636a14;
3272 static const uint32_t add_11_0_11 = 0x7d605a14;
3273 static const uint32_t add_11_2_11 = 0x7d625a14;
3274 static const uint32_t add_11_11_2 = 0x7d6b1214;
3275 static const uint32_t addi_0_12 = 0x380c0000;
3276 static const uint32_t addi_2_2 = 0x38420000;
3277 static const uint32_t addi_3_3 = 0x38630000;
3278 static const uint32_t addi_11_11 = 0x396b0000;
3279 static const uint32_t addi_12_1 = 0x39810000;
3280 static const uint32_t addi_12_12 = 0x398c0000;
3281 static const uint32_t addis_0_2 = 0x3c020000;
3282 static const uint32_t addis_0_13 = 0x3c0d0000;
3283 static const uint32_t addis_2_12 = 0x3c4c0000;
3284 static const uint32_t addis_11_2 = 0x3d620000;
3285 static const uint32_t addis_11_11 = 0x3d6b0000;
3286 static const uint32_t addis_11_30 = 0x3d7e0000;
3287 static const uint32_t addis_12_1 = 0x3d810000;
3288 static const uint32_t addis_12_2 = 0x3d820000;
3289 static const uint32_t addis_12_12 = 0x3d8c0000;
3290 static const uint32_t b = 0x48000000;
3291 static const uint32_t bcl_20_31 = 0x429f0005;
3292 static const uint32_t bctr = 0x4e800420;
3293 static const uint32_t blr = 0x4e800020;
3294 static const uint32_t bnectr_p4 = 0x4ce20420;
3295 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3296 static const uint32_t cmpldi_2_0 = 0x28220000;
3297 static const uint32_t cror_15_15_15 = 0x4def7b82;
3298 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3299 static const uint32_t ld_0_1 = 0xe8010000;
3300 static const uint32_t ld_0_12 = 0xe80c0000;
3301 static const uint32_t ld_2_1 = 0xe8410000;
3302 static const uint32_t ld_2_2 = 0xe8420000;
3303 static const uint32_t ld_2_11 = 0xe84b0000;
3304 static const uint32_t ld_2_12 = 0xe84c0000;
3305 static const uint32_t ld_11_2 = 0xe9620000;
3306 static const uint32_t ld_11_11 = 0xe96b0000;
3307 static const uint32_t ld_12_2 = 0xe9820000;
3308 static const uint32_t ld_12_11 = 0xe98b0000;
3309 static const uint32_t ld_12_12 = 0xe98c0000;
3310 static const uint32_t lfd_0_1 = 0xc8010000;
3311 static const uint32_t li_0_0 = 0x38000000;
3312 static const uint32_t li_12_0 = 0x39800000;
3313 static const uint32_t lis_0 = 0x3c000000;
3314 static const uint32_t lis_2 = 0x3c400000;
3315 static const uint32_t lis_11 = 0x3d600000;
3316 static const uint32_t lis_12 = 0x3d800000;
3317 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3318 static const uint32_t lwz_0_12 = 0x800c0000;
3319 static const uint32_t lwz_11_11 = 0x816b0000;
3320 static const uint32_t lwz_11_30 = 0x817e0000;
3321 static const uint32_t lwz_12_12 = 0x818c0000;
3322 static const uint32_t lwzu_0_12 = 0x840c0000;
3323 static const uint32_t mflr_0 = 0x7c0802a6;
3324 static const uint32_t mflr_11 = 0x7d6802a6;
3325 static const uint32_t mflr_12 = 0x7d8802a6;
3326 static const uint32_t mtctr_0 = 0x7c0903a6;
3327 static const uint32_t mtctr_11 = 0x7d6903a6;
3328 static const uint32_t mtctr_12 = 0x7d8903a6;
3329 static const uint32_t mtlr_0 = 0x7c0803a6;
3330 static const uint32_t mtlr_12 = 0x7d8803a6;
3331 static const uint32_t nop = 0x60000000;
3332 static const uint32_t ori_0_0_0 = 0x60000000;
3333 static const uint32_t srdi_0_0_2 = 0x7800f082;
3334 static const uint32_t std_0_1 = 0xf8010000;
3335 static const uint32_t std_0_12 = 0xf80c0000;
3336 static const uint32_t std_2_1 = 0xf8410000;
3337 static const uint32_t stfd_0_1 = 0xd8010000;
3338 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3339 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3340 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3341 static const uint32_t xor_2_12_12 = 0x7d826278;
3342 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3343
3344 // Write out the PLT.
3345
3346 template<int size, bool big_endian>
3347 void
3348 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3349 {
3350 if (size == 32 && this->name_[3] != 'I')
3351 {
3352 const section_size_type offset = this->offset();
3353 const section_size_type oview_size
3354 = convert_to_section_size_type(this->data_size());
3355 unsigned char* const oview = of->get_output_view(offset, oview_size);
3356 unsigned char* pov = oview;
3357 unsigned char* endpov = oview + oview_size;
3358
3359 // The address of the .glink branch table
3360 const Output_data_glink<size, big_endian>* glink
3361 = this->targ_->glink_section();
3362 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3363
3364 while (pov < endpov)
3365 {
3366 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3367 pov += 4;
3368 branch_tab += 4;
3369 }
3370
3371 of->write_output_view(offset, oview_size, oview);
3372 }
3373 }
3374
3375 // Create the PLT section.
3376
3377 template<int size, bool big_endian>
3378 void
3379 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3380 Layout* layout)
3381 {
3382 if (this->plt_ == NULL)
3383 {
3384 if (this->got_ == NULL)
3385 this->got_section(symtab, layout);
3386
3387 if (this->glink_ == NULL)
3388 make_glink_section(layout);
3389
3390 // Ensure that .rela.dyn always appears before .rela.plt This is
3391 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3392 // needs to include .rela.plt in its range.
3393 this->rela_dyn_section(layout);
3394
3395 Reloc_section* plt_rel = new Reloc_section(false);
3396 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3397 elfcpp::SHF_ALLOC, plt_rel,
3398 ORDER_DYNAMIC_PLT_RELOCS, false);
3399 this->plt_
3400 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3401 "** PLT");
3402 layout->add_output_section_data(".plt",
3403 (size == 32
3404 ? elfcpp::SHT_PROGBITS
3405 : elfcpp::SHT_NOBITS),
3406 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3407 this->plt_,
3408 (size == 32
3409 ? ORDER_SMALL_DATA
3410 : ORDER_SMALL_BSS),
3411 false);
3412 }
3413 }
3414
3415 // Create the IPLT section.
3416
3417 template<int size, bool big_endian>
3418 void
3419 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3420 Layout* layout)
3421 {
3422 if (this->iplt_ == NULL)
3423 {
3424 this->make_plt_section(symtab, layout);
3425
3426 Reloc_section* iplt_rel = new Reloc_section(false);
3427 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3428 this->iplt_
3429 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3430 "** IPLT");
3431 this->plt_->output_section()->add_output_section_data(this->iplt_);
3432 }
3433 }
3434
3435 // A section for huge long branch addresses, similar to plt section.
3436
3437 template<int size, bool big_endian>
3438 class Output_data_brlt_powerpc : public Output_section_data_build
3439 {
3440 public:
3441 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3442 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3443 size, big_endian> Reloc_section;
3444
3445 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3446 Reloc_section* brlt_rel)
3447 : Output_section_data_build(size == 32 ? 4 : 8),
3448 rel_(brlt_rel),
3449 targ_(targ)
3450 { }
3451
3452 void
3453 reset_brlt_sizes()
3454 {
3455 this->reset_data_size();
3456 this->rel_->reset_data_size();
3457 }
3458
3459 void
3460 finalize_brlt_sizes()
3461 {
3462 this->finalize_data_size();
3463 this->rel_->finalize_data_size();
3464 }
3465
3466 // Add a reloc for an entry in the BRLT.
3467 void
3468 add_reloc(Address to, unsigned int off)
3469 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3470
3471 // Update section and reloc section size.
3472 void
3473 set_current_size(unsigned int num_branches)
3474 {
3475 this->reset_address_and_file_offset();
3476 this->set_current_data_size(num_branches * 16);
3477 this->finalize_data_size();
3478 Output_section* os = this->output_section();
3479 os->set_section_offsets_need_adjustment();
3480 if (this->rel_ != NULL)
3481 {
3482 unsigned int reloc_size
3483 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3484 this->rel_->reset_address_and_file_offset();
3485 this->rel_->set_current_data_size(num_branches * reloc_size);
3486 this->rel_->finalize_data_size();
3487 Output_section* os = this->rel_->output_section();
3488 os->set_section_offsets_need_adjustment();
3489 }
3490 }
3491
3492 protected:
3493 void
3494 do_adjust_output_section(Output_section* os)
3495 {
3496 os->set_entsize(0);
3497 }
3498
3499 // Write to a map file.
3500 void
3501 do_print_to_mapfile(Mapfile* mapfile) const
3502 { mapfile->print_output_data(this, "** BRLT"); }
3503
3504 private:
3505 // Write out the BRLT data.
3506 void
3507 do_write(Output_file*);
3508
3509 // The reloc section.
3510 Reloc_section* rel_;
3511 Target_powerpc<size, big_endian>* targ_;
3512 };
3513
3514 // Make the branch lookup table section.
3515
3516 template<int size, bool big_endian>
3517 void
3518 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3519 {
3520 if (size == 64 && this->brlt_section_ == NULL)
3521 {
3522 Reloc_section* brlt_rel = NULL;
3523 bool is_pic = parameters->options().output_is_position_independent();
3524 if (is_pic)
3525 {
3526 // When PIC we can't fill in .branch_lt (like .plt it can be
3527 // a bss style section) but must initialise at runtime via
3528 // dynamic relocats.
3529 this->rela_dyn_section(layout);
3530 brlt_rel = new Reloc_section(false);
3531 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3532 }
3533 this->brlt_section_
3534 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3535 if (this->plt_ && is_pic)
3536 this->plt_->output_section()
3537 ->add_output_section_data(this->brlt_section_);
3538 else
3539 layout->add_output_section_data(".branch_lt",
3540 (is_pic ? elfcpp::SHT_NOBITS
3541 : elfcpp::SHT_PROGBITS),
3542 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3543 this->brlt_section_,
3544 (is_pic ? ORDER_SMALL_BSS
3545 : ORDER_SMALL_DATA),
3546 false);
3547 }
3548 }
3549
3550 // Write out .branch_lt when non-PIC.
3551
3552 template<int size, bool big_endian>
3553 void
3554 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3555 {
3556 if (size == 64 && !parameters->options().output_is_position_independent())
3557 {
3558 const section_size_type offset = this->offset();
3559 const section_size_type oview_size
3560 = convert_to_section_size_type(this->data_size());
3561 unsigned char* const oview = of->get_output_view(offset, oview_size);
3562
3563 this->targ_->write_branch_lookup_table(oview);
3564 of->write_output_view(offset, oview_size, oview);
3565 }
3566 }
3567
3568 static inline uint32_t
3569 l(uint32_t a)
3570 {
3571 return a & 0xffff;
3572 }
3573
3574 static inline uint32_t
3575 hi(uint32_t a)
3576 {
3577 return l(a >> 16);
3578 }
3579
3580 static inline uint32_t
3581 ha(uint32_t a)
3582 {
3583 return hi(a + 0x8000);
3584 }
3585
3586 template<int size>
3587 struct Eh_cie
3588 {
3589 static const unsigned char eh_frame_cie[12];
3590 };
3591
3592 template<int size>
3593 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3594 {
3595 1, // CIE version.
3596 'z', 'R', 0, // Augmentation string.
3597 4, // Code alignment.
3598 0x80 - size / 8 , // Data alignment.
3599 65, // RA reg.
3600 1, // Augmentation size.
3601 (elfcpp::DW_EH_PE_pcrel
3602 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3603 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3604 };
3605
3606 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3607 static const unsigned char glink_eh_frame_fde_64v1[] =
3608 {
3609 0, 0, 0, 0, // Replaced with offset to .glink.
3610 0, 0, 0, 0, // Replaced with size of .glink.
3611 0, // Augmentation size.
3612 elfcpp::DW_CFA_advance_loc + 1,
3613 elfcpp::DW_CFA_register, 65, 12,
3614 elfcpp::DW_CFA_advance_loc + 4,
3615 elfcpp::DW_CFA_restore_extended, 65
3616 };
3617
3618 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3619 static const unsigned char glink_eh_frame_fde_64v2[] =
3620 {
3621 0, 0, 0, 0, // Replaced with offset to .glink.
3622 0, 0, 0, 0, // Replaced with size of .glink.
3623 0, // Augmentation size.
3624 elfcpp::DW_CFA_advance_loc + 1,
3625 elfcpp::DW_CFA_register, 65, 0,
3626 elfcpp::DW_CFA_advance_loc + 4,
3627 elfcpp::DW_CFA_restore_extended, 65
3628 };
3629
3630 // Describe __glink_PLTresolve use of LR, 32-bit version.
3631 static const unsigned char glink_eh_frame_fde_32[] =
3632 {
3633 0, 0, 0, 0, // Replaced with offset to .glink.
3634 0, 0, 0, 0, // Replaced with size of .glink.
3635 0, // Augmentation size.
3636 elfcpp::DW_CFA_advance_loc + 2,
3637 elfcpp::DW_CFA_register, 65, 0,
3638 elfcpp::DW_CFA_advance_loc + 4,
3639 elfcpp::DW_CFA_restore_extended, 65
3640 };
3641
3642 static const unsigned char default_fde[] =
3643 {
3644 0, 0, 0, 0, // Replaced with offset to stubs.
3645 0, 0, 0, 0, // Replaced with size of stubs.
3646 0, // Augmentation size.
3647 elfcpp::DW_CFA_nop, // Pad.
3648 elfcpp::DW_CFA_nop,
3649 elfcpp::DW_CFA_nop
3650 };
3651
3652 template<bool big_endian>
3653 static inline void
3654 write_insn(unsigned char* p, uint32_t v)
3655 {
3656 elfcpp::Swap<32, big_endian>::writeval(p, v);
3657 }
3658
3659 // Stub_table holds information about plt and long branch stubs.
3660 // Stubs are built in an area following some input section determined
3661 // by group_sections(). This input section is converted to a relaxed
3662 // input section allowing it to be resized to accommodate the stubs
3663
3664 template<int size, bool big_endian>
3665 class Stub_table : public Output_relaxed_input_section
3666 {
3667 public:
3668 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3669 static const Address invalid_address = static_cast<Address>(0) - 1;
3670
3671 Stub_table(Target_powerpc<size, big_endian>* targ,
3672 Output_section* output_section,
3673 const Output_section::Input_section* owner)
3674 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3675 owner->relobj()
3676 ->section_addralign(owner->shndx())),
3677 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3678 orig_data_size_(owner->current_data_size()),
3679 plt_size_(0), last_plt_size_(0),
3680 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3681 eh_frame_added_(false), need_save_res_(false)
3682 {
3683 this->set_output_section(output_section);
3684
3685 std::vector<Output_relaxed_input_section*> new_relaxed;
3686 new_relaxed.push_back(this);
3687 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3688 }
3689
3690 // Add a plt call stub.
3691 bool
3692 add_plt_call_entry(Address,
3693 const Sized_relobj_file<size, big_endian>*,
3694 const Symbol*,
3695 unsigned int,
3696 Address);
3697
3698 bool
3699 add_plt_call_entry(Address,
3700 const Sized_relobj_file<size, big_endian>*,
3701 unsigned int,
3702 unsigned int,
3703 Address);
3704
3705 // Find a given plt call stub.
3706 Address
3707 find_plt_call_entry(const Symbol*) const;
3708
3709 Address
3710 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3711 unsigned int) const;
3712
3713 Address
3714 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3715 const Symbol*,
3716 unsigned int,
3717 Address) const;
3718
3719 Address
3720 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3721 unsigned int,
3722 unsigned int,
3723 Address) const;
3724
3725 // Add a long branch stub.
3726 bool
3727 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3728 unsigned int, Address, Address, bool);
3729
3730 Address
3731 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3732 Address) const;
3733
3734 bool
3735 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3736 {
3737 Address max_branch_offset = max_branch_delta(r_type);
3738 if (max_branch_offset == 0)
3739 return true;
3740 gold_assert(from != invalid_address);
3741 Address loc = off + this->stub_address();
3742 return loc - from + max_branch_offset < 2 * max_branch_offset;
3743 }
3744
3745 void
3746 clear_stubs(bool all)
3747 {
3748 this->plt_call_stubs_.clear();
3749 this->plt_size_ = 0;
3750 this->long_branch_stubs_.clear();
3751 this->branch_size_ = 0;
3752 this->need_save_res_ = false;
3753 if (all)
3754 {
3755 this->last_plt_size_ = 0;
3756 this->last_branch_size_ = 0;
3757 }
3758 }
3759
3760 Address
3761 set_address_and_size(const Output_section* os, Address off)
3762 {
3763 Address start_off = off;
3764 off += this->orig_data_size_;
3765 Address my_size = this->plt_size_ + this->branch_size_;
3766 if (this->need_save_res_)
3767 my_size += this->targ_->savres_section()->data_size();
3768 if (my_size != 0)
3769 off = align_address(off, this->stub_align());
3770 // Include original section size and alignment padding in size
3771 my_size += off - start_off;
3772 // Ensure new size is always larger than min size
3773 // threshold. Alignment requirement is included in "my_size", so
3774 // increase "my_size" does not invalidate alignment.
3775 if (my_size < this->min_size_threshold_)
3776 my_size = this->min_size_threshold_;
3777 this->reset_address_and_file_offset();
3778 this->set_current_data_size(my_size);
3779 this->set_address_and_file_offset(os->address() + start_off,
3780 os->offset() + start_off);
3781 return my_size;
3782 }
3783
3784 Address
3785 stub_address() const
3786 {
3787 return align_address(this->address() + this->orig_data_size_,
3788 this->stub_align());
3789 }
3790
3791 Address
3792 stub_offset() const
3793 {
3794 return align_address(this->offset() + this->orig_data_size_,
3795 this->stub_align());
3796 }
3797
3798 section_size_type
3799 plt_size() const
3800 { return this->plt_size_; }
3801
3802 void set_min_size_threshold(Address min_size)
3803 { this->min_size_threshold_ = min_size; }
3804
3805 bool
3806 size_update()
3807 {
3808 Output_section* os = this->output_section();
3809 if (os->addralign() < this->stub_align())
3810 {
3811 os->set_addralign(this->stub_align());
3812 // FIXME: get rid of the insane checkpointing.
3813 // We can't increase alignment of the input section to which
3814 // stubs are attached; The input section may be .init which
3815 // is pasted together with other .init sections to form a
3816 // function. Aligning might insert zero padding resulting in
3817 // sigill. However we do need to increase alignment of the
3818 // output section so that the align_address() on offset in
3819 // set_address_and_size() adds the same padding as the
3820 // align_address() on address in stub_address().
3821 // What's more, we need this alignment for the layout done in
3822 // relaxation_loop_body() so that the output section starts at
3823 // a suitably aligned address.
3824 os->checkpoint_set_addralign(this->stub_align());
3825 }
3826 if (this->last_plt_size_ != this->plt_size_
3827 || this->last_branch_size_ != this->branch_size_)
3828 {
3829 this->last_plt_size_ = this->plt_size_;
3830 this->last_branch_size_ = this->branch_size_;
3831 return true;
3832 }
3833 return false;
3834 }
3835
3836 // Add .eh_frame info for this stub section. Unlike other linker
3837 // generated .eh_frame this is added late in the link, because we
3838 // only want the .eh_frame info if this particular stub section is
3839 // non-empty.
3840 void
3841 add_eh_frame(Layout* layout)
3842 {
3843 if (!this->eh_frame_added_)
3844 {
3845 if (!parameters->options().ld_generated_unwind_info())
3846 return;
3847
3848 // Since we add stub .eh_frame info late, it must be placed
3849 // after all other linker generated .eh_frame info so that
3850 // merge mapping need not be updated for input sections.
3851 // There is no provision to use a different CIE to that used
3852 // by .glink.
3853 if (!this->targ_->has_glink())
3854 return;
3855
3856 layout->add_eh_frame_for_plt(this,
3857 Eh_cie<size>::eh_frame_cie,
3858 sizeof (Eh_cie<size>::eh_frame_cie),
3859 default_fde,
3860 sizeof (default_fde));
3861 this->eh_frame_added_ = true;
3862 }
3863 }
3864
3865 Target_powerpc<size, big_endian>*
3866 targ() const
3867 { return targ_; }
3868
3869 private:
3870 class Plt_stub_ent;
3871 class Plt_stub_ent_hash;
3872 typedef Unordered_map<Plt_stub_ent, unsigned int,
3873 Plt_stub_ent_hash> Plt_stub_entries;
3874
3875 // Alignment of stub section.
3876 unsigned int
3877 stub_align() const
3878 {
3879 if (size == 32)
3880 return 16;
3881 unsigned int min_align = 32;
3882 unsigned int user_align = 1 << parameters->options().plt_align();
3883 return std::max(user_align, min_align);
3884 }
3885
3886 // Return the plt offset for the given call stub.
3887 Address
3888 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3889 {
3890 const Symbol* gsym = p->first.sym_;
3891 if (gsym != NULL)
3892 {
3893 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3894 && gsym->can_use_relative_reloc(false));
3895 return gsym->plt_offset();
3896 }
3897 else
3898 {
3899 *is_iplt = true;
3900 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3901 unsigned int local_sym_index = p->first.locsym_;
3902 return relobj->local_plt_offset(local_sym_index);
3903 }
3904 }
3905
3906 // Size of a given plt call stub.
3907 unsigned int
3908 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3909 {
3910 if (size == 32)
3911 return 16;
3912
3913 bool is_iplt;
3914 Address plt_addr = this->plt_off(p, &is_iplt);
3915 if (is_iplt)
3916 plt_addr += this->targ_->iplt_section()->address();
3917 else
3918 plt_addr += this->targ_->plt_section()->address();
3919 Address got_addr = this->targ_->got_section()->output_section()->address();
3920 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3921 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3922 got_addr += ppcobj->toc_base_offset();
3923 Address off = plt_addr - got_addr;
3924 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3925 if (this->targ_->abiversion() < 2)
3926 {
3927 bool static_chain = parameters->options().plt_static_chain();
3928 bool thread_safe = this->targ_->plt_thread_safe();
3929 bytes += (4
3930 + 4 * static_chain
3931 + 8 * thread_safe
3932 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3933 }
3934 unsigned int align = 1 << parameters->options().plt_align();
3935 if (align > 1)
3936 bytes = (bytes + align - 1) & -align;
3937 return bytes;
3938 }
3939
3940 // Return long branch stub size.
