[GOLD] Align PowerPC64 GOT
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 unsigned char* view, section_size_type view_size,
635 std::string* from, std::string* to) const;
636
637 // Relocate a section.
638 void
639 relocate_section(const Relocate_info<size, big_endian>*,
640 unsigned int sh_type,
641 const unsigned char* prelocs,
642 size_t reloc_count,
643 Output_section* output_section,
644 bool needs_special_offset_handling,
645 unsigned char* view,
646 Address view_address,
647 section_size_type view_size,
648 const Reloc_symbol_changes*);
649
650 // Scan the relocs during a relocatable link.
651 void
652 scan_relocatable_relocs(Symbol_table* symtab,
653 Layout* layout,
654 Sized_relobj_file<size, big_endian>* object,
655 unsigned int data_shndx,
656 unsigned int sh_type,
657 const unsigned char* prelocs,
658 size_t reloc_count,
659 Output_section* output_section,
660 bool needs_special_offset_handling,
661 size_t local_symbol_count,
662 const unsigned char* plocal_symbols,
663 Relocatable_relocs*);
664
665 // Emit relocations for a section.
666 void
667 relocate_relocs(const Relocate_info<size, big_endian>*,
668 unsigned int sh_type,
669 const unsigned char* prelocs,
670 size_t reloc_count,
671 Output_section* output_section,
672 typename elfcpp::Elf_types<size>::Elf_Off
673 offset_in_output_section,
674 const Relocatable_relocs*,
675 unsigned char*,
676 Address view_address,
677 section_size_type,
678 unsigned char* reloc_view,
679 section_size_type reloc_view_size);
680
681 // Return whether SYM is defined by the ABI.
682 bool
683 do_is_defined_by_abi(const Symbol* sym) const
684 {
685 return strcmp(sym->name(), "__tls_get_addr") == 0;
686 }
687
688 // Return the size of the GOT section.
689 section_size_type
690 got_size() const
691 {
692 gold_assert(this->got_ != NULL);
693 return this->got_->data_size();
694 }
695
696 // Get the PLT section.
697 const Output_data_plt_powerpc<size, big_endian>*
698 plt_section() const
699 {
700 gold_assert(this->plt_ != NULL);
701 return this->plt_;
702 }
703
704 // Get the IPLT section.
705 const Output_data_plt_powerpc<size, big_endian>*
706 iplt_section() const
707 {
708 gold_assert(this->iplt_ != NULL);
709 return this->iplt_;
710 }
711
712 // Get the .glink section.
713 const Output_data_glink<size, big_endian>*
714 glink_section() const
715 {
716 gold_assert(this->glink_ != NULL);
717 return this->glink_;
718 }
719
720 Output_data_glink<size, big_endian>*
721 glink_section()
722 {
723 gold_assert(this->glink_ != NULL);
724 return this->glink_;
725 }
726
727 bool has_glink() const
728 { return this->glink_ != NULL; }
729
730 // Get the GOT section.
731 const Output_data_got_powerpc<size, big_endian>*
732 got_section() const
733 {
734 gold_assert(this->got_ != NULL);
735 return this->got_;
736 }
737
738 // Get the GOT section, creating it if necessary.
739 Output_data_got_powerpc<size, big_endian>*
740 got_section(Symbol_table*, Layout*);
741
742 Object*
743 do_make_elf_object(const std::string&, Input_file*, off_t,
744 const elfcpp::Ehdr<size, big_endian>&);
745
746 // Return the number of entries in the GOT.
747 unsigned int
748 got_entry_count() const
749 {
750 if (this->got_ == NULL)
751 return 0;
752 return this->got_size() / (size / 8);
753 }
754
755 // Return the number of entries in the PLT.
756 unsigned int
757 plt_entry_count() const;
758
759 // Return the offset of the first non-reserved PLT entry.
760 unsigned int
761 first_plt_entry_offset() const
762 {
763 if (size == 32)
764 return 0;
765 if (this->abiversion() >= 2)
766 return 16;
767 return 24;
768 }
769
770 // Return the size of each PLT entry.
771 unsigned int
772 plt_entry_size() const
773 {
774 if (size == 32)
775 return 4;
776 if (this->abiversion() >= 2)
777 return 8;
778 return 24;
779 }
780
781 Output_data_save_res<size, big_endian>*
782 savres_section() const
783 {
784 return this->savres_section_;
785 }
786
787 // Add any special sections for this symbol to the gc work list.
788 // For powerpc64, this adds the code section of a function
789 // descriptor.
790 void
791 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
792
793 // Handle target specific gc actions when adding a gc reference from
794 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
795 // and DST_OFF. For powerpc64, this adds a referenc to the code
796 // section of a function descriptor.
797 void
798 do_gc_add_reference(Symbol_table* symtab,
799 Relobj* src_obj,
800 unsigned int src_shndx,
801 Relobj* dst_obj,
802 unsigned int dst_shndx,
803 Address dst_off) const;
804
805 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
806 const Stub_tables&
807 stub_tables() const
808 { return this->stub_tables_; }
809
810 const Output_data_brlt_powerpc<size, big_endian>*
811 brlt_section() const
812 { return this->brlt_section_; }
813
814 void
815 add_branch_lookup_table(Address to)
816 {
817 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
818 this->branch_lookup_table_.insert(std::make_pair(to, off));
819 }
820
821 Address
822 find_branch_lookup_table(Address to)
823 {
824 typename Branch_lookup_table::const_iterator p
825 = this->branch_lookup_table_.find(to);
826 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
827 }
828
829 void
830 write_branch_lookup_table(unsigned char *oview)
831 {
832 for (typename Branch_lookup_table::const_iterator p
833 = this->branch_lookup_table_.begin();
834 p != this->branch_lookup_table_.end();
835 ++p)
836 {
837 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
838 }
839 }
840
841 bool
842 plt_thread_safe() const
843 { return this->plt_thread_safe_; }
844
845 int
846 abiversion () const
847 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
848
849 void
850 set_abiversion (int ver)
851 {
852 elfcpp::Elf_Word flags = this->processor_specific_flags();
853 flags &= ~elfcpp::EF_PPC64_ABI;
854 flags |= ver & elfcpp::EF_PPC64_ABI;
855 this->set_processor_specific_flags(flags);
856 }
857
858 // Offset to to save stack slot
859 int
860 stk_toc () const
861 { return this->abiversion() < 2 ? 40 : 24; }
862
863 private:
864
865 class Track_tls
866 {
867 public:
868 enum Tls_get_addr
869 {
870 NOT_EXPECTED = 0,
871 EXPECTED = 1,
872 SKIP = 2,
873 NORMAL = 3
874 };
875
876 Track_tls()
877 : tls_get_addr_(NOT_EXPECTED),
878 relinfo_(NULL), relnum_(0), r_offset_(0)
879 { }
880
881 ~Track_tls()
882 {
883 if (this->tls_get_addr_ != NOT_EXPECTED)
884 this->missing();
885 }
886
887 void
888 missing(void)
889 {
890 if (this->relinfo_ != NULL)
891 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
892 _("missing expected __tls_get_addr call"));
893 }
894
895 void
896 expect_tls_get_addr_call(
897 const Relocate_info<size, big_endian>* relinfo,
898 size_t relnum,
899 Address r_offset)
900 {
901 this->tls_get_addr_ = EXPECTED;
902 this->relinfo_ = relinfo;
903 this->relnum_ = relnum;
904 this->r_offset_ = r_offset;
905 }
906
907 void
908 expect_tls_get_addr_call()
909 { this->tls_get_addr_ = EXPECTED; }
910
911 void
912 skip_next_tls_get_addr_call()
913 {this->tls_get_addr_ = SKIP; }
914
915 Tls_get_addr
916 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
917 {
918 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
919 || r_type == elfcpp::R_PPC_PLTREL24)
920 && gsym != NULL
921 && strcmp(gsym->name(), "__tls_get_addr") == 0);
922 Tls_get_addr last_tls = this->tls_get_addr_;
923 this->tls_get_addr_ = NOT_EXPECTED;
924 if (is_tls_call && last_tls != EXPECTED)
925 return last_tls;
926 else if (!is_tls_call && last_tls != NOT_EXPECTED)
927 {
928 this->missing();
929 return EXPECTED;
930 }
931 return NORMAL;
932 }
933
934 private:
935 // What we're up to regarding calls to __tls_get_addr.
936 // On powerpc, the branch and link insn making a call to
937 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
938 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
939 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
940 // The marker relocation always comes first, and has the same
941 // symbol as the reloc on the insn setting up the __tls_get_addr
942 // argument. This ties the arg setup insn with the call insn,
943 // allowing ld to safely optimize away the call. We check that
944 // every call to __tls_get_addr has a marker relocation, and that
945 // every marker relocation is on a call to __tls_get_addr.
946 Tls_get_addr tls_get_addr_;
947 // Info about the last reloc for error message.
948 const Relocate_info<size, big_endian>* relinfo_;
949 size_t relnum_;
950 Address r_offset_;
951 };
952
953 // The class which scans relocations.
954 class Scan : protected Track_tls
955 {
956 public:
957 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
958
959 Scan()
960 : Track_tls(), issued_non_pic_error_(false)
961 { }
962
963 static inline int
964 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
965
966 inline void
967 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968 Sized_relobj_file<size, big_endian>* object,
969 unsigned int data_shndx,
970 Output_section* output_section,
971 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972 const elfcpp::Sym<size, big_endian>& lsym,
973 bool is_discarded);
974
975 inline void
976 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
977 Sized_relobj_file<size, big_endian>* object,
978 unsigned int data_shndx,
979 Output_section* output_section,
980 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
981 Symbol* gsym);
982
983 inline bool
984 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
985 Target_powerpc* ,
986 Sized_relobj_file<size, big_endian>* relobj,
987 unsigned int ,
988 Output_section* ,
989 const elfcpp::Rela<size, big_endian>& ,
990 unsigned int r_type,
991 const elfcpp::Sym<size, big_endian>&)
992 {
993 // PowerPC64 .opd is not folded, so any identical function text
994 // may be folded and we'll still keep function addresses distinct.
995 // That means no reloc is of concern here.
996 if (size == 64)
997 {
998 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
999 <Powerpc_relobj<size, big_endian>*>(relobj);
1000 if (ppcobj->abiversion() == 1)
1001 return false;
1002 }
1003 // For 32-bit and ELFv2, conservatively assume anything but calls to
1004 // function code might be taking the address of the function.
1005 return !is_branch_reloc(r_type);
1006 }
1007
1008 inline bool
1009 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1010 Target_powerpc* ,
1011 Sized_relobj_file<size, big_endian>* relobj,
1012 unsigned int ,
1013 Output_section* ,
1014 const elfcpp::Rela<size, big_endian>& ,
1015 unsigned int r_type,
1016 Symbol*)
1017 {
1018 // As above.
1019 if (size == 64)
1020 {
1021 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1022 <Powerpc_relobj<size, big_endian>*>(relobj);
1023 if (ppcobj->abiversion() == 1)
1024 return false;
1025 }
1026 return !is_branch_reloc(r_type);
1027 }
1028
1029 static bool
1030 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1031 Sized_relobj_file<size, big_endian>* object,
1032 unsigned int r_type, bool report_err);
1033
1034 private:
1035 static void
1036 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1037 unsigned int r_type);
1038
1039 static void
1040 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1041 unsigned int r_type, Symbol*);
1042
1043 static void
1044 generate_tls_call(Symbol_table* symtab, Layout* layout,
1045 Target_powerpc* target);
1046
1047 void
1048 check_non_pic(Relobj*, unsigned int r_type);
1049
1050 // Whether we have issued an error about a non-PIC compilation.
1051 bool issued_non_pic_error_;
1052 };
1053
1054 bool
1055 symval_for_branch(const Symbol_table* symtab,
1056 const Sized_symbol<size>* gsym,
1057 Powerpc_relobj<size, big_endian>* object,
1058 Address *value, unsigned int *dest_shndx);
1059
1060 // The class which implements relocation.
1061 class Relocate : protected Track_tls
1062 {
1063 public:
1064 // Use 'at' branch hints when true, 'y' when false.
1065 // FIXME maybe: set this with an option.
1066 static const bool is_isa_v2 = true;
1067
1068 Relocate()
1069 : Track_tls()
1070 { }
1071
1072 // Do a relocation. Return false if the caller should not issue
1073 // any warnings about this relocation.
1074 inline bool
1075 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1076 Output_section*, size_t relnum,
1077 const elfcpp::Rela<size, big_endian>&,
1078 unsigned int r_type, const Sized_symbol<size>*,
1079 const Symbol_value<size>*,
1080 unsigned char*,
1081 typename elfcpp::Elf_types<size>::Elf_Addr,
1082 section_size_type);
1083 };
1084
1085 class Relocate_comdat_behavior
1086 {
1087 public:
1088 // Decide what the linker should do for relocations that refer to
1089 // discarded comdat sections.
1090 inline Comdat_behavior
1091 get(const char* name)
1092 {
1093 gold::Default_comdat_behavior default_behavior;
1094 Comdat_behavior ret = default_behavior.get(name);
1095 if (ret == CB_WARNING)
1096 {
1097 if (size == 32
1098 && (strcmp(name, ".fixup") == 0
1099 || strcmp(name, ".got2") == 0))
1100 ret = CB_IGNORE;
1101 if (size == 64
1102 && (strcmp(name, ".opd") == 0
1103 || strcmp(name, ".toc") == 0
1104 || strcmp(name, ".toc1") == 0))
1105 ret = CB_IGNORE;
1106 }
1107 return ret;
1108 }
1109 };
1110
1111 // A class which returns the size required for a relocation type,
1112 // used while scanning relocs during a relocatable link.
1113 class Relocatable_size_for_reloc
1114 {
1115 public:
1116 unsigned int
1117 get_size_for_reloc(unsigned int, Relobj*)
1118 {
1119 gold_unreachable();
1120 return 0;
1121 }
1122 };
1123
1124 // Optimize the TLS relocation type based on what we know about the
1125 // symbol. IS_FINAL is true if the final address of this symbol is
1126 // known at link time.
1127
1128 tls::Tls_optimization
1129 optimize_tls_gd(bool is_final)
1130 {
1131 // If we are generating a shared library, then we can't do anything
1132 // in the linker.
1133 if (parameters->options().shared())
1134 return tls::TLSOPT_NONE;
1135
1136 if (!is_final)
1137 return tls::TLSOPT_TO_IE;
1138 return tls::TLSOPT_TO_LE;
1139 }
1140
1141 tls::Tls_optimization
1142 optimize_tls_ld()
1143 {
1144 if (parameters->options().shared())
1145 return tls::TLSOPT_NONE;
1146
1147 return tls::TLSOPT_TO_LE;
1148 }
1149
1150 tls::Tls_optimization
1151 optimize_tls_ie(bool is_final)
1152 {
1153 if (!is_final || parameters->options().shared())
1154 return tls::TLSOPT_NONE;
1155
1156 return tls::TLSOPT_TO_LE;
1157 }
1158
1159 // Create glink.
1160 void
1161 make_glink_section(Layout*);
1162
1163 // Create the PLT section.
1164 void
1165 make_plt_section(Symbol_table*, Layout*);
1166
1167 void
1168 make_iplt_section(Symbol_table*, Layout*);
1169
1170 void
1171 make_brlt_section(Layout*);
1172
1173 // Create a PLT entry for a global symbol.
1174 void
1175 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1176
1177 // Create a PLT entry for a local IFUNC symbol.
1178 void
1179 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1180 Sized_relobj_file<size, big_endian>*,
1181 unsigned int);
1182
1183
1184 // Create a GOT entry for local dynamic __tls_get_addr.
1185 unsigned int
1186 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1187 Sized_relobj_file<size, big_endian>* object);
1188
1189 unsigned int
1190 tlsld_got_offset() const
1191 {
1192 return this->tlsld_got_offset_;
1193 }
1194
1195 // Get the dynamic reloc section, creating it if necessary.
1196 Reloc_section*
1197 rela_dyn_section(Layout*);
1198
1199 // Similarly, but for ifunc symbols get the one for ifunc.
1200 Reloc_section*
1201 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1202
1203 // Copy a relocation against a global symbol.
1204 void
1205 copy_reloc(Symbol_table* symtab, Layout* layout,
1206 Sized_relobj_file<size, big_endian>* object,
1207 unsigned int shndx, Output_section* output_section,
1208 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1209 {
1210 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1211 this->copy_relocs_.copy_reloc(symtab, layout,
1212 symtab->get_sized_symbol<size>(sym),
1213 object, shndx, output_section,
1214 r_type, reloc.get_r_offset(),
1215 reloc.get_r_addend(),
1216 this->rela_dyn_section(layout));
1217 }
1218
1219 // Look over all the input sections, deciding where to place stubs.
1220 void
1221 group_sections(Layout*, const Task*, bool);
1222
1223 // Sort output sections by address.
1224 struct Sort_sections
1225 {
1226 bool
1227 operator()(const Output_section* sec1, const Output_section* sec2)
1228 { return sec1->address() < sec2->address(); }
1229 };
1230
1231 class Branch_info
1232 {
1233 public:
1234 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1235 unsigned int data_shndx,
1236 Address r_offset,
1237 unsigned int r_type,
1238 unsigned int r_sym,
1239 Address addend)
1240 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1241 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1242 { }
1243
1244 ~Branch_info()
1245 { }
1246
1247 // If this branch needs a plt call stub, or a long branch stub, make one.
1248 bool
1249 make_stub(Stub_table<size, big_endian>*,
1250 Stub_table<size, big_endian>*,
1251 Symbol_table*) const;
1252
1253 private:
1254 // The branch location..
1255 Powerpc_relobj<size, big_endian>* object_;
1256 unsigned int shndx_;
1257 Address offset_;
1258 // ..and the branch type and destination.
1259 unsigned int r_type_;
1260 unsigned int r_sym_;
1261 Address addend_;
1262 };
1263
1264 // Information about this specific target which we pass to the
1265 // general Target structure.
1266 static Target::Target_info powerpc_info;
1267
1268 // The types of GOT entries needed for this platform.
1269 // These values are exposed to the ABI in an incremental link.
1270 // Do not renumber existing values without changing the version
1271 // number of the .gnu_incremental_inputs section.
1272 enum Got_type
1273 {
1274 GOT_TYPE_STANDARD,
1275 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1276 GOT_TYPE_DTPREL, // entry for @got@dtprel
1277 GOT_TYPE_TPREL // entry for @got@tprel
1278 };
1279
1280 // The GOT section.
1281 Output_data_got_powerpc<size, big_endian>* got_;
1282 // The PLT section. This is a container for a table of addresses,
1283 // and their relocations. Each address in the PLT has a dynamic
1284 // relocation (R_*_JMP_SLOT) and each address will have a
1285 // corresponding entry in .glink for lazy resolution of the PLT.
1286 // ppc32 initialises the PLT to point at the .glink entry, while
1287 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1288 // linker adds a stub that loads the PLT entry into ctr then
1289 // branches to ctr. There may be more than one stub for each PLT
1290 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1291 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1292 Output_data_plt_powerpc<size, big_endian>* plt_;
1293 // The IPLT section. Like plt_, this is a container for a table of
1294 // addresses and their relocations, specifically for STT_GNU_IFUNC
1295 // functions that resolve locally (STT_GNU_IFUNC functions that
1296 // don't resolve locally go in PLT). Unlike plt_, these have no
1297 // entry in .glink for lazy resolution, and the relocation section
1298 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1299 // the relocation section may contain relocations against
1300 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1301 // relocation section will appear at the end of other dynamic
1302 // relocations, so that ld.so applies these relocations after other
1303 // dynamic relocations. In a static executable, the relocation
1304 // section is emitted and marked with __rela_iplt_start and
1305 // __rela_iplt_end symbols.
1306 Output_data_plt_powerpc<size, big_endian>* iplt_;
1307 // Section holding long branch destinations.
1308 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1309 // The .glink section.
1310 Output_data_glink<size, big_endian>* glink_;
1311 // The dynamic reloc section.
1312 Reloc_section* rela_dyn_;
1313 // Relocs saved to avoid a COPY reloc.
1314 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1315 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1316 unsigned int tlsld_got_offset_;
1317
1318 Stub_tables stub_tables_;
1319 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1320 Branch_lookup_table branch_lookup_table_;
1321
1322 typedef std::vector<Branch_info> Branches;
1323 Branches branch_info_;
1324
1325 bool plt_thread_safe_;
1326
1327 bool relax_failed_;
1328 int relax_fail_count_;
1329 int32_t stub_group_size_;
1330
1331 Output_data_save_res<size, big_endian> *savres_section_;
1332 };
1333
1334 template<>
1335 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1336 {
1337 32, // size
1338 true, // is_big_endian
1339 elfcpp::EM_PPC, // machine_code
1340 false, // has_make_symbol
1341 false, // has_resolve
1342 false, // has_code_fill
1343 true, // is_default_stack_executable
1344 false, // can_icf_inline_merge_sections
1345 '\0', // wrap_char
1346 "/usr/lib/ld.so.1", // dynamic_linker
1347 0x10000000, // default_text_segment_address
1348 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1349 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1350 false, // isolate_execinstr
1351 0, // rosegment_gap
1352 elfcpp::SHN_UNDEF, // small_common_shndx
1353 elfcpp::SHN_UNDEF, // large_common_shndx
1354 0, // small_common_section_flags
1355 0, // large_common_section_flags
1356 NULL, // attributes_section
1357 NULL, // attributes_vendor
1358 "_start", // entry_symbol_name
1359 32, // hash_entry_size
1360 };
1361
1362 template<>
1363 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1364 {
1365 32, // size
1366 false, // is_big_endian
1367 elfcpp::EM_PPC, // machine_code
1368 false, // has_make_symbol
1369 false, // has_resolve
1370 false, // has_code_fill
1371 true, // is_default_stack_executable
1372 false, // can_icf_inline_merge_sections
1373 '\0', // wrap_char
1374 "/usr/lib/ld.so.1", // dynamic_linker
1375 0x10000000, // default_text_segment_address
1376 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1377 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1378 false, // isolate_execinstr
1379 0, // rosegment_gap
1380 elfcpp::SHN_UNDEF, // small_common_shndx
1381 elfcpp::SHN_UNDEF, // large_common_shndx
1382 0, // small_common_section_flags
1383 0, // large_common_section_flags
1384 NULL, // attributes_section
1385 NULL, // attributes_vendor
1386 "_start", // entry_symbol_name
1387 32, // hash_entry_size
1388 };
1389
1390 template<>
1391 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1392 {
1393 64, // size
1394 true, // is_big_endian
1395 elfcpp::EM_PPC64, // machine_code
1396 false, // has_make_symbol
1397 false, // has_resolve
1398 false, // has_code_fill
1399 true, // is_default_stack_executable
1400 false, // can_icf_inline_merge_sections
1401 '\0', // wrap_char
1402 "/usr/lib/ld.so.1", // dynamic_linker
1403 0x10000000, // default_text_segment_address
1404 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1405 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1406 false, // isolate_execinstr
1407 0, // rosegment_gap
1408 elfcpp::SHN_UNDEF, // small_common_shndx
1409 elfcpp::SHN_UNDEF, // large_common_shndx
1410 0, // small_common_section_flags
1411 0, // large_common_section_flags
1412 NULL, // attributes_section
1413 NULL, // attributes_vendor
1414 "_start", // entry_symbol_name
1415 32, // hash_entry_size
1416 };
1417
1418 template<>
1419 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1420 {
1421 64, // size
1422 false, // is_big_endian
1423 elfcpp::EM_PPC64, // machine_code
1424 false, // has_make_symbol
1425 false, // has_resolve
1426 false, // has_code_fill
1427 true, // is_default_stack_executable
1428 false, // can_icf_inline_merge_sections
1429 '\0', // wrap_char
1430 "/usr/lib/ld.so.1", // dynamic_linker
1431 0x10000000, // default_text_segment_address
1432 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1433 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1434 false, // isolate_execinstr
1435 0, // rosegment_gap
1436 elfcpp::SHN_UNDEF, // small_common_shndx
1437 elfcpp::SHN_UNDEF, // large_common_shndx
1438 0, // small_common_section_flags
1439 0, // large_common_section_flags
1440 NULL, // attributes_section
1441 NULL, // attributes_vendor
1442 "_start", // entry_symbol_name
1443 32, // hash_entry_size
1444 };
1445
1446 inline bool
1447 is_branch_reloc(unsigned int r_type)
1448 {
1449 return (r_type == elfcpp::R_POWERPC_REL24
1450 || r_type == elfcpp::R_PPC_PLTREL24
1451 || r_type == elfcpp::R_PPC_LOCAL24PC
1452 || r_type == elfcpp::R_POWERPC_REL14
1453 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1454 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1455 || r_type == elfcpp::R_POWERPC_ADDR24
1456 || r_type == elfcpp::R_POWERPC_ADDR14
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1458 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1459 }
1460
1461 // If INSN is an opcode that may be used with an @tls operand, return
1462 // the transformed insn for TLS optimisation, otherwise return 0. If
1463 // REG is non-zero only match an insn with RB or RA equal to REG.
1464 uint32_t
1465 at_tls_transform(uint32_t insn, unsigned int reg)
1466 {
1467 if ((insn & (0x3f << 26)) != 31 << 26)
1468 return 0;
1469
1470 unsigned int rtra;
1471 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1472 rtra = insn & ((1 << 26) - (1 << 16));
1473 else if (((insn >> 16) & 0x1f) == reg)
1474 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1475 else
1476 return 0;
1477
1478 if ((insn & (0x3ff << 1)) == 266 << 1)
1479 // add -> addi
1480 insn = 14 << 26;
1481 else if ((insn & (0x1f << 1)) == 23 << 1
1482 && ((insn & (0x1f << 6)) < 14 << 6
1483 || ((insn & (0x1f << 6)) >= 16 << 6
1484 && (insn & (0x1f << 6)) < 24 << 6)))
1485 // load and store indexed -> dform
1486 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1487 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1488 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1489 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1490 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1491 // lwax -> lwa
1492 insn = (58 << 26) | 2;
1493 else
1494 return 0;
1495 insn |= rtra;
1496 return insn;
1497 }
1498
1499
1500 template<int size, bool big_endian>
1501 class Powerpc_relocate_functions
1502 {
1503 public:
1504 enum Overflow_check
1505 {
1506 CHECK_NONE,
1507 CHECK_SIGNED,
1508 CHECK_UNSIGNED,
1509 CHECK_BITFIELD,
1510 CHECK_LOW_INSN,
1511 CHECK_HIGH_INSN
1512 };
1513
1514 enum Status
1515 {
1516 STATUS_OK,
1517 STATUS_OVERFLOW
1518 };
1519
1520 private:
1521 typedef Powerpc_relocate_functions<size, big_endian> This;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1523 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1524
1525 template<int valsize>
1526 static inline bool
1527 has_overflow_signed(Address value)
1528 {
1529 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1530 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) >> 1);
1532 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1533 return value + limit > (limit << 1) - 1;
1534 }
1535
1536 template<int valsize>
1537 static inline bool
1538 has_overflow_unsigned(Address value)
1539 {
1540 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) >> 1);
1542 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1543 return value > (limit << 1) - 1;
1544 }
1545
1546 template<int valsize>
1547 static inline bool
1548 has_overflow_bitfield(Address value)
1549 {
1550 return (has_overflow_unsigned<valsize>(value)
1551 && has_overflow_signed<valsize>(value));
1552 }
1553
1554 template<int valsize>
1555 static inline Status
1556 overflowed(Address value, Overflow_check overflow)
1557 {
1558 if (overflow == CHECK_SIGNED)
1559 {
1560 if (has_overflow_signed<valsize>(value))
1561 return STATUS_OVERFLOW;
1562 }
1563 else if (overflow == CHECK_UNSIGNED)
1564 {
1565 if (has_overflow_unsigned<valsize>(value))
1566 return STATUS_OVERFLOW;
1567 }
1568 else if (overflow == CHECK_BITFIELD)
1569 {
1570 if (has_overflow_bitfield<valsize>(value))
1571 return STATUS_OVERFLOW;
1572 }
1573 return STATUS_OK;
1574 }
1575
1576 // Do a simple RELA relocation
1577 template<int fieldsize, int valsize>
1578 static inline Status
1579 rela(unsigned char* view, Address value, Overflow_check overflow)
1580 {
1581 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1582 Valtype* wv = reinterpret_cast<Valtype*>(view);
1583 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1584 return overflowed<valsize>(value, overflow);
1585 }
1586
1587 template<int fieldsize, int valsize>
1588 static inline Status
1589 rela(unsigned char* view,
1590 unsigned int right_shift,
1591 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1592 Address value,
1593 Overflow_check overflow)
1594 {
1595 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1596 Valtype* wv = reinterpret_cast<Valtype*>(view);
1597 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1598 Valtype reloc = value >> right_shift;
1599 val &= ~dst_mask;
1600 reloc &= dst_mask;
1601 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1602 return overflowed<valsize>(value >> right_shift, overflow);
1603 }
1604
1605 // Do a simple RELA relocation, unaligned.
1606 template<int fieldsize, int valsize>
1607 static inline Status
1608 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1609 {
1610 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1611 return overflowed<valsize>(value, overflow);
1612 }
1613
1614 template<int fieldsize, int valsize>
1615 static inline Status
1616 rela_ua(unsigned char* view,
1617 unsigned int right_shift,
1618 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1619 Address value,
1620 Overflow_check overflow)
1621 {
1622 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1623 Valtype;
1624 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1625 Valtype reloc = value >> right_shift;
1626 val &= ~dst_mask;
1627 reloc &= dst_mask;
1628 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1629 return overflowed<valsize>(value >> right_shift, overflow);
1630 }
1631
1632 public:
1633 // R_PPC64_ADDR64: (Symbol + Addend)
1634 static inline void
1635 addr64(unsigned char* view, Address value)
1636 { This::template rela<64,64>(view, value, CHECK_NONE); }
1637
1638 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1639 static inline void
1640 addr64_u(unsigned char* view, Address value)
1641 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1642
1643 // R_POWERPC_ADDR32: (Symbol + Addend)
1644 static inline Status
1645 addr32(unsigned char* view, Address value, Overflow_check overflow)
1646 { return This::template rela<32,32>(view, value, overflow); }
1647
1648 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1649 static inline Status
1650 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1651 { return This::template rela_ua<32,32>(view, value, overflow); }
1652
1653 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1654 static inline Status
1655 addr24(unsigned char* view, Address value, Overflow_check overflow)
1656 {
1657 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1658 value, overflow);
1659 if (overflow != CHECK_NONE && (value & 3) != 0)
1660 stat = STATUS_OVERFLOW;
1661 return stat;
1662 }
1663
1664 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1665 static inline Status
1666 addr16(unsigned char* view, Address value, Overflow_check overflow)
1667 { return This::template rela<16,16>(view, value, overflow); }
1668
1669 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1670 static inline Status
1671 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1672 { return This::template rela_ua<16,16>(view, value, overflow); }
1673
1674 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1675 static inline Status
1676 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1677 {
1678 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1679 if ((value & 3) != 0)
1680 stat = STATUS_OVERFLOW;
1681 return stat;
1682 }
1683
1684 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1685 static inline Status
1686 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1687 {
1688 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1689 if ((value & 15) != 0)
1690 stat = STATUS_OVERFLOW;
1691 return stat;
1692 }
1693
1694 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1695 static inline void
1696 addr16_hi(unsigned char* view, Address value)
1697 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1698
1699 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1700 static inline void
1701 addr16_ha(unsigned char* view, Address value)
1702 { This::addr16_hi(view, value + 0x8000); }
1703
1704 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1705 static inline void
1706 addr16_hi2(unsigned char* view, Address value)
1707 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1708
1709 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1710 static inline void
1711 addr16_ha2(unsigned char* view, Address value)
1712 { This::addr16_hi2(view, value + 0x8000); }
1713
1714 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1715 static inline void
1716 addr16_hi3(unsigned char* view, Address value)
1717 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1718
1719 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1720 static inline void
1721 addr16_ha3(unsigned char* view, Address value)
1722 { This::addr16_hi3(view, value + 0x8000); }
1723
1724 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1725 static inline Status
1726 addr14(unsigned char* view, Address value, Overflow_check overflow)
1727 {
1728 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1729 if (overflow != CHECK_NONE && (value & 3) != 0)
1730 stat = STATUS_OVERFLOW;
1731 return stat;
1732 }
1733
1734 // R_POWERPC_REL16DX_HA
1735 static inline Status
1736 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1737 {
1738 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1739 Valtype* wv = reinterpret_cast<Valtype*>(view);
1740 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1741 value += 0x8000;
1742 value = static_cast<SignedAddress>(value) >> 16;
1743 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1744 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1745 return overflowed<16>(value, overflow);
1746 }
1747 };
1748
1749 // Set ABI version for input and output.
