gold --emit-relocs
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Target_powerpc;
67
68 struct Stub_table_owner
69 {
70 Output_section* output_section;
71 const Output_section::Input_section* owner;
72 };
73
74 inline bool
75 is_branch_reloc(unsigned int r_type);
76
77 template<int size, bool big_endian>
78 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
79 {
80 public:
81 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
82 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
83 typedef Unordered_map<Address, Section_refs> Access_from;
84
85 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
86 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
87 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
88 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
89 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
90 e_flags_(ehdr.get_e_flags()), st_other_()
91 {
92 this->set_abiversion(0);
93 }
94
95 ~Powerpc_relobj()
96 { }
97
98 // Read the symbols then set up st_other vector.
99 void
100 do_read_symbols(Read_symbols_data*);
101
102 // The .got2 section shndx.
103 unsigned int
104 got2_shndx() const
105 {
106 if (size == 32)
107 return this->special_;
108 else
109 return 0;
110 }
111
112 // The .opd section shndx.
113 unsigned int
114 opd_shndx() const
115 {
116 if (size == 32)
117 return 0;
118 else
119 return this->special_;
120 }
121
122 // Init OPD entry arrays.
123 void
124 init_opd(size_t opd_size)
125 {
126 size_t count = this->opd_ent_ndx(opd_size);
127 this->opd_ent_.resize(count);
128 }
129
130 // Return section and offset of function entry for .opd + R_OFF.
131 unsigned int
132 get_opd_ent(Address r_off, Address* value = NULL) const
133 {
134 size_t ndx = this->opd_ent_ndx(r_off);
135 gold_assert(ndx < this->opd_ent_.size());
136 gold_assert(this->opd_ent_[ndx].shndx != 0);
137 if (value != NULL)
138 *value = this->opd_ent_[ndx].off;
139 return this->opd_ent_[ndx].shndx;
140 }
141
142 // Set section and offset of function entry for .opd + R_OFF.
143 void
144 set_opd_ent(Address r_off, unsigned int shndx, Address value)
145 {
146 size_t ndx = this->opd_ent_ndx(r_off);
147 gold_assert(ndx < this->opd_ent_.size());
148 this->opd_ent_[ndx].shndx = shndx;
149 this->opd_ent_[ndx].off = value;
150 }
151
152 // Return discard flag for .opd + R_OFF.
153 bool
154 get_opd_discard(Address r_off) const
155 {
156 size_t ndx = this->opd_ent_ndx(r_off);
157 gold_assert(ndx < this->opd_ent_.size());
158 return this->opd_ent_[ndx].discard;
159 }
160
161 // Set discard flag for .opd + R_OFF.
162 void
163 set_opd_discard(Address r_off)
164 {
165 size_t ndx = this->opd_ent_ndx(r_off);
166 gold_assert(ndx < this->opd_ent_.size());
167 this->opd_ent_[ndx].discard = true;
168 }
169
170 bool
171 opd_valid() const
172 { return this->opd_valid_; }
173
174 void
175 set_opd_valid()
176 { this->opd_valid_ = true; }
177
178 // Examine .rela.opd to build info about function entry points.
179 void
180 scan_opd_relocs(size_t reloc_count,
181 const unsigned char* prelocs,
182 const unsigned char* plocal_syms);
183
184 // Perform the Sized_relobj_file method, then set up opd info from
185 // .opd relocs.
186 void
187 do_read_relocs(Read_relocs_data*);
188
189 bool
190 do_find_special_sections(Read_symbols_data* sd);
191
192 // Adjust this local symbol value. Return false if the symbol
193 // should be discarded from the output file.
194 bool
195 do_adjust_local_symbol(Symbol_value<size>* lv) const
196 {
197 if (size == 64 && this->opd_shndx() != 0)
198 {
199 bool is_ordinary;
200 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
201 return true;
202 if (this->get_opd_discard(lv->input_value()))
203 return false;
204 }
205 return true;
206 }
207
208 Access_from*
209 access_from_map()
210 { return &this->access_from_map_; }
211
212 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
213 // section at DST_OFF.
214 void
215 add_reference(Relobj* src_obj,
216 unsigned int src_indx,
217 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
218 {
219 Section_id src_id(src_obj, src_indx);
220 this->access_from_map_[dst_off].insert(src_id);
221 }
222
223 // Add a reference to the code section specified by the .opd entry
224 // at DST_OFF
225 void
226 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
227 {
228 size_t ndx = this->opd_ent_ndx(dst_off);
229 if (ndx >= this->opd_ent_.size())
230 this->opd_ent_.resize(ndx + 1);
231 this->opd_ent_[ndx].gc_mark = true;
232 }
233
234 void
235 process_gc_mark(Symbol_table* symtab)
236 {
237 for (size_t i = 0; i < this->opd_ent_.size(); i++)
238 if (this->opd_ent_[i].gc_mark)
239 {
240 unsigned int shndx = this->opd_ent_[i].shndx;
241 symtab->gc()->worklist().push_back(Section_id(this, shndx));
242 }
243 }
244
245 // Return offset in output GOT section that this object will use
246 // as a TOC pointer. Won't be just a constant with multi-toc support.
247 Address
248 toc_base_offset() const
249 { return 0x8000; }
250
251 void
252 set_has_small_toc_reloc()
253 { has_small_toc_reloc_ = true; }
254
255 bool
256 has_small_toc_reloc() const
257 { return has_small_toc_reloc_; }
258
259 void
260 set_has_14bit_branch(unsigned int shndx)
261 {
262 if (shndx >= this->has14_.size())
263 this->has14_.resize(shndx + 1);
264 this->has14_[shndx] = true;
265 }
266
267 bool
268 has_14bit_branch(unsigned int shndx) const
269 { return shndx < this->has14_.size() && this->has14_[shndx]; }
270
271 void
272 set_stub_table(unsigned int shndx, unsigned int stub_index)
273 {
274 if (shndx >= this->stub_table_index_.size())
275 this->stub_table_index_.resize(shndx + 1);
276 this->stub_table_index_[shndx] = stub_index;
277 }
278
279 Stub_table<size, big_endian>*
280 stub_table(unsigned int shndx)
281 {
282 if (shndx < this->stub_table_index_.size())
283 {
284 Target_powerpc<size, big_endian>* target
285 = static_cast<Target_powerpc<size, big_endian>*>(
286 parameters->sized_target<size, big_endian>());
287 unsigned int indx = this->stub_table_index_[shndx];
288 gold_assert(indx < target->stub_tables().size());
289 return target->stub_tables()[indx];
290 }
291 return NULL;
292 }
293
294 void
295 clear_stub_table()
296 {
297 this->stub_table_index_.clear();
298 }
299
300 int
301 abiversion() const
302 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
303
304 // Set ABI version for input and output
305 void
306 set_abiversion(int ver);
307
308 unsigned int
309 ppc64_local_entry_offset(const Symbol* sym) const
310 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
311
312 unsigned int
313 ppc64_local_entry_offset(unsigned int symndx) const
314 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
315
316 private:
317 struct Opd_ent
318 {
319 unsigned int shndx;
320 bool discard : 1;
321 bool gc_mark : 1;
322 Address off;
323 };
324
325 // Return index into opd_ent_ array for .opd entry at OFF.
326 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
327 // apart when the language doesn't use the last 8-byte word, the
328 // environment pointer. Thus dividing the entry section offset by
329 // 16 will give an index into opd_ent_ that works for either layout
330 // of .opd. (It leaves some elements of the vector unused when .opd
331 // entries are spaced 24 bytes apart, but we don't know the spacing
332 // until relocations are processed, and in any case it is possible
333 // for an object to have some entries spaced 16 bytes apart and
334 // others 24 bytes apart.)
335 size_t
336 opd_ent_ndx(size_t off) const
337 { return off >> 4;}
338
339 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
340 unsigned int special_;
341
342 // For 64-bit, whether this object uses small model relocs to access
343 // the toc.
344 bool has_small_toc_reloc_;
345
346 // Set at the start of gc_process_relocs, when we know opd_ent_
347 // vector is valid. The flag could be made atomic and set in
348 // do_read_relocs with memory_order_release and then tested with
349 // memory_order_acquire, potentially resulting in fewer entries in
350 // access_from_map_.
351 bool opd_valid_;
352
353 // The first 8-byte word of an OPD entry gives the address of the
354 // entry point of the function. Relocatable object files have a
355 // relocation on this word. The following vector records the
356 // section and offset specified by these relocations.
357 std::vector<Opd_ent> opd_ent_;
358
359 // References made to this object's .opd section when running
360 // gc_process_relocs for another object, before the opd_ent_ vector
361 // is valid for this object.
362 Access_from access_from_map_;
363
364 // Whether input section has a 14-bit branch reloc.
365 std::vector<bool> has14_;
366
367 // The stub table to use for a given input section.
368 std::vector<unsigned int> stub_table_index_;
369
370 // Header e_flags
371 elfcpp::Elf_Word e_flags_;
372
373 // ELF st_other field for local symbols.
374 std::vector<unsigned char> st_other_;
375 };
376
377 template<int size, bool big_endian>
378 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
379 {
380 public:
381 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
382
383 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
384 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
385 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
386 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
387 {
388 this->set_abiversion(0);
389 }
390
391 ~Powerpc_dynobj()
392 { }
393
394 // Call Sized_dynobj::do_read_symbols to read the symbols then
395 // read .opd from a dynamic object, filling in opd_ent_ vector,
396 void
397 do_read_symbols(Read_symbols_data*);
398
399 // The .opd section shndx.
400 unsigned int
401 opd_shndx() const
402 {
403 return this->opd_shndx_;
404 }
405
406 // The .opd section address.
407 Address
408 opd_address() const
409 {
410 return this->opd_address_;
411 }
412
413 // Init OPD entry arrays.
414 void
415 init_opd(size_t opd_size)
416 {
417 size_t count = this->opd_ent_ndx(opd_size);
418 this->opd_ent_.resize(count);
419 }
420
421 // Return section and offset of function entry for .opd + R_OFF.
422 unsigned int
423 get_opd_ent(Address r_off, Address* value = NULL) const
424 {
425 size_t ndx = this->opd_ent_ndx(r_off);
426 gold_assert(ndx < this->opd_ent_.size());
427 gold_assert(this->opd_ent_[ndx].shndx != 0);
428 if (value != NULL)
429 *value = this->opd_ent_[ndx].off;
430 return this->opd_ent_[ndx].shndx;
431 }
432
433 // Set section and offset of function entry for .opd + R_OFF.
434 void
435 set_opd_ent(Address r_off, unsigned int shndx, Address value)
436 {
437 size_t ndx = this->opd_ent_ndx(r_off);
438 gold_assert(ndx < this->opd_ent_.size());
439 this->opd_ent_[ndx].shndx = shndx;
440 this->opd_ent_[ndx].off = value;
441 }
442
443 int
444 abiversion() const
445 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
446
447 // Set ABI version for input and output.
448 void
449 set_abiversion(int ver);
450
451 private:
452 // Used to specify extent of executable sections.
453 struct Sec_info
454 {
455 Sec_info(Address start_, Address len_, unsigned int shndx_)
456 : start(start_), len(len_), shndx(shndx_)
457 { }
458
459 bool
460 operator<(const Sec_info& that) const
461 { return this->start < that.start; }
462
463 Address start;
464 Address len;
465 unsigned int shndx;
466 };
467
468 struct Opd_ent
469 {
470 unsigned int shndx;
471 Address off;
472 };
473
474 // Return index into opd_ent_ array for .opd entry at OFF.
475 size_t
476 opd_ent_ndx(size_t off) const
477 { return off >> 4;}
478
479 // For 64-bit the .opd section shndx and address.
480 unsigned int opd_shndx_;
481 Address opd_address_;
482
483 // The first 8-byte word of an OPD entry gives the address of the
484 // entry point of the function. Records the section and offset
485 // corresponding to the address. Note that in dynamic objects,
486 // offset is *not* relative to the section.
487 std::vector<Opd_ent> opd_ent_;
488
489 // Header e_flags
490 elfcpp::Elf_Word e_flags_;
491 };
492
493 template<int size, bool big_endian>
494 class Target_powerpc : public Sized_target<size, big_endian>
495 {
496 public:
497 typedef
498 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
499 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
500 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
501 static const Address invalid_address = static_cast<Address>(0) - 1;
502 // Offset of tp and dtp pointers from start of TLS block.
503 static const Address tp_offset = 0x7000;
504 static const Address dtp_offset = 0x8000;
505
506 Target_powerpc()
507 : Sized_target<size, big_endian>(&powerpc_info),
508 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
509 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
510 tlsld_got_offset_(-1U),
511 stub_tables_(), branch_lookup_table_(), branch_info_(),
512 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
513 stub_group_size_(0)
514 {
515 }
516
517 // Process the relocations to determine unreferenced sections for
518 // garbage collection.
519 void
520 gc_process_relocs(Symbol_table* symtab,
521 Layout* layout,
522 Sized_relobj_file<size, big_endian>* object,
523 unsigned int data_shndx,
524 unsigned int sh_type,
525 const unsigned char* prelocs,
526 size_t reloc_count,
527 Output_section* output_section,
528 bool needs_special_offset_handling,
529 size_t local_symbol_count,
530 const unsigned char* plocal_symbols);
531
532 // Scan the relocations to look for symbol adjustments.
533 void
534 scan_relocs(Symbol_table* symtab,
535 Layout* layout,
536 Sized_relobj_file<size, big_endian>* object,
537 unsigned int data_shndx,
538 unsigned int sh_type,
539 const unsigned char* prelocs,
540 size_t reloc_count,
541 Output_section* output_section,
542 bool needs_special_offset_handling,
543 size_t local_symbol_count,
544 const unsigned char* plocal_symbols);
545
546 // Map input .toc section to output .got section.
547 const char*
548 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
549 {
550 if (size == 64 && strcmp(name, ".toc") == 0)
551 {
552 *plen = 4;
553 return ".got";
554 }
555 return NULL;
556 }
557
558 // Provide linker defined save/restore functions.
559 void
560 define_save_restore_funcs(Layout*, Symbol_table*);
561
562 // No stubs unless a final link.
563 bool
564 do_may_relax() const
565 { return !parameters->options().relocatable(); }
566
567 bool
568 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
569
570 void
571 do_plt_fde_location(const Output_data*, unsigned char*,
572 uint64_t*, off_t*) const;
573
574 // Stash info about branches, for stub generation.
575 void
576 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
577 unsigned int data_shndx, Address r_offset,
578 unsigned int r_type, unsigned int r_sym, Address addend)
579 {
580 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
581 this->branch_info_.push_back(info);
582 if (r_type == elfcpp::R_POWERPC_REL14
583 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
584 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
585 ppc_object->set_has_14bit_branch(data_shndx);
586 }
587
588 void
589 do_define_standard_symbols(Symbol_table*, Layout*);
590
591 // Finalize the sections.
592 void
593 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
594
595 // Return the value to use for a dynamic which requires special
596 // treatment.
597 uint64_t
598 do_dynsym_value(const Symbol*) const;
599
600 // Return the PLT address to use for a local symbol.
601 uint64_t
602 do_plt_address_for_local(const Relobj*, unsigned int) const;
603
604 // Return the PLT address to use for a global symbol.
605 uint64_t
606 do_plt_address_for_global(const Symbol*) const;
607
608 // Return the offset to use for the GOT_INDX'th got entry which is
609 // for a local tls symbol specified by OBJECT, SYMNDX.
610 int64_t
611 do_tls_offset_for_local(const Relobj* object,
612 unsigned int symndx,
613 unsigned int got_indx) const;
614
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for global tls symbol GSYM.
617 int64_t
618 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
619
620 void
621 do_function_location(Symbol_location*) const;
622
623 bool
624 do_can_check_for_function_pointers() const
625 { return true; }
626
627 // Adjust -fsplit-stack code which calls non-split-stack code.
628 void
629 do_calls_non_split(Relobj* object, unsigned int shndx,
630 section_offset_type fnoffset, section_size_type fnsize,
631 unsigned char* view, section_size_type view_size,
632 std::string* from, std::string* to) const;
633
634 // Relocate a section.
635 void
636 relocate_section(const Relocate_info<size, big_endian>*,
637 unsigned int sh_type,
638 const unsigned char* prelocs,
639 size_t reloc_count,
640 Output_section* output_section,
641 bool needs_special_offset_handling,
642 unsigned char* view,
643 Address view_address,
644 section_size_type view_size,
645 const Reloc_symbol_changes*);
646
647 // Scan the relocs during a relocatable link.
648 void
649 scan_relocatable_relocs(Symbol_table* symtab,
650 Layout* layout,
651 Sized_relobj_file<size, big_endian>* object,
652 unsigned int data_shndx,
653 unsigned int sh_type,
654 const unsigned char* prelocs,
655 size_t reloc_count,
656 Output_section* output_section,
657 bool needs_special_offset_handling,
658 size_t local_symbol_count,
659 const unsigned char* plocal_symbols,
660 Relocatable_relocs*);
661
662 // Emit relocations for a section.
663 void
664 relocate_relocs(const Relocate_info<size, big_endian>*,
665 unsigned int sh_type,
666 const unsigned char* prelocs,
667 size_t reloc_count,
668 Output_section* output_section,
669 typename elfcpp::Elf_types<size>::Elf_Off
670 offset_in_output_section,
671 const Relocatable_relocs*,
672 unsigned char*,
673 Address view_address,
674 section_size_type,
675 unsigned char* reloc_view,
676 section_size_type reloc_view_size);
677
678 // Return whether SYM is defined by the ABI.
679 bool
680 do_is_defined_by_abi(const Symbol* sym) const
681 {
682 return strcmp(sym->name(), "__tls_get_addr") == 0;
683 }
684
685 // Return the size of the GOT section.
686 section_size_type
687 got_size() const
688 {
689 gold_assert(this->got_ != NULL);
690 return this->got_->data_size();
691 }
692
693 // Get the PLT section.
694 const Output_data_plt_powerpc<size, big_endian>*
695 plt_section() const
696 {
697 gold_assert(this->plt_ != NULL);
698 return this->plt_;
699 }
700
701 // Get the IPLT section.
702 const Output_data_plt_powerpc<size, big_endian>*
703 iplt_section() const
704 {
705 gold_assert(this->iplt_ != NULL);
706 return this->iplt_;
707 }
708
709 // Get the .glink section.
710 const Output_data_glink<size, big_endian>*
711 glink_section() const
712 {
713 gold_assert(this->glink_ != NULL);
714 return this->glink_;
715 }
716
717 Output_data_glink<size, big_endian>*
718 glink_section()
719 {
720 gold_assert(this->glink_ != NULL);
721 return this->glink_;
722 }
723
724 bool has_glink() const
725 { return this->glink_ != NULL; }
726
727 // Get the GOT section.
728 const Output_data_got_powerpc<size, big_endian>*
729 got_section() const
730 {
731 gold_assert(this->got_ != NULL);
732 return this->got_;
733 }
734
735 // Get the GOT section, creating it if necessary.
736 Output_data_got_powerpc<size, big_endian>*
737 got_section(Symbol_table*, Layout*);
738
739 Object*
740 do_make_elf_object(const std::string&, Input_file*, off_t,
741 const elfcpp::Ehdr<size, big_endian>&);
742
743 // Return the number of entries in the GOT.
744 unsigned int
745 got_entry_count() const
746 {
747 if (this->got_ == NULL)
748 return 0;
749 return this->got_size() / (size / 8);
750 }
751
752 // Return the number of entries in the PLT.
753 unsigned int
754 plt_entry_count() const;
755
756 // Return the offset of the first non-reserved PLT entry.
757 unsigned int
758 first_plt_entry_offset() const
759 {
760 if (size == 32)
761 return 0;
762 if (this->abiversion() >= 2)
763 return 16;
764 return 24;
765 }
766
767 // Return the size of each PLT entry.
768 unsigned int
769 plt_entry_size() const
770 {
771 if (size == 32)
772 return 4;
773 if (this->abiversion() >= 2)
774 return 8;
775 return 24;
776 }
777
778 // Add any special sections for this symbol to the gc work list.
779 // For powerpc64, this adds the code section of a function
780 // descriptor.
781 void
782 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
783
784 // Handle target specific gc actions when adding a gc reference from
785 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
786 // and DST_OFF. For powerpc64, this adds a referenc to the code
787 // section of a function descriptor.
788 void
789 do_gc_add_reference(Symbol_table* symtab,
790 Relobj* src_obj,
791 unsigned int src_shndx,
792 Relobj* dst_obj,
793 unsigned int dst_shndx,
794 Address dst_off) const;
795
796 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
797 const Stub_tables&
798 stub_tables() const
799 { return this->stub_tables_; }
800
801 const Output_data_brlt_powerpc<size, big_endian>*
802 brlt_section() const
803 { return this->brlt_section_; }
804
805 void
806 add_branch_lookup_table(Address to)
807 {
808 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
809 this->branch_lookup_table_.insert(std::make_pair(to, off));
810 }
811
812 Address
813 find_branch_lookup_table(Address to)
814 {
815 typename Branch_lookup_table::const_iterator p
816 = this->branch_lookup_table_.find(to);
817 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
818 }
819
820 void
821 write_branch_lookup_table(unsigned char *oview)
822 {
823 for (typename Branch_lookup_table::const_iterator p
824 = this->branch_lookup_table_.begin();
825 p != this->branch_lookup_table_.end();
826 ++p)
827 {
828 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
829 }
830 }
831
832 bool
833 plt_thread_safe() const
834 { return this->plt_thread_safe_; }
835
836 int
837 abiversion () const
838 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
839
840 void
841 set_abiversion (int ver)
842 {
843 elfcpp::Elf_Word flags = this->processor_specific_flags();
844 flags &= ~elfcpp::EF_PPC64_ABI;
845 flags |= ver & elfcpp::EF_PPC64_ABI;
846 this->set_processor_specific_flags(flags);
847 }
848
849 // Offset to to save stack slot
850 int
851 stk_toc () const
852 { return this->abiversion() < 2 ? 40 : 24; }
853
854 private:
855
856 class Track_tls
857 {
858 public:
859 enum Tls_get_addr
860 {
861 NOT_EXPECTED = 0,
862 EXPECTED = 1,
863 SKIP = 2,
864 NORMAL = 3
865 };
866
867 Track_tls()
868 : tls_get_addr_(NOT_EXPECTED),
869 relinfo_(NULL), relnum_(0), r_offset_(0)
870 { }
871
872 ~Track_tls()
873 {
874 if (this->tls_get_addr_ != NOT_EXPECTED)
875 this->missing();
876 }
877
878 void
879 missing(void)
880 {
881 if (this->relinfo_ != NULL)
882 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
883 _("missing expected __tls_get_addr call"));
884 }
885
886 void
887 expect_tls_get_addr_call(
888 const Relocate_info<size, big_endian>* relinfo,
889 size_t relnum,
890 Address r_offset)
891 {
892 this->tls_get_addr_ = EXPECTED;
893 this->relinfo_ = relinfo;
894 this->relnum_ = relnum;
895 this->r_offset_ = r_offset;
896 }
897
898 void
899 expect_tls_get_addr_call()
900 { this->tls_get_addr_ = EXPECTED; }
901
902 void
903 skip_next_tls_get_addr_call()
904 {this->tls_get_addr_ = SKIP; }
905
906 Tls_get_addr
907 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
908 {
909 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
910 || r_type == elfcpp::R_PPC_PLTREL24)
911 && gsym != NULL
912 && strcmp(gsym->name(), "__tls_get_addr") == 0);
913 Tls_get_addr last_tls = this->tls_get_addr_;
914 this->tls_get_addr_ = NOT_EXPECTED;
915 if (is_tls_call && last_tls != EXPECTED)
916 return last_tls;
917 else if (!is_tls_call && last_tls != NOT_EXPECTED)
918 {
919 this->missing();
920 return EXPECTED;
921 }
922 return NORMAL;
923 }
924
925 private:
926 // What we're up to regarding calls to __tls_get_addr.
927 // On powerpc, the branch and link insn making a call to
928 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
929 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
930 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
931 // The marker relocation always comes first, and has the same
932 // symbol as the reloc on the insn setting up the __tls_get_addr
933 // argument. This ties the arg setup insn with the call insn,
934 // allowing ld to safely optimize away the call. We check that
935 // every call to __tls_get_addr has a marker relocation, and that
936 // every marker relocation is on a call to __tls_get_addr.
937 Tls_get_addr tls_get_addr_;
938 // Info about the last reloc for error message.
939 const Relocate_info<size, big_endian>* relinfo_;
940 size_t relnum_;
941 Address r_offset_;
942 };
943
944 // The class which scans relocations.
945 class Scan : protected Track_tls
946 {
947 public:
948 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
949
950 Scan()
951 : Track_tls(), issued_non_pic_error_(false)
952 { }
953
954 static inline int
955 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
956
957 inline void
958 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
959 Sized_relobj_file<size, big_endian>* object,
960 unsigned int data_shndx,
961 Output_section* output_section,
962 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
963 const elfcpp::Sym<size, big_endian>& lsym,
964 bool is_discarded);
965
966 inline void
967 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
968 Sized_relobj_file<size, big_endian>* object,
969 unsigned int data_shndx,
970 Output_section* output_section,
971 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
972 Symbol* gsym);
973
974 inline bool
975 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
976 Target_powerpc* ,
977 Sized_relobj_file<size, big_endian>* relobj,
978 unsigned int ,
979 Output_section* ,
980 const elfcpp::Rela<size, big_endian>& ,
981 unsigned int r_type,
982 const elfcpp::Sym<size, big_endian>&)
983 {
984 // PowerPC64 .opd is not folded, so any identical function text
985 // may be folded and we'll still keep function addresses distinct.
986 // That means no reloc is of concern here.
987 if (size == 64)
988 {
989 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
990 <Powerpc_relobj<size, big_endian>*>(relobj);
991 if (ppcobj->abiversion() == 1)
992 return false;
993 }
994 // For 32-bit and ELFv2, conservatively assume anything but calls to
995 // function code might be taking the address of the function.