3941 unsigned int
3942 branch_stub_size(Address to)
3943 {
3944 Address loc
3945 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3946 if (to - loc + (1 << 25) < 2 << 25)
3947 return 4;
3948 if (size == 64 || !parameters->options().output_is_position_independent())
3949 return 16;
3950 return 32;
3951 }
3952
3953 // Write out stubs.
3954 void
3955 do_write(Output_file*);
3956
3957 // Plt call stub keys.
3958 class Plt_stub_ent
3959 {
3960 public:
3961 Plt_stub_ent(const Symbol* sym)
3962 : sym_(sym), object_(0), addend_(0), locsym_(0)
3963 { }
3964
3965 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3966 unsigned int locsym_index)
3967 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3968 { }
3969
3970 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3971 const Symbol* sym,
3972 unsigned int r_type,
3973 Address addend)
3974 : sym_(sym), object_(0), addend_(0), locsym_(0)
3975 {
3976 if (size != 32)
3977 this->addend_ = addend;
3978 else if (parameters->options().output_is_position_independent()
3979 && r_type == elfcpp::R_PPC_PLTREL24)
3980 {
3981 this->addend_ = addend;
3982 if (this->addend_ >= 32768)
3983 this->object_ = object;
3984 }
3985 }
3986
3987 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3988 unsigned int locsym_index,
3989 unsigned int r_type,
3990 Address addend)
3991 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3992 {
3993 if (size != 32)
3994 this->addend_ = addend;
3995 else if (parameters->options().output_is_position_independent()
3996 && r_type == elfcpp::R_PPC_PLTREL24)
3997 this->addend_ = addend;
3998 }
3999
4000 bool operator==(const Plt_stub_ent& that) const
4001 {
4002 return (this->sym_ == that.sym_
4003 && this->object_ == that.object_
4004 && this->addend_ == that.addend_
4005 && this->locsym_ == that.locsym_);
4006 }
4007
4008 const Symbol* sym_;
4009 const Sized_relobj_file<size, big_endian>* object_;
4010 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4011 unsigned int locsym_;
4012 };
4013
4014 class Plt_stub_ent_hash
4015 {
4016 public:
4017 size_t operator()(const Plt_stub_ent& ent) const
4018 {
4019 return (reinterpret_cast<uintptr_t>(ent.sym_)
4020 ^ reinterpret_cast<uintptr_t>(ent.object_)
4021 ^ ent.addend_
4022 ^ ent.locsym_);
4023 }
4024 };
4025
4026 // Long branch stub keys.
4027 class Branch_stub_ent
4028 {
4029 public:
4030 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4031 Address to, bool save_res)
4032 : dest_(to), toc_base_off_(0), save_res_(save_res)
4033 {
4034 if (size == 64)
4035 toc_base_off_ = obj->toc_base_offset();
4036 }
4037
4038 bool operator==(const Branch_stub_ent& that) const
4039 {
4040 return (this->dest_ == that.dest_
4041 && (size == 32
4042 || this->toc_base_off_ == that.toc_base_off_));
4043 }
4044
4045 Address dest_;
4046 unsigned int toc_base_off_;
4047 bool save_res_;
4048 };
4049
4050 class Branch_stub_ent_hash
4051 {
4052 public:
4053 size_t operator()(const Branch_stub_ent& ent) const
4054 { return ent.dest_ ^ ent.toc_base_off_; }
4055 };
4056
4057 // In a sane world this would be a global.
4058 Target_powerpc<size, big_endian>* targ_;
4059 // Map sym/object/addend to stub offset.
4060 Plt_stub_entries plt_call_stubs_;
4061 // Map destination address to stub offset.
4062 typedef Unordered_map<Branch_stub_ent, unsigned int,
4063 Branch_stub_ent_hash> Branch_stub_entries;
4064 Branch_stub_entries long_branch_stubs_;
4065 // size of input section
4066 section_size_type orig_data_size_;
4067 // size of stubs
4068 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4069 // Some rare cases cause (PR/20529) fluctuation in stub table
4070 // size, which leads to an endless relax loop. This is to be fixed
4071 // by, after the first few iterations, allowing only increase of
4072 // stub table size. This variable sets the minimal possible size of
4073 // a stub table, it is zero for the first few iterations, then
4074 // increases monotonically.
4075 Address min_size_threshold_;
4076 // Whether .eh_frame info has been created for this stub section.
4077 bool eh_frame_added_;
4078 // Set if this stub group needs a copy of out-of-line register
4079 // save/restore functions.
4080 bool need_save_res_;
4081 };
4082
4083 // Add a plt call stub, if we do not already have one for this
4084 // sym/object/addend combo.
4085
4086 template<int size, bool big_endian>
4087 bool
4088 Stub_table<size, big_endian>::add_plt_call_entry(
4089 Address from,
4090 const Sized_relobj_file<size, big_endian>* object,
4091 const Symbol* gsym,
4092 unsigned int r_type,
4093 Address addend)
4094 {
4095 Plt_stub_ent ent(object, gsym, r_type, addend);
4096 unsigned int off = this->plt_size_;
4097 std::pair<typename Plt_stub_entries::iterator, bool> p
4098 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4099 if (p.second)
4100 this->plt_size_ = off + this->plt_call_size(p.first);
4101 return this->can_reach_stub(from, off, r_type);
4102 }
4103
4104 template<int size, bool big_endian>
4105 bool
4106 Stub_table<size, big_endian>::add_plt_call_entry(
4107 Address from,
4108 const Sized_relobj_file<size, big_endian>* object,
4109 unsigned int locsym_index,
4110 unsigned int r_type,
4111 Address addend)
4112 {
4113 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4114 unsigned int off = this->plt_size_;
4115 std::pair<typename Plt_stub_entries::iterator, bool> p
4116 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4117 if (p.second)
4118 this->plt_size_ = off + this->plt_call_size(p.first);
4119 return this->can_reach_stub(from, off, r_type);
4120 }
4121
4122 // Find a plt call stub.
4123
4124 template<int size, bool big_endian>
4125 typename Stub_table<size, big_endian>::Address
4126 Stub_table<size, big_endian>::find_plt_call_entry(
4127 const Sized_relobj_file<size, big_endian>* object,
4128 const Symbol* gsym,
4129 unsigned int r_type,
4130 Address addend) const
4131 {
4132 Plt_stub_ent ent(object, gsym, r_type, addend);
4133 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4134 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4135 }
4136
4137 template<int size, bool big_endian>
4138 typename Stub_table<size, big_endian>::Address
4139 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4140 {
4141 Plt_stub_ent ent(gsym);
4142 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4143 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4144 }
4145
4146 template<int size, bool big_endian>
4147 typename Stub_table<size, big_endian>::Address
4148 Stub_table<size, big_endian>::find_plt_call_entry(
4149 const Sized_relobj_file<size, big_endian>* object,
4150 unsigned int locsym_index,
4151 unsigned int r_type,
4152 Address addend) const
4153 {
4154 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4155 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4156 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4157 }
4158
4159 template<int size, bool big_endian>
4160 typename Stub_table<size, big_endian>::Address
4161 Stub_table<size, big_endian>::find_plt_call_entry(
4162 const Sized_relobj_file<size, big_endian>* object,
4163 unsigned int locsym_index) const
4164 {
4165 Plt_stub_ent ent(object, locsym_index);
4166 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4167 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4168 }
4169
4170 // Add a long branch stub if we don't already have one to given
4171 // destination.
4172
4173 template<int size, bool big_endian>
4174 bool
4175 Stub_table<size, big_endian>::add_long_branch_entry(
4176 const Powerpc_relobj<size, big_endian>* object,
4177 unsigned int r_type,
4178 Address from,
4179 Address to,
4180 bool save_res)
4181 {
4182 Branch_stub_ent ent(object, to, save_res);
4183 Address off = this->branch_size_;
4184 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4185 {
4186 if (save_res)
4187 this->need_save_res_ = true;
4188 else
4189 {
4190 unsigned int stub_size = this->branch_stub_size(to);
4191 this->branch_size_ = off + stub_size;
4192 if (size == 64 && stub_size != 4)
4193 this->targ_->add_branch_lookup_table(to);
4194 }
4195 }
4196 return this->can_reach_stub(from, off, r_type);
4197 }
4198
4199 // Find long branch stub offset.
4200
4201 template<int size, bool big_endian>
4202 typename Stub_table<size, big_endian>::Address
4203 Stub_table<size, big_endian>::find_long_branch_entry(
4204 const Powerpc_relobj<size, big_endian>* object,
4205 Address to) const
4206 {
4207 Branch_stub_ent ent(object, to, false);
4208 typename Branch_stub_entries::const_iterator p
4209 = this->long_branch_stubs_.find(ent);
4210 if (p == this->long_branch_stubs_.end())
4211 return invalid_address;
4212 if (p->first.save_res_)
4213 return to - this->targ_->savres_section()->address() + this->branch_size_;
4214 return p->second;
4215 }
4216
4217 // A class to handle .glink.
4218
4219 template<int size, bool big_endian>
4220 class Output_data_glink : public Output_section_data
4221 {
4222 public:
4223 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4224 static const Address invalid_address = static_cast<Address>(0) - 1;
4225 static const int pltresolve_size = 16*4;
4226
4227 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4228 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4229 end_branch_table_(), ge_size_(0)
4230 { }
4231
4232 void
4233 add_eh_frame(Layout* layout);
4234
4235 void
4236 add_global_entry(const Symbol*);
4237
4238 Address
4239 find_global_entry(const Symbol*) const;
4240
4241 Address
4242 global_entry_address() const
4243 {
4244 gold_assert(this->is_data_size_valid());
4245 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4246 return this->address() + global_entry_off;
4247 }
4248
4249 protected:
4250 // Write to a map file.
4251 void
4252 do_print_to_mapfile(Mapfile* mapfile) const
4253 { mapfile->print_output_data(this, _("** glink")); }
4254
4255 private:
4256 void
4257 set_final_data_size();
4258
4259 // Write out .glink
4260 void
4261 do_write(Output_file*);
4262
4263 // Allows access to .got and .plt for do_write.
4264 Target_powerpc<size, big_endian>* targ_;
4265
4266 // Map sym to stub offset.
4267 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4268 Global_entry_stub_entries global_entry_stubs_;
4269
4270 unsigned int end_branch_table_, ge_size_;
4271 };
4272
4273 template<int size, bool big_endian>
4274 void
4275 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4276 {
4277 if (!parameters->options().ld_generated_unwind_info())
4278 return;
4279
4280 if (size == 64)
4281 {
4282 if (this->targ_->abiversion() < 2)
4283 layout->add_eh_frame_for_plt(this,
4284 Eh_cie<64>::eh_frame_cie,
4285 sizeof (Eh_cie<64>::eh_frame_cie),
4286 glink_eh_frame_fde_64v1,
4287 sizeof (glink_eh_frame_fde_64v1));
4288 else
4289 layout->add_eh_frame_for_plt(this,
4290 Eh_cie<64>::eh_frame_cie,
4291 sizeof (Eh_cie<64>::eh_frame_cie),
4292 glink_eh_frame_fde_64v2,
4293 sizeof (glink_eh_frame_fde_64v2));
4294 }
4295 else
4296 {
4297 // 32-bit .glink can use the default since the CIE return
4298 // address reg, LR, is valid.
4299 layout->add_eh_frame_for_plt(this,
4300 Eh_cie<32>::eh_frame_cie,
4301 sizeof (Eh_cie<32>::eh_frame_cie),
4302 default_fde,
4303 sizeof (default_fde));
4304 // Except where LR is used in a PIC __glink_PLTresolve.
4305 if (parameters->options().output_is_position_independent())
4306 layout->add_eh_frame_for_plt(this,
4307 Eh_cie<32>::eh_frame_cie,
4308 sizeof (Eh_cie<32>::eh_frame_cie),
4309 glink_eh_frame_fde_32,
4310 sizeof (glink_eh_frame_fde_32));
4311 }
4312 }
4313
4314 template<int size, bool big_endian>
4315 void
4316 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4317 {
4318 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4319 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4320 if (p.second)
4321 this->ge_size_ += 16;
4322 }
4323
4324 template<int size, bool big_endian>
4325 typename Output_data_glink<size, big_endian>::Address
4326 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4327 {
4328 typename Global_entry_stub_entries::const_iterator p
4329 = this->global_entry_stubs_.find(gsym);
4330 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4331 }
4332
4333 template<int size, bool big_endian>
4334 void
4335 Output_data_glink<size, big_endian>::set_final_data_size()
4336 {
4337 unsigned int count = this->targ_->plt_entry_count();
4338 section_size_type total = 0;
4339
4340 if (count != 0)
4341 {
4342 if (size == 32)
4343 {
4344 // space for branch table
4345 total += 4 * (count - 1);
4346
4347 total += -total & 15;
4348 total += this->pltresolve_size;
4349 }
4350 else
4351 {
4352 total += this->pltresolve_size;
4353
4354 // space for branch table
4355 total += 4 * count;
4356 if (this->targ_->abiversion() < 2)
4357 {
4358 total += 4 * count;
4359 if (count > 0x8000)
4360 total += 4 * (count - 0x8000);
4361 }
4362 }
4363 }
4364 this->end_branch_table_ = total;
4365 total = (total + 15) & -16;
4366 total += this->ge_size_;
4367
4368 this->set_data_size(total);
4369 }
4370
4371 // Write out plt and long branch stub code.
4372
4373 template<int size, bool big_endian>
4374 void
4375 Stub_table<size, big_endian>::do_write(Output_file* of)
4376 {
4377 if (this->plt_call_stubs_.empty()
4378 && this->long_branch_stubs_.empty())
4379 return;
4380
4381 const section_size_type start_off = this->offset();
4382 const section_size_type off = this->stub_offset();
4383 const section_size_type oview_size =
4384 convert_to_section_size_type(this->data_size() - (off - start_off));
4385 unsigned char* const oview = of->get_output_view(off, oview_size);
4386 unsigned char* p;
4387
4388 if (size == 64)
4389 {
4390 const Output_data_got_powerpc<size, big_endian>* got
4391 = this->targ_->got_section();
4392 Address got_os_addr = got->output_section()->address();
4393
4394 if (!this->plt_call_stubs_.empty())
4395 {
4396 // The base address of the .plt section.
4397 Address plt_base = this->targ_->plt_section()->address();
4398 Address iplt_base = invalid_address;
4399
4400 // Write out plt call stubs.
4401 typename Plt_stub_entries::const_iterator cs;
4402 for (cs = this->plt_call_stubs_.begin();
4403 cs != this->plt_call_stubs_.end();
4404 ++cs)
4405 {
4406 bool is_iplt;
4407 Address pltoff = this->plt_off(cs, &is_iplt);
4408 Address plt_addr = pltoff;
4409 if (is_iplt)
4410 {
4411 if (iplt_base == invalid_address)
4412 iplt_base = this->targ_->iplt_section()->address();
4413 plt_addr += iplt_base;
4414 }
4415 else
4416 plt_addr += plt_base;
4417 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4418 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4419 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4420 Address off = plt_addr - got_addr;
4421
4422 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4423 gold_error(_("%s: linkage table error against `%s'"),
4424 cs->first.object_->name().c_str(),
4425 cs->first.sym_->demangled_name().c_str());
4426
4427 bool plt_load_toc = this->targ_->abiversion() < 2;
4428 bool static_chain
4429 = plt_load_toc && parameters->options().plt_static_chain();
4430 bool thread_safe
4431 = plt_load_toc && this->targ_->plt_thread_safe();
4432 bool use_fake_dep = false;
4433 Address cmp_branch_off = 0;
4434 if (thread_safe)
4435 {
4436 unsigned int pltindex
4437 = ((pltoff - this->targ_->first_plt_entry_offset())
4438 / this->targ_->plt_entry_size());
4439 Address glinkoff
4440 = (this->targ_->glink_section()->pltresolve_size
4441 + pltindex * 8);
4442 if (pltindex > 32768)
4443 glinkoff += (pltindex - 32768) * 4;
4444 Address to
4445 = this->targ_->glink_section()->address() + glinkoff;
4446 Address from
4447 = (this->stub_address() + cs->second + 24
4448 + 4 * (ha(off) != 0)
4449 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4450 + 4 * static_chain);
4451 cmp_branch_off = to - from;
4452 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4453 }
4454
4455 p = oview + cs->second;
4456 if (ha(off) != 0)
4457 {
4458 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4459 p += 4;
4460 if (plt_load_toc)
4461 {
4462 write_insn<big_endian>(p, addis_11_2 + ha(off));
4463 p += 4;
4464 write_insn<big_endian>(p, ld_12_11 + l(off));
4465 p += 4;
4466 }
4467 else
4468 {
4469 write_insn<big_endian>(p, addis_12_2 + ha(off));
4470 p += 4;
4471 write_insn<big_endian>(p, ld_12_12 + l(off));
4472 p += 4;
4473 }
4474 if (plt_load_toc
4475 && ha(off + 8 + 8 * static_chain) != ha(off))
4476 {
4477 write_insn<big_endian>(p, addi_11_11 + l(off));
4478 p += 4;
4479 off = 0;
4480 }
4481 write_insn<big_endian>(p, mtctr_12);
4482 p += 4;
4483 if (plt_load_toc)
4484 {
4485 if (use_fake_dep)
4486 {
4487 write_insn<big_endian>(p, xor_2_12_12);
4488 p += 4;
4489 write_insn<big_endian>(p, add_11_11_2);
4490 p += 4;
4491 }
4492 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4493 p += 4;
4494 if (static_chain)
4495 {
4496 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4497 p += 4;
4498 }
4499 }
4500 }
4501 else
4502 {
4503 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4504 p += 4;
4505 write_insn<big_endian>(p, ld_12_2 + l(off));
4506 p += 4;
4507 if (plt_load_toc
4508 && ha(off + 8 + 8 * static_chain) != ha(off))
4509 {
4510 write_insn<big_endian>(p, addi_2_2 + l(off));
4511 p += 4;
4512 off = 0;
4513 }
4514 write_insn<big_endian>(p, mtctr_12);
4515 p += 4;
4516 if (plt_load_toc)
4517 {
4518 if (use_fake_dep)
4519 {
4520 write_insn<big_endian>(p, xor_11_12_12);
4521 p += 4;
4522 write_insn<big_endian>(p, add_2_2_11);
4523 p += 4;
4524 }
4525 if (static_chain)
4526 {
4527 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4528 p += 4;
4529 }
4530 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4531 p += 4;
4532 }
4533 }
4534 if (thread_safe && !use_fake_dep)
4535 {
4536 write_insn<big_endian>(p, cmpldi_2_0);
4537 p += 4;
4538 write_insn<big_endian>(p, bnectr_p4);
4539 p += 4;
4540 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4541 }
4542 else
4543 write_insn<big_endian>(p, bctr);
4544 }
4545 }
4546
4547 // Write out long branch stubs.
4548 typename Branch_stub_entries::const_iterator bs;
4549 for (bs = this->long_branch_stubs_.begin();
4550 bs != this->long_branch_stubs_.end();
4551 ++bs)
4552 {
4553 if (bs->first.save_res_)
4554 continue;
4555 p = oview + this->plt_size_ + bs->second;
4556 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4557 Address delta = bs->first.dest_ - loc;
4558 if (delta + (1 << 25) < 2 << 25)
4559 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4560 else
4561 {
4562 Address brlt_addr
4563 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4564 gold_assert(brlt_addr != invalid_address);
4565 brlt_addr += this->targ_->brlt_section()->address();
4566 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4567 Address brltoff = brlt_addr - got_addr;
4568 if (ha(brltoff) == 0)
4569 {
4570 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4571 }
4572 else
4573 {
4574 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4575 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4576 }
4577 write_insn<big_endian>(p, mtctr_12), p += 4;
4578 write_insn<big_endian>(p, bctr);
4579 }
4580 }
4581 }
4582 else
4583 {
4584 if (!this->plt_call_stubs_.empty())
4585 {
4586 // The base address of the .plt section.
4587 Address plt_base = this->targ_->plt_section()->address();
4588 Address iplt_base = invalid_address;
4589 // The address of _GLOBAL_OFFSET_TABLE_.
4590 Address g_o_t = invalid_address;
4591
4592 // Write out plt call stubs.
4593 typename Plt_stub_entries::const_iterator cs;
4594 for (cs = this->plt_call_stubs_.begin();
4595 cs != this->plt_call_stubs_.end();
4596 ++cs)
4597 {
4598 bool is_iplt;
4599 Address plt_addr = this->plt_off(cs, &is_iplt);
4600 if (is_iplt)
4601 {
4602 if (iplt_base == invalid_address)
4603 iplt_base = this->targ_->iplt_section()->address();
4604 plt_addr += iplt_base;
4605 }
4606 else
4607 plt_addr += plt_base;
4608
4609 p = oview + cs->second;
4610 if (parameters->options().output_is_position_independent())
4611 {
4612 Address got_addr;
4613 const Powerpc_relobj<size, big_endian>* ppcobj
4614 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4615 (cs->first.object_));
4616 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4617 {
4618 unsigned int got2 = ppcobj->got2_shndx();
4619 got_addr = ppcobj->get_output_section_offset(got2);
4620 gold_assert(got_addr != invalid_address);
4621 got_addr += (ppcobj->output_section(got2)->address()
4622 + cs->first.addend_);
4623 }
4624 else
4625 {
4626 if (g_o_t == invalid_address)
4627 {
4628 const Output_data_got_powerpc<size, big_endian>* got
4629 = this->targ_->got_section();
4630 g_o_t = got->address() + got->g_o_t();
4631 }
4632 got_addr = g_o_t;
4633 }
4634
4635 Address off = plt_addr - got_addr;
4636 if (ha(off) == 0)
4637 {
4638 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4639 write_insn<big_endian>(p + 4, mtctr_11);
4640 write_insn<big_endian>(p + 8, bctr);
4641 }
4642 else
4643 {
4644 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4645 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4646 write_insn<big_endian>(p + 8, mtctr_11);
4647 write_insn<big_endian>(p + 12, bctr);
4648 }
4649 }
4650 else
4651 {
4652 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4653 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4654 write_insn<big_endian>(p + 8, mtctr_11);
4655 write_insn<big_endian>(p + 12, bctr);
4656 }
4657 }
4658 }
4659
4660 // Write out long branch stubs.