1750
1751 template<int size, bool big_endian>
1752 void
1753 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1754 {
1755 this->e_flags_ |= ver;
1756 if (this->abiversion() != 0)
1757 {
1758 Target_powerpc<size, big_endian>* target =
1759 static_cast<Target_powerpc<size, big_endian>*>(
1760 parameters->sized_target<size, big_endian>());
1761 if (target->abiversion() == 0)
1762 target->set_abiversion(this->abiversion());
1763 else if (target->abiversion() != this->abiversion())
1764 gold_error(_("%s: ABI version %d is not compatible "
1765 "with ABI version %d output"),
1766 this->name().c_str(),
1767 this->abiversion(), target->abiversion());
1768
1769 }
1770 }
1771
1772 // Stash away the index of .got2 or .opd in a relocatable object, if
1773 // such a section exists.
1774
1775 template<int size, bool big_endian>
1776 bool
1777 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1778 Read_symbols_data* sd)
1779 {
1780 const unsigned char* const pshdrs = sd->section_headers->data();
1781 const unsigned char* namesu = sd->section_names->data();
1782 const char* names = reinterpret_cast<const char*>(namesu);
1783 section_size_type names_size = sd->section_names_size;
1784 const unsigned char* s;
1785
1786 s = this->template find_shdr<size, big_endian>(pshdrs,
1787 size == 32 ? ".got2" : ".opd",
1788 names, names_size, NULL);
1789 if (s != NULL)
1790 {
1791 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1792 this->special_ = ndx;
1793 if (size == 64)
1794 {
1795 if (this->abiversion() == 0)
1796 this->set_abiversion(1);
1797 else if (this->abiversion() > 1)
1798 gold_error(_("%s: .opd invalid in abiv%d"),
1799 this->name().c_str(), this->abiversion());
1800 }
1801 }
1802 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1803 }
1804
1805 // Examine .rela.opd to build info about function entry points.
1806
1807 template<int size, bool big_endian>
1808 void
1809 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1810 size_t reloc_count,
1811 const unsigned char* prelocs,
1812 const unsigned char* plocal_syms)
1813 {
1814 if (size == 64)
1815 {
1816 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1817 Reltype;
1818 const int reloc_size
1819 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1820 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1821 Address expected_off = 0;
1822 bool regular = true;
1823 unsigned int opd_ent_size = 0;
1824
1825 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1826 {
1827 Reltype reloc(prelocs);
1828 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1829 = reloc.get_r_info();
1830 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1831 if (r_type == elfcpp::R_PPC64_ADDR64)
1832 {
1833 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1834 typename elfcpp::Elf_types<size>::Elf_Addr value;
1835 bool is_ordinary;
1836 unsigned int shndx;
1837 if (r_sym < this->local_symbol_count())
1838 {
1839 typename elfcpp::Sym<size, big_endian>
1840 lsym(plocal_syms + r_sym * sym_size);
1841 shndx = lsym.get_st_shndx();
1842 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1843 value = lsym.get_st_value();
1844 }
1845 else
1846 shndx = this->symbol_section_and_value(r_sym, &value,
1847 &is_ordinary);
1848 this->set_opd_ent(reloc.get_r_offset(), shndx,
1849 value + reloc.get_r_addend());
1850 if (i == 2)
1851 {
1852 expected_off = reloc.get_r_offset();
1853 opd_ent_size = expected_off;
1854 }
1855 else if (expected_off != reloc.get_r_offset())
1856 regular = false;
1857 expected_off += opd_ent_size;
1858 }
1859 else if (r_type == elfcpp::R_PPC64_TOC)
1860 {
1861 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1862 regular = false;
1863 }
1864 else
1865 {
1866 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1867 this->name().c_str(), r_type);
1868 regular = false;
1869 }
1870 }
1871 if (reloc_count <= 2)
1872 opd_ent_size = this->section_size(this->opd_shndx());
1873 if (opd_ent_size != 24 && opd_ent_size != 16)
1874 regular = false;
1875 if (!regular)
1876 {
1877 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1878 this->name().c_str());
1879 opd_ent_size = 0;
1880 }
1881 }
1882 }
1883
1884 template<int size, bool big_endian>
1885 void
1886 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1887 {
1888 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1889 if (size == 64)
1890 {
1891 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1892 p != rd->relocs.end();
1893 ++p)
1894 {
1895 if (p->data_shndx == this->opd_shndx())
1896 {
1897 uint64_t opd_size = this->section_size(this->opd_shndx());
1898 gold_assert(opd_size == static_cast<size_t>(opd_size));
1899 if (opd_size != 0)
1900 {
1901 this->init_opd(opd_size);
1902 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1903 rd->local_symbols->data());
1904 }
1905 break;
1906 }
1907 }
1908 }
1909 }
1910
1911 // Read the symbols then set up st_other vector.
1912
1913 template<int size, bool big_endian>
1914 void
1915 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1916 {
1917 this->base_read_symbols(sd);
1918 if (size == 64)
1919 {
1920 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1921 const unsigned char* const pshdrs = sd->section_headers->data();
1922 const unsigned int loccount = this->do_local_symbol_count();
1923 if (loccount != 0)
1924 {
1925 this->st_other_.resize(loccount);
1926 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1927 off_t locsize = loccount * sym_size;
1928 const unsigned int symtab_shndx = this->symtab_shndx();
1929 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1930 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1931 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1932 locsize, true, false);
1933 psyms += sym_size;
1934 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1935 {
1936 elfcpp::Sym<size, big_endian> sym(psyms);
1937 unsigned char st_other = sym.get_st_other();
1938 this->st_other_[i] = st_other;
1939 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1940 {
1941 if (this->abiversion() == 0)
1942 this->set_abiversion(2);
1943 else if (this->abiversion() < 2)
1944 gold_error(_("%s: local symbol %d has invalid st_other"
1945 " for ABI version 1"),
1946 this->name().c_str(), i);
1947 }
1948 }
1949 }
1950 }
1951 }
1952
1953 template<int size, bool big_endian>
1954 void
1955 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1956 {
1957 this->e_flags_ |= ver;
1958 if (this->abiversion() != 0)
1959 {
1960 Target_powerpc<size, big_endian>* target =
1961 static_cast<Target_powerpc<size, big_endian>*>(
1962 parameters->sized_target<size, big_endian>());
1963 if (target->abiversion() == 0)
1964 target->set_abiversion(this->abiversion());
1965 else if (target->abiversion() != this->abiversion())
1966 gold_error(_("%s: ABI version %d is not compatible "
1967 "with ABI version %d output"),
1968 this->name().c_str(),
1969 this->abiversion(), target->abiversion());
1970
1971 }
1972 }
1973
1974 // Call Sized_dynobj::base_read_symbols to read the symbols then
1975 // read .opd from a dynamic object, filling in opd_ent_ vector,
1976
1977 template<int size, bool big_endian>
1978 void
1979 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1980 {
1981 this->base_read_symbols(sd);
1982 if (size == 64)
1983 {
1984 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1985 const unsigned char* const pshdrs = sd->section_headers->data();
1986 const unsigned char* namesu = sd->section_names->data();
1987 const char* names = reinterpret_cast<const char*>(namesu);
1988 const unsigned char* s = NULL;
1989 const unsigned char* opd;
1990 section_size_type opd_size;
1991
1992 // Find and read .opd section.
1993 while (1)
1994 {
1995 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1996 sd->section_names_size,
1997 s);
1998 if (s == NULL)
1999 return;
2000
2001 typename elfcpp::Shdr<size, big_endian> shdr(s);
2002 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2003 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2004 {
2005 if (this->abiversion() == 0)
2006 this->set_abiversion(1);
2007 else if (this->abiversion() > 1)
2008 gold_error(_("%s: .opd invalid in abiv%d"),
2009 this->name().c_str(), this->abiversion());
2010
2011 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2012 this->opd_address_ = shdr.get_sh_addr();
2013 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2014 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2015 true, false);
2016 break;
2017 }
2018 }
2019
2020 // Build set of executable sections.
2021 // Using a set is probably overkill. There is likely to be only
2022 // a few executable sections, typically .init, .text and .fini,
2023 // and they are generally grouped together.
2024 typedef std::set<Sec_info> Exec_sections;
2025 Exec_sections exec_sections;
2026 s = pshdrs;
2027 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2028 {
2029 typename elfcpp::Shdr<size, big_endian> shdr(s);
2030 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2031 && ((shdr.get_sh_flags()
2032 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2034 && shdr.get_sh_size() != 0)
2035 {
2036 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2037 shdr.get_sh_size(), i));
2038 }
2039 }
2040 if (exec_sections.empty())
2041 return;
2042
2043 // Look over the OPD entries. This is complicated by the fact
2044 // that some binaries will use two-word entries while others
2045 // will use the standard three-word entries. In most cases
2046 // the third word (the environment pointer for languages like
2047 // Pascal) is unused and will be zero. If the third word is
2048 // used it should not be pointing into executable sections,
2049 // I think.
2050 this->init_opd(opd_size);
2051 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2052 {
2053 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2054 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2055 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2056 if (val == 0)
2057 // Chances are that this is the third word of an OPD entry.
2058 continue;
2059 typename Exec_sections::const_iterator e
2060 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2061 if (e != exec_sections.begin())
2062 {
2063 --e;
2064 if (e->start <= val && val < e->start + e->len)
2065 {
2066 // We have an address in an executable section.
2067 // VAL ought to be the function entry, set it up.
2068 this->set_opd_ent(p - opd, e->shndx, val);
2069 // Skip second word of OPD entry, the TOC pointer.
2070 p += 8;
2071 }
2072 }
2073 // If we didn't match any executable sections, we likely
2074 // have a non-zero third word in the OPD entry.
2075 }
2076 }
2077 }
2078
2079 // Set up some symbols.
2080
2081 template<int size, bool big_endian>
2082 void
2083 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2084 Symbol_table* symtab,
2085 Layout* layout)
2086 {
2087 if (size == 32)
2088 {
2089 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2090 // undefined when scanning relocs (and thus requires
2091 // non-relative dynamic relocs). The proper value will be
2092 // updated later.
2093 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2094 if (gotsym != NULL && gotsym->is_undefined())
2095 {
2096 Target_powerpc<size, big_endian>* target =
2097 static_cast<Target_powerpc<size, big_endian>*>(
2098 parameters->sized_target<size, big_endian>());
2099 Output_data_got_powerpc<size, big_endian>* got
2100 = target->got_section(symtab, layout);
2101 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2102 Symbol_table::PREDEFINED,
2103 got, 0, 0,
2104 elfcpp::STT_OBJECT,
2105 elfcpp::STB_LOCAL,
2106 elfcpp::STV_HIDDEN, 0,
2107 false, false);
2108 }
2109
2110 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2111 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2112 if (sdasym != NULL && sdasym->is_undefined())
2113 {
2114 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2115 Output_section* os
2116 = layout->add_output_section_data(".sdata", 0,
2117 elfcpp::SHF_ALLOC
2118 | elfcpp::SHF_WRITE,
2119 sdata, ORDER_SMALL_DATA, false);
2120 symtab->define_in_output_data("_SDA_BASE_", NULL,
2121 Symbol_table::PREDEFINED,
2122 os, 32768, 0, elfcpp::STT_OBJECT,
2123 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2124 0, false, false);
2125 }
2126 }
2127 else
2128 {
2129 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2130 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2131 if (gotsym != NULL && gotsym->is_undefined())
2132 {
2133 Target_powerpc<size, big_endian>* target =
2134 static_cast<Target_powerpc<size, big_endian>*>(
2135 parameters->sized_target<size, big_endian>());
2136 Output_data_got_powerpc<size, big_endian>* got
2137 = target->got_section(symtab, layout);
2138 symtab->define_in_output_data(".TOC.", NULL,
2139 Symbol_table::PREDEFINED,
2140 got, 0x8000, 0,
2141 elfcpp::STT_OBJECT,
2142 elfcpp::STB_LOCAL,
2143 elfcpp::STV_HIDDEN, 0,
2144 false, false);
2145 }
2146 }
2147 }
2148
2149 // Set up PowerPC target specific relobj.
2150
2151 template<int size, bool big_endian>
2152 Object*
2153 Target_powerpc<size, big_endian>::do_make_elf_object(
2154 const std::string& name,
2155 Input_file* input_file,
2156 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2157 {
2158 int et = ehdr.get_e_type();
2159 // ET_EXEC files are valid input for --just-symbols/-R,
2160 // and we treat them as relocatable objects.
2161 if (et == elfcpp::ET_REL
2162 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2163 {
2164 Powerpc_relobj<size, big_endian>* obj =
2165 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2166 obj->setup();
2167 return obj;
2168 }
2169 else if (et == elfcpp::ET_DYN)
2170 {
2171 Powerpc_dynobj<size, big_endian>* obj =
2172 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2173 obj->setup();
2174 return obj;
2175 }
2176 else
2177 {
2178 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2179 return NULL;
2180 }
2181 }
2182
2183 template<int size, bool big_endian>
2184 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2185 {
2186 public:
2187 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2188 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2189
2190 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2191 : Output_data_got<size, big_endian>(),
2192 symtab_(symtab), layout_(layout),
2193 header_ent_cnt_(size == 32 ? 3 : 1),
2194 header_index_(size == 32 ? 0x2000 : 0)
2195 {
2196 if (size == 64)
2197 this->set_addralign(256);
2198 }
2199
2200 // Override all the Output_data_got methods we use so as to first call
2201 // reserve_ent().
2202 bool
2203 add_global(Symbol* gsym, unsigned int got_type)
2204 {
2205 this->reserve_ent();
2206 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2207 }
2208
2209 bool
2210 add_global_plt(Symbol* gsym, unsigned int got_type)
2211 {
2212 this->reserve_ent();
2213 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2214 }
2215
2216 bool
2217 add_global_tls(Symbol* gsym, unsigned int got_type)
2218 { return this->add_global_plt(gsym, got_type); }
2219
2220 void
2221 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2222 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2223 {
2224 this->reserve_ent();
2225 Output_data_got<size, big_endian>::
2226 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2227 }
2228
2229 void
2230 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2231 Output_data_reloc_generic* rel_dyn,
2232 unsigned int r_type_1, unsigned int r_type_2)
2233 {
2234 this->reserve_ent(2);
2235 Output_data_got<size, big_endian>::
2236 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2237 }
2238
2239 bool
2240 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2241 {
2242 this->reserve_ent();
2243 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2244 got_type);
2245 }
2246
2247 bool
2248 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2249 {
2250 this->reserve_ent();
2251 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2252 got_type);
2253 }
2254
2255 bool
2256 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2257 { return this->add_local_plt(object, sym_index, got_type); }
2258
2259 void
2260 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2261 unsigned int got_type,
2262 Output_data_reloc_generic* rel_dyn,
2263 unsigned int r_type)
2264 {
2265 this->reserve_ent(2);
2266 Output_data_got<size, big_endian>::
2267 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2268 }
2269
2270 unsigned int
2271 add_constant(Valtype constant)
2272 {
2273 this->reserve_ent();
2274 return Output_data_got<size, big_endian>::add_constant(constant);
2275 }
2276
2277 unsigned int
2278 add_constant_pair(Valtype c1, Valtype c2)
2279 {
2280 this->reserve_ent(2);
2281 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2282 }
2283
2284 // Offset of _GLOBAL_OFFSET_TABLE_.
2285 unsigned int
2286 g_o_t() const
2287 {
2288 return this->got_offset(this->header_index_);
2289 }
2290
2291 // Offset of base used to access the GOT/TOC.
2292 // The got/toc pointer reg will be set to this value.
2293 Valtype
2294 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2295 {
2296 if (size == 32)
2297 return this->g_o_t();
2298 else
2299 return (this->output_section()->address()
2300 + object->toc_base_offset()
2301 - this->address());
2302 }
2303
2304 // Ensure our GOT has a header.
2305 void
2306 set_final_data_size()
2307 {
2308 if (this->header_ent_cnt_ != 0)
2309 this->make_header();
2310 Output_data_got<size, big_endian>::set_final_data_size();
2311 }
2312
2313 // First word of GOT header needs some values that are not
2314 // handled by Output_data_got so poke them in here.
2315 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2316 void
2317 do_write(Output_file* of)
2318 {
2319 Valtype val = 0;
2320 if (size == 32 && this->layout_->dynamic_data() != NULL)
2321 val = this->layout_->dynamic_section()->address();
2322 if (size == 64)
2323 val = this->output_section()->address() + 0x8000;
2324 this->replace_constant(this->header_index_, val);
2325 Output_data_got<size, big_endian>::do_write(of);
2326 }
2327
2328 private:
2329 void
2330 reserve_ent(unsigned int cnt = 1)
2331 {
2332 if (this->header_ent_cnt_ == 0)
2333 return;
2334 if (this->num_entries() + cnt > this->header_index_)
2335 this->make_header();
2336 }
2337
2338 void
2339 make_header()
2340 {
2341 this->header_ent_cnt_ = 0;
2342 this->header_index_ = this->num_entries();
2343 if (size == 32)
2344 {
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347 Output_data_got<size, big_endian>::add_constant(0);
2348
2349 // Define _GLOBAL_OFFSET_TABLE_ at the header
2350 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2351 if (gotsym != NULL)
2352 {
2353 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2354 sym->set_value(this->g_o_t());
2355 }
2356 else
2357 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2358 Symbol_table::PREDEFINED,
2359 this, this->g_o_t(), 0,
2360 elfcpp::STT_OBJECT,
2361 elfcpp::STB_LOCAL,
2362 elfcpp::STV_HIDDEN, 0,
2363 false, false);
2364 }
2365 else
2366 Output_data_got<size, big_endian>::add_constant(0);
2367 }
2368
2369 // Stashed pointers.
2370 Symbol_table* symtab_;
2371 Layout* layout_;
2372
2373 // GOT header size.
2374 unsigned int header_ent_cnt_;
2375 // GOT header index.
2376 unsigned int header_index_;
2377 };
2378
2379 // Get the GOT section, creating it if necessary.
2380
2381 template<int size, bool big_endian>
2382 Output_data_got_powerpc<size, big_endian>*
2383 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2384 Layout* layout)
2385 {
2386 if (this->got_ == NULL)
2387 {
2388 gold_assert(symtab != NULL && layout != NULL);
2389
2390 this->got_
2391 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2392
2393 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2394 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2395 this->got_, ORDER_DATA, false);
2396 }
2397
2398 return this->got_;
2399 }
2400
2401 // Get the dynamic reloc section, creating it if necessary.
2402
2403 template<int size, bool big_endian>
2404 typename Target_powerpc<size, big_endian>::Reloc_section*
2405 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2406 {
2407 if (this->rela_dyn_ == NULL)
2408 {
2409 gold_assert(layout != NULL);
2410 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2411 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2412 elfcpp::SHF_ALLOC, this->rela_dyn_,
2413 ORDER_DYNAMIC_RELOCS, false);
2414 }
2415 return this->rela_dyn_;
2416 }
2417
2418 // Similarly, but for ifunc symbols get the one for ifunc.
2419
2420 template<int size, bool big_endian>
2421 typename Target_powerpc<size, big_endian>::Reloc_section*
2422 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2423 Layout* layout,
2424 bool for_ifunc)
2425 {
2426 if (!for_ifunc)
2427 return this->rela_dyn_section(layout);
2428
2429 if (this->iplt_ == NULL)
2430 this->make_iplt_section(symtab, layout);
2431 return this->iplt_->rel_plt();
2432 }
2433
2434 class Stub_control
2435 {
2436 public:
2437 // Determine the stub group size. The group size is the absolute
2438 // value of the parameter --stub-group-size. If --stub-group-size
2439 // is passed a negative value, we restrict stubs to be always before
2440 // the stubbed branches.
2441 Stub_control(int32_t size, bool no_size_errors)
2442 : state_(NO_GROUP), stub_group_size_(abs(size)),
2443 stub14_group_size_(abs(size) >> 10),
2444 stubs_always_before_branch_(size < 0),
2445 suppress_size_errors_(no_size_errors),
2446 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2447 {
2448 }
2449
2450 // Return true iff input section can be handled by current stub
2451 // group.
2452 bool
2453 can_add_to_stub_group(Output_section* o,
2454 const Output_section::Input_section* i,
2455 bool has14);
2456
2457 const Output_section::Input_section*
2458 owner()
2459 { return owner_; }
2460
2461 Output_section*
2462 output_section()
2463 { return output_section_; }
2464
2465 void
2466 set_output_and_owner(Output_section* o,
2467 const Output_section::Input_section* i)
2468 {
2469 this->output_section_ = o;
2470 this->owner_ = i;
2471 }
2472
2473 private:
2474 typedef enum
2475 {
2476 NO_GROUP,
2477 FINDING_STUB_SECTION,
2478 HAS_STUB_SECTION
2479 } State;
2480
2481 State state_;
2482 uint32_t stub_group_size_;
2483 uint32_t stub14_group_size_;
2484 bool stubs_always_before_branch_;
2485 bool suppress_size_errors_;
2486 uint64_t group_end_addr_;
2487 const Output_section::Input_section* owner_;
2488 Output_section* output_section_;
2489 };
2490
2491 // Return true iff input section can be handled by current stub
2492 // group.
2493
2494 bool
2495 Stub_control::can_add_to_stub_group(Output_section* o,
2496 const Output_section::Input_section* i,
2497 bool has14)
2498 {
2499 uint32_t group_size
2500 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2501 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2502 uint64_t this_size;
2503 uint64_t start_addr = o->address();
2504
2505 if (whole_sec)
2506 // .init and .fini sections are pasted together to form a single
2507 // function. We can't be adding stubs in the middle of the function.
2508 this_size = o->data_size();
2509 else
2510 {
2511 start_addr += i->relobj()->output_section_offset(i->shndx());
2512 this_size = i->data_size();
2513 }
2514 uint64_t end_addr = start_addr + this_size;
2515 bool toobig = this_size > group_size;
2516
2517 if (toobig && !this->suppress_size_errors_)
2518 gold_warning(_("%s:%s exceeds group size"),
2519 i->relobj()->name().c_str(),
2520 i->relobj()->section_name(i->shndx()).c_str());
2521
2522 if (this->state_ != HAS_STUB_SECTION
2523 && (!whole_sec || this->output_section_ != o)
2524 && (this->state_ == NO_GROUP
2525 || this->group_end_addr_ - end_addr < group_size))
2526 {
2527 this->owner_ = i;
2528 this->output_section_ = o;
2529 }
2530
2531 if (this->state_ == NO_GROUP)
2532 {
2533 this->state_ = FINDING_STUB_SECTION;
2534 this->group_end_addr_ = end_addr;
2535 }
2536 else if (this->group_end_addr_ - start_addr < group_size)
2537 ;
2538 // Adding this section would make the group larger than GROUP_SIZE.
2539 else if (this->state_ == FINDING_STUB_SECTION
2540 && !this->stubs_always_before_branch_
2541 && !toobig)
2542 {
2543 // But wait, there's more! Input sections up to GROUP_SIZE
2544 // bytes before the stub table can be handled by it too.
2545 this->state_ = HAS_STUB_SECTION;
2546 this->group_end_addr_ = end_addr;
2547 }
2548 else
2549 {
2550 this->state_ = NO_GROUP;
2551 return false;
2552 }
2553 return true;
2554 }
2555
2556 // Look over all the input sections, deciding where to place stubs.
2557
2558 template<int size, bool big_endian>
2559 void
2560 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2561 const Task*,
2562 bool no_size_errors)
2563 {
2564 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2565
2566 // Group input sections and insert stub table
2567 Stub_table_owner* table_owner = NULL;
2568 std::vector<Stub_table_owner*> tables;
2569 Layout::Section_list section_list;
2570 layout->get_executable_sections(&section_list);
2571 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2572 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2573 o != section_list.rend();
2574 ++o)
2575 {
2576 typedef Output_section::Input_section_list Input_section_list;
2577 for (Input_section_list::const_reverse_iterator i
2578 = (*o)->input_sections().rbegin();
2579 i != (*o)->input_sections().rend();
2580 ++i)
2581 {
2582 if (i->is_input_section()
2583 || i->is_relaxed_input_section())
2584 {
2585 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2586 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2587 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2588 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2589 {
2590 table_owner->output_section = stub_control.output_section();
2591 table_owner->owner = stub_control.owner();
2592 stub_control.set_output_and_owner(*o, &*i);
2593 table_owner = NULL;
2594 }
2595 if (table_owner == NULL)
2596 {
2597 table_owner = new Stub_table_owner;
2598 tables.push_back(table_owner);
2599 }
2600 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2601 }
2602 }
2603 }
2604 if (table_owner != NULL)
2605 {
2606 const Output_section::Input_section* i = stub_control.owner();
2607
2608 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2609 {
2610 // Corner case. A new stub group was made for the first
2611 // section (last one looked at here) for some reason, but
2612 // the first section is already being used as the owner for
2613 // a stub table for following sections. Force it into that
2614 // stub group.
2615 tables.pop_back();
2616 delete table_owner;
2617 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2618 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2619 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2620 }
2621 else
2622 {
2623 table_owner->output_section = stub_control.output_section();
2624 table_owner->owner = i;
2625 }
2626 }
2627 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2628 t != tables.end();
2629 ++t)
2630 {
2631 Stub_table<size, big_endian>* stub_table;
2632
2633 if ((*t)->owner->is_input_section())
2634 stub_table = new Stub_table<size, big_endian>(this,
2635 (*t)->output_section,
2636 (*t)->owner);
2637 else if ((*t)->owner->is_relaxed_input_section())
2638 stub_table = static_cast<Stub_table<size, big_endian>*>(
2639 (*t)->owner->relaxed_input_section());
2640 else
2641 gold_unreachable();
2642 this->stub_tables_.push_back(stub_table);
2643 delete *t;
2644 }
2645 }
2646
2647 static unsigned long
2648 max_branch_delta (unsigned int r_type)
2649 {
2650 if (r_type == elfcpp::R_POWERPC_REL14
2651 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2652 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2653 return 1L << 15;
2654 if (r_type == elfcpp::R_POWERPC_REL24
2655 || r_type == elfcpp::R_PPC_PLTREL24
2656 || r_type == elfcpp::R_PPC_LOCAL24PC)
2657 return 1L << 25;
2658 return 0;
2659 }
2660
2661 // If this branch needs a plt call stub, or a long branch stub, make one.
2662
2663 template<int size, bool big_endian>
2664 bool
2665 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2666 Stub_table<size, big_endian>* stub_table,
2667 Stub_table<size, big_endian>* ifunc_stub_table,
2668 Symbol_table* symtab) const
2669 {
2670 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2671 if (sym != NULL && sym->is_forwarder())
2672 sym = symtab->resolve_forwards(sym);
2673 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2674 Target_powerpc<size, big_endian>* target =
2675 static_cast<Target_powerpc<size, big_endian>*>(
2676 parameters->sized_target<size, big_endian>());
2677 if (gsym != NULL
2678 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2679 : this->object_->local_has_plt_offset(this->r_sym_))
2680 {
2681 if (size == 64
2682 && gsym != NULL
2683 && target->abiversion() >= 2
2684 && !parameters->options().output_is_position_independent()
2685 && !is_branch_reloc(this->r_type_))
2686 target->glink_section()->add_global_entry(gsym);
2687 else
2688 {
2689 if (stub_table == NULL)
2690 stub_table = this->object_->stub_table(this->shndx_);
2691 if (stub_table == NULL)
2692 {
2693 // This is a ref from a data section to an ifunc symbol.
2694 stub_table = ifunc_stub_table;
2695 }
2696 gold_assert(stub_table != NULL);
2697 Address from = this->object_->get_output_section_offset(this->shndx_);
2698 if (from != invalid_address)
2699 from += (this->object_->output_section(this->shndx_)->address()
2700 + this->offset_);
2701 if (gsym != NULL)
2702 return stub_table->add_plt_call_entry(from,
2703 this->object_, gsym,
2704 this->r_type_, this->addend_);
2705 else
2706 return stub_table->add_plt_call_entry(from,
2707 this->object_, this->r_sym_,
2708 this->r_type_, this->addend_);
2709 }
2710 }
2711 else
2712 {
2713 Address max_branch_offset = max_branch_delta(this->r_type_);
2714 if (max_branch_offset == 0)
2715 return true;
2716 Address from = this->object_->get_output_section_offset(this->shndx_);
2717 gold_assert(from != invalid_address);
2718 from += (this->object_->output_section(this->shndx_)->address()
2719 + this->offset_);
2720 Address to;
2721 if (gsym != NULL)
2722 {
2723 switch (gsym->source())
2724 {
2725 case Symbol::FROM_OBJECT:
2726 {
2727 Object* symobj = gsym->object();
2728 if (symobj->is_dynamic()
2729 || symobj->pluginobj() != NULL)
2730 return true;
2731 bool is_ordinary;
2732 unsigned int shndx = gsym->shndx(&is_ordinary);
2733 if (shndx == elfcpp::SHN_UNDEF)
2734 return true;
2735 }
2736 break;
2737
2738 case Symbol::IS_UNDEFINED:
2739 return true;
2740
2741 default:
2742 break;
2743 }
2744 Symbol_table::Compute_final_value_status status;
2745 to = symtab->compute_final_value<size>(gsym, &status);
2746 if (status != Symbol_table::CFVS_OK)
2747 return true;
2748 if (size == 64)
2749 to += this->object_->ppc64_local_entry_offset(gsym);
2750 }
2751 else
2752 {
2753 const Symbol_value<size>* psymval
2754 = this->object_->local_symbol(this->r_sym_);
2755 Symbol_value<size> symval;
2756 typedef Sized_relobj_file<size, big_endian> ObjType;
2757 typename ObjType::Compute_final_local_value_status status
2758 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2759 &symval, symtab);
2760 if (status != ObjType::CFLV_OK
2761 || !symval.has_output_value())
2762 return true;
2763 to = symval.value(this->object_, 0);
2764 if (size == 64)
2765 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2766 }
2767 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2768 to += this->addend_;
2769 if (stub_table == NULL)
2770 stub_table = this->object_->stub_table(this->shndx_);
2771 if (size == 64 && target->abiversion() < 2)
2772 {
2773 unsigned int dest_shndx;
2774 if (!target->symval_for_branch(symtab, gsym, this->object_,
2775 &to, &dest_shndx))
2776 return true;
2777 }
2778 Address delta = to - from;
2779 if (delta + max_branch_offset >= 2 * max_branch_offset)
2780 {
2781 if (stub_table == NULL)
2782 {
2783 gold_warning(_("%s:%s: branch in non-executable section,"
2784 " no long branch stub for you"),
2785 this->object_->name().c_str(),
2786 this->object_->section_name(this->shndx_).c_str());
2787 return true;
2788 }
2789 bool save_res = (size == 64
2790 && gsym != NULL
2791 && gsym->source() == Symbol::IN_OUTPUT_DATA
2792 && gsym->output_data() == target->savres_section());
2793 return stub_table->add_long_branch_entry(this->object_,
2794 this->r_type_,
2795 from, to, save_res);
2796 }
2797 }
2798 return true;
2799 }
2800
2801 // Relaxation hook. This is where we do stub generation.