996 return !is_branch_reloc(r_type);
997 }
998
999 inline bool
1000 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1001 Target_powerpc* ,
1002 Sized_relobj_file<size, big_endian>* relobj,
1003 unsigned int ,
1004 Output_section* ,
1005 const elfcpp::Rela<size, big_endian>& ,
1006 unsigned int r_type,
1007 Symbol*)
1008 {
1009 // As above.
1010 if (size == 64)
1011 {
1012 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1013 <Powerpc_relobj<size, big_endian>*>(relobj);
1014 if (ppcobj->abiversion() == 1)
1015 return false;
1016 }
1017 return !is_branch_reloc(r_type);
1018 }
1019
1020 static bool
1021 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1022 Sized_relobj_file<size, big_endian>* object,
1023 unsigned int r_type, bool report_err);
1024
1025 private:
1026 static void
1027 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1028 unsigned int r_type);
1029
1030 static void
1031 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1032 unsigned int r_type, Symbol*);
1033
1034 static void
1035 generate_tls_call(Symbol_table* symtab, Layout* layout,
1036 Target_powerpc* target);
1037
1038 void
1039 check_non_pic(Relobj*, unsigned int r_type);
1040
1041 // Whether we have issued an error about a non-PIC compilation.
1042 bool issued_non_pic_error_;
1043 };
1044
1045 bool
1046 symval_for_branch(const Symbol_table* symtab,
1047 const Sized_symbol<size>* gsym,
1048 Powerpc_relobj<size, big_endian>* object,
1049 Address *value, unsigned int *dest_shndx);
1050
1051 // The class which implements relocation.
1052 class Relocate : protected Track_tls
1053 {
1054 public:
1055 // Use 'at' branch hints when true, 'y' when false.
1056 // FIXME maybe: set this with an option.
1057 static const bool is_isa_v2 = true;
1058
1059 Relocate()
1060 : Track_tls()
1061 { }
1062
1063 // Do a relocation. Return false if the caller should not issue
1064 // any warnings about this relocation.
1065 inline bool
1066 relocate(const Relocate_info<size, big_endian>*, Target_powerpc*,
1067 Output_section*, size_t relnum,
1068 const elfcpp::Rela<size, big_endian>&,
1069 unsigned int r_type, const Sized_symbol<size>*,
1070 const Symbol_value<size>*,
1071 unsigned char*,
1072 typename elfcpp::Elf_types<size>::Elf_Addr,
1073 section_size_type);
1074 };
1075
1076 class Relocate_comdat_behavior
1077 {
1078 public:
1079 // Decide what the linker should do for relocations that refer to
1080 // discarded comdat sections.
1081 inline Comdat_behavior
1082 get(const char* name)
1083 {
1084 gold::Default_comdat_behavior default_behavior;
1085 Comdat_behavior ret = default_behavior.get(name);
1086 if (ret == CB_WARNING)
1087 {
1088 if (size == 32
1089 && (strcmp(name, ".fixup") == 0
1090 || strcmp(name, ".got2") == 0))
1091 ret = CB_IGNORE;
1092 if (size == 64
1093 && (strcmp(name, ".opd") == 0
1094 || strcmp(name, ".toc") == 0
1095 || strcmp(name, ".toc1") == 0))
1096 ret = CB_IGNORE;
1097 }
1098 return ret;
1099 }
1100 };
1101
1102 // A class which returns the size required for a relocation type,
1103 // used while scanning relocs during a relocatable link.
1104 class Relocatable_size_for_reloc
1105 {
1106 public:
1107 unsigned int
1108 get_size_for_reloc(unsigned int, Relobj*)
1109 {
1110 gold_unreachable();
1111 return 0;
1112 }
1113 };
1114
1115 // Optimize the TLS relocation type based on what we know about the
1116 // symbol. IS_FINAL is true if the final address of this symbol is
1117 // known at link time.
1118
1119 tls::Tls_optimization
1120 optimize_tls_gd(bool is_final)
1121 {
1122 // If we are generating a shared library, then we can't do anything
1123 // in the linker.
1124 if (parameters->options().shared())
1125 return tls::TLSOPT_NONE;
1126
1127 if (!is_final)
1128 return tls::TLSOPT_TO_IE;
1129 return tls::TLSOPT_TO_LE;
1130 }
1131
1132 tls::Tls_optimization
1133 optimize_tls_ld()
1134 {
1135 if (parameters->options().shared())
1136 return tls::TLSOPT_NONE;
1137
1138 return tls::TLSOPT_TO_LE;
1139 }
1140
1141 tls::Tls_optimization
1142 optimize_tls_ie(bool is_final)
1143 {
1144 if (!is_final || parameters->options().shared())
1145 return tls::TLSOPT_NONE;
1146
1147 return tls::TLSOPT_TO_LE;
1148 }
1149
1150 // Create glink.
1151 void
1152 make_glink_section(Layout*);
1153
1154 // Create the PLT section.
1155 void
1156 make_plt_section(Symbol_table*, Layout*);
1157
1158 void
1159 make_iplt_section(Symbol_table*, Layout*);
1160
1161 void
1162 make_brlt_section(Layout*);
1163
1164 // Create a PLT entry for a global symbol.
1165 void
1166 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1167
1168 // Create a PLT entry for a local IFUNC symbol.
1169 void
1170 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1171 Sized_relobj_file<size, big_endian>*,
1172 unsigned int);
1173
1174
1175 // Create a GOT entry for local dynamic __tls_get_addr.
1176 unsigned int
1177 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1178 Sized_relobj_file<size, big_endian>* object);
1179
1180 unsigned int
1181 tlsld_got_offset() const
1182 {
1183 return this->tlsld_got_offset_;
1184 }
1185
1186 // Get the dynamic reloc section, creating it if necessary.
1187 Reloc_section*
1188 rela_dyn_section(Layout*);
1189
1190 // Similarly, but for ifunc symbols get the one for ifunc.
1191 Reloc_section*
1192 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1193
1194 // Copy a relocation against a global symbol.
1195 void
1196 copy_reloc(Symbol_table* symtab, Layout* layout,
1197 Sized_relobj_file<size, big_endian>* object,
1198 unsigned int shndx, Output_section* output_section,
1199 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1200 {
1201 this->copy_relocs_.copy_reloc(symtab, layout,
1202 symtab->get_sized_symbol<size>(sym),
1203 object, shndx, output_section,
1204 reloc, this->rela_dyn_section(layout));
1205 }
1206
1207 // Look over all the input sections, deciding where to place stubs.
1208 void
1209 group_sections(Layout*, const Task*, bool);
1210
1211 // Sort output sections by address.
1212 struct Sort_sections
1213 {
1214 bool
1215 operator()(const Output_section* sec1, const Output_section* sec2)
1216 { return sec1->address() < sec2->address(); }
1217 };
1218
1219 class Branch_info
1220 {
1221 public:
1222 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1223 unsigned int data_shndx,
1224 Address r_offset,
1225 unsigned int r_type,
1226 unsigned int r_sym,
1227 Address addend)
1228 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1229 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1230 { }
1231
1232 ~Branch_info()
1233 { }
1234
1235 // If this branch needs a plt call stub, or a long branch stub, make one.
1236 bool
1237 make_stub(Stub_table<size, big_endian>*,
1238 Stub_table<size, big_endian>*,
1239 Symbol_table*) const;
1240
1241 private:
1242 // The branch location..
1243 Powerpc_relobj<size, big_endian>* object_;
1244 unsigned int shndx_;
1245 Address offset_;
1246 // ..and the branch type and destination.
1247 unsigned int r_type_;
1248 unsigned int r_sym_;
1249 Address addend_;
1250 };
1251
1252 // Information about this specific target which we pass to the
1253 // general Target structure.
1254 static Target::Target_info powerpc_info;
1255
1256 // The types of GOT entries needed for this platform.
1257 // These values are exposed to the ABI in an incremental link.
1258 // Do not renumber existing values without changing the version
1259 // number of the .gnu_incremental_inputs section.
1260 enum Got_type
1261 {
1262 GOT_TYPE_STANDARD,
1263 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1264 GOT_TYPE_DTPREL, // entry for @got@dtprel
1265 GOT_TYPE_TPREL // entry for @got@tprel
1266 };
1267
1268 // The GOT section.
1269 Output_data_got_powerpc<size, big_endian>* got_;
1270 // The PLT section. This is a container for a table of addresses,
1271 // and their relocations. Each address in the PLT has a dynamic
1272 // relocation (R_*_JMP_SLOT) and each address will have a
1273 // corresponding entry in .glink for lazy resolution of the PLT.
1274 // ppc32 initialises the PLT to point at the .glink entry, while
1275 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1276 // linker adds a stub that loads the PLT entry into ctr then
1277 // branches to ctr. There may be more than one stub for each PLT
1278 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1279 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1280 Output_data_plt_powerpc<size, big_endian>* plt_;
1281 // The IPLT section. Like plt_, this is a container for a table of
1282 // addresses and their relocations, specifically for STT_GNU_IFUNC
1283 // functions that resolve locally (STT_GNU_IFUNC functions that
1284 // don't resolve locally go in PLT). Unlike plt_, these have no
1285 // entry in .glink for lazy resolution, and the relocation section
1286 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1287 // the relocation section may contain relocations against
1288 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1289 // relocation section will appear at the end of other dynamic
1290 // relocations, so that ld.so applies these relocations after other
1291 // dynamic relocations. In a static executable, the relocation
1292 // section is emitted and marked with __rela_iplt_start and
1293 // __rela_iplt_end symbols.
1294 Output_data_plt_powerpc<size, big_endian>* iplt_;
1295 // Section holding long branch destinations.
1296 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1297 // The .glink section.
1298 Output_data_glink<size, big_endian>* glink_;
1299 // The dynamic reloc section.
1300 Reloc_section* rela_dyn_;
1301 // Relocs saved to avoid a COPY reloc.
1302 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1303 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1304 unsigned int tlsld_got_offset_;
1305
1306 Stub_tables stub_tables_;
1307 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1308 Branch_lookup_table branch_lookup_table_;
1309
1310 typedef std::vector<Branch_info> Branches;
1311 Branches branch_info_;
1312
1313 bool plt_thread_safe_;
1314
1315 bool relax_failed_;
1316 int relax_fail_count_;
1317 int32_t stub_group_size_;
1318 };
1319
1320 template<>
1321 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1322 {
1323 32, // size
1324 true, // is_big_endian
1325 elfcpp::EM_PPC, // machine_code
1326 false, // has_make_symbol
1327 false, // has_resolve
1328 false, // has_code_fill
1329 true, // is_default_stack_executable
1330 false, // can_icf_inline_merge_sections
1331 '\0', // wrap_char
1332 "/usr/lib/ld.so.1", // dynamic_linker
1333 0x10000000, // default_text_segment_address
1334 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1335 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1336 false, // isolate_execinstr
1337 0, // rosegment_gap
1338 elfcpp::SHN_UNDEF, // small_common_shndx
1339 elfcpp::SHN_UNDEF, // large_common_shndx
1340 0, // small_common_section_flags
1341 0, // large_common_section_flags
1342 NULL, // attributes_section
1343 NULL, // attributes_vendor
1344 "_start" // entry_symbol_name
1345 };
1346
1347 template<>
1348 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1349 {
1350 32, // size
1351 false, // is_big_endian
1352 elfcpp::EM_PPC, // machine_code
1353 false, // has_make_symbol
1354 false, // has_resolve
1355 false, // has_code_fill
1356 true, // is_default_stack_executable
1357 false, // can_icf_inline_merge_sections
1358 '\0', // wrap_char
1359 "/usr/lib/ld.so.1", // dynamic_linker
1360 0x10000000, // default_text_segment_address
1361 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1362 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1363 false, // isolate_execinstr
1364 0, // rosegment_gap
1365 elfcpp::SHN_UNDEF, // small_common_shndx
1366 elfcpp::SHN_UNDEF, // large_common_shndx
1367 0, // small_common_section_flags
1368 0, // large_common_section_flags
1369 NULL, // attributes_section
1370 NULL, // attributes_vendor
1371 "_start" // entry_symbol_name
1372 };
1373
1374 template<>
1375 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1376 {
1377 64, // size
1378 true, // is_big_endian
1379 elfcpp::EM_PPC64, // machine_code
1380 false, // has_make_symbol
1381 false, // has_resolve
1382 false, // has_code_fill
1383 true, // is_default_stack_executable
1384 false, // can_icf_inline_merge_sections
1385 '\0', // wrap_char
1386 "/usr/lib/ld.so.1", // dynamic_linker
1387 0x10000000, // default_text_segment_address
1388 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1389 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1390 false, // isolate_execinstr
1391 0, // rosegment_gap
1392 elfcpp::SHN_UNDEF, // small_common_shndx
1393 elfcpp::SHN_UNDEF, // large_common_shndx
1394 0, // small_common_section_flags
1395 0, // large_common_section_flags
1396 NULL, // attributes_section
1397 NULL, // attributes_vendor
1398 "_start" // entry_symbol_name
1399 };
1400
1401 template<>
1402 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1403 {
1404 64, // size
1405 false, // is_big_endian
1406 elfcpp::EM_PPC64, // machine_code
1407 false, // has_make_symbol
1408 false, // has_resolve
1409 false, // has_code_fill
1410 true, // is_default_stack_executable
1411 false, // can_icf_inline_merge_sections
1412 '\0', // wrap_char
1413 "/usr/lib/ld.so.1", // dynamic_linker
1414 0x10000000, // default_text_segment_address
1415 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1416 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1417 false, // isolate_execinstr
1418 0, // rosegment_gap
1419 elfcpp::SHN_UNDEF, // small_common_shndx
1420 elfcpp::SHN_UNDEF, // large_common_shndx
1421 0, // small_common_section_flags
1422 0, // large_common_section_flags
1423 NULL, // attributes_section
1424 NULL, // attributes_vendor
1425 "_start" // entry_symbol_name
1426 };
1427
1428 inline bool
1429 is_branch_reloc(unsigned int r_type)
1430 {
1431 return (r_type == elfcpp::R_POWERPC_REL24
1432 || r_type == elfcpp::R_PPC_PLTREL24
1433 || r_type == elfcpp::R_PPC_LOCAL24PC
1434 || r_type == elfcpp::R_POWERPC_REL14
1435 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1436 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1437 || r_type == elfcpp::R_POWERPC_ADDR24
1438 || r_type == elfcpp::R_POWERPC_ADDR14
1439 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1440 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1441 }
1442
1443 // If INSN is an opcode that may be used with an @tls operand, return
1444 // the transformed insn for TLS optimisation, otherwise return 0. If
1445 // REG is non-zero only match an insn with RB or RA equal to REG.
1446 uint32_t
1447 at_tls_transform(uint32_t insn, unsigned int reg)
1448 {
1449 if ((insn & (0x3f << 26)) != 31 << 26)
1450 return 0;
1451
1452 unsigned int rtra;
1453 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1454 rtra = insn & ((1 << 26) - (1 << 16));
1455 else if (((insn >> 16) & 0x1f) == reg)
1456 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1457 else
1458 return 0;
1459
1460 if ((insn & (0x3ff << 1)) == 266 << 1)
1461 // add -> addi
1462 insn = 14 << 26;
1463 else if ((insn & (0x1f << 1)) == 23 << 1
1464 && ((insn & (0x1f << 6)) < 14 << 6
1465 || ((insn & (0x1f << 6)) >= 16 << 6
1466 && (insn & (0x1f << 6)) < 24 << 6)))
1467 // load and store indexed -> dform
1468 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1469 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1470 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1471 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1472 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1473 // lwax -> lwa
1474 insn = (58 << 26) | 2;
1475 else
1476 return 0;
1477 insn |= rtra;
1478 return insn;
1479 }
1480
1481
1482 template<int size, bool big_endian>
1483 class Powerpc_relocate_functions
1484 {
1485 public:
1486 enum Overflow_check
1487 {
1488 CHECK_NONE,
1489 CHECK_SIGNED,
1490 CHECK_UNSIGNED,
1491 CHECK_BITFIELD,
1492 CHECK_LOW_INSN,
1493 CHECK_HIGH_INSN
1494 };
1495
1496 enum Status
1497 {
1498 STATUS_OK,
1499 STATUS_OVERFLOW
1500 };
1501
1502 private:
1503 typedef Powerpc_relocate_functions<size, big_endian> This;
1504 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1505
1506 template<int valsize>
1507 static inline bool
1508 has_overflow_signed(Address value)
1509 {
1510 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1511 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1512 limit <<= ((valsize - 1) >> 1);
1513 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1514 return value + limit > (limit << 1) - 1;
1515 }
1516
1517 template<int valsize>
1518 static inline bool
1519 has_overflow_unsigned(Address value)
1520 {
1521 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1522 limit <<= ((valsize - 1) >> 1);
1523 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1524 return value > (limit << 1) - 1;
1525 }
1526
1527 template<int valsize>
1528 static inline bool
1529 has_overflow_bitfield(Address value)
1530 {
1531 return (has_overflow_unsigned<valsize>(value)
1532 && has_overflow_signed<valsize>(value));
1533 }
1534
1535 template<int valsize>
1536 static inline Status
1537 overflowed(Address value, Overflow_check overflow)
1538 {
1539 if (overflow == CHECK_SIGNED)
1540 {
1541 if (has_overflow_signed<valsize>(value))
1542 return STATUS_OVERFLOW;
1543 }
1544 else if (overflow == CHECK_UNSIGNED)
1545 {
1546 if (has_overflow_unsigned<valsize>(value))
1547 return STATUS_OVERFLOW;
1548 }
1549 else if (overflow == CHECK_BITFIELD)
1550 {
1551 if (has_overflow_bitfield<valsize>(value))
1552 return STATUS_OVERFLOW;
1553 }
1554 return STATUS_OK;
1555 }
1556
1557 // Do a simple RELA relocation
1558 template<int fieldsize, int valsize>
1559 static inline Status
1560 rela(unsigned char* view, Address value, Overflow_check overflow)
1561 {
1562 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1563 Valtype* wv = reinterpret_cast<Valtype*>(view);
1564 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1565 return overflowed<valsize>(value, overflow);
1566 }
1567
1568 template<int fieldsize, int valsize>
1569 static inline Status
1570 rela(unsigned char* view,
1571 unsigned int right_shift,
1572 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1573 Address value,
1574 Overflow_check overflow)
1575 {
1576 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1577 Valtype* wv = reinterpret_cast<Valtype*>(view);
1578 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1579 Valtype reloc = value >> right_shift;
1580 val &= ~dst_mask;
1581 reloc &= dst_mask;
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1583 return overflowed<valsize>(value >> right_shift, overflow);
1584 }
1585
1586 // Do a simple RELA relocation, unaligned.
1587 template<int fieldsize, int valsize>
1588 static inline Status
1589 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1590 {
1591 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1592 return overflowed<valsize>(value, overflow);
1593 }
1594
1595 template<int fieldsize, int valsize>
1596 static inline Status
1597 rela_ua(unsigned char* view,
1598 unsigned int right_shift,
1599 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1600 Address value,
1601 Overflow_check overflow)
1602 {
1603 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1604 Valtype;
1605 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1606 Valtype reloc = value >> right_shift;
1607 val &= ~dst_mask;
1608 reloc &= dst_mask;
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1610 return overflowed<valsize>(value >> right_shift, overflow);
1611 }
1612
1613 public:
1614 // R_PPC64_ADDR64: (Symbol + Addend)
1615 static inline void
1616 addr64(unsigned char* view, Address value)
1617 { This::template rela<64,64>(view, value, CHECK_NONE); }
1618
1619 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1620 static inline void
1621 addr64_u(unsigned char* view, Address value)
1622 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1623
1624 // R_POWERPC_ADDR32: (Symbol + Addend)
1625 static inline Status
1626 addr32(unsigned char* view, Address value, Overflow_check overflow)
1627 { return This::template rela<32,32>(view, value, overflow); }
1628
1629 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1630 static inline Status
1631 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1632 { return This::template rela_ua<32,32>(view, value, overflow); }
1633
1634 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1635 static inline Status
1636 addr24(unsigned char* view, Address value, Overflow_check overflow)
1637 {
1638 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1639 value, overflow);
1640 if (overflow != CHECK_NONE && (value & 3) != 0)
1641 stat = STATUS_OVERFLOW;
1642 return stat;
1643 }
1644
1645 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1646 static inline Status
1647 addr16(unsigned char* view, Address value, Overflow_check overflow)
1648 { return This::template rela<16,16>(view, value, overflow); }
1649
1650 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1651 static inline Status
1652 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1653 { return This::template rela_ua<16,16>(view, value, overflow); }
1654
1655 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1656 static inline Status
1657 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1658 {
1659 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1660 if ((value & 3) != 0)
1661 stat = STATUS_OVERFLOW;
1662 return stat;
1663 }
1664
1665 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1666 static inline void
1667 addr16_hi(unsigned char* view, Address value)
1668 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1669
1670 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1671 static inline void
1672 addr16_ha(unsigned char* view, Address value)
1673 { This::addr16_hi(view, value + 0x8000); }
1674
1675 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1676 static inline void
1677 addr16_hi2(unsigned char* view, Address value)
1678 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1679
1680 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1681 static inline void
1682 addr16_ha2(unsigned char* view, Address value)
1683 { This::addr16_hi2(view, value + 0x8000); }
1684
1685 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1686 static inline void
1687 addr16_hi3(unsigned char* view, Address value)
1688 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1689
1690 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1691 static inline void
1692 addr16_ha3(unsigned char* view, Address value)
1693 { This::addr16_hi3(view, value + 0x8000); }
1694
1695 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1696 static inline Status
1697 addr14(unsigned char* view, Address value, Overflow_check overflow)
1698 {
1699 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1700 if (overflow != CHECK_NONE && (value & 3) != 0)
1701 stat = STATUS_OVERFLOW;
1702 return stat;
1703 }
1704 };
1705
1706 // Set ABI version for input and output.
1707
1708 template<int size, bool big_endian>
1709 void
1710 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1711 {
1712 this->e_flags_ |= ver;
1713 if (this->abiversion() != 0)
1714 {
1715 Target_powerpc<size, big_endian>* target =
1716 static_cast<Target_powerpc<size, big_endian>*>(
1717 parameters->sized_target<size, big_endian>());
1718 if (target->abiversion() == 0)
1719 target->set_abiversion(this->abiversion());
1720 else if (target->abiversion() != this->abiversion())
1721 gold_error(_("%s: ABI version %d is not compatible "
1722 "with ABI version %d output"),
1723 this->name().c_str(),
1724 this->abiversion(), target->abiversion());
1725
1726 }
1727 }
1728
1729 // Stash away the index of .got2 or .opd in a relocatable object, if
1730 // such a section exists.
1731
1732 template<int size, bool big_endian>
1733 bool
1734 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1735 Read_symbols_data* sd)
1736 {
1737 const unsigned char* const pshdrs = sd->section_headers->data();
1738 const unsigned char* namesu = sd->section_names->data();
1739 const char* names = reinterpret_cast<const char*>(namesu);
1740 section_size_type names_size = sd->section_names_size;
1741 const unsigned char* s;
1742
1743 s = this->template find_shdr<size, big_endian>(pshdrs,
1744 size == 32 ? ".got2" : ".opd",
1745 names, names_size, NULL);
1746 if (s != NULL)
1747 {
1748 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1749 this->special_ = ndx;
1750 if (size == 64)
1751 {
1752 if (this->abiversion() == 0)
1753 this->set_abiversion(1);
1754 else if (this->abiversion() > 1)
1755 gold_error(_("%s: .opd invalid in abiv%d"),
1756 this->name().c_str(), this->abiversion());
1757 }
1758 }
1759 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1760 }
1761
1762 // Examine .rela.opd to build info about function entry points.
1763
1764 template<int size, bool big_endian>
1765 void
1766 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1767 size_t reloc_count,
1768 const unsigned char* prelocs,
1769 const unsigned char* plocal_syms)
1770 {
1771 if (size == 64)
1772 {
1773 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1774 Reltype;
1775 const int reloc_size
1776 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1777 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1778 Address expected_off = 0;
1779 bool regular = true;
1780 unsigned int opd_ent_size = 0;
1781
1782 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1783 {
1784 Reltype reloc(prelocs);
1785 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1786 = reloc.get_r_info();
1787 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1788 if (r_type == elfcpp::R_PPC64_ADDR64)
1789 {
1790 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1791 typename elfcpp::Elf_types<size>::Elf_Addr value;
1792 bool is_ordinary;
1793 unsigned int shndx;
1794 if (r_sym < this->local_symbol_count())
1795 {
1796 typename elfcpp::Sym<size, big_endian>
1797 lsym(plocal_syms + r_sym * sym_size);
1798 shndx = lsym.get_st_shndx();
1799 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1800 value = lsym.get_st_value();
1801 }
1802 else
1803 shndx = this->symbol_section_and_value(r_sym, &value,
1804 &is_ordinary);
1805 this->set_opd_ent(reloc.get_r_offset(), shndx,
1806 value + reloc.get_r_addend());
1807 if (i == 2)
1808 {
1809 expected_off = reloc.get_r_offset();
1810 opd_ent_size = expected_off;
1811 }
1812 else if (expected_off != reloc.get_r_offset())
1813 regular = false;
1814 expected_off += opd_ent_size;
1815 }
1816 else if (r_type == elfcpp::R_PPC64_TOC)
1817 {
1818 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1819 regular = false;
1820 }
1821 else
1822 {
1823 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1824 this->name().c_str(), r_type);
1825 regular = false;
1826 }
1827 }
1828 if (reloc_count <= 2)
1829 opd_ent_size = this->section_size(this->opd_shndx());
1830 if (opd_ent_size != 24 && opd_ent_size != 16)
1831 regular = false;
1832 if (!regular)
1833 {
1834 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1835 this->name().c_str());
1836 opd_ent_size = 0;
1837 }
1838 }
1839 }
1840
1841 template<int size, bool big_endian>
1842 void
1843 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1844 {
1845 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1846 if (size == 64)
1847 {
1848 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1849 p != rd->relocs.end();
1850 ++p)
1851 {
1852 if (p->data_shndx == this->opd_shndx())
1853 {
1854 uint64_t opd_size = this->section_size(this->opd_shndx());
1855 gold_assert(opd_size == static_cast<size_t>(opd_size));
1856 if (opd_size != 0)
1857 {
1858 this->init_opd(opd_size);
1859 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1860 rd->local_symbols->data());
1861 }
1862 break;
1863 }
1864 }
1865 }
1866 }
1867
1868 // Read the symbols then set up st_other vector.