4661 typename Branch_stub_entries::const_iterator bs;
4662 for (bs = this->long_branch_stubs_.begin();
4663 bs != this->long_branch_stubs_.end();
4664 ++bs)
4665 {
4666 if (bs->first.save_res_)
4667 continue;
4668 p = oview + this->plt_size_ + bs->second;
4669 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4670 Address delta = bs->first.dest_ - loc;
4671 if (delta + (1 << 25) < 2 << 25)
4672 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4673 else if (!parameters->options().output_is_position_independent())
4674 {
4675 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4676 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4677 write_insn<big_endian>(p + 8, mtctr_12);
4678 write_insn<big_endian>(p + 12, bctr);
4679 }
4680 else
4681 {
4682 delta -= 8;
4683 write_insn<big_endian>(p + 0, mflr_0);
4684 write_insn<big_endian>(p + 4, bcl_20_31);
4685 write_insn<big_endian>(p + 8, mflr_12);
4686 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4687 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4688 write_insn<big_endian>(p + 20, mtlr_0);
4689 write_insn<big_endian>(p + 24, mtctr_12);
4690 write_insn<big_endian>(p + 28, bctr);
4691 }
4692 }
4693 }
4694 if (this->need_save_res_)
4695 {
4696 p = oview + this->plt_size_ + this->branch_size_;
4697 memcpy (p, this->targ_->savres_section()->contents(),
4698 this->targ_->savres_section()->data_size());
4699 }
4700 }
4701
4702 // Write out .glink.
4703
4704 template<int size, bool big_endian>
4705 void
4706 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4707 {
4708 const section_size_type off = this->offset();
4709 const section_size_type oview_size =
4710 convert_to_section_size_type(this->data_size());
4711 unsigned char* const oview = of->get_output_view(off, oview_size);
4712 unsigned char* p;
4713
4714 // The base address of the .plt section.
4715 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4716 Address plt_base = this->targ_->plt_section()->address();
4717
4718 if (size == 64)
4719 {
4720 if (this->end_branch_table_ != 0)
4721 {
4722 // Write pltresolve stub.
4723 p = oview;
4724 Address after_bcl = this->address() + 16;
4725 Address pltoff = plt_base - after_bcl;
4726
4727 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4728
4729 if (this->targ_->abiversion() < 2)
4730 {
4731 write_insn<big_endian>(p, mflr_12), p += 4;
4732 write_insn<big_endian>(p, bcl_20_31), p += 4;
4733 write_insn<big_endian>(p, mflr_11), p += 4;
4734 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4735 write_insn<big_endian>(p, mtlr_12), p += 4;
4736 write_insn<big_endian>(p, add_11_2_11), p += 4;
4737 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4738 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4739 write_insn<big_endian>(p, mtctr_12), p += 4;
4740 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4741 }
4742 else
4743 {
4744 write_insn<big_endian>(p, mflr_0), p += 4;
4745 write_insn<big_endian>(p, bcl_20_31), p += 4;
4746 write_insn<big_endian>(p, mflr_11), p += 4;
4747 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4748 write_insn<big_endian>(p, mtlr_0), p += 4;
4749 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4750 write_insn<big_endian>(p, add_11_2_11), p += 4;
4751 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4752 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4753 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4754 write_insn<big_endian>(p, mtctr_12), p += 4;
4755 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4756 }
4757 write_insn<big_endian>(p, bctr), p += 4;
4758 while (p < oview + this->pltresolve_size)
4759 write_insn<big_endian>(p, nop), p += 4;
4760
4761 // Write lazy link call stubs.
4762 uint32_t indx = 0;
4763 while (p < oview + this->end_branch_table_)
4764 {
4765 if (this->targ_->abiversion() < 2)
4766 {
4767 if (indx < 0x8000)
4768 {
4769 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4770 }
4771 else
4772 {
4773 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4774 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4775 }
4776 }
4777 uint32_t branch_off = 8 - (p - oview);
4778 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4779 indx++;
4780 }
4781 }
4782
4783 Address plt_base = this->targ_->plt_section()->address();
4784 Address iplt_base = invalid_address;
4785 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4786 Address global_entry_base = this->address() + global_entry_off;
4787 typename Global_entry_stub_entries::const_iterator ge;
4788 for (ge = this->global_entry_stubs_.begin();
4789 ge != this->global_entry_stubs_.end();
4790 ++ge)
4791 {
4792 p = oview + global_entry_off + ge->second;
4793 Address plt_addr = ge->first->plt_offset();
4794 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4795 && ge->first->can_use_relative_reloc(false))
4796 {
4797 if (iplt_base == invalid_address)
4798 iplt_base = this->targ_->iplt_section()->address();
4799 plt_addr += iplt_base;
4800 }
4801 else
4802 plt_addr += plt_base;
4803 Address my_addr = global_entry_base + ge->second;
4804 Address off = plt_addr - my_addr;
4805
4806 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4807 gold_error(_("%s: linkage table error against `%s'"),
4808 ge->first->object()->name().c_str(),
4809 ge->first->demangled_name().c_str());
4810
4811 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4812 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4813 write_insn<big_endian>(p, mtctr_12), p += 4;
4814 write_insn<big_endian>(p, bctr);
4815 }
4816 }
4817 else
4818 {
4819 const Output_data_got_powerpc<size, big_endian>* got
4820 = this->targ_->got_section();
4821 // The address of _GLOBAL_OFFSET_TABLE_.
4822 Address g_o_t = got->address() + got->g_o_t();
4823
4824 // Write out pltresolve branch table.
4825 p = oview;
4826 unsigned int the_end = oview_size - this->pltresolve_size;
4827 unsigned char* end_p = oview + the_end;
4828 while (p < end_p - 8 * 4)
4829 write_insn<big_endian>(p, b + end_p - p), p += 4;
4830 while (p < end_p)
4831 write_insn<big_endian>(p, nop), p += 4;
4832
4833 // Write out pltresolve call stub.
4834 if (parameters->options().output_is_position_independent())
4835 {
4836 Address res0_off = 0;
4837 Address after_bcl_off = the_end + 12;
4838 Address bcl_res0 = after_bcl_off - res0_off;
4839
4840 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4841 write_insn<big_endian>(p + 4, mflr_0);
4842 write_insn<big_endian>(p + 8, bcl_20_31);
4843 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4844 write_insn<big_endian>(p + 16, mflr_12);
4845 write_insn<big_endian>(p + 20, mtlr_0);
4846 write_insn<big_endian>(p + 24, sub_11_11_12);
4847
4848 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4849
4850 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4851 if (ha(got_bcl) == ha(got_bcl + 4))
4852 {
4853 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4854 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4855 }
4856 else
4857 {
4858 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4859 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4860 }
4861 write_insn<big_endian>(p + 40, mtctr_0);
4862 write_insn<big_endian>(p + 44, add_0_11_11);
4863 write_insn<big_endian>(p + 48, add_11_0_11);
4864 write_insn<big_endian>(p + 52, bctr);
4865 write_insn<big_endian>(p + 56, nop);
4866 write_insn<big_endian>(p + 60, nop);
4867 }
4868 else
4869 {
4870 Address res0 = this->address();
4871
4872 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4873 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4874 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4875 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4876 else
4877 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4878 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4879 write_insn<big_endian>(p + 16, mtctr_0);
4880 write_insn<big_endian>(p + 20, add_0_11_11);
4881 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4882 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4883 else
4884 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4885 write_insn<big_endian>(p + 28, add_11_0_11);
4886 write_insn<big_endian>(p + 32, bctr);
4887 write_insn<big_endian>(p + 36, nop);
4888 write_insn<big_endian>(p + 40, nop);
4889 write_insn<big_endian>(p + 44, nop);
4890 write_insn<big_endian>(p + 48, nop);
4891 write_insn<big_endian>(p + 52, nop);
4892 write_insn<big_endian>(p + 56, nop);
4893 write_insn<big_endian>(p + 60, nop);
4894 }
4895 p += 64;
4896 }
4897
4898 of->write_output_view(off, oview_size, oview);
4899 }
4900
4901
4902 // A class to handle linker generated save/restore functions.
4903
4904 template<int size, bool big_endian>
4905 class Output_data_save_res : public Output_section_data_build
4906 {
4907 public:
4908 Output_data_save_res(Symbol_table* symtab);
4909
4910 const unsigned char*
4911 contents() const
4912 {
4913 return contents_;
4914 }
4915
4916 protected:
4917 // Write to a map file.
4918 void
4919 do_print_to_mapfile(Mapfile* mapfile) const
4920 { mapfile->print_output_data(this, _("** save/restore")); }
4921
4922 void
4923 do_write(Output_file*);
4924
4925 private:
4926 // The maximum size of save/restore contents.
4927 static const unsigned int savres_max = 218*4;
4928
4929 void
4930 savres_define(Symbol_table* symtab,
4931 const char *name,
4932 unsigned int lo, unsigned int hi,
4933 unsigned char* write_ent(unsigned char*, int),
4934 unsigned char* write_tail(unsigned char*, int));
4935
4936 unsigned char *contents_;
4937 };
4938
4939 template<bool big_endian>
4940 static unsigned char*
4941 savegpr0(unsigned char* p, int r)
4942 {
4943 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4944 write_insn<big_endian>(p, insn);
4945 return p + 4;
4946 }
4947
4948 template<bool big_endian>
4949 static unsigned char*
4950 savegpr0_tail(unsigned char* p, int r)
4951 {
4952 p = savegpr0<big_endian>(p, r);
4953 uint32_t insn = std_0_1 + 16;
4954 write_insn<big_endian>(p, insn);
4955 p = p + 4;
4956 write_insn<big_endian>(p, blr);
4957 return p + 4;
4958 }
4959
4960 template<bool big_endian>
4961 static unsigned char*
4962 restgpr0(unsigned char* p, int r)
4963 {
4964 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4965 write_insn<big_endian>(p, insn);
4966 return p + 4;
4967 }
4968
4969 template<bool big_endian>
4970 static unsigned char*
4971 restgpr0_tail(unsigned char* p, int r)
4972 {
4973 uint32_t insn = ld_0_1 + 16;
4974 write_insn<big_endian>(p, insn);
4975 p = p + 4;
4976 p = restgpr0<big_endian>(p, r);
4977 write_insn<big_endian>(p, mtlr_0);
4978 p = p + 4;
4979 if (r == 29)
4980 {
4981 p = restgpr0<big_endian>(p, 30);
4982 p = restgpr0<big_endian>(p, 31);
4983 }
4984 write_insn<big_endian>(p, blr);
4985 return p + 4;
4986 }
4987
4988 template<bool big_endian>
4989 static unsigned char*
4990 savegpr1(unsigned char* p, int r)
4991 {
4992 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4993 write_insn<big_endian>(p, insn);
4994 return p + 4;
4995 }
4996
4997 template<bool big_endian>
4998 static unsigned char*
4999 savegpr1_tail(unsigned char* p, int r)
5000 {
5001 p = savegpr1<big_endian>(p, r);
5002 write_insn<big_endian>(p, blr);
5003 return p + 4;
5004 }
5005
5006 template<bool big_endian>
5007 static unsigned char*
5008 restgpr1(unsigned char* p, int r)
5009 {
5010 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5011 write_insn<big_endian>(p, insn);
5012 return p + 4;
5013 }
5014
5015 template<bool big_endian>
5016 static unsigned char*
5017 restgpr1_tail(unsigned char* p, int r)
5018 {
5019 p = restgpr1<big_endian>(p, r);
5020 write_insn<big_endian>(p, blr);
5021 return p + 4;
5022 }
5023
5024 template<bool big_endian>
5025 static unsigned char*
5026 savefpr(unsigned char* p, int r)
5027 {
5028 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5029 write_insn<big_endian>(p, insn);
5030 return p + 4;
5031 }
5032
5033 template<bool big_endian>
5034 static unsigned char*
5035 savefpr0_tail(unsigned char* p, int r)
5036 {
5037 p = savefpr<big_endian>(p, r);
5038 write_insn<big_endian>(p, std_0_1 + 16);
5039 p = p + 4;
5040 write_insn<big_endian>(p, blr);
5041 return p + 4;
5042 }
5043
5044 template<bool big_endian>
5045 static unsigned char*
5046 restfpr(unsigned char* p, int r)
5047 {
5048 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5049 write_insn<big_endian>(p, insn);
5050 return p + 4;
5051 }
5052
5053 template<bool big_endian>
5054 static unsigned char*
5055 restfpr0_tail(unsigned char* p, int r)
5056 {
5057 write_insn<big_endian>(p, ld_0_1 + 16);
5058 p = p + 4;
5059 p = restfpr<big_endian>(p, r);
5060 write_insn<big_endian>(p, mtlr_0);
5061 p = p + 4;
5062 if (r == 29)
5063 {
5064 p = restfpr<big_endian>(p, 30);
5065 p = restfpr<big_endian>(p, 31);
5066 }
5067 write_insn<big_endian>(p, blr);
5068 return p + 4;
5069 }
5070
5071 template<bool big_endian>
5072 static unsigned char*
5073 savefpr1_tail(unsigned char* p, int r)
5074 {
5075 p = savefpr<big_endian>(p, r);
5076 write_insn<big_endian>(p, blr);
5077 return p + 4;
5078 }
5079
5080 template<bool big_endian>
5081 static unsigned char*
5082 restfpr1_tail(unsigned char* p, int r)
5083 {
5084 p = restfpr<big_endian>(p, r);
5085 write_insn<big_endian>(p, blr);
5086 return p + 4;
5087 }
5088
5089 template<bool big_endian>
5090 static unsigned char*
5091 savevr(unsigned char* p, int r)
5092 {
5093 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5094 write_insn<big_endian>(p, insn);
5095 p = p + 4;
5096 insn = stvx_0_12_0 + (r << 21);
5097 write_insn<big_endian>(p, insn);
5098 return p + 4;
5099 }
5100
5101 template<bool big_endian>
5102 static unsigned char*
5103 savevr_tail(unsigned char* p, int r)
5104 {
5105 p = savevr<big_endian>(p, r);
5106 write_insn<big_endian>(p, blr);
5107 return p + 4;
5108 }
5109
5110 template<bool big_endian>
5111 static unsigned char*
5112 restvr(unsigned char* p, int r)
5113 {
5114 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5115 write_insn<big_endian>(p, insn);
5116 p = p + 4;
5117 insn = lvx_0_12_0 + (r << 21);
5118 write_insn<big_endian>(p, insn);
5119 return p + 4;
5120 }
5121
5122 template<bool big_endian>
5123 static unsigned char*
5124 restvr_tail(unsigned char* p, int r)
5125 {
5126 p = restvr<big_endian>(p, r);
5127 write_insn<big_endian>(p, blr);
5128 return p + 4;
5129 }
5130
5131
5132 template<int size, bool big_endian>
5133 Output_data_save_res<size, big_endian>::Output_data_save_res(
5134 Symbol_table* symtab)
5135 : Output_section_data_build(4),
5136 contents_(NULL)
5137 {
5138 this->savres_define(symtab,
5139 "_savegpr0_", 14, 31,
5140 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5141 this->savres_define(symtab,
5142 "_restgpr0_", 14, 29,
5143 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5144 this->savres_define(symtab,
5145 "_restgpr0_", 30, 31,
5146 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5147 this->savres_define(symtab,
5148 "_savegpr1_", 14, 31,
5149 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5150 this->savres_define(symtab,
5151 "_restgpr1_", 14, 31,
5152 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5153 this->savres_define(symtab,
5154 "_savefpr_", 14, 31,
5155 savefpr<big_endian>, savefpr0_tail<big_endian>);
5156 this->savres_define(symtab,
5157 "_restfpr_", 14, 29,
5158 restfpr<big_endian>, restfpr0_tail<big_endian>);
5159 this->savres_define(symtab,
5160 "_restfpr_", 30, 31,
5161 restfpr<big_endian>, restfpr0_tail<big_endian>);
5162 this->savres_define(symtab,
5163 "._savef", 14, 31,
5164 savefpr<big_endian>, savefpr1_tail<big_endian>);
5165 this->savres_define(symtab,
5166 "._restf", 14, 31,
5167 restfpr<big_endian>, restfpr1_tail<big_endian>);
5168 this->savres_define(symtab,
5169 "_savevr_", 20, 31,
5170 savevr<big_endian>, savevr_tail<big_endian>);
5171 this->savres_define(symtab,
5172 "_restvr_", 20, 31,
5173 restvr<big_endian>, restvr_tail<big_endian>);
5174 }
5175
5176 template<int size, bool big_endian>
5177 void
5178 Output_data_save_res<size, big_endian>::savres_define(
5179 Symbol_table* symtab,
5180 const char *name,
5181 unsigned int lo, unsigned int hi,
5182 unsigned char* write_ent(unsigned char*, int),
5183 unsigned char* write_tail(unsigned char*, int))
5184 {
5185 size_t len = strlen(name);
5186 bool writing = false;
5187 char sym[16];
5188
5189 memcpy(sym, name, len);
5190 sym[len + 2] = 0;
5191
5192 for (unsigned int i = lo; i <= hi; i++)
5193 {
5194 sym[len + 0] = i / 10 + '0';
5195 sym[len + 1] = i % 10 + '0';
5196 Symbol* gsym = symtab->lookup(sym);
5197 bool refd = gsym != NULL && gsym->is_undefined();
5198 writing = writing || refd;
5199 if (writing)
5200 {
5201 if (this->contents_ == NULL)
5202 this->contents_ = new unsigned char[this->savres_max];
5203
5204 section_size_type value = this->current_data_size();
5205 unsigned char* p = this->contents_ + value;
5206 if (i != hi)
5207 p = write_ent(p, i);
5208 else
5209 p = write_tail(p, i);
5210 section_size_type cur_size = p - this->contents_;
5211 this->set_current_data_size(cur_size);
5212 if (refd)
5213 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5214 this, value, cur_size - value,
5215 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5216 elfcpp::STV_HIDDEN, 0, false, false);
5217 }
5218 }
5219 }
5220
5221 // Write out save/restore.
5222
5223 template<int size, bool big_endian>
5224 void
5225 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5226 {
5227 const section_size_type off = this->offset();
5228 const section_size_type oview_size =
5229 convert_to_section_size_type(this->data_size());
5230 unsigned char* const oview = of->get_output_view(off, oview_size);
5231 memcpy(oview, this->contents_, oview_size);
5232 of->write_output_view(off, oview_size, oview);
5233 }
5234
5235
5236 // Create the glink section.
5237
5238 template<int size, bool big_endian>
5239 void
5240 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5241 {
5242 if (this->glink_ == NULL)
5243 {
5244 this->glink_ = new Output_data_glink<size, big_endian>(this);
5245 this->glink_->add_eh_frame(layout);
5246 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5247 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5248 this->glink_, ORDER_TEXT, false);
5249 }
5250 }
5251
5252 // Create a PLT entry for a global symbol.
5253
5254 template<int size, bool big_endian>
5255 void
5256 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5257 Layout* layout,
5258 Symbol* gsym)
5259 {
5260 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5261 && gsym->can_use_relative_reloc(false))
5262 {
5263 if (this->iplt_ == NULL)
5264 this->make_iplt_section(symtab, layout);
5265 this->iplt_->add_ifunc_entry(gsym);
5266 }
5267 else
5268 {
5269 if (this->plt_ == NULL)
5270 this->make_plt_section(symtab, layout);
5271 this->plt_->add_entry(gsym);
5272 }
5273 }
5274
5275 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5276
5277 template<int size, bool big_endian>
5278 void
5279 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5280 Symbol_table* symtab,
5281 Layout* layout,
5282 Sized_relobj_file<size, big_endian>* relobj,
5283 unsigned int r_sym)
5284 {
5285 if (this->iplt_ == NULL)
5286 this->make_iplt_section(symtab, layout);
5287 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5288 }
5289
5290 // Return the number of entries in the PLT.
5291
5292 template<int size, bool big_endian>
5293 unsigned int
5294 Target_powerpc<size, big_endian>::plt_entry_count() const
5295 {
5296 if (this->plt_ == NULL)
5297 return 0;
5298 return this->plt_->entry_count();
5299 }
5300
5301 // Create a GOT entry for local dynamic __tls_get_addr calls.
5302
5303 template<int size, bool big_endian>
5304 unsigned int
5305 Target_powerpc<size, big_endian>::tlsld_got_offset(
5306 Symbol_table* symtab,
5307 Layout* layout,
5308 Sized_relobj_file<size, big_endian>* object)
5309 {
5310 if (this->tlsld_got_offset_ == -1U)
5311 {
5312 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5313 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5314 Output_data_got_powerpc<size, big_endian>* got
5315 = this->got_section(symtab, layout);
5316 unsigned int got_offset = got->add_constant_pair(0, 0);
5317 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5318 got_offset, 0);
5319 this->tlsld_got_offset_ = got_offset;
5320 }
5321 return this->tlsld_got_offset_;
5322 }
5323
5324 // Get the Reference_flags for a particular relocation.
5325
5326 template<int size, bool big_endian>
5327 int
5328 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5329 unsigned int r_type,
5330 const Target_powerpc* target)
5331 {
5332 int ref = 0;
5333
5334 switch (r_type)
5335 {
5336 case elfcpp::R_POWERPC_NONE:
5337 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5338 case elfcpp::R_POWERPC_GNU_VTENTRY:
5339 case elfcpp::R_PPC64_TOC:
5340 // No symbol reference.