2802
2803 template<int size, bool big_endian>
2804 bool
2805 Target_powerpc<size, big_endian>::do_relax(int pass,
2806 const Input_objects*,
2807 Symbol_table* symtab,
2808 Layout* layout,
2809 const Task* task)
2810 {
2811 unsigned int prev_brlt_size = 0;
2812 if (pass == 1)
2813 {
2814 bool thread_safe
2815 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2816 if (size == 64
2817 && this->abiversion() < 2
2818 && !thread_safe
2819 && !parameters->options().user_set_plt_thread_safe())
2820 {
2821 static const char* const thread_starter[] =
2822 {
2823 "pthread_create",
2824 /* libstdc++ */
2825 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2826 /* librt */
2827 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2828 "mq_notify", "create_timer",
2829 /* libanl */
2830 "getaddrinfo_a",
2831 /* libgomp */
2832 "GOMP_parallel",
2833 "GOMP_parallel_start",
2834 "GOMP_parallel_loop_static",
2835 "GOMP_parallel_loop_static_start",
2836 "GOMP_parallel_loop_dynamic",
2837 "GOMP_parallel_loop_dynamic_start",
2838 "GOMP_parallel_loop_guided",
2839 "GOMP_parallel_loop_guided_start",
2840 "GOMP_parallel_loop_runtime",
2841 "GOMP_parallel_loop_runtime_start",
2842 "GOMP_parallel_sections",
2843 "GOMP_parallel_sections_start",
2844 /* libgo */
2845 "__go_go",
2846 };
2847
2848 if (parameters->options().shared())
2849 thread_safe = true;
2850 else
2851 {
2852 for (unsigned int i = 0;
2853 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2854 i++)
2855 {
2856 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2857 thread_safe = (sym != NULL
2858 && sym->in_reg()
2859 && sym->in_real_elf());
2860 if (thread_safe)
2861 break;
2862 }
2863 }
2864 }
2865 this->plt_thread_safe_ = thread_safe;
2866 }
2867
2868 if (pass == 1)
2869 {
2870 this->stub_group_size_ = parameters->options().stub_group_size();
2871 bool no_size_errors = true;
2872 if (this->stub_group_size_ == 1)
2873 this->stub_group_size_ = 0x1c00000;
2874 else if (this->stub_group_size_ == -1)
2875 this->stub_group_size_ = -0x1e00000;
2876 else
2877 no_size_errors = false;
2878 this->group_sections(layout, task, no_size_errors);
2879 }
2880 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2881 {
2882 this->branch_lookup_table_.clear();
2883 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2884 p != this->stub_tables_.end();
2885 ++p)
2886 {
2887 (*p)->clear_stubs(true);
2888 }
2889 this->stub_tables_.clear();
2890 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2891 gold_info(_("%s: stub group size is too large; retrying with %d"),
2892 program_name, this->stub_group_size_);
2893 this->group_sections(layout, task, true);
2894 }
2895
2896 // We need address of stub tables valid for make_stub.
2897 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2898 p != this->stub_tables_.end();
2899 ++p)
2900 {
2901 const Powerpc_relobj<size, big_endian>* object
2902 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2903 Address off = object->get_output_section_offset((*p)->shndx());
2904 gold_assert(off != invalid_address);
2905 Output_section* os = (*p)->output_section();
2906 (*p)->set_address_and_size(os, off);
2907 }
2908
2909 if (pass != 1)
2910 {
2911 // Clear plt call stubs, long branch stubs and branch lookup table.
2912 prev_brlt_size = this->branch_lookup_table_.size();
2913 this->branch_lookup_table_.clear();
2914 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2915 p != this->stub_tables_.end();
2916 ++p)
2917 {
2918 (*p)->clear_stubs(false);
2919 }
2920 }
2921
2922 // Build all the stubs.
2923 this->relax_failed_ = false;
2924 Stub_table<size, big_endian>* ifunc_stub_table
2925 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2926 Stub_table<size, big_endian>* one_stub_table
2927 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2928 for (typename Branches::const_iterator b = this->branch_info_.begin();
2929 b != this->branch_info_.end();
2930 b++)
2931 {
2932 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2933 && !this->relax_failed_)
2934 {
2935 this->relax_failed_ = true;
2936 this->relax_fail_count_++;
2937 if (this->relax_fail_count_ < 3)
2938 return true;
2939 }
2940 }
2941
2942 // Did anything change size?
2943 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2944 bool again = num_huge_branches != prev_brlt_size;
2945 if (size == 64 && num_huge_branches != 0)
2946 this->make_brlt_section(layout);
2947 if (size == 64 && again)
2948 this->brlt_section_->set_current_size(num_huge_branches);
2949
2950 typedef Unordered_set<Output_section*> Output_sections;
2951 Output_sections os_need_update;
2952 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2953 p != this->stub_tables_.end();
2954 ++p)
2955 {
2956 if ((*p)->size_update())
2957 {
2958 again = true;
2959 (*p)->add_eh_frame(layout);
2960 os_need_update.insert((*p)->output_section());
2961 }
2962 }
2963
2964 // Set output section offsets for all input sections in an output
2965 // section that just changed size. Anything past the stubs will
2966 // need updating.
2967 for (typename Output_sections::iterator p = os_need_update.begin();
2968 p != os_need_update.end();
2969 p++)
2970 {
2971 Output_section* os = *p;
2972 Address off = 0;
2973 typedef Output_section::Input_section_list Input_section_list;
2974 for (Input_section_list::const_iterator i = os->input_sections().begin();
2975 i != os->input_sections().end();
2976 ++i)
2977 {
2978 off = align_address(off, i->addralign());
2979 if (i->is_input_section() || i->is_relaxed_input_section())
2980 i->relobj()->set_section_offset(i->shndx(), off);
2981 if (i->is_relaxed_input_section())
2982 {
2983 Stub_table<size, big_endian>* stub_table
2984 = static_cast<Stub_table<size, big_endian>*>(
2985 i->relaxed_input_section());
2986 off += stub_table->set_address_and_size(os, off);
2987 }
2988 else
2989 off += i->data_size();
2990 }
2991 // If .branch_lt is part of this output section, then we have
2992 // just done the offset adjustment.
2993 os->clear_section_offsets_need_adjustment();
2994 }
2995
2996 if (size == 64
2997 && !again
2998 && num_huge_branches != 0
2999 && parameters->options().output_is_position_independent())
3000 {
3001 // Fill in the BRLT relocs.
3002 this->brlt_section_->reset_brlt_sizes();
3003 for (typename Branch_lookup_table::const_iterator p
3004 = this->branch_lookup_table_.begin();
3005 p != this->branch_lookup_table_.end();
3006 ++p)
3007 {
3008 this->brlt_section_->add_reloc(p->first, p->second);
3009 }
3010 this->brlt_section_->finalize_brlt_sizes();
3011 }
3012 return again;
3013 }
3014
3015 template<int size, bool big_endian>
3016 void
3017 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3018 unsigned char* oview,
3019 uint64_t* paddress,
3020 off_t* plen) const
3021 {
3022 uint64_t address = plt->address();
3023 off_t len = plt->data_size();
3024
3025 if (plt == this->glink_)
3026 {
3027 // See Output_data_glink::do_write() for glink contents.
3028 if (len == 0)
3029 {
3030 gold_assert(parameters->doing_static_link());
3031 // Static linking may need stubs, to support ifunc and long
3032 // branches. We need to create an output section for
3033 // .eh_frame early in the link process, to have a place to
3034 // attach stub .eh_frame info. We also need to have
3035 // registered a CIE that matches the stub CIE. Both of
3036 // these requirements are satisfied by creating an FDE and
3037 // CIE for .glink, even though static linking will leave
3038 // .glink zero length.
3039 // ??? Hopefully generating an FDE with a zero address range
3040 // won't confuse anything that consumes .eh_frame info.
3041 }
3042 else if (size == 64)
3043 {
3044 // There is one word before __glink_PLTresolve
3045 address += 8;
3046 len -= 8;
3047 }
3048 else if (parameters->options().output_is_position_independent())
3049 {
3050 // There are two FDEs for a position independent glink.
3051 // The first covers the branch table, the second
3052 // __glink_PLTresolve at the end of glink.
3053 off_t resolve_size = this->glink_->pltresolve_size;
3054 if (oview[9] == elfcpp::DW_CFA_nop)
3055 len -= resolve_size;
3056 else
3057 {
3058 address += len - resolve_size;
3059 len = resolve_size;
3060 }
3061 }
3062 }
3063 else
3064 {
3065 // Must be a stub table.
3066 const Stub_table<size, big_endian>* stub_table
3067 = static_cast<const Stub_table<size, big_endian>*>(plt);
3068 uint64_t stub_address = stub_table->stub_address();
3069 len -= stub_address - address;
3070 address = stub_address;
3071 }
3072
3073 *paddress = address;
3074 *plen = len;
3075 }
3076
3077 // A class to handle the PLT data.
3078
3079 template<int size, bool big_endian>
3080 class Output_data_plt_powerpc : public Output_section_data_build
3081 {
3082 public:
3083 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3084 size, big_endian> Reloc_section;
3085
3086 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3087 Reloc_section* plt_rel,
3088 const char* name)
3089 : Output_section_data_build(size == 32 ? 4 : 8),
3090 rel_(plt_rel),
3091 targ_(targ),
3092 name_(name)
3093 { }
3094
3095 // Add an entry to the PLT.
3096 void
3097 add_entry(Symbol*);
3098
3099 void
3100 add_ifunc_entry(Symbol*);
3101
3102 void
3103 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3104
3105 // Return the .rela.plt section data.
3106 Reloc_section*
3107 rel_plt() const
3108 {
3109 return this->rel_;
3110 }
3111
3112 // Return the number of PLT entries.
3113 unsigned int
3114 entry_count() const
3115 {
3116 if (this->current_data_size() == 0)
3117 return 0;
3118 return ((this->current_data_size() - this->first_plt_entry_offset())
3119 / this->plt_entry_size());
3120 }
3121
3122 protected:
3123 void
3124 do_adjust_output_section(Output_section* os)
3125 {
3126 os->set_entsize(0);
3127 }
3128
3129 // Write to a map file.
3130 void
3131 do_print_to_mapfile(Mapfile* mapfile) const
3132 { mapfile->print_output_data(this, this->name_); }
3133
3134 private:
3135 // Return the offset of the first non-reserved PLT entry.
3136 unsigned int
3137 first_plt_entry_offset() const
3138 {
3139 // IPLT has no reserved entry.
3140 if (this->name_[3] == 'I')
3141 return 0;
3142 return this->targ_->first_plt_entry_offset();
3143 }
3144
3145 // Return the size of each PLT entry.
3146 unsigned int
3147 plt_entry_size() const
3148 {
3149 return this->targ_->plt_entry_size();
3150 }
3151
3152 // Write out the PLT data.
3153 void
3154 do_write(Output_file*);
3155
3156 // The reloc section.
3157 Reloc_section* rel_;
3158 // Allows access to .glink for do_write.
3159 Target_powerpc<size, big_endian>* targ_;
3160 // What to report in map file.
3161 const char *name_;
3162 };
3163
3164 // Add an entry to the PLT.
3165
3166 template<int size, bool big_endian>
3167 void
3168 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3169 {
3170 if (!gsym->has_plt_offset())
3171 {
3172 section_size_type off = this->current_data_size();
3173 if (off == 0)
3174 off += this->first_plt_entry_offset();
3175 gsym->set_plt_offset(off);
3176 gsym->set_needs_dynsym_entry();
3177 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3178 this->rel_->add_global(gsym, dynrel, this, off, 0);
3179 off += this->plt_entry_size();
3180 this->set_current_data_size(off);
3181 }
3182 }
3183
3184 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3185
3186 template<int size, bool big_endian>
3187 void
3188 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3189 {
3190 if (!gsym->has_plt_offset())
3191 {
3192 section_size_type off = this->current_data_size();
3193 gsym->set_plt_offset(off);
3194 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3195 if (size == 64 && this->targ_->abiversion() < 2)
3196 dynrel = elfcpp::R_PPC64_JMP_IREL;
3197 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3198 off += this->plt_entry_size();
3199 this->set_current_data_size(off);
3200 }
3201 }
3202
3203 // Add an entry for a local ifunc symbol to the IPLT.
3204
3205 template<int size, bool big_endian>
3206 void
3207 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3208 Sized_relobj_file<size, big_endian>* relobj,
3209 unsigned int local_sym_index)
3210 {
3211 if (!relobj->local_has_plt_offset(local_sym_index))
3212 {
3213 section_size_type off = this->current_data_size();
3214 relobj->set_local_plt_offset(local_sym_index, off);
3215 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3216 if (size == 64 && this->targ_->abiversion() < 2)
3217 dynrel = elfcpp::R_PPC64_JMP_IREL;
3218 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3219 this, off, 0);
3220 off += this->plt_entry_size();
3221 this->set_current_data_size(off);
3222 }
3223 }
3224
3225 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3226 static const uint32_t add_2_2_11 = 0x7c425a14;
3227 static const uint32_t add_3_3_2 = 0x7c631214;
3228 static const uint32_t add_3_3_13 = 0x7c636a14;
3229 static const uint32_t add_11_0_11 = 0x7d605a14;
3230 static const uint32_t add_11_2_11 = 0x7d625a14;
3231 static const uint32_t add_11_11_2 = 0x7d6b1214;
3232 static const uint32_t addi_0_12 = 0x380c0000;
3233 static const uint32_t addi_2_2 = 0x38420000;
3234 static const uint32_t addi_3_3 = 0x38630000;
3235 static const uint32_t addi_11_11 = 0x396b0000;
3236 static const uint32_t addi_12_1 = 0x39810000;
3237 static const uint32_t addi_12_12 = 0x398c0000;
3238 static const uint32_t addis_0_2 = 0x3c020000;
3239 static const uint32_t addis_0_13 = 0x3c0d0000;
3240 static const uint32_t addis_2_12 = 0x3c4c0000;
3241 static const uint32_t addis_11_2 = 0x3d620000;
3242 static const uint32_t addis_11_11 = 0x3d6b0000;
3243 static const uint32_t addis_11_30 = 0x3d7e0000;
3244 static const uint32_t addis_12_1 = 0x3d810000;
3245 static const uint32_t addis_12_2 = 0x3d820000;
3246 static const uint32_t addis_12_12 = 0x3d8c0000;
3247 static const uint32_t b = 0x48000000;
3248 static const uint32_t bcl_20_31 = 0x429f0005;
3249 static const uint32_t bctr = 0x4e800420;
3250 static const uint32_t blr = 0x4e800020;
3251 static const uint32_t bnectr_p4 = 0x4ce20420;
3252 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3253 static const uint32_t cmpldi_2_0 = 0x28220000;
3254 static const uint32_t cror_15_15_15 = 0x4def7b82;
3255 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3256 static const uint32_t ld_0_1 = 0xe8010000;
3257 static const uint32_t ld_0_12 = 0xe80c0000;
3258 static const uint32_t ld_2_1 = 0xe8410000;
3259 static const uint32_t ld_2_2 = 0xe8420000;
3260 static const uint32_t ld_2_11 = 0xe84b0000;
3261 static const uint32_t ld_11_2 = 0xe9620000;
3262 static const uint32_t ld_11_11 = 0xe96b0000;
3263 static const uint32_t ld_12_2 = 0xe9820000;
3264 static const uint32_t ld_12_11 = 0xe98b0000;
3265 static const uint32_t ld_12_12 = 0xe98c0000;
3266 static const uint32_t lfd_0_1 = 0xc8010000;
3267 static const uint32_t li_0_0 = 0x38000000;
3268 static const uint32_t li_12_0 = 0x39800000;
3269 static const uint32_t lis_0 = 0x3c000000;
3270 static const uint32_t lis_11 = 0x3d600000;
3271 static const uint32_t lis_12 = 0x3d800000;
3272 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3273 static const uint32_t lwz_0_12 = 0x800c0000;
3274 static const uint32_t lwz_11_11 = 0x816b0000;
3275 static const uint32_t lwz_11_30 = 0x817e0000;
3276 static const uint32_t lwz_12_12 = 0x818c0000;
3277 static const uint32_t lwzu_0_12 = 0x840c0000;
3278 static const uint32_t mflr_0 = 0x7c0802a6;
3279 static const uint32_t mflr_11 = 0x7d6802a6;
3280 static const uint32_t mflr_12 = 0x7d8802a6;
3281 static const uint32_t mtctr_0 = 0x7c0903a6;
3282 static const uint32_t mtctr_11 = 0x7d6903a6;
3283 static const uint32_t mtctr_12 = 0x7d8903a6;
3284 static const uint32_t mtlr_0 = 0x7c0803a6;
3285 static const uint32_t mtlr_12 = 0x7d8803a6;
3286 static const uint32_t nop = 0x60000000;
3287 static const uint32_t ori_0_0_0 = 0x60000000;
3288 static const uint32_t srdi_0_0_2 = 0x7800f082;
3289 static const uint32_t std_0_1 = 0xf8010000;
3290 static const uint32_t std_0_12 = 0xf80c0000;
3291 static const uint32_t std_2_1 = 0xf8410000;
3292 static const uint32_t stfd_0_1 = 0xd8010000;
3293 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3294 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3295 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3296 static const uint32_t xor_2_12_12 = 0x7d826278;
3297 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3298
3299 // Write out the PLT.
3300
3301 template<int size, bool big_endian>
3302 void
3303 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3304 {
3305 if (size == 32 && this->name_[3] != 'I')
3306 {
3307 const section_size_type offset = this->offset();
3308 const section_size_type oview_size
3309 = convert_to_section_size_type(this->data_size());
3310 unsigned char* const oview = of->get_output_view(offset, oview_size);
3311 unsigned char* pov = oview;
3312 unsigned char* endpov = oview + oview_size;
3313
3314 // The address of the .glink branch table
3315 const Output_data_glink<size, big_endian>* glink
3316 = this->targ_->glink_section();
3317 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3318
3319 while (pov < endpov)
3320 {
3321 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3322 pov += 4;
3323 branch_tab += 4;
3324 }
3325
3326 of->write_output_view(offset, oview_size, oview);
3327 }
3328 }
3329
3330 // Create the PLT section.
3331
3332 template<int size, bool big_endian>
3333 void
3334 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3335 Layout* layout)
3336 {
3337 if (this->plt_ == NULL)
3338 {
3339 if (this->got_ == NULL)
3340 this->got_section(symtab, layout);
3341
3342 if (this->glink_ == NULL)
3343 make_glink_section(layout);
3344
3345 // Ensure that .rela.dyn always appears before .rela.plt This is
3346 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3347 // needs to include .rela.plt in its range.
3348 this->rela_dyn_section(layout);
3349
3350 Reloc_section* plt_rel = new Reloc_section(false);
3351 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3352 elfcpp::SHF_ALLOC, plt_rel,
3353 ORDER_DYNAMIC_PLT_RELOCS, false);
3354 this->plt_
3355 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3356 "** PLT");
3357 layout->add_output_section_data(".plt",
3358 (size == 32
3359 ? elfcpp::SHT_PROGBITS
3360 : elfcpp::SHT_NOBITS),
3361 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3362 this->plt_,
3363 (size == 32
3364 ? ORDER_SMALL_DATA
3365 : ORDER_SMALL_BSS),
3366 false);
3367 }
3368 }
3369
3370 // Create the IPLT section.
3371
3372 template<int size, bool big_endian>
3373 void
3374 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3375 Layout* layout)
3376 {
3377 if (this->iplt_ == NULL)
3378 {
3379 this->make_plt_section(symtab, layout);
3380
3381 Reloc_section* iplt_rel = new Reloc_section(false);
3382 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3383 this->iplt_
3384 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3385 "** IPLT");
3386 this->plt_->output_section()->add_output_section_data(this->iplt_);
3387 }
3388 }
3389
3390 // A section for huge long branch addresses, similar to plt section.
3391
3392 template<int size, bool big_endian>
3393 class Output_data_brlt_powerpc : public Output_section_data_build
3394 {
3395 public:
3396 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3397 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3398 size, big_endian> Reloc_section;
3399
3400 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3401 Reloc_section* brlt_rel)
3402 : Output_section_data_build(size == 32 ? 4 : 8),
3403 rel_(brlt_rel),
3404 targ_(targ)
3405 { }
3406
3407 void
3408 reset_brlt_sizes()
3409 {
3410 this->reset_data_size();
3411 this->rel_->reset_data_size();
3412 }
3413
3414 void
3415 finalize_brlt_sizes()
3416 {
3417 this->finalize_data_size();
3418 this->rel_->finalize_data_size();
3419 }
3420
3421 // Add a reloc for an entry in the BRLT.
3422 void
3423 add_reloc(Address to, unsigned int off)
3424 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3425
3426 // Update section and reloc section size.
3427 void
3428 set_current_size(unsigned int num_branches)
3429 {
3430 this->reset_address_and_file_offset();
3431 this->set_current_data_size(num_branches * 16);
3432 this->finalize_data_size();
3433 Output_section* os = this->output_section();
3434 os->set_section_offsets_need_adjustment();
3435 if (this->rel_ != NULL)
3436 {
3437 unsigned int reloc_size
3438 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3439 this->rel_->reset_address_and_file_offset();
3440 this->rel_->set_current_data_size(num_branches * reloc_size);
3441 this->rel_->finalize_data_size();
3442 Output_section* os = this->rel_->output_section();
3443 os->set_section_offsets_need_adjustment();
3444 }
3445 }
3446
3447 protected:
3448 void
3449 do_adjust_output_section(Output_section* os)
3450 {
3451 os->set_entsize(0);
3452 }
3453
3454 // Write to a map file.
3455 void
3456 do_print_to_mapfile(Mapfile* mapfile) const
3457 { mapfile->print_output_data(this, "** BRLT"); }
3458
3459 private:
3460 // Write out the BRLT data.
3461 void
3462 do_write(Output_file*);
3463
3464 // The reloc section.
3465 Reloc_section* rel_;
3466 Target_powerpc<size, big_endian>* targ_;
3467 };
3468
3469 // Make the branch lookup table section.
3470
3471 template<int size, bool big_endian>
3472 void
3473 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3474 {
3475 if (size == 64 && this->brlt_section_ == NULL)
3476 {
3477 Reloc_section* brlt_rel = NULL;
3478 bool is_pic = parameters->options().output_is_position_independent();
3479 if (is_pic)
3480 {
3481 // When PIC we can't fill in .branch_lt (like .plt it can be
3482 // a bss style section) but must initialise at runtime via
3483 // dynamic relocats.
3484 this->rela_dyn_section(layout);
3485 brlt_rel = new Reloc_section(false);
3486 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3487 }
3488 this->brlt_section_
3489 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3490 if (this->plt_ && is_pic)
3491 this->plt_->output_section()
3492 ->add_output_section_data(this->brlt_section_);
3493 else
3494 layout->add_output_section_data(".branch_lt",
3495 (is_pic ? elfcpp::SHT_NOBITS
3496 : elfcpp::SHT_PROGBITS),
3497 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3498 this->brlt_section_,
3499 (is_pic ? ORDER_SMALL_BSS
3500 : ORDER_SMALL_DATA),
3501 false);
3502 }
3503 }
3504
3505 // Write out .branch_lt when non-PIC.
3506
3507 template<int size, bool big_endian>
3508 void
3509 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3510 {
3511 if (size == 64 && !parameters->options().output_is_position_independent())
3512 {
3513 const section_size_type offset = this->offset();
3514 const section_size_type oview_size
3515 = convert_to_section_size_type(this->data_size());
3516 unsigned char* const oview = of->get_output_view(offset, oview_size);
3517
3518 this->targ_->write_branch_lookup_table(oview);
3519 of->write_output_view(offset, oview_size, oview);
3520 }
3521 }
3522
3523 static inline uint32_t
3524 l(uint32_t a)
3525 {
3526 return a & 0xffff;
3527 }
3528
3529 static inline uint32_t
3530 hi(uint32_t a)
3531 {
3532 return l(a >> 16);
3533 }
3534
3535 static inline uint32_t
3536 ha(uint32_t a)
3537 {
3538 return hi(a + 0x8000);
3539 }
3540
3541 template<int size>
3542 struct Eh_cie
3543 {
3544 static const unsigned char eh_frame_cie[12];
3545 };
3546
3547 template<int size>
3548 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3549 {
3550 1, // CIE version.
3551 'z', 'R', 0, // Augmentation string.
3552 4, // Code alignment.
3553 0x80 - size / 8 , // Data alignment.
3554 65, // RA reg.
3555 1, // Augmentation size.
3556 (elfcpp::DW_EH_PE_pcrel
3557 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3558 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3559 };
3560
3561 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3562 static const unsigned char glink_eh_frame_fde_64v1[] =
3563 {
3564 0, 0, 0, 0, // Replaced with offset to .glink.
3565 0, 0, 0, 0, // Replaced with size of .glink.
3566 0, // Augmentation size.
3567 elfcpp::DW_CFA_advance_loc + 1,
3568 elfcpp::DW_CFA_register, 65, 12,
3569 elfcpp::DW_CFA_advance_loc + 4,
3570 elfcpp::DW_CFA_restore_extended, 65
3571 };
3572
3573 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3574 static const unsigned char glink_eh_frame_fde_64v2[] =
3575 {
3576 0, 0, 0, 0, // Replaced with offset to .glink.
3577 0, 0, 0, 0, // Replaced with size of .glink.
3578 0, // Augmentation size.
3579 elfcpp::DW_CFA_advance_loc + 1,
3580 elfcpp::DW_CFA_register, 65, 0,
3581 elfcpp::DW_CFA_advance_loc + 4,
3582 elfcpp::DW_CFA_restore_extended, 65
3583 };
3584
3585 // Describe __glink_PLTresolve use of LR, 32-bit version.
3586 static const unsigned char glink_eh_frame_fde_32[] =
3587 {
3588 0, 0, 0, 0, // Replaced with offset to .glink.
3589 0, 0, 0, 0, // Replaced with size of .glink.
3590 0, // Augmentation size.
3591 elfcpp::DW_CFA_advance_loc + 2,
3592 elfcpp::DW_CFA_register, 65, 0,
3593 elfcpp::DW_CFA_advance_loc + 4,
3594 elfcpp::DW_CFA_restore_extended, 65
3595 };
3596
3597 static const unsigned char default_fde[] =
3598 {
3599 0, 0, 0, 0, // Replaced with offset to stubs.
3600 0, 0, 0, 0, // Replaced with size of stubs.
3601 0, // Augmentation size.
3602 elfcpp::DW_CFA_nop, // Pad.
3603 elfcpp::DW_CFA_nop,
3604 elfcpp::DW_CFA_nop
3605 };
3606
3607 template<bool big_endian>
3608 static inline void
3609 write_insn(unsigned char* p, uint32_t v)
3610 {
3611 elfcpp::Swap<32, big_endian>::writeval(p, v);
3612 }
3613
3614 // Stub_table holds information about plt and long branch stubs.
3615 // Stubs are built in an area following some input section determined
3616 // by group_sections(). This input section is converted to a relaxed
3617 // input section allowing it to be resized to accommodate the stubs
3618
3619 template<int size, bool big_endian>
3620 class Stub_table : public Output_relaxed_input_section
3621 {
3622 public:
3623 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3624 static const Address invalid_address = static_cast<Address>(0) - 1;
3625
3626 Stub_table(Target_powerpc<size, big_endian>* targ,
3627 Output_section* output_section,
3628 const Output_section::Input_section* owner)
3629 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3630 owner->relobj()
3631 ->section_addralign(owner->shndx())),
3632 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3633 orig_data_size_(owner->current_data_size()),
3634 plt_size_(0), last_plt_size_(0),
3635 branch_size_(0), last_branch_size_(0), eh_frame_added_(false),
3636 need_save_res_(false)
3637 {
3638 this->set_output_section(output_section);
3639
3640 std::vector<Output_relaxed_input_section*> new_relaxed;
3641 new_relaxed.push_back(this);
3642 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3643 }
3644
3645 // Add a plt call stub.
3646 bool
3647 add_plt_call_entry(Address,
3648 const Sized_relobj_file<size, big_endian>*,
3649 const Symbol*,
3650 unsigned int,
3651 Address);
3652
3653 bool
3654 add_plt_call_entry(Address,
3655 const Sized_relobj_file<size, big_endian>*,
3656 unsigned int,
3657 unsigned int,
3658 Address);
3659
3660 // Find a given plt call stub.
3661 Address
3662 find_plt_call_entry(const Symbol*) const;
3663
3664 Address
3665 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3666 unsigned int) const;
3667
3668 Address
3669 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3670 const Symbol*,
3671 unsigned int,
3672 Address) const;
3673
3674 Address
3675 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3676 unsigned int,
3677 unsigned int,
3678 Address) const;
3679
3680 // Add a long branch stub.
3681 bool
3682 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3683 unsigned int, Address, Address, bool);
3684
3685 Address
3686 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3687 Address) const;
3688
3689 bool
3690 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3691 {
3692 Address max_branch_offset = max_branch_delta(r_type);
3693 if (max_branch_offset == 0)
3694 return true;
3695 gold_assert(from != invalid_address);
3696 Address loc = off + this->stub_address();
3697 return loc - from + max_branch_offset < 2 * max_branch_offset;
3698 }
3699
3700 void
3701 clear_stubs(bool all)
3702 {
3703 this->plt_call_stubs_.clear();
3704 this->plt_size_ = 0;
3705 this->long_branch_stubs_.clear();
3706 this->branch_size_ = 0;
3707 this->need_save_res_ = false;
3708 if (all)
3709 {
3710 this->last_plt_size_ = 0;
3711 this->last_branch_size_ = 0;
3712 }
3713 }
3714
3715 Address
3716 set_address_and_size(const Output_section* os, Address off)
3717 {
3718 Address start_off = off;
3719 off += this->orig_data_size_;
3720 Address my_size = this->plt_size_ + this->branch_size_;
3721 if (this->need_save_res_)
3722 my_size += this->targ_->savres_section()->data_size();
3723 if (my_size != 0)
3724 off = align_address(off, this->stub_align());
3725 // Include original section size and alignment padding in size
3726 my_size += off - start_off;
3727 this->reset_address_and_file_offset();
3728 this->set_current_data_size(my_size);
3729 this->set_address_and_file_offset(os->address() + start_off,
3730 os->offset() + start_off);
3731 return my_size;
3732 }
3733
3734 Address
3735 stub_address() const
3736 {
3737 return align_address(this->address() + this->orig_data_size_,
3738 this->stub_align());
3739 }
3740
3741 Address
3742 stub_offset() const
3743 {
3744 return align_address(this->offset() + this->orig_data_size_,
3745 this->stub_align());
3746 }
3747
3748 section_size_type
3749 plt_size() const
3750 { return this->plt_size_; }
3751
3752 bool
3753 size_update()
3754 {
3755 Output_section* os = this->output_section();
3756 if (os->addralign() < this->stub_align())
3757 {
3758 os->set_addralign(this->stub_align());
3759 // FIXME: get rid of the insane checkpointing.