1869
1870 template<int size, bool big_endian>
1871 void
1872 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1873 {
1874 this->base_read_symbols(sd);
1875 if (size == 64)
1876 {
1877 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1878 const unsigned char* const pshdrs = sd->section_headers->data();
1879 const unsigned int loccount = this->do_local_symbol_count();
1880 if (loccount != 0)
1881 {
1882 this->st_other_.resize(loccount);
1883 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1884 off_t locsize = loccount * sym_size;
1885 const unsigned int symtab_shndx = this->symtab_shndx();
1886 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1887 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1888 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1889 locsize, true, false);
1890 psyms += sym_size;
1891 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1892 {
1893 elfcpp::Sym<size, big_endian> sym(psyms);
1894 unsigned char st_other = sym.get_st_other();
1895 this->st_other_[i] = st_other;
1896 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1897 {
1898 if (this->abiversion() == 0)
1899 this->set_abiversion(2);
1900 else if (this->abiversion() < 2)
1901 gold_error(_("%s: local symbol %d has invalid st_other"
1902 " for ABI version 1"),
1903 this->name().c_str(), i);
1904 }
1905 }
1906 }
1907 }
1908 }
1909
1910 template<int size, bool big_endian>
1911 void
1912 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1913 {
1914 this->e_flags_ |= ver;
1915 if (this->abiversion() != 0)
1916 {
1917 Target_powerpc<size, big_endian>* target =
1918 static_cast<Target_powerpc<size, big_endian>*>(
1919 parameters->sized_target<size, big_endian>());
1920 if (target->abiversion() == 0)
1921 target->set_abiversion(this->abiversion());
1922 else if (target->abiversion() != this->abiversion())
1923 gold_error(_("%s: ABI version %d is not compatible "
1924 "with ABI version %d output"),
1925 this->name().c_str(),
1926 this->abiversion(), target->abiversion());
1927
1928 }
1929 }
1930
1931 // Call Sized_dynobj::base_read_symbols to read the symbols then
1932 // read .opd from a dynamic object, filling in opd_ent_ vector,
1933
1934 template<int size, bool big_endian>
1935 void
1936 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1937 {
1938 this->base_read_symbols(sd);
1939 if (size == 64)
1940 {
1941 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1942 const unsigned char* const pshdrs = sd->section_headers->data();
1943 const unsigned char* namesu = sd->section_names->data();
1944 const char* names = reinterpret_cast<const char*>(namesu);
1945 const unsigned char* s = NULL;
1946 const unsigned char* opd;
1947 section_size_type opd_size;
1948
1949 // Find and read .opd section.
1950 while (1)
1951 {
1952 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1953 sd->section_names_size,
1954 s);
1955 if (s == NULL)
1956 return;
1957
1958 typename elfcpp::Shdr<size, big_endian> shdr(s);
1959 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1960 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
1961 {
1962 if (this->abiversion() == 0)
1963 this->set_abiversion(1);
1964 else if (this->abiversion() > 1)
1965 gold_error(_("%s: .opd invalid in abiv%d"),
1966 this->name().c_str(), this->abiversion());
1967
1968 this->opd_shndx_ = (s - pshdrs) / shdr_size;
1969 this->opd_address_ = shdr.get_sh_addr();
1970 opd_size = convert_to_section_size_type(shdr.get_sh_size());
1971 opd = this->get_view(shdr.get_sh_offset(), opd_size,
1972 true, false);
1973 break;
1974 }
1975 }
1976
1977 // Build set of executable sections.
1978 // Using a set is probably overkill. There is likely to be only
1979 // a few executable sections, typically .init, .text and .fini,
1980 // and they are generally grouped together.
1981 typedef std::set<Sec_info> Exec_sections;
1982 Exec_sections exec_sections;
1983 s = pshdrs;
1984 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
1985 {
1986 typename elfcpp::Shdr<size, big_endian> shdr(s);
1987 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1988 && ((shdr.get_sh_flags()
1989 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1990 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
1991 && shdr.get_sh_size() != 0)
1992 {
1993 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
1994 shdr.get_sh_size(), i));
1995 }
1996 }
1997 if (exec_sections.empty())
1998 return;
1999
2000 // Look over the OPD entries. This is complicated by the fact
2001 // that some binaries will use two-word entries while others
2002 // will use the standard three-word entries. In most cases
2003 // the third word (the environment pointer for languages like
2004 // Pascal) is unused and will be zero. If the third word is
2005 // used it should not be pointing into executable sections,
2006 // I think.
2007 this->init_opd(opd_size);
2008 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2009 {
2010 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2011 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2012 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2013 if (val == 0)
2014 // Chances are that this is the third word of an OPD entry.
2015 continue;
2016 typename Exec_sections::const_iterator e
2017 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2018 if (e != exec_sections.begin())
2019 {
2020 --e;
2021 if (e->start <= val && val < e->start + e->len)
2022 {
2023 // We have an address in an executable section.
2024 // VAL ought to be the function entry, set it up.
2025 this->set_opd_ent(p - opd, e->shndx, val);
2026 // Skip second word of OPD entry, the TOC pointer.
2027 p += 8;
2028 }
2029 }
2030 // If we didn't match any executable sections, we likely
2031 // have a non-zero third word in the OPD entry.
2032 }
2033 }
2034 }
2035
2036 // Set up some symbols.
2037
2038 template<int size, bool big_endian>
2039 void
2040 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2041 Symbol_table* symtab,
2042 Layout* layout)
2043 {
2044 if (size == 32)
2045 {
2046 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2047 // undefined when scanning relocs (and thus requires
2048 // non-relative dynamic relocs). The proper value will be
2049 // updated later.
2050 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2051 if (gotsym != NULL && gotsym->is_undefined())
2052 {
2053 Target_powerpc<size, big_endian>* target =
2054 static_cast<Target_powerpc<size, big_endian>*>(
2055 parameters->sized_target<size, big_endian>());
2056 Output_data_got_powerpc<size, big_endian>* got
2057 = target->got_section(symtab, layout);
2058 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2059 Symbol_table::PREDEFINED,
2060 got, 0, 0,
2061 elfcpp::STT_OBJECT,
2062 elfcpp::STB_LOCAL,
2063 elfcpp::STV_HIDDEN, 0,
2064 false, false);
2065 }
2066
2067 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2068 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2069 if (sdasym != NULL && sdasym->is_undefined())
2070 {
2071 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2072 Output_section* os
2073 = layout->add_output_section_data(".sdata", 0,
2074 elfcpp::SHF_ALLOC
2075 | elfcpp::SHF_WRITE,
2076 sdata, ORDER_SMALL_DATA, false);
2077 symtab->define_in_output_data("_SDA_BASE_", NULL,
2078 Symbol_table::PREDEFINED,
2079 os, 32768, 0, elfcpp::STT_OBJECT,
2080 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2081 0, false, false);
2082 }
2083 }
2084 else
2085 {
2086 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2087 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2088 if (gotsym != NULL && gotsym->is_undefined())
2089 {
2090 Target_powerpc<size, big_endian>* target =
2091 static_cast<Target_powerpc<size, big_endian>*>(
2092 parameters->sized_target<size, big_endian>());
2093 Output_data_got_powerpc<size, big_endian>* got
2094 = target->got_section(symtab, layout);
2095 symtab->define_in_output_data(".TOC.", NULL,
2096 Symbol_table::PREDEFINED,
2097 got, 0x8000, 0,
2098 elfcpp::STT_OBJECT,
2099 elfcpp::STB_LOCAL,
2100 elfcpp::STV_HIDDEN, 0,
2101 false, false);
2102 }
2103 }
2104 }
2105
2106 // Set up PowerPC target specific relobj.
2107
2108 template<int size, bool big_endian>
2109 Object*
2110 Target_powerpc<size, big_endian>::do_make_elf_object(
2111 const std::string& name,
2112 Input_file* input_file,
2113 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2114 {
2115 int et = ehdr.get_e_type();
2116 // ET_EXEC files are valid input for --just-symbols/-R,
2117 // and we treat them as relocatable objects.
2118 if (et == elfcpp::ET_REL
2119 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2120 {
2121 Powerpc_relobj<size, big_endian>* obj =
2122 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2123 obj->setup();
2124 return obj;
2125 }
2126 else if (et == elfcpp::ET_DYN)
2127 {
2128 Powerpc_dynobj<size, big_endian>* obj =
2129 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2130 obj->setup();
2131 return obj;
2132 }
2133 else
2134 {
2135 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2136 return NULL;
2137 }
2138 }
2139
2140 template<int size, bool big_endian>
2141 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2142 {
2143 public:
2144 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2145 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2146
2147 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2148 : Output_data_got<size, big_endian>(),
2149 symtab_(symtab), layout_(layout),
2150 header_ent_cnt_(size == 32 ? 3 : 1),
2151 header_index_(size == 32 ? 0x2000 : 0)
2152 { }
2153
2154 // Override all the Output_data_got methods we use so as to first call
2155 // reserve_ent().
2156 bool
2157 add_global(Symbol* gsym, unsigned int got_type)
2158 {
2159 this->reserve_ent();
2160 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2161 }
2162
2163 bool
2164 add_global_plt(Symbol* gsym, unsigned int got_type)
2165 {
2166 this->reserve_ent();
2167 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2168 }
2169
2170 bool
2171 add_global_tls(Symbol* gsym, unsigned int got_type)
2172 { return this->add_global_plt(gsym, got_type); }
2173
2174 void
2175 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2176 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2177 {
2178 this->reserve_ent();
2179 Output_data_got<size, big_endian>::
2180 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2181 }
2182
2183 void
2184 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2185 Output_data_reloc_generic* rel_dyn,
2186 unsigned int r_type_1, unsigned int r_type_2)
2187 {
2188 this->reserve_ent(2);
2189 Output_data_got<size, big_endian>::
2190 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2191 }
2192
2193 bool
2194 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2195 {
2196 this->reserve_ent();
2197 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2198 got_type);
2199 }
2200
2201 bool
2202 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2203 {
2204 this->reserve_ent();
2205 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2206 got_type);
2207 }
2208
2209 bool
2210 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2211 { return this->add_local_plt(object, sym_index, got_type); }
2212
2213 void
2214 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2215 unsigned int got_type,
2216 Output_data_reloc_generic* rel_dyn,
2217 unsigned int r_type)
2218 {
2219 this->reserve_ent(2);
2220 Output_data_got<size, big_endian>::
2221 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2222 }
2223
2224 unsigned int
2225 add_constant(Valtype constant)
2226 {
2227 this->reserve_ent();
2228 return Output_data_got<size, big_endian>::add_constant(constant);
2229 }
2230
2231 unsigned int
2232 add_constant_pair(Valtype c1, Valtype c2)
2233 {
2234 this->reserve_ent(2);
2235 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2236 }
2237
2238 // Offset of _GLOBAL_OFFSET_TABLE_.
2239 unsigned int
2240 g_o_t() const
2241 {
2242 return this->got_offset(this->header_index_);
2243 }
2244
2245 // Offset of base used to access the GOT/TOC.
2246 // The got/toc pointer reg will be set to this value.
2247 Valtype
2248 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2249 {
2250 if (size == 32)
2251 return this->g_o_t();
2252 else
2253 return (this->output_section()->address()
2254 + object->toc_base_offset()
2255 - this->address());
2256 }
2257
2258 // Ensure our GOT has a header.
2259 void
2260 set_final_data_size()
2261 {
2262 if (this->header_ent_cnt_ != 0)
2263 this->make_header();
2264 Output_data_got<size, big_endian>::set_final_data_size();
2265 }
2266
2267 // First word of GOT header needs some values that are not
2268 // handled by Output_data_got so poke them in here.
2269 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2270 void
2271 do_write(Output_file* of)
2272 {
2273 Valtype val = 0;
2274 if (size == 32 && this->layout_->dynamic_data() != NULL)
2275 val = this->layout_->dynamic_section()->address();
2276 if (size == 64)
2277 val = this->output_section()->address() + 0x8000;
2278 this->replace_constant(this->header_index_, val);
2279 Output_data_got<size, big_endian>::do_write(of);
2280 }
2281
2282 private:
2283 void
2284 reserve_ent(unsigned int cnt = 1)
2285 {
2286 if (this->header_ent_cnt_ == 0)
2287 return;
2288 if (this->num_entries() + cnt > this->header_index_)
2289 this->make_header();
2290 }
2291
2292 void
2293 make_header()
2294 {
2295 this->header_ent_cnt_ = 0;
2296 this->header_index_ = this->num_entries();
2297 if (size == 32)
2298 {
2299 Output_data_got<size, big_endian>::add_constant(0);
2300 Output_data_got<size, big_endian>::add_constant(0);
2301 Output_data_got<size, big_endian>::add_constant(0);
2302
2303 // Define _GLOBAL_OFFSET_TABLE_ at the header
2304 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2305 if (gotsym != NULL)
2306 {
2307 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2308 sym->set_value(this->g_o_t());
2309 }
2310 else
2311 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2312 Symbol_table::PREDEFINED,
2313 this, this->g_o_t(), 0,
2314 elfcpp::STT_OBJECT,
2315 elfcpp::STB_LOCAL,
2316 elfcpp::STV_HIDDEN, 0,
2317 false, false);
2318 }
2319 else
2320 Output_data_got<size, big_endian>::add_constant(0);
2321 }
2322
2323 // Stashed pointers.
2324 Symbol_table* symtab_;
2325 Layout* layout_;
2326
2327 // GOT header size.
2328 unsigned int header_ent_cnt_;
2329 // GOT header index.
2330 unsigned int header_index_;
2331 };
2332
2333 // Get the GOT section, creating it if necessary.
2334
2335 template<int size, bool big_endian>
2336 Output_data_got_powerpc<size, big_endian>*
2337 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2338 Layout* layout)
2339 {
2340 if (this->got_ == NULL)
2341 {
2342 gold_assert(symtab != NULL && layout != NULL);
2343
2344 this->got_
2345 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2346
2347 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2348 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2349 this->got_, ORDER_DATA, false);
2350 }
2351
2352 return this->got_;
2353 }
2354
2355 // Get the dynamic reloc section, creating it if necessary.
2356
2357 template<int size, bool big_endian>
2358 typename Target_powerpc<size, big_endian>::Reloc_section*
2359 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2360 {
2361 if (this->rela_dyn_ == NULL)
2362 {
2363 gold_assert(layout != NULL);
2364 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2365 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2366 elfcpp::SHF_ALLOC, this->rela_dyn_,
2367 ORDER_DYNAMIC_RELOCS, false);
2368 }
2369 return this->rela_dyn_;
2370 }
2371
2372 // Similarly, but for ifunc symbols get the one for ifunc.
2373
2374 template<int size, bool big_endian>
2375 typename Target_powerpc<size, big_endian>::Reloc_section*
2376 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2377 Layout* layout,
2378 bool for_ifunc)
2379 {
2380 if (!for_ifunc)
2381 return this->rela_dyn_section(layout);
2382
2383 if (this->iplt_ == NULL)
2384 this->make_iplt_section(symtab, layout);
2385 return this->iplt_->rel_plt();
2386 }
2387
2388 class Stub_control
2389 {
2390 public:
2391 // Determine the stub group size. The group size is the absolute
2392 // value of the parameter --stub-group-size. If --stub-group-size
2393 // is passed a negative value, we restrict stubs to be always before
2394 // the stubbed branches.
2395 Stub_control(int32_t size, bool no_size_errors)
2396 : state_(NO_GROUP), stub_group_size_(abs(size)),
2397 stub14_group_size_(abs(size) >> 10),
2398 stubs_always_before_branch_(size < 0),
2399 suppress_size_errors_(no_size_errors),
2400 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2401 {
2402 }
2403
2404 // Return true iff input section can be handled by current stub
2405 // group.
2406 bool
2407 can_add_to_stub_group(Output_section* o,
2408 const Output_section::Input_section* i,
2409 bool has14);
2410
2411 const Output_section::Input_section*
2412 owner()
2413 { return owner_; }
2414
2415 Output_section*
2416 output_section()
2417 { return output_section_; }
2418
2419 void
2420 set_output_and_owner(Output_section* o,
2421 const Output_section::Input_section* i)
2422 {
2423 this->output_section_ = o;
2424 this->owner_ = i;
2425 }
2426
2427 private:
2428 typedef enum
2429 {
2430 NO_GROUP,
2431 FINDING_STUB_SECTION,
2432 HAS_STUB_SECTION
2433 } State;
2434
2435 State state_;
2436 uint32_t stub_group_size_;
2437 uint32_t stub14_group_size_;
2438 bool stubs_always_before_branch_;
2439 bool suppress_size_errors_;
2440 uint64_t group_end_addr_;
2441 const Output_section::Input_section* owner_;
2442 Output_section* output_section_;
2443 };
2444
2445 // Return true iff input section can be handled by current stub
2446 // group.
2447
2448 bool
2449 Stub_control::can_add_to_stub_group(Output_section* o,
2450 const Output_section::Input_section* i,
2451 bool has14)
2452 {
2453 uint32_t group_size
2454 = has14 ? this->stub14_group_size_ : this->stub_group_size_;
2455 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2456 uint64_t this_size;
2457 uint64_t start_addr = o->address();
2458
2459 if (whole_sec)
2460 // .init and .fini sections are pasted together to form a single
2461 // function. We can't be adding stubs in the middle of the function.
2462 this_size = o->data_size();
2463 else
2464 {
2465 start_addr += i->relobj()->output_section_offset(i->shndx());
2466 this_size = i->data_size();
2467 }
2468 uint64_t end_addr = start_addr + this_size;
2469 bool toobig = this_size > group_size;
2470
2471 if (toobig && !this->suppress_size_errors_)
2472 gold_warning(_("%s:%s exceeds group size"),
2473 i->relobj()->name().c_str(),
2474 i->relobj()->section_name(i->shndx()).c_str());
2475
2476 if (this->state_ != HAS_STUB_SECTION
2477 && (!whole_sec || this->output_section_ != o)
2478 && (this->state_ == NO_GROUP
2479 || this->group_end_addr_ - end_addr < group_size))
2480 {
2481 this->owner_ = i;
2482 this->output_section_ = o;
2483 }
2484
2485 if (this->state_ == NO_GROUP)
2486 {
2487 this->state_ = FINDING_STUB_SECTION;
2488 this->group_end_addr_ = end_addr;
2489 }
2490 else if (this->group_end_addr_ - start_addr < group_size)
2491 ;
2492 // Adding this section would make the group larger than GROUP_SIZE.
2493 else if (this->state_ == FINDING_STUB_SECTION
2494 && !this->stubs_always_before_branch_
2495 && !toobig)
2496 {
2497 // But wait, there's more! Input sections up to GROUP_SIZE
2498 // bytes before the stub table can be handled by it too.
2499 this->state_ = HAS_STUB_SECTION;
2500 this->group_end_addr_ = end_addr;
2501 }
2502 else
2503 {
2504 this->state_ = NO_GROUP;
2505 return false;
2506 }
2507 return true;
2508 }
2509
2510 // Look over all the input sections, deciding where to place stubs.
2511
2512 template<int size, bool big_endian>
2513 void
2514 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2515 const Task*,
2516 bool no_size_errors)
2517 {
2518 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2519
2520 // Group input sections and insert stub table
2521 Stub_table_owner* table_owner = NULL;
2522 std::vector<Stub_table_owner*> tables;
2523 Layout::Section_list section_list;
2524 layout->get_executable_sections(&section_list);
2525 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2526 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2527 o != section_list.rend();
2528 ++o)
2529 {
2530 typedef Output_section::Input_section_list Input_section_list;
2531 for (Input_section_list::const_reverse_iterator i
2532 = (*o)->input_sections().rbegin();
2533 i != (*o)->input_sections().rend();
2534 ++i)
2535 {
2536 if (i->is_input_section()
2537 || i->is_relaxed_input_section())
2538 {
2539 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2540 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2541 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2542 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2543 {
2544 table_owner->output_section = stub_control.output_section();
2545 table_owner->owner = stub_control.owner();
2546 stub_control.set_output_and_owner(*o, &*i);
2547 table_owner = NULL;
2548 }
2549 if (table_owner == NULL)
2550 {
2551 table_owner = new Stub_table_owner;
2552 tables.push_back(table_owner);
2553 }
2554 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2555 }
2556 }
2557 }
2558 if (table_owner != NULL)
2559 {
2560 const Output_section::Input_section* i = stub_control.owner();
2561
2562 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2563 {
2564 // Corner case. A new stub group was made for the first
2565 // section (last one looked at here) for some reason, but
2566 // the first section is already being used as the owner for
2567 // a stub table for following sections. Force it into that
2568 // stub group.
2569 tables.pop_back();
2570 delete table_owner;
2571 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2572 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2573 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2574 }
2575 else
2576 {
2577 table_owner->output_section = stub_control.output_section();
2578 table_owner->owner = i;
2579 }
2580 }
2581 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2582 t != tables.end();
2583 ++t)
2584 {
2585 Stub_table<size, big_endian>* stub_table;
2586
2587 if ((*t)->owner->is_input_section())
2588 stub_table = new Stub_table<size, big_endian>(this,
2589 (*t)->output_section,
2590 (*t)->owner);
2591 else if ((*t)->owner->is_relaxed_input_section())
2592 stub_table = static_cast<Stub_table<size, big_endian>*>(
2593 (*t)->owner->relaxed_input_section());
2594 else
2595 gold_unreachable();
2596 this->stub_tables_.push_back(stub_table);
2597 delete *t;
2598 }
2599 }
2600
2601 static unsigned long
2602 max_branch_delta (unsigned int r_type)
2603 {
2604 if (r_type == elfcpp::R_POWERPC_REL14
2605 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2606 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2607 return 1L << 15;
2608 if (r_type == elfcpp::R_POWERPC_REL24
2609 || r_type == elfcpp::R_PPC_PLTREL24
2610 || r_type == elfcpp::R_PPC_LOCAL24PC)
2611 return 1L << 25;
2612 return 0;
2613 }
2614
2615 // If this branch needs a plt call stub, or a long branch stub, make one.
2616
2617 template<int size, bool big_endian>
2618 bool
2619 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2620 Stub_table<size, big_endian>* stub_table,
2621 Stub_table<size, big_endian>* ifunc_stub_table,
2622 Symbol_table* symtab) const
2623 {
2624 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2625 if (sym != NULL && sym->is_forwarder())
2626 sym = symtab->resolve_forwards(sym);
2627 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2628 Target_powerpc<size, big_endian>* target =
2629 static_cast<Target_powerpc<size, big_endian>*>(
2630 parameters->sized_target<size, big_endian>());
2631 if (gsym != NULL
2632 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2633 : this->object_->local_has_plt_offset(this->r_sym_))
2634 {
2635 if (size == 64
2636 && gsym != NULL
2637 && target->abiversion() >= 2
2638 && !parameters->options().output_is_position_independent()
2639 && !is_branch_reloc(this->r_type_))
2640 target->glink_section()->add_global_entry(gsym);
2641 else
2642 {
2643 if (stub_table == NULL)
2644 stub_table = this->object_->stub_table(this->shndx_);
2645 if (stub_table == NULL)
2646 {
2647 // This is a ref from a data section to an ifunc symbol.
2648 stub_table = ifunc_stub_table;
2649 }
2650 gold_assert(stub_table != NULL);
2651 Address from = this->object_->get_output_section_offset(this->shndx_);
2652 if (from != invalid_address)
2653 from += (this->object_->output_section(this->shndx_)->address()
2654 + this->offset_);
2655 if (gsym != NULL)
2656 return stub_table->add_plt_call_entry(from,
2657 this->object_, gsym,
2658 this->r_type_, this->addend_);
2659 else
2660 return stub_table->add_plt_call_entry(from,
2661 this->object_, this->r_sym_,
2662 this->r_type_, this->addend_);
2663 }
2664 }
2665 else
2666 {
2667 Address max_branch_offset = max_branch_delta(this->r_type_);
2668 if (max_branch_offset == 0)
2669 return true;
2670 Address from = this->object_->get_output_section_offset(this->shndx_);
2671 gold_assert(from != invalid_address);
2672 from += (this->object_->output_section(this->shndx_)->address()
2673 + this->offset_);
2674 Address to;
2675 if (gsym != NULL)
2676 {
2677 switch (gsym->source())
2678 {
2679 case Symbol::FROM_OBJECT:
2680 {
2681 Object* symobj = gsym->object();
2682 if (symobj->is_dynamic()
2683 || symobj->pluginobj() != NULL)
2684 return true;
2685 bool is_ordinary;
2686 unsigned int shndx = gsym->shndx(&is_ordinary);
2687 if (shndx == elfcpp::SHN_UNDEF)
2688 return true;
2689 }
2690 break;
2691
2692 case Symbol::IS_UNDEFINED:
2693 return true;
2694
2695 default:
2696 break;
2697 }
2698 Symbol_table::Compute_final_value_status status;
2699 to = symtab->compute_final_value<size>(gsym, &status);
2700 if (status != Symbol_table::CFVS_OK)
2701 return true;
2702 if (size == 64)
2703 to += this->object_->ppc64_local_entry_offset(gsym);
2704 }
2705 else
2706 {
2707 const Symbol_value<size>* psymval
2708 = this->object_->local_symbol(this->r_sym_);
2709 Symbol_value<size> symval;
2710 typedef Sized_relobj_file<size, big_endian> ObjType;
2711 typename ObjType::Compute_final_local_value_status status
2712 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2713 &symval, symtab);
2714 if (status != ObjType::CFLV_OK
2715 || !symval.has_output_value())
2716 return true;
2717 to = symval.value(this->object_, 0);
2718 if (size == 64)
2719 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2720 }
2721 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2722 to += this->addend_;
2723 if (stub_table == NULL)
2724 stub_table = this->object_->stub_table(this->shndx_);
2725 if (size == 64 && target->abiversion() < 2)
2726 {
2727 unsigned int dest_shndx;
2728 if (!target->symval_for_branch(symtab, gsym, this->object_,
2729 &to, &dest_shndx))
2730 return true;
2731 }
2732 Address delta = to - from;
2733 if (delta + max_branch_offset >= 2 * max_branch_offset)
2734 {
2735 if (stub_table == NULL)
2736 {
2737 gold_warning(_("%s:%s: branch in non-executable section,"
2738 " no long branch stub for you"),
2739 this->object_->name().c_str(),
2740 this->object_->section_name(this->shndx_).c_str());
2741 return true;
2742 }
2743 return stub_table->add_long_branch_entry(this->object_,
2744 this->r_type_, from, to);
2745 }
2746 }
2747 return true;
2748 }
2749
2750 // Relaxation hook. This is where we do stub generation.