5341 break;
5342
5343 case elfcpp::R_PPC64_ADDR64:
5344 case elfcpp::R_PPC64_UADDR64:
5345 case elfcpp::R_POWERPC_ADDR32:
5346 case elfcpp::R_POWERPC_UADDR32:
5347 case elfcpp::R_POWERPC_ADDR16:
5348 case elfcpp::R_POWERPC_UADDR16:
5349 case elfcpp::R_POWERPC_ADDR16_LO:
5350 case elfcpp::R_POWERPC_ADDR16_HI:
5351 case elfcpp::R_POWERPC_ADDR16_HA:
5352 ref = Symbol::ABSOLUTE_REF;
5353 break;
5354
5355 case elfcpp::R_POWERPC_ADDR24:
5356 case elfcpp::R_POWERPC_ADDR14:
5357 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5358 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5359 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5360 break;
5361
5362 case elfcpp::R_PPC64_REL64:
5363 case elfcpp::R_POWERPC_REL32:
5364 case elfcpp::R_PPC_LOCAL24PC:
5365 case elfcpp::R_POWERPC_REL16:
5366 case elfcpp::R_POWERPC_REL16_LO:
5367 case elfcpp::R_POWERPC_REL16_HI:
5368 case elfcpp::R_POWERPC_REL16_HA:
5369 ref = Symbol::RELATIVE_REF;
5370 break;
5371
5372 case elfcpp::R_POWERPC_REL24:
5373 case elfcpp::R_PPC_PLTREL24:
5374 case elfcpp::R_POWERPC_REL14:
5375 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5376 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5377 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5378 break;
5379
5380 case elfcpp::R_POWERPC_GOT16:
5381 case elfcpp::R_POWERPC_GOT16_LO:
5382 case elfcpp::R_POWERPC_GOT16_HI:
5383 case elfcpp::R_POWERPC_GOT16_HA:
5384 case elfcpp::R_PPC64_GOT16_DS:
5385 case elfcpp::R_PPC64_GOT16_LO_DS:
5386 case elfcpp::R_PPC64_TOC16:
5387 case elfcpp::R_PPC64_TOC16_LO:
5388 case elfcpp::R_PPC64_TOC16_HI:
5389 case elfcpp::R_PPC64_TOC16_HA:
5390 case elfcpp::R_PPC64_TOC16_DS:
5391 case elfcpp::R_PPC64_TOC16_LO_DS:
5392 ref = Symbol::RELATIVE_REF;
5393 break;
5394
5395 case elfcpp::R_POWERPC_GOT_TPREL16:
5396 case elfcpp::R_POWERPC_TLS:
5397 ref = Symbol::TLS_REF;
5398 break;
5399
5400 case elfcpp::R_POWERPC_COPY:
5401 case elfcpp::R_POWERPC_GLOB_DAT:
5402 case elfcpp::R_POWERPC_JMP_SLOT:
5403 case elfcpp::R_POWERPC_RELATIVE:
5404 case elfcpp::R_POWERPC_DTPMOD:
5405 default:
5406 // Not expected. We will give an error later.
5407 break;
5408 }
5409
5410 if (size == 64 && target->abiversion() < 2)
5411 ref |= Symbol::FUNC_DESC_ABI;
5412 return ref;
5413 }
5414
5415 // Report an unsupported relocation against a local symbol.
5416
5417 template<int size, bool big_endian>
5418 void
5419 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5420 Sized_relobj_file<size, big_endian>* object,
5421 unsigned int r_type)
5422 {
5423 gold_error(_("%s: unsupported reloc %u against local symbol"),
5424 object->name().c_str(), r_type);
5425 }
5426
5427 // We are about to emit a dynamic relocation of type R_TYPE. If the
5428 // dynamic linker does not support it, issue an error.
5429
5430 template<int size, bool big_endian>
5431 void
5432 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5433 unsigned int r_type)
5434 {
5435 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5436
5437 // These are the relocation types supported by glibc for both 32-bit
5438 // and 64-bit powerpc.
5439 switch (r_type)
5440 {
5441 case elfcpp::R_POWERPC_NONE:
5442 case elfcpp::R_POWERPC_RELATIVE:
5443 case elfcpp::R_POWERPC_GLOB_DAT:
5444 case elfcpp::R_POWERPC_DTPMOD:
5445 case elfcpp::R_POWERPC_DTPREL:
5446 case elfcpp::R_POWERPC_TPREL:
5447 case elfcpp::R_POWERPC_JMP_SLOT:
5448 case elfcpp::R_POWERPC_COPY:
5449 case elfcpp::R_POWERPC_IRELATIVE:
5450 case elfcpp::R_POWERPC_ADDR32:
5451 case elfcpp::R_POWERPC_UADDR32:
5452 case elfcpp::R_POWERPC_ADDR24:
5453 case elfcpp::R_POWERPC_ADDR16:
5454 case elfcpp::R_POWERPC_UADDR16:
5455 case elfcpp::R_POWERPC_ADDR16_LO:
5456 case elfcpp::R_POWERPC_ADDR16_HI:
5457 case elfcpp::R_POWERPC_ADDR16_HA:
5458 case elfcpp::R_POWERPC_ADDR14:
5459 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5460 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5461 case elfcpp::R_POWERPC_REL32:
5462 case elfcpp::R_POWERPC_REL24:
5463 case elfcpp::R_POWERPC_TPREL16:
5464 case elfcpp::R_POWERPC_TPREL16_LO:
5465 case elfcpp::R_POWERPC_TPREL16_HI:
5466 case elfcpp::R_POWERPC_TPREL16_HA:
5467 return;
5468
5469 default:
5470 break;
5471 }
5472
5473 if (size == 64)
5474 {
5475 switch (r_type)
5476 {
5477 // These are the relocation types supported only on 64-bit.
5478 case elfcpp::R_PPC64_ADDR64:
5479 case elfcpp::R_PPC64_UADDR64:
5480 case elfcpp::R_PPC64_JMP_IREL:
5481 case elfcpp::R_PPC64_ADDR16_DS:
5482 case elfcpp::R_PPC64_ADDR16_LO_DS:
5483 case elfcpp::R_PPC64_ADDR16_HIGH:
5484 case elfcpp::R_PPC64_ADDR16_HIGHA:
5485 case elfcpp::R_PPC64_ADDR16_HIGHER:
5486 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5487 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5488 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5489 case elfcpp::R_PPC64_REL64:
5490 case elfcpp::R_POWERPC_ADDR30:
5491 case elfcpp::R_PPC64_TPREL16_DS:
5492 case elfcpp::R_PPC64_TPREL16_LO_DS:
5493 case elfcpp::R_PPC64_TPREL16_HIGH:
5494 case elfcpp::R_PPC64_TPREL16_HIGHA:
5495 case elfcpp::R_PPC64_TPREL16_HIGHER:
5496 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5497 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5498 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5499 return;
5500
5501 default:
5502 break;
5503 }
5504 }
5505 else
5506 {
5507 switch (r_type)
5508 {
5509 // These are the relocation types supported only on 32-bit.
5510 // ??? glibc ld.so doesn't need to support these.
5511 case elfcpp::R_POWERPC_DTPREL16:
5512 case elfcpp::R_POWERPC_DTPREL16_LO:
5513 case elfcpp::R_POWERPC_DTPREL16_HI:
5514 case elfcpp::R_POWERPC_DTPREL16_HA:
5515 return;
5516
5517 default:
5518 break;
5519 }
5520 }
5521
5522 // This prevents us from issuing more than one error per reloc
5523 // section. But we can still wind up issuing more than one
5524 // error per object file.
5525 if (this->issued_non_pic_error_)
5526 return;
5527 gold_assert(parameters->options().output_is_position_independent());
5528 object->error(_("requires unsupported dynamic reloc; "
5529 "recompile with -fPIC"));
5530 this->issued_non_pic_error_ = true;
5531 return;
5532 }
5533
5534 // Return whether we need to make a PLT entry for a relocation of the
5535 // given type against a STT_GNU_IFUNC symbol.
5536
5537 template<int size, bool big_endian>
5538 bool
5539 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5540 Target_powerpc<size, big_endian>* target,
5541 Sized_relobj_file<size, big_endian>* object,
5542 unsigned int r_type,
5543 bool report_err)
5544 {
5545 // In non-pic code any reference will resolve to the plt call stub
5546 // for the ifunc symbol.
5547 if ((size == 32 || target->abiversion() >= 2)
5548 && !parameters->options().output_is_position_independent())
5549 return true;
5550
5551 switch (r_type)
5552 {
5553 // Word size refs from data sections are OK, but don't need a PLT entry.
5554 case elfcpp::R_POWERPC_ADDR32:
5555 case elfcpp::R_POWERPC_UADDR32:
5556 if (size == 32)
5557 return false;
5558 break;
5559
5560 case elfcpp::R_PPC64_ADDR64:
5561 case elfcpp::R_PPC64_UADDR64:
5562 if (size == 64)
5563 return false;
5564 break;
5565
5566 // GOT refs are good, but also don't need a PLT entry.
5567 case elfcpp::R_POWERPC_GOT16:
5568 case elfcpp::R_POWERPC_GOT16_LO:
5569 case elfcpp::R_POWERPC_GOT16_HI:
5570 case elfcpp::R_POWERPC_GOT16_HA:
5571 case elfcpp::R_PPC64_GOT16_DS:
5572 case elfcpp::R_PPC64_GOT16_LO_DS:
5573 return false;
5574
5575 // Function calls are good, and these do need a PLT entry.
5576 case elfcpp::R_POWERPC_ADDR24:
5577 case elfcpp::R_POWERPC_ADDR14:
5578 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5579 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5580 case elfcpp::R_POWERPC_REL24:
5581 case elfcpp::R_PPC_PLTREL24:
5582 case elfcpp::R_POWERPC_REL14:
5583 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5584 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5585 return true;
5586
5587 default:
5588 break;
5589 }
5590
5591 // Anything else is a problem.
5592 // If we are building a static executable, the libc startup function
5593 // responsible for applying indirect function relocations is going
5594 // to complain about the reloc type.
5595 // If we are building a dynamic executable, we will have a text
5596 // relocation. The dynamic loader will set the text segment
5597 // writable and non-executable to apply text relocations. So we'll
5598 // segfault when trying to run the indirection function to resolve
5599 // the reloc.
5600 if (report_err)
5601 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5602 object->name().c_str(), r_type);
5603 return false;
5604 }
5605
5606 // Scan a relocation for a local symbol.
5607
5608 template<int size, bool big_endian>
5609 inline void
5610 Target_powerpc<size, big_endian>::Scan::local(
5611 Symbol_table* symtab,
5612 Layout* layout,
5613 Target_powerpc<size, big_endian>* target,
5614 Sized_relobj_file<size, big_endian>* object,
5615 unsigned int data_shndx,
5616 Output_section* output_section,
5617 const elfcpp::Rela<size, big_endian>& reloc,
5618 unsigned int r_type,
5619 const elfcpp::Sym<size, big_endian>& lsym,
5620 bool is_discarded)
5621 {
5622 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5623
5624 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5625 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5626 {
5627 this->expect_tls_get_addr_call();
5628 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5629 if (tls_type != tls::TLSOPT_NONE)
5630 this->skip_next_tls_get_addr_call();
5631 }
5632 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5633 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5634 {
5635 this->expect_tls_get_addr_call();
5636 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5637 if (tls_type != tls::TLSOPT_NONE)
5638 this->skip_next_tls_get_addr_call();
5639 }
5640
5641 Powerpc_relobj<size, big_endian>* ppc_object
5642 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5643
5644 if (is_discarded)
5645 {
5646 if (size == 64
5647 && data_shndx == ppc_object->opd_shndx()
5648 && r_type == elfcpp::R_PPC64_ADDR64)
5649 ppc_object->set_opd_discard(reloc.get_r_offset());
5650 return;
5651 }
5652
5653 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5654 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5655 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5656 {
5657 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5658 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5659 r_type, r_sym, reloc.get_r_addend());
5660 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5661 }
5662
5663 switch (r_type)
5664 {
5665 case elfcpp::R_POWERPC_NONE:
5666 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5667 case elfcpp::R_POWERPC_GNU_VTENTRY:
5668 case elfcpp::R_PPC64_TOCSAVE:
5669 case elfcpp::R_POWERPC_TLS:
5670 case elfcpp::R_PPC64_ENTRY:
5671 break;
5672
5673 case elfcpp::R_PPC64_TOC:
5674 {
5675 Output_data_got_powerpc<size, big_endian>* got
5676 = target->got_section(symtab, layout);
5677 if (parameters->options().output_is_position_independent())
5678 {
5679 Address off = reloc.get_r_offset();
5680 if (size == 64
5681 && target->abiversion() < 2
5682 && data_shndx == ppc_object->opd_shndx()
5683 && ppc_object->get_opd_discard(off - 8))
5684 break;
5685
5686 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5687 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5688 rela_dyn->add_output_section_relative(got->output_section(),
5689 elfcpp::R_POWERPC_RELATIVE,
5690 output_section,
5691 object, data_shndx, off,
5692 symobj->toc_base_offset());
5693 }
5694 }
5695 break;
5696
5697 case elfcpp::R_PPC64_ADDR64:
5698 case elfcpp::R_PPC64_UADDR64:
5699 case elfcpp::R_POWERPC_ADDR32:
5700 case elfcpp::R_POWERPC_UADDR32:
5701 case elfcpp::R_POWERPC_ADDR24:
5702 case elfcpp::R_POWERPC_ADDR16:
5703 case elfcpp::R_POWERPC_ADDR16_LO:
5704 case elfcpp::R_POWERPC_ADDR16_HI:
5705 case elfcpp::R_POWERPC_ADDR16_HA:
5706 case elfcpp::R_POWERPC_UADDR16:
5707 case elfcpp::R_PPC64_ADDR16_HIGH:
5708 case elfcpp::R_PPC64_ADDR16_HIGHA:
5709 case elfcpp::R_PPC64_ADDR16_HIGHER:
5710 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5711 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5712 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5713 case elfcpp::R_PPC64_ADDR16_DS:
5714 case elfcpp::R_PPC64_ADDR16_LO_DS:
5715 case elfcpp::R_POWERPC_ADDR14:
5716 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5717 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5718 // If building a shared library (or a position-independent
5719 // executable), we need to create a dynamic relocation for
5720 // this location.
5721 if (parameters->options().output_is_position_independent()
5722 || (size == 64 && is_ifunc && target->abiversion() < 2))
5723 {
5724 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5725 is_ifunc);
5726 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5727 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5728 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5729 {
5730 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5731 : elfcpp::R_POWERPC_RELATIVE);
5732 rela_dyn->add_local_relative(object, r_sym, dynrel,
5733 output_section, data_shndx,
5734 reloc.get_r_offset(),
5735 reloc.get_r_addend(), false);
5736 }
5737 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5738 {
5739 check_non_pic(object, r_type);
5740 rela_dyn->add_local(object, r_sym, r_type, output_section,
5741 data_shndx, reloc.get_r_offset(),
5742 reloc.get_r_addend());
5743 }
5744 else
5745 {
5746 gold_assert(lsym.get_st_value() == 0);
5747 unsigned int shndx = lsym.get_st_shndx();
5748 bool is_ordinary;
5749 shndx = object->adjust_sym_shndx(r_sym, shndx,
5750 &is_ordinary);
5751 if (!is_ordinary)
5752 object->error(_("section symbol %u has bad shndx %u"),
5753 r_sym, shndx);
5754 else
5755 rela_dyn->add_local_section(object, shndx, r_type,
5756 output_section, data_shndx,
5757 reloc.get_r_offset());
5758 }
5759 }
5760 break;
5761
5762 case elfcpp::R_POWERPC_REL24:
5763 case elfcpp::R_PPC_PLTREL24:
5764 case elfcpp::R_PPC_LOCAL24PC:
5765 case elfcpp::R_POWERPC_REL14:
5766 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5767 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5768 if (!is_ifunc)
5769 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5770 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5771 reloc.get_r_addend());
5772 break;
5773
5774 case elfcpp::R_PPC64_REL64:
5775 case elfcpp::R_POWERPC_REL32:
5776 case elfcpp::R_POWERPC_REL16:
5777 case elfcpp::R_POWERPC_REL16_LO:
5778 case elfcpp::R_POWERPC_REL16_HI:
5779 case elfcpp::R_POWERPC_REL16_HA:
5780 case elfcpp::R_POWERPC_REL16DX_HA:
5781 case elfcpp::R_POWERPC_SECTOFF:
5782 case elfcpp::R_POWERPC_SECTOFF_LO:
5783 case elfcpp::R_POWERPC_SECTOFF_HI:
5784 case elfcpp::R_POWERPC_SECTOFF_HA:
5785 case elfcpp::R_PPC64_SECTOFF_DS:
5786 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5787 case elfcpp::R_POWERPC_TPREL16:
5788 case elfcpp::R_POWERPC_TPREL16_LO:
5789 case elfcpp::R_POWERPC_TPREL16_HI:
5790 case elfcpp::R_POWERPC_TPREL16_HA:
5791 case elfcpp::R_PPC64_TPREL16_DS:
5792 case elfcpp::R_PPC64_TPREL16_LO_DS:
5793 case elfcpp::R_PPC64_TPREL16_HIGH:
5794 case elfcpp::R_PPC64_TPREL16_HIGHA:
5795 case elfcpp::R_PPC64_TPREL16_HIGHER:
5796 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5797 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5798 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5799 case elfcpp::R_POWERPC_DTPREL16:
5800 case elfcpp::R_POWERPC_DTPREL16_LO:
5801 case elfcpp::R_POWERPC_DTPREL16_HI:
5802 case elfcpp::R_POWERPC_DTPREL16_HA:
5803 case elfcpp::R_PPC64_DTPREL16_DS:
5804 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5805 case elfcpp::R_PPC64_DTPREL16_HIGH:
5806 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5807 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5808 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5809 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5810 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5811 case elfcpp::R_PPC64_TLSGD:
5812 case elfcpp::R_PPC64_TLSLD:
5813 case elfcpp::R_PPC64_ADDR64_LOCAL:
5814 break;
5815
5816 case elfcpp::R_POWERPC_GOT16:
5817 case elfcpp::R_POWERPC_GOT16_LO:
5818 case elfcpp::R_POWERPC_GOT16_HI:
5819 case elfcpp::R_POWERPC_GOT16_HA:
5820 case elfcpp::R_PPC64_GOT16_DS:
5821 case elfcpp::R_PPC64_GOT16_LO_DS:
5822 {
5823 // The symbol requires a GOT entry.
5824 Output_data_got_powerpc<size, big_endian>* got
5825 = target->got_section(symtab, layout);
5826 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5827
5828 if (!parameters->options().output_is_position_independent())
5829 {
5830 if (is_ifunc
5831 && (size == 32 || target->abiversion() >= 2))
5832 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5833 else
5834 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5835 }
5836 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5837 {
5838 // If we are generating a shared object or a pie, this
5839 // symbol's GOT entry will be set by a dynamic relocation.
5840 unsigned int off;
5841 off = got->add_constant(0);
5842 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5843
5844 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5845 is_ifunc);
5846 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5847 : elfcpp::R_POWERPC_RELATIVE);
5848 rela_dyn->add_local_relative(object, r_sym, dynrel,
5849 got, off, 0, false);
5850 }
5851 }
5852 break;
5853
5854 case elfcpp::R_PPC64_TOC16:
5855 case elfcpp::R_PPC64_TOC16_LO:
5856 case elfcpp::R_PPC64_TOC16_HI:
5857 case elfcpp::R_PPC64_TOC16_HA:
5858 case elfcpp::R_PPC64_TOC16_DS:
5859 case elfcpp::R_PPC64_TOC16_LO_DS:
5860 // We need a GOT section.
5861 target->got_section(symtab, layout);
5862 break;
5863
5864 case elfcpp::R_POWERPC_GOT_TLSGD16:
5865 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5866 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5867 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5868 {
5869 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5870 if (tls_type == tls::TLSOPT_NONE)
5871 {
5872 Output_data_got_powerpc<size, big_endian>* got
5873 = target->got_section(symtab, layout);
5874 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5875 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5876 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5877 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5878 }
5879 else if (tls_type == tls::TLSOPT_TO_LE)
5880 {
5881 // no GOT relocs needed for Local Exec.
5882 }
5883 else
5884 gold_unreachable();
5885 }
5886 break;
5887
5888 case elfcpp::R_POWERPC_GOT_TLSLD16:
5889 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5890 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5891 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5892 {
5893 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5894 if (tls_type == tls::TLSOPT_NONE)
5895 target->tlsld_got_offset(symtab, layout, object);
5896 else if (tls_type == tls::TLSOPT_TO_LE)
5897 {
5898 // no GOT relocs needed for Local Exec.
5899 if (parameters->options().emit_relocs())
5900 {
5901 Output_section* os = layout->tls_segment()->first_section();
5902 gold_assert(os != NULL);
5903 os->set_needs_symtab_index();
5904 }
5905 }
5906 else
5907 gold_unreachable();
5908 }
5909 break;
5910
5911 case elfcpp::R_POWERPC_GOT_DTPREL16:
5912 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5913 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5914 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5915 {
5916 Output_data_got_powerpc<size, big_endian>* got
5917 = target->got_section(symtab, layout);
5918 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5919 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5920 }
5921 break;
5922
5923 case elfcpp::R_POWERPC_GOT_TPREL16:
5924 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5925 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5926 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5927 {
5928 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5929 if (tls_type == tls::TLSOPT_NONE)
5930 {
5931 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5932 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5933 {
5934 Output_data_got_powerpc<size, big_endian>* got
5935 = target->got_section(symtab, layout);
5936 unsigned int off = got->add_constant(0);
5937 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5938
5939 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5940 rela_dyn->add_symbolless_local_addend(object, r_sym,
5941 elfcpp::R_POWERPC_TPREL,
5942 got, off, 0);
5943 }
5944 }
5945 else if (tls_type == tls::TLSOPT_TO_LE)
5946 {
5947 // no GOT relocs needed for Local Exec.
5948 }
5949 else
5950 gold_unreachable();
5951 }
5952 break;
5953
5954 default:
5955 unsupported_reloc_local(object, r_type);
5956 break;
5957 }
5958
5959 switch (r_type)
5960 {
5961 case elfcpp::R_POWERPC_GOT_TLSLD16:
5962 case elfcpp::R_POWERPC_GOT_TLSGD16:
5963 case elfcpp::R_POWERPC_GOT_TPREL16:
5964 case elfcpp::R_POWERPC_GOT_DTPREL16:
5965 case elfcpp::R_POWERPC_GOT16:
5966 case elfcpp::R_PPC64_GOT16_DS:
5967 case elfcpp::R_PPC64_TOC16:
5968 case elfcpp::R_PPC64_TOC16_DS:
5969 ppc_object->set_has_small_toc_reloc();
5970 default:
5971 break;
5972 }
5973 }
5974
5975 // Report an unsupported relocation against a global symbol.
5976
5977 template<int size, bool big_endian>
5978 void
5979 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5980 Sized_relobj_file<size, big_endian>* object,
5981 unsigned int r_type,
5982 Symbol* gsym)
5983 {
5984 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5985 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5986 }
5987
5988 // Scan a relocation for a global symbol.