3760 // We can't increase alignment of the input section to which
3761 // stubs are attached; The input section may be .init which
3762 // is pasted together with other .init sections to form a
3763 // function. Aligning might insert zero padding resulting in
3764 // sigill. However we do need to increase alignment of the
3765 // output section so that the align_address() on offset in
3766 // set_address_and_size() adds the same padding as the
3767 // align_address() on address in stub_address().
3768 // What's more, we need this alignment for the layout done in
3769 // relaxation_loop_body() so that the output section starts at
3770 // a suitably aligned address.
3771 os->checkpoint_set_addralign(this->stub_align());
3772 }
3773 if (this->last_plt_size_ != this->plt_size_
3774 || this->last_branch_size_ != this->branch_size_)
3775 {
3776 this->last_plt_size_ = this->plt_size_;
3777 this->last_branch_size_ = this->branch_size_;
3778 return true;
3779 }
3780 return false;
3781 }
3782
3783 // Add .eh_frame info for this stub section. Unlike other linker
3784 // generated .eh_frame this is added late in the link, because we
3785 // only want the .eh_frame info if this particular stub section is
3786 // non-empty.
3787 void
3788 add_eh_frame(Layout* layout)
3789 {
3790 if (!this->eh_frame_added_)
3791 {
3792 if (!parameters->options().ld_generated_unwind_info())
3793 return;
3794
3795 // Since we add stub .eh_frame info late, it must be placed
3796 // after all other linker generated .eh_frame info so that
3797 // merge mapping need not be updated for input sections.
3798 // There is no provision to use a different CIE to that used
3799 // by .glink.
3800 if (!this->targ_->has_glink())
3801 return;
3802
3803 layout->add_eh_frame_for_plt(this,
3804 Eh_cie<size>::eh_frame_cie,
3805 sizeof (Eh_cie<size>::eh_frame_cie),
3806 default_fde,
3807 sizeof (default_fde));
3808 this->eh_frame_added_ = true;
3809 }
3810 }
3811
3812 Target_powerpc<size, big_endian>*
3813 targ() const
3814 { return targ_; }
3815
3816 private:
3817 class Plt_stub_ent;
3818 class Plt_stub_ent_hash;
3819 typedef Unordered_map<Plt_stub_ent, unsigned int,
3820 Plt_stub_ent_hash> Plt_stub_entries;
3821
3822 // Alignment of stub section.
3823 unsigned int
3824 stub_align() const
3825 {
3826 if (size == 32)
3827 return 16;
3828 unsigned int min_align = 32;
3829 unsigned int user_align = 1 << parameters->options().plt_align();
3830 return std::max(user_align, min_align);
3831 }
3832
3833 // Return the plt offset for the given call stub.
3834 Address
3835 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3836 {
3837 const Symbol* gsym = p->first.sym_;
3838 if (gsym != NULL)
3839 {
3840 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3841 && gsym->can_use_relative_reloc(false));
3842 return gsym->plt_offset();
3843 }
3844 else
3845 {
3846 *is_iplt = true;
3847 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3848 unsigned int local_sym_index = p->first.locsym_;
3849 return relobj->local_plt_offset(local_sym_index);
3850 }
3851 }
3852
3853 // Size of a given plt call stub.
3854 unsigned int
3855 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3856 {
3857 if (size == 32)
3858 return 16;
3859
3860 bool is_iplt;
3861 Address plt_addr = this->plt_off(p, &is_iplt);
3862 if (is_iplt)
3863 plt_addr += this->targ_->iplt_section()->address();
3864 else
3865 plt_addr += this->targ_->plt_section()->address();
3866 Address got_addr = this->targ_->got_section()->output_section()->address();
3867 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3868 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3869 got_addr += ppcobj->toc_base_offset();
3870 Address off = plt_addr - got_addr;
3871 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3872 if (this->targ_->abiversion() < 2)
3873 {
3874 bool static_chain = parameters->options().plt_static_chain();
3875 bool thread_safe = this->targ_->plt_thread_safe();
3876 bytes += (4
3877 + 4 * static_chain
3878 + 8 * thread_safe
3879 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3880 }
3881 unsigned int align = 1 << parameters->options().plt_align();
3882 if (align > 1)
3883 bytes = (bytes + align - 1) & -align;
3884 return bytes;
3885 }
3886
3887 // Return long branch stub size.
3888 unsigned int
3889 branch_stub_size(Address to)
3890 {
3891 Address loc
3892 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3893 if (to - loc + (1 << 25) < 2 << 25)
3894 return 4;
3895 if (size == 64 || !parameters->options().output_is_position_independent())
3896 return 16;
3897 return 32;
3898 }
3899
3900 // Write out stubs.
3901 void
3902 do_write(Output_file*);
3903
3904 // Plt call stub keys.
3905 class Plt_stub_ent
3906 {
3907 public:
3908 Plt_stub_ent(const Symbol* sym)
3909 : sym_(sym), object_(0), addend_(0), locsym_(0)
3910 { }
3911
3912 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3913 unsigned int locsym_index)
3914 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3915 { }
3916
3917 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3918 const Symbol* sym,
3919 unsigned int r_type,
3920 Address addend)
3921 : sym_(sym), object_(0), addend_(0), locsym_(0)
3922 {
3923 if (size != 32)
3924 this->addend_ = addend;
3925 else if (parameters->options().output_is_position_independent()
3926 && r_type == elfcpp::R_PPC_PLTREL24)
3927 {
3928 this->addend_ = addend;
3929 if (this->addend_ >= 32768)
3930 this->object_ = object;
3931 }
3932 }
3933
3934 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3935 unsigned int locsym_index,
3936 unsigned int r_type,
3937 Address addend)
3938 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3939 {
3940 if (size != 32)
3941 this->addend_ = addend;
3942 else if (parameters->options().output_is_position_independent()
3943 && r_type == elfcpp::R_PPC_PLTREL24)
3944 this->addend_ = addend;
3945 }
3946
3947 bool operator==(const Plt_stub_ent& that) const
3948 {
3949 return (this->sym_ == that.sym_
3950 && this->object_ == that.object_
3951 && this->addend_ == that.addend_
3952 && this->locsym_ == that.locsym_);
3953 }
3954
3955 const Symbol* sym_;
3956 const Sized_relobj_file<size, big_endian>* object_;
3957 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3958 unsigned int locsym_;
3959 };
3960
3961 class Plt_stub_ent_hash
3962 {
3963 public:
3964 size_t operator()(const Plt_stub_ent& ent) const
3965 {
3966 return (reinterpret_cast<uintptr_t>(ent.sym_)
3967 ^ reinterpret_cast<uintptr_t>(ent.object_)
3968 ^ ent.addend_
3969 ^ ent.locsym_);
3970 }
3971 };
3972
3973 // Long branch stub keys.
3974 class Branch_stub_ent
3975 {
3976 public:
3977 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
3978 Address to, bool save_res)
3979 : dest_(to), toc_base_off_(0), save_res_(save_res)
3980 {
3981 if (size == 64)
3982 toc_base_off_ = obj->toc_base_offset();
3983 }
3984
3985 bool operator==(const Branch_stub_ent& that) const
3986 {
3987 return (this->dest_ == that.dest_
3988 && (size == 32
3989 || this->toc_base_off_ == that.toc_base_off_));
3990 }
3991
3992 Address dest_;
3993 unsigned int toc_base_off_;
3994 bool save_res_;
3995 };
3996
3997 class Branch_stub_ent_hash
3998 {
3999 public:
4000 size_t operator()(const Branch_stub_ent& ent) const
4001 { return ent.dest_ ^ ent.toc_base_off_; }
4002 };
4003
4004 // In a sane world this would be a global.
4005 Target_powerpc<size, big_endian>* targ_;
4006 // Map sym/object/addend to stub offset.
4007 Plt_stub_entries plt_call_stubs_;
4008 // Map destination address to stub offset.
4009 typedef Unordered_map<Branch_stub_ent, unsigned int,
4010 Branch_stub_ent_hash> Branch_stub_entries;
4011 Branch_stub_entries long_branch_stubs_;
4012 // size of input section
4013 section_size_type orig_data_size_;
4014 // size of stubs
4015 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4016 // Whether .eh_frame info has been created for this stub section.
4017 bool eh_frame_added_;
4018 // Set if this stub group needs a copy of out-of-line register
4019 // save/restore functions.
4020 bool need_save_res_;
4021 };
4022
4023 // Add a plt call stub, if we do not already have one for this
4024 // sym/object/addend combo.
4025
4026 template<int size, bool big_endian>
4027 bool
4028 Stub_table<size, big_endian>::add_plt_call_entry(
4029 Address from,
4030 const Sized_relobj_file<size, big_endian>* object,
4031 const Symbol* gsym,
4032 unsigned int r_type,
4033 Address addend)
4034 {
4035 Plt_stub_ent ent(object, gsym, r_type, addend);
4036 unsigned int off = this->plt_size_;
4037 std::pair<typename Plt_stub_entries::iterator, bool> p
4038 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4039 if (p.second)
4040 this->plt_size_ = off + this->plt_call_size(p.first);
4041 return this->can_reach_stub(from, off, r_type);
4042 }
4043
4044 template<int size, bool big_endian>
4045 bool
4046 Stub_table<size, big_endian>::add_plt_call_entry(
4047 Address from,
4048 const Sized_relobj_file<size, big_endian>* object,
4049 unsigned int locsym_index,
4050 unsigned int r_type,
4051 Address addend)
4052 {
4053 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4054 unsigned int off = this->plt_size_;
4055 std::pair<typename Plt_stub_entries::iterator, bool> p
4056 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4057 if (p.second)
4058 this->plt_size_ = off + this->plt_call_size(p.first);
4059 return this->can_reach_stub(from, off, r_type);
4060 }
4061
4062 // Find a plt call stub.
4063
4064 template<int size, bool big_endian>
4065 typename Stub_table<size, big_endian>::Address
4066 Stub_table<size, big_endian>::find_plt_call_entry(
4067 const Sized_relobj_file<size, big_endian>* object,
4068 const Symbol* gsym,
4069 unsigned int r_type,
4070 Address addend) const
4071 {
4072 Plt_stub_ent ent(object, gsym, r_type, addend);
4073 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4074 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4075 }
4076
4077 template<int size, bool big_endian>
4078 typename Stub_table<size, big_endian>::Address
4079 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4080 {
4081 Plt_stub_ent ent(gsym);
4082 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4083 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4084 }
4085
4086 template<int size, bool big_endian>
4087 typename Stub_table<size, big_endian>::Address
4088 Stub_table<size, big_endian>::find_plt_call_entry(
4089 const Sized_relobj_file<size, big_endian>* object,
4090 unsigned int locsym_index,
4091 unsigned int r_type,
4092 Address addend) const
4093 {
4094 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4095 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4096 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4097 }
4098
4099 template<int size, bool big_endian>
4100 typename Stub_table<size, big_endian>::Address
4101 Stub_table<size, big_endian>::find_plt_call_entry(
4102 const Sized_relobj_file<size, big_endian>* object,
4103 unsigned int locsym_index) const
4104 {
4105 Plt_stub_ent ent(object, locsym_index);
4106 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4107 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4108 }
4109
4110 // Add a long branch stub if we don't already have one to given
4111 // destination.
4112
4113 template<int size, bool big_endian>
4114 bool
4115 Stub_table<size, big_endian>::add_long_branch_entry(
4116 const Powerpc_relobj<size, big_endian>* object,
4117 unsigned int r_type,
4118 Address from,
4119 Address to,
4120 bool save_res)
4121 {
4122 Branch_stub_ent ent(object, to, save_res);
4123 Address off = this->branch_size_;
4124 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4125 {
4126 if (save_res)
4127 this->need_save_res_ = true;
4128 else
4129 {
4130 unsigned int stub_size = this->branch_stub_size(to);
4131 this->branch_size_ = off + stub_size;
4132 if (size == 64 && stub_size != 4)
4133 this->targ_->add_branch_lookup_table(to);
4134 }
4135 }
4136 return this->can_reach_stub(from, off, r_type);
4137 }
4138
4139 // Find long branch stub offset.
4140
4141 template<int size, bool big_endian>
4142 typename Stub_table<size, big_endian>::Address
4143 Stub_table<size, big_endian>::find_long_branch_entry(
4144 const Powerpc_relobj<size, big_endian>* object,
4145 Address to) const
4146 {
4147 Branch_stub_ent ent(object, to, false);
4148 typename Branch_stub_entries::const_iterator p
4149 = this->long_branch_stubs_.find(ent);
4150 if (p == this->long_branch_stubs_.end())
4151 return invalid_address;
4152 if (p->first.save_res_)
4153 return to - this->targ_->savres_section()->address() + this->branch_size_;
4154 return p->second;
4155 }
4156
4157 // A class to handle .glink.
4158
4159 template<int size, bool big_endian>
4160 class Output_data_glink : public Output_section_data
4161 {
4162 public:
4163 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4164 static const Address invalid_address = static_cast<Address>(0) - 1;
4165 static const int pltresolve_size = 16*4;
4166
4167 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4168 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4169 end_branch_table_(), ge_size_(0)
4170 { }
4171
4172 void
4173 add_eh_frame(Layout* layout);
4174
4175 void
4176 add_global_entry(const Symbol*);
4177
4178 Address
4179 find_global_entry(const Symbol*) const;
4180
4181 Address
4182 global_entry_address() const
4183 {
4184 gold_assert(this->is_data_size_valid());
4185 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4186 return this->address() + global_entry_off;
4187 }
4188
4189 protected:
4190 // Write to a map file.
4191 void
4192 do_print_to_mapfile(Mapfile* mapfile) const
4193 { mapfile->print_output_data(this, _("** glink")); }
4194
4195 private:
4196 void
4197 set_final_data_size();
4198
4199 // Write out .glink
4200 void
4201 do_write(Output_file*);
4202
4203 // Allows access to .got and .plt for do_write.
4204 Target_powerpc<size, big_endian>* targ_;
4205
4206 // Map sym to stub offset.
4207 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4208 Global_entry_stub_entries global_entry_stubs_;
4209
4210 unsigned int end_branch_table_, ge_size_;
4211 };
4212
4213 template<int size, bool big_endian>
4214 void
4215 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4216 {
4217 if (!parameters->options().ld_generated_unwind_info())
4218 return;
4219
4220 if (size == 64)
4221 {
4222 if (this->targ_->abiversion() < 2)
4223 layout->add_eh_frame_for_plt(this,
4224 Eh_cie<64>::eh_frame_cie,
4225 sizeof (Eh_cie<64>::eh_frame_cie),
4226 glink_eh_frame_fde_64v1,
4227 sizeof (glink_eh_frame_fde_64v1));
4228 else
4229 layout->add_eh_frame_for_plt(this,
4230 Eh_cie<64>::eh_frame_cie,
4231 sizeof (Eh_cie<64>::eh_frame_cie),
4232 glink_eh_frame_fde_64v2,
4233 sizeof (glink_eh_frame_fde_64v2));
4234 }
4235 else
4236 {
4237 // 32-bit .glink can use the default since the CIE return
4238 // address reg, LR, is valid.
4239 layout->add_eh_frame_for_plt(this,
4240 Eh_cie<32>::eh_frame_cie,
4241 sizeof (Eh_cie<32>::eh_frame_cie),
4242 default_fde,
4243 sizeof (default_fde));
4244 // Except where LR is used in a PIC __glink_PLTresolve.
4245 if (parameters->options().output_is_position_independent())
4246 layout->add_eh_frame_for_plt(this,
4247 Eh_cie<32>::eh_frame_cie,
4248 sizeof (Eh_cie<32>::eh_frame_cie),
4249 glink_eh_frame_fde_32,
4250 sizeof (glink_eh_frame_fde_32));
4251 }
4252 }
4253
4254 template<int size, bool big_endian>
4255 void
4256 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4257 {
4258 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4259 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4260 if (p.second)
4261 this->ge_size_ += 16;
4262 }
4263
4264 template<int size, bool big_endian>
4265 typename Output_data_glink<size, big_endian>::Address
4266 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4267 {
4268 typename Global_entry_stub_entries::const_iterator p
4269 = this->global_entry_stubs_.find(gsym);
4270 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4271 }
4272
4273 template<int size, bool big_endian>
4274 void
4275 Output_data_glink<size, big_endian>::set_final_data_size()
4276 {
4277 unsigned int count = this->targ_->plt_entry_count();
4278 section_size_type total = 0;
4279
4280 if (count != 0)
4281 {
4282 if (size == 32)
4283 {
4284 // space for branch table
4285 total += 4 * (count - 1);
4286
4287 total += -total & 15;
4288 total += this->pltresolve_size;
4289 }
4290 else
4291 {
4292 total += this->pltresolve_size;
4293
4294 // space for branch table
4295 total += 4 * count;
4296 if (this->targ_->abiversion() < 2)
4297 {
4298 total += 4 * count;
4299 if (count > 0x8000)
4300 total += 4 * (count - 0x8000);
4301 }
4302 }
4303 }
4304 this->end_branch_table_ = total;
4305 total = (total + 15) & -16;
4306 total += this->ge_size_;
4307
4308 this->set_data_size(total);
4309 }
4310
4311 // Write out plt and long branch stub code.
4312
4313 template<int size, bool big_endian>
4314 void
4315 Stub_table<size, big_endian>::do_write(Output_file* of)
4316 {
4317 if (this->plt_call_stubs_.empty()
4318 && this->long_branch_stubs_.empty())
4319 return;
4320
4321 const section_size_type start_off = this->offset();
4322 const section_size_type off = this->stub_offset();
4323 const section_size_type oview_size =
4324 convert_to_section_size_type(this->data_size() - (off - start_off));
4325 unsigned char* const oview = of->get_output_view(off, oview_size);
4326 unsigned char* p;
4327
4328 if (size == 64)
4329 {
4330 const Output_data_got_powerpc<size, big_endian>* got
4331 = this->targ_->got_section();
4332 Address got_os_addr = got->output_section()->address();
4333
4334 if (!this->plt_call_stubs_.empty())
4335 {
4336 // The base address of the .plt section.
4337 Address plt_base = this->targ_->plt_section()->address();
4338 Address iplt_base = invalid_address;
4339
4340 // Write out plt call stubs.
4341 typename Plt_stub_entries::const_iterator cs;
4342 for (cs = this->plt_call_stubs_.begin();
4343 cs != this->plt_call_stubs_.end();
4344 ++cs)
4345 {
4346 bool is_iplt;
4347 Address pltoff = this->plt_off(cs, &is_iplt);
4348 Address plt_addr = pltoff;
4349 if (is_iplt)
4350 {
4351 if (iplt_base == invalid_address)
4352 iplt_base = this->targ_->iplt_section()->address();
4353 plt_addr += iplt_base;
4354 }
4355 else
4356 plt_addr += plt_base;
4357 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4358 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4359 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4360 Address off = plt_addr - got_addr;
4361
4362 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4363 gold_error(_("%s: linkage table error against `%s'"),
4364 cs->first.object_->name().c_str(),
4365 cs->first.sym_->demangled_name().c_str());
4366
4367 bool plt_load_toc = this->targ_->abiversion() < 2;
4368 bool static_chain
4369 = plt_load_toc && parameters->options().plt_static_chain();
4370 bool thread_safe
4371 = plt_load_toc && this->targ_->plt_thread_safe();
4372 bool use_fake_dep = false;
4373 Address cmp_branch_off = 0;
4374 if (thread_safe)
4375 {
4376 unsigned int pltindex
4377 = ((pltoff - this->targ_->first_plt_entry_offset())
4378 / this->targ_->plt_entry_size());
4379 Address glinkoff
4380 = (this->targ_->glink_section()->pltresolve_size
4381 + pltindex * 8);
4382 if (pltindex > 32768)
4383 glinkoff += (pltindex - 32768) * 4;
4384 Address to
4385 = this->targ_->glink_section()->address() + glinkoff;
4386 Address from
4387 = (this->stub_address() + cs->second + 24
4388 + 4 * (ha(off) != 0)
4389 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4390 + 4 * static_chain);
4391 cmp_branch_off = to - from;
4392 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4393 }
4394
4395 p = oview + cs->second;
4396 if (ha(off) != 0)
4397 {
4398 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4399 p += 4;
4400 if (plt_load_toc)
4401 {
4402 write_insn<big_endian>(p, addis_11_2 + ha(off));
4403 p += 4;
4404 write_insn<big_endian>(p, ld_12_11 + l(off));
4405 p += 4;
4406 }
4407 else
4408 {
4409 write_insn<big_endian>(p, addis_12_2 + ha(off));
4410 p += 4;
4411 write_insn<big_endian>(p, ld_12_12 + l(off));
4412 p += 4;
4413 }
4414 if (plt_load_toc
4415 && ha(off + 8 + 8 * static_chain) != ha(off))
4416 {
4417 write_insn<big_endian>(p, addi_11_11 + l(off));
4418 p += 4;
4419 off = 0;
4420 }
4421 write_insn<big_endian>(p, mtctr_12);
4422 p += 4;
4423 if (plt_load_toc)
4424 {
4425 if (use_fake_dep)
4426 {
4427 write_insn<big_endian>(p, xor_2_12_12);
4428 p += 4;
4429 write_insn<big_endian>(p, add_11_11_2);
4430 p += 4;
4431 }
4432 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4433 p += 4;
4434 if (static_chain)
4435 {
4436 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4437 p += 4;
4438 }
4439 }
4440 }
4441 else
4442 {
4443 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4444 p += 4;
4445 write_insn<big_endian>(p, ld_12_2 + l(off));
4446 p += 4;
4447 if (plt_load_toc
4448 && ha(off + 8 + 8 * static_chain) != ha(off))
4449 {
4450 write_insn<big_endian>(p, addi_2_2 + l(off));
4451 p += 4;
4452 off = 0;
4453 }
4454 write_insn<big_endian>(p, mtctr_12);
4455 p += 4;
4456 if (plt_load_toc)
4457 {
4458 if (use_fake_dep)
4459 {
4460 write_insn<big_endian>(p, xor_11_12_12);
4461 p += 4;
4462 write_insn<big_endian>(p, add_2_2_11);
4463 p += 4;
4464 }
4465 if (static_chain)
4466 {
4467 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4468 p += 4;
4469 }
4470 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4471 p += 4;
4472 }
4473 }
4474 if (thread_safe && !use_fake_dep)
4475 {
4476 write_insn<big_endian>(p, cmpldi_2_0);
4477 p += 4;
4478 write_insn<big_endian>(p, bnectr_p4);
4479 p += 4;
4480 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4481 }
4482 else
4483 write_insn<big_endian>(p, bctr);
4484 }
4485 }
4486
4487 // Write out long branch stubs.
4488 typename Branch_stub_entries::const_iterator bs;
4489 for (bs = this->long_branch_stubs_.begin();
4490 bs != this->long_branch_stubs_.end();
4491 ++bs)
4492 {
4493 if (bs->first.save_res_)
4494 continue;
4495 p = oview + this->plt_size_ + bs->second;
4496 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4497 Address delta = bs->first.dest_ - loc;
4498 if (delta + (1 << 25) < 2 << 25)
4499 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4500 else
4501 {
4502 Address brlt_addr
4503 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4504 gold_assert(brlt_addr != invalid_address);
4505 brlt_addr += this->targ_->brlt_section()->address();
4506 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4507 Address brltoff = brlt_addr - got_addr;
4508 if (ha(brltoff) == 0)
4509 {
4510 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4511 }
4512 else
4513 {
4514 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4515 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4516 }
4517 write_insn<big_endian>(p, mtctr_12), p += 4;
4518 write_insn<big_endian>(p, bctr);
4519 }
4520 }
4521 }
4522 else
4523 {
4524 if (!this->plt_call_stubs_.empty())
4525 {
4526 // The base address of the .plt section.
4527 Address plt_base = this->targ_->plt_section()->address();
4528 Address iplt_base = invalid_address;
4529 // The address of _GLOBAL_OFFSET_TABLE_.
4530 Address g_o_t = invalid_address;
4531
4532 // Write out plt call stubs.
4533 typename Plt_stub_entries::const_iterator cs;
4534 for (cs = this->plt_call_stubs_.begin();
4535 cs != this->plt_call_stubs_.end();
4536 ++cs)
4537 {
4538 bool is_iplt;
4539 Address plt_addr = this->plt_off(cs, &is_iplt);
4540 if (is_iplt)
4541 {
4542 if (iplt_base == invalid_address)
4543 iplt_base = this->targ_->iplt_section()->address();
4544 plt_addr += iplt_base;
4545 }
4546 else
4547 plt_addr += plt_base;
4548
4549 p = oview + cs->second;
4550 if (parameters->options().output_is_position_independent())
4551 {
4552 Address got_addr;
4553 const Powerpc_relobj<size, big_endian>* ppcobj
4554 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4555 (cs->first.object_));
4556 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4557 {
4558 unsigned int got2 = ppcobj->got2_shndx();
4559 got_addr = ppcobj->get_output_section_offset(got2);
4560 gold_assert(got_addr != invalid_address);
4561 got_addr += (ppcobj->output_section(got2)->address()
4562 + cs->first.addend_);
4563 }
4564 else
4565 {
4566 if (g_o_t == invalid_address)
4567 {
4568 const Output_data_got_powerpc<size, big_endian>* got
4569 = this->targ_->got_section();
4570 g_o_t = got->address() + got->g_o_t();
4571 }
4572 got_addr = g_o_t;
4573 }
4574
4575 Address off = plt_addr - got_addr;
4576 if (ha(off) == 0)
4577 {
4578 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4579 write_insn<big_endian>(p + 4, mtctr_11);
4580 write_insn<big_endian>(p + 8, bctr);
4581 }
4582 else
4583 {
4584 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4585 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4586 write_insn<big_endian>(p + 8, mtctr_11);
4587 write_insn<big_endian>(p + 12, bctr);
4588 }
4589 }
4590 else
4591 {
4592 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4593 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4594 write_insn<big_endian>(p + 8, mtctr_11);
4595 write_insn<big_endian>(p + 12, bctr);
4596 }
4597 }
4598 }
4599
4600 // Write out long branch stubs.
4601 typename Branch_stub_entries::const_iterator bs;
4602 for (bs = this->long_branch_stubs_.begin();
4603 bs != this->long_branch_stubs_.end();
4604 ++bs)
4605 {
4606 if (bs->first.save_res_)
4607 continue;
4608 p = oview + this->plt_size_ + bs->second;
4609 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4610 Address delta = bs->first.dest_ - loc;
4611 if (delta + (1 << 25) < 2 << 25)
4612 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4613 else if (!parameters->options().output_is_position_independent())
4614 {
4615 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4616 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4617 write_insn<big_endian>(p + 8, mtctr_12);
4618 write_insn<big_endian>(p + 12, bctr);
4619 }
4620 else
4621 {
4622 delta -= 8;
4623 write_insn<big_endian>(p + 0, mflr_0);
4624 write_insn<big_endian>(p + 4, bcl_20_31);
4625 write_insn<big_endian>(p + 8, mflr_12);
4626 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4627 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4628 write_insn<big_endian>(p + 20, mtlr_0);
4629 write_insn<big_endian>(p + 24, mtctr_12);
4630 write_insn<big_endian>(p + 28, bctr);
4631 }
4632 }
4633 }
4634 if (this->need_save_res_)
4635 {
4636 p = oview + this->plt_size_ + this->branch_size_;
4637 memcpy (p, this->targ_->savres_section()->contents(),
4638 this->targ_->savres_section()->data_size());
4639 }
4640 }
4641
4642 // Write out .glink.
4643
4644 template<int size, bool big_endian>
4645 void
4646 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4647 {
4648 const section_size_type off = this->offset();
4649 const section_size_type oview_size =
4650 convert_to_section_size_type(this->data_size());
4651 unsigned char* const oview = of->get_output_view(off, oview_size);
4652 unsigned char* p;
4653
4654 // The base address of the .plt section.
4655 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4656 Address plt_base = this->targ_->plt_section()->address();
4657
4658 if (size == 64)
4659 {
4660 if (this->end_branch_table_ != 0)
4661 {
4662 // Write pltresolve stub.
4663 p = oview;
4664 Address after_bcl = this->address() + 16;
4665 Address pltoff = plt_base - after_bcl;
4666
4667 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4668
4669 if (this->targ_->abiversion() < 2)
4670 {
4671 write_insn<big_endian>(p, mflr_12), p += 4;
4672 write_insn<big_endian>(p, bcl_20_31), p += 4;
4673 write_insn<big_endian>(p, mflr_11), p += 4;
4674 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4675 write_insn<big_endian>(p, mtlr_12), p += 4;
4676 write_insn<big_endian>(p, add_11_2_11), p += 4;
4677 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4678 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4679 write_insn<big_endian>(p, mtctr_12), p += 4;
4680 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4681 }
4682 else
4683 {
4684 write_insn<big_endian>(p, mflr_0), p += 4;
4685 write_insn<big_endian>(p, bcl_20_31), p += 4;
4686 write_insn<big_endian>(p, mflr_11), p += 4;
4687 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4688 write_insn<big_endian>(p, mtlr_0), p += 4;
4689 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4690 write_insn<big_endian>(p, add_11_2_11), p += 4;
4691 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4692 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4693 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4694 write_insn<big_endian>(p, mtctr_12), p += 4;
4695 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4696 }
4697 write_insn<big_endian>(p, bctr), p += 4;
4698 while (p < oview + this->pltresolve_size)
4699 write_insn<big_endian>(p, nop), p += 4;
4700
4701 // Write lazy link call stubs.