2751
2752 template<int size, bool big_endian>
2753 bool
2754 Target_powerpc<size, big_endian>::do_relax(int pass,
2755 const Input_objects*,
2756 Symbol_table* symtab,
2757 Layout* layout,
2758 const Task* task)
2759 {
2760 unsigned int prev_brlt_size = 0;
2761 if (pass == 1)
2762 {
2763 bool thread_safe
2764 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2765 if (size == 64
2766 && this->abiversion() < 2
2767 && !thread_safe
2768 && !parameters->options().user_set_plt_thread_safe())
2769 {
2770 static const char* const thread_starter[] =
2771 {
2772 "pthread_create",
2773 /* libstdc++ */
2774 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2775 /* librt */
2776 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2777 "mq_notify", "create_timer",
2778 /* libanl */
2779 "getaddrinfo_a",
2780 /* libgomp */
2781 "GOMP_parallel",
2782 "GOMP_parallel_start",
2783 "GOMP_parallel_loop_static",
2784 "GOMP_parallel_loop_static_start",
2785 "GOMP_parallel_loop_dynamic",
2786 "GOMP_parallel_loop_dynamic_start",
2787 "GOMP_parallel_loop_guided",
2788 "GOMP_parallel_loop_guided_start",
2789 "GOMP_parallel_loop_runtime",
2790 "GOMP_parallel_loop_runtime_start",
2791 "GOMP_parallel_sections",
2792 "GOMP_parallel_sections_start",
2793 /* libgo */
2794 "__go_go",
2795 };
2796
2797 if (parameters->options().shared())
2798 thread_safe = true;
2799 else
2800 {
2801 for (unsigned int i = 0;
2802 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2803 i++)
2804 {
2805 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2806 thread_safe = (sym != NULL
2807 && sym->in_reg()
2808 && sym->in_real_elf());
2809 if (thread_safe)
2810 break;
2811 }
2812 }
2813 }
2814 this->plt_thread_safe_ = thread_safe;
2815 }
2816
2817 if (pass == 1)
2818 {
2819 this->stub_group_size_ = parameters->options().stub_group_size();
2820 bool no_size_errors = true;
2821 if (this->stub_group_size_ == 1)
2822 this->stub_group_size_ = 0x1c00000;
2823 else if (this->stub_group_size_ == -1)
2824 this->stub_group_size_ = -0x1e00000;
2825 else
2826 no_size_errors = false;
2827 this->group_sections(layout, task, no_size_errors);
2828 }
2829 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2830 {
2831 this->branch_lookup_table_.clear();
2832 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2833 p != this->stub_tables_.end();
2834 ++p)
2835 {
2836 (*p)->clear_stubs(true);
2837 }
2838 this->stub_tables_.clear();
2839 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2840 gold_info(_("%s: stub group size is too large; retrying with %d"),
2841 program_name, this->stub_group_size_);
2842 this->group_sections(layout, task, true);
2843 }
2844
2845 // We need address of stub tables valid for make_stub.
2846 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2847 p != this->stub_tables_.end();
2848 ++p)
2849 {
2850 const Powerpc_relobj<size, big_endian>* object
2851 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2852 Address off = object->get_output_section_offset((*p)->shndx());
2853 gold_assert(off != invalid_address);
2854 Output_section* os = (*p)->output_section();
2855 (*p)->set_address_and_size(os, off);
2856 }
2857
2858 if (pass != 1)
2859 {
2860 // Clear plt call stubs, long branch stubs and branch lookup table.
2861 prev_brlt_size = this->branch_lookup_table_.size();
2862 this->branch_lookup_table_.clear();
2863 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2864 p != this->stub_tables_.end();
2865 ++p)
2866 {
2867 (*p)->clear_stubs(false);
2868 }
2869 }
2870
2871 // Build all the stubs.
2872 this->relax_failed_ = false;
2873 Stub_table<size, big_endian>* ifunc_stub_table
2874 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2875 Stub_table<size, big_endian>* one_stub_table
2876 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2877 for (typename Branches::const_iterator b = this->branch_info_.begin();
2878 b != this->branch_info_.end();
2879 b++)
2880 {
2881 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2882 && !this->relax_failed_)
2883 {
2884 this->relax_failed_ = true;
2885 this->relax_fail_count_++;
2886 if (this->relax_fail_count_ < 3)
2887 return true;
2888 }
2889 }
2890
2891 // Did anything change size?
2892 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2893 bool again = num_huge_branches != prev_brlt_size;
2894 if (size == 64 && num_huge_branches != 0)
2895 this->make_brlt_section(layout);
2896 if (size == 64 && again)
2897 this->brlt_section_->set_current_size(num_huge_branches);
2898
2899 typedef Unordered_set<Output_section*> Output_sections;
2900 Output_sections os_need_update;
2901 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2902 p != this->stub_tables_.end();
2903 ++p)
2904 {
2905 if ((*p)->size_update())
2906 {
2907 again = true;
2908 (*p)->add_eh_frame(layout);
2909 os_need_update.insert((*p)->output_section());
2910 }
2911 }
2912
2913 // Set output section offsets for all input sections in an output
2914 // section that just changed size. Anything past the stubs will
2915 // need updating.
2916 for (typename Output_sections::iterator p = os_need_update.begin();
2917 p != os_need_update.end();
2918 p++)
2919 {
2920 Output_section* os = *p;
2921 Address off = 0;
2922 typedef Output_section::Input_section_list Input_section_list;
2923 for (Input_section_list::const_iterator i = os->input_sections().begin();
2924 i != os->input_sections().end();
2925 ++i)
2926 {
2927 off = align_address(off, i->addralign());
2928 if (i->is_input_section() || i->is_relaxed_input_section())
2929 i->relobj()->set_section_offset(i->shndx(), off);
2930 if (i->is_relaxed_input_section())
2931 {
2932 Stub_table<size, big_endian>* stub_table
2933 = static_cast<Stub_table<size, big_endian>*>(
2934 i->relaxed_input_section());
2935 off += stub_table->set_address_and_size(os, off);
2936 }
2937 else
2938 off += i->data_size();
2939 }
2940 // If .branch_lt is part of this output section, then we have
2941 // just done the offset adjustment.
2942 os->clear_section_offsets_need_adjustment();
2943 }
2944
2945 if (size == 64
2946 && !again
2947 && num_huge_branches != 0
2948 && parameters->options().output_is_position_independent())
2949 {
2950 // Fill in the BRLT relocs.
2951 this->brlt_section_->reset_brlt_sizes();
2952 for (typename Branch_lookup_table::const_iterator p
2953 = this->branch_lookup_table_.begin();
2954 p != this->branch_lookup_table_.end();
2955 ++p)
2956 {
2957 this->brlt_section_->add_reloc(p->first, p->second);
2958 }
2959 this->brlt_section_->finalize_brlt_sizes();
2960 }
2961 return again;
2962 }
2963
2964 template<int size, bool big_endian>
2965 void
2966 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
2967 unsigned char* oview,
2968 uint64_t* paddress,
2969 off_t* plen) const
2970 {
2971 uint64_t address = plt->address();
2972 off_t len = plt->data_size();
2973
2974 if (plt == this->glink_)
2975 {
2976 // See Output_data_glink::do_write() for glink contents.
2977 if (len == 0)
2978 {
2979 gold_assert(parameters->doing_static_link());
2980 // Static linking may need stubs, to support ifunc and long
2981 // branches. We need to create an output section for
2982 // .eh_frame early in the link process, to have a place to
2983 // attach stub .eh_frame info. We also need to have
2984 // registered a CIE that matches the stub CIE. Both of
2985 // these requirements are satisfied by creating an FDE and
2986 // CIE for .glink, even though static linking will leave
2987 // .glink zero length.
2988 // ??? Hopefully generating an FDE with a zero address range
2989 // won't confuse anything that consumes .eh_frame info.
2990 }
2991 else if (size == 64)
2992 {
2993 // There is one word before __glink_PLTresolve
2994 address += 8;
2995 len -= 8;
2996 }
2997 else if (parameters->options().output_is_position_independent())
2998 {
2999 // There are two FDEs for a position independent glink.
3000 // The first covers the branch table, the second
3001 // __glink_PLTresolve at the end of glink.
3002 off_t resolve_size = this->glink_->pltresolve_size;
3003 if (oview[9] == elfcpp::DW_CFA_nop)
3004 len -= resolve_size;
3005 else
3006 {
3007 address += len - resolve_size;
3008 len = resolve_size;
3009 }
3010 }
3011 }
3012 else
3013 {
3014 // Must be a stub table.
3015 const Stub_table<size, big_endian>* stub_table
3016 = static_cast<const Stub_table<size, big_endian>*>(plt);
3017 uint64_t stub_address = stub_table->stub_address();
3018 len -= stub_address - address;
3019 address = stub_address;
3020 }
3021
3022 *paddress = address;
3023 *plen = len;
3024 }
3025
3026 // A class to handle the PLT data.
3027
3028 template<int size, bool big_endian>
3029 class Output_data_plt_powerpc : public Output_section_data_build
3030 {
3031 public:
3032 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3033 size, big_endian> Reloc_section;
3034
3035 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3036 Reloc_section* plt_rel,
3037 const char* name)
3038 : Output_section_data_build(size == 32 ? 4 : 8),
3039 rel_(plt_rel),
3040 targ_(targ),
3041 name_(name)
3042 { }
3043
3044 // Add an entry to the PLT.
3045 void
3046 add_entry(Symbol*);
3047
3048 void
3049 add_ifunc_entry(Symbol*);
3050
3051 void
3052 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3053
3054 // Return the .rela.plt section data.
3055 Reloc_section*
3056 rel_plt() const
3057 {
3058 return this->rel_;
3059 }
3060
3061 // Return the number of PLT entries.
3062 unsigned int
3063 entry_count() const
3064 {
3065 if (this->current_data_size() == 0)
3066 return 0;
3067 return ((this->current_data_size() - this->first_plt_entry_offset())
3068 / this->plt_entry_size());
3069 }
3070
3071 protected:
3072 void
3073 do_adjust_output_section(Output_section* os)
3074 {
3075 os->set_entsize(0);
3076 }
3077
3078 // Write to a map file.
3079 void
3080 do_print_to_mapfile(Mapfile* mapfile) const
3081 { mapfile->print_output_data(this, this->name_); }
3082
3083 private:
3084 // Return the offset of the first non-reserved PLT entry.
3085 unsigned int
3086 first_plt_entry_offset() const
3087 {
3088 // IPLT has no reserved entry.
3089 if (this->name_[3] == 'I')
3090 return 0;
3091 return this->targ_->first_plt_entry_offset();
3092 }
3093
3094 // Return the size of each PLT entry.
3095 unsigned int
3096 plt_entry_size() const
3097 {
3098 return this->targ_->plt_entry_size();
3099 }
3100
3101 // Write out the PLT data.
3102 void
3103 do_write(Output_file*);
3104
3105 // The reloc section.
3106 Reloc_section* rel_;
3107 // Allows access to .glink for do_write.
3108 Target_powerpc<size, big_endian>* targ_;
3109 // What to report in map file.
3110 const char *name_;
3111 };
3112
3113 // Add an entry to the PLT.
3114
3115 template<int size, bool big_endian>
3116 void
3117 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3118 {
3119 if (!gsym->has_plt_offset())
3120 {
3121 section_size_type off = this->current_data_size();
3122 if (off == 0)
3123 off += this->first_plt_entry_offset();
3124 gsym->set_plt_offset(off);
3125 gsym->set_needs_dynsym_entry();
3126 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3127 this->rel_->add_global(gsym, dynrel, this, off, 0);
3128 off += this->plt_entry_size();
3129 this->set_current_data_size(off);
3130 }
3131 }
3132
3133 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3134
3135 template<int size, bool big_endian>
3136 void
3137 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3138 {
3139 if (!gsym->has_plt_offset())
3140 {
3141 section_size_type off = this->current_data_size();
3142 gsym->set_plt_offset(off);
3143 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3144 if (size == 64 && this->targ_->abiversion() < 2)
3145 dynrel = elfcpp::R_PPC64_JMP_IREL;
3146 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3147 off += this->plt_entry_size();
3148 this->set_current_data_size(off);
3149 }
3150 }
3151
3152 // Add an entry for a local ifunc symbol to the IPLT.
3153
3154 template<int size, bool big_endian>
3155 void
3156 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3157 Sized_relobj_file<size, big_endian>* relobj,
3158 unsigned int local_sym_index)
3159 {
3160 if (!relobj->local_has_plt_offset(local_sym_index))
3161 {
3162 section_size_type off = this->current_data_size();
3163 relobj->set_local_plt_offset(local_sym_index, off);
3164 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3165 if (size == 64 && this->targ_->abiversion() < 2)
3166 dynrel = elfcpp::R_PPC64_JMP_IREL;
3167 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3168 this, off, 0);
3169 off += this->plt_entry_size();
3170 this->set_current_data_size(off);
3171 }
3172 }
3173
3174 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3175 static const uint32_t add_2_2_11 = 0x7c425a14;
3176 static const uint32_t add_3_3_2 = 0x7c631214;
3177 static const uint32_t add_3_3_13 = 0x7c636a14;
3178 static const uint32_t add_11_0_11 = 0x7d605a14;
3179 static const uint32_t add_11_2_11 = 0x7d625a14;
3180 static const uint32_t add_11_11_2 = 0x7d6b1214;
3181 static const uint32_t addi_0_12 = 0x380c0000;
3182 static const uint32_t addi_2_2 = 0x38420000;
3183 static const uint32_t addi_3_3 = 0x38630000;
3184 static const uint32_t addi_11_11 = 0x396b0000;
3185 static const uint32_t addi_12_1 = 0x39810000;
3186 static const uint32_t addi_12_12 = 0x398c0000;
3187 static const uint32_t addis_0_2 = 0x3c020000;
3188 static const uint32_t addis_0_13 = 0x3c0d0000;
3189 static const uint32_t addis_2_12 = 0x3c4c0000;
3190 static const uint32_t addis_11_2 = 0x3d620000;
3191 static const uint32_t addis_11_11 = 0x3d6b0000;
3192 static const uint32_t addis_11_30 = 0x3d7e0000;
3193 static const uint32_t addis_12_1 = 0x3d810000;
3194 static const uint32_t addis_12_2 = 0x3d820000;
3195 static const uint32_t addis_12_12 = 0x3d8c0000;
3196 static const uint32_t b = 0x48000000;
3197 static const uint32_t bcl_20_31 = 0x429f0005;
3198 static const uint32_t bctr = 0x4e800420;
3199 static const uint32_t blr = 0x4e800020;
3200 static const uint32_t bnectr_p4 = 0x4ce20420;
3201 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3202 static const uint32_t cmpldi_2_0 = 0x28220000;
3203 static const uint32_t cror_15_15_15 = 0x4def7b82;
3204 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3205 static const uint32_t ld_0_1 = 0xe8010000;
3206 static const uint32_t ld_0_12 = 0xe80c0000;
3207 static const uint32_t ld_2_1 = 0xe8410000;
3208 static const uint32_t ld_2_2 = 0xe8420000;
3209 static const uint32_t ld_2_11 = 0xe84b0000;
3210 static const uint32_t ld_11_2 = 0xe9620000;
3211 static const uint32_t ld_11_11 = 0xe96b0000;
3212 static const uint32_t ld_12_2 = 0xe9820000;
3213 static const uint32_t ld_12_11 = 0xe98b0000;
3214 static const uint32_t ld_12_12 = 0xe98c0000;
3215 static const uint32_t lfd_0_1 = 0xc8010000;
3216 static const uint32_t li_0_0 = 0x38000000;
3217 static const uint32_t li_12_0 = 0x39800000;
3218 static const uint32_t lis_0 = 0x3c000000;
3219 static const uint32_t lis_11 = 0x3d600000;
3220 static const uint32_t lis_12 = 0x3d800000;
3221 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3222 static const uint32_t lwz_0_12 = 0x800c0000;
3223 static const uint32_t lwz_11_11 = 0x816b0000;
3224 static const uint32_t lwz_11_30 = 0x817e0000;
3225 static const uint32_t lwz_12_12 = 0x818c0000;
3226 static const uint32_t lwzu_0_12 = 0x840c0000;
3227 static const uint32_t mflr_0 = 0x7c0802a6;
3228 static const uint32_t mflr_11 = 0x7d6802a6;
3229 static const uint32_t mflr_12 = 0x7d8802a6;
3230 static const uint32_t mtctr_0 = 0x7c0903a6;
3231 static const uint32_t mtctr_11 = 0x7d6903a6;
3232 static const uint32_t mtctr_12 = 0x7d8903a6;
3233 static const uint32_t mtlr_0 = 0x7c0803a6;
3234 static const uint32_t mtlr_12 = 0x7d8803a6;
3235 static const uint32_t nop = 0x60000000;
3236 static const uint32_t ori_0_0_0 = 0x60000000;
3237 static const uint32_t srdi_0_0_2 = 0x7800f082;
3238 static const uint32_t std_0_1 = 0xf8010000;
3239 static const uint32_t std_0_12 = 0xf80c0000;
3240 static const uint32_t std_2_1 = 0xf8410000;
3241 static const uint32_t stfd_0_1 = 0xd8010000;
3242 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3243 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3244 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3245 static const uint32_t xor_2_12_12 = 0x7d826278;
3246 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3247
3248 // Write out the PLT.
3249
3250 template<int size, bool big_endian>
3251 void
3252 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3253 {
3254 if (size == 32 && this->name_[3] != 'I')
3255 {
3256 const section_size_type offset = this->offset();
3257 const section_size_type oview_size
3258 = convert_to_section_size_type(this->data_size());
3259 unsigned char* const oview = of->get_output_view(offset, oview_size);
3260 unsigned char* pov = oview;
3261 unsigned char* endpov = oview + oview_size;
3262
3263 // The address of the .glink branch table
3264 const Output_data_glink<size, big_endian>* glink
3265 = this->targ_->glink_section();
3266 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3267
3268 while (pov < endpov)
3269 {
3270 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3271 pov += 4;
3272 branch_tab += 4;
3273 }
3274
3275 of->write_output_view(offset, oview_size, oview);
3276 }
3277 }
3278
3279 // Create the PLT section.
3280
3281 template<int size, bool big_endian>
3282 void
3283 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3284 Layout* layout)
3285 {
3286 if (this->plt_ == NULL)
3287 {
3288 if (this->got_ == NULL)
3289 this->got_section(symtab, layout);
3290
3291 if (this->glink_ == NULL)
3292 make_glink_section(layout);
3293
3294 // Ensure that .rela.dyn always appears before .rela.plt This is
3295 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3296 // needs to include .rela.plt in its range.
3297 this->rela_dyn_section(layout);
3298
3299 Reloc_section* plt_rel = new Reloc_section(false);
3300 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3301 elfcpp::SHF_ALLOC, plt_rel,
3302 ORDER_DYNAMIC_PLT_RELOCS, false);
3303 this->plt_
3304 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3305 "** PLT");
3306 layout->add_output_section_data(".plt",
3307 (size == 32
3308 ? elfcpp::SHT_PROGBITS
3309 : elfcpp::SHT_NOBITS),
3310 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3311 this->plt_,
3312 (size == 32
3313 ? ORDER_SMALL_DATA
3314 : ORDER_SMALL_BSS),
3315 false);
3316 }
3317 }
3318
3319 // Create the IPLT section.
3320
3321 template<int size, bool big_endian>
3322 void
3323 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3324 Layout* layout)
3325 {
3326 if (this->iplt_ == NULL)
3327 {
3328 this->make_plt_section(symtab, layout);
3329
3330 Reloc_section* iplt_rel = new Reloc_section(false);
3331 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3332 this->iplt_
3333 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3334 "** IPLT");
3335 this->plt_->output_section()->add_output_section_data(this->iplt_);
3336 }
3337 }
3338
3339 // A section for huge long branch addresses, similar to plt section.
3340
3341 template<int size, bool big_endian>
3342 class Output_data_brlt_powerpc : public Output_section_data_build
3343 {
3344 public:
3345 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3346 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3347 size, big_endian> Reloc_section;
3348
3349 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3350 Reloc_section* brlt_rel)
3351 : Output_section_data_build(size == 32 ? 4 : 8),
3352 rel_(brlt_rel),
3353 targ_(targ)
3354 { }
3355
3356 void
3357 reset_brlt_sizes()
3358 {
3359 this->reset_data_size();
3360 this->rel_->reset_data_size();
3361 }
3362
3363 void
3364 finalize_brlt_sizes()
3365 {
3366 this->finalize_data_size();
3367 this->rel_->finalize_data_size();
3368 }
3369
3370 // Add a reloc for an entry in the BRLT.
3371 void
3372 add_reloc(Address to, unsigned int off)
3373 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3374
3375 // Update section and reloc section size.
3376 void
3377 set_current_size(unsigned int num_branches)
3378 {
3379 this->reset_address_and_file_offset();
3380 this->set_current_data_size(num_branches * 16);
3381 this->finalize_data_size();
3382 Output_section* os = this->output_section();
3383 os->set_section_offsets_need_adjustment();
3384 if (this->rel_ != NULL)
3385 {
3386 unsigned int reloc_size
3387 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3388 this->rel_->reset_address_and_file_offset();
3389 this->rel_->set_current_data_size(num_branches * reloc_size);
3390 this->rel_->finalize_data_size();
3391 Output_section* os = this->rel_->output_section();
3392 os->set_section_offsets_need_adjustment();
3393 }
3394 }
3395
3396 protected:
3397 void
3398 do_adjust_output_section(Output_section* os)
3399 {
3400 os->set_entsize(0);
3401 }
3402
3403 // Write to a map file.
3404 void
3405 do_print_to_mapfile(Mapfile* mapfile) const
3406 { mapfile->print_output_data(this, "** BRLT"); }
3407
3408 private:
3409 // Write out the BRLT data.
3410 void
3411 do_write(Output_file*);
3412
3413 // The reloc section.
3414 Reloc_section* rel_;
3415 Target_powerpc<size, big_endian>* targ_;
3416 };
3417
3418 // Make the branch lookup table section.
3419
3420 template<int size, bool big_endian>
3421 void
3422 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3423 {
3424 if (size == 64 && this->brlt_section_ == NULL)
3425 {
3426 Reloc_section* brlt_rel = NULL;
3427 bool is_pic = parameters->options().output_is_position_independent();
3428 if (is_pic)
3429 {
3430 // When PIC we can't fill in .branch_lt (like .plt it can be
3431 // a bss style section) but must initialise at runtime via
3432 // dynamic relocats.
3433 this->rela_dyn_section(layout);
3434 brlt_rel = new Reloc_section(false);
3435 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3436 }
3437 this->brlt_section_
3438 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3439 if (this->plt_ && is_pic)
3440 this->plt_->output_section()
3441 ->add_output_section_data(this->brlt_section_);
3442 else
3443 layout->add_output_section_data(".branch_lt",
3444 (is_pic ? elfcpp::SHT_NOBITS
3445 : elfcpp::SHT_PROGBITS),
3446 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3447 this->brlt_section_,
3448 (is_pic ? ORDER_SMALL_BSS
3449 : ORDER_SMALL_DATA),
3450 false);
3451 }
3452 }
3453
3454 // Write out .branch_lt when non-PIC.
3455
3456 template<int size, bool big_endian>
3457 void
3458 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3459 {
3460 if (size == 64 && !parameters->options().output_is_position_independent())
3461 {
3462 const section_size_type offset = this->offset();
3463 const section_size_type oview_size
3464 = convert_to_section_size_type(this->data_size());
3465 unsigned char* const oview = of->get_output_view(offset, oview_size);
3466
3467 this->targ_->write_branch_lookup_table(oview);
3468 of->write_output_view(offset, oview_size, oview);
3469 }
3470 }
3471
3472 static inline uint32_t
3473 l(uint32_t a)
3474 {
3475 return a & 0xffff;
3476 }
3477
3478 static inline uint32_t
3479 hi(uint32_t a)
3480 {
3481 return l(a >> 16);
3482 }
3483
3484 static inline uint32_t
3485 ha(uint32_t a)
3486 {
3487 return hi(a + 0x8000);
3488 }
3489
3490 template<int size>
3491 struct Eh_cie
3492 {
3493 static const unsigned char eh_frame_cie[12];
3494 };
3495
3496 template<int size>
3497 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3498 {
3499 1, // CIE version.
3500 'z', 'R', 0, // Augmentation string.
3501 4, // Code alignment.
3502 0x80 - size / 8 , // Data alignment.