5989
5990 template<int size, bool big_endian>
5991 inline void
5992 Target_powerpc<size, big_endian>::Scan::global(
5993 Symbol_table* symtab,
5994 Layout* layout,
5995 Target_powerpc<size, big_endian>* target,
5996 Sized_relobj_file<size, big_endian>* object,
5997 unsigned int data_shndx,
5998 Output_section* output_section,
5999 const elfcpp::Rela<size, big_endian>& reloc,
6000 unsigned int r_type,
6001 Symbol* gsym)
6002 {
6003 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6004 return;
6005
6006 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6007 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6008 {
6009 this->expect_tls_get_addr_call();
6010 const bool final = gsym->final_value_is_known();
6011 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6012 if (tls_type != tls::TLSOPT_NONE)
6013 this->skip_next_tls_get_addr_call();
6014 }
6015 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6016 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6017 {
6018 this->expect_tls_get_addr_call();
6019 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6020 if (tls_type != tls::TLSOPT_NONE)
6021 this->skip_next_tls_get_addr_call();
6022 }
6023
6024 Powerpc_relobj<size, big_endian>* ppc_object
6025 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6026
6027 // A STT_GNU_IFUNC symbol may require a PLT entry.
6028 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6029 bool pushed_ifunc = false;
6030 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6031 {
6032 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6033 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6034 reloc.get_r_addend());
6035 target->make_plt_entry(symtab, layout, gsym);
6036 pushed_ifunc = true;
6037 }
6038
6039 switch (r_type)
6040 {
6041 case elfcpp::R_POWERPC_NONE:
6042 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6043 case elfcpp::R_POWERPC_GNU_VTENTRY:
6044 case elfcpp::R_PPC_LOCAL24PC:
6045 case elfcpp::R_POWERPC_TLS:
6046 case elfcpp::R_PPC64_ENTRY:
6047 break;
6048
6049 case elfcpp::R_PPC64_TOC:
6050 {
6051 Output_data_got_powerpc<size, big_endian>* got
6052 = target->got_section(symtab, layout);
6053 if (parameters->options().output_is_position_independent())
6054 {
6055 Address off = reloc.get_r_offset();
6056 if (size == 64
6057 && data_shndx == ppc_object->opd_shndx()
6058 && ppc_object->get_opd_discard(off - 8))
6059 break;
6060
6061 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6062 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6063 if (data_shndx != ppc_object->opd_shndx())
6064 symobj = static_cast
6065 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6066 rela_dyn->add_output_section_relative(got->output_section(),
6067 elfcpp::R_POWERPC_RELATIVE,
6068 output_section,
6069 object, data_shndx, off,
6070 symobj->toc_base_offset());
6071 }
6072 }
6073 break;
6074
6075 case elfcpp::R_PPC64_ADDR64:
6076 if (size == 64
6077 && target->abiversion() < 2
6078 && data_shndx == ppc_object->opd_shndx()
6079 && (gsym->is_defined_in_discarded_section()
6080 || gsym->object() != object))
6081 {
6082 ppc_object->set_opd_discard(reloc.get_r_offset());
6083 break;
6084 }
6085 // Fall thru
6086 case elfcpp::R_PPC64_UADDR64:
6087 case elfcpp::R_POWERPC_ADDR32:
6088 case elfcpp::R_POWERPC_UADDR32:
6089 case elfcpp::R_POWERPC_ADDR24:
6090 case elfcpp::R_POWERPC_ADDR16:
6091 case elfcpp::R_POWERPC_ADDR16_LO:
6092 case elfcpp::R_POWERPC_ADDR16_HI:
6093 case elfcpp::R_POWERPC_ADDR16_HA:
6094 case elfcpp::R_POWERPC_UADDR16:
6095 case elfcpp::R_PPC64_ADDR16_HIGH:
6096 case elfcpp::R_PPC64_ADDR16_HIGHA:
6097 case elfcpp::R_PPC64_ADDR16_HIGHER:
6098 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6099 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6100 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6101 case elfcpp::R_PPC64_ADDR16_DS:
6102 case elfcpp::R_PPC64_ADDR16_LO_DS:
6103 case elfcpp::R_POWERPC_ADDR14:
6104 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6105 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6106 {
6107 // Make a PLT entry if necessary.
6108 if (gsym->needs_plt_entry())
6109 {
6110 // Since this is not a PC-relative relocation, we may be
6111 // taking the address of a function. In that case we need to
6112 // set the entry in the dynamic symbol table to the address of
6113 // the PLT call stub.
6114 bool need_ifunc_plt = false;
6115 if ((size == 32 || target->abiversion() >= 2)
6116 && gsym->is_from_dynobj()
6117 && !parameters->options().output_is_position_independent())
6118 {
6119 gsym->set_needs_dynsym_value();
6120 need_ifunc_plt = true;
6121 }
6122 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6123 {
6124 target->push_branch(ppc_object, data_shndx,
6125 reloc.get_r_offset(), r_type,
6126 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6127 reloc.get_r_addend());
6128 target->make_plt_entry(symtab, layout, gsym);
6129 }
6130 }
6131 // Make a dynamic relocation if necessary.
6132 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6133 || (size == 64 && is_ifunc && target->abiversion() < 2))
6134 {
6135 if (!parameters->options().output_is_position_independent()
6136 && gsym->may_need_copy_reloc())
6137 {
6138 target->copy_reloc(symtab, layout, object,
6139 data_shndx, output_section, gsym, reloc);
6140 }
6141 else if ((((size == 32
6142 && r_type == elfcpp::R_POWERPC_ADDR32)
6143 || (size == 64
6144 && r_type == elfcpp::R_PPC64_ADDR64
6145 && target->abiversion() >= 2))
6146 && gsym->can_use_relative_reloc(false)
6147 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6148 && parameters->options().shared()))
6149 || (size == 64
6150 && r_type == elfcpp::R_PPC64_ADDR64
6151 && target->abiversion() < 2
6152 && (gsym->can_use_relative_reloc(false)
6153 || data_shndx == ppc_object->opd_shndx())))
6154 {
6155 Reloc_section* rela_dyn
6156 = target->rela_dyn_section(symtab, layout, is_ifunc);
6157 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6158 : elfcpp::R_POWERPC_RELATIVE);
6159 rela_dyn->add_symbolless_global_addend(
6160 gsym, dynrel, output_section, object, data_shndx,
6161 reloc.get_r_offset(), reloc.get_r_addend());
6162 }
6163 else
6164 {
6165 Reloc_section* rela_dyn
6166 = target->rela_dyn_section(symtab, layout, is_ifunc);
6167 check_non_pic(object, r_type);
6168 rela_dyn->add_global(gsym, r_type, output_section,
6169 object, data_shndx,
6170 reloc.get_r_offset(),
6171 reloc.get_r_addend());
6172 }
6173 }
6174 }
6175 break;
6176
6177 case elfcpp::R_PPC_PLTREL24:
6178 case elfcpp::R_POWERPC_REL24:
6179 if (!is_ifunc)
6180 {
6181 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6182 r_type,
6183 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6184 reloc.get_r_addend());
6185 if (gsym->needs_plt_entry()
6186 || (!gsym->final_value_is_known()
6187 && (gsym->is_undefined()
6188 || gsym->is_from_dynobj()
6189 || gsym->is_preemptible())))
6190 target->make_plt_entry(symtab, layout, gsym);
6191 }
6192 // Fall thru
6193
6194 case elfcpp::R_PPC64_REL64:
6195 case elfcpp::R_POWERPC_REL32:
6196 // Make a dynamic relocation if necessary.
6197 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6198 {
6199 if (!parameters->options().output_is_position_independent()
6200 && gsym->may_need_copy_reloc())
6201 {
6202 target->copy_reloc(symtab, layout, object,
6203 data_shndx, output_section, gsym,
6204 reloc);
6205 }
6206 else
6207 {
6208 Reloc_section* rela_dyn
6209 = target->rela_dyn_section(symtab, layout, is_ifunc);
6210 check_non_pic(object, r_type);
6211 rela_dyn->add_global(gsym, r_type, output_section, object,
6212 data_shndx, reloc.get_r_offset(),
6213 reloc.get_r_addend());
6214 }
6215 }
6216 break;
6217
6218 case elfcpp::R_POWERPC_REL14:
6219 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6220 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6221 if (!is_ifunc)
6222 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6223 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6224 reloc.get_r_addend());
6225 break;
6226
6227 case elfcpp::R_POWERPC_REL16:
6228 case elfcpp::R_POWERPC_REL16_LO:
6229 case elfcpp::R_POWERPC_REL16_HI:
6230 case elfcpp::R_POWERPC_REL16_HA:
6231 case elfcpp::R_POWERPC_REL16DX_HA:
6232 case elfcpp::R_POWERPC_SECTOFF:
6233 case elfcpp::R_POWERPC_SECTOFF_LO:
6234 case elfcpp::R_POWERPC_SECTOFF_HI:
6235 case elfcpp::R_POWERPC_SECTOFF_HA:
6236 case elfcpp::R_PPC64_SECTOFF_DS:
6237 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6238 case elfcpp::R_POWERPC_TPREL16:
6239 case elfcpp::R_POWERPC_TPREL16_LO:
6240 case elfcpp::R_POWERPC_TPREL16_HI:
6241 case elfcpp::R_POWERPC_TPREL16_HA:
6242 case elfcpp::R_PPC64_TPREL16_DS:
6243 case elfcpp::R_PPC64_TPREL16_LO_DS:
6244 case elfcpp::R_PPC64_TPREL16_HIGH:
6245 case elfcpp::R_PPC64_TPREL16_HIGHA:
6246 case elfcpp::R_PPC64_TPREL16_HIGHER:
6247 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6248 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6249 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6250 case elfcpp::R_POWERPC_DTPREL16:
6251 case elfcpp::R_POWERPC_DTPREL16_LO:
6252 case elfcpp::R_POWERPC_DTPREL16_HI:
6253 case elfcpp::R_POWERPC_DTPREL16_HA:
6254 case elfcpp::R_PPC64_DTPREL16_DS:
6255 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6256 case elfcpp::R_PPC64_DTPREL16_HIGH:
6257 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6258 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6259 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6260 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6261 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6262 case elfcpp::R_PPC64_TLSGD:
6263 case elfcpp::R_PPC64_TLSLD:
6264 case elfcpp::R_PPC64_ADDR64_LOCAL:
6265 break;
6266
6267 case elfcpp::R_POWERPC_GOT16:
6268 case elfcpp::R_POWERPC_GOT16_LO:
6269 case elfcpp::R_POWERPC_GOT16_HI:
6270 case elfcpp::R_POWERPC_GOT16_HA:
6271 case elfcpp::R_PPC64_GOT16_DS:
6272 case elfcpp::R_PPC64_GOT16_LO_DS:
6273 {
6274 // The symbol requires a GOT entry.
6275 Output_data_got_powerpc<size, big_endian>* got;
6276
6277 got = target->got_section(symtab, layout);
6278 if (gsym->final_value_is_known())
6279 {
6280 if (is_ifunc
6281 && (size == 32 || target->abiversion() >= 2))
6282 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6283 else
6284 got->add_global(gsym, GOT_TYPE_STANDARD);
6285 }
6286 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6287 {
6288 // If we are generating a shared object or a pie, this
6289 // symbol's GOT entry will be set by a dynamic relocation.
6290 unsigned int off = got->add_constant(0);
6291 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6292
6293 Reloc_section* rela_dyn
6294 = target->rela_dyn_section(symtab, layout, is_ifunc);
6295
6296 if (gsym->can_use_relative_reloc(false)
6297 && !((size == 32
6298 || target->abiversion() >= 2)
6299 && gsym->visibility() == elfcpp::STV_PROTECTED
6300 && parameters->options().shared()))
6301 {
6302 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6303 : elfcpp::R_POWERPC_RELATIVE);
6304 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6305 }
6306 else
6307 {
6308 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6309 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6310 }
6311 }
6312 }
6313 break;
6314
6315 case elfcpp::R_PPC64_TOC16:
6316 case elfcpp::R_PPC64_TOC16_LO:
6317 case elfcpp::R_PPC64_TOC16_HI:
6318 case elfcpp::R_PPC64_TOC16_HA:
6319 case elfcpp::R_PPC64_TOC16_DS:
6320 case elfcpp::R_PPC64_TOC16_LO_DS:
6321 // We need a GOT section.
6322 target->got_section(symtab, layout);
6323 break;
6324
6325 case elfcpp::R_POWERPC_GOT_TLSGD16:
6326 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6327 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6328 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6329 {
6330 const bool final = gsym->final_value_is_known();
6331 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6332 if (tls_type == tls::TLSOPT_NONE)
6333 {
6334 Output_data_got_powerpc<size, big_endian>* got
6335 = target->got_section(symtab, layout);
6336 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6337 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6338 elfcpp::R_POWERPC_DTPMOD,
6339 elfcpp::R_POWERPC_DTPREL);
6340 }
6341 else if (tls_type == tls::TLSOPT_TO_IE)
6342 {
6343 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6344 {
6345 Output_data_got_powerpc<size, big_endian>* got
6346 = target->got_section(symtab, layout);
6347 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6348 if (gsym->is_undefined()
6349 || gsym->is_from_dynobj())
6350 {
6351 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6352 elfcpp::R_POWERPC_TPREL);
6353 }
6354 else
6355 {
6356 unsigned int off = got->add_constant(0);
6357 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6358 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6359 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6360 got, off, 0);
6361 }
6362 }
6363 }
6364 else if (tls_type == tls::TLSOPT_TO_LE)
6365 {
6366 // no GOT relocs needed for Local Exec.
6367 }
6368 else
6369 gold_unreachable();
6370 }
6371 break;
6372
6373 case elfcpp::R_POWERPC_GOT_TLSLD16:
6374 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6375 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6376 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6377 {
6378 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6379 if (tls_type == tls::TLSOPT_NONE)
6380 target->tlsld_got_offset(symtab, layout, object);
6381 else if (tls_type == tls::TLSOPT_TO_LE)
6382 {
6383 // no GOT relocs needed for Local Exec.
6384 if (parameters->options().emit_relocs())
6385 {
6386 Output_section* os = layout->tls_segment()->first_section();
6387 gold_assert(os != NULL);
6388 os->set_needs_symtab_index();
6389 }
6390 }
6391 else
6392 gold_unreachable();
6393 }
6394 break;
6395
6396 case elfcpp::R_POWERPC_GOT_DTPREL16:
6397 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6398 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6399 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6400 {
6401 Output_data_got_powerpc<size, big_endian>* got
6402 = target->got_section(symtab, layout);
6403 if (!gsym->final_value_is_known()
6404 && (gsym->is_from_dynobj()
6405 || gsym->is_undefined()
6406 || gsym->is_preemptible()))
6407 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6408 target->rela_dyn_section(layout),
6409 elfcpp::R_POWERPC_DTPREL);
6410 else
6411 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6412 }
6413 break;
6414
6415 case elfcpp::R_POWERPC_GOT_TPREL16:
6416 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6417 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6418 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6419 {
6420 const bool final = gsym->final_value_is_known();
6421 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6422 if (tls_type == tls::TLSOPT_NONE)
6423 {
6424 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6425 {
6426 Output_data_got_powerpc<size, big_endian>* got
6427 = target->got_section(symtab, layout);
6428 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6429 if (gsym->is_undefined()
6430 || gsym->is_from_dynobj())
6431 {
6432 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6433 elfcpp::R_POWERPC_TPREL);
6434 }
6435 else
6436 {
6437 unsigned int off = got->add_constant(0);
6438 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6439 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6440 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6441 got, off, 0);
6442 }
6443 }
6444 }
6445 else if (tls_type == tls::TLSOPT_TO_LE)
6446 {
6447 // no GOT relocs needed for Local Exec.
6448 }
6449 else
6450 gold_unreachable();
6451 }
6452 break;
6453
6454 default:
6455 unsupported_reloc_global(object, r_type, gsym);
6456 break;
6457 }
6458
6459 switch (r_type)
6460 {
6461 case elfcpp::R_POWERPC_GOT_TLSLD16:
6462 case elfcpp::R_POWERPC_GOT_TLSGD16:
6463 case elfcpp::R_POWERPC_GOT_TPREL16:
6464 case elfcpp::R_POWERPC_GOT_DTPREL16:
6465 case elfcpp::R_POWERPC_GOT16:
6466 case elfcpp::R_PPC64_GOT16_DS:
6467 case elfcpp::R_PPC64_TOC16:
6468 case elfcpp::R_PPC64_TOC16_DS:
6469 ppc_object->set_has_small_toc_reloc();
6470 default:
6471 break;
6472 }
6473 }
6474
6475 // Process relocations for gc.
6476
6477 template<int size, bool big_endian>
6478 void
6479 Target_powerpc<size, big_endian>::gc_process_relocs(
6480 Symbol_table* symtab,
6481 Layout* layout,
6482 Sized_relobj_file<size, big_endian>* object,
6483 unsigned int data_shndx,
6484 unsigned int,
6485 const unsigned char* prelocs,
6486 size_t reloc_count,
6487 Output_section* output_section,
6488 bool needs_special_offset_handling,
6489 size_t local_symbol_count,
6490 const unsigned char* plocal_symbols)
6491 {
6492 typedef Target_powerpc<size, big_endian> Powerpc;
6493 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6494 Classify_reloc;
6495
6496 Powerpc_relobj<size, big_endian>* ppc_object
6497 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6498 if (size == 64)
6499 ppc_object->set_opd_valid();
6500 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6501 {
6502 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6503 for (p = ppc_object->access_from_map()->begin();
6504 p != ppc_object->access_from_map()->end();
6505 ++p)
6506 {
6507 Address dst_off = p->first;
6508 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6509 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6510 for (s = p->second.begin(); s != p->second.end(); ++s)
6511 {
6512 Relobj* src_obj = s->first;
6513 unsigned int src_indx = s->second;
6514 symtab->gc()->add_reference(src_obj, src_indx,
6515 ppc_object, dst_indx);
6516 }
6517 p->second.clear();
6518 }
6519 ppc_object->access_from_map()->clear();
6520 ppc_object->process_gc_mark(symtab);
6521 // Don't look at .opd relocs as .opd will reference everything.
6522 return;
6523 }
6524
6525 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6526 symtab,
6527 layout,
6528 this,
6529 object,
6530 data_shndx,
6531 prelocs,
6532 reloc_count,
6533 output_section,
6534 needs_special_offset_handling,
6535 local_symbol_count,
6536 plocal_symbols);
6537 }
6538
6539 // Handle target specific gc actions when adding a gc reference from
6540 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6541 // and DST_OFF. For powerpc64, this adds a referenc to the code
6542 // section of a function descriptor.
6543
6544 template<int size, bool big_endian>
6545 void
6546 Target_powerpc<size, big_endian>::do_gc_add_reference(
6547 Symbol_table* symtab,
6548 Relobj* src_obj,
6549 unsigned int src_shndx,
6550 Relobj* dst_obj,
6551 unsigned int dst_shndx,
6552 Address dst_off) const
6553 {
6554 if (size != 64 || dst_obj->is_dynamic())
6555 return;
6556
6557 Powerpc_relobj<size, big_endian>* ppc_object
6558 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6559 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6560 {
6561 if (ppc_object->opd_valid())
6562 {
6563 dst_shndx = ppc_object->get_opd_ent(dst_off);
6564 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6565 }
6566 else
6567 {
6568 // If we haven't run scan_opd_relocs, we must delay
6569 // processing this function descriptor reference.
6570 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6571 }
6572 }
6573 }
6574
6575 // Add any special sections for this symbol to the gc work list.
6576 // For powerpc64, this adds the code section of a function
6577 // descriptor.
6578
6579 template<int size, bool big_endian>
6580 void
6581 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6582 Symbol_table* symtab,
6583 Symbol* sym) const
6584 {
6585 if (size == 64)
6586 {
6587 Powerpc_relobj<size, big_endian>* ppc_object
6588 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6589 bool is_ordinary;
6590 unsigned int shndx = sym->shndx(&is_ordinary);
6591 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6592 {
6593 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6594 Address dst_off = gsym->value();
6595 if (ppc_object->opd_valid())
6596 {
6597 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6598 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6599 dst_indx));
6600 }
6601 else
6602 ppc_object->add_gc_mark(dst_off);
6603 }
6604 }
6605 }
6606
6607 // For a symbol location in .opd, set LOC to the location of the
6608 // function entry.
6609
6610 template<int size, bool big_endian>
6611 void
6612 Target_powerpc<size, big_endian>::do_function_location(
6613 Symbol_location* loc) const
6614 {
6615 if (size == 64 && loc->shndx != 0)
6616 {
6617 if (loc->object->is_dynamic())
6618 {
6619 Powerpc_dynobj<size, big_endian>* ppc_object
6620 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6621 if (loc->shndx == ppc_object->opd_shndx())
6622 {
6623 Address dest_off;
6624 Address off = loc->offset - ppc_object->opd_address();
6625 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6626 loc->offset = dest_off;
6627 }
6628 }
6629 else
6630 {
6631 const Powerpc_relobj<size, big_endian>* ppc_object
6632 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6633 if (loc->shndx == ppc_object->opd_shndx())
6634 {
6635 Address dest_off;
6636 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6637 loc->offset = dest_off;
6638 }
6639 }
6640 }
6641 }
6642
6643 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6644 // compiled with -fsplit-stack. The function calls non-split-stack
6645 // code. Change the function to ensure it has enough stack space to
6646 // call some random function.
6647
6648 template<int size, bool big_endian>
6649 void
6650 Target_powerpc<size, big_endian>::do_calls_non_split(
6651 Relobj* object,
6652 unsigned int shndx,
6653 section_offset_type fnoffset,
6654 section_size_type fnsize,
6655 const unsigned char* prelocs,
6656 size_t reloc_count,
6657 unsigned char* view,
6658 section_size_type view_size,
6659 std::string* from,
6660 std::string* to) const
6661 {
6662 // 32-bit not supported.