4702 uint32_t indx = 0;
4703 while (p < oview + this->end_branch_table_)
4704 {
4705 if (this->targ_->abiversion() < 2)
4706 {
4707 if (indx < 0x8000)
4708 {
4709 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4710 }
4711 else
4712 {
4713 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4714 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4715 }
4716 }
4717 uint32_t branch_off = 8 - (p - oview);
4718 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4719 indx++;
4720 }
4721 }
4722
4723 Address plt_base = this->targ_->plt_section()->address();
4724 Address iplt_base = invalid_address;
4725 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4726 Address global_entry_base = this->address() + global_entry_off;
4727 typename Global_entry_stub_entries::const_iterator ge;
4728 for (ge = this->global_entry_stubs_.begin();
4729 ge != this->global_entry_stubs_.end();
4730 ++ge)
4731 {
4732 p = oview + global_entry_off + ge->second;
4733 Address plt_addr = ge->first->plt_offset();
4734 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4735 && ge->first->can_use_relative_reloc(false))
4736 {
4737 if (iplt_base == invalid_address)
4738 iplt_base = this->targ_->iplt_section()->address();
4739 plt_addr += iplt_base;
4740 }
4741 else
4742 plt_addr += plt_base;
4743 Address my_addr = global_entry_base + ge->second;
4744 Address off = plt_addr - my_addr;
4745
4746 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4747 gold_error(_("%s: linkage table error against `%s'"),
4748 ge->first->object()->name().c_str(),
4749 ge->first->demangled_name().c_str());
4750
4751 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4752 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4753 write_insn<big_endian>(p, mtctr_12), p += 4;
4754 write_insn<big_endian>(p, bctr);
4755 }
4756 }
4757 else
4758 {
4759 const Output_data_got_powerpc<size, big_endian>* got
4760 = this->targ_->got_section();
4761 // The address of _GLOBAL_OFFSET_TABLE_.
4762 Address g_o_t = got->address() + got->g_o_t();
4763
4764 // Write out pltresolve branch table.
4765 p = oview;
4766 unsigned int the_end = oview_size - this->pltresolve_size;
4767 unsigned char* end_p = oview + the_end;
4768 while (p < end_p - 8 * 4)
4769 write_insn<big_endian>(p, b + end_p - p), p += 4;
4770 while (p < end_p)
4771 write_insn<big_endian>(p, nop), p += 4;
4772
4773 // Write out pltresolve call stub.
4774 if (parameters->options().output_is_position_independent())
4775 {
4776 Address res0_off = 0;
4777 Address after_bcl_off = the_end + 12;
4778 Address bcl_res0 = after_bcl_off - res0_off;
4779
4780 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4781 write_insn<big_endian>(p + 4, mflr_0);
4782 write_insn<big_endian>(p + 8, bcl_20_31);
4783 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4784 write_insn<big_endian>(p + 16, mflr_12);
4785 write_insn<big_endian>(p + 20, mtlr_0);
4786 write_insn<big_endian>(p + 24, sub_11_11_12);
4787
4788 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4789
4790 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4791 if (ha(got_bcl) == ha(got_bcl + 4))
4792 {
4793 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4794 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4795 }
4796 else
4797 {
4798 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4799 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4800 }
4801 write_insn<big_endian>(p + 40, mtctr_0);
4802 write_insn<big_endian>(p + 44, add_0_11_11);
4803 write_insn<big_endian>(p + 48, add_11_0_11);
4804 write_insn<big_endian>(p + 52, bctr);
4805 write_insn<big_endian>(p + 56, nop);
4806 write_insn<big_endian>(p + 60, nop);
4807 }
4808 else
4809 {
4810 Address res0 = this->address();
4811
4812 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4813 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4814 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4815 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4816 else
4817 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4818 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4819 write_insn<big_endian>(p + 16, mtctr_0);
4820 write_insn<big_endian>(p + 20, add_0_11_11);
4821 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4822 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4823 else
4824 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4825 write_insn<big_endian>(p + 28, add_11_0_11);
4826 write_insn<big_endian>(p + 32, bctr);
4827 write_insn<big_endian>(p + 36, nop);
4828 write_insn<big_endian>(p + 40, nop);
4829 write_insn<big_endian>(p + 44, nop);
4830 write_insn<big_endian>(p + 48, nop);
4831 write_insn<big_endian>(p + 52, nop);
4832 write_insn<big_endian>(p + 56, nop);
4833 write_insn<big_endian>(p + 60, nop);
4834 }
4835 p += 64;
4836 }
4837
4838 of->write_output_view(off, oview_size, oview);
4839 }
4840
4841
4842 // A class to handle linker generated save/restore functions.
4843
4844 template<int size, bool big_endian>
4845 class Output_data_save_res : public Output_section_data_build
4846 {
4847 public:
4848 Output_data_save_res(Symbol_table* symtab);
4849
4850 const unsigned char*
4851 contents() const
4852 {
4853 return contents_;
4854 }
4855
4856 protected:
4857 // Write to a map file.
4858 void
4859 do_print_to_mapfile(Mapfile* mapfile) const
4860 { mapfile->print_output_data(this, _("** save/restore")); }
4861
4862 void
4863 do_write(Output_file*);
4864
4865 private:
4866 // The maximum size of save/restore contents.
4867 static const unsigned int savres_max = 218*4;
4868
4869 void
4870 savres_define(Symbol_table* symtab,
4871 const char *name,
4872 unsigned int lo, unsigned int hi,
4873 unsigned char* write_ent(unsigned char*, int),
4874 unsigned char* write_tail(unsigned char*, int));
4875
4876 unsigned char *contents_;
4877 };
4878
4879 template<bool big_endian>
4880 static unsigned char*
4881 savegpr0(unsigned char* p, int r)
4882 {
4883 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4884 write_insn<big_endian>(p, insn);
4885 return p + 4;
4886 }
4887
4888 template<bool big_endian>
4889 static unsigned char*
4890 savegpr0_tail(unsigned char* p, int r)
4891 {
4892 p = savegpr0<big_endian>(p, r);
4893 uint32_t insn = std_0_1 + 16;
4894 write_insn<big_endian>(p, insn);
4895 p = p + 4;
4896 write_insn<big_endian>(p, blr);
4897 return p + 4;
4898 }
4899
4900 template<bool big_endian>
4901 static unsigned char*
4902 restgpr0(unsigned char* p, int r)
4903 {
4904 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4905 write_insn<big_endian>(p, insn);
4906 return p + 4;
4907 }
4908
4909 template<bool big_endian>
4910 static unsigned char*
4911 restgpr0_tail(unsigned char* p, int r)
4912 {
4913 uint32_t insn = ld_0_1 + 16;
4914 write_insn<big_endian>(p, insn);
4915 p = p + 4;
4916 p = restgpr0<big_endian>(p, r);
4917 write_insn<big_endian>(p, mtlr_0);
4918 p = p + 4;
4919 if (r == 29)
4920 {
4921 p = restgpr0<big_endian>(p, 30);
4922 p = restgpr0<big_endian>(p, 31);
4923 }
4924 write_insn<big_endian>(p, blr);
4925 return p + 4;
4926 }
4927
4928 template<bool big_endian>
4929 static unsigned char*
4930 savegpr1(unsigned char* p, int r)
4931 {
4932 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4933 write_insn<big_endian>(p, insn);
4934 return p + 4;
4935 }
4936
4937 template<bool big_endian>
4938 static unsigned char*
4939 savegpr1_tail(unsigned char* p, int r)
4940 {
4941 p = savegpr1<big_endian>(p, r);
4942 write_insn<big_endian>(p, blr);
4943 return p + 4;
4944 }
4945
4946 template<bool big_endian>
4947 static unsigned char*
4948 restgpr1(unsigned char* p, int r)
4949 {
4950 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4951 write_insn<big_endian>(p, insn);
4952 return p + 4;
4953 }
4954
4955 template<bool big_endian>
4956 static unsigned char*
4957 restgpr1_tail(unsigned char* p, int r)
4958 {
4959 p = restgpr1<big_endian>(p, r);
4960 write_insn<big_endian>(p, blr);
4961 return p + 4;
4962 }
4963
4964 template<bool big_endian>
4965 static unsigned char*
4966 savefpr(unsigned char* p, int r)
4967 {
4968 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4969 write_insn<big_endian>(p, insn);
4970 return p + 4;
4971 }
4972
4973 template<bool big_endian>
4974 static unsigned char*
4975 savefpr0_tail(unsigned char* p, int r)
4976 {
4977 p = savefpr<big_endian>(p, r);
4978 write_insn<big_endian>(p, std_0_1 + 16);
4979 p = p + 4;
4980 write_insn<big_endian>(p, blr);
4981 return p + 4;
4982 }
4983
4984 template<bool big_endian>
4985 static unsigned char*
4986 restfpr(unsigned char* p, int r)
4987 {
4988 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4989 write_insn<big_endian>(p, insn);
4990 return p + 4;
4991 }
4992
4993 template<bool big_endian>
4994 static unsigned char*
4995 restfpr0_tail(unsigned char* p, int r)
4996 {
4997 write_insn<big_endian>(p, ld_0_1 + 16);
4998 p = p + 4;
4999 p = restfpr<big_endian>(p, r);
5000 write_insn<big_endian>(p, mtlr_0);
5001 p = p + 4;
5002 if (r == 29)
5003 {
5004 p = restfpr<big_endian>(p, 30);
5005 p = restfpr<big_endian>(p, 31);
5006 }
5007 write_insn<big_endian>(p, blr);
5008 return p + 4;
5009 }
5010
5011 template<bool big_endian>
5012 static unsigned char*
5013 savefpr1_tail(unsigned char* p, int r)
5014 {
5015 p = savefpr<big_endian>(p, r);
5016 write_insn<big_endian>(p, blr);
5017 return p + 4;
5018 }
5019
5020 template<bool big_endian>
5021 static unsigned char*
5022 restfpr1_tail(unsigned char* p, int r)
5023 {
5024 p = restfpr<big_endian>(p, r);
5025 write_insn<big_endian>(p, blr);
5026 return p + 4;
5027 }
5028
5029 template<bool big_endian>
5030 static unsigned char*
5031 savevr(unsigned char* p, int r)
5032 {
5033 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5034 write_insn<big_endian>(p, insn);
5035 p = p + 4;
5036 insn = stvx_0_12_0 + (r << 21);
5037 write_insn<big_endian>(p, insn);
5038 return p + 4;
5039 }
5040
5041 template<bool big_endian>
5042 static unsigned char*
5043 savevr_tail(unsigned char* p, int r)
5044 {
5045 p = savevr<big_endian>(p, r);
5046 write_insn<big_endian>(p, blr);
5047 return p + 4;
5048 }
5049
5050 template<bool big_endian>
5051 static unsigned char*
5052 restvr(unsigned char* p, int r)
5053 {
5054 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5055 write_insn<big_endian>(p, insn);
5056 p = p + 4;
5057 insn = lvx_0_12_0 + (r << 21);
5058 write_insn<big_endian>(p, insn);
5059 return p + 4;
5060 }
5061
5062 template<bool big_endian>
5063 static unsigned char*
5064 restvr_tail(unsigned char* p, int r)
5065 {
5066 p = restvr<big_endian>(p, r);
5067 write_insn<big_endian>(p, blr);
5068 return p + 4;
5069 }
5070
5071
5072 template<int size, bool big_endian>
5073 Output_data_save_res<size, big_endian>::Output_data_save_res(
5074 Symbol_table* symtab)
5075 : Output_section_data_build(4),
5076 contents_(NULL)
5077 {
5078 this->savres_define(symtab,
5079 "_savegpr0_", 14, 31,
5080 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5081 this->savres_define(symtab,
5082 "_restgpr0_", 14, 29,
5083 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5084 this->savres_define(symtab,
5085 "_restgpr0_", 30, 31,
5086 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5087 this->savres_define(symtab,
5088 "_savegpr1_", 14, 31,
5089 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5090 this->savres_define(symtab,
5091 "_restgpr1_", 14, 31,
5092 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5093 this->savres_define(symtab,
5094 "_savefpr_", 14, 31,
5095 savefpr<big_endian>, savefpr0_tail<big_endian>);
5096 this->savres_define(symtab,
5097 "_restfpr_", 14, 29,
5098 restfpr<big_endian>, restfpr0_tail<big_endian>);
5099 this->savres_define(symtab,
5100 "_restfpr_", 30, 31,
5101 restfpr<big_endian>, restfpr0_tail<big_endian>);
5102 this->savres_define(symtab,
5103 "._savef", 14, 31,
5104 savefpr<big_endian>, savefpr1_tail<big_endian>);
5105 this->savres_define(symtab,
5106 "._restf", 14, 31,
5107 restfpr<big_endian>, restfpr1_tail<big_endian>);
5108 this->savres_define(symtab,
5109 "_savevr_", 20, 31,
5110 savevr<big_endian>, savevr_tail<big_endian>);
5111 this->savres_define(symtab,
5112 "_restvr_", 20, 31,
5113 restvr<big_endian>, restvr_tail<big_endian>);
5114 }
5115
5116 template<int size, bool big_endian>
5117 void
5118 Output_data_save_res<size, big_endian>::savres_define(
5119 Symbol_table* symtab,
5120 const char *name,
5121 unsigned int lo, unsigned int hi,
5122 unsigned char* write_ent(unsigned char*, int),
5123 unsigned char* write_tail(unsigned char*, int))
5124 {
5125 size_t len = strlen(name);
5126 bool writing = false;
5127 char sym[16];
5128
5129 memcpy(sym, name, len);
5130 sym[len + 2] = 0;
5131
5132 for (unsigned int i = lo; i <= hi; i++)
5133 {
5134 sym[len + 0] = i / 10 + '0';
5135 sym[len + 1] = i % 10 + '0';
5136 Symbol* gsym = symtab->lookup(sym);
5137 bool refd = gsym != NULL && gsym->is_undefined();
5138 writing = writing || refd;
5139 if (writing)
5140 {
5141 if (this->contents_ == NULL)
5142 this->contents_ = new unsigned char[this->savres_max];
5143
5144 section_size_type value = this->current_data_size();
5145 unsigned char* p = this->contents_ + value;
5146 if (i != hi)
5147 p = write_ent(p, i);
5148 else
5149 p = write_tail(p, i);
5150 section_size_type cur_size = p - this->contents_;
5151 this->set_current_data_size(cur_size);
5152 if (refd)
5153 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5154 this, value, cur_size - value,
5155 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5156 elfcpp::STV_HIDDEN, 0, false, false);
5157 }
5158 }
5159 }
5160
5161 // Write out save/restore.
5162
5163 template<int size, bool big_endian>
5164 void
5165 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5166 {
5167 const section_size_type off = this->offset();
5168 const section_size_type oview_size =
5169 convert_to_section_size_type(this->data_size());
5170 unsigned char* const oview = of->get_output_view(off, oview_size);
5171 memcpy(oview, this->contents_, oview_size);
5172 of->write_output_view(off, oview_size, oview);
5173 }
5174
5175
5176 // Create the glink section.
5177
5178 template<int size, bool big_endian>
5179 void
5180 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5181 {
5182 if (this->glink_ == NULL)
5183 {
5184 this->glink_ = new Output_data_glink<size, big_endian>(this);
5185 this->glink_->add_eh_frame(layout);
5186 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5187 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5188 this->glink_, ORDER_TEXT, false);
5189 }
5190 }
5191
5192 // Create a PLT entry for a global symbol.
5193
5194 template<int size, bool big_endian>
5195 void
5196 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5197 Layout* layout,
5198 Symbol* gsym)
5199 {
5200 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5201 && gsym->can_use_relative_reloc(false))
5202 {
5203 if (this->iplt_ == NULL)
5204 this->make_iplt_section(symtab, layout);
5205 this->iplt_->add_ifunc_entry(gsym);
5206 }
5207 else
5208 {
5209 if (this->plt_ == NULL)
5210 this->make_plt_section(symtab, layout);
5211 this->plt_->add_entry(gsym);
5212 }
5213 }
5214
5215 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5216
5217 template<int size, bool big_endian>
5218 void
5219 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5220 Symbol_table* symtab,
5221 Layout* layout,
5222 Sized_relobj_file<size, big_endian>* relobj,
5223 unsigned int r_sym)
5224 {
5225 if (this->iplt_ == NULL)
5226 this->make_iplt_section(symtab, layout);
5227 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5228 }
5229
5230 // Return the number of entries in the PLT.
5231
5232 template<int size, bool big_endian>
5233 unsigned int
5234 Target_powerpc<size, big_endian>::plt_entry_count() const
5235 {
5236 if (this->plt_ == NULL)
5237 return 0;
5238 return this->plt_->entry_count();
5239 }
5240
5241 // Create a GOT entry for local dynamic __tls_get_addr calls.
5242
5243 template<int size, bool big_endian>
5244 unsigned int
5245 Target_powerpc<size, big_endian>::tlsld_got_offset(
5246 Symbol_table* symtab,
5247 Layout* layout,
5248 Sized_relobj_file<size, big_endian>* object)
5249 {
5250 if (this->tlsld_got_offset_ == -1U)
5251 {
5252 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5253 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5254 Output_data_got_powerpc<size, big_endian>* got
5255 = this->got_section(symtab, layout);
5256 unsigned int got_offset = got->add_constant_pair(0, 0);
5257 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5258 got_offset, 0);
5259 this->tlsld_got_offset_ = got_offset;
5260 }
5261 return this->tlsld_got_offset_;
5262 }
5263
5264 // Get the Reference_flags for a particular relocation.
5265
5266 template<int size, bool big_endian>
5267 int
5268 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5269 unsigned int r_type,
5270 const Target_powerpc* target)
5271 {
5272 int ref = 0;
5273
5274 switch (r_type)
5275 {
5276 case elfcpp::R_POWERPC_NONE:
5277 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5278 case elfcpp::R_POWERPC_GNU_VTENTRY:
5279 case elfcpp::R_PPC64_TOC:
5280 // No symbol reference.
5281 break;
5282
5283 case elfcpp::R_PPC64_ADDR64:
5284 case elfcpp::R_PPC64_UADDR64:
5285 case elfcpp::R_POWERPC_ADDR32:
5286 case elfcpp::R_POWERPC_UADDR32:
5287 case elfcpp::R_POWERPC_ADDR16:
5288 case elfcpp::R_POWERPC_UADDR16:
5289 case elfcpp::R_POWERPC_ADDR16_LO:
5290 case elfcpp::R_POWERPC_ADDR16_HI:
5291 case elfcpp::R_POWERPC_ADDR16_HA:
5292 ref = Symbol::ABSOLUTE_REF;
5293 break;
5294
5295 case elfcpp::R_POWERPC_ADDR24:
5296 case elfcpp::R_POWERPC_ADDR14:
5297 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5298 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5299 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5300 break;
5301
5302 case elfcpp::R_PPC64_REL64:
5303 case elfcpp::R_POWERPC_REL32:
5304 case elfcpp::R_PPC_LOCAL24PC:
5305 case elfcpp::R_POWERPC_REL16:
5306 case elfcpp::R_POWERPC_REL16_LO:
5307 case elfcpp::R_POWERPC_REL16_HI:
5308 case elfcpp::R_POWERPC_REL16_HA:
5309 ref = Symbol::RELATIVE_REF;
5310 break;
5311
5312 case elfcpp::R_POWERPC_REL24:
5313 case elfcpp::R_PPC_PLTREL24:
5314 case elfcpp::R_POWERPC_REL14:
5315 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5316 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5317 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5318 break;
5319
5320 case elfcpp::R_POWERPC_GOT16:
5321 case elfcpp::R_POWERPC_GOT16_LO:
5322 case elfcpp::R_POWERPC_GOT16_HI:
5323 case elfcpp::R_POWERPC_GOT16_HA:
5324 case elfcpp::R_PPC64_GOT16_DS:
5325 case elfcpp::R_PPC64_GOT16_LO_DS:
5326 case elfcpp::R_PPC64_TOC16:
5327 case elfcpp::R_PPC64_TOC16_LO:
5328 case elfcpp::R_PPC64_TOC16_HI:
5329 case elfcpp::R_PPC64_TOC16_HA:
5330 case elfcpp::R_PPC64_TOC16_DS:
5331 case elfcpp::R_PPC64_TOC16_LO_DS:
5332 ref = Symbol::RELATIVE_REF;
5333 break;
5334
5335 case elfcpp::R_POWERPC_GOT_TPREL16:
5336 case elfcpp::R_POWERPC_TLS:
5337 ref = Symbol::TLS_REF;
5338 break;
5339
5340 case elfcpp::R_POWERPC_COPY:
5341 case elfcpp::R_POWERPC_GLOB_DAT:
5342 case elfcpp::R_POWERPC_JMP_SLOT:
5343 case elfcpp::R_POWERPC_RELATIVE:
5344 case elfcpp::R_POWERPC_DTPMOD:
5345 default:
5346 // Not expected. We will give an error later.
5347 break;
5348 }
5349
5350 if (size == 64 && target->abiversion() < 2)
5351 ref |= Symbol::FUNC_DESC_ABI;
5352 return ref;
5353 }
5354
5355 // Report an unsupported relocation against a local symbol.
5356
5357 template<int size, bool big_endian>
5358 void
5359 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5360 Sized_relobj_file<size, big_endian>* object,
5361 unsigned int r_type)
5362 {
5363 gold_error(_("%s: unsupported reloc %u against local symbol"),
5364 object->name().c_str(), r_type);
5365 }
5366
5367 // We are about to emit a dynamic relocation of type R_TYPE. If the
5368 // dynamic linker does not support it, issue an error.
5369
5370 template<int size, bool big_endian>
5371 void
5372 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5373 unsigned int r_type)
5374 {
5375 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5376
5377 // These are the relocation types supported by glibc for both 32-bit
5378 // and 64-bit powerpc.
5379 switch (r_type)
5380 {
5381 case elfcpp::R_POWERPC_NONE:
5382 case elfcpp::R_POWERPC_RELATIVE:
5383 case elfcpp::R_POWERPC_GLOB_DAT:
5384 case elfcpp::R_POWERPC_DTPMOD:
5385 case elfcpp::R_POWERPC_DTPREL:
5386 case elfcpp::R_POWERPC_TPREL:
5387 case elfcpp::R_POWERPC_JMP_SLOT:
5388 case elfcpp::R_POWERPC_COPY:
5389 case elfcpp::R_POWERPC_IRELATIVE:
5390 case elfcpp::R_POWERPC_ADDR32:
5391 case elfcpp::R_POWERPC_UADDR32:
5392 case elfcpp::R_POWERPC_ADDR24:
5393 case elfcpp::R_POWERPC_ADDR16:
5394 case elfcpp::R_POWERPC_UADDR16:
5395 case elfcpp::R_POWERPC_ADDR16_LO:
5396 case elfcpp::R_POWERPC_ADDR16_HI:
5397 case elfcpp::R_POWERPC_ADDR16_HA:
5398 case elfcpp::R_POWERPC_ADDR14:
5399 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5400 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5401 case elfcpp::R_POWERPC_REL32:
5402 case elfcpp::R_POWERPC_REL24:
5403 case elfcpp::R_POWERPC_TPREL16:
5404 case elfcpp::R_POWERPC_TPREL16_LO:
5405 case elfcpp::R_POWERPC_TPREL16_HI:
5406 case elfcpp::R_POWERPC_TPREL16_HA:
5407 return;
5408
5409 default:
5410 break;
5411 }
5412
5413 if (size == 64)
5414 {
5415 switch (r_type)
5416 {
5417 // These are the relocation types supported only on 64-bit.
5418 case elfcpp::R_PPC64_ADDR64:
5419 case elfcpp::R_PPC64_UADDR64:
5420 case elfcpp::R_PPC64_JMP_IREL:
5421 case elfcpp::R_PPC64_ADDR16_DS:
5422 case elfcpp::R_PPC64_ADDR16_LO_DS:
5423 case elfcpp::R_PPC64_ADDR16_HIGH:
5424 case elfcpp::R_PPC64_ADDR16_HIGHA:
5425 case elfcpp::R_PPC64_ADDR16_HIGHER:
5426 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5427 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5428 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5429 case elfcpp::R_PPC64_REL64:
5430 case elfcpp::R_POWERPC_ADDR30:
5431 case elfcpp::R_PPC64_TPREL16_DS:
5432 case elfcpp::R_PPC64_TPREL16_LO_DS:
5433 case elfcpp::R_PPC64_TPREL16_HIGH:
5434 case elfcpp::R_PPC64_TPREL16_HIGHA:
5435 case elfcpp::R_PPC64_TPREL16_HIGHER:
5436 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5437 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5438 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5439 return;
5440
5441 default:
5442 break;
5443 }
5444 }
5445 else
5446 {
5447 switch (r_type)
5448 {
5449 // These are the relocation types supported only on 32-bit.
5450 // ??? glibc ld.so doesn't need to support these.
5451 case elfcpp::R_POWERPC_DTPREL16:
5452 case elfcpp::R_POWERPC_DTPREL16_LO:
5453 case elfcpp::R_POWERPC_DTPREL16_HI:
5454 case elfcpp::R_POWERPC_DTPREL16_HA:
5455 return;
5456
5457 default:
5458 break;
5459 }
5460 }
5461
5462 // This prevents us from issuing more than one error per reloc
5463 // section. But we can still wind up issuing more than one
5464 // error per object file.
5465 if (this->issued_non_pic_error_)
5466 return;
5467 gold_assert(parameters->options().output_is_position_independent());
5468 object->error(_("requires unsupported dynamic reloc; "
5469 "recompile with -fPIC"));
5470 this->issued_non_pic_error_ = true;
5471 return;
5472 }
5473
5474 // Return whether we need to make a PLT entry for a relocation of the
5475 // given type against a STT_GNU_IFUNC symbol.
5476
5477 template<int size, bool big_endian>
5478 bool
5479 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5480 Target_powerpc<size, big_endian>* target,
5481 Sized_relobj_file<size, big_endian>* object,
5482 unsigned int r_type,
5483 bool report_err)
5484 {
5485 // In non-pic code any reference will resolve to the plt call stub
5486 // for the ifunc symbol.
5487 if ((size == 32 || target->abiversion() >= 2)
5488 && !parameters->options().output_is_position_independent())
5489 return true;
5490
5491 switch (r_type)
5492 {
5493 // Word size refs from data sections are OK, but don't need a PLT entry.
5494 case elfcpp::R_POWERPC_ADDR32:
5495 case elfcpp::R_POWERPC_UADDR32:
5496 if (size == 32)
5497 return false;
5498 break;
5499
5500 case elfcpp::R_PPC64_ADDR64:
5501 case elfcpp::R_PPC64_UADDR64:
5502 if (size == 64)
5503 return false;
5504 break;
5505
5506 // GOT refs are good, but also don't need a PLT entry.
5507 case elfcpp::R_POWERPC_GOT16:
5508 case elfcpp::R_POWERPC_GOT16_LO:
5509 case elfcpp::R_POWERPC_GOT16_HI:
5510 case elfcpp::R_POWERPC_GOT16_HA:
5511 case elfcpp::R_PPC64_GOT16_DS:
5512 case elfcpp::R_PPC64_GOT16_LO_DS:
5513 return false;
5514
5515 // Function calls are good, and these do need a PLT entry.
5516 case elfcpp::R_POWERPC_ADDR24:
5517 case elfcpp::R_POWERPC_ADDR14:
5518 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5519 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5520 case elfcpp::R_POWERPC_REL24:
5521 case elfcpp::R_PPC_PLTREL24:
5522 case elfcpp::R_POWERPC_REL14:
5523 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5524 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5525 return true;
5526
5527 default:
5528 break;
5529 }
5530
5531 // Anything else is a problem.
5532 // If we are building a static executable, the libc startup function
5533 // responsible for applying indirect function relocations is going
5534 // to complain about the reloc type.
5535 // If we are building a dynamic executable, we will have a text
5536 // relocation. The dynamic loader will set the text segment
5537 // writable and non-executable to apply text relocations. So we'll
5538 // segfault when trying to run the indirection function to resolve
5539 // the reloc.
5540 if (report_err)
5541 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5542 object->name().c_str(), r_type);
5543 return false;
5544 }
5545
5546 // Scan a relocation for a local symbol.
5547
5548 template<int size, bool big_endian>
5549 inline void
5550 Target_powerpc<size, big_endian>::Scan::local(
5551 Symbol_table* symtab,
5552 Layout* layout,
5553 Target_powerpc<size, big_endian>* target,
5554 Sized_relobj_file<size, big_endian>* object,
5555 unsigned int data_shndx,
5556 Output_section* output_section,
5557 const elfcpp::Rela<size, big_endian>& reloc,
5558 unsigned int r_type,
5559 const elfcpp::Sym<size, big_endian>& lsym,
5560 bool is_discarded)
5561 {
5562 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5563
5564 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5565 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5566 {
5567 this->expect_tls_get_addr_call();
5568 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5569 if (tls_type != tls::TLSOPT_NONE)
5570 this->skip_next_tls_get_addr_call();
5571 }
5572 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5573 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5574 {
5575 this->expect_tls_get_addr_call();
5576 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5577 if (tls_type != tls::TLSOPT_NONE)
5578 this->skip_next_tls_get_addr_call();
5579 }
5580
5581 Powerpc_relobj<size, big_endian>* ppc_object
5582 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5583
5584 if (is_discarded)
5585 {
5586 if (size == 64
5587 && data_shndx == ppc_object->opd_shndx()
5588 && r_type == elfcpp::R_PPC64_ADDR64)
5589 ppc_object->set_opd_discard(reloc.get_r_offset());
5590 return;
5591 }
5592
5593 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5594 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5595 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5596 {
5597 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5598 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5599 r_type, r_sym, reloc.get_r_addend());
5600 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5601 }
5602
5603 switch (r_type)
5604 {
5605 case elfcpp::R_POWERPC_NONE:
5606 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5607 case elfcpp::R_POWERPC_GNU_VTENTRY:
5608 case elfcpp::R_PPC64_TOCSAVE:
5609 case elfcpp::R_POWERPC_TLS:
5610 break;
5611
5612 case elfcpp::R_PPC64_TOC:
5613 {
5614 Output_data_got_powerpc<size, big_endian>* got
5615 = target->got_section(symtab, layout);
5616 if (parameters->options().output_is_position_independent())
5617 {
5618 Address off = reloc.get_r_offset();
5619 if (size == 64
5620 && target->abiversion() < 2
5621 && data_shndx == ppc_object->opd_shndx()
5622 && ppc_object->get_opd_discard(off - 8))
5623 break;
5624
5625 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5626 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5627 rela_dyn->add_output_section_relative(got->output_section(),
5628 elfcpp::R_POWERPC_RELATIVE,
5629 output_section,
5630 object, data_shndx, off,
5631 symobj->toc_base_offset());
5632 }
5633 }
5634 break;
5635
5636 case elfcpp::R_PPC64_ADDR64:
5637 case elfcpp::R_PPC64_UADDR64:
5638 case elfcpp::R_POWERPC_ADDR32:
5639 case elfcpp::R_POWERPC_UADDR32:
5640 case elfcpp::R_POWERPC_ADDR24:
5641 case elfcpp::R_POWERPC_ADDR16:
5642 case elfcpp::R_POWERPC_ADDR16_LO:
5643 case elfcpp::R_POWERPC_ADDR16_HI:
5644 case elfcpp::R_POWERPC_ADDR16_HA:
5645 case elfcpp::R_POWERPC_UADDR16:
5646 case elfcpp::R_PPC64_ADDR16_HIGH:
5647 case elfcpp::R_PPC64_ADDR16_HIGHA:
5648 case elfcpp::R_PPC64_ADDR16_HIGHER:
5649 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5650 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5651 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5652 case elfcpp::R_PPC64_ADDR16_DS:
5653 case elfcpp::R_PPC64_ADDR16_LO_DS:
5654 case elfcpp::R_POWERPC_ADDR14:
5655 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5656 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5657 // If building a shared library (or a position-independent
5658 // executable), we need to create a dynamic relocation for
5659 // this location.