3503 65, // RA reg.
3504 1, // Augmentation size.
3505 (elfcpp::DW_EH_PE_pcrel
3506 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3507 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3508 };
3509
3510 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3511 static const unsigned char glink_eh_frame_fde_64v1[] =
3512 {
3513 0, 0, 0, 0, // Replaced with offset to .glink.
3514 0, 0, 0, 0, // Replaced with size of .glink.
3515 0, // Augmentation size.
3516 elfcpp::DW_CFA_advance_loc + 1,
3517 elfcpp::DW_CFA_register, 65, 12,
3518 elfcpp::DW_CFA_advance_loc + 4,
3519 elfcpp::DW_CFA_restore_extended, 65
3520 };
3521
3522 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3523 static const unsigned char glink_eh_frame_fde_64v2[] =
3524 {
3525 0, 0, 0, 0, // Replaced with offset to .glink.
3526 0, 0, 0, 0, // Replaced with size of .glink.
3527 0, // Augmentation size.
3528 elfcpp::DW_CFA_advance_loc + 1,
3529 elfcpp::DW_CFA_register, 65, 0,
3530 elfcpp::DW_CFA_advance_loc + 4,
3531 elfcpp::DW_CFA_restore_extended, 65
3532 };
3533
3534 // Describe __glink_PLTresolve use of LR, 32-bit version.
3535 static const unsigned char glink_eh_frame_fde_32[] =
3536 {
3537 0, 0, 0, 0, // Replaced with offset to .glink.
3538 0, 0, 0, 0, // Replaced with size of .glink.
3539 0, // Augmentation size.
3540 elfcpp::DW_CFA_advance_loc + 2,
3541 elfcpp::DW_CFA_register, 65, 0,
3542 elfcpp::DW_CFA_advance_loc + 4,
3543 elfcpp::DW_CFA_restore_extended, 65
3544 };
3545
3546 static const unsigned char default_fde[] =
3547 {
3548 0, 0, 0, 0, // Replaced with offset to stubs.
3549 0, 0, 0, 0, // Replaced with size of stubs.
3550 0, // Augmentation size.
3551 elfcpp::DW_CFA_nop, // Pad.
3552 elfcpp::DW_CFA_nop,
3553 elfcpp::DW_CFA_nop
3554 };
3555
3556 template<bool big_endian>
3557 static inline void
3558 write_insn(unsigned char* p, uint32_t v)
3559 {
3560 elfcpp::Swap<32, big_endian>::writeval(p, v);
3561 }
3562
3563 // Stub_table holds information about plt and long branch stubs.
3564 // Stubs are built in an area following some input section determined
3565 // by group_sections(). This input section is converted to a relaxed
3566 // input section allowing it to be resized to accommodate the stubs
3567
3568 template<int size, bool big_endian>
3569 class Stub_table : public Output_relaxed_input_section
3570 {
3571 public:
3572 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3573 static const Address invalid_address = static_cast<Address>(0) - 1;
3574
3575 Stub_table(Target_powerpc<size, big_endian>* targ,
3576 Output_section* output_section,
3577 const Output_section::Input_section* owner)
3578 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3579 owner->relobj()
3580 ->section_addralign(owner->shndx())),
3581 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3582 orig_data_size_(owner->current_data_size()),
3583 plt_size_(0), last_plt_size_(0),
3584 branch_size_(0), last_branch_size_(0), eh_frame_added_(false)
3585 {
3586 this->set_output_section(output_section);
3587
3588 std::vector<Output_relaxed_input_section*> new_relaxed;
3589 new_relaxed.push_back(this);
3590 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3591 }
3592
3593 // Add a plt call stub.
3594 bool
3595 add_plt_call_entry(Address,
3596 const Sized_relobj_file<size, big_endian>*,
3597 const Symbol*,
3598 unsigned int,
3599 Address);
3600
3601 bool
3602 add_plt_call_entry(Address,
3603 const Sized_relobj_file<size, big_endian>*,
3604 unsigned int,
3605 unsigned int,
3606 Address);
3607
3608 // Find a given plt call stub.
3609 Address
3610 find_plt_call_entry(const Symbol*) const;
3611
3612 Address
3613 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3614 unsigned int) const;
3615
3616 Address
3617 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3618 const Symbol*,
3619 unsigned int,
3620 Address) const;
3621
3622 Address
3623 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3624 unsigned int,
3625 unsigned int,
3626 Address) const;
3627
3628 // Add a long branch stub.
3629 bool
3630 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3631 unsigned int, Address, Address);
3632
3633 Address
3634 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3635 Address) const;
3636
3637 bool
3638 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3639 {
3640 Address max_branch_offset = max_branch_delta(r_type);
3641 if (max_branch_offset == 0)
3642 return true;
3643 gold_assert(from != invalid_address);
3644 Address loc = off + this->stub_address();
3645 return loc - from + max_branch_offset < 2 * max_branch_offset;
3646 }
3647
3648 void
3649 clear_stubs(bool all)
3650 {
3651 this->plt_call_stubs_.clear();
3652 this->plt_size_ = 0;
3653 this->long_branch_stubs_.clear();
3654 this->branch_size_ = 0;
3655 if (all)
3656 {
3657 this->last_plt_size_ = 0;
3658 this->last_branch_size_ = 0;
3659 }
3660 }
3661
3662 Address
3663 set_address_and_size(const Output_section* os, Address off)
3664 {
3665 Address start_off = off;
3666 off += this->orig_data_size_;
3667 Address my_size = this->plt_size_ + this->branch_size_;
3668 if (my_size != 0)
3669 off = align_address(off, this->stub_align());
3670 // Include original section size and alignment padding in size
3671 my_size += off - start_off;
3672 this->reset_address_and_file_offset();
3673 this->set_current_data_size(my_size);
3674 this->set_address_and_file_offset(os->address() + start_off,
3675 os->offset() + start_off);
3676 return my_size;
3677 }
3678
3679 Address
3680 stub_address() const
3681 {
3682 return align_address(this->address() + this->orig_data_size_,
3683 this->stub_align());
3684 }
3685
3686 Address
3687 stub_offset() const
3688 {
3689 return align_address(this->offset() + this->orig_data_size_,
3690 this->stub_align());
3691 }
3692
3693 section_size_type
3694 plt_size() const
3695 { return this->plt_size_; }
3696
3697 bool
3698 size_update()
3699 {
3700 Output_section* os = this->output_section();
3701 if (os->addralign() < this->stub_align())
3702 {
3703 os->set_addralign(this->stub_align());
3704 // FIXME: get rid of the insane checkpointing.
3705 // We can't increase alignment of the input section to which
3706 // stubs are attached; The input section may be .init which
3707 // is pasted together with other .init sections to form a
3708 // function. Aligning might insert zero padding resulting in
3709 // sigill. However we do need to increase alignment of the
3710 // output section so that the align_address() on offset in
3711 // set_address_and_size() adds the same padding as the
3712 // align_address() on address in stub_address().
3713 // What's more, we need this alignment for the layout done in
3714 // relaxation_loop_body() so that the output section starts at
3715 // a suitably aligned address.
3716 os->checkpoint_set_addralign(this->stub_align());
3717 }
3718 if (this->last_plt_size_ != this->plt_size_
3719 || this->last_branch_size_ != this->branch_size_)
3720 {
3721 this->last_plt_size_ = this->plt_size_;
3722 this->last_branch_size_ = this->branch_size_;
3723 return true;
3724 }
3725 return false;
3726 }
3727
3728 // Add .eh_frame info for this stub section. Unlike other linker
3729 // generated .eh_frame this is added late in the link, because we
3730 // only want the .eh_frame info if this particular stub section is
3731 // non-empty.
3732 void
3733 add_eh_frame(Layout* layout)
3734 {
3735 if (!this->eh_frame_added_)
3736 {
3737 if (!parameters->options().ld_generated_unwind_info())
3738 return;
3739
3740 // Since we add stub .eh_frame info late, it must be placed
3741 // after all other linker generated .eh_frame info so that
3742 // merge mapping need not be updated for input sections.
3743 // There is no provision to use a different CIE to that used
3744 // by .glink.
3745 if (!this->targ_->has_glink())
3746 return;
3747
3748 layout->add_eh_frame_for_plt(this,
3749 Eh_cie<size>::eh_frame_cie,
3750 sizeof (Eh_cie<size>::eh_frame_cie),
3751 default_fde,
3752 sizeof (default_fde));
3753 this->eh_frame_added_ = true;
3754 }
3755 }
3756
3757 Target_powerpc<size, big_endian>*
3758 targ() const
3759 { return targ_; }
3760
3761 private:
3762 class Plt_stub_ent;
3763 class Plt_stub_ent_hash;
3764 typedef Unordered_map<Plt_stub_ent, unsigned int,
3765 Plt_stub_ent_hash> Plt_stub_entries;
3766
3767 // Alignment of stub section.
3768 unsigned int
3769 stub_align() const
3770 {
3771 if (size == 32)
3772 return 16;
3773 unsigned int min_align = 32;
3774 unsigned int user_align = 1 << parameters->options().plt_align();
3775 return std::max(user_align, min_align);
3776 }
3777
3778 // Return the plt offset for the given call stub.
3779 Address
3780 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3781 {
3782 const Symbol* gsym = p->first.sym_;
3783 if (gsym != NULL)
3784 {
3785 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3786 && gsym->can_use_relative_reloc(false));
3787 return gsym->plt_offset();
3788 }
3789 else
3790 {
3791 *is_iplt = true;
3792 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3793 unsigned int local_sym_index = p->first.locsym_;
3794 return relobj->local_plt_offset(local_sym_index);
3795 }
3796 }
3797
3798 // Size of a given plt call stub.
3799 unsigned int
3800 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3801 {
3802 if (size == 32)
3803 return 16;
3804
3805 bool is_iplt;
3806 Address plt_addr = this->plt_off(p, &is_iplt);
3807 if (is_iplt)
3808 plt_addr += this->targ_->iplt_section()->address();
3809 else
3810 plt_addr += this->targ_->plt_section()->address();
3811 Address got_addr = this->targ_->got_section()->output_section()->address();
3812 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3813 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3814 got_addr += ppcobj->toc_base_offset();
3815 Address off = plt_addr - got_addr;
3816 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3817 if (this->targ_->abiversion() < 2)
3818 {
3819 bool static_chain = parameters->options().plt_static_chain();
3820 bool thread_safe = this->targ_->plt_thread_safe();
3821 bytes += (4
3822 + 4 * static_chain
3823 + 8 * thread_safe
3824 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3825 }
3826 unsigned int align = 1 << parameters->options().plt_align();
3827 if (align > 1)
3828 bytes = (bytes + align - 1) & -align;
3829 return bytes;
3830 }
3831
3832 // Return long branch stub size.
3833 unsigned int
3834 branch_stub_size(Address to)
3835 {
3836 Address loc
3837 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3838 if (to - loc + (1 << 25) < 2 << 25)
3839 return 4;
3840 if (size == 64 || !parameters->options().output_is_position_independent())
3841 return 16;
3842 return 32;
3843 }
3844
3845 // Write out stubs.
3846 void
3847 do_write(Output_file*);
3848
3849 // Plt call stub keys.
3850 class Plt_stub_ent
3851 {
3852 public:
3853 Plt_stub_ent(const Symbol* sym)
3854 : sym_(sym), object_(0), addend_(0), locsym_(0)
3855 { }
3856
3857 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3858 unsigned int locsym_index)
3859 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3860 { }
3861
3862 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3863 const Symbol* sym,
3864 unsigned int r_type,
3865 Address addend)
3866 : sym_(sym), object_(0), addend_(0), locsym_(0)
3867 {
3868 if (size != 32)
3869 this->addend_ = addend;
3870 else if (parameters->options().output_is_position_independent()
3871 && r_type == elfcpp::R_PPC_PLTREL24)
3872 {
3873 this->addend_ = addend;
3874 if (this->addend_ >= 32768)
3875 this->object_ = object;
3876 }
3877 }
3878
3879 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3880 unsigned int locsym_index,
3881 unsigned int r_type,
3882 Address addend)
3883 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3884 {
3885 if (size != 32)
3886 this->addend_ = addend;
3887 else if (parameters->options().output_is_position_independent()
3888 && r_type == elfcpp::R_PPC_PLTREL24)
3889 this->addend_ = addend;
3890 }
3891
3892 bool operator==(const Plt_stub_ent& that) const
3893 {
3894 return (this->sym_ == that.sym_
3895 && this->object_ == that.object_
3896 && this->addend_ == that.addend_
3897 && this->locsym_ == that.locsym_);
3898 }
3899
3900 const Symbol* sym_;
3901 const Sized_relobj_file<size, big_endian>* object_;
3902 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
3903 unsigned int locsym_;
3904 };
3905
3906 class Plt_stub_ent_hash
3907 {
3908 public:
3909 size_t operator()(const Plt_stub_ent& ent) const
3910 {
3911 return (reinterpret_cast<uintptr_t>(ent.sym_)
3912 ^ reinterpret_cast<uintptr_t>(ent.object_)
3913 ^ ent.addend_
3914 ^ ent.locsym_);
3915 }
3916 };
3917
3918 // Long branch stub keys.
3919 class Branch_stub_ent
3920 {
3921 public:
3922 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj, Address to)
3923 : dest_(to), toc_base_off_(0)
3924 {
3925 if (size == 64)
3926 toc_base_off_ = obj->toc_base_offset();
3927 }
3928
3929 bool operator==(const Branch_stub_ent& that) const
3930 {
3931 return (this->dest_ == that.dest_
3932 && (size == 32
3933 || this->toc_base_off_ == that.toc_base_off_));
3934 }
3935
3936 Address dest_;
3937 unsigned int toc_base_off_;
3938 };
3939
3940 class Branch_stub_ent_hash
3941 {
3942 public:
3943 size_t operator()(const Branch_stub_ent& ent) const
3944 { return ent.dest_ ^ ent.toc_base_off_; }
3945 };
3946
3947 // In a sane world this would be a global.
3948 Target_powerpc<size, big_endian>* targ_;
3949 // Map sym/object/addend to stub offset.
3950 Plt_stub_entries plt_call_stubs_;
3951 // Map destination address to stub offset.
3952 typedef Unordered_map<Branch_stub_ent, unsigned int,
3953 Branch_stub_ent_hash> Branch_stub_entries;
3954 Branch_stub_entries long_branch_stubs_;
3955 // size of input section
3956 section_size_type orig_data_size_;
3957 // size of stubs
3958 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
3959 // Whether .eh_frame info has been created for this stub section.
3960 bool eh_frame_added_;
3961 };
3962
3963 // Add a plt call stub, if we do not already have one for this
3964 // sym/object/addend combo.
3965
3966 template<int size, bool big_endian>
3967 bool
3968 Stub_table<size, big_endian>::add_plt_call_entry(
3969 Address from,
3970 const Sized_relobj_file<size, big_endian>* object,
3971 const Symbol* gsym,
3972 unsigned int r_type,
3973 Address addend)
3974 {
3975 Plt_stub_ent ent(object, gsym, r_type, addend);
3976 unsigned int off = this->plt_size_;
3977 std::pair<typename Plt_stub_entries::iterator, bool> p
3978 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3979 if (p.second)
3980 this->plt_size_ = off + this->plt_call_size(p.first);
3981 return this->can_reach_stub(from, off, r_type);
3982 }
3983
3984 template<int size, bool big_endian>
3985 bool
3986 Stub_table<size, big_endian>::add_plt_call_entry(
3987 Address from,
3988 const Sized_relobj_file<size, big_endian>* object,
3989 unsigned int locsym_index,
3990 unsigned int r_type,
3991 Address addend)
3992 {
3993 Plt_stub_ent ent(object, locsym_index, r_type, addend);
3994 unsigned int off = this->plt_size_;
3995 std::pair<typename Plt_stub_entries::iterator, bool> p
3996 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
3997 if (p.second)
3998 this->plt_size_ = off + this->plt_call_size(p.first);
3999 return this->can_reach_stub(from, off, r_type);
4000 }
4001
4002 // Find a plt call stub.
4003
4004 template<int size, bool big_endian>
4005 typename Stub_table<size, big_endian>::Address
4006 Stub_table<size, big_endian>::find_plt_call_entry(
4007 const Sized_relobj_file<size, big_endian>* object,
4008 const Symbol* gsym,
4009 unsigned int r_type,
4010 Address addend) const
4011 {
4012 Plt_stub_ent ent(object, gsym, r_type, addend);
4013 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4014 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4015 }
4016
4017 template<int size, bool big_endian>
4018 typename Stub_table<size, big_endian>::Address
4019 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4020 {
4021 Plt_stub_ent ent(gsym);
4022 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4023 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4024 }
4025
4026 template<int size, bool big_endian>
4027 typename Stub_table<size, big_endian>::Address
4028 Stub_table<size, big_endian>::find_plt_call_entry(
4029 const Sized_relobj_file<size, big_endian>* object,
4030 unsigned int locsym_index,
4031 unsigned int r_type,
4032 Address addend) const
4033 {
4034 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4035 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4036 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4037 }
4038
4039 template<int size, bool big_endian>
4040 typename Stub_table<size, big_endian>::Address
4041 Stub_table<size, big_endian>::find_plt_call_entry(
4042 const Sized_relobj_file<size, big_endian>* object,
4043 unsigned int locsym_index) const
4044 {
4045 Plt_stub_ent ent(object, locsym_index);
4046 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4047 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4048 }
4049
4050 // Add a long branch stub if we don't already have one to given
4051 // destination.
4052
4053 template<int size, bool big_endian>
4054 bool
4055 Stub_table<size, big_endian>::add_long_branch_entry(
4056 const Powerpc_relobj<size, big_endian>* object,
4057 unsigned int r_type,
4058 Address from,
4059 Address to)
4060 {
4061 Branch_stub_ent ent(object, to);
4062 Address off = this->branch_size_;
4063 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4064 {
4065 unsigned int stub_size = this->branch_stub_size(to);
4066 this->branch_size_ = off + stub_size;
4067 if (size == 64 && stub_size != 4)
4068 this->targ_->add_branch_lookup_table(to);
4069 }
4070 return this->can_reach_stub(from, off, r_type);
4071 }
4072
4073 // Find long branch stub.
4074
4075 template<int size, bool big_endian>
4076 typename Stub_table<size, big_endian>::Address
4077 Stub_table<size, big_endian>::find_long_branch_entry(
4078 const Powerpc_relobj<size, big_endian>* object,
4079 Address to) const
4080 {
4081 Branch_stub_ent ent(object, to);
4082 typename Branch_stub_entries::const_iterator p
4083 = this->long_branch_stubs_.find(ent);
4084 return p == this->long_branch_stubs_.end() ? invalid_address : p->second;
4085 }
4086
4087 // A class to handle .glink.
4088
4089 template<int size, bool big_endian>
4090 class Output_data_glink : public Output_section_data
4091 {
4092 public:
4093 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4094 static const Address invalid_address = static_cast<Address>(0) - 1;
4095 static const int pltresolve_size = 16*4;
4096
4097 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4098 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4099 end_branch_table_(), ge_size_(0)
4100 { }
4101
4102 void
4103 add_eh_frame(Layout* layout);
4104
4105 void
4106 add_global_entry(const Symbol*);
4107
4108 Address
4109 find_global_entry(const Symbol*) const;
4110
4111 Address
4112 global_entry_address() const
4113 {
4114 gold_assert(this->is_data_size_valid());
4115 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4116 return this->address() + global_entry_off;
4117 }
4118
4119 protected:
4120 // Write to a map file.
4121 void
4122 do_print_to_mapfile(Mapfile* mapfile) const
4123 { mapfile->print_output_data(this, _("** glink")); }
4124
4125 private:
4126 void
4127 set_final_data_size();
4128
4129 // Write out .glink
4130 void
4131 do_write(Output_file*);
4132
4133 // Allows access to .got and .plt for do_write.
4134 Target_powerpc<size, big_endian>* targ_;
4135
4136 // Map sym to stub offset.
4137 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4138 Global_entry_stub_entries global_entry_stubs_;
4139
4140 unsigned int end_branch_table_, ge_size_;
4141 };
4142
4143 template<int size, bool big_endian>
4144 void
4145 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4146 {
4147 if (!parameters->options().ld_generated_unwind_info())
4148 return;
4149
4150 if (size == 64)
4151 {
4152 if (this->targ_->abiversion() < 2)
4153 layout->add_eh_frame_for_plt(this,
4154 Eh_cie<64>::eh_frame_cie,
4155 sizeof (Eh_cie<64>::eh_frame_cie),
4156 glink_eh_frame_fde_64v1,
4157 sizeof (glink_eh_frame_fde_64v1));
4158 else
4159 layout->add_eh_frame_for_plt(this,
4160 Eh_cie<64>::eh_frame_cie,
4161 sizeof (Eh_cie<64>::eh_frame_cie),
4162 glink_eh_frame_fde_64v2,
4163 sizeof (glink_eh_frame_fde_64v2));
4164 }
4165 else
4166 {
4167 // 32-bit .glink can use the default since the CIE return
4168 // address reg, LR, is valid.
4169 layout->add_eh_frame_for_plt(this,
4170 Eh_cie<32>::eh_frame_cie,
4171 sizeof (Eh_cie<32>::eh_frame_cie),
4172 default_fde,
4173 sizeof (default_fde));
4174 // Except where LR is used in a PIC __glink_PLTresolve.
4175 if (parameters->options().output_is_position_independent())
4176 layout->add_eh_frame_for_plt(this,
4177 Eh_cie<32>::eh_frame_cie,
4178 sizeof (Eh_cie<32>::eh_frame_cie),
4179 glink_eh_frame_fde_32,
4180 sizeof (glink_eh_frame_fde_32));
4181 }
4182 }
4183
4184 template<int size, bool big_endian>
4185 void
4186 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4187 {
4188 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4189 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4190 if (p.second)
4191 this->ge_size_ += 16;
4192 }
4193
4194 template<int size, bool big_endian>
4195 typename Output_data_glink<size, big_endian>::Address
4196 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4197 {
4198 typename Global_entry_stub_entries::const_iterator p
4199 = this->global_entry_stubs_.find(gsym);
4200 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4201 }
4202
4203 template<int size, bool big_endian>
4204 void
4205 Output_data_glink<size, big_endian>::set_final_data_size()
4206 {
4207 unsigned int count = this->targ_->plt_entry_count();
4208 section_size_type total = 0;
4209
4210 if (count != 0)
4211 {
4212 if (size == 32)
4213 {
4214 // space for branch table
4215 total += 4 * (count - 1);
4216
4217 total += -total & 15;
4218 total += this->pltresolve_size;
4219 }
4220 else
4221 {
4222 total += this->pltresolve_size;
4223
4224 // space for branch table
4225 total += 4 * count;
4226 if (this->targ_->abiversion() < 2)
4227 {
4228 total += 4 * count;
4229 if (count > 0x8000)
4230 total += 4 * (count - 0x8000);
4231 }
4232 }
4233 }
4234 this->end_branch_table_ = total;
4235 total = (total + 15) & -16;
4236 total += this->ge_size_;
4237
4238 this->set_data_size(total);
4239 }
4240
4241 // Write out plt and long branch stub code.
4242
4243 template<int size, bool big_endian>
4244 void
4245 Stub_table<size, big_endian>::do_write(Output_file* of)
4246 {
4247 if (this->plt_call_stubs_.empty()
4248 && this->long_branch_stubs_.empty())
4249 return;
4250
4251 const section_size_type start_off = this->offset();
4252 const section_size_type off = this->stub_offset();
4253 const section_size_type oview_size =
4254 convert_to_section_size_type(this->data_size() - (off - start_off));
4255 unsigned char* const oview = of->get_output_view(off, oview_size);
4256 unsigned char* p;
4257
4258 if (size == 64)
4259 {
4260 const Output_data_got_powerpc<size, big_endian>* got
4261 = this->targ_->got_section();
4262 Address got_os_addr = got->output_section()->address();
4263
4264 if (!this->plt_call_stubs_.empty())
4265 {
4266 // The base address of the .plt section.
4267 Address plt_base = this->targ_->plt_section()->address();
4268 Address iplt_base = invalid_address;
4269
4270 // Write out plt call stubs.