6663 if (size == 32)
6664 {
6665 // warn
6666 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6667 prelocs, reloc_count, view, view_size,
6668 from, to);
6669 return;
6670 }
6671
6672 // The function always starts with
6673 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6674 // addis %r12,%r1,-allocate@ha
6675 // addi %r12,%r12,-allocate@l
6676 // cmpld %r12,%r0
6677 // but note that the addis or addi may be replaced with a nop
6678
6679 unsigned char *entry = view + fnoffset;
6680 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6681
6682 if ((insn & 0xffff0000) == addis_2_12)
6683 {
6684 /* Skip ELFv2 global entry code. */
6685 entry += 8;
6686 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6687 }
6688
6689 unsigned char *pinsn = entry;
6690 bool ok = false;
6691 const uint32_t ld_private_ss = 0xe80d8fc0;
6692 if (insn == ld_private_ss)
6693 {
6694 int32_t allocate = 0;
6695 while (1)
6696 {
6697 pinsn += 4;
6698 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6699 if ((insn & 0xffff0000) == addis_12_1)
6700 allocate += (insn & 0xffff) << 16;
6701 else if ((insn & 0xffff0000) == addi_12_1
6702 || (insn & 0xffff0000) == addi_12_12)
6703 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6704 else if (insn != nop)
6705 break;
6706 }
6707 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6708 {
6709 int extra = parameters->options().split_stack_adjust_size();
6710 allocate -= extra;
6711 if (allocate >= 0 || extra < 0)
6712 {
6713 object->error(_("split-stack stack size overflow at "
6714 "section %u offset %0zx"),
6715 shndx, static_cast<size_t>(fnoffset));
6716 return;
6717 }
6718 pinsn = entry + 4;
6719 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6720 if (insn != addis_12_1)
6721 {
6722 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6723 pinsn += 4;
6724 insn = addi_12_12 | (allocate & 0xffff);
6725 if (insn != addi_12_12)
6726 {
6727 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6728 pinsn += 4;
6729 }
6730 }
6731 else
6732 {
6733 insn = addi_12_1 | (allocate & 0xffff);
6734 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6735 pinsn += 4;
6736 }
6737 if (pinsn != entry + 12)
6738 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6739
6740 ok = true;
6741 }
6742 }
6743
6744 if (!ok)
6745 {
6746 if (!object->has_no_split_stack())
6747 object->error(_("failed to match split-stack sequence at "
6748 "section %u offset %0zx"),
6749 shndx, static_cast<size_t>(fnoffset));
6750 }
6751 }
6752
6753 // Scan relocations for a section.
6754
6755 template<int size, bool big_endian>
6756 void
6757 Target_powerpc<size, big_endian>::scan_relocs(
6758 Symbol_table* symtab,
6759 Layout* layout,
6760 Sized_relobj_file<size, big_endian>* object,
6761 unsigned int data_shndx,
6762 unsigned int sh_type,
6763 const unsigned char* prelocs,
6764 size_t reloc_count,
6765 Output_section* output_section,
6766 bool needs_special_offset_handling,
6767 size_t local_symbol_count,
6768 const unsigned char* plocal_symbols)
6769 {
6770 typedef Target_powerpc<size, big_endian> Powerpc;
6771 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6772 Classify_reloc;
6773
6774 if (sh_type == elfcpp::SHT_REL)
6775 {
6776 gold_error(_("%s: unsupported REL reloc section"),
6777 object->name().c_str());
6778 return;
6779 }
6780
6781 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6782 symtab,
6783 layout,
6784 this,
6785 object,
6786 data_shndx,
6787 prelocs,
6788 reloc_count,
6789 output_section,
6790 needs_special_offset_handling,
6791 local_symbol_count,
6792 plocal_symbols);
6793 }
6794
6795 // Functor class for processing the global symbol table.
6796 // Removes symbols defined on discarded opd entries.
6797
6798 template<bool big_endian>
6799 class Global_symbol_visitor_opd
6800 {
6801 public:
6802 Global_symbol_visitor_opd()
6803 { }
6804
6805 void
6806 operator()(Sized_symbol<64>* sym)
6807 {
6808 if (sym->has_symtab_index()
6809 || sym->source() != Symbol::FROM_OBJECT
6810 || !sym->in_real_elf())
6811 return;
6812
6813 if (sym->object()->is_dynamic())
6814 return;
6815
6816 Powerpc_relobj<64, big_endian>* symobj
6817 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6818 if (symobj->opd_shndx() == 0)
6819 return;
6820
6821 bool is_ordinary;
6822 unsigned int shndx = sym->shndx(&is_ordinary);
6823 if (shndx == symobj->opd_shndx()
6824 && symobj->get_opd_discard(sym->value()))
6825 {
6826 sym->set_undefined();
6827 sym->set_visibility(elfcpp::STV_DEFAULT);
6828 sym->set_is_defined_in_discarded_section();
6829 sym->set_symtab_index(-1U);
6830 }
6831 }
6832 };
6833
6834 template<int size, bool big_endian>
6835 void
6836 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6837 Layout* layout,
6838 Symbol_table* symtab)
6839 {
6840 if (size == 64)
6841 {
6842 Output_data_save_res<size, big_endian>* savres
6843 = new Output_data_save_res<size, big_endian>(symtab);
6844 this->savres_section_ = savres;
6845 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6846 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6847 savres, ORDER_TEXT, false);
6848 }
6849 }
6850
6851 // Sort linker created .got section first (for the header), then input
6852 // sections belonging to files using small model code.
6853
6854 template<bool big_endian>
6855 class Sort_toc_sections
6856 {
6857 public:
6858 bool
6859 operator()(const Output_section::Input_section& is1,
6860 const Output_section::Input_section& is2) const
6861 {
6862 if (!is1.is_input_section() && is2.is_input_section())
6863 return true;
6864 bool small1
6865 = (is1.is_input_section()
6866 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6867 ->has_small_toc_reloc()));
6868 bool small2
6869 = (is2.is_input_section()
6870 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6871 ->has_small_toc_reloc()));
6872 return small1 && !small2;
6873 }
6874 };
6875
6876 // Finalize the sections.
6877
6878 template<int size, bool big_endian>
6879 void
6880 Target_powerpc<size, big_endian>::do_finalize_sections(
6881 Layout* layout,
6882 const Input_objects*,
6883 Symbol_table* symtab)
6884 {
6885 if (parameters->doing_static_link())
6886 {
6887 // At least some versions of glibc elf-init.o have a strong
6888 // reference to __rela_iplt marker syms. A weak ref would be
6889 // better..
6890 if (this->iplt_ != NULL)
6891 {
6892 Reloc_section* rel = this->iplt_->rel_plt();
6893 symtab->define_in_output_data("__rela_iplt_start", NULL,
6894 Symbol_table::PREDEFINED, rel, 0, 0,
6895 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6896 elfcpp::STV_HIDDEN, 0, false, true);
6897 symtab->define_in_output_data("__rela_iplt_end", NULL,
6898 Symbol_table::PREDEFINED, rel, 0, 0,
6899 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6900 elfcpp::STV_HIDDEN, 0, true, true);
6901 }
6902 else
6903 {
6904 symtab->define_as_constant("__rela_iplt_start", NULL,
6905 Symbol_table::PREDEFINED, 0, 0,
6906 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6907 elfcpp::STV_HIDDEN, 0, true, false);
6908 symtab->define_as_constant("__rela_iplt_end", NULL,
6909 Symbol_table::PREDEFINED, 0, 0,
6910 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6911 elfcpp::STV_HIDDEN, 0, true, false);
6912 }
6913 }
6914
6915 if (size == 64)
6916 {
6917 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6918 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6919
6920 if (!parameters->options().relocatable())
6921 {
6922 this->define_save_restore_funcs(layout, symtab);
6923
6924 // Annoyingly, we need to make these sections now whether or
6925 // not we need them. If we delay until do_relax then we
6926 // need to mess with the relaxation machinery checkpointing.
6927 this->got_section(symtab, layout);
6928 this->make_brlt_section(layout);
6929
6930 if (parameters->options().toc_sort())
6931 {
6932 Output_section* os = this->got_->output_section();
6933 if (os != NULL && os->input_sections().size() > 1)
6934 std::stable_sort(os->input_sections().begin(),
6935 os->input_sections().end(),
6936 Sort_toc_sections<big_endian>());
6937 }
6938 }
6939 }
6940
6941 // Fill in some more dynamic tags.
6942 Output_data_dynamic* odyn = layout->dynamic_data();
6943 if (odyn != NULL)
6944 {
6945 const Reloc_section* rel_plt = (this->plt_ == NULL
6946 ? NULL
6947 : this->plt_->rel_plt());
6948 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6949 this->rela_dyn_, true, size == 32);
6950
6951 if (size == 32)
6952 {
6953 if (this->got_ != NULL)
6954 {
6955 this->got_->finalize_data_size();
6956 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6957 this->got_, this->got_->g_o_t());
6958 }
6959 }
6960 else
6961 {
6962 if (this->glink_ != NULL)
6963 {
6964 this->glink_->finalize_data_size();
6965 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6966 this->glink_,
6967 (this->glink_->pltresolve_size
6968 - 32));
6969 }
6970 }
6971 }
6972
6973 // Emit any relocs we saved in an attempt to avoid generating COPY
6974 // relocs.
6975 if (this->copy_relocs_.any_saved_relocs())
6976 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6977 }
6978
6979 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6980 // reloc.
6981
6982 static bool
6983 ok_lo_toc_insn(uint32_t insn)
6984 {
6985 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6986 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6987 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6988 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6989 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6990 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6991 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6992 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6993 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6994 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6995 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6996 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6997 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6998 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6999 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7000 && (insn & 3) != 1)
7001 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7002 && ((insn & 3) == 0 || (insn & 3) == 3))
7003 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7004 }
7005
7006 // Return the value to use for a branch relocation.
7007
7008 template<int size, bool big_endian>
7009 bool
7010 Target_powerpc<size, big_endian>::symval_for_branch(
7011 const Symbol_table* symtab,
7012 const Sized_symbol<size>* gsym,
7013 Powerpc_relobj<size, big_endian>* object,
7014 Address *value,
7015 unsigned int *dest_shndx)
7016 {
7017 if (size == 32 || this->abiversion() >= 2)
7018 gold_unreachable();
7019 *dest_shndx = 0;
7020
7021 // If the symbol is defined in an opd section, ie. is a function
7022 // descriptor, use the function descriptor code entry address
7023 Powerpc_relobj<size, big_endian>* symobj = object;
7024 if (gsym != NULL
7025 && gsym->source() != Symbol::FROM_OBJECT)
7026 return true;
7027 if (gsym != NULL)
7028 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7029 unsigned int shndx = symobj->opd_shndx();
7030 if (shndx == 0)
7031 return true;
7032 Address opd_addr = symobj->get_output_section_offset(shndx);
7033 if (opd_addr == invalid_address)
7034 return true;
7035 opd_addr += symobj->output_section_address(shndx);
7036 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7037 {
7038 Address sec_off;
7039 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7040 if (symtab->is_section_folded(symobj, *dest_shndx))
7041 {
7042 Section_id folded
7043 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7044 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7045 *dest_shndx = folded.second;
7046 }
7047 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7048 if (sec_addr == invalid_address)
7049 return false;
7050
7051 sec_addr += symobj->output_section(*dest_shndx)->address();
7052 *value = sec_addr + sec_off;
7053 }
7054 return true;
7055 }
7056
7057 // Perform a relocation.
7058
7059 template<int size, bool big_endian>
7060 inline bool
7061 Target_powerpc<size, big_endian>::Relocate::relocate(
7062 const Relocate_info<size, big_endian>* relinfo,
7063 unsigned int,
7064 Target_powerpc* target,
7065 Output_section* os,
7066 size_t relnum,
7067 const unsigned char* preloc,
7068 const Sized_symbol<size>* gsym,
7069 const Symbol_value<size>* psymval,
7070 unsigned char* view,
7071 Address address,
7072 section_size_type view_size)
7073 {
7074 if (view == NULL)
7075 return true;
7076
7077 const elfcpp::Rela<size, big_endian> rela(preloc);
7078 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7079 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7080 {
7081 case Track_tls::NOT_EXPECTED:
7082 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7083 _("__tls_get_addr call lacks marker reloc"));
7084 break;
7085 case Track_tls::EXPECTED:
7086 // We have already complained.
7087 break;
7088 case Track_tls::SKIP:
7089 return true;
7090 case Track_tls::NORMAL:
7091 break;
7092 }
7093
7094 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7095 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7096 typedef typename Reloc_types<elfcpp::SHT_RELA,
7097 size, big_endian>::Reloc Reltype;
7098 // Offset from start of insn to d-field reloc.
7099 const int d_offset = big_endian ? 2 : 0;
7100
7101 Powerpc_relobj<size, big_endian>* const object
7102 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7103 Address value = 0;
7104 bool has_stub_value = false;
7105 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7106 if ((gsym != NULL
7107 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7108 : object->local_has_plt_offset(r_sym))
7109 && (!psymval->is_ifunc_symbol()
7110 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7111 {
7112 if (size == 64
7113 && gsym != NULL
7114 && target->abiversion() >= 2
7115 && !parameters->options().output_is_position_independent()
7116 && !is_branch_reloc(r_type))
7117 {
7118 Address off = target->glink_section()->find_global_entry(gsym);
7119 if (off != invalid_address)
7120 {
7121 value = target->glink_section()->global_entry_address() + off;
7122 has_stub_value = true;
7123 }
7124 }
7125 else
7126 {
7127 Stub_table<size, big_endian>* stub_table
7128 = object->stub_table(relinfo->data_shndx);
7129 if (stub_table == NULL)
7130 {
7131 // This is a ref from a data section to an ifunc symbol.
7132 if (target->stub_tables().size() != 0)
7133 stub_table = target->stub_tables()[0];
7134 }
7135 if (stub_table != NULL)
7136 {
7137 Address off;
7138 if (gsym != NULL)
7139 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7140 rela.get_r_addend());
7141 else
7142 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7143 rela.get_r_addend());
7144 if (off != invalid_address)
7145 {
7146 value = stub_table->stub_address() + off;
7147 has_stub_value = true;
7148 }
7149 }
7150 }
7151 // We don't care too much about bogus debug references to
7152 // non-local functions, but otherwise there had better be a plt
7153 // call stub or global entry stub as appropriate.
7154 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7155 }
7156
7157 if (r_type == elfcpp::R_POWERPC_GOT16
7158 || r_type == elfcpp::R_POWERPC_GOT16_LO
7159 || r_type == elfcpp::R_POWERPC_GOT16_HI
7160 || r_type == elfcpp::R_POWERPC_GOT16_HA
7161 || r_type == elfcpp::R_PPC64_GOT16_DS
7162 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7163 {
7164 if (gsym != NULL)
7165 {
7166 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7167 value = gsym->got_offset(GOT_TYPE_STANDARD);
7168 }
7169 else
7170 {
7171 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7172 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7173 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7174 }
7175 value -= target->got_section()->got_base_offset(object);
7176 }
7177 else if (r_type == elfcpp::R_PPC64_TOC)
7178 {
7179 value = (target->got_section()->output_section()->address()
7180 + object->toc_base_offset());
7181 }
7182 else if (gsym != NULL
7183 && (r_type == elfcpp::R_POWERPC_REL24
7184 || r_type == elfcpp::R_PPC_PLTREL24)
7185 && has_stub_value)
7186 {
7187 if (size == 64)
7188 {
7189 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7190 Valtype* wv = reinterpret_cast<Valtype*>(view);
7191 bool can_plt_call = false;
7192 if (rela.get_r_offset() + 8 <= view_size)
7193 {
7194 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7195 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7196 if ((insn & 1) != 0
7197 && (insn2 == nop
7198 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7199 {
7200 elfcpp::Swap<32, big_endian>::
7201 writeval(wv + 1, ld_2_1 + target->stk_toc());
7202 can_plt_call = true;
7203 }
7204 }
7205 if (!can_plt_call)
7206 {
7207 // If we don't have a branch and link followed by a nop,
7208 // we can't go via the plt because there is no place to
7209 // put a toc restoring instruction.
7210 // Unless we know we won't be returning.
7211 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7212 can_plt_call = true;
7213 }
7214 if (!can_plt_call)
7215 {
7216 // g++ as of 20130507 emits self-calls without a
7217 // following nop. This is arguably wrong since we have
7218 // conflicting information. On the one hand a global
7219 // symbol and on the other a local call sequence, but
7220 // don't error for this special case.
7221 // It isn't possible to cheaply verify we have exactly
7222 // such a call. Allow all calls to the same section.
7223 bool ok = false;
7224 Address code = value;
7225 if (gsym->source() == Symbol::FROM_OBJECT
7226 && gsym->object() == object)
7227 {
7228 unsigned int dest_shndx = 0;
7229 if (target->abiversion() < 2)
7230 {
7231 Address addend = rela.get_r_addend();
7232 code = psymval->value(object, addend);
7233 target->symval_for_branch(relinfo->symtab, gsym, object,
7234 &code, &dest_shndx);
7235 }
7236 bool is_ordinary;
7237 if (dest_shndx == 0)
7238 dest_shndx = gsym->shndx(&is_ordinary);
7239 ok = dest_shndx == relinfo->data_shndx;
7240 }
7241 if (!ok)
7242 {
7243 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7244 _("call lacks nop, can't restore toc; "
7245 "recompile with -fPIC"));
7246 value = code;
7247 }
7248 }
7249 }
7250 }
7251 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7252 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7253 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7254 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7255 {
7256 // First instruction of a global dynamic sequence, arg setup insn.
7257 const bool final = gsym == NULL || gsym->final_value_is_known();
7258 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7259 enum Got_type got_type = GOT_TYPE_STANDARD;
7260 if (tls_type == tls::TLSOPT_NONE)
7261 got_type = GOT_TYPE_TLSGD;
7262 else if (tls_type == tls::TLSOPT_TO_IE)
7263 got_type = GOT_TYPE_TPREL;
7264 if (got_type != GOT_TYPE_STANDARD)
7265 {
7266 if (gsym != NULL)
7267 {
7268 gold_assert(gsym->has_got_offset(got_type));
7269 value = gsym->got_offset(got_type);
7270 }
7271 else
7272 {
7273 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7274 gold_assert(object->local_has_got_offset(r_sym, got_type));
7275 value = object->local_got_offset(r_sym, got_type);
7276 }
7277 value -= target->got_section()->got_base_offset(object);
7278 }
7279 if (tls_type == tls::TLSOPT_TO_IE)
7280 {
7281 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7282 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7283 {
7284 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7285 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7286 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7287 if (size == 32)
7288 insn |= 32 << 26; // lwz
7289 else
7290 insn |= 58 << 26; // ld
7291 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7292 }
7293 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7294 - elfcpp::R_POWERPC_GOT_TLSGD16);
7295 }
7296 else if (tls_type == tls::TLSOPT_TO_LE)
7297 {
7298 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7299 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7300 {
7301 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7302 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7303 insn &= (1 << 26) - (1 << 21); // extract rt
7304 if (size == 32)
7305 insn |= addis_0_2;
7306 else
7307 insn |= addis_0_13;
7308 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7309 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7310 value = psymval->value(object, rela.get_r_addend());
7311 }
7312 else
7313 {
7314 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7315 Insn insn = nop;
7316 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7317 r_type = elfcpp::R_POWERPC_NONE;
7318 }
7319 }
7320 }
7321 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7322 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7323 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7324 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7325 {
7326 // First instruction of a local dynamic sequence, arg setup insn.
7327 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7328 if (tls_type == tls::TLSOPT_NONE)
7329 {
7330 value = target->tlsld_got_offset();
7331 value -= target->got_section()->got_base_offset(object);
7332 }
7333 else
7334 {
7335 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7336 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7337 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7338 {
7339 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7340 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7341 insn &= (1 << 26) - (1 << 21); // extract rt
7342 if (size == 32)
7343 insn |= addis_0_2;
7344 else
7345 insn |= addis_0_13;
7346 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7347 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7348 value = dtp_offset;
7349 }
7350 else
7351 {
7352 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7353 Insn insn = nop;
7354 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7355 r_type = elfcpp::R_POWERPC_NONE;
7356 }
7357 }
7358 }
7359 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7360 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7361 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7362 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7363 {
7364 // Accesses relative to a local dynamic sequence address,
7365 // no optimisation here.
7366 if (gsym != NULL)
7367 {
7368 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7369 value = gsym->got_offset(GOT_TYPE_DTPREL);
7370 }
7371 else
7372 {
7373 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7374 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7375 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7376 }
7377 value -= target->got_section()->got_base_offset(object);
7378 }
7379 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7380 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7381 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7382 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7383 {
7384 // First instruction of initial exec sequence.
7385 const bool final = gsym == NULL || gsym->final_value_is_known();
7386 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7387 if (tls_type == tls::TLSOPT_NONE)
7388 {
7389 if (gsym != NULL)
7390 {
7391 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7392 value = gsym->got_offset(GOT_TYPE_TPREL);
7393 }
7394 else
7395 {
7396 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7397 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7398 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7399 }
7400 value -= target->got_section()->got_base_offset(object);
7401 }
7402 else
7403 {
7404 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7405 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7406 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7407 {
7408 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7409 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7410 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7411 if (size == 32)
7412 insn |= addis_0_2;
7413 else
7414 insn |= addis_0_13;
7415 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7416 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7417 value = psymval->value(object, rela.get_r_addend());
7418 }
7419 else
7420 {
7421 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7422 Insn insn = nop;
7423 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7424 r_type = elfcpp::R_POWERPC_NONE;
7425 }
7426 }
7427 }
7428 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7429 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7430 {
7431 // Second instruction of a global dynamic sequence,
7432 // the __tls_get_addr call
7433 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7434 const bool final = gsym == NULL || gsym->final_value_is_known();
7435 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7436 if (tls_type != tls::TLSOPT_NONE)
7437 {
7438 if (tls_type == tls::TLSOPT_TO_IE)
7439 {
7440 Insn* iview = reinterpret_cast<Insn*>(view);
7441 Insn insn = add_3_3_13;
7442 if (size == 32)
7443 insn = add_3_3_2;
7444 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7445 r_type = elfcpp::R_POWERPC_NONE;
7446 }
7447 else
7448 {
7449 Insn* iview = reinterpret_cast<Insn*>(view);
7450 Insn insn = addi_3_3;
7451 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7452 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7453 view += d_offset;
7454 value = psymval->value(object, rela.get_r_addend());
7455 }
7456 this->skip_next_tls_get_addr_call();
7457 }
7458 }
7459 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7460 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7461 {
7462 // Second instruction of a local dynamic sequence,
7463 // the __tls_get_addr call
7464 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7465 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7466 if (tls_type == tls::TLSOPT_TO_LE)
7467 {
7468 Insn* iview = reinterpret_cast<Insn*>(view);
7469 Insn insn = addi_3_3;
7470 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7471 this->skip_next_tls_get_addr_call();
7472 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7473 view += d_offset;
7474 value = dtp_offset;
7475 }
7476 }
7477 else if (r_type == elfcpp::R_POWERPC_TLS)
7478 {
7479 // Second instruction of an initial exec sequence
7480 const bool final = gsym == NULL || gsym->final_value_is_known();
7481 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7482 if (tls_type == tls::TLSOPT_TO_LE)
7483 {
7484 Insn* iview = reinterpret_cast<Insn*>(view);
7485 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7486 unsigned int reg = size == 32 ? 2 : 13;
7487 insn = at_tls_transform(insn, reg);
7488 gold_assert(insn != 0);
7489 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7490 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7491 view += d_offset;
7492 value = psymval->value(object, rela.get_r_addend());
7493 }
7494 }
7495 else if (!has_stub_value)
7496 {
7497 Address addend = 0;
7498 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7499 addend = rela.get_r_addend();
7500 value = psymval->value(object, addend);
7501 if (size == 64 && is_branch_reloc(r_type))
7502 {
7503 if (target->abiversion() >= 2)
7504 {
7505 if (gsym != NULL)
7506 value += object->ppc64_local_entry_offset(gsym);
7507 else
7508 value += object->ppc64_local_entry_offset(r_sym);
7509 }
7510 else
7511 {
7512 unsigned int dest_shndx;
7513 target->symval_for_branch(relinfo->symtab, gsym, object,
7514 &value, &dest_shndx);
7515 }
7516 }
7517 Address max_branch_offset = max_branch_delta(r_type);
7518 if (max_branch_offset != 0
7519 && value - address + max_branch_offset >= 2 * max_branch_offset)
7520 {
7521 Stub_table<size, big_endian>* stub_table
7522 = object->stub_table(relinfo->data_shndx);
7523 if (stub_table != NULL)
7524 {
7525 Address off = stub_table->find_long_branch_entry(object, value);
7526 if (off != invalid_address)
7527 {
7528 value = (stub_table->stub_address() + stub_table->plt_size()
7529 + off);
7530 has_stub_value = true;
7531 }
7532 }
7533 }
7534 }
7535
7536 switch (r_type)
7537 {
7538 case elfcpp::R_PPC64_REL64:
7539 case elfcpp::R_POWERPC_REL32:
7540 case elfcpp::R_POWERPC_REL24:
7541 case elfcpp::R_PPC_PLTREL24:
7542 case elfcpp::R_PPC_LOCAL24PC:
7543 case elfcpp::R_POWERPC_REL16:
7544 case elfcpp::R_POWERPC_REL16_LO:
7545 case elfcpp::R_POWERPC_REL16_HI:
7546 case elfcpp::R_POWERPC_REL16_HA:
7547 case elfcpp::R_POWERPC_REL16DX_HA:
7548 case elfcpp::R_POWERPC_REL14:
7549 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7550 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7551 value -= address;
7552 break;
7553
7554 case elfcpp::R_PPC64_TOC16:
7555 case elfcpp::R_PPC64_TOC16_LO:
7556 case elfcpp::R_PPC64_TOC16_HI:
7557 case elfcpp::R_PPC64_TOC16_HA:
7558 case elfcpp::R_PPC64_TOC16_DS:
7559 case elfcpp::R_PPC64_TOC16_LO_DS:
7560 // Subtract the TOC base address.