5660 if (parameters->options().output_is_position_independent()
5661 || (size == 64 && is_ifunc && target->abiversion() < 2))
5662 {
5663 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5664 is_ifunc);
5665 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5666 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5667 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5668 {
5669 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5670 : elfcpp::R_POWERPC_RELATIVE);
5671 rela_dyn->add_local_relative(object, r_sym, dynrel,
5672 output_section, data_shndx,
5673 reloc.get_r_offset(),
5674 reloc.get_r_addend(), false);
5675 }
5676 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5677 {
5678 check_non_pic(object, r_type);
5679 rela_dyn->add_local(object, r_sym, r_type, output_section,
5680 data_shndx, reloc.get_r_offset(),
5681 reloc.get_r_addend());
5682 }
5683 else
5684 {
5685 gold_assert(lsym.get_st_value() == 0);
5686 unsigned int shndx = lsym.get_st_shndx();
5687 bool is_ordinary;
5688 shndx = object->adjust_sym_shndx(r_sym, shndx,
5689 &is_ordinary);
5690 if (!is_ordinary)
5691 object->error(_("section symbol %u has bad shndx %u"),
5692 r_sym, shndx);
5693 else
5694 rela_dyn->add_local_section(object, shndx, r_type,
5695 output_section, data_shndx,
5696 reloc.get_r_offset());
5697 }
5698 }
5699 break;
5700
5701 case elfcpp::R_POWERPC_REL24:
5702 case elfcpp::R_PPC_PLTREL24:
5703 case elfcpp::R_PPC_LOCAL24PC:
5704 case elfcpp::R_POWERPC_REL14:
5705 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5706 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5707 if (!is_ifunc)
5708 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5709 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5710 reloc.get_r_addend());
5711 break;
5712
5713 case elfcpp::R_PPC64_REL64:
5714 case elfcpp::R_POWERPC_REL32:
5715 case elfcpp::R_POWERPC_REL16:
5716 case elfcpp::R_POWERPC_REL16_LO:
5717 case elfcpp::R_POWERPC_REL16_HI:
5718 case elfcpp::R_POWERPC_REL16_HA:
5719 case elfcpp::R_POWERPC_REL16DX_HA:
5720 case elfcpp::R_POWERPC_SECTOFF:
5721 case elfcpp::R_POWERPC_SECTOFF_LO:
5722 case elfcpp::R_POWERPC_SECTOFF_HI:
5723 case elfcpp::R_POWERPC_SECTOFF_HA:
5724 case elfcpp::R_PPC64_SECTOFF_DS:
5725 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5726 case elfcpp::R_POWERPC_TPREL16:
5727 case elfcpp::R_POWERPC_TPREL16_LO:
5728 case elfcpp::R_POWERPC_TPREL16_HI:
5729 case elfcpp::R_POWERPC_TPREL16_HA:
5730 case elfcpp::R_PPC64_TPREL16_DS:
5731 case elfcpp::R_PPC64_TPREL16_LO_DS:
5732 case elfcpp::R_PPC64_TPREL16_HIGH:
5733 case elfcpp::R_PPC64_TPREL16_HIGHA:
5734 case elfcpp::R_PPC64_TPREL16_HIGHER:
5735 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5736 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5737 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5738 case elfcpp::R_POWERPC_DTPREL16:
5739 case elfcpp::R_POWERPC_DTPREL16_LO:
5740 case elfcpp::R_POWERPC_DTPREL16_HI:
5741 case elfcpp::R_POWERPC_DTPREL16_HA:
5742 case elfcpp::R_PPC64_DTPREL16_DS:
5743 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5744 case elfcpp::R_PPC64_DTPREL16_HIGH:
5745 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5746 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5747 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5748 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5749 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5750 case elfcpp::R_PPC64_TLSGD:
5751 case elfcpp::R_PPC64_TLSLD:
5752 case elfcpp::R_PPC64_ADDR64_LOCAL:
5753 break;
5754
5755 case elfcpp::R_POWERPC_GOT16:
5756 case elfcpp::R_POWERPC_GOT16_LO:
5757 case elfcpp::R_POWERPC_GOT16_HI:
5758 case elfcpp::R_POWERPC_GOT16_HA:
5759 case elfcpp::R_PPC64_GOT16_DS:
5760 case elfcpp::R_PPC64_GOT16_LO_DS:
5761 {
5762 // The symbol requires a GOT entry.
5763 Output_data_got_powerpc<size, big_endian>* got
5764 = target->got_section(symtab, layout);
5765 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5766
5767 if (!parameters->options().output_is_position_independent())
5768 {
5769 if (is_ifunc
5770 && (size == 32 || target->abiversion() >= 2))
5771 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5772 else
5773 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5774 }
5775 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5776 {
5777 // If we are generating a shared object or a pie, this
5778 // symbol's GOT entry will be set by a dynamic relocation.
5779 unsigned int off;
5780 off = got->add_constant(0);
5781 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5782
5783 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5784 is_ifunc);
5785 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5786 : elfcpp::R_POWERPC_RELATIVE);
5787 rela_dyn->add_local_relative(object, r_sym, dynrel,
5788 got, off, 0, false);
5789 }
5790 }
5791 break;
5792
5793 case elfcpp::R_PPC64_TOC16:
5794 case elfcpp::R_PPC64_TOC16_LO:
5795 case elfcpp::R_PPC64_TOC16_HI:
5796 case elfcpp::R_PPC64_TOC16_HA:
5797 case elfcpp::R_PPC64_TOC16_DS:
5798 case elfcpp::R_PPC64_TOC16_LO_DS:
5799 // We need a GOT section.
5800 target->got_section(symtab, layout);
5801 break;
5802
5803 case elfcpp::R_POWERPC_GOT_TLSGD16:
5804 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5805 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5806 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5807 {
5808 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5809 if (tls_type == tls::TLSOPT_NONE)
5810 {
5811 Output_data_got_powerpc<size, big_endian>* got
5812 = target->got_section(symtab, layout);
5813 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5814 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5815 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5816 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5817 }
5818 else if (tls_type == tls::TLSOPT_TO_LE)
5819 {
5820 // no GOT relocs needed for Local Exec.
5821 }
5822 else
5823 gold_unreachable();
5824 }
5825 break;
5826
5827 case elfcpp::R_POWERPC_GOT_TLSLD16:
5828 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5829 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5830 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5831 {
5832 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5833 if (tls_type == tls::TLSOPT_NONE)
5834 target->tlsld_got_offset(symtab, layout, object);
5835 else if (tls_type == tls::TLSOPT_TO_LE)
5836 {
5837 // no GOT relocs needed for Local Exec.
5838 if (parameters->options().emit_relocs())
5839 {
5840 Output_section* os = layout->tls_segment()->first_section();
5841 gold_assert(os != NULL);
5842 os->set_needs_symtab_index();
5843 }
5844 }
5845 else
5846 gold_unreachable();
5847 }
5848 break;
5849
5850 case elfcpp::R_POWERPC_GOT_DTPREL16:
5851 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5852 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5853 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5854 {
5855 Output_data_got_powerpc<size, big_endian>* got
5856 = target->got_section(symtab, layout);
5857 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5858 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5859 }
5860 break;
5861
5862 case elfcpp::R_POWERPC_GOT_TPREL16:
5863 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5864 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5865 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5866 {
5867 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5868 if (tls_type == tls::TLSOPT_NONE)
5869 {
5870 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5871 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5872 {
5873 Output_data_got_powerpc<size, big_endian>* got
5874 = target->got_section(symtab, layout);
5875 unsigned int off = got->add_constant(0);
5876 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5877
5878 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5879 rela_dyn->add_symbolless_local_addend(object, r_sym,
5880 elfcpp::R_POWERPC_TPREL,
5881 got, off, 0);
5882 }
5883 }
5884 else if (tls_type == tls::TLSOPT_TO_LE)
5885 {
5886 // no GOT relocs needed for Local Exec.
5887 }
5888 else
5889 gold_unreachable();
5890 }
5891 break;
5892
5893 default:
5894 unsupported_reloc_local(object, r_type);
5895 break;
5896 }
5897
5898 switch (r_type)
5899 {
5900 case elfcpp::R_POWERPC_GOT_TLSLD16:
5901 case elfcpp::R_POWERPC_GOT_TLSGD16:
5902 case elfcpp::R_POWERPC_GOT_TPREL16:
5903 case elfcpp::R_POWERPC_GOT_DTPREL16:
5904 case elfcpp::R_POWERPC_GOT16:
5905 case elfcpp::R_PPC64_GOT16_DS:
5906 case elfcpp::R_PPC64_TOC16:
5907 case elfcpp::R_PPC64_TOC16_DS:
5908 ppc_object->set_has_small_toc_reloc();
5909 default:
5910 break;
5911 }
5912 }
5913
5914 // Report an unsupported relocation against a global symbol.
5915
5916 template<int size, bool big_endian>
5917 void
5918 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5919 Sized_relobj_file<size, big_endian>* object,
5920 unsigned int r_type,
5921 Symbol* gsym)
5922 {
5923 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5924 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5925 }
5926
5927 // Scan a relocation for a global symbol.
5928
5929 template<int size, bool big_endian>
5930 inline void
5931 Target_powerpc<size, big_endian>::Scan::global(
5932 Symbol_table* symtab,
5933 Layout* layout,
5934 Target_powerpc<size, big_endian>* target,
5935 Sized_relobj_file<size, big_endian>* object,
5936 unsigned int data_shndx,
5937 Output_section* output_section,
5938 const elfcpp::Rela<size, big_endian>& reloc,
5939 unsigned int r_type,
5940 Symbol* gsym)
5941 {
5942 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5943 return;
5944
5945 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5946 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5947 {
5948 this->expect_tls_get_addr_call();
5949 const bool final = gsym->final_value_is_known();
5950 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5951 if (tls_type != tls::TLSOPT_NONE)
5952 this->skip_next_tls_get_addr_call();
5953 }
5954 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5955 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5956 {
5957 this->expect_tls_get_addr_call();
5958 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5959 if (tls_type != tls::TLSOPT_NONE)
5960 this->skip_next_tls_get_addr_call();
5961 }
5962
5963 Powerpc_relobj<size, big_endian>* ppc_object
5964 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5965
5966 // A STT_GNU_IFUNC symbol may require a PLT entry.
5967 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5968 bool pushed_ifunc = false;
5969 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5970 {
5971 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5972 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5973 reloc.get_r_addend());
5974 target->make_plt_entry(symtab, layout, gsym);
5975 pushed_ifunc = true;
5976 }
5977
5978 switch (r_type)
5979 {
5980 case elfcpp::R_POWERPC_NONE:
5981 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5982 case elfcpp::R_POWERPC_GNU_VTENTRY:
5983 case elfcpp::R_PPC_LOCAL24PC:
5984 case elfcpp::R_POWERPC_TLS:
5985 break;
5986
5987 case elfcpp::R_PPC64_TOC:
5988 {
5989 Output_data_got_powerpc<size, big_endian>* got
5990 = target->got_section(symtab, layout);
5991 if (parameters->options().output_is_position_independent())
5992 {
5993 Address off = reloc.get_r_offset();
5994 if (size == 64
5995 && data_shndx == ppc_object->opd_shndx()
5996 && ppc_object->get_opd_discard(off - 8))
5997 break;
5998
5999 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6000 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6001 if (data_shndx != ppc_object->opd_shndx())
6002 symobj = static_cast
6003 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6004 rela_dyn->add_output_section_relative(got->output_section(),
6005 elfcpp::R_POWERPC_RELATIVE,
6006 output_section,
6007 object, data_shndx, off,
6008 symobj->toc_base_offset());
6009 }
6010 }
6011 break;
6012
6013 case elfcpp::R_PPC64_ADDR64:
6014 if (size == 64
6015 && target->abiversion() < 2
6016 && data_shndx == ppc_object->opd_shndx()
6017 && (gsym->is_defined_in_discarded_section()
6018 || gsym->object() != object))
6019 {
6020 ppc_object->set_opd_discard(reloc.get_r_offset());
6021 break;
6022 }
6023 // Fall thru
6024 case elfcpp::R_PPC64_UADDR64:
6025 case elfcpp::R_POWERPC_ADDR32:
6026 case elfcpp::R_POWERPC_UADDR32:
6027 case elfcpp::R_POWERPC_ADDR24:
6028 case elfcpp::R_POWERPC_ADDR16:
6029 case elfcpp::R_POWERPC_ADDR16_LO:
6030 case elfcpp::R_POWERPC_ADDR16_HI:
6031 case elfcpp::R_POWERPC_ADDR16_HA:
6032 case elfcpp::R_POWERPC_UADDR16:
6033 case elfcpp::R_PPC64_ADDR16_HIGH:
6034 case elfcpp::R_PPC64_ADDR16_HIGHA:
6035 case elfcpp::R_PPC64_ADDR16_HIGHER:
6036 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6037 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6038 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6039 case elfcpp::R_PPC64_ADDR16_DS:
6040 case elfcpp::R_PPC64_ADDR16_LO_DS:
6041 case elfcpp::R_POWERPC_ADDR14:
6042 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6043 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6044 {
6045 // Make a PLT entry if necessary.
6046 if (gsym->needs_plt_entry())
6047 {
6048 // Since this is not a PC-relative relocation, we may be
6049 // taking the address of a function. In that case we need to
6050 // set the entry in the dynamic symbol table to the address of
6051 // the PLT call stub.
6052 bool need_ifunc_plt = false;
6053 if ((size == 32 || target->abiversion() >= 2)
6054 && gsym->is_from_dynobj()
6055 && !parameters->options().output_is_position_independent())
6056 {
6057 gsym->set_needs_dynsym_value();
6058 need_ifunc_plt = true;
6059 }
6060 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6061 {
6062 target->push_branch(ppc_object, data_shndx,
6063 reloc.get_r_offset(), r_type,
6064 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6065 reloc.get_r_addend());
6066 target->make_plt_entry(symtab, layout, gsym);
6067 }
6068 }
6069 // Make a dynamic relocation if necessary.
6070 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6071 || (size == 64 && is_ifunc && target->abiversion() < 2))
6072 {
6073 if (!parameters->options().output_is_position_independent()
6074 && gsym->may_need_copy_reloc())
6075 {
6076 target->copy_reloc(symtab, layout, object,
6077 data_shndx, output_section, gsym, reloc);
6078 }
6079 else if ((((size == 32
6080 && r_type == elfcpp::R_POWERPC_ADDR32)
6081 || (size == 64
6082 && r_type == elfcpp::R_PPC64_ADDR64
6083 && target->abiversion() >= 2))
6084 && gsym->can_use_relative_reloc(false)
6085 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6086 && parameters->options().shared()))
6087 || (size == 64
6088 && r_type == elfcpp::R_PPC64_ADDR64
6089 && target->abiversion() < 2
6090 && (gsym->can_use_relative_reloc(false)
6091 || data_shndx == ppc_object->opd_shndx())))
6092 {
6093 Reloc_section* rela_dyn
6094 = target->rela_dyn_section(symtab, layout, is_ifunc);
6095 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6096 : elfcpp::R_POWERPC_RELATIVE);
6097 rela_dyn->add_symbolless_global_addend(
6098 gsym, dynrel, output_section, object, data_shndx,
6099 reloc.get_r_offset(), reloc.get_r_addend());
6100 }
6101 else
6102 {
6103 Reloc_section* rela_dyn
6104 = target->rela_dyn_section(symtab, layout, is_ifunc);
6105 check_non_pic(object, r_type);
6106 rela_dyn->add_global(gsym, r_type, output_section,
6107 object, data_shndx,
6108 reloc.get_r_offset(),
6109 reloc.get_r_addend());
6110 }
6111 }
6112 }
6113 break;
6114
6115 case elfcpp::R_PPC_PLTREL24:
6116 case elfcpp::R_POWERPC_REL24:
6117 if (!is_ifunc)
6118 {
6119 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6120 r_type,
6121 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6122 reloc.get_r_addend());
6123 if (gsym->needs_plt_entry()
6124 || (!gsym->final_value_is_known()
6125 && (gsym->is_undefined()
6126 || gsym->is_from_dynobj()
6127 || gsym->is_preemptible())))
6128 target->make_plt_entry(symtab, layout, gsym);
6129 }
6130 // Fall thru
6131
6132 case elfcpp::R_PPC64_REL64:
6133 case elfcpp::R_POWERPC_REL32:
6134 // Make a dynamic relocation if necessary.
6135 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6136 {
6137 if (!parameters->options().output_is_position_independent()
6138 && gsym->may_need_copy_reloc())
6139 {
6140 target->copy_reloc(symtab, layout, object,
6141 data_shndx, output_section, gsym,
6142 reloc);
6143 }
6144 else
6145 {
6146 Reloc_section* rela_dyn
6147 = target->rela_dyn_section(symtab, layout, is_ifunc);
6148 check_non_pic(object, r_type);
6149 rela_dyn->add_global(gsym, r_type, output_section, object,
6150 data_shndx, reloc.get_r_offset(),
6151 reloc.get_r_addend());
6152 }
6153 }
6154 break;
6155
6156 case elfcpp::R_POWERPC_REL14:
6157 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6158 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6159 if (!is_ifunc)
6160 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6161 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6162 reloc.get_r_addend());
6163 break;
6164
6165 case elfcpp::R_POWERPC_REL16:
6166 case elfcpp::R_POWERPC_REL16_LO:
6167 case elfcpp::R_POWERPC_REL16_HI:
6168 case elfcpp::R_POWERPC_REL16_HA:
6169 case elfcpp::R_POWERPC_REL16DX_HA:
6170 case elfcpp::R_POWERPC_SECTOFF:
6171 case elfcpp::R_POWERPC_SECTOFF_LO:
6172 case elfcpp::R_POWERPC_SECTOFF_HI:
6173 case elfcpp::R_POWERPC_SECTOFF_HA:
6174 case elfcpp::R_PPC64_SECTOFF_DS:
6175 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6176 case elfcpp::R_POWERPC_TPREL16:
6177 case elfcpp::R_POWERPC_TPREL16_LO:
6178 case elfcpp::R_POWERPC_TPREL16_HI:
6179 case elfcpp::R_POWERPC_TPREL16_HA:
6180 case elfcpp::R_PPC64_TPREL16_DS:
6181 case elfcpp::R_PPC64_TPREL16_LO_DS:
6182 case elfcpp::R_PPC64_TPREL16_HIGH:
6183 case elfcpp::R_PPC64_TPREL16_HIGHA:
6184 case elfcpp::R_PPC64_TPREL16_HIGHER:
6185 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6186 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6187 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6188 case elfcpp::R_POWERPC_DTPREL16:
6189 case elfcpp::R_POWERPC_DTPREL16_LO:
6190 case elfcpp::R_POWERPC_DTPREL16_HI:
6191 case elfcpp::R_POWERPC_DTPREL16_HA:
6192 case elfcpp::R_PPC64_DTPREL16_DS:
6193 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6194 case elfcpp::R_PPC64_DTPREL16_HIGH:
6195 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6196 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6197 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6198 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6199 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6200 case elfcpp::R_PPC64_TLSGD:
6201 case elfcpp::R_PPC64_TLSLD:
6202 case elfcpp::R_PPC64_ADDR64_LOCAL:
6203 break;
6204
6205 case elfcpp::R_POWERPC_GOT16:
6206 case elfcpp::R_POWERPC_GOT16_LO:
6207 case elfcpp::R_POWERPC_GOT16_HI:
6208 case elfcpp::R_POWERPC_GOT16_HA:
6209 case elfcpp::R_PPC64_GOT16_DS:
6210 case elfcpp::R_PPC64_GOT16_LO_DS:
6211 {
6212 // The symbol requires a GOT entry.
6213 Output_data_got_powerpc<size, big_endian>* got;
6214
6215 got = target->got_section(symtab, layout);
6216 if (gsym->final_value_is_known())
6217 {
6218 if (is_ifunc
6219 && (size == 32 || target->abiversion() >= 2))
6220 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6221 else
6222 got->add_global(gsym, GOT_TYPE_STANDARD);
6223 }
6224 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6225 {
6226 // If we are generating a shared object or a pie, this
6227 // symbol's GOT entry will be set by a dynamic relocation.
6228 unsigned int off = got->add_constant(0);
6229 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6230
6231 Reloc_section* rela_dyn
6232 = target->rela_dyn_section(symtab, layout, is_ifunc);
6233
6234 if (gsym->can_use_relative_reloc(false)
6235 && !((size == 32
6236 || target->abiversion() >= 2)
6237 && gsym->visibility() == elfcpp::STV_PROTECTED
6238 && parameters->options().shared()))
6239 {
6240 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6241 : elfcpp::R_POWERPC_RELATIVE);
6242 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6243 }
6244 else
6245 {
6246 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6247 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6248 }
6249 }
6250 }
6251 break;
6252
6253 case elfcpp::R_PPC64_TOC16:
6254 case elfcpp::R_PPC64_TOC16_LO:
6255 case elfcpp::R_PPC64_TOC16_HI:
6256 case elfcpp::R_PPC64_TOC16_HA:
6257 case elfcpp::R_PPC64_TOC16_DS:
6258 case elfcpp::R_PPC64_TOC16_LO_DS:
6259 // We need a GOT section.
6260 target->got_section(symtab, layout);
6261 break;
6262
6263 case elfcpp::R_POWERPC_GOT_TLSGD16:
6264 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6265 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6266 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6267 {
6268 const bool final = gsym->final_value_is_known();
6269 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6270 if (tls_type == tls::TLSOPT_NONE)
6271 {
6272 Output_data_got_powerpc<size, big_endian>* got
6273 = target->got_section(symtab, layout);
6274 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6275 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6276 elfcpp::R_POWERPC_DTPMOD,
6277 elfcpp::R_POWERPC_DTPREL);
6278 }
6279 else if (tls_type == tls::TLSOPT_TO_IE)
6280 {
6281 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6282 {
6283 Output_data_got_powerpc<size, big_endian>* got
6284 = target->got_section(symtab, layout);
6285 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6286 if (gsym->is_undefined()
6287 || gsym->is_from_dynobj())
6288 {
6289 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6290 elfcpp::R_POWERPC_TPREL);
6291 }
6292 else
6293 {
6294 unsigned int off = got->add_constant(0);
6295 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6296 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6297 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6298 got, off, 0);
6299 }
6300 }
6301 }
6302 else if (tls_type == tls::TLSOPT_TO_LE)
6303 {
6304 // no GOT relocs needed for Local Exec.
6305 }
6306 else
6307 gold_unreachable();
6308 }
6309 break;
6310
6311 case elfcpp::R_POWERPC_GOT_TLSLD16:
6312 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6313 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6314 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6315 {
6316 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6317 if (tls_type == tls::TLSOPT_NONE)
6318 target->tlsld_got_offset(symtab, layout, object);
6319 else if (tls_type == tls::TLSOPT_TO_LE)
6320 {
6321 // no GOT relocs needed for Local Exec.
6322 if (parameters->options().emit_relocs())
6323 {
6324 Output_section* os = layout->tls_segment()->first_section();
6325 gold_assert(os != NULL);
6326 os->set_needs_symtab_index();
6327 }
6328 }
6329 else
6330 gold_unreachable();
6331 }
6332 break;
6333
6334 case elfcpp::R_POWERPC_GOT_DTPREL16:
6335 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6336 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6337 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6338 {
6339 Output_data_got_powerpc<size, big_endian>* got
6340 = target->got_section(symtab, layout);
6341 if (!gsym->final_value_is_known()
6342 && (gsym->is_from_dynobj()
6343 || gsym->is_undefined()
6344 || gsym->is_preemptible()))
6345 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6346 target->rela_dyn_section(layout),
6347 elfcpp::R_POWERPC_DTPREL);
6348 else
6349 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6350 }
6351 break;
6352
6353 case elfcpp::R_POWERPC_GOT_TPREL16:
6354 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6355 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6356 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6357 {
6358 const bool final = gsym->final_value_is_known();
6359 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6360 if (tls_type == tls::TLSOPT_NONE)
6361 {
6362 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6363 {
6364 Output_data_got_powerpc<size, big_endian>* got
6365 = target->got_section(symtab, layout);
6366 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6367 if (gsym->is_undefined()
6368 || gsym->is_from_dynobj())
6369 {
6370 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6371 elfcpp::R_POWERPC_TPREL);
6372 }
6373 else
6374 {
6375 unsigned int off = got->add_constant(0);
6376 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6377 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6378 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6379 got, off, 0);
6380 }
6381 }
6382 }
6383 else if (tls_type == tls::TLSOPT_TO_LE)
6384 {
6385 // no GOT relocs needed for Local Exec.
6386 }
6387 else
6388 gold_unreachable();
6389 }
6390 break;
6391
6392 default:
6393 unsupported_reloc_global(object, r_type, gsym);
6394 break;
6395 }
6396
6397 switch (r_type)
6398 {
6399 case elfcpp::R_POWERPC_GOT_TLSLD16:
6400 case elfcpp::R_POWERPC_GOT_TLSGD16:
6401 case elfcpp::R_POWERPC_GOT_TPREL16:
6402 case elfcpp::R_POWERPC_GOT_DTPREL16:
6403 case elfcpp::R_POWERPC_GOT16:
6404 case elfcpp::R_PPC64_GOT16_DS:
6405 case elfcpp::R_PPC64_TOC16:
6406 case elfcpp::R_PPC64_TOC16_DS:
6407 ppc_object->set_has_small_toc_reloc();
6408 default:
6409 break;
6410 }
6411 }
6412
6413 // Process relocations for gc.
6414
6415 template<int size, bool big_endian>
6416 void
6417 Target_powerpc<size, big_endian>::gc_process_relocs(
6418 Symbol_table* symtab,
6419 Layout* layout,
6420 Sized_relobj_file<size, big_endian>* object,
6421 unsigned int data_shndx,
6422 unsigned int,
6423 const unsigned char* prelocs,
6424 size_t reloc_count,
6425 Output_section* output_section,
6426 bool needs_special_offset_handling,
6427 size_t local_symbol_count,
6428 const unsigned char* plocal_symbols)
6429 {
6430 typedef Target_powerpc<size, big_endian> Powerpc;
6431 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6432 Powerpc_relobj<size, big_endian>* ppc_object
6433 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6434 if (size == 64)
6435 ppc_object->set_opd_valid();
6436 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6437 {
6438 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6439 for (p = ppc_object->access_from_map()->begin();
6440 p != ppc_object->access_from_map()->end();
6441 ++p)
6442 {
6443 Address dst_off = p->first;
6444 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6445 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6446 for (s = p->second.begin(); s != p->second.end(); ++s)
6447 {
6448 Relobj* src_obj = s->first;
6449 unsigned int src_indx = s->second;
6450 symtab->gc()->add_reference(src_obj, src_indx,
6451 ppc_object, dst_indx);
6452 }
6453 p->second.clear();
6454 }
6455 ppc_object->access_from_map()->clear();
6456 ppc_object->process_gc_mark(symtab);
6457 // Don't look at .opd relocs as .opd will reference everything.
6458 return;
6459 }
6460
6461 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6462 typename Target_powerpc::Relocatable_size_for_reloc>(
6463 symtab,
6464 layout,
6465 this,
6466 object,
6467 data_shndx,
6468 prelocs,
6469 reloc_count,
6470 output_section,
6471 needs_special_offset_handling,
6472 local_symbol_count,
6473 plocal_symbols);
6474 }
6475
6476 // Handle target specific gc actions when adding a gc reference from
6477 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6478 // and DST_OFF. For powerpc64, this adds a referenc to the code
6479 // section of a function descriptor.
6480
6481 template<int size, bool big_endian>
6482 void
6483 Target_powerpc<size, big_endian>::do_gc_add_reference(
6484 Symbol_table* symtab,
6485 Relobj* src_obj,
6486 unsigned int src_shndx,
6487 Relobj* dst_obj,
6488 unsigned int dst_shndx,
6489 Address dst_off) const
6490 {
6491 if (size != 64 || dst_obj->is_dynamic())
6492 return;
6493
6494 Powerpc_relobj<size, big_endian>* ppc_object
6495 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6496 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6497 {
6498 if (ppc_object->opd_valid())
6499 {
6500 dst_shndx = ppc_object->get_opd_ent(dst_off);
6501 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6502 }
6503 else
6504 {
6505 // If we haven't run scan_opd_relocs, we must delay
6506 // processing this function descriptor reference.
6507 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6508 }
6509 }
6510 }
6511
6512 // Add any special sections for this symbol to the gc work list.
6513 // For powerpc64, this adds the code section of a function
6514 // descriptor.
6515
6516 template<int size, bool big_endian>
6517 void
6518 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6519 Symbol_table* symtab,
6520 Symbol* sym) const
6521 {
6522 if (size == 64)
6523 {
6524 Powerpc_relobj<size, big_endian>* ppc_object
6525 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6526 bool is_ordinary;
6527 unsigned int shndx = sym->shndx(&is_ordinary);
6528 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6529 {
6530 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6531 Address dst_off = gsym->value();
6532 if (ppc_object->opd_valid())
6533 {
6534 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6535 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6536 dst_indx));
6537 }
6538 else
6539 ppc_object->add_gc_mark(dst_off);
6540 }
6541 }
6542 }
6543
6544 // For a symbol location in .opd, set LOC to the location of the
6545 // function entry.
6546
6547 template<int size, bool big_endian>
6548 void
6549 Target_powerpc<size, big_endian>::do_function_location(
6550 Symbol_location* loc) const
6551 {
6552 if (size == 64 && loc->shndx != 0)
6553 {
6554 if (loc->object->is_dynamic())
6555 {
6556 Powerpc_dynobj<size, big_endian>* ppc_object
6557 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6558 if (loc->shndx == ppc_object->opd_shndx())
6559 {
6560 Address dest_off;
6561 Address off = loc->offset - ppc_object->opd_address();
6562 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6563 loc->offset = dest_off;
6564 }
6565 }
6566 else
6567 {
6568 const Powerpc_relobj<size, big_endian>* ppc_object
6569 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6570 if (loc->shndx == ppc_object->opd_shndx())
6571 {
6572 Address dest_off;
6573 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6574 loc->offset = dest_off;
6575 }
6576 }
6577 }
6578 }
6579
6580 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6581 // compiled with -fsplit-stack. The function calls non-split-stack
6582 // code. Change the function to ensure it has enough stack space to
6583 // call some random function.
6584
6585 template<int size, bool big_endian>
6586 void
6587 Target_powerpc<size, big_endian>::do_calls_non_split(
6588 Relobj* object,
6589 unsigned int shndx,
6590 section_offset_type fnoffset,
6591 section_size_type fnsize,
6592 unsigned char* view,
6593 section_size_type view_size,
6594 std::string* from,
6595 std::string* to) const
6596 {
6597 // 32-bit not supported.