4271 typename Plt_stub_entries::const_iterator cs;
4272 for (cs = this->plt_call_stubs_.begin();
4273 cs != this->plt_call_stubs_.end();
4274 ++cs)
4275 {
4276 bool is_iplt;
4277 Address pltoff = this->plt_off(cs, &is_iplt);
4278 Address plt_addr = pltoff;
4279 if (is_iplt)
4280 {
4281 if (iplt_base == invalid_address)
4282 iplt_base = this->targ_->iplt_section()->address();
4283 plt_addr += iplt_base;
4284 }
4285 else
4286 plt_addr += plt_base;
4287 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4288 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4289 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4290 Address off = plt_addr - got_addr;
4291
4292 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4293 gold_error(_("%s: linkage table error against `%s'"),
4294 cs->first.object_->name().c_str(),
4295 cs->first.sym_->demangled_name().c_str());
4296
4297 bool plt_load_toc = this->targ_->abiversion() < 2;
4298 bool static_chain
4299 = plt_load_toc && parameters->options().plt_static_chain();
4300 bool thread_safe
4301 = plt_load_toc && this->targ_->plt_thread_safe();
4302 bool use_fake_dep = false;
4303 Address cmp_branch_off = 0;
4304 if (thread_safe)
4305 {
4306 unsigned int pltindex
4307 = ((pltoff - this->targ_->first_plt_entry_offset())
4308 / this->targ_->plt_entry_size());
4309 Address glinkoff
4310 = (this->targ_->glink_section()->pltresolve_size
4311 + pltindex * 8);
4312 if (pltindex > 32768)
4313 glinkoff += (pltindex - 32768) * 4;
4314 Address to
4315 = this->targ_->glink_section()->address() + glinkoff;
4316 Address from
4317 = (this->stub_address() + cs->second + 24
4318 + 4 * (ha(off) != 0)
4319 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4320 + 4 * static_chain);
4321 cmp_branch_off = to - from;
4322 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4323 }
4324
4325 p = oview + cs->second;
4326 if (ha(off) != 0)
4327 {
4328 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4329 p += 4;
4330 if (plt_load_toc)
4331 {
4332 write_insn<big_endian>(p, addis_11_2 + ha(off));
4333 p += 4;
4334 write_insn<big_endian>(p, ld_12_11 + l(off));
4335 p += 4;
4336 }
4337 else
4338 {
4339 write_insn<big_endian>(p, addis_12_2 + ha(off));
4340 p += 4;
4341 write_insn<big_endian>(p, ld_12_12 + l(off));
4342 p += 4;
4343 }
4344 if (plt_load_toc
4345 && ha(off + 8 + 8 * static_chain) != ha(off))
4346 {
4347 write_insn<big_endian>(p, addi_11_11 + l(off));
4348 p += 4;
4349 off = 0;
4350 }
4351 write_insn<big_endian>(p, mtctr_12);
4352 p += 4;
4353 if (plt_load_toc)
4354 {
4355 if (use_fake_dep)
4356 {
4357 write_insn<big_endian>(p, xor_2_12_12);
4358 p += 4;
4359 write_insn<big_endian>(p, add_11_11_2);
4360 p += 4;
4361 }
4362 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4363 p += 4;
4364 if (static_chain)
4365 {
4366 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4367 p += 4;
4368 }
4369 }
4370 }
4371 else
4372 {
4373 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4374 p += 4;
4375 write_insn<big_endian>(p, ld_12_2 + l(off));
4376 p += 4;
4377 if (plt_load_toc
4378 && ha(off + 8 + 8 * static_chain) != ha(off))
4379 {
4380 write_insn<big_endian>(p, addi_2_2 + l(off));
4381 p += 4;
4382 off = 0;
4383 }
4384 write_insn<big_endian>(p, mtctr_12);
4385 p += 4;
4386 if (plt_load_toc)
4387 {
4388 if (use_fake_dep)
4389 {
4390 write_insn<big_endian>(p, xor_11_12_12);
4391 p += 4;
4392 write_insn<big_endian>(p, add_2_2_11);
4393 p += 4;
4394 }
4395 if (static_chain)
4396 {
4397 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4398 p += 4;
4399 }
4400 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4401 p += 4;
4402 }
4403 }
4404 if (thread_safe && !use_fake_dep)
4405 {
4406 write_insn<big_endian>(p, cmpldi_2_0);
4407 p += 4;
4408 write_insn<big_endian>(p, bnectr_p4);
4409 p += 4;
4410 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4411 }
4412 else
4413 write_insn<big_endian>(p, bctr);
4414 }
4415 }
4416
4417 // Write out long branch stubs.
4418 typename Branch_stub_entries::const_iterator bs;
4419 for (bs = this->long_branch_stubs_.begin();
4420 bs != this->long_branch_stubs_.end();
4421 ++bs)
4422 {
4423 p = oview + this->plt_size_ + bs->second;
4424 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4425 Address delta = bs->first.dest_ - loc;
4426 if (delta + (1 << 25) < 2 << 25)
4427 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4428 else
4429 {
4430 Address brlt_addr
4431 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4432 gold_assert(brlt_addr != invalid_address);
4433 brlt_addr += this->targ_->brlt_section()->address();
4434 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4435 Address brltoff = brlt_addr - got_addr;
4436 if (ha(brltoff) == 0)
4437 {
4438 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4439 }
4440 else
4441 {
4442 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4443 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4444 }
4445 write_insn<big_endian>(p, mtctr_12), p += 4;
4446 write_insn<big_endian>(p, bctr);
4447 }
4448 }
4449 }
4450 else
4451 {
4452 if (!this->plt_call_stubs_.empty())
4453 {
4454 // The base address of the .plt section.
4455 Address plt_base = this->targ_->plt_section()->address();
4456 Address iplt_base = invalid_address;
4457 // The address of _GLOBAL_OFFSET_TABLE_.
4458 Address g_o_t = invalid_address;
4459
4460 // Write out plt call stubs.
4461 typename Plt_stub_entries::const_iterator cs;
4462 for (cs = this->plt_call_stubs_.begin();
4463 cs != this->plt_call_stubs_.end();
4464 ++cs)
4465 {
4466 bool is_iplt;
4467 Address plt_addr = this->plt_off(cs, &is_iplt);
4468 if (is_iplt)
4469 {
4470 if (iplt_base == invalid_address)
4471 iplt_base = this->targ_->iplt_section()->address();
4472 plt_addr += iplt_base;
4473 }
4474 else
4475 plt_addr += plt_base;
4476
4477 p = oview + cs->second;
4478 if (parameters->options().output_is_position_independent())
4479 {
4480 Address got_addr;
4481 const Powerpc_relobj<size, big_endian>* ppcobj
4482 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4483 (cs->first.object_));
4484 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4485 {
4486 unsigned int got2 = ppcobj->got2_shndx();
4487 got_addr = ppcobj->get_output_section_offset(got2);
4488 gold_assert(got_addr != invalid_address);
4489 got_addr += (ppcobj->output_section(got2)->address()
4490 + cs->first.addend_);
4491 }
4492 else
4493 {
4494 if (g_o_t == invalid_address)
4495 {
4496 const Output_data_got_powerpc<size, big_endian>* got
4497 = this->targ_->got_section();
4498 g_o_t = got->address() + got->g_o_t();
4499 }
4500 got_addr = g_o_t;
4501 }
4502
4503 Address off = plt_addr - got_addr;
4504 if (ha(off) == 0)
4505 {
4506 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4507 write_insn<big_endian>(p + 4, mtctr_11);
4508 write_insn<big_endian>(p + 8, bctr);
4509 }
4510 else
4511 {
4512 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4513 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4514 write_insn<big_endian>(p + 8, mtctr_11);
4515 write_insn<big_endian>(p + 12, bctr);
4516 }
4517 }
4518 else
4519 {
4520 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4521 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4522 write_insn<big_endian>(p + 8, mtctr_11);
4523 write_insn<big_endian>(p + 12, bctr);
4524 }
4525 }
4526 }
4527
4528 // Write out long branch stubs.
4529 typename Branch_stub_entries::const_iterator bs;
4530 for (bs = this->long_branch_stubs_.begin();
4531 bs != this->long_branch_stubs_.end();
4532 ++bs)
4533 {
4534 p = oview + this->plt_size_ + bs->second;
4535 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4536 Address delta = bs->first.dest_ - loc;
4537 if (delta + (1 << 25) < 2 << 25)
4538 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4539 else if (!parameters->options().output_is_position_independent())
4540 {
4541 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4542 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4543 write_insn<big_endian>(p + 8, mtctr_12);
4544 write_insn<big_endian>(p + 12, bctr);
4545 }
4546 else
4547 {
4548 delta -= 8;
4549 write_insn<big_endian>(p + 0, mflr_0);
4550 write_insn<big_endian>(p + 4, bcl_20_31);
4551 write_insn<big_endian>(p + 8, mflr_12);
4552 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4553 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4554 write_insn<big_endian>(p + 20, mtlr_0);
4555 write_insn<big_endian>(p + 24, mtctr_12);
4556 write_insn<big_endian>(p + 28, bctr);
4557 }
4558 }
4559 }
4560 }
4561
4562 // Write out .glink.
4563
4564 template<int size, bool big_endian>
4565 void
4566 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4567 {
4568 const section_size_type off = this->offset();
4569 const section_size_type oview_size =
4570 convert_to_section_size_type(this->data_size());
4571 unsigned char* const oview = of->get_output_view(off, oview_size);
4572 unsigned char* p;
4573
4574 // The base address of the .plt section.
4575 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4576 Address plt_base = this->targ_->plt_section()->address();
4577
4578 if (size == 64)
4579 {
4580 if (this->end_branch_table_ != 0)
4581 {
4582 // Write pltresolve stub.
4583 p = oview;
4584 Address after_bcl = this->address() + 16;
4585 Address pltoff = plt_base - after_bcl;
4586
4587 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4588
4589 if (this->targ_->abiversion() < 2)
4590 {
4591 write_insn<big_endian>(p, mflr_12), p += 4;
4592 write_insn<big_endian>(p, bcl_20_31), p += 4;
4593 write_insn<big_endian>(p, mflr_11), p += 4;
4594 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4595 write_insn<big_endian>(p, mtlr_12), p += 4;
4596 write_insn<big_endian>(p, add_11_2_11), p += 4;
4597 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4598 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4599 write_insn<big_endian>(p, mtctr_12), p += 4;
4600 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4601 }
4602 else
4603 {
4604 write_insn<big_endian>(p, mflr_0), p += 4;
4605 write_insn<big_endian>(p, bcl_20_31), p += 4;
4606 write_insn<big_endian>(p, mflr_11), p += 4;
4607 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4608 write_insn<big_endian>(p, mtlr_0), p += 4;
4609 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4610 write_insn<big_endian>(p, add_11_2_11), p += 4;
4611 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4612 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4613 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4614 write_insn<big_endian>(p, mtctr_12), p += 4;
4615 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4616 }
4617 write_insn<big_endian>(p, bctr), p += 4;
4618 while (p < oview + this->pltresolve_size)
4619 write_insn<big_endian>(p, nop), p += 4;
4620
4621 // Write lazy link call stubs.
4622 uint32_t indx = 0;
4623 while (p < oview + this->end_branch_table_)
4624 {
4625 if (this->targ_->abiversion() < 2)
4626 {
4627 if (indx < 0x8000)
4628 {
4629 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4630 }
4631 else
4632 {
4633 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4634 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4635 }
4636 }
4637 uint32_t branch_off = 8 - (p - oview);
4638 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4639 indx++;
4640 }
4641 }
4642
4643 Address plt_base = this->targ_->plt_section()->address();
4644 Address iplt_base = invalid_address;
4645 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4646 Address global_entry_base = this->address() + global_entry_off;
4647 typename Global_entry_stub_entries::const_iterator ge;
4648 for (ge = this->global_entry_stubs_.begin();
4649 ge != this->global_entry_stubs_.end();
4650 ++ge)
4651 {
4652 p = oview + global_entry_off + ge->second;
4653 Address plt_addr = ge->first->plt_offset();
4654 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4655 && ge->first->can_use_relative_reloc(false))
4656 {
4657 if (iplt_base == invalid_address)
4658 iplt_base = this->targ_->iplt_section()->address();
4659 plt_addr += iplt_base;
4660 }
4661 else
4662 plt_addr += plt_base;
4663 Address my_addr = global_entry_base + ge->second;
4664 Address off = plt_addr - my_addr;
4665
4666 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4667 gold_error(_("%s: linkage table error against `%s'"),
4668 ge->first->object()->name().c_str(),
4669 ge->first->demangled_name().c_str());
4670
4671 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4672 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4673 write_insn<big_endian>(p, mtctr_12), p += 4;
4674 write_insn<big_endian>(p, bctr);
4675 }
4676 }
4677 else
4678 {
4679 const Output_data_got_powerpc<size, big_endian>* got
4680 = this->targ_->got_section();
4681 // The address of _GLOBAL_OFFSET_TABLE_.
4682 Address g_o_t = got->address() + got->g_o_t();
4683
4684 // Write out pltresolve branch table.
4685 p = oview;
4686 unsigned int the_end = oview_size - this->pltresolve_size;
4687 unsigned char* end_p = oview + the_end;
4688 while (p < end_p - 8 * 4)
4689 write_insn<big_endian>(p, b + end_p - p), p += 4;
4690 while (p < end_p)
4691 write_insn<big_endian>(p, nop), p += 4;
4692
4693 // Write out pltresolve call stub.
4694 if (parameters->options().output_is_position_independent())
4695 {
4696 Address res0_off = 0;
4697 Address after_bcl_off = the_end + 12;
4698 Address bcl_res0 = after_bcl_off - res0_off;
4699
4700 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4701 write_insn<big_endian>(p + 4, mflr_0);
4702 write_insn<big_endian>(p + 8, bcl_20_31);
4703 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4704 write_insn<big_endian>(p + 16, mflr_12);
4705 write_insn<big_endian>(p + 20, mtlr_0);
4706 write_insn<big_endian>(p + 24, sub_11_11_12);
4707
4708 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4709
4710 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4711 if (ha(got_bcl) == ha(got_bcl + 4))
4712 {
4713 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4714 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4715 }
4716 else
4717 {
4718 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4719 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4720 }
4721 write_insn<big_endian>(p + 40, mtctr_0);
4722 write_insn<big_endian>(p + 44, add_0_11_11);
4723 write_insn<big_endian>(p + 48, add_11_0_11);
4724 write_insn<big_endian>(p + 52, bctr);
4725 write_insn<big_endian>(p + 56, nop);
4726 write_insn<big_endian>(p + 60, nop);
4727 }
4728 else
4729 {
4730 Address res0 = this->address();
4731
4732 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4733 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4734 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4735 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4736 else
4737 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4738 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4739 write_insn<big_endian>(p + 16, mtctr_0);
4740 write_insn<big_endian>(p + 20, add_0_11_11);
4741 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4742 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4743 else
4744 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4745 write_insn<big_endian>(p + 28, add_11_0_11);
4746 write_insn<big_endian>(p + 32, bctr);
4747 write_insn<big_endian>(p + 36, nop);
4748 write_insn<big_endian>(p + 40, nop);
4749 write_insn<big_endian>(p + 44, nop);
4750 write_insn<big_endian>(p + 48, nop);
4751 write_insn<big_endian>(p + 52, nop);
4752 write_insn<big_endian>(p + 56, nop);
4753 write_insn<big_endian>(p + 60, nop);
4754 }
4755 p += 64;
4756 }
4757
4758 of->write_output_view(off, oview_size, oview);
4759 }
4760
4761
4762 // A class to handle linker generated save/restore functions.
4763
4764 template<int size, bool big_endian>
4765 class Output_data_save_res : public Output_section_data_build
4766 {
4767 public:
4768 Output_data_save_res(Symbol_table* symtab);
4769
4770 protected:
4771 // Write to a map file.
4772 void
4773 do_print_to_mapfile(Mapfile* mapfile) const
4774 { mapfile->print_output_data(this, _("** save/restore")); }
4775
4776 void
4777 do_write(Output_file*);
4778
4779 private:
4780 // The maximum size of save/restore contents.
4781 static const unsigned int savres_max = 218*4;
4782
4783 void
4784 savres_define(Symbol_table* symtab,
4785 const char *name,
4786 unsigned int lo, unsigned int hi,
4787 unsigned char* write_ent(unsigned char*, int),
4788 unsigned char* write_tail(unsigned char*, int));
4789
4790 unsigned char *contents_;
4791 };
4792
4793 template<bool big_endian>
4794 static unsigned char*
4795 savegpr0(unsigned char* p, int r)
4796 {
4797 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4798 write_insn<big_endian>(p, insn);
4799 return p + 4;
4800 }
4801
4802 template<bool big_endian>
4803 static unsigned char*
4804 savegpr0_tail(unsigned char* p, int r)
4805 {
4806 p = savegpr0<big_endian>(p, r);
4807 uint32_t insn = std_0_1 + 16;
4808 write_insn<big_endian>(p, insn);
4809 p = p + 4;
4810 write_insn<big_endian>(p, blr);
4811 return p + 4;
4812 }
4813
4814 template<bool big_endian>
4815 static unsigned char*
4816 restgpr0(unsigned char* p, int r)
4817 {
4818 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4819 write_insn<big_endian>(p, insn);
4820 return p + 4;
4821 }
4822
4823 template<bool big_endian>
4824 static unsigned char*
4825 restgpr0_tail(unsigned char* p, int r)
4826 {
4827 uint32_t insn = ld_0_1 + 16;
4828 write_insn<big_endian>(p, insn);
4829 p = p + 4;
4830 p = restgpr0<big_endian>(p, r);
4831 write_insn<big_endian>(p, mtlr_0);
4832 p = p + 4;
4833 if (r == 29)
4834 {
4835 p = restgpr0<big_endian>(p, 30);
4836 p = restgpr0<big_endian>(p, 31);
4837 }
4838 write_insn<big_endian>(p, blr);
4839 return p + 4;
4840 }
4841
4842 template<bool big_endian>
4843 static unsigned char*
4844 savegpr1(unsigned char* p, int r)
4845 {
4846 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4847 write_insn<big_endian>(p, insn);
4848 return p + 4;
4849 }
4850
4851 template<bool big_endian>
4852 static unsigned char*
4853 savegpr1_tail(unsigned char* p, int r)
4854 {
4855 p = savegpr1<big_endian>(p, r);
4856 write_insn<big_endian>(p, blr);
4857 return p + 4;
4858 }
4859
4860 template<bool big_endian>
4861 static unsigned char*
4862 restgpr1(unsigned char* p, int r)
4863 {
4864 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
4865 write_insn<big_endian>(p, insn);
4866 return p + 4;
4867 }
4868
4869 template<bool big_endian>
4870 static unsigned char*
4871 restgpr1_tail(unsigned char* p, int r)
4872 {
4873 p = restgpr1<big_endian>(p, r);
4874 write_insn<big_endian>(p, blr);
4875 return p + 4;
4876 }
4877
4878 template<bool big_endian>
4879 static unsigned char*
4880 savefpr(unsigned char* p, int r)
4881 {
4882 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4883 write_insn<big_endian>(p, insn);
4884 return p + 4;
4885 }
4886
4887 template<bool big_endian>
4888 static unsigned char*
4889 savefpr0_tail(unsigned char* p, int r)
4890 {
4891 p = savefpr<big_endian>(p, r);
4892 write_insn<big_endian>(p, std_0_1 + 16);
4893 p = p + 4;
4894 write_insn<big_endian>(p, blr);
4895 return p + 4;
4896 }
4897
4898 template<bool big_endian>
4899 static unsigned char*
4900 restfpr(unsigned char* p, int r)
4901 {
4902 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4903 write_insn<big_endian>(p, insn);
4904 return p + 4;
4905 }
4906
4907 template<bool big_endian>
4908 static unsigned char*
4909 restfpr0_tail(unsigned char* p, int r)
4910 {
4911 write_insn<big_endian>(p, ld_0_1 + 16);
4912 p = p + 4;
4913 p = restfpr<big_endian>(p, r);
4914 write_insn<big_endian>(p, mtlr_0);
4915 p = p + 4;
4916 if (r == 29)
4917 {
4918 p = restfpr<big_endian>(p, 30);
4919 p = restfpr<big_endian>(p, 31);
4920 }
4921 write_insn<big_endian>(p, blr);
4922 return p + 4;
4923 }
4924
4925 template<bool big_endian>
4926 static unsigned char*
4927 savefpr1_tail(unsigned char* p, int r)
4928 {
4929 p = savefpr<big_endian>(p, r);
4930 write_insn<big_endian>(p, blr);
4931 return p + 4;
4932 }
4933
4934 template<bool big_endian>
4935 static unsigned char*
4936 restfpr1_tail(unsigned char* p, int r)
4937 {
4938 p = restfpr<big_endian>(p, r);
4939 write_insn<big_endian>(p, blr);
4940 return p + 4;
4941 }
4942
4943 template<bool big_endian>
4944 static unsigned char*
4945 savevr(unsigned char* p, int r)
4946 {
4947 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4948 write_insn<big_endian>(p, insn);
4949 p = p + 4;
4950 insn = stvx_0_12_0 + (r << 21);
4951 write_insn<big_endian>(p, insn);
4952 return p + 4;
4953 }
4954
4955 template<bool big_endian>
4956 static unsigned char*
4957 savevr_tail(unsigned char* p, int r)
4958 {
4959 p = savevr<big_endian>(p, r);
4960 write_insn<big_endian>(p, blr);
4961 return p + 4;
4962 }
4963
4964 template<bool big_endian>
4965 static unsigned char*
4966 restvr(unsigned char* p, int r)
4967 {
4968 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
4969 write_insn<big_endian>(p, insn);
4970 p = p + 4;
4971 insn = lvx_0_12_0 + (r << 21);
4972 write_insn<big_endian>(p, insn);
4973 return p + 4;
4974 }
4975
4976 template<bool big_endian>
4977 static unsigned char*
4978 restvr_tail(unsigned char* p, int r)
4979 {
4980 p = restvr<big_endian>(p, r);
4981 write_insn<big_endian>(p, blr);
4982 return p + 4;
4983 }
4984
4985
4986 template<int size, bool big_endian>
4987 Output_data_save_res<size, big_endian>::Output_data_save_res(
4988 Symbol_table* symtab)
4989 : Output_section_data_build(4),
4990 contents_(NULL)
4991 {
4992 this->savres_define(symtab,
4993 "_savegpr0_", 14, 31,
4994 savegpr0<big_endian>, savegpr0_tail<big_endian>);
4995 this->savres_define(symtab,
4996 "_restgpr0_", 14, 29,
4997 restgpr0<big_endian>, restgpr0_tail<big_endian>);
4998 this->savres_define(symtab,
4999 "_restgpr0_", 30, 31,
5000 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5001 this->savres_define(symtab,
5002 "_savegpr1_", 14, 31,
5003 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5004 this->savres_define(symtab,
5005 "_restgpr1_", 14, 31,
5006 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5007 this->savres_define(symtab,
5008 "_savefpr_", 14, 31,
5009 savefpr<big_endian>, savefpr0_tail<big_endian>);
5010 this->savres_define(symtab,
5011 "_restfpr_", 14, 29,
5012 restfpr<big_endian>, restfpr0_tail<big_endian>);
5013 this->savres_define(symtab,
5014 "_restfpr_", 30, 31,
5015 restfpr<big_endian>, restfpr0_tail<big_endian>);
5016 this->savres_define(symtab,
5017 "._savef", 14, 31,
5018 savefpr<big_endian>, savefpr1_tail<big_endian>);
5019 this->savres_define(symtab,
5020 "._restf", 14, 31,
5021 restfpr<big_endian>, restfpr1_tail<big_endian>);
5022 this->savres_define(symtab,
5023 "_savevr_", 20, 31,
5024 savevr<big_endian>, savevr_tail<big_endian>);
5025 this->savres_define(symtab,
5026 "_restvr_", 20, 31,
5027 restvr<big_endian>, restvr_tail<big_endian>);
5028 }
5029
5030 template<int size, bool big_endian>
5031 void
5032 Output_data_save_res<size, big_endian>::savres_define(
5033 Symbol_table* symtab,
5034 const char *name,
5035 unsigned int lo, unsigned int hi,
5036 unsigned char* write_ent(unsigned char*, int),
5037 unsigned char* write_tail(unsigned char*, int))
5038 {
5039 size_t len = strlen(name);
5040 bool writing = false;
5041 char sym[16];
5042
5043 memcpy(sym, name, len);
5044 sym[len + 2] = 0;
5045
5046 for (unsigned int i = lo; i <= hi; i++)
5047 {
5048 sym[len + 0] = i / 10 + '0';
5049 sym[len + 1] = i % 10 + '0';
5050 Symbol* gsym = symtab->lookup(sym);
5051 bool refd = gsym != NULL && gsym->is_undefined();
5052 writing = writing || refd;
5053 if (writing)
5054 {
5055 if (this->contents_ == NULL)
5056 this->contents_ = new unsigned char[this->savres_max];
5057
5058 section_size_type value = this->current_data_size();
5059 unsigned char* p = this->contents_ + value;
5060 if (i != hi)
5061 p = write_ent(p, i);
5062 else
5063 p = write_tail(p, i);
5064 section_size_type cur_size = p - this->contents_;
5065 this->set_current_data_size(cur_size);
5066 if (refd)
5067 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5068 this, value, cur_size - value,
5069 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5070 elfcpp::STV_HIDDEN, 0, false, false);
5071 }
5072 }
5073 }
5074
5075 // Write out save/restore.
5076
5077 template<int size, bool big_endian>
5078 void
5079 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5080 {
5081 const section_size_type off = this->offset();
5082 const section_size_type oview_size =
5083 convert_to_section_size_type(this->data_size());
5084 unsigned char* const oview = of->get_output_view(off, oview_size);
5085 memcpy(oview, this->contents_, oview_size);
5086 of->write_output_view(off, oview_size, oview);
5087 }
5088
5089
5090 // Create the glink section.
5091
5092 template<int size, bool big_endian>
5093 void
5094 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5095 {
5096 if (this->glink_ == NULL)
5097 {
5098 this->glink_ = new Output_data_glink<size, big_endian>(this);
5099 this->glink_->add_eh_frame(layout);
5100 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5101 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5102 this->glink_, ORDER_TEXT, false);
5103 }
5104 }
5105
5106 // Create a PLT entry for a global symbol.
5107
5108 template<int size, bool big_endian>
5109 void
5110 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5111 Layout* layout,
5112 Symbol* gsym)
5113 {
5114 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5115 && gsym->can_use_relative_reloc(false))
5116 {
5117 if (this->iplt_ == NULL)
5118 this->make_iplt_section(symtab, layout);
5119 this->iplt_->add_ifunc_entry(gsym);
5120 }
5121 else
5122 {
5123 if (this->plt_ == NULL)
5124 this->make_plt_section(symtab, layout);
5125 this->plt_->add_entry(gsym);
5126 }
5127 }
5128
5129 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5130
5131 template<int size, bool big_endian>
5132 void
5133 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5134 Symbol_table* symtab,
5135 Layout* layout,
5136 Sized_relobj_file<size, big_endian>* relobj,
5137 unsigned int r_sym)
5138 {
5139 if (this->iplt_ == NULL)
5140 this->make_iplt_section(symtab, layout);
5141 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5142 }
5143
5144 // Return the number of entries in the PLT.
5145
5146 template<int size, bool big_endian>
5147 unsigned int
5148 Target_powerpc<size, big_endian>::plt_entry_count() const
5149 {
5150 if (this->plt_ == NULL)
5151 return 0;
5152 return this->plt_->entry_count();
5153 }
5154
5155 // Create a GOT entry for local dynamic __tls_get_addr calls.