7561 value -= (target->got_section()->output_section()->address()
7562 + object->toc_base_offset());
7563 break;
7564
7565 case elfcpp::R_POWERPC_SECTOFF:
7566 case elfcpp::R_POWERPC_SECTOFF_LO:
7567 case elfcpp::R_POWERPC_SECTOFF_HI:
7568 case elfcpp::R_POWERPC_SECTOFF_HA:
7569 case elfcpp::R_PPC64_SECTOFF_DS:
7570 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7571 if (os != NULL)
7572 value -= os->address();
7573 break;
7574
7575 case elfcpp::R_PPC64_TPREL16_DS:
7576 case elfcpp::R_PPC64_TPREL16_LO_DS:
7577 case elfcpp::R_PPC64_TPREL16_HIGH:
7578 case elfcpp::R_PPC64_TPREL16_HIGHA:
7579 if (size != 64)
7580 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7581 break;
7582 case elfcpp::R_POWERPC_TPREL16:
7583 case elfcpp::R_POWERPC_TPREL16_LO:
7584 case elfcpp::R_POWERPC_TPREL16_HI:
7585 case elfcpp::R_POWERPC_TPREL16_HA:
7586 case elfcpp::R_POWERPC_TPREL:
7587 case elfcpp::R_PPC64_TPREL16_HIGHER:
7588 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7589 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7590 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7591 // tls symbol values are relative to tls_segment()->vaddr()
7592 value -= tp_offset;
7593 break;
7594
7595 case elfcpp::R_PPC64_DTPREL16_DS:
7596 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7597 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7598 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7599 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7600 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7601 if (size != 64)
7602 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7603 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7604 break;
7605 case elfcpp::R_POWERPC_DTPREL16:
7606 case elfcpp::R_POWERPC_DTPREL16_LO:
7607 case elfcpp::R_POWERPC_DTPREL16_HI:
7608 case elfcpp::R_POWERPC_DTPREL16_HA:
7609 case elfcpp::R_POWERPC_DTPREL:
7610 case elfcpp::R_PPC64_DTPREL16_HIGH:
7611 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7612 // tls symbol values are relative to tls_segment()->vaddr()
7613 value -= dtp_offset;
7614 break;
7615
7616 case elfcpp::R_PPC64_ADDR64_LOCAL:
7617 if (gsym != NULL)
7618 value += object->ppc64_local_entry_offset(gsym);
7619 else
7620 value += object->ppc64_local_entry_offset(r_sym);
7621 break;
7622
7623 default:
7624 break;
7625 }
7626
7627 Insn branch_bit = 0;
7628 switch (r_type)
7629 {
7630 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7631 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7632 branch_bit = 1 << 21;
7633 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7634 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7635 {
7636 Insn* iview = reinterpret_cast<Insn*>(view);
7637 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7638 insn &= ~(1 << 21);
7639 insn |= branch_bit;
7640 if (this->is_isa_v2)
7641 {
7642 // Set 'a' bit. This is 0b00010 in BO field for branch
7643 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7644 // for branch on CTR insns (BO == 1a00t or 1a01t).
7645 if ((insn & (0x14 << 21)) == (0x04 << 21))
7646 insn |= 0x02 << 21;
7647 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7648 insn |= 0x08 << 21;
7649 else
7650 break;
7651 }
7652 else
7653 {
7654 // Invert 'y' bit if not the default.
7655 if (static_cast<Signed_address>(value) < 0)
7656 insn ^= 1 << 21;
7657 }
7658 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7659 }
7660 break;
7661
7662 default:
7663 break;
7664 }
7665
7666 if (size == 64)
7667 {
7668 // Multi-instruction sequences that access the TOC can be
7669 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7670 // to nop; addi rb,r2,x;
7671 switch (r_type)
7672 {
7673 default:
7674 break;
7675
7676 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7677 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7678 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7679 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7680 case elfcpp::R_POWERPC_GOT16_HA:
7681 case elfcpp::R_PPC64_TOC16_HA:
7682 if (parameters->options().toc_optimize())
7683 {
7684 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7685 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7686 if ((insn & ((0x3f << 26) | 0x1f << 16))
7687 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7688 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7689 _("toc optimization is not supported "
7690 "for %#08x instruction"), insn);
7691 else if (value + 0x8000 < 0x10000)
7692 {
7693 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7694 return true;
7695 }
7696 }
7697 break;
7698
7699 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7700 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7701 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7702 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7703 case elfcpp::R_POWERPC_GOT16_LO:
7704 case elfcpp::R_PPC64_GOT16_LO_DS:
7705 case elfcpp::R_PPC64_TOC16_LO:
7706 case elfcpp::R_PPC64_TOC16_LO_DS:
7707 if (parameters->options().toc_optimize())
7708 {
7709 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7710 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7711 if (!ok_lo_toc_insn(insn))
7712 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7713 _("toc optimization is not supported "
7714 "for %#08x instruction"), insn);
7715 else if (value + 0x8000 < 0x10000)
7716 {
7717 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7718 {
7719 // Transform addic to addi when we change reg.
7720 insn &= ~((0x3f << 26) | (0x1f << 16));
7721 insn |= (14u << 26) | (2 << 16);
7722 }
7723 else
7724 {
7725 insn &= ~(0x1f << 16);
7726 insn |= 2 << 16;
7727 }
7728 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7729 }
7730 }
7731 break;
7732
7733 case elfcpp::R_PPC64_ENTRY:
7734 value = (target->got_section()->output_section()->address()
7735 + object->toc_base_offset());
7736 if (value + 0x80008000 <= 0xffffffff
7737 && !parameters->options().output_is_position_independent())
7738 {
7739 Insn* iview = reinterpret_cast<Insn*>(view);
7740 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7741 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7742
7743 if ((insn1 & ~0xfffc) == ld_2_12
7744 && insn2 == add_2_2_12)
7745 {
7746 insn1 = lis_2 + ha(value);
7747 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7748 insn2 = addi_2_2 + l(value);
7749 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7750 return true;
7751 }
7752 }
7753 else
7754 {
7755 value -= address;
7756 if (value + 0x80008000 <= 0xffffffff)
7757 {
7758 Insn* iview = reinterpret_cast<Insn*>(view);
7759 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7760 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7761
7762 if ((insn1 & ~0xfffc) == ld_2_12
7763 && insn2 == add_2_2_12)
7764 {
7765 insn1 = addis_2_12 + ha(value);
7766 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7767 insn2 = addi_2_2 + l(value);
7768 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7769 return true;
7770 }
7771 }
7772 }
7773 break;
7774
7775 case elfcpp::R_POWERPC_REL16_LO:
7776 // If we are generating a non-PIC executable, edit
7777 // 0: addis 2,12,.TOC.-0b@ha
7778 // addi 2,2,.TOC.-0b@l
7779 // used by ELFv2 global entry points to set up r2, to
7780 // lis 2,.TOC.@ha
7781 // addi 2,2,.TOC.@l
7782 // if .TOC. is in range. */
7783 if (value + address - 4 + 0x80008000 <= 0xffffffff
7784 && relnum != 0
7785 && preloc != NULL
7786 && target->abiversion() >= 2
7787 && !parameters->options().output_is_position_independent()
7788 && rela.get_r_addend() == d_offset + 4
7789 && gsym != NULL
7790 && strcmp(gsym->name(), ".TOC.") == 0)
7791 {
7792 const int reloc_size
7793 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7794 Reltype prev_rela(preloc - reloc_size);
7795 if ((prev_rela.get_r_info()
7796 == elfcpp::elf_r_info<size>(r_sym,
7797 elfcpp::R_POWERPC_REL16_HA))
7798 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7799 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7800 {
7801 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7802 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7803 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7804
7805 if ((insn1 & 0xffff0000) == addis_2_12
7806 && (insn2 & 0xffff0000) == addi_2_2)
7807 {
7808 insn1 = lis_2 + ha(value + address - 4);
7809 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7810 insn2 = addi_2_2 + l(value + address - 4);
7811 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7812 if (relinfo->rr)
7813 {
7814 relinfo->rr->set_strategy(relnum - 1,
7815 Relocatable_relocs::RELOC_SPECIAL);
7816 relinfo->rr->set_strategy(relnum,
7817 Relocatable_relocs::RELOC_SPECIAL);
7818 }
7819 return true;
7820 }
7821 }
7822 }
7823 break;
7824 }
7825 }
7826
7827 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7828 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7829 switch (r_type)
7830 {
7831 case elfcpp::R_POWERPC_ADDR32:
7832 case elfcpp::R_POWERPC_UADDR32:
7833 if (size == 64)
7834 overflow = Reloc::CHECK_BITFIELD;
7835 break;
7836
7837 case elfcpp::R_POWERPC_REL32:
7838 case elfcpp::R_POWERPC_REL16DX_HA:
7839 if (size == 64)
7840 overflow = Reloc::CHECK_SIGNED;
7841 break;
7842
7843 case elfcpp::R_POWERPC_UADDR16:
7844 overflow = Reloc::CHECK_BITFIELD;
7845 break;
7846
7847 case elfcpp::R_POWERPC_ADDR16:
7848 // We really should have three separate relocations,
7849 // one for 16-bit data, one for insns with 16-bit signed fields,
7850 // and one for insns with 16-bit unsigned fields.
7851 overflow = Reloc::CHECK_BITFIELD;
7852 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7853 overflow = Reloc::CHECK_LOW_INSN;
7854 break;
7855
7856 case elfcpp::R_POWERPC_ADDR16_HI:
7857 case elfcpp::R_POWERPC_ADDR16_HA:
7858 case elfcpp::R_POWERPC_GOT16_HI:
7859 case elfcpp::R_POWERPC_GOT16_HA:
7860 case elfcpp::R_POWERPC_PLT16_HI:
7861 case elfcpp::R_POWERPC_PLT16_HA:
7862 case elfcpp::R_POWERPC_SECTOFF_HI:
7863 case elfcpp::R_POWERPC_SECTOFF_HA:
7864 case elfcpp::R_PPC64_TOC16_HI:
7865 case elfcpp::R_PPC64_TOC16_HA:
7866 case elfcpp::R_PPC64_PLTGOT16_HI:
7867 case elfcpp::R_PPC64_PLTGOT16_HA:
7868 case elfcpp::R_POWERPC_TPREL16_HI:
7869 case elfcpp::R_POWERPC_TPREL16_HA:
7870 case elfcpp::R_POWERPC_DTPREL16_HI:
7871 case elfcpp::R_POWERPC_DTPREL16_HA:
7872 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7873 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7874 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7875 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7876 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7877 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7878 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7879 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7880 case elfcpp::R_POWERPC_REL16_HI:
7881 case elfcpp::R_POWERPC_REL16_HA:
7882 if (size != 32)
7883 overflow = Reloc::CHECK_HIGH_INSN;
7884 break;
7885
7886 case elfcpp::R_POWERPC_REL16:
7887 case elfcpp::R_PPC64_TOC16:
7888 case elfcpp::R_POWERPC_GOT16:
7889 case elfcpp::R_POWERPC_SECTOFF:
7890 case elfcpp::R_POWERPC_TPREL16:
7891 case elfcpp::R_POWERPC_DTPREL16:
7892 case elfcpp::R_POWERPC_GOT_TLSGD16:
7893 case elfcpp::R_POWERPC_GOT_TLSLD16:
7894 case elfcpp::R_POWERPC_GOT_TPREL16:
7895 case elfcpp::R_POWERPC_GOT_DTPREL16:
7896 overflow = Reloc::CHECK_LOW_INSN;
7897 break;
7898
7899 case elfcpp::R_POWERPC_ADDR24:
7900 case elfcpp::R_POWERPC_ADDR14:
7901 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7902 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7903 case elfcpp::R_PPC64_ADDR16_DS:
7904 case elfcpp::R_POWERPC_REL24:
7905 case elfcpp::R_PPC_PLTREL24:
7906 case elfcpp::R_PPC_LOCAL24PC:
7907 case elfcpp::R_PPC64_TPREL16_DS:
7908 case elfcpp::R_PPC64_DTPREL16_DS:
7909 case elfcpp::R_PPC64_TOC16_DS:
7910 case elfcpp::R_PPC64_GOT16_DS:
7911 case elfcpp::R_PPC64_SECTOFF_DS:
7912 case elfcpp::R_POWERPC_REL14:
7913 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7914 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7915 overflow = Reloc::CHECK_SIGNED;
7916 break;
7917 }
7918
7919 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7920 Insn insn = 0;
7921
7922 if (overflow == Reloc::CHECK_LOW_INSN
7923 || overflow == Reloc::CHECK_HIGH_INSN)
7924 {
7925 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7926
7927 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7928 overflow = Reloc::CHECK_BITFIELD;
7929 else if (overflow == Reloc::CHECK_LOW_INSN
7930 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7931 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7932 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7933 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7934 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7935 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7936 overflow = Reloc::CHECK_UNSIGNED;
7937 else
7938 overflow = Reloc::CHECK_SIGNED;
7939 }
7940
7941 bool maybe_dq_reloc = false;
7942 typename Powerpc_relocate_functions<size, big_endian>::Status status
7943 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7944 switch (r_type)
7945 {
7946 case elfcpp::R_POWERPC_NONE:
7947 case elfcpp::R_POWERPC_TLS:
7948 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7949 case elfcpp::R_POWERPC_GNU_VTENTRY:
7950 break;
7951
7952 case elfcpp::R_PPC64_ADDR64:
7953 case elfcpp::R_PPC64_REL64:
7954 case elfcpp::R_PPC64_TOC:
7955 case elfcpp::R_PPC64_ADDR64_LOCAL:
7956 Reloc::addr64(view, value);
7957 break;
7958
7959 case elfcpp::R_POWERPC_TPREL:
7960 case elfcpp::R_POWERPC_DTPREL:
7961 if (size == 64)
7962 Reloc::addr64(view, value);
7963 else
7964 status = Reloc::addr32(view, value, overflow);
7965 break;
7966
7967 case elfcpp::R_PPC64_UADDR64:
7968 Reloc::addr64_u(view, value);
7969 break;
7970
7971 case elfcpp::R_POWERPC_ADDR32:
7972 status = Reloc::addr32(view, value, overflow);
7973 break;
7974
7975 case elfcpp::R_POWERPC_REL32:
7976 case elfcpp::R_POWERPC_UADDR32:
7977 status = Reloc::addr32_u(view, value, overflow);
7978 break;
7979
7980 case elfcpp::R_POWERPC_ADDR24:
7981 case elfcpp::R_POWERPC_REL24:
7982 case elfcpp::R_PPC_PLTREL24:
7983 case elfcpp::R_PPC_LOCAL24PC:
7984 status = Reloc::addr24(view, value, overflow);
7985 break;
7986
7987 case elfcpp::R_POWERPC_GOT_DTPREL16:
7988 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7989 case elfcpp::R_POWERPC_GOT_TPREL16:
7990 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7991 if (size == 64)
7992 {
7993 // On ppc64 these are all ds form
7994 maybe_dq_reloc = true;
7995 break;
7996 }
7997 case elfcpp::R_POWERPC_ADDR16:
7998 case elfcpp::R_POWERPC_REL16:
7999 case elfcpp::R_PPC64_TOC16:
8000 case elfcpp::R_POWERPC_GOT16:
8001 case elfcpp::R_POWERPC_SECTOFF:
8002 case elfcpp::R_POWERPC_TPREL16:
8003 case elfcpp::R_POWERPC_DTPREL16:
8004 case elfcpp::R_POWERPC_GOT_TLSGD16:
8005 case elfcpp::R_POWERPC_GOT_TLSLD16:
8006 case elfcpp::R_POWERPC_ADDR16_LO:
8007 case elfcpp::R_POWERPC_REL16_LO:
8008 case elfcpp::R_PPC64_TOC16_LO:
8009 case elfcpp::R_POWERPC_GOT16_LO:
8010 case elfcpp::R_POWERPC_SECTOFF_LO:
8011 case elfcpp::R_POWERPC_TPREL16_LO:
8012 case elfcpp::R_POWERPC_DTPREL16_LO:
8013 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8014 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8015 if (size == 64)
8016 status = Reloc::addr16(view, value, overflow);
8017 else
8018 maybe_dq_reloc = true;
8019 break;
8020
8021 case elfcpp::R_POWERPC_UADDR16:
8022 status = Reloc::addr16_u(view, value, overflow);
8023 break;
8024
8025 case elfcpp::R_PPC64_ADDR16_HIGH:
8026 case elfcpp::R_PPC64_TPREL16_HIGH:
8027 case elfcpp::R_PPC64_DTPREL16_HIGH:
8028 if (size == 32)
8029 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8030 goto unsupp;
8031 case elfcpp::R_POWERPC_ADDR16_HI:
8032 case elfcpp::R_POWERPC_REL16_HI:
8033 case elfcpp::R_PPC64_TOC16_HI:
8034 case elfcpp::R_POWERPC_GOT16_HI:
8035 case elfcpp::R_POWERPC_SECTOFF_HI:
8036 case elfcpp::R_POWERPC_TPREL16_HI:
8037 case elfcpp::R_POWERPC_DTPREL16_HI:
8038 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8039 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8040 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8041 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8042 Reloc::addr16_hi(view, value);
8043 break;
8044
8045 case elfcpp::R_PPC64_ADDR16_HIGHA:
8046 case elfcpp::R_PPC64_TPREL16_HIGHA:
8047 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8048 if (size == 32)
8049 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8050 goto unsupp;
8051 case elfcpp::R_POWERPC_ADDR16_HA:
8052 case elfcpp::R_POWERPC_REL16_HA:
8053 case elfcpp::R_PPC64_TOC16_HA:
8054 case elfcpp::R_POWERPC_GOT16_HA:
8055 case elfcpp::R_POWERPC_SECTOFF_HA:
8056 case elfcpp::R_POWERPC_TPREL16_HA:
8057 case elfcpp::R_POWERPC_DTPREL16_HA:
8058 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8059 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8060 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8061 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8062 Reloc::addr16_ha(view, value);
8063 break;
8064
8065 case elfcpp::R_POWERPC_REL16DX_HA:
8066 status = Reloc::addr16dx_ha(view, value, overflow);
8067 break;
8068
8069 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8070 if (size == 32)
8071 // R_PPC_EMB_NADDR16_LO
8072 goto unsupp;
8073 case elfcpp::R_PPC64_ADDR16_HIGHER:
8074 case elfcpp::R_PPC64_TPREL16_HIGHER:
8075 Reloc::addr16_hi2(view, value);
8076 break;
8077
8078 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8079 if (size == 32)
8080 // R_PPC_EMB_NADDR16_HI
8081 goto unsupp;
8082 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8083 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8084 Reloc::addr16_ha2(view, value);
8085 break;
8086
8087 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8088 if (size == 32)
8089 // R_PPC_EMB_NADDR16_HA
8090 goto unsupp;
8091 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8092 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8093 Reloc::addr16_hi3(view, value);
8094 break;
8095
8096 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8097 if (size == 32)
8098 // R_PPC_EMB_SDAI16
8099 goto unsupp;
8100 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8101 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8102 Reloc::addr16_ha3(view, value);
8103 break;
8104
8105 case elfcpp::R_PPC64_DTPREL16_DS:
8106 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8107 if (size == 32)
8108 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8109 goto unsupp;
8110 case elfcpp::R_PPC64_TPREL16_DS:
8111 case elfcpp::R_PPC64_TPREL16_LO_DS:
8112 if (size == 32)
8113 // R_PPC_TLSGD, R_PPC_TLSLD
8114 break;
8115 case elfcpp::R_PPC64_ADDR16_DS:
8116 case elfcpp::R_PPC64_ADDR16_LO_DS:
8117 case elfcpp::R_PPC64_TOC16_DS:
8118 case elfcpp::R_PPC64_TOC16_LO_DS:
8119 case elfcpp::R_PPC64_GOT16_DS:
8120 case elfcpp::R_PPC64_GOT16_LO_DS:
8121 case elfcpp::R_PPC64_SECTOFF_DS:
8122 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8123 maybe_dq_reloc = true;
8124 break;
8125
8126 case elfcpp::R_POWERPC_ADDR14:
8127 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8128 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8129 case elfcpp::R_POWERPC_REL14:
8130 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8131 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8132 status = Reloc::addr14(view, value, overflow);
8133 break;
8134
8135 case elfcpp::R_POWERPC_COPY:
8136 case elfcpp::R_POWERPC_GLOB_DAT:
8137 case elfcpp::R_POWERPC_JMP_SLOT:
8138 case elfcpp::R_POWERPC_RELATIVE:
8139 case elfcpp::R_POWERPC_DTPMOD:
8140 case elfcpp::R_PPC64_JMP_IREL:
8141 case elfcpp::R_POWERPC_IRELATIVE:
8142 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8143 _("unexpected reloc %u in object file"),
8144 r_type);
8145 break;
8146
8147 case elfcpp::R_PPC_EMB_SDA21:
8148 if (size == 32)
8149 goto unsupp;
8150 else
8151 {
8152 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8153 }
8154 break;
8155
8156 case elfcpp::R_PPC_EMB_SDA2I16:
8157 case elfcpp::R_PPC_EMB_SDA2REL:
8158 if (size == 32)
8159 goto unsupp;
8160 // R_PPC64_TLSGD, R_PPC64_TLSLD
8161 break;
8162
8163 case elfcpp::R_POWERPC_PLT32:
8164 case elfcpp::R_POWERPC_PLTREL32:
8165 case elfcpp::R_POWERPC_PLT16_LO:
8166 case elfcpp::R_POWERPC_PLT16_HI:
8167 case elfcpp::R_POWERPC_PLT16_HA:
8168 case elfcpp::R_PPC_SDAREL16:
8169 case elfcpp::R_POWERPC_ADDR30:
8170 case elfcpp::R_PPC64_PLT64:
8171 case elfcpp::R_PPC64_PLTREL64:
8172 case elfcpp::R_PPC64_PLTGOT16:
8173 case elfcpp::R_PPC64_PLTGOT16_LO:
8174 case elfcpp::R_PPC64_PLTGOT16_HI:
8175 case elfcpp::R_PPC64_PLTGOT16_HA:
8176 case elfcpp::R_PPC64_PLT16_LO_DS:
8177 case elfcpp::R_PPC64_PLTGOT16_DS:
8178 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8179 case elfcpp::R_PPC_EMB_RELSDA:
8180 case elfcpp::R_PPC_TOC16:
8181 default:
8182 unsupp:
8183 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8184 _("unsupported reloc %u"),
8185 r_type);
8186 break;
8187 }
8188
8189 if (maybe_dq_reloc)
8190 {
8191 if (insn == 0)
8192 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8193
8194 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8195 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8196 && (insn & 3) == 1))
8197 status = Reloc::addr16_dq(view, value, overflow);
8198 else if (size == 64
8199 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8200 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8201 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8202 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8203 status = Reloc::addr16_ds(view, value, overflow);
8204 else
8205 status = Reloc::addr16(view, value, overflow);
8206 }
8207
8208 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8209 && (has_stub_value
8210 || !(gsym != NULL
8211 && gsym->is_undefined()
8212 && is_branch_reloc(r_type))))
8213 {
8214 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8215 _("relocation overflow"));
8216 if (has_stub_value)
8217 gold_info(_("try relinking with a smaller --stub-group-size"));
8218 }
8219
8220 return true;
8221 }
8222
8223 // Relocate section data.