6598 if (size == 32)
6599 {
6600 // warn
6601 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6602 view, view_size, from, to);
6603 return;
6604 }
6605
6606 // The function always starts with
6607 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6608 // addis %r12,%r1,-allocate@ha
6609 // addi %r12,%r12,-allocate@l
6610 // cmpld %r12,%r0
6611 // but note that the addis or addi may be replaced with a nop
6612
6613 unsigned char *entry = view + fnoffset;
6614 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6615
6616 if ((insn & 0xffff0000) == addis_2_12)
6617 {
6618 /* Skip ELFv2 global entry code. */
6619 entry += 8;
6620 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6621 }
6622
6623 unsigned char *pinsn = entry;
6624 bool ok = false;
6625 const uint32_t ld_private_ss = 0xe80d8fc0;
6626 if (insn == ld_private_ss)
6627 {
6628 int32_t allocate = 0;
6629 while (1)
6630 {
6631 pinsn += 4;
6632 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6633 if ((insn & 0xffff0000) == addis_12_1)
6634 allocate += (insn & 0xffff) << 16;
6635 else if ((insn & 0xffff0000) == addi_12_1
6636 || (insn & 0xffff0000) == addi_12_12)
6637 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6638 else if (insn != nop)
6639 break;
6640 }
6641 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6642 {
6643 int extra = parameters->options().split_stack_adjust_size();
6644 allocate -= extra;
6645 if (allocate >= 0 || extra < 0)
6646 {
6647 object->error(_("split-stack stack size overflow at "
6648 "section %u offset %0zx"),
6649 shndx, static_cast<size_t>(fnoffset));
6650 return;
6651 }
6652 pinsn = entry + 4;
6653 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6654 if (insn != addis_12_1)
6655 {
6656 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6657 pinsn += 4;
6658 insn = addi_12_12 | (allocate & 0xffff);
6659 if (insn != addi_12_12)
6660 {
6661 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6662 pinsn += 4;
6663 }
6664 }
6665 else
6666 {
6667 insn = addi_12_1 | (allocate & 0xffff);
6668 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6669 pinsn += 4;
6670 }
6671 if (pinsn != entry + 12)
6672 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6673
6674 ok = true;
6675 }
6676 }
6677
6678 if (!ok)
6679 {
6680 if (!object->has_no_split_stack())
6681 object->error(_("failed to match split-stack sequence at "
6682 "section %u offset %0zx"),
6683 shndx, static_cast<size_t>(fnoffset));
6684 }
6685 }
6686
6687 // Scan relocations for a section.
6688
6689 template<int size, bool big_endian>
6690 void
6691 Target_powerpc<size, big_endian>::scan_relocs(
6692 Symbol_table* symtab,
6693 Layout* layout,
6694 Sized_relobj_file<size, big_endian>* object,
6695 unsigned int data_shndx,
6696 unsigned int sh_type,
6697 const unsigned char* prelocs,
6698 size_t reloc_count,
6699 Output_section* output_section,
6700 bool needs_special_offset_handling,
6701 size_t local_symbol_count,
6702 const unsigned char* plocal_symbols)
6703 {
6704 typedef Target_powerpc<size, big_endian> Powerpc;
6705 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6706
6707 if (sh_type == elfcpp::SHT_REL)
6708 {
6709 gold_error(_("%s: unsupported REL reloc section"),
6710 object->name().c_str());
6711 return;
6712 }
6713
6714 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6715 symtab,
6716 layout,
6717 this,
6718 object,
6719 data_shndx,
6720 prelocs,
6721 reloc_count,
6722 output_section,
6723 needs_special_offset_handling,
6724 local_symbol_count,
6725 plocal_symbols);
6726 }
6727
6728 // Functor class for processing the global symbol table.
6729 // Removes symbols defined on discarded opd entries.
6730
6731 template<bool big_endian>
6732 class Global_symbol_visitor_opd
6733 {
6734 public:
6735 Global_symbol_visitor_opd()
6736 { }
6737
6738 void
6739 operator()(Sized_symbol<64>* sym)
6740 {
6741 if (sym->has_symtab_index()
6742 || sym->source() != Symbol::FROM_OBJECT
6743 || !sym->in_real_elf())
6744 return;
6745
6746 if (sym->object()->is_dynamic())
6747 return;
6748
6749 Powerpc_relobj<64, big_endian>* symobj
6750 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6751 if (symobj->opd_shndx() == 0)
6752 return;
6753
6754 bool is_ordinary;
6755 unsigned int shndx = sym->shndx(&is_ordinary);
6756 if (shndx == symobj->opd_shndx()
6757 && symobj->get_opd_discard(sym->value()))
6758 {
6759 sym->set_undefined();
6760 sym->set_visibility(elfcpp::STV_DEFAULT);
6761 sym->set_is_defined_in_discarded_section();
6762 sym->set_symtab_index(-1U);
6763 }
6764 }
6765 };
6766
6767 template<int size, bool big_endian>
6768 void
6769 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6770 Layout* layout,
6771 Symbol_table* symtab)
6772 {
6773 if (size == 64)
6774 {
6775 Output_data_save_res<size, big_endian>* savres
6776 = new Output_data_save_res<size, big_endian>(symtab);
6777 this->savres_section_ = savres;
6778 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6779 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6780 savres, ORDER_TEXT, false);
6781 }
6782 }
6783
6784 // Sort linker created .got section first (for the header), then input
6785 // sections belonging to files using small model code.
6786
6787 template<bool big_endian>
6788 class Sort_toc_sections
6789 {
6790 public:
6791 bool
6792 operator()(const Output_section::Input_section& is1,
6793 const Output_section::Input_section& is2) const
6794 {
6795 if (!is1.is_input_section() && is2.is_input_section())
6796 return true;
6797 bool small1
6798 = (is1.is_input_section()
6799 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6800 ->has_small_toc_reloc()));
6801 bool small2
6802 = (is2.is_input_section()
6803 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6804 ->has_small_toc_reloc()));
6805 return small1 && !small2;
6806 }
6807 };
6808
6809 // Finalize the sections.
6810
6811 template<int size, bool big_endian>
6812 void
6813 Target_powerpc<size, big_endian>::do_finalize_sections(
6814 Layout* layout,
6815 const Input_objects*,
6816 Symbol_table* symtab)
6817 {
6818 if (parameters->doing_static_link())
6819 {
6820 // At least some versions of glibc elf-init.o have a strong
6821 // reference to __rela_iplt marker syms. A weak ref would be
6822 // better..
6823 if (this->iplt_ != NULL)
6824 {
6825 Reloc_section* rel = this->iplt_->rel_plt();
6826 symtab->define_in_output_data("__rela_iplt_start", NULL,
6827 Symbol_table::PREDEFINED, rel, 0, 0,
6828 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6829 elfcpp::STV_HIDDEN, 0, false, true);
6830 symtab->define_in_output_data("__rela_iplt_end", NULL,
6831 Symbol_table::PREDEFINED, rel, 0, 0,
6832 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6833 elfcpp::STV_HIDDEN, 0, true, true);
6834 }
6835 else
6836 {
6837 symtab->define_as_constant("__rela_iplt_start", NULL,
6838 Symbol_table::PREDEFINED, 0, 0,
6839 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6840 elfcpp::STV_HIDDEN, 0, true, false);
6841 symtab->define_as_constant("__rela_iplt_end", NULL,
6842 Symbol_table::PREDEFINED, 0, 0,
6843 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6844 elfcpp::STV_HIDDEN, 0, true, false);
6845 }
6846 }
6847
6848 if (size == 64)
6849 {
6850 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6851 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6852
6853 if (!parameters->options().relocatable())
6854 {
6855 this->define_save_restore_funcs(layout, symtab);
6856
6857 // Annoyingly, we need to make these sections now whether or
6858 // not we need them. If we delay until do_relax then we
6859 // need to mess with the relaxation machinery checkpointing.
6860 this->got_section(symtab, layout);
6861 this->make_brlt_section(layout);
6862
6863 if (parameters->options().toc_sort())
6864 {
6865 Output_section* os = this->got_->output_section();
6866 if (os != NULL && os->input_sections().size() > 1)
6867 std::stable_sort(os->input_sections().begin(),
6868 os->input_sections().end(),
6869 Sort_toc_sections<big_endian>());
6870 }
6871 }
6872 }
6873
6874 // Fill in some more dynamic tags.
6875 Output_data_dynamic* odyn = layout->dynamic_data();
6876 if (odyn != NULL)
6877 {
6878 const Reloc_section* rel_plt = (this->plt_ == NULL
6879 ? NULL
6880 : this->plt_->rel_plt());
6881 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6882 this->rela_dyn_, true, size == 32);
6883
6884 if (size == 32)
6885 {
6886 if (this->got_ != NULL)
6887 {
6888 this->got_->finalize_data_size();
6889 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6890 this->got_, this->got_->g_o_t());
6891 }
6892 }
6893 else
6894 {
6895 if (this->glink_ != NULL)
6896 {
6897 this->glink_->finalize_data_size();
6898 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6899 this->glink_,
6900 (this->glink_->pltresolve_size
6901 - 32));
6902 }
6903 }
6904 }
6905
6906 // Emit any relocs we saved in an attempt to avoid generating COPY
6907 // relocs.
6908 if (this->copy_relocs_.any_saved_relocs())
6909 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6910 }
6911
6912 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6913 // reloc.
6914
6915 static bool
6916 ok_lo_toc_insn(uint32_t insn)
6917 {
6918 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6919 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6920 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6921 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6922 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6923 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6924 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6925 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6926 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6927 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6928 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6929 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6930 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6931 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6932 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6933 && (insn & 3) != 1)
6934 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6935 && ((insn & 3) == 0 || (insn & 3) == 3))
6936 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6937 }
6938
6939 // Return the value to use for a branch relocation.
6940
6941 template<int size, bool big_endian>
6942 bool
6943 Target_powerpc<size, big_endian>::symval_for_branch(
6944 const Symbol_table* symtab,
6945 const Sized_symbol<size>* gsym,
6946 Powerpc_relobj<size, big_endian>* object,
6947 Address *value,
6948 unsigned int *dest_shndx)
6949 {
6950 if (size == 32 || this->abiversion() >= 2)
6951 gold_unreachable();
6952 *dest_shndx = 0;
6953
6954 // If the symbol is defined in an opd section, ie. is a function
6955 // descriptor, use the function descriptor code entry address
6956 Powerpc_relobj<size, big_endian>* symobj = object;
6957 if (gsym != NULL
6958 && gsym->source() != Symbol::FROM_OBJECT)
6959 return true;
6960 if (gsym != NULL)
6961 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6962 unsigned int shndx = symobj->opd_shndx();
6963 if (shndx == 0)
6964 return true;
6965 Address opd_addr = symobj->get_output_section_offset(shndx);
6966 if (opd_addr == invalid_address)
6967 return true;
6968 opd_addr += symobj->output_section_address(shndx);
6969 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6970 {
6971 Address sec_off;
6972 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6973 if (symtab->is_section_folded(symobj, *dest_shndx))
6974 {
6975 Section_id folded
6976 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6977 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6978 *dest_shndx = folded.second;
6979 }
6980 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6981 if (sec_addr == invalid_address)
6982 return false;
6983
6984 sec_addr += symobj->output_section(*dest_shndx)->address();
6985 *value = sec_addr + sec_off;
6986 }
6987 return true;
6988 }
6989
6990 // Perform a relocation.
6991
6992 template<int size, bool big_endian>
6993 inline bool
6994 Target_powerpc<size, big_endian>::Relocate::relocate(
6995 const Relocate_info<size, big_endian>* relinfo,
6996 Target_powerpc* target,
6997 Output_section* os,
6998 size_t relnum,
6999 const elfcpp::Rela<size, big_endian>& rela,
7000 unsigned int r_type,
7001 const Sized_symbol<size>* gsym,
7002 const Symbol_value<size>* psymval,
7003 unsigned char* view,
7004 Address address,
7005 section_size_type view_size)
7006 {
7007 if (view == NULL)
7008 return true;
7009
7010 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7011 {
7012 case Track_tls::NOT_EXPECTED:
7013 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7014 _("__tls_get_addr call lacks marker reloc"));
7015 break;
7016 case Track_tls::EXPECTED:
7017 // We have already complained.
7018 break;
7019 case Track_tls::SKIP:
7020 return true;
7021 case Track_tls::NORMAL:
7022 break;
7023 }
7024
7025 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7026 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7027 Powerpc_relobj<size, big_endian>* const object
7028 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7029 Address value = 0;
7030 bool has_stub_value = false;
7031 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7032 if ((gsym != NULL
7033 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7034 : object->local_has_plt_offset(r_sym))
7035 && (!psymval->is_ifunc_symbol()
7036 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7037 {
7038 if (size == 64
7039 && gsym != NULL
7040 && target->abiversion() >= 2
7041 && !parameters->options().output_is_position_independent()
7042 && !is_branch_reloc(r_type))
7043 {
7044 Address off = target->glink_section()->find_global_entry(gsym);
7045 if (off != invalid_address)
7046 {
7047 value = target->glink_section()->global_entry_address() + off;
7048 has_stub_value = true;
7049 }
7050 }
7051 else
7052 {
7053 Stub_table<size, big_endian>* stub_table
7054 = object->stub_table(relinfo->data_shndx);
7055 if (stub_table == NULL)
7056 {
7057 // This is a ref from a data section to an ifunc symbol.
7058 if (target->stub_tables().size() != 0)
7059 stub_table = target->stub_tables()[0];
7060 }
7061 if (stub_table != NULL)
7062 {
7063 Address off;
7064 if (gsym != NULL)
7065 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7066 rela.get_r_addend());
7067 else
7068 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7069 rela.get_r_addend());
7070 if (off != invalid_address)
7071 {
7072 value = stub_table->stub_address() + off;
7073 has_stub_value = true;
7074 }
7075 }
7076 }
7077 // We don't care too much about bogus debug references to
7078 // non-local functions, but otherwise there had better be a plt
7079 // call stub or global entry stub as appropriate.
7080 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7081 }
7082
7083 if (r_type == elfcpp::R_POWERPC_GOT16
7084 || r_type == elfcpp::R_POWERPC_GOT16_LO
7085 || r_type == elfcpp::R_POWERPC_GOT16_HI
7086 || r_type == elfcpp::R_POWERPC_GOT16_HA
7087 || r_type == elfcpp::R_PPC64_GOT16_DS
7088 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7089 {
7090 if (gsym != NULL)
7091 {
7092 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7093 value = gsym->got_offset(GOT_TYPE_STANDARD);
7094 }
7095 else
7096 {
7097 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7098 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7099 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7100 }
7101 value -= target->got_section()->got_base_offset(object);
7102 }
7103 else if (r_type == elfcpp::R_PPC64_TOC)
7104 {
7105 value = (target->got_section()->output_section()->address()
7106 + object->toc_base_offset());
7107 }
7108 else if (gsym != NULL
7109 && (r_type == elfcpp::R_POWERPC_REL24
7110 || r_type == elfcpp::R_PPC_PLTREL24)
7111 && has_stub_value)
7112 {
7113 if (size == 64)
7114 {
7115 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7116 Valtype* wv = reinterpret_cast<Valtype*>(view);
7117 bool can_plt_call = false;
7118 if (rela.get_r_offset() + 8 <= view_size)
7119 {
7120 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7121 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7122 if ((insn & 1) != 0
7123 && (insn2 == nop
7124 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7125 {
7126 elfcpp::Swap<32, big_endian>::
7127 writeval(wv + 1, ld_2_1 + target->stk_toc());
7128 can_plt_call = true;
7129 }
7130 }
7131 if (!can_plt_call)
7132 {
7133 // If we don't have a branch and link followed by a nop,
7134 // we can't go via the plt because there is no place to
7135 // put a toc restoring instruction.
7136 // Unless we know we won't be returning.
7137 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7138 can_plt_call = true;
7139 }
7140 if (!can_plt_call)
7141 {
7142 // g++ as of 20130507 emits self-calls without a
7143 // following nop. This is arguably wrong since we have
7144 // conflicting information. On the one hand a global
7145 // symbol and on the other a local call sequence, but
7146 // don't error for this special case.
7147 // It isn't possible to cheaply verify we have exactly
7148 // such a call. Allow all calls to the same section.
7149 bool ok = false;
7150 Address code = value;
7151 if (gsym->source() == Symbol::FROM_OBJECT
7152 && gsym->object() == object)
7153 {
7154 unsigned int dest_shndx = 0;
7155 if (target->abiversion() < 2)
7156 {
7157 Address addend = rela.get_r_addend();
7158 code = psymval->value(object, addend);
7159 target->symval_for_branch(relinfo->symtab, gsym, object,
7160 &code, &dest_shndx);
7161 }
7162 bool is_ordinary;
7163 if (dest_shndx == 0)
7164 dest_shndx = gsym->shndx(&is_ordinary);
7165 ok = dest_shndx == relinfo->data_shndx;
7166 }
7167 if (!ok)
7168 {
7169 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7170 _("call lacks nop, can't restore toc; "
7171 "recompile with -fPIC"));
7172 value = code;
7173 }
7174 }
7175 }
7176 }
7177 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7178 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7179 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7180 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7181 {
7182 // First instruction of a global dynamic sequence, arg setup insn.
7183 const bool final = gsym == NULL || gsym->final_value_is_known();
7184 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7185 enum Got_type got_type = GOT_TYPE_STANDARD;
7186 if (tls_type == tls::TLSOPT_NONE)
7187 got_type = GOT_TYPE_TLSGD;
7188 else if (tls_type == tls::TLSOPT_TO_IE)
7189 got_type = GOT_TYPE_TPREL;
7190 if (got_type != GOT_TYPE_STANDARD)
7191 {
7192 if (gsym != NULL)
7193 {
7194 gold_assert(gsym->has_got_offset(got_type));
7195 value = gsym->got_offset(got_type);
7196 }
7197 else
7198 {
7199 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7200 gold_assert(object->local_has_got_offset(r_sym, got_type));
7201 value = object->local_got_offset(r_sym, got_type);
7202 }
7203 value -= target->got_section()->got_base_offset(object);
7204 }
7205 if (tls_type == tls::TLSOPT_TO_IE)
7206 {
7207 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7208 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7209 {
7210 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7211 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7212 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7213 if (size == 32)
7214 insn |= 32 << 26; // lwz
7215 else
7216 insn |= 58 << 26; // ld
7217 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7218 }
7219 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7220 - elfcpp::R_POWERPC_GOT_TLSGD16);
7221 }
7222 else if (tls_type == tls::TLSOPT_TO_LE)
7223 {
7224 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7225 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7226 {
7227 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7228 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7229 insn &= (1 << 26) - (1 << 21); // extract rt
7230 if (size == 32)
7231 insn |= addis_0_2;
7232 else
7233 insn |= addis_0_13;
7234 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7235 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7236 value = psymval->value(object, rela.get_r_addend());
7237 }
7238 else
7239 {
7240 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7241 Insn insn = nop;
7242 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7243 r_type = elfcpp::R_POWERPC_NONE;
7244 }
7245 }
7246 }
7247 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7248 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7249 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7250 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7251 {
7252 // First instruction of a local dynamic sequence, arg setup insn.
7253 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7254 if (tls_type == tls::TLSOPT_NONE)
7255 {
7256 value = target->tlsld_got_offset();
7257 value -= target->got_section()->got_base_offset(object);
7258 }
7259 else
7260 {
7261 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7262 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7263 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7264 {
7265 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7266 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7267 insn &= (1 << 26) - (1 << 21); // extract rt
7268 if (size == 32)
7269 insn |= addis_0_2;
7270 else
7271 insn |= addis_0_13;
7272 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7273 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7274 value = dtp_offset;
7275 }
7276 else
7277 {
7278 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7279 Insn insn = nop;
7280 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7281 r_type = elfcpp::R_POWERPC_NONE;
7282 }
7283 }
7284 }
7285 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7286 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7287 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7288 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7289 {
7290 // Accesses relative to a local dynamic sequence address,
7291 // no optimisation here.
7292 if (gsym != NULL)
7293 {
7294 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7295 value = gsym->got_offset(GOT_TYPE_DTPREL);
7296 }
7297 else
7298 {
7299 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7300 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7301 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7302 }
7303 value -= target->got_section()->got_base_offset(object);
7304 }
7305 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7306 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7307 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7308 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7309 {
7310 // First instruction of initial exec sequence.
7311 const bool final = gsym == NULL || gsym->final_value_is_known();
7312 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7313 if (tls_type == tls::TLSOPT_NONE)
7314 {
7315 if (gsym != NULL)
7316 {
7317 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7318 value = gsym->got_offset(GOT_TYPE_TPREL);
7319 }
7320 else
7321 {
7322 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7323 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7324 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7325 }
7326 value -= target->got_section()->got_base_offset(object);
7327 }
7328 else
7329 {
7330 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7331 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7332 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7333 {
7334 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7335 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7336 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7337 if (size == 32)
7338 insn |= addis_0_2;
7339 else
7340 insn |= addis_0_13;
7341 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7342 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7343 value = psymval->value(object, rela.get_r_addend());
7344 }
7345 else
7346 {
7347 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7348 Insn insn = nop;
7349 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7350 r_type = elfcpp::R_POWERPC_NONE;
7351 }
7352 }
7353 }
7354 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7355 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7356 {
7357 // Second instruction of a global dynamic sequence,
7358 // the __tls_get_addr call
7359 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7360 const bool final = gsym == NULL || gsym->final_value_is_known();
7361 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7362 if (tls_type != tls::TLSOPT_NONE)
7363 {
7364 if (tls_type == tls::TLSOPT_TO_IE)
7365 {
7366 Insn* iview = reinterpret_cast<Insn*>(view);
7367 Insn insn = add_3_3_13;
7368 if (size == 32)
7369 insn = add_3_3_2;
7370 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7371 r_type = elfcpp::R_POWERPC_NONE;
7372 }
7373 else
7374 {
7375 Insn* iview = reinterpret_cast<Insn*>(view);
7376 Insn insn = addi_3_3;
7377 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7378 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7379 view += 2 * big_endian;
7380 value = psymval->value(object, rela.get_r_addend());
7381 }
7382 this->skip_next_tls_get_addr_call();
7383 }
7384 }
7385 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7386 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7387 {
7388 // Second instruction of a local dynamic sequence,
7389 // the __tls_get_addr call
7390 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7391 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7392 if (tls_type == tls::TLSOPT_TO_LE)
7393 {
7394 Insn* iview = reinterpret_cast<Insn*>(view);
7395 Insn insn = addi_3_3;
7396 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7397 this->skip_next_tls_get_addr_call();
7398 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7399 view += 2 * big_endian;
7400 value = dtp_offset;
7401 }
7402 }
7403 else if (r_type == elfcpp::R_POWERPC_TLS)
7404 {
7405 // Second instruction of an initial exec sequence
7406 const bool final = gsym == NULL || gsym->final_value_is_known();
7407 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7408 if (tls_type == tls::TLSOPT_TO_LE)
7409 {
7410 Insn* iview = reinterpret_cast<Insn*>(view);
7411 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7412 unsigned int reg = size == 32 ? 2 : 13;
7413 insn = at_tls_transform(insn, reg);
7414 gold_assert(insn != 0);
7415 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7416 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7417 view += 2 * big_endian;
7418 value = psymval->value(object, rela.get_r_addend());
7419 }
7420 }
7421 else if (!has_stub_value)
7422 {
7423 Address addend = 0;
7424 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7425 addend = rela.get_r_addend();
7426 value = psymval->value(object, addend);
7427 if (size == 64 && is_branch_reloc(r_type))
7428 {
7429 if (target->abiversion() >= 2)
7430 {
7431 if (gsym != NULL)
7432 value += object->ppc64_local_entry_offset(gsym);
7433 else
7434 value += object->ppc64_local_entry_offset(r_sym);
7435 }
7436 else
7437 {
7438 unsigned int dest_shndx;
7439 target->symval_for_branch(relinfo->symtab, gsym, object,
7440 &value, &dest_shndx);
7441 }
7442 }
7443 Address max_branch_offset = max_branch_delta(r_type);
7444 if (max_branch_offset != 0
7445 && value - address + max_branch_offset >= 2 * max_branch_offset)
7446 {
7447 Stub_table<size, big_endian>* stub_table
7448 = object->stub_table(relinfo->data_shndx);
7449 if (stub_table != NULL)
7450 {
7451 Address off = stub_table->find_long_branch_entry(object, value);
7452 if (off != invalid_address)
7453 {
7454 value = (stub_table->stub_address() + stub_table->plt_size()
7455 + off);
7456 has_stub_value = true;
7457 }
7458 }
7459 }
7460 }
7461
7462 switch (r_type)
7463 {
7464 case elfcpp::R_PPC64_REL64:
7465 case elfcpp::R_POWERPC_REL32:
7466 case elfcpp::R_POWERPC_REL24:
7467 case elfcpp::R_PPC_PLTREL24:
7468 case elfcpp::R_PPC_LOCAL24PC:
7469 case elfcpp::R_POWERPC_REL16:
7470 case elfcpp::R_POWERPC_REL16_LO:
7471 case elfcpp::R_POWERPC_REL16_HI:
7472 case elfcpp::R_POWERPC_REL16_HA:
7473 case elfcpp::R_POWERPC_REL16DX_HA:
7474 case elfcpp::R_POWERPC_REL14:
7475 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7476 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7477 value -= address;
7478 break;
7479
7480 case elfcpp::R_PPC64_TOC16:
7481 case elfcpp::R_PPC64_TOC16_LO:
7482 case elfcpp::R_PPC64_TOC16_HI:
7483 case elfcpp::R_PPC64_TOC16_HA:
7484 case elfcpp::R_PPC64_TOC16_DS:
7485 case elfcpp::R_PPC64_TOC16_LO_DS:
7486 // Subtract the TOC base address.
7487 value -= (target->got_section()->output_section()->address()
7488 + object->toc_base_offset());
7489 break;
7490
7491 case elfcpp::R_POWERPC_SECTOFF:
7492 case elfcpp::R_POWERPC_SECTOFF_LO:
7493 case elfcpp::R_POWERPC_SECTOFF_HI:
7494 case elfcpp::R_POWERPC_SECTOFF_HA:
7495 case elfcpp::R_PPC64_SECTOFF_DS:
7496 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7497 if (os != NULL)
7498 value -= os->address();
7499 break;
7500
7501 case elfcpp::R_PPC64_TPREL16_DS:
7502 case elfcpp::R_PPC64_TPREL16_LO_DS:
7503 case elfcpp::R_PPC64_TPREL16_HIGH:
7504 case elfcpp::R_PPC64_TPREL16_HIGHA:
7505 if (size != 64)
7506 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7507 break;
7508 case elfcpp::R_POWERPC_TPREL16:
7509 case elfcpp::R_POWERPC_TPREL16_LO:
7510 case elfcpp::R_POWERPC_TPREL16_HI:
7511 case elfcpp::R_POWERPC_TPREL16_HA:
7512 case elfcpp::R_POWERPC_TPREL:
7513 case elfcpp::R_PPC64_TPREL16_HIGHER:
7514 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7515 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7516 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7517 // tls symbol values are relative to tls_segment()->vaddr()
7518 value -= tp_offset;
7519 break;
7520
7521 case elfcpp::R_PPC64_DTPREL16_DS:
7522 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7523 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7524 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7525 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7526 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7527 if (size != 64)
7528 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7529 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7530 break;
7531 case elfcpp::R_POWERPC_DTPREL16:
7532 case elfcpp::R_POWERPC_DTPREL16_LO:
7533 case elfcpp::R_POWERPC_DTPREL16_HI:
7534 case elfcpp::R_POWERPC_DTPREL16_HA:
7535 case elfcpp::R_POWERPC_DTPREL:
7536 case elfcpp::R_PPC64_DTPREL16_HIGH:
7537 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7538 // tls symbol values are relative to tls_segment()->vaddr()
7539 value -= dtp_offset;
7540 break;
7541
7542 case elfcpp::R_PPC64_ADDR64_LOCAL:
7543 if (gsym != NULL)
7544 value += object->ppc64_local_entry_offset(gsym);
7545 else
7546 value += object->ppc64_local_entry_offset(r_sym);
7547 break;
7548
7549 default:
7550 break;
7551 }
7552
7553 Insn branch_bit = 0;
7554 switch (r_type)
7555 {
7556 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7557 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7558 branch_bit = 1 << 21;
7559 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7560 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7561 {
7562 Insn* iview = reinterpret_cast<Insn*>(view);
7563 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7564 insn &= ~(1 << 21);
7565 insn |= branch_bit;
7566 if (this->is_isa_v2)
7567 {
7568 // Set 'a' bit. This is 0b00010 in BO field for branch
7569 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7570 // for branch on CTR insns (BO == 1a00t or 1a01t).
7571 if ((insn & (0x14 << 21)) == (0x04 << 21))
7572 insn |= 0x02 << 21;
7573 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7574 insn |= 0x08 << 21;
7575 else
7576 break;
7577 }
7578 else
7579 {
7580 // Invert 'y' bit if not the default.
7581 if (static_cast<Signed_address>(value) < 0)
7582 insn ^= 1 << 21;
7583 }
7584 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7585 }
7586 break;
7587
7588 default:
7589 break;
7590 }
7591
7592 if (size == 64)
7593 {
7594 // Multi-instruction sequences that access the TOC can be
7595 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7596 // to nop; addi rb,r2,x;
7597 switch (r_type)
7598 {
7599 default:
7600 break;
7601
7602 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7603 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7604 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7605 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7606 case elfcpp::R_POWERPC_GOT16_HA:
7607 case elfcpp::R_PPC64_TOC16_HA:
7608 if (parameters->options().toc_optimize())
7609 {
7610 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7611 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7612 if ((insn & ((0x3f << 26) | 0x1f << 16))
7613 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7614 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7615 _("toc optimization is not supported "
7616 "for %#08x instruction"), insn);
7617 else if (value + 0x8000 < 0x10000)
7618 {
7619 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7620 return true;
7621 }
7622 }
7623 break;
7624
7625 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7626 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7627 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7628 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7629 case elfcpp::R_POWERPC_GOT16_LO:
7630 case elfcpp::R_PPC64_GOT16_LO_DS:
7631 case elfcpp::R_PPC64_TOC16_LO:
7632 case elfcpp::R_PPC64_TOC16_LO_DS:
7633 if (parameters->options().toc_optimize())
7634 {
7635 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7636 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7637 if (!ok_lo_toc_insn(insn))
7638 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7639 _("toc optimization is not supported "
7640 "for %#08x instruction"), insn);
7641 else if (value + 0x8000 < 0x10000)
7642 {
7643 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7644 {
7645 // Transform addic to addi when we change reg.
7646 insn &= ~((0x3f << 26) | (0x1f << 16));
7647 insn |= (14u << 26) | (2 << 16);
7648 }
7649 else
7650 {
7651 insn &= ~(0x1f << 16);
7652 insn |= 2 << 16;
7653 }
7654 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7655 }
7656 }
7657 break;
7658 }
7659 }
7660
7661 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7662 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7663 switch (r_type)
7664 {
7665 case elfcpp::R_POWERPC_ADDR32:
7666 case elfcpp::R_POWERPC_UADDR32:
7667 if (size == 64)
7668 overflow = Reloc::CHECK_BITFIELD;
7669 break;
7670
7671 case elfcpp::R_POWERPC_REL32:
7672 case elfcpp::R_POWERPC_REL16DX_HA:
7673 if (size == 64)
7674 overflow = Reloc::CHECK_SIGNED;
7675 break;
7676
7677 case elfcpp::R_POWERPC_UADDR16:
7678 overflow = Reloc::CHECK_BITFIELD;
7679 break;
7680
7681 case elfcpp::R_POWERPC_ADDR16:
7682 // We really should have three separate relocations,
7683 // one for 16-bit data, one for insns with 16-bit signed fields,
7684 // and one for insns with 16-bit unsigned fields.