5156
5157 template<int size, bool big_endian>
5158 unsigned int
5159 Target_powerpc<size, big_endian>::tlsld_got_offset(
5160 Symbol_table* symtab,
5161 Layout* layout,
5162 Sized_relobj_file<size, big_endian>* object)
5163 {
5164 if (this->tlsld_got_offset_ == -1U)
5165 {
5166 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5167 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5168 Output_data_got_powerpc<size, big_endian>* got
5169 = this->got_section(symtab, layout);
5170 unsigned int got_offset = got->add_constant_pair(0, 0);
5171 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5172 got_offset, 0);
5173 this->tlsld_got_offset_ = got_offset;
5174 }
5175 return this->tlsld_got_offset_;
5176 }
5177
5178 // Get the Reference_flags for a particular relocation.
5179
5180 template<int size, bool big_endian>
5181 int
5182 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5183 unsigned int r_type,
5184 const Target_powerpc* target)
5185 {
5186 int ref = 0;
5187
5188 switch (r_type)
5189 {
5190 case elfcpp::R_POWERPC_NONE:
5191 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5192 case elfcpp::R_POWERPC_GNU_VTENTRY:
5193 case elfcpp::R_PPC64_TOC:
5194 // No symbol reference.
5195 break;
5196
5197 case elfcpp::R_PPC64_ADDR64:
5198 case elfcpp::R_PPC64_UADDR64:
5199 case elfcpp::R_POWERPC_ADDR32:
5200 case elfcpp::R_POWERPC_UADDR32:
5201 case elfcpp::R_POWERPC_ADDR16:
5202 case elfcpp::R_POWERPC_UADDR16:
5203 case elfcpp::R_POWERPC_ADDR16_LO:
5204 case elfcpp::R_POWERPC_ADDR16_HI:
5205 case elfcpp::R_POWERPC_ADDR16_HA:
5206 ref = Symbol::ABSOLUTE_REF;
5207 break;
5208
5209 case elfcpp::R_POWERPC_ADDR24:
5210 case elfcpp::R_POWERPC_ADDR14:
5211 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5212 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5213 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5214 break;
5215
5216 case elfcpp::R_PPC64_REL64:
5217 case elfcpp::R_POWERPC_REL32:
5218 case elfcpp::R_PPC_LOCAL24PC:
5219 case elfcpp::R_POWERPC_REL16:
5220 case elfcpp::R_POWERPC_REL16_LO:
5221 case elfcpp::R_POWERPC_REL16_HI:
5222 case elfcpp::R_POWERPC_REL16_HA:
5223 ref = Symbol::RELATIVE_REF;
5224 break;
5225
5226 case elfcpp::R_POWERPC_REL24:
5227 case elfcpp::R_PPC_PLTREL24:
5228 case elfcpp::R_POWERPC_REL14:
5229 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5230 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5231 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5232 break;
5233
5234 case elfcpp::R_POWERPC_GOT16:
5235 case elfcpp::R_POWERPC_GOT16_LO:
5236 case elfcpp::R_POWERPC_GOT16_HI:
5237 case elfcpp::R_POWERPC_GOT16_HA:
5238 case elfcpp::R_PPC64_GOT16_DS:
5239 case elfcpp::R_PPC64_GOT16_LO_DS:
5240 case elfcpp::R_PPC64_TOC16:
5241 case elfcpp::R_PPC64_TOC16_LO:
5242 case elfcpp::R_PPC64_TOC16_HI:
5243 case elfcpp::R_PPC64_TOC16_HA:
5244 case elfcpp::R_PPC64_TOC16_DS:
5245 case elfcpp::R_PPC64_TOC16_LO_DS:
5246 // Absolute in GOT.
5247 ref = Symbol::ABSOLUTE_REF;
5248 break;
5249
5250 case elfcpp::R_POWERPC_GOT_TPREL16:
5251 case elfcpp::R_POWERPC_TLS:
5252 ref = Symbol::TLS_REF;
5253 break;
5254
5255 case elfcpp::R_POWERPC_COPY:
5256 case elfcpp::R_POWERPC_GLOB_DAT:
5257 case elfcpp::R_POWERPC_JMP_SLOT:
5258 case elfcpp::R_POWERPC_RELATIVE:
5259 case elfcpp::R_POWERPC_DTPMOD:
5260 default:
5261 // Not expected. We will give an error later.
5262 break;
5263 }
5264
5265 if (size == 64 && target->abiversion() < 2)
5266 ref |= Symbol::FUNC_DESC_ABI;
5267 return ref;
5268 }
5269
5270 // Report an unsupported relocation against a local symbol.
5271
5272 template<int size, bool big_endian>
5273 void
5274 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5275 Sized_relobj_file<size, big_endian>* object,
5276 unsigned int r_type)
5277 {
5278 gold_error(_("%s: unsupported reloc %u against local symbol"),
5279 object->name().c_str(), r_type);
5280 }
5281
5282 // We are about to emit a dynamic relocation of type R_TYPE. If the
5283 // dynamic linker does not support it, issue an error.
5284
5285 template<int size, bool big_endian>
5286 void
5287 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5288 unsigned int r_type)
5289 {
5290 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5291
5292 // These are the relocation types supported by glibc for both 32-bit
5293 // and 64-bit powerpc.
5294 switch (r_type)
5295 {
5296 case elfcpp::R_POWERPC_NONE:
5297 case elfcpp::R_POWERPC_RELATIVE:
5298 case elfcpp::R_POWERPC_GLOB_DAT:
5299 case elfcpp::R_POWERPC_DTPMOD:
5300 case elfcpp::R_POWERPC_DTPREL:
5301 case elfcpp::R_POWERPC_TPREL:
5302 case elfcpp::R_POWERPC_JMP_SLOT:
5303 case elfcpp::R_POWERPC_COPY:
5304 case elfcpp::R_POWERPC_IRELATIVE:
5305 case elfcpp::R_POWERPC_ADDR32:
5306 case elfcpp::R_POWERPC_UADDR32:
5307 case elfcpp::R_POWERPC_ADDR24:
5308 case elfcpp::R_POWERPC_ADDR16:
5309 case elfcpp::R_POWERPC_UADDR16:
5310 case elfcpp::R_POWERPC_ADDR16_LO:
5311 case elfcpp::R_POWERPC_ADDR16_HI:
5312 case elfcpp::R_POWERPC_ADDR16_HA:
5313 case elfcpp::R_POWERPC_ADDR14:
5314 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5315 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5316 case elfcpp::R_POWERPC_REL32:
5317 case elfcpp::R_POWERPC_REL24:
5318 case elfcpp::R_POWERPC_TPREL16:
5319 case elfcpp::R_POWERPC_TPREL16_LO:
5320 case elfcpp::R_POWERPC_TPREL16_HI:
5321 case elfcpp::R_POWERPC_TPREL16_HA:
5322 return;
5323
5324 default:
5325 break;
5326 }
5327
5328 if (size == 64)
5329 {
5330 switch (r_type)
5331 {
5332 // These are the relocation types supported only on 64-bit.
5333 case elfcpp::R_PPC64_ADDR64:
5334 case elfcpp::R_PPC64_UADDR64:
5335 case elfcpp::R_PPC64_JMP_IREL:
5336 case elfcpp::R_PPC64_ADDR16_DS:
5337 case elfcpp::R_PPC64_ADDR16_LO_DS:
5338 case elfcpp::R_PPC64_ADDR16_HIGH:
5339 case elfcpp::R_PPC64_ADDR16_HIGHA:
5340 case elfcpp::R_PPC64_ADDR16_HIGHER:
5341 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5342 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5343 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5344 case elfcpp::R_PPC64_REL64:
5345 case elfcpp::R_POWERPC_ADDR30:
5346 case elfcpp::R_PPC64_TPREL16_DS:
5347 case elfcpp::R_PPC64_TPREL16_LO_DS:
5348 case elfcpp::R_PPC64_TPREL16_HIGH:
5349 case elfcpp::R_PPC64_TPREL16_HIGHA:
5350 case elfcpp::R_PPC64_TPREL16_HIGHER:
5351 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5352 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5353 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5354 return;
5355
5356 default:
5357 break;
5358 }
5359 }
5360 else
5361 {
5362 switch (r_type)
5363 {
5364 // These are the relocation types supported only on 32-bit.
5365 // ??? glibc ld.so doesn't need to support these.
5366 case elfcpp::R_POWERPC_DTPREL16:
5367 case elfcpp::R_POWERPC_DTPREL16_LO:
5368 case elfcpp::R_POWERPC_DTPREL16_HI:
5369 case elfcpp::R_POWERPC_DTPREL16_HA:
5370 return;
5371
5372 default:
5373 break;
5374 }
5375 }
5376
5377 // This prevents us from issuing more than one error per reloc
5378 // section. But we can still wind up issuing more than one
5379 // error per object file.
5380 if (this->issued_non_pic_error_)
5381 return;
5382 gold_assert(parameters->options().output_is_position_independent());
5383 object->error(_("requires unsupported dynamic reloc; "
5384 "recompile with -fPIC"));
5385 this->issued_non_pic_error_ = true;
5386 return;
5387 }
5388
5389 // Return whether we need to make a PLT entry for a relocation of the
5390 // given type against a STT_GNU_IFUNC symbol.
5391
5392 template<int size, bool big_endian>
5393 bool
5394 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5395 Target_powerpc<size, big_endian>* target,
5396 Sized_relobj_file<size, big_endian>* object,
5397 unsigned int r_type,
5398 bool report_err)
5399 {
5400 // In non-pic code any reference will resolve to the plt call stub
5401 // for the ifunc symbol.
5402 if ((size == 32 || target->abiversion() >= 2)
5403 && !parameters->options().output_is_position_independent())
5404 return true;
5405
5406 switch (r_type)
5407 {
5408 // Word size refs from data sections are OK, but don't need a PLT entry.
5409 case elfcpp::R_POWERPC_ADDR32:
5410 case elfcpp::R_POWERPC_UADDR32:
5411 if (size == 32)
5412 return false;
5413 break;
5414
5415 case elfcpp::R_PPC64_ADDR64:
5416 case elfcpp::R_PPC64_UADDR64:
5417 if (size == 64)
5418 return false;
5419 break;
5420
5421 // GOT refs are good, but also don't need a PLT entry.
5422 case elfcpp::R_POWERPC_GOT16:
5423 case elfcpp::R_POWERPC_GOT16_LO:
5424 case elfcpp::R_POWERPC_GOT16_HI:
5425 case elfcpp::R_POWERPC_GOT16_HA:
5426 case elfcpp::R_PPC64_GOT16_DS:
5427 case elfcpp::R_PPC64_GOT16_LO_DS:
5428 return false;
5429
5430 // Function calls are good, and these do need a PLT entry.
5431 case elfcpp::R_POWERPC_ADDR24:
5432 case elfcpp::R_POWERPC_ADDR14:
5433 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5434 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5435 case elfcpp::R_POWERPC_REL24:
5436 case elfcpp::R_PPC_PLTREL24:
5437 case elfcpp::R_POWERPC_REL14:
5438 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5439 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5440 return true;
5441
5442 default:
5443 break;
5444 }
5445
5446 // Anything else is a problem.
5447 // If we are building a static executable, the libc startup function
5448 // responsible for applying indirect function relocations is going
5449 // to complain about the reloc type.
5450 // If we are building a dynamic executable, we will have a text
5451 // relocation. The dynamic loader will set the text segment
5452 // writable and non-executable to apply text relocations. So we'll
5453 // segfault when trying to run the indirection function to resolve
5454 // the reloc.
5455 if (report_err)
5456 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5457 object->name().c_str(), r_type);
5458 return false;
5459 }
5460
5461 // Scan a relocation for a local symbol.
5462
5463 template<int size, bool big_endian>
5464 inline void
5465 Target_powerpc<size, big_endian>::Scan::local(
5466 Symbol_table* symtab,
5467 Layout* layout,
5468 Target_powerpc<size, big_endian>* target,
5469 Sized_relobj_file<size, big_endian>* object,
5470 unsigned int data_shndx,
5471 Output_section* output_section,
5472 const elfcpp::Rela<size, big_endian>& reloc,
5473 unsigned int r_type,
5474 const elfcpp::Sym<size, big_endian>& lsym,
5475 bool is_discarded)
5476 {
5477 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5478
5479 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5480 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5481 {
5482 this->expect_tls_get_addr_call();
5483 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5484 if (tls_type != tls::TLSOPT_NONE)
5485 this->skip_next_tls_get_addr_call();
5486 }
5487 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5488 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5489 {
5490 this->expect_tls_get_addr_call();
5491 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5492 if (tls_type != tls::TLSOPT_NONE)
5493 this->skip_next_tls_get_addr_call();
5494 }
5495
5496 Powerpc_relobj<size, big_endian>* ppc_object
5497 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5498
5499 if (is_discarded)
5500 {
5501 if (size == 64
5502 && data_shndx == ppc_object->opd_shndx()
5503 && r_type == elfcpp::R_PPC64_ADDR64)
5504 ppc_object->set_opd_discard(reloc.get_r_offset());
5505 return;
5506 }
5507
5508 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5509 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5510 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5511 {
5512 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5513 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5514 r_type, r_sym, reloc.get_r_addend());
5515 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5516 }
5517
5518 switch (r_type)
5519 {
5520 case elfcpp::R_POWERPC_NONE:
5521 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5522 case elfcpp::R_POWERPC_GNU_VTENTRY:
5523 case elfcpp::R_PPC64_TOCSAVE:
5524 case elfcpp::R_POWERPC_TLS:
5525 break;
5526
5527 case elfcpp::R_PPC64_TOC:
5528 {
5529 Output_data_got_powerpc<size, big_endian>* got
5530 = target->got_section(symtab, layout);
5531 if (parameters->options().output_is_position_independent())
5532 {
5533 Address off = reloc.get_r_offset();
5534 if (size == 64
5535 && target->abiversion() < 2
5536 && data_shndx == ppc_object->opd_shndx()
5537 && ppc_object->get_opd_discard(off - 8))
5538 break;
5539
5540 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5541 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5542 rela_dyn->add_output_section_relative(got->output_section(),
5543 elfcpp::R_POWERPC_RELATIVE,
5544 output_section,
5545 object, data_shndx, off,
5546 symobj->toc_base_offset());
5547 }
5548 }
5549 break;
5550
5551 case elfcpp::R_PPC64_ADDR64:
5552 case elfcpp::R_PPC64_UADDR64:
5553 case elfcpp::R_POWERPC_ADDR32:
5554 case elfcpp::R_POWERPC_UADDR32:
5555 case elfcpp::R_POWERPC_ADDR24:
5556 case elfcpp::R_POWERPC_ADDR16:
5557 case elfcpp::R_POWERPC_ADDR16_LO:
5558 case elfcpp::R_POWERPC_ADDR16_HI:
5559 case elfcpp::R_POWERPC_ADDR16_HA:
5560 case elfcpp::R_POWERPC_UADDR16:
5561 case elfcpp::R_PPC64_ADDR16_HIGH:
5562 case elfcpp::R_PPC64_ADDR16_HIGHA:
5563 case elfcpp::R_PPC64_ADDR16_HIGHER:
5564 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5565 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5566 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5567 case elfcpp::R_PPC64_ADDR16_DS:
5568 case elfcpp::R_PPC64_ADDR16_LO_DS:
5569 case elfcpp::R_POWERPC_ADDR14:
5570 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5571 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5572 // If building a shared library (or a position-independent
5573 // executable), we need to create a dynamic relocation for
5574 // this location.
5575 if (parameters->options().output_is_position_independent()
5576 || (size == 64 && is_ifunc && target->abiversion() < 2))
5577 {
5578 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5579 is_ifunc);
5580 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5581 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5582 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5583 {
5584 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5585 : elfcpp::R_POWERPC_RELATIVE);
5586 rela_dyn->add_local_relative(object, r_sym, dynrel,
5587 output_section, data_shndx,
5588 reloc.get_r_offset(),
5589 reloc.get_r_addend(), false);
5590 }
5591 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5592 {
5593 check_non_pic(object, r_type);
5594 rela_dyn->add_local(object, r_sym, r_type, output_section,
5595 data_shndx, reloc.get_r_offset(),
5596 reloc.get_r_addend());
5597 }
5598 else
5599 {
5600 gold_assert(lsym.get_st_value() == 0);
5601 unsigned int shndx = lsym.get_st_shndx();
5602 bool is_ordinary;
5603 shndx = object->adjust_sym_shndx(r_sym, shndx,
5604 &is_ordinary);
5605 if (!is_ordinary)
5606 object->error(_("section symbol %u has bad shndx %u"),
5607 r_sym, shndx);
5608 else
5609 rela_dyn->add_local_section(object, shndx, r_type,
5610 output_section, data_shndx,
5611 reloc.get_r_offset());
5612 }
5613 }
5614 break;
5615
5616 case elfcpp::R_POWERPC_REL24:
5617 case elfcpp::R_PPC_PLTREL24:
5618 case elfcpp::R_PPC_LOCAL24PC:
5619 case elfcpp::R_POWERPC_REL14:
5620 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5621 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5622 if (!is_ifunc)
5623 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5624 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5625 reloc.get_r_addend());
5626 break;
5627
5628 case elfcpp::R_PPC64_REL64:
5629 case elfcpp::R_POWERPC_REL32:
5630 case elfcpp::R_POWERPC_REL16:
5631 case elfcpp::R_POWERPC_REL16_LO:
5632 case elfcpp::R_POWERPC_REL16_HI:
5633 case elfcpp::R_POWERPC_REL16_HA:
5634 case elfcpp::R_POWERPC_SECTOFF:
5635 case elfcpp::R_POWERPC_SECTOFF_LO:
5636 case elfcpp::R_POWERPC_SECTOFF_HI:
5637 case elfcpp::R_POWERPC_SECTOFF_HA:
5638 case elfcpp::R_PPC64_SECTOFF_DS:
5639 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5640 case elfcpp::R_POWERPC_TPREL16:
5641 case elfcpp::R_POWERPC_TPREL16_LO:
5642 case elfcpp::R_POWERPC_TPREL16_HI:
5643 case elfcpp::R_POWERPC_TPREL16_HA:
5644 case elfcpp::R_PPC64_TPREL16_DS:
5645 case elfcpp::R_PPC64_TPREL16_LO_DS:
5646 case elfcpp::R_PPC64_TPREL16_HIGH:
5647 case elfcpp::R_PPC64_TPREL16_HIGHA:
5648 case elfcpp::R_PPC64_TPREL16_HIGHER:
5649 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5650 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5651 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5652 case elfcpp::R_POWERPC_DTPREL16:
5653 case elfcpp::R_POWERPC_DTPREL16_LO:
5654 case elfcpp::R_POWERPC_DTPREL16_HI:
5655 case elfcpp::R_POWERPC_DTPREL16_HA:
5656 case elfcpp::R_PPC64_DTPREL16_DS:
5657 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5658 case elfcpp::R_PPC64_DTPREL16_HIGH:
5659 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5660 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5661 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5662 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5663 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5664 case elfcpp::R_PPC64_TLSGD:
5665 case elfcpp::R_PPC64_TLSLD:
5666 case elfcpp::R_PPC64_ADDR64_LOCAL:
5667 break;
5668
5669 case elfcpp::R_POWERPC_GOT16:
5670 case elfcpp::R_POWERPC_GOT16_LO:
5671 case elfcpp::R_POWERPC_GOT16_HI:
5672 case elfcpp::R_POWERPC_GOT16_HA:
5673 case elfcpp::R_PPC64_GOT16_DS:
5674 case elfcpp::R_PPC64_GOT16_LO_DS:
5675 {
5676 // The symbol requires a GOT entry.
5677 Output_data_got_powerpc<size, big_endian>* got
5678 = target->got_section(symtab, layout);
5679 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5680
5681 if (!parameters->options().output_is_position_independent())
5682 {
5683 if (is_ifunc
5684 && (size == 32 || target->abiversion() >= 2))
5685 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5686 else
5687 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5688 }
5689 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5690 {
5691 // If we are generating a shared object or a pie, this
5692 // symbol's GOT entry will be set by a dynamic relocation.
5693 unsigned int off;
5694 off = got->add_constant(0);
5695 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5696
5697 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5698 is_ifunc);
5699 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5700 : elfcpp::R_POWERPC_RELATIVE);
5701 rela_dyn->add_local_relative(object, r_sym, dynrel,
5702 got, off, 0, false);
5703 }
5704 }
5705 break;
5706
5707 case elfcpp::R_PPC64_TOC16:
5708 case elfcpp::R_PPC64_TOC16_LO:
5709 case elfcpp::R_PPC64_TOC16_HI:
5710 case elfcpp::R_PPC64_TOC16_HA:
5711 case elfcpp::R_PPC64_TOC16_DS:
5712 case elfcpp::R_PPC64_TOC16_LO_DS:
5713 // We need a GOT section.
5714 target->got_section(symtab, layout);
5715 break;
5716
5717 case elfcpp::R_POWERPC_GOT_TLSGD16:
5718 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5719 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5720 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5721 {
5722 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5723 if (tls_type == tls::TLSOPT_NONE)
5724 {
5725 Output_data_got_powerpc<size, big_endian>* got
5726 = target->got_section(symtab, layout);
5727 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5728 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5729 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5730 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5731 }
5732 else if (tls_type == tls::TLSOPT_TO_LE)
5733 {
5734 // no GOT relocs needed for Local Exec.
5735 }
5736 else
5737 gold_unreachable();
5738 }
5739 break;
5740
5741 case elfcpp::R_POWERPC_GOT_TLSLD16:
5742 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5743 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5744 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5745 {
5746 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5747 if (tls_type == tls::TLSOPT_NONE)
5748 target->tlsld_got_offset(symtab, layout, object);
5749 else if (tls_type == tls::TLSOPT_TO_LE)
5750 {
5751 // no GOT relocs needed for Local Exec.
5752 if (parameters->options().emit_relocs())
5753 {
5754 Output_section* os = layout->tls_segment()->first_section();
5755 gold_assert(os != NULL);
5756 os->set_needs_symtab_index();
5757 }
5758 }
5759 else
5760 gold_unreachable();
5761 }
5762 break;
5763
5764 case elfcpp::R_POWERPC_GOT_DTPREL16:
5765 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5766 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5767 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5768 {
5769 Output_data_got_powerpc<size, big_endian>* got
5770 = target->got_section(symtab, layout);
5771 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5772 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5773 }
5774 break;
5775
5776 case elfcpp::R_POWERPC_GOT_TPREL16:
5777 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5778 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5779 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5780 {
5781 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5782 if (tls_type == tls::TLSOPT_NONE)
5783 {
5784 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5785 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5786 {
5787 Output_data_got_powerpc<size, big_endian>* got
5788 = target->got_section(symtab, layout);
5789 unsigned int off = got->add_constant(0);
5790 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5791
5792 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5793 rela_dyn->add_symbolless_local_addend(object, r_sym,
5794 elfcpp::R_POWERPC_TPREL,
5795 got, off, 0);
5796 }
5797 }
5798 else if (tls_type == tls::TLSOPT_TO_LE)
5799 {
5800 // no GOT relocs needed for Local Exec.
5801 }
5802 else
5803 gold_unreachable();
5804 }
5805 break;
5806
5807 default:
5808 unsupported_reloc_local(object, r_type);
5809 break;
5810 }
5811
5812 switch (r_type)
5813 {
5814 case elfcpp::R_POWERPC_GOT_TLSLD16:
5815 case elfcpp::R_POWERPC_GOT_TLSGD16:
5816 case elfcpp::R_POWERPC_GOT_TPREL16:
5817 case elfcpp::R_POWERPC_GOT_DTPREL16:
5818 case elfcpp::R_POWERPC_GOT16:
5819 case elfcpp::R_PPC64_GOT16_DS:
5820 case elfcpp::R_PPC64_TOC16:
5821 case elfcpp::R_PPC64_TOC16_DS:
5822 ppc_object->set_has_small_toc_reloc();
5823 default:
5824 break;
5825 }
5826 }
5827
5828 // Report an unsupported relocation against a global symbol.
5829
5830 template<int size, bool big_endian>
5831 void
5832 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5833 Sized_relobj_file<size, big_endian>* object,
5834 unsigned int r_type,
5835 Symbol* gsym)
5836 {
5837 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5838 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5839 }
5840
5841 // Scan a relocation for a global symbol.
5842
5843 template<int size, bool big_endian>
5844 inline void
5845 Target_powerpc<size, big_endian>::Scan::global(
5846 Symbol_table* symtab,
5847 Layout* layout,
5848 Target_powerpc<size, big_endian>* target,
5849 Sized_relobj_file<size, big_endian>* object,
5850 unsigned int data_shndx,
5851 Output_section* output_section,
5852 const elfcpp::Rela<size, big_endian>& reloc,
5853 unsigned int r_type,
5854 Symbol* gsym)
5855 {
5856 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
5857 return;
5858
5859 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5860 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5861 {
5862 this->expect_tls_get_addr_call();
5863 const bool final = gsym->final_value_is_known();
5864 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
5865 if (tls_type != tls::TLSOPT_NONE)
5866 this->skip_next_tls_get_addr_call();
5867 }
5868 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5869 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5870 {
5871 this->expect_tls_get_addr_call();
5872 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5873 if (tls_type != tls::TLSOPT_NONE)
5874 this->skip_next_tls_get_addr_call();
5875 }
5876
5877 Powerpc_relobj<size, big_endian>* ppc_object
5878 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5879
5880 // A STT_GNU_IFUNC symbol may require a PLT entry.