8224
8225 template<int size, bool big_endian>
8226 void
8227 Target_powerpc<size, big_endian>::relocate_section(
8228 const Relocate_info<size, big_endian>* relinfo,
8229 unsigned int sh_type,
8230 const unsigned char* prelocs,
8231 size_t reloc_count,
8232 Output_section* output_section,
8233 bool needs_special_offset_handling,
8234 unsigned char* view,
8235 Address address,
8236 section_size_type view_size,
8237 const Reloc_symbol_changes* reloc_symbol_changes)
8238 {
8239 typedef Target_powerpc<size, big_endian> Powerpc;
8240 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8241 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8242 Powerpc_comdat_behavior;
8243 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8244 Classify_reloc;
8245
8246 gold_assert(sh_type == elfcpp::SHT_RELA);
8247
8248 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8249 Powerpc_comdat_behavior, Classify_reloc>(
8250 relinfo,
8251 this,
8252 prelocs,
8253 reloc_count,
8254 output_section,
8255 needs_special_offset_handling,
8256 view,
8257 address,
8258 view_size,
8259 reloc_symbol_changes);
8260 }
8261
8262 template<int size, bool big_endian>
8263 class Powerpc_scan_relocatable_reloc
8264 {
8265 public:
8266 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8267 Reltype;
8268 static const int reloc_size =
8269 Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8270 static const int sh_type = elfcpp::SHT_RELA;
8271
8272 // Return the symbol referred to by the relocation.
8273 static inline unsigned int
8274 get_r_sym(const Reltype* reloc)
8275 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8276
8277 // Return the type of the relocation.
8278 static inline unsigned int
8279 get_r_type(const Reltype* reloc)
8280 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8281
8282 // Return the strategy to use for a local symbol which is not a
8283 // section symbol, given the relocation type.
8284 inline Relocatable_relocs::Reloc_strategy
8285 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8286 {
8287 if (r_type == 0 && r_sym == 0)
8288 return Relocatable_relocs::RELOC_DISCARD;
8289 return Relocatable_relocs::RELOC_COPY;
8290 }
8291
8292 // Return the strategy to use for a local symbol which is a section
8293 // symbol, given the relocation type.
8294 inline Relocatable_relocs::Reloc_strategy
8295 local_section_strategy(unsigned int, Relobj*)
8296 {
8297 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8298 }
8299
8300 // Return the strategy to use for a global symbol, given the
8301 // relocation type, the object, and the symbol index.
8302 inline Relocatable_relocs::Reloc_strategy
8303 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8304 {
8305 if (r_type == elfcpp::R_PPC_PLTREL24)
8306 return Relocatable_relocs::RELOC_SPECIAL;
8307 return Relocatable_relocs::RELOC_COPY;
8308 }
8309 };
8310
8311 // Scan the relocs during a relocatable link.
8312
8313 template<int size, bool big_endian>
8314 void
8315 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8316 Symbol_table* symtab,
8317 Layout* layout,
8318 Sized_relobj_file<size, big_endian>* object,
8319 unsigned int data_shndx,
8320 unsigned int sh_type,
8321 const unsigned char* prelocs,
8322 size_t reloc_count,
8323 Output_section* output_section,
8324 bool needs_special_offset_handling,
8325 size_t local_symbol_count,
8326 const unsigned char* plocal_symbols,
8327 Relocatable_relocs* rr)
8328 {
8329 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8330
8331 gold_assert(sh_type == elfcpp::SHT_RELA);
8332
8333 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8334 symtab,
8335 layout,
8336 object,
8337 data_shndx,
8338 prelocs,
8339 reloc_count,
8340 output_section,
8341 needs_special_offset_handling,
8342 local_symbol_count,
8343 plocal_symbols,
8344 rr);
8345 }
8346
8347 // Scan the relocs for --emit-relocs.
8348
8349 template<int size, bool big_endian>
8350 void
8351 Target_powerpc<size, big_endian>::emit_relocs_scan(
8352 Symbol_table* symtab,
8353 Layout* layout,
8354 Sized_relobj_file<size, big_endian>* object,
8355 unsigned int data_shndx,
8356 unsigned int sh_type,
8357 const unsigned char* prelocs,
8358 size_t reloc_count,
8359 Output_section* output_section,
8360 bool needs_special_offset_handling,
8361 size_t local_symbol_count,
8362 const unsigned char* plocal_syms,
8363 Relocatable_relocs* rr)
8364 {
8365 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8366 Classify_reloc;
8367 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8368 Emit_relocs_strategy;
8369
8370 gold_assert(sh_type == elfcpp::SHT_RELA);
8371
8372 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8373 symtab,
8374 layout,
8375 object,
8376 data_shndx,
8377 prelocs,
8378 reloc_count,
8379 output_section,
8380 needs_special_offset_handling,
8381 local_symbol_count,
8382 plocal_syms,
8383 rr);
8384 }
8385
8386 // Emit relocations for a section.
8387 // This is a modified version of the function by the same name in
8388 // target-reloc.h. Using relocate_special_relocatable for
8389 // R_PPC_PLTREL24 would require duplication of the entire body of the
8390 // loop, so we may as well duplicate the whole thing.
8391
8392 template<int size, bool big_endian>
8393 void
8394 Target_powerpc<size, big_endian>::relocate_relocs(
8395 const Relocate_info<size, big_endian>* relinfo,
8396 unsigned int sh_type,
8397 const unsigned char* prelocs,
8398 size_t reloc_count,
8399 Output_section* output_section,
8400 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8401 unsigned char*,
8402 Address view_address,
8403 section_size_type,
8404 unsigned char* reloc_view,
8405 section_size_type reloc_view_size)
8406 {
8407 gold_assert(sh_type == elfcpp::SHT_RELA);
8408
8409 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8410 Reltype;
8411 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8412 Reltype_write;
8413 const int reloc_size
8414 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8415 // Offset from start of insn to d-field reloc.
8416 const int d_offset = big_endian ? 2 : 0;
8417
8418 Powerpc_relobj<size, big_endian>* const object
8419 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8420 const unsigned int local_count = object->local_symbol_count();
8421 unsigned int got2_shndx = object->got2_shndx();
8422 Address got2_addend = 0;
8423 if (got2_shndx != 0)
8424 {
8425 got2_addend = object->get_output_section_offset(got2_shndx);
8426 gold_assert(got2_addend != invalid_address);
8427 }
8428
8429 unsigned char* pwrite = reloc_view;
8430 bool zap_next = false;
8431 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8432 {
8433 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8434 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8435 continue;
8436
8437 Reltype reloc(prelocs);
8438 Reltype_write reloc_write(pwrite);
8439
8440 Address offset = reloc.get_r_offset();
8441 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8442 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8443 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8444 const unsigned int orig_r_sym = r_sym;
8445 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8446 = reloc.get_r_addend();
8447 const Symbol* gsym = NULL;
8448
8449 if (zap_next)
8450 {
8451 // We could arrange to discard these and other relocs for
8452 // tls optimised sequences in the strategy methods, but for
8453 // now do as BFD ld does.
8454 r_type = elfcpp::R_POWERPC_NONE;
8455 zap_next = false;
8456 }
8457
8458 // Get the new symbol index.
8459 Output_section* os = NULL;
8460 if (r_sym < local_count)
8461 {
8462 switch (strategy)
8463 {
8464 case Relocatable_relocs::RELOC_COPY:
8465 case Relocatable_relocs::RELOC_SPECIAL:
8466 if (r_sym != 0)
8467 {
8468 r_sym = object->symtab_index(r_sym);
8469 gold_assert(r_sym != -1U);
8470 }
8471 break;
8472
8473 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8474 {
8475 // We are adjusting a section symbol. We need to find
8476 // the symbol table index of the section symbol for
8477 // the output section corresponding to input section
8478 // in which this symbol is defined.
8479 gold_assert(r_sym < local_count);
8480 bool is_ordinary;
8481 unsigned int shndx =
8482 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8483 gold_assert(is_ordinary);
8484 os = object->output_section(shndx);
8485 gold_assert(os != NULL);
8486 gold_assert(os->needs_symtab_index());
8487 r_sym = os->symtab_index();
8488 }
8489 break;
8490
8491 default:
8492 gold_unreachable();
8493 }
8494 }
8495 else
8496 {
8497 gsym = object->global_symbol(r_sym);
8498 gold_assert(gsym != NULL);
8499 if (gsym->is_forwarder())
8500 gsym = relinfo->symtab->resolve_forwards(gsym);
8501
8502 gold_assert(gsym->has_symtab_index());
8503 r_sym = gsym->symtab_index();
8504 }
8505
8506 // Get the new offset--the location in the output section where
8507 // this relocation should be applied.
8508 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8509 offset += offset_in_output_section;
8510 else
8511 {
8512 section_offset_type sot_offset =
8513 convert_types<section_offset_type, Address>(offset);
8514 section_offset_type new_sot_offset =
8515 output_section->output_offset(object, relinfo->data_shndx,
8516 sot_offset);
8517 gold_assert(new_sot_offset != -1);
8518 offset = new_sot_offset;
8519 }
8520
8521 // In an object file, r_offset is an offset within the section.
8522 // In an executable or dynamic object, generated by
8523 // --emit-relocs, r_offset is an absolute address.
8524 if (!parameters->options().relocatable())
8525 {
8526 offset += view_address;
8527 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8528 offset -= offset_in_output_section;
8529 }
8530
8531 // Handle the reloc addend based on the strategy.
8532 if (strategy == Relocatable_relocs::RELOC_COPY)
8533 ;
8534 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8535 {
8536 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8537 gold_assert(os != NULL);
8538 addend = psymval->value(object, addend) - os->address();
8539 }
8540 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8541 {
8542 if (size == 32)
8543 {
8544 if (addend >= 32768)
8545 addend += got2_addend;
8546 }
8547 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8548 {
8549 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8550 addend -= d_offset;
8551 }
8552 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8553 {
8554 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8555 addend -= d_offset + 4;
8556 }
8557 }
8558 else
8559 gold_unreachable();
8560
8561 if (!parameters->options().relocatable())
8562 {
8563 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8564 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8565 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8566 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8567 {
8568 // First instruction of a global dynamic sequence,
8569 // arg setup insn.
8570 const bool final = gsym == NULL || gsym->final_value_is_known();
8571 switch (this->optimize_tls_gd(final))
8572 {
8573 case tls::TLSOPT_TO_IE:
8574 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8575 - elfcpp::R_POWERPC_GOT_TLSGD16);
8576 break;
8577 case tls::TLSOPT_TO_LE:
8578 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8579 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8580 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8581 else
8582 {
8583 r_type = elfcpp::R_POWERPC_NONE;
8584 offset -= d_offset;
8585 }
8586 break;
8587 default:
8588 break;
8589 }
8590 }
8591 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8592 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8593 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8594 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8595 {
8596 // First instruction of a local dynamic sequence,
8597 // arg setup insn.
8598 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8599 {
8600 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8601 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8602 {
8603 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8604 const Output_section* os = relinfo->layout->tls_segment()
8605 ->first_section();
8606 gold_assert(os != NULL);
8607 gold_assert(os->needs_symtab_index());
8608 r_sym = os->symtab_index();
8609 addend = dtp_offset;
8610 }
8611 else
8612 {
8613 r_type = elfcpp::R_POWERPC_NONE;
8614 offset -= d_offset;
8615 }
8616 }
8617 }
8618 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8619 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8620 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8621 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8622 {
8623 // First instruction of initial exec sequence.
8624 const bool final = gsym == NULL || gsym->final_value_is_known();
8625 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8626 {
8627 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8628 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8629 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8630 else
8631 {
8632 r_type = elfcpp::R_POWERPC_NONE;
8633 offset -= d_offset;
8634 }
8635 }
8636 }
8637 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8638 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8639 {
8640 // Second instruction of a global dynamic sequence,
8641 // the __tls_get_addr call
8642 const bool final = gsym == NULL || gsym->final_value_is_known();
8643 switch (this->optimize_tls_gd(final))
8644 {
8645 case tls::TLSOPT_TO_IE:
8646 r_type = elfcpp::R_POWERPC_NONE;
8647 zap_next = true;
8648 break;
8649 case tls::TLSOPT_TO_LE:
8650 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8651 offset += d_offset;
8652 zap_next = true;
8653 break;
8654 default:
8655 break;
8656 }
8657 }
8658 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8659 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8660 {
8661 // Second instruction of a local dynamic sequence,
8662 // the __tls_get_addr call
8663 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8664 {
8665 const Output_section* os = relinfo->layout->tls_segment()
8666 ->first_section();
8667 gold_assert(os != NULL);
8668 gold_assert(os->needs_symtab_index());
8669 r_sym = os->symtab_index();
8670 addend = dtp_offset;
8671 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8672 offset += d_offset;
8673 zap_next = true;
8674 }
8675 }
8676 else if (r_type == elfcpp::R_POWERPC_TLS)
8677 {
8678 // Second instruction of an initial exec sequence
8679 const bool final = gsym == NULL || gsym->final_value_is_known();
8680 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8681 {
8682 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8683 offset += d_offset;
8684 }
8685 }
8686 }
8687
8688 reloc_write.put_r_offset(offset);
8689 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8690 reloc_write.put_r_addend(addend);
8691
8692 pwrite += reloc_size;
8693 }
8694
8695 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8696 == reloc_view_size);
8697 }
8698
8699 // Return the value to use for a dynamic symbol which requires special
8700 // treatment. This is how we support equality comparisons of function
8701 // pointers across shared library boundaries, as described in the
8702 // processor specific ABI supplement.
8703
8704 template<int size, bool big_endian>
8705 uint64_t
8706 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8707 {
8708 if (size == 32)
8709 {
8710 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8711 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8712 p != this->stub_tables_.end();
8713 ++p)
8714 {
8715 Address off = (*p)->find_plt_call_entry(gsym);
8716 if (off != invalid_address)
8717 return (*p)->stub_address() + off;
8718 }
8719 }
8720 else if (this->abiversion() >= 2)
8721 {
8722 Address off = this->glink_section()->find_global_entry(gsym);
8723 if (off != invalid_address)
8724 return this->glink_section()->global_entry_address() + off;
8725 }
8726 gold_unreachable();
8727 }
8728
8729 // Return the PLT address to use for a local symbol.
8730 template<int size, bool big_endian>
8731 uint64_t
8732 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8733 const Relobj* object,
8734 unsigned int symndx) const
8735 {
8736 if (size == 32)
8737 {
8738 const Sized_relobj<size, big_endian>* relobj
8739 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8740 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8741 p != this->stub_tables_.end();
8742 ++p)
8743 {
8744 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8745 symndx);
8746 if (off != invalid_address)
8747 return (*p)->stub_address() + off;
8748 }
8749 }
8750 gold_unreachable();
8751 }
8752
8753 // Return the PLT address to use for a global symbol.
8754 template<int size, bool big_endian>
8755 uint64_t
8756 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8757 const Symbol* gsym) const
8758 {
8759 if (size == 32)
8760 {
8761 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8762 p != this->stub_tables_.end();
8763 ++p)
8764 {
8765 Address off = (*p)->find_plt_call_entry(gsym);
8766 if (off != invalid_address)
8767 return (*p)->stub_address() + off;
8768 }
8769 }
8770 else if (this->abiversion() >= 2)
8771 {
8772 Address off = this->glink_section()->find_global_entry(gsym);
8773 if (off != invalid_address)
8774 return this->glink_section()->global_entry_address() + off;
8775 }
8776 gold_unreachable();
8777 }
8778
8779 // Return the offset to use for the GOT_INDX'th got entry which is
8780 // for a local tls symbol specified by OBJECT, SYMNDX.
8781 template<int size, bool big_endian>
8782 int64_t
8783 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8784 const Relobj* object,
8785 unsigned int symndx,
8786 unsigned int got_indx) const
8787 {
8788 const Powerpc_relobj<size, big_endian>* ppc_object
8789 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8790 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8791 {
8792 for (Got_type got_type = GOT_TYPE_TLSGD;
8793 got_type <= GOT_TYPE_TPREL;
8794 got_type = Got_type(got_type + 1))
8795 if (ppc_object->local_has_got_offset(symndx, got_type))
8796 {
8797 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8798 if (got_type == GOT_TYPE_TLSGD)
8799 off += size / 8;
8800 if (off == got_indx * (size / 8))
8801 {
8802 if (got_type == GOT_TYPE_TPREL)
8803 return -tp_offset;
8804 else
8805 return -dtp_offset;
8806 }
8807 }
8808 }
8809 gold_unreachable();
8810 }
8811
8812 // Return the offset to use for the GOT_INDX'th got entry which is
8813 // for global tls symbol GSYM.
8814 template<int size, bool big_endian>
8815 int64_t
8816 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8817 Symbol* gsym,
8818 unsigned int got_indx) const
8819 {
8820 if (gsym->type() == elfcpp::STT_TLS)
8821 {
8822 for (Got_type got_type = GOT_TYPE_TLSGD;
8823 got_type <= GOT_TYPE_TPREL;
8824 got_type = Got_type(got_type + 1))
8825 if (gsym->has_got_offset(got_type))
8826 {
8827 unsigned int off = gsym->got_offset(got_type);
8828 if (got_type == GOT_TYPE_TLSGD)
8829 off += size / 8;
8830 if (off == got_indx * (size / 8))
8831 {
8832 if (got_type == GOT_TYPE_TPREL)
8833 return -tp_offset;
8834 else
8835 return -dtp_offset;
8836 }
8837 }
8838 }
8839 gold_unreachable();
8840 }
8841
8842 // The selector for powerpc object files.
8843
8844 template<int size, bool big_endian>
8845 class Target_selector_powerpc : public Target_selector
8846 {
8847 public:
8848 Target_selector_powerpc()
8849 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8850 size, big_endian,
8851 (size == 64
8852 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8853 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8854 (size == 64
8855 ? (big_endian ? "elf64ppc" : "elf64lppc")
8856 : (big_endian ? "elf32ppc" : "elf32lppc")))
8857 { }
8858
8859 virtual Target*
8860 do_instantiate_target()
8861 { return new Target_powerpc<size, big_endian>(); }
8862 };
8863
8864 Target_selector_powerpc<32, true> target_selector_ppc32;
8865 Target_selector_powerpc<32, false> target_selector_ppc32le;
8866 Target_selector_powerpc<64, true> target_selector_ppc64;
8867 Target_selector_powerpc<64, false> target_selector_ppc64le;
8868
8869 // Instantiate these constants for -O0
8870 template<int size, bool big_endian>
8871 const int Output_data_glink<size, big_endian>::pltresolve_size;
8872 template<int size, bool big_endian>
8873 const typename Output_data_glink<size, big_endian>::Address
8874 Output_data_glink<size, big_endian>::invalid_address;
8875 template<int size, bool big_endian>
8876 const typename Stub_table<size, big_endian>::Address
8877 Stub_table<size, big_endian>::invalid_address;
8878 template<int size, bool big_endian>
8879 const typename Target_powerpc<size, big_endian>::Address
8880 Target_powerpc<size, big_endian>::invalid_address;
8881
8882 } // End anonymous namespace.
This page took 0.200133 seconds and 5 git commands to generate.