7685 overflow = Reloc::CHECK_BITFIELD;
7686 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7687 overflow = Reloc::CHECK_LOW_INSN;
7688 break;
7689
7690 case elfcpp::R_POWERPC_ADDR16_HI:
7691 case elfcpp::R_POWERPC_ADDR16_HA:
7692 case elfcpp::R_POWERPC_GOT16_HI:
7693 case elfcpp::R_POWERPC_GOT16_HA:
7694 case elfcpp::R_POWERPC_PLT16_HI:
7695 case elfcpp::R_POWERPC_PLT16_HA:
7696 case elfcpp::R_POWERPC_SECTOFF_HI:
7697 case elfcpp::R_POWERPC_SECTOFF_HA:
7698 case elfcpp::R_PPC64_TOC16_HI:
7699 case elfcpp::R_PPC64_TOC16_HA:
7700 case elfcpp::R_PPC64_PLTGOT16_HI:
7701 case elfcpp::R_PPC64_PLTGOT16_HA:
7702 case elfcpp::R_POWERPC_TPREL16_HI:
7703 case elfcpp::R_POWERPC_TPREL16_HA:
7704 case elfcpp::R_POWERPC_DTPREL16_HI:
7705 case elfcpp::R_POWERPC_DTPREL16_HA:
7706 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7707 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7708 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7709 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7710 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7711 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7712 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7713 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7714 case elfcpp::R_POWERPC_REL16_HI:
7715 case elfcpp::R_POWERPC_REL16_HA:
7716 if (size != 32)
7717 overflow = Reloc::CHECK_HIGH_INSN;
7718 break;
7719
7720 case elfcpp::R_POWERPC_REL16:
7721 case elfcpp::R_PPC64_TOC16:
7722 case elfcpp::R_POWERPC_GOT16:
7723 case elfcpp::R_POWERPC_SECTOFF:
7724 case elfcpp::R_POWERPC_TPREL16:
7725 case elfcpp::R_POWERPC_DTPREL16:
7726 case elfcpp::R_POWERPC_GOT_TLSGD16:
7727 case elfcpp::R_POWERPC_GOT_TLSLD16:
7728 case elfcpp::R_POWERPC_GOT_TPREL16:
7729 case elfcpp::R_POWERPC_GOT_DTPREL16:
7730 overflow = Reloc::CHECK_LOW_INSN;
7731 break;
7732
7733 case elfcpp::R_POWERPC_ADDR24:
7734 case elfcpp::R_POWERPC_ADDR14:
7735 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7736 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7737 case elfcpp::R_PPC64_ADDR16_DS:
7738 case elfcpp::R_POWERPC_REL24:
7739 case elfcpp::R_PPC_PLTREL24:
7740 case elfcpp::R_PPC_LOCAL24PC:
7741 case elfcpp::R_PPC64_TPREL16_DS:
7742 case elfcpp::R_PPC64_DTPREL16_DS:
7743 case elfcpp::R_PPC64_TOC16_DS:
7744 case elfcpp::R_PPC64_GOT16_DS:
7745 case elfcpp::R_PPC64_SECTOFF_DS:
7746 case elfcpp::R_POWERPC_REL14:
7747 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7748 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7749 overflow = Reloc::CHECK_SIGNED;
7750 break;
7751 }
7752
7753 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7754 Insn insn = 0;
7755
7756 if (overflow == Reloc::CHECK_LOW_INSN
7757 || overflow == Reloc::CHECK_HIGH_INSN)
7758 {
7759 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7760
7761 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7762 overflow = Reloc::CHECK_BITFIELD;
7763 else if (overflow == Reloc::CHECK_LOW_INSN
7764 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7765 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7766 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7767 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7768 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7769 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7770 overflow = Reloc::CHECK_UNSIGNED;
7771 else
7772 overflow = Reloc::CHECK_SIGNED;
7773 }
7774
7775 bool maybe_dq_reloc = false;
7776 typename Powerpc_relocate_functions<size, big_endian>::Status status
7777 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7778 switch (r_type)
7779 {
7780 case elfcpp::R_POWERPC_NONE:
7781 case elfcpp::R_POWERPC_TLS:
7782 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7783 case elfcpp::R_POWERPC_GNU_VTENTRY:
7784 break;
7785
7786 case elfcpp::R_PPC64_ADDR64:
7787 case elfcpp::R_PPC64_REL64:
7788 case elfcpp::R_PPC64_TOC:
7789 case elfcpp::R_PPC64_ADDR64_LOCAL:
7790 Reloc::addr64(view, value);
7791 break;
7792
7793 case elfcpp::R_POWERPC_TPREL:
7794 case elfcpp::R_POWERPC_DTPREL:
7795 if (size == 64)
7796 Reloc::addr64(view, value);
7797 else
7798 status = Reloc::addr32(view, value, overflow);
7799 break;
7800
7801 case elfcpp::R_PPC64_UADDR64:
7802 Reloc::addr64_u(view, value);
7803 break;
7804
7805 case elfcpp::R_POWERPC_ADDR32:
7806 status = Reloc::addr32(view, value, overflow);
7807 break;
7808
7809 case elfcpp::R_POWERPC_REL32:
7810 case elfcpp::R_POWERPC_UADDR32:
7811 status = Reloc::addr32_u(view, value, overflow);
7812 break;
7813
7814 case elfcpp::R_POWERPC_ADDR24:
7815 case elfcpp::R_POWERPC_REL24:
7816 case elfcpp::R_PPC_PLTREL24:
7817 case elfcpp::R_PPC_LOCAL24PC:
7818 status = Reloc::addr24(view, value, overflow);
7819 break;
7820
7821 case elfcpp::R_POWERPC_GOT_DTPREL16:
7822 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7823 case elfcpp::R_POWERPC_GOT_TPREL16:
7824 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7825 if (size == 64)
7826 {
7827 // On ppc64 these are all ds form
7828 maybe_dq_reloc = true;
7829 break;
7830 }
7831 case elfcpp::R_POWERPC_ADDR16:
7832 case elfcpp::R_POWERPC_REL16:
7833 case elfcpp::R_PPC64_TOC16:
7834 case elfcpp::R_POWERPC_GOT16:
7835 case elfcpp::R_POWERPC_SECTOFF:
7836 case elfcpp::R_POWERPC_TPREL16:
7837 case elfcpp::R_POWERPC_DTPREL16:
7838 case elfcpp::R_POWERPC_GOT_TLSGD16:
7839 case elfcpp::R_POWERPC_GOT_TLSLD16:
7840 case elfcpp::R_POWERPC_ADDR16_LO:
7841 case elfcpp::R_POWERPC_REL16_LO:
7842 case elfcpp::R_PPC64_TOC16_LO:
7843 case elfcpp::R_POWERPC_GOT16_LO:
7844 case elfcpp::R_POWERPC_SECTOFF_LO:
7845 case elfcpp::R_POWERPC_TPREL16_LO:
7846 case elfcpp::R_POWERPC_DTPREL16_LO:
7847 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7848 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7849 if (size == 64)
7850 status = Reloc::addr16(view, value, overflow);
7851 else
7852 maybe_dq_reloc = true;
7853 break;
7854
7855 case elfcpp::R_POWERPC_UADDR16:
7856 status = Reloc::addr16_u(view, value, overflow);
7857 break;
7858
7859 case elfcpp::R_PPC64_ADDR16_HIGH:
7860 case elfcpp::R_PPC64_TPREL16_HIGH:
7861 case elfcpp::R_PPC64_DTPREL16_HIGH:
7862 if (size == 32)
7863 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7864 goto unsupp;
7865 case elfcpp::R_POWERPC_ADDR16_HI:
7866 case elfcpp::R_POWERPC_REL16_HI:
7867 case elfcpp::R_PPC64_TOC16_HI:
7868 case elfcpp::R_POWERPC_GOT16_HI:
7869 case elfcpp::R_POWERPC_SECTOFF_HI:
7870 case elfcpp::R_POWERPC_TPREL16_HI:
7871 case elfcpp::R_POWERPC_DTPREL16_HI:
7872 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7873 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7874 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7875 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7876 Reloc::addr16_hi(view, value);
7877 break;
7878
7879 case elfcpp::R_PPC64_ADDR16_HIGHA:
7880 case elfcpp::R_PPC64_TPREL16_HIGHA:
7881 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7882 if (size == 32)
7883 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7884 goto unsupp;
7885 case elfcpp::R_POWERPC_ADDR16_HA:
7886 case elfcpp::R_POWERPC_REL16_HA:
7887 case elfcpp::R_PPC64_TOC16_HA:
7888 case elfcpp::R_POWERPC_GOT16_HA:
7889 case elfcpp::R_POWERPC_SECTOFF_HA:
7890 case elfcpp::R_POWERPC_TPREL16_HA:
7891 case elfcpp::R_POWERPC_DTPREL16_HA:
7892 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7893 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7894 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7895 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7896 Reloc::addr16_ha(view, value);
7897 break;
7898
7899 case elfcpp::R_POWERPC_REL16DX_HA:
7900 status = Reloc::addr16dx_ha(view, value, overflow);
7901 break;
7902
7903 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7904 if (size == 32)
7905 // R_PPC_EMB_NADDR16_LO
7906 goto unsupp;
7907 case elfcpp::R_PPC64_ADDR16_HIGHER:
7908 case elfcpp::R_PPC64_TPREL16_HIGHER:
7909 Reloc::addr16_hi2(view, value);
7910 break;
7911
7912 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7913 if (size == 32)
7914 // R_PPC_EMB_NADDR16_HI
7915 goto unsupp;
7916 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7917 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7918 Reloc::addr16_ha2(view, value);
7919 break;
7920
7921 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7922 if (size == 32)
7923 // R_PPC_EMB_NADDR16_HA
7924 goto unsupp;
7925 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7926 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7927 Reloc::addr16_hi3(view, value);
7928 break;
7929
7930 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7931 if (size == 32)
7932 // R_PPC_EMB_SDAI16
7933 goto unsupp;
7934 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7935 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7936 Reloc::addr16_ha3(view, value);
7937 break;
7938
7939 case elfcpp::R_PPC64_DTPREL16_DS:
7940 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7941 if (size == 32)
7942 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7943 goto unsupp;
7944 case elfcpp::R_PPC64_TPREL16_DS:
7945 case elfcpp::R_PPC64_TPREL16_LO_DS:
7946 if (size == 32)
7947 // R_PPC_TLSGD, R_PPC_TLSLD
7948 break;
7949 case elfcpp::R_PPC64_ADDR16_DS:
7950 case elfcpp::R_PPC64_ADDR16_LO_DS:
7951 case elfcpp::R_PPC64_TOC16_DS:
7952 case elfcpp::R_PPC64_TOC16_LO_DS:
7953 case elfcpp::R_PPC64_GOT16_DS:
7954 case elfcpp::R_PPC64_GOT16_LO_DS:
7955 case elfcpp::R_PPC64_SECTOFF_DS:
7956 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7957 maybe_dq_reloc = true;
7958 break;
7959
7960 case elfcpp::R_POWERPC_ADDR14:
7961 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7962 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7963 case elfcpp::R_POWERPC_REL14:
7964 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7965 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7966 status = Reloc::addr14(view, value, overflow);
7967 break;
7968
7969 case elfcpp::R_POWERPC_COPY:
7970 case elfcpp::R_POWERPC_GLOB_DAT:
7971 case elfcpp::R_POWERPC_JMP_SLOT:
7972 case elfcpp::R_POWERPC_RELATIVE:
7973 case elfcpp::R_POWERPC_DTPMOD:
7974 case elfcpp::R_PPC64_JMP_IREL:
7975 case elfcpp::R_POWERPC_IRELATIVE:
7976 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7977 _("unexpected reloc %u in object file"),
7978 r_type);
7979 break;
7980
7981 case elfcpp::R_PPC_EMB_SDA21:
7982 if (size == 32)
7983 goto unsupp;
7984 else
7985 {
7986 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7987 }
7988 break;
7989
7990 case elfcpp::R_PPC_EMB_SDA2I16:
7991 case elfcpp::R_PPC_EMB_SDA2REL:
7992 if (size == 32)
7993 goto unsupp;
7994 // R_PPC64_TLSGD, R_PPC64_TLSLD
7995 break;
7996
7997 case elfcpp::R_POWERPC_PLT32:
7998 case elfcpp::R_POWERPC_PLTREL32:
7999 case elfcpp::R_POWERPC_PLT16_LO:
8000 case elfcpp::R_POWERPC_PLT16_HI:
8001 case elfcpp::R_POWERPC_PLT16_HA:
8002 case elfcpp::R_PPC_SDAREL16:
8003 case elfcpp::R_POWERPC_ADDR30:
8004 case elfcpp::R_PPC64_PLT64:
8005 case elfcpp::R_PPC64_PLTREL64:
8006 case elfcpp::R_PPC64_PLTGOT16:
8007 case elfcpp::R_PPC64_PLTGOT16_LO:
8008 case elfcpp::R_PPC64_PLTGOT16_HI:
8009 case elfcpp::R_PPC64_PLTGOT16_HA:
8010 case elfcpp::R_PPC64_PLT16_LO_DS:
8011 case elfcpp::R_PPC64_PLTGOT16_DS:
8012 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8013 case elfcpp::R_PPC_EMB_RELSDA:
8014 case elfcpp::R_PPC_TOC16:
8015 default:
8016 unsupp:
8017 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8018 _("unsupported reloc %u"),
8019 r_type);
8020 break;
8021 }
8022
8023 if (maybe_dq_reloc)
8024 {
8025 if (insn == 0)
8026 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8027
8028 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8029 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8030 && (insn & 3) == 1))
8031 status = Reloc::addr16_dq(view, value, overflow);
8032 else if (size == 64
8033 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8034 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8035 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8036 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8037 status = Reloc::addr16_ds(view, value, overflow);
8038 else
8039 status = Reloc::addr16(view, value, overflow);
8040 }
8041
8042 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8043 && (has_stub_value
8044 || !(gsym != NULL
8045 && gsym->is_undefined()
8046 && is_branch_reloc(r_type))))
8047 {
8048 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8049 _("relocation overflow"));
8050 if (has_stub_value)
8051 gold_info(_("try relinking with a smaller --stub-group-size"));
8052 }
8053
8054 return true;
8055 }
8056
8057 // Relocate section data.
8058
8059 template<int size, bool big_endian>
8060 void
8061 Target_powerpc<size, big_endian>::relocate_section(
8062 const Relocate_info<size, big_endian>* relinfo,
8063 unsigned int sh_type,
8064 const unsigned char* prelocs,
8065 size_t reloc_count,
8066 Output_section* output_section,
8067 bool needs_special_offset_handling,
8068 unsigned char* view,
8069 Address address,
8070 section_size_type view_size,
8071 const Reloc_symbol_changes* reloc_symbol_changes)
8072 {
8073 typedef Target_powerpc<size, big_endian> Powerpc;
8074 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8075 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8076 Powerpc_comdat_behavior;
8077
8078 gold_assert(sh_type == elfcpp::SHT_RELA);
8079
8080 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
8081 Powerpc_relocate, Powerpc_comdat_behavior>(
8082 relinfo,
8083 this,
8084 prelocs,
8085 reloc_count,
8086 output_section,
8087 needs_special_offset_handling,
8088 view,
8089 address,
8090 view_size,
8091 reloc_symbol_changes);
8092 }
8093
8094 class Powerpc_scan_relocatable_reloc
8095 {
8096 public:
8097 // Return the strategy to use for a local symbol which is not a
8098 // section symbol, given the relocation type.
8099 inline Relocatable_relocs::Reloc_strategy
8100 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8101 {
8102 if (r_type == 0 && r_sym == 0)
8103 return Relocatable_relocs::RELOC_DISCARD;
8104 return Relocatable_relocs::RELOC_COPY;
8105 }
8106
8107 // Return the strategy to use for a local symbol which is a section
8108 // symbol, given the relocation type.
8109 inline Relocatable_relocs::Reloc_strategy
8110 local_section_strategy(unsigned int, Relobj*)
8111 {
8112 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8113 }
8114
8115 // Return the strategy to use for a global symbol, given the
8116 // relocation type, the object, and the symbol index.
8117 inline Relocatable_relocs::Reloc_strategy
8118 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8119 {
8120 if (r_type == elfcpp::R_PPC_PLTREL24)
8121 return Relocatable_relocs::RELOC_SPECIAL;
8122 return Relocatable_relocs::RELOC_COPY;
8123 }
8124 };
8125
8126 // Scan the relocs during a relocatable link.
8127
8128 template<int size, bool big_endian>
8129 void
8130 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8131 Symbol_table* symtab,
8132 Layout* layout,
8133 Sized_relobj_file<size, big_endian>* object,
8134 unsigned int data_shndx,
8135 unsigned int sh_type,
8136 const unsigned char* prelocs,
8137 size_t reloc_count,
8138 Output_section* output_section,
8139 bool needs_special_offset_handling,
8140 size_t local_symbol_count,
8141 const unsigned char* plocal_symbols,
8142 Relocatable_relocs* rr)
8143 {
8144 gold_assert(sh_type == elfcpp::SHT_RELA);
8145
8146 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8147 Powerpc_scan_relocatable_reloc>(
8148 symtab,
8149 layout,
8150 object,
8151 data_shndx,
8152 prelocs,
8153 reloc_count,
8154 output_section,
8155 needs_special_offset_handling,
8156 local_symbol_count,
8157 plocal_symbols,
8158 rr);
8159 }
8160
8161 // Emit relocations for a section.
8162 // This is a modified version of the function by the same name in
8163 // target-reloc.h. Using relocate_special_relocatable for
8164 // R_PPC_PLTREL24 would require duplication of the entire body of the
8165 // loop, so we may as well duplicate the whole thing.
8166
8167 template<int size, bool big_endian>
8168 void
8169 Target_powerpc<size, big_endian>::relocate_relocs(
8170 const Relocate_info<size, big_endian>* relinfo,
8171 unsigned int sh_type,
8172 const unsigned char* prelocs,
8173 size_t reloc_count,
8174 Output_section* output_section,
8175 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8176 const Relocatable_relocs* rr,
8177 unsigned char*,
8178 Address view_address,
8179 section_size_type,
8180 unsigned char* reloc_view,
8181 section_size_type reloc_view_size)
8182 {
8183 gold_assert(sh_type == elfcpp::SHT_RELA);
8184
8185 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8186 Reltype;
8187 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8188 Reltype_write;
8189 const int reloc_size
8190 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8191
8192 Powerpc_relobj<size, big_endian>* const object
8193 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8194 const unsigned int local_count = object->local_symbol_count();
8195 unsigned int got2_shndx = object->got2_shndx();
8196 Address got2_addend = 0;
8197 if (got2_shndx != 0)
8198 {
8199 got2_addend = object->get_output_section_offset(got2_shndx);
8200 gold_assert(got2_addend != invalid_address);
8201 }
8202
8203 unsigned char* pwrite = reloc_view;
8204 bool zap_next = false;
8205 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8206 {
8207 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8208 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8209 continue;
8210
8211 Reltype reloc(prelocs);
8212 Reltype_write reloc_write(pwrite);
8213
8214 Address offset = reloc.get_r_offset();
8215 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8216 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8217 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8218 const unsigned int orig_r_sym = r_sym;
8219 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8220 = reloc.get_r_addend();
8221 const Symbol* gsym = NULL;
8222
8223 if (zap_next)
8224 {
8225 // We could arrange to discard these and other relocs for
8226 // tls optimised sequences in the strategy methods, but for
8227 // now do as BFD ld does.
8228 r_type = elfcpp::R_POWERPC_NONE;
8229 zap_next = false;
8230 }
8231
8232 // Get the new symbol index.
8233 Output_section* os = NULL;
8234 if (r_sym < local_count)
8235 {
8236 switch (strategy)
8237 {
8238 case Relocatable_relocs::RELOC_COPY:
8239 case Relocatable_relocs::RELOC_SPECIAL:
8240 if (r_sym != 0)
8241 {
8242 r_sym = object->symtab_index(r_sym);
8243 gold_assert(r_sym != -1U);
8244 }
8245 break;
8246
8247 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8248 {
8249 // We are adjusting a section symbol. We need to find
8250 // the symbol table index of the section symbol for
8251 // the output section corresponding to input section
8252 // in which this symbol is defined.
8253 gold_assert(r_sym < local_count);
8254 bool is_ordinary;
8255 unsigned int shndx =
8256 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8257 gold_assert(is_ordinary);
8258 os = object->output_section(shndx);
8259 gold_assert(os != NULL);
8260 gold_assert(os->needs_symtab_index());
8261 r_sym = os->symtab_index();
8262 }
8263 break;
8264
8265 default:
8266 gold_unreachable();
8267 }
8268 }
8269 else
8270 {
8271 gsym = object->global_symbol(r_sym);
8272 gold_assert(gsym != NULL);
8273 if (gsym->is_forwarder())
8274 gsym = relinfo->symtab->resolve_forwards(gsym);
8275
8276 gold_assert(gsym->has_symtab_index());
8277 r_sym = gsym->symtab_index();
8278 }
8279
8280 // Get the new offset--the location in the output section where
8281 // this relocation should be applied.
8282 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8283 offset += offset_in_output_section;
8284 else
8285 {
8286 section_offset_type sot_offset =
8287 convert_types<section_offset_type, Address>(offset);
8288 section_offset_type new_sot_offset =
8289 output_section->output_offset(object, relinfo->data_shndx,
8290 sot_offset);
8291 gold_assert(new_sot_offset != -1);
8292 offset = new_sot_offset;
8293 }
8294
8295 // In an object file, r_offset is an offset within the section.
8296 // In an executable or dynamic object, generated by
8297 // --emit-relocs, r_offset is an absolute address.
8298 if (!parameters->options().relocatable())
8299 {
8300 offset += view_address;
8301 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8302 offset -= offset_in_output_section;
8303 }
8304
8305 // Handle the reloc addend based on the strategy.
8306 if (strategy == Relocatable_relocs::RELOC_COPY)
8307 ;
8308 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8309 {
8310 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8311 gold_assert(os != NULL);
8312 addend = psymval->value(object, addend) - os->address();
8313 }
8314 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8315 {
8316 if (addend >= 32768)
8317 addend += got2_addend;
8318 }
8319 else
8320 gold_unreachable();
8321
8322 if (!parameters->options().relocatable())
8323 {
8324 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8325 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8326 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8327 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8328 {
8329 // First instruction of a global dynamic sequence,
8330 // arg setup insn.
8331 const bool final = gsym == NULL || gsym->final_value_is_known();
8332 switch (this->optimize_tls_gd(final))
8333 {
8334 case tls::TLSOPT_TO_IE:
8335 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8336 - elfcpp::R_POWERPC_GOT_TLSGD16);
8337 break;
8338 case tls::TLSOPT_TO_LE:
8339 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8340 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8341 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8342 else
8343 {
8344 r_type = elfcpp::R_POWERPC_NONE;
8345 offset -= 2 * big_endian;
8346 }
8347 break;
8348 default:
8349 break;
8350 }
8351 }
8352 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8353 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8354 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8355 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8356 {
8357 // First instruction of a local dynamic sequence,
8358 // arg setup insn.
8359 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8360 {
8361 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8362 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8363 {
8364 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8365 const Output_section* os = relinfo->layout->tls_segment()
8366 ->first_section();
8367 gold_assert(os != NULL);
8368 gold_assert(os->needs_symtab_index());
8369 r_sym = os->symtab_index();
8370 addend = dtp_offset;
8371 }
8372 else
8373 {
8374 r_type = elfcpp::R_POWERPC_NONE;
8375 offset -= 2 * big_endian;
8376 }
8377 }
8378 }
8379 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8380 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8381 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8382 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8383 {
8384 // First instruction of initial exec sequence.
8385 const bool final = gsym == NULL || gsym->final_value_is_known();
8386 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8387 {
8388 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8389 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8390 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8391 else
8392 {
8393 r_type = elfcpp::R_POWERPC_NONE;
8394 offset -= 2 * big_endian;
8395 }
8396 }
8397 }
8398 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8399 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8400 {
8401 // Second instruction of a global dynamic sequence,
8402 // the __tls_get_addr call
8403 const bool final = gsym == NULL || gsym->final_value_is_known();
8404 switch (this->optimize_tls_gd(final))
8405 {
8406 case tls::TLSOPT_TO_IE:
8407 r_type = elfcpp::R_POWERPC_NONE;
8408 zap_next = true;
8409 break;
8410 case tls::TLSOPT_TO_LE:
8411 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8412 offset += 2 * big_endian;
8413 zap_next = true;
8414 break;
8415 default:
8416 break;
8417 }
8418 }
8419 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8420 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8421 {
8422 // Second instruction of a local dynamic sequence,
8423 // the __tls_get_addr call
8424 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8425 {
8426 const Output_section* os = relinfo->layout->tls_segment()
8427 ->first_section();
8428 gold_assert(os != NULL);
8429 gold_assert(os->needs_symtab_index());
8430 r_sym = os->symtab_index();
8431 addend = dtp_offset;
8432 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8433 offset += 2 * big_endian;
8434 zap_next = true;
8435 }
8436 }
8437 else if (r_type == elfcpp::R_POWERPC_TLS)
8438 {
8439 // Second instruction of an initial exec sequence
8440 const bool final = gsym == NULL || gsym->final_value_is_known();
8441 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8442 {
8443 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8444 offset += 2 * big_endian;
8445 }
8446 }
8447 }
8448
8449 reloc_write.put_r_offset(offset);
8450 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8451 reloc_write.put_r_addend(addend);
8452
8453 pwrite += reloc_size;
8454 }
8455
8456 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8457 == reloc_view_size);
8458 }
8459
8460 // Return the value to use for a dynamic symbol which requires special
8461 // treatment. This is how we support equality comparisons of function
8462 // pointers across shared library boundaries, as described in the
8463 // processor specific ABI supplement.
8464
8465 template<int size, bool big_endian>
8466 uint64_t
8467 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8468 {
8469 if (size == 32)
8470 {
8471 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8472 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8473 p != this->stub_tables_.end();
8474 ++p)
8475 {
8476 Address off = (*p)->find_plt_call_entry(gsym);
8477 if (off != invalid_address)
8478 return (*p)->stub_address() + off;
8479 }
8480 }
8481 else if (this->abiversion() >= 2)
8482 {
8483 Address off = this->glink_section()->find_global_entry(gsym);
8484 if (off != invalid_address)
8485 return this->glink_section()->global_entry_address() + off;
8486 }
8487 gold_unreachable();
8488 }
8489
8490 // Return the PLT address to use for a local symbol.
8491 template<int size, bool big_endian>
8492 uint64_t
8493 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8494 const Relobj* object,
8495 unsigned int symndx) const
8496 {
8497 if (size == 32)
8498 {
8499 const Sized_relobj<size, big_endian>* relobj
8500 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8501 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8502 p != this->stub_tables_.end();
8503 ++p)
8504 {
8505 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8506 symndx);
8507 if (off != invalid_address)
8508 return (*p)->stub_address() + off;
8509 }
8510 }
8511 gold_unreachable();
8512 }
8513
8514 // Return the PLT address to use for a global symbol.
8515 template<int size, bool big_endian>
8516 uint64_t
8517 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8518 const Symbol* gsym) const
8519 {
8520 if (size == 32)
8521 {
8522 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8523 p != this->stub_tables_.end();
8524 ++p)
8525 {
8526 Address off = (*p)->find_plt_call_entry(gsym);
8527 if (off != invalid_address)
8528 return (*p)->stub_address() + off;
8529 }
8530 }
8531 else if (this->abiversion() >= 2)
8532 {
8533 Address off = this->glink_section()->find_global_entry(gsym);
8534 if (off != invalid_address)
8535 return this->glink_section()->global_entry_address() + off;
8536 }
8537 gold_unreachable();
8538 }
8539
8540 // Return the offset to use for the GOT_INDX'th got entry which is
8541 // for a local tls symbol specified by OBJECT, SYMNDX.
8542 template<int size, bool big_endian>
8543 int64_t
8544 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8545 const Relobj* object,
8546 unsigned int symndx,
8547 unsigned int got_indx) const
8548 {
8549 const Powerpc_relobj<size, big_endian>* ppc_object
8550 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8551 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8552 {
8553 for (Got_type got_type = GOT_TYPE_TLSGD;
8554 got_type <= GOT_TYPE_TPREL;
8555 got_type = Got_type(got_type + 1))
8556 if (ppc_object->local_has_got_offset(symndx, got_type))
8557 {
8558 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8559 if (got_type == GOT_TYPE_TLSGD)
8560 off += size / 8;
8561 if (off == got_indx * (size / 8))
8562 {
8563 if (got_type == GOT_TYPE_TPREL)
8564 return -tp_offset;
8565 else
8566 return -dtp_offset;
8567 }
8568 }
8569 }
8570 gold_unreachable();
8571 }
8572
8573 // Return the offset to use for the GOT_INDX'th got entry which is
8574 // for global tls symbol GSYM.
8575 template<int size, bool big_endian>
8576 int64_t
8577 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8578 Symbol* gsym,
8579 unsigned int got_indx) const
8580 {
8581 if (gsym->type() == elfcpp::STT_TLS)
8582 {
8583 for (Got_type got_type = GOT_TYPE_TLSGD;
8584 got_type <= GOT_TYPE_TPREL;
8585 got_type = Got_type(got_type + 1))
8586 if (gsym->has_got_offset(got_type))
8587 {
8588 unsigned int off = gsym->got_offset(got_type);
8589 if (got_type == GOT_TYPE_TLSGD)
8590 off += size / 8;
8591 if (off == got_indx * (size / 8))
8592 {
8593 if (got_type == GOT_TYPE_TPREL)
8594 return -tp_offset;
8595 else
8596 return -dtp_offset;
8597 }
8598 }
8599 }
8600 gold_unreachable();
8601 }
8602
8603 // The selector for powerpc object files.
8604
8605 template<int size, bool big_endian>
8606 class Target_selector_powerpc : public Target_selector
8607 {
8608 public:
8609 Target_selector_powerpc()
8610 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8611 size, big_endian,
8612 (size == 64
8613 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8614 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8615 (size == 64
8616 ? (big_endian ? "elf64ppc" : "elf64lppc")
8617 : (big_endian ? "elf32ppc" : "elf32lppc")))
8618 { }
8619
8620 virtual Target*
8621 do_instantiate_target()
8622 { return new Target_powerpc<size, big_endian>(); }
8623 };
8624
8625 Target_selector_powerpc<32, true> target_selector_ppc32;
8626 Target_selector_powerpc<32, false> target_selector_ppc32le;
8627 Target_selector_powerpc<64, true> target_selector_ppc64;
8628 Target_selector_powerpc<64, false> target_selector_ppc64le;
8629
8630 // Instantiate these constants for -O0
8631 template<int size, bool big_endian>
8632 const int Output_data_glink<size, big_endian>::pltresolve_size;
8633 template<int size, bool big_endian>
8634 const typename Output_data_glink<size, big_endian>::Address
8635 Output_data_glink<size, big_endian>::invalid_address;
8636 template<int size, bool big_endian>
8637 const typename Stub_table<size, big_endian>::Address
8638 Stub_table<size, big_endian>::invalid_address;
8639 template<int size, bool big_endian>
8640 const typename Target_powerpc<size, big_endian>::Address
8641 Target_powerpc<size, big_endian>::invalid_address;
8642
8643 } // End anonymous namespace.
This page took 0.208814 seconds and 5 git commands to generate.