5881 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
5882 bool pushed_ifunc = false;
5883 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5884 {
5885 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5886 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5887 reloc.get_r_addend());
5888 target->make_plt_entry(symtab, layout, gsym);
5889 pushed_ifunc = true;
5890 }
5891
5892 switch (r_type)
5893 {
5894 case elfcpp::R_POWERPC_NONE:
5895 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5896 case elfcpp::R_POWERPC_GNU_VTENTRY:
5897 case elfcpp::R_PPC_LOCAL24PC:
5898 case elfcpp::R_POWERPC_TLS:
5899 break;
5900
5901 case elfcpp::R_PPC64_TOC:
5902 {
5903 Output_data_got_powerpc<size, big_endian>* got
5904 = target->got_section(symtab, layout);
5905 if (parameters->options().output_is_position_independent())
5906 {
5907 Address off = reloc.get_r_offset();
5908 if (size == 64
5909 && data_shndx == ppc_object->opd_shndx()
5910 && ppc_object->get_opd_discard(off - 8))
5911 break;
5912
5913 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5914 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5915 if (data_shndx != ppc_object->opd_shndx())
5916 symobj = static_cast
5917 <Powerpc_relobj<size, big_endian>*>(gsym->object());
5918 rela_dyn->add_output_section_relative(got->output_section(),
5919 elfcpp::R_POWERPC_RELATIVE,
5920 output_section,
5921 object, data_shndx, off,
5922 symobj->toc_base_offset());
5923 }
5924 }
5925 break;
5926
5927 case elfcpp::R_PPC64_ADDR64:
5928 if (size == 64
5929 && target->abiversion() < 2
5930 && data_shndx == ppc_object->opd_shndx()
5931 && (gsym->is_defined_in_discarded_section()
5932 || gsym->object() != object))
5933 {
5934 ppc_object->set_opd_discard(reloc.get_r_offset());
5935 break;
5936 }
5937 // Fall thru
5938 case elfcpp::R_PPC64_UADDR64:
5939 case elfcpp::R_POWERPC_ADDR32:
5940 case elfcpp::R_POWERPC_UADDR32:
5941 case elfcpp::R_POWERPC_ADDR24:
5942 case elfcpp::R_POWERPC_ADDR16:
5943 case elfcpp::R_POWERPC_ADDR16_LO:
5944 case elfcpp::R_POWERPC_ADDR16_HI:
5945 case elfcpp::R_POWERPC_ADDR16_HA:
5946 case elfcpp::R_POWERPC_UADDR16:
5947 case elfcpp::R_PPC64_ADDR16_HIGH:
5948 case elfcpp::R_PPC64_ADDR16_HIGHA:
5949 case elfcpp::R_PPC64_ADDR16_HIGHER:
5950 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5951 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5952 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5953 case elfcpp::R_PPC64_ADDR16_DS:
5954 case elfcpp::R_PPC64_ADDR16_LO_DS:
5955 case elfcpp::R_POWERPC_ADDR14:
5956 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5957 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5958 {
5959 // Make a PLT entry if necessary.
5960 if (gsym->needs_plt_entry())
5961 {
5962 // Since this is not a PC-relative relocation, we may be
5963 // taking the address of a function. In that case we need to
5964 // set the entry in the dynamic symbol table to the address of
5965 // the PLT call stub.
5966 bool need_ifunc_plt = false;
5967 if ((size == 32 || target->abiversion() >= 2)
5968 && gsym->is_from_dynobj()
5969 && !parameters->options().output_is_position_independent())
5970 {
5971 gsym->set_needs_dynsym_value();
5972 need_ifunc_plt = true;
5973 }
5974 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
5975 {
5976 target->push_branch(ppc_object, data_shndx,
5977 reloc.get_r_offset(), r_type,
5978 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5979 reloc.get_r_addend());
5980 target->make_plt_entry(symtab, layout, gsym);
5981 }
5982 }
5983 // Make a dynamic relocation if necessary.
5984 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
5985 || (size == 64 && is_ifunc && target->abiversion() < 2))
5986 {
5987 if (!parameters->options().output_is_position_independent()
5988 && gsym->may_need_copy_reloc())
5989 {
5990 target->copy_reloc(symtab, layout, object,
5991 data_shndx, output_section, gsym, reloc);
5992 }
5993 else if ((((size == 32
5994 && r_type == elfcpp::R_POWERPC_ADDR32)
5995 || (size == 64
5996 && r_type == elfcpp::R_PPC64_ADDR64
5997 && target->abiversion() >= 2))
5998 && gsym->can_use_relative_reloc(false)
5999 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6000 && parameters->options().shared()))
6001 || (size == 64
6002 && r_type == elfcpp::R_PPC64_ADDR64
6003 && target->abiversion() < 2
6004 && (gsym->can_use_relative_reloc(false)
6005 || data_shndx == ppc_object->opd_shndx())))
6006 {
6007 Reloc_section* rela_dyn
6008 = target->rela_dyn_section(symtab, layout, is_ifunc);
6009 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6010 : elfcpp::R_POWERPC_RELATIVE);
6011 rela_dyn->add_symbolless_global_addend(
6012 gsym, dynrel, output_section, object, data_shndx,
6013 reloc.get_r_offset(), reloc.get_r_addend());
6014 }
6015 else
6016 {
6017 Reloc_section* rela_dyn
6018 = target->rela_dyn_section(symtab, layout, is_ifunc);
6019 check_non_pic(object, r_type);
6020 rela_dyn->add_global(gsym, r_type, output_section,
6021 object, data_shndx,
6022 reloc.get_r_offset(),
6023 reloc.get_r_addend());
6024 }
6025 }
6026 }
6027 break;
6028
6029 case elfcpp::R_PPC_PLTREL24:
6030 case elfcpp::R_POWERPC_REL24:
6031 if (!is_ifunc)
6032 {
6033 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6034 r_type,
6035 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6036 reloc.get_r_addend());
6037 if (gsym->needs_plt_entry()
6038 || (!gsym->final_value_is_known()
6039 && (gsym->is_undefined()
6040 || gsym->is_from_dynobj()
6041 || gsym->is_preemptible())))
6042 target->make_plt_entry(symtab, layout, gsym);
6043 }
6044 // Fall thru
6045
6046 case elfcpp::R_PPC64_REL64:
6047 case elfcpp::R_POWERPC_REL32:
6048 // Make a dynamic relocation if necessary.
6049 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6050 {
6051 if (!parameters->options().output_is_position_independent()
6052 && gsym->may_need_copy_reloc())
6053 {
6054 target->copy_reloc(symtab, layout, object,
6055 data_shndx, output_section, gsym,
6056 reloc);
6057 }
6058 else
6059 {
6060 Reloc_section* rela_dyn
6061 = target->rela_dyn_section(symtab, layout, is_ifunc);
6062 check_non_pic(object, r_type);
6063 rela_dyn->add_global(gsym, r_type, output_section, object,
6064 data_shndx, reloc.get_r_offset(),
6065 reloc.get_r_addend());
6066 }
6067 }
6068 break;
6069
6070 case elfcpp::R_POWERPC_REL14:
6071 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6072 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6073 if (!is_ifunc)
6074 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6075 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6076 reloc.get_r_addend());
6077 break;
6078
6079 case elfcpp::R_POWERPC_REL16:
6080 case elfcpp::R_POWERPC_REL16_LO:
6081 case elfcpp::R_POWERPC_REL16_HI:
6082 case elfcpp::R_POWERPC_REL16_HA:
6083 case elfcpp::R_POWERPC_SECTOFF:
6084 case elfcpp::R_POWERPC_SECTOFF_LO:
6085 case elfcpp::R_POWERPC_SECTOFF_HI:
6086 case elfcpp::R_POWERPC_SECTOFF_HA:
6087 case elfcpp::R_PPC64_SECTOFF_DS:
6088 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6089 case elfcpp::R_POWERPC_TPREL16:
6090 case elfcpp::R_POWERPC_TPREL16_LO:
6091 case elfcpp::R_POWERPC_TPREL16_HI:
6092 case elfcpp::R_POWERPC_TPREL16_HA:
6093 case elfcpp::R_PPC64_TPREL16_DS:
6094 case elfcpp::R_PPC64_TPREL16_LO_DS:
6095 case elfcpp::R_PPC64_TPREL16_HIGH:
6096 case elfcpp::R_PPC64_TPREL16_HIGHA:
6097 case elfcpp::R_PPC64_TPREL16_HIGHER:
6098 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6099 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6100 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6101 case elfcpp::R_POWERPC_DTPREL16:
6102 case elfcpp::R_POWERPC_DTPREL16_LO:
6103 case elfcpp::R_POWERPC_DTPREL16_HI:
6104 case elfcpp::R_POWERPC_DTPREL16_HA:
6105 case elfcpp::R_PPC64_DTPREL16_DS:
6106 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6107 case elfcpp::R_PPC64_DTPREL16_HIGH:
6108 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6109 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6110 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6111 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6112 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6113 case elfcpp::R_PPC64_TLSGD:
6114 case elfcpp::R_PPC64_TLSLD:
6115 case elfcpp::R_PPC64_ADDR64_LOCAL:
6116 break;
6117
6118 case elfcpp::R_POWERPC_GOT16:
6119 case elfcpp::R_POWERPC_GOT16_LO:
6120 case elfcpp::R_POWERPC_GOT16_HI:
6121 case elfcpp::R_POWERPC_GOT16_HA:
6122 case elfcpp::R_PPC64_GOT16_DS:
6123 case elfcpp::R_PPC64_GOT16_LO_DS:
6124 {
6125 // The symbol requires a GOT entry.
6126 Output_data_got_powerpc<size, big_endian>* got;
6127
6128 got = target->got_section(symtab, layout);
6129 if (gsym->final_value_is_known())
6130 {
6131 if (is_ifunc
6132 && (size == 32 || target->abiversion() >= 2))
6133 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6134 else
6135 got->add_global(gsym, GOT_TYPE_STANDARD);
6136 }
6137 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6138 {
6139 // If we are generating a shared object or a pie, this
6140 // symbol's GOT entry will be set by a dynamic relocation.
6141 unsigned int off = got->add_constant(0);
6142 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6143
6144 Reloc_section* rela_dyn
6145 = target->rela_dyn_section(symtab, layout, is_ifunc);
6146
6147 if (gsym->can_use_relative_reloc(false)
6148 && !((size == 32
6149 || target->abiversion() >= 2)
6150 && gsym->visibility() == elfcpp::STV_PROTECTED
6151 && parameters->options().shared()))
6152 {
6153 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6154 : elfcpp::R_POWERPC_RELATIVE);
6155 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6156 }
6157 else
6158 {
6159 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6160 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6161 }
6162 }
6163 }
6164 break;
6165
6166 case elfcpp::R_PPC64_TOC16:
6167 case elfcpp::R_PPC64_TOC16_LO:
6168 case elfcpp::R_PPC64_TOC16_HI:
6169 case elfcpp::R_PPC64_TOC16_HA:
6170 case elfcpp::R_PPC64_TOC16_DS:
6171 case elfcpp::R_PPC64_TOC16_LO_DS:
6172 // We need a GOT section.
6173 target->got_section(symtab, layout);
6174 break;
6175
6176 case elfcpp::R_POWERPC_GOT_TLSGD16:
6177 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6178 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6179 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6180 {
6181 const bool final = gsym->final_value_is_known();
6182 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6183 if (tls_type == tls::TLSOPT_NONE)
6184 {
6185 Output_data_got_powerpc<size, big_endian>* got
6186 = target->got_section(symtab, layout);
6187 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6188 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6189 elfcpp::R_POWERPC_DTPMOD,
6190 elfcpp::R_POWERPC_DTPREL);
6191 }
6192 else if (tls_type == tls::TLSOPT_TO_IE)
6193 {
6194 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6195 {
6196 Output_data_got_powerpc<size, big_endian>* got
6197 = target->got_section(symtab, layout);
6198 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6199 if (gsym->is_undefined()
6200 || gsym->is_from_dynobj())
6201 {
6202 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6203 elfcpp::R_POWERPC_TPREL);
6204 }
6205 else
6206 {
6207 unsigned int off = got->add_constant(0);
6208 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6209 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6210 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6211 got, off, 0);
6212 }
6213 }
6214 }
6215 else if (tls_type == tls::TLSOPT_TO_LE)
6216 {
6217 // no GOT relocs needed for Local Exec.
6218 }
6219 else
6220 gold_unreachable();
6221 }
6222 break;
6223
6224 case elfcpp::R_POWERPC_GOT_TLSLD16:
6225 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6226 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6227 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6228 {
6229 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6230 if (tls_type == tls::TLSOPT_NONE)
6231 target->tlsld_got_offset(symtab, layout, object);
6232 else if (tls_type == tls::TLSOPT_TO_LE)
6233 {
6234 // no GOT relocs needed for Local Exec.
6235 if (parameters->options().emit_relocs())
6236 {
6237 Output_section* os = layout->tls_segment()->first_section();
6238 gold_assert(os != NULL);
6239 os->set_needs_symtab_index();
6240 }
6241 }
6242 else
6243 gold_unreachable();
6244 }
6245 break;
6246
6247 case elfcpp::R_POWERPC_GOT_DTPREL16:
6248 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6249 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6250 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6251 {
6252 Output_data_got_powerpc<size, big_endian>* got
6253 = target->got_section(symtab, layout);
6254 if (!gsym->final_value_is_known()
6255 && (gsym->is_from_dynobj()
6256 || gsym->is_undefined()
6257 || gsym->is_preemptible()))
6258 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6259 target->rela_dyn_section(layout),
6260 elfcpp::R_POWERPC_DTPREL);
6261 else
6262 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6263 }
6264 break;
6265
6266 case elfcpp::R_POWERPC_GOT_TPREL16:
6267 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6268 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6269 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6270 {
6271 const bool final = gsym->final_value_is_known();
6272 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6273 if (tls_type == tls::TLSOPT_NONE)
6274 {
6275 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6276 {
6277 Output_data_got_powerpc<size, big_endian>* got
6278 = target->got_section(symtab, layout);
6279 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6280 if (gsym->is_undefined()
6281 || gsym->is_from_dynobj())
6282 {
6283 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6284 elfcpp::R_POWERPC_TPREL);
6285 }
6286 else
6287 {
6288 unsigned int off = got->add_constant(0);
6289 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6290 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6291 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6292 got, off, 0);
6293 }
6294 }
6295 }
6296 else if (tls_type == tls::TLSOPT_TO_LE)
6297 {
6298 // no GOT relocs needed for Local Exec.
6299 }
6300 else
6301 gold_unreachable();
6302 }
6303 break;
6304
6305 default:
6306 unsupported_reloc_global(object, r_type, gsym);
6307 break;
6308 }
6309
6310 switch (r_type)
6311 {
6312 case elfcpp::R_POWERPC_GOT_TLSLD16:
6313 case elfcpp::R_POWERPC_GOT_TLSGD16:
6314 case elfcpp::R_POWERPC_GOT_TPREL16:
6315 case elfcpp::R_POWERPC_GOT_DTPREL16:
6316 case elfcpp::R_POWERPC_GOT16:
6317 case elfcpp::R_PPC64_GOT16_DS:
6318 case elfcpp::R_PPC64_TOC16:
6319 case elfcpp::R_PPC64_TOC16_DS:
6320 ppc_object->set_has_small_toc_reloc();
6321 default:
6322 break;
6323 }
6324 }
6325
6326 // Process relocations for gc.
6327
6328 template<int size, bool big_endian>
6329 void
6330 Target_powerpc<size, big_endian>::gc_process_relocs(
6331 Symbol_table* symtab,
6332 Layout* layout,
6333 Sized_relobj_file<size, big_endian>* object,
6334 unsigned int data_shndx,
6335 unsigned int,
6336 const unsigned char* prelocs,
6337 size_t reloc_count,
6338 Output_section* output_section,
6339 bool needs_special_offset_handling,
6340 size_t local_symbol_count,
6341 const unsigned char* plocal_symbols)
6342 {
6343 typedef Target_powerpc<size, big_endian> Powerpc;
6344 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6345 Powerpc_relobj<size, big_endian>* ppc_object
6346 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6347 if (size == 64)
6348 ppc_object->set_opd_valid();
6349 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6350 {
6351 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6352 for (p = ppc_object->access_from_map()->begin();
6353 p != ppc_object->access_from_map()->end();
6354 ++p)
6355 {
6356 Address dst_off = p->first;
6357 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6358 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6359 for (s = p->second.begin(); s != p->second.end(); ++s)
6360 {
6361 Relobj* src_obj = s->first;
6362 unsigned int src_indx = s->second;
6363 symtab->gc()->add_reference(src_obj, src_indx,
6364 ppc_object, dst_indx);
6365 }
6366 p->second.clear();
6367 }
6368 ppc_object->access_from_map()->clear();
6369 ppc_object->process_gc_mark(symtab);
6370 // Don't look at .opd relocs as .opd will reference everything.
6371 return;
6372 }
6373
6374 gold::gc_process_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan,
6375 typename Target_powerpc::Relocatable_size_for_reloc>(
6376 symtab,
6377 layout,
6378 this,
6379 object,
6380 data_shndx,
6381 prelocs,
6382 reloc_count,
6383 output_section,
6384 needs_special_offset_handling,
6385 local_symbol_count,
6386 plocal_symbols);
6387 }
6388
6389 // Handle target specific gc actions when adding a gc reference from
6390 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6391 // and DST_OFF. For powerpc64, this adds a referenc to the code
6392 // section of a function descriptor.
6393
6394 template<int size, bool big_endian>
6395 void
6396 Target_powerpc<size, big_endian>::do_gc_add_reference(
6397 Symbol_table* symtab,
6398 Relobj* src_obj,
6399 unsigned int src_shndx,
6400 Relobj* dst_obj,
6401 unsigned int dst_shndx,
6402 Address dst_off) const
6403 {
6404 if (size != 64 || dst_obj->is_dynamic())
6405 return;
6406
6407 Powerpc_relobj<size, big_endian>* ppc_object
6408 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6409 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6410 {
6411 if (ppc_object->opd_valid())
6412 {
6413 dst_shndx = ppc_object->get_opd_ent(dst_off);
6414 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6415 }
6416 else
6417 {
6418 // If we haven't run scan_opd_relocs, we must delay
6419 // processing this function descriptor reference.
6420 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6421 }
6422 }
6423 }
6424
6425 // Add any special sections for this symbol to the gc work list.
6426 // For powerpc64, this adds the code section of a function
6427 // descriptor.
6428
6429 template<int size, bool big_endian>
6430 void
6431 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6432 Symbol_table* symtab,
6433 Symbol* sym) const
6434 {
6435 if (size == 64)
6436 {
6437 Powerpc_relobj<size, big_endian>* ppc_object
6438 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6439 bool is_ordinary;
6440 unsigned int shndx = sym->shndx(&is_ordinary);
6441 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6442 {
6443 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6444 Address dst_off = gsym->value();
6445 if (ppc_object->opd_valid())
6446 {
6447 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6448 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6449 dst_indx));
6450 }
6451 else
6452 ppc_object->add_gc_mark(dst_off);
6453 }
6454 }
6455 }
6456
6457 // For a symbol location in .opd, set LOC to the location of the
6458 // function entry.
6459
6460 template<int size, bool big_endian>
6461 void
6462 Target_powerpc<size, big_endian>::do_function_location(
6463 Symbol_location* loc) const
6464 {
6465 if (size == 64 && loc->shndx != 0)
6466 {
6467 if (loc->object->is_dynamic())
6468 {
6469 Powerpc_dynobj<size, big_endian>* ppc_object
6470 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6471 if (loc->shndx == ppc_object->opd_shndx())
6472 {
6473 Address dest_off;
6474 Address off = loc->offset - ppc_object->opd_address();
6475 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6476 loc->offset = dest_off;
6477 }
6478 }
6479 else
6480 {
6481 const Powerpc_relobj<size, big_endian>* ppc_object
6482 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6483 if (loc->shndx == ppc_object->opd_shndx())
6484 {
6485 Address dest_off;
6486 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6487 loc->offset = dest_off;
6488 }
6489 }
6490 }
6491 }
6492
6493 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6494 // compiled with -fsplit-stack. The function calls non-split-stack
6495 // code. Change the function to ensure it has enough stack space to
6496 // call some random function.
6497
6498 template<int size, bool big_endian>
6499 void
6500 Target_powerpc<size, big_endian>::do_calls_non_split(
6501 Relobj* object,
6502 unsigned int shndx,
6503 section_offset_type fnoffset,
6504 section_size_type fnsize,
6505 unsigned char* view,
6506 section_size_type view_size,
6507 std::string* from,
6508 std::string* to) const
6509 {
6510 // 32-bit not supported.
6511 if (size == 32)
6512 {
6513 // warn
6514 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6515 view, view_size, from, to);
6516 return;
6517 }
6518
6519 // The function always starts with
6520 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6521 // addis %r12,%r1,-allocate@ha
6522 // addi %r12,%r12,-allocate@l
6523 // cmpld %r12,%r0
6524 // but note that the addis or addi may be replaced with a nop
6525
6526 unsigned char *entry = view + fnoffset;
6527 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6528
6529 if ((insn & 0xffff0000) == addis_2_12)
6530 {
6531 /* Skip ELFv2 global entry code. */
6532 entry += 8;
6533 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6534 }
6535
6536 unsigned char *pinsn = entry;
6537 bool ok = false;
6538 const uint32_t ld_private_ss = 0xe80d8fc0;
6539 if (insn == ld_private_ss)
6540 {
6541 int32_t allocate = 0;
6542 while (1)
6543 {
6544 pinsn += 4;
6545 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6546 if ((insn & 0xffff0000) == addis_12_1)
6547 allocate += (insn & 0xffff) << 16;
6548 else if ((insn & 0xffff0000) == addi_12_1
6549 || (insn & 0xffff0000) == addi_12_12)
6550 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6551 else if (insn != nop)
6552 break;
6553 }
6554 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6555 {
6556 int extra = parameters->options().split_stack_adjust_size();
6557 allocate -= extra;
6558 if (allocate >= 0 || extra < 0)
6559 {
6560 object->error(_("split-stack stack size overflow at "
6561 "section %u offset %0zx"),
6562 shndx, static_cast<size_t>(fnoffset));
6563 return;
6564 }
6565 pinsn = entry + 4;
6566 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6567 if (insn != addis_12_1)
6568 {
6569 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6570 pinsn += 4;
6571 insn = addi_12_12 | (allocate & 0xffff);
6572 if (insn != addi_12_12)
6573 {
6574 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6575 pinsn += 4;
6576 }
6577 }
6578 else
6579 {
6580 insn = addi_12_1 | (allocate & 0xffff);
6581 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6582 pinsn += 4;
6583 }
6584 if (pinsn != entry + 12)
6585 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6586
6587 ok = true;
6588 }
6589 }
6590
6591 if (!ok)
6592 {
6593 if (!object->has_no_split_stack())
6594 object->error(_("failed to match split-stack sequence at "
6595 "section %u offset %0zx"),
6596 shndx, static_cast<size_t>(fnoffset));
6597 }
6598 }
6599
6600 // Scan relocations for a section.
6601
6602 template<int size, bool big_endian>
6603 void
6604 Target_powerpc<size, big_endian>::scan_relocs(
6605 Symbol_table* symtab,
6606 Layout* layout,
6607 Sized_relobj_file<size, big_endian>* object,
6608 unsigned int data_shndx,
6609 unsigned int sh_type,
6610 const unsigned char* prelocs,
6611 size_t reloc_count,
6612 Output_section* output_section,
6613 bool needs_special_offset_handling,
6614 size_t local_symbol_count,
6615 const unsigned char* plocal_symbols)
6616 {
6617 typedef Target_powerpc<size, big_endian> Powerpc;
6618 typedef typename Target_powerpc<size, big_endian>::Scan Scan;
6619
6620 if (sh_type == elfcpp::SHT_REL)
6621 {
6622 gold_error(_("%s: unsupported REL reloc section"),
6623 object->name().c_str());
6624 return;
6625 }
6626
6627 gold::scan_relocs<size, big_endian, Powerpc, elfcpp::SHT_RELA, Scan>(
6628 symtab,
6629 layout,
6630 this,
6631 object,
6632 data_shndx,
6633 prelocs,
6634 reloc_count,
6635 output_section,
6636 needs_special_offset_handling,
6637 local_symbol_count,
6638 plocal_symbols);
6639 }
6640
6641 // Functor class for processing the global symbol table.
6642 // Removes symbols defined on discarded opd entries.
6643
6644 template<bool big_endian>
6645 class Global_symbol_visitor_opd
6646 {
6647 public:
6648 Global_symbol_visitor_opd()
6649 { }
6650
6651 void
6652 operator()(Sized_symbol<64>* sym)
6653 {
6654 if (sym->has_symtab_index()
6655 || sym->source() != Symbol::FROM_OBJECT
6656 || !sym->in_real_elf())
6657 return;
6658
6659 if (sym->object()->is_dynamic())
6660 return;
6661
6662 Powerpc_relobj<64, big_endian>* symobj
6663 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6664 if (symobj->opd_shndx() == 0)
6665 return;
6666
6667 bool is_ordinary;
6668 unsigned int shndx = sym->shndx(&is_ordinary);
6669 if (shndx == symobj->opd_shndx()
6670 && symobj->get_opd_discard(sym->value()))
6671 {
6672 sym->set_undefined();
6673 sym->set_visibility(elfcpp::STV_DEFAULT);
6674 sym->set_is_defined_in_discarded_section();
6675 sym->set_symtab_index(-1U);
6676 }
6677 }
6678 };
6679
6680 template<int size, bool big_endian>
6681 void
6682 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6683 Layout* layout,
6684 Symbol_table* symtab)
6685 {
6686 if (size == 64)
6687 {
6688 Output_data_save_res<64, big_endian>* savres
6689 = new Output_data_save_res<64, big_endian>(symtab);
6690 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6691 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6692 savres, ORDER_TEXT, false);
6693 }
6694 }
6695
6696 // Sort linker created .got section first (for the header), then input
6697 // sections belonging to files using small model code.
6698
6699 template<bool big_endian>
6700 class Sort_toc_sections
6701 {
6702 public:
6703 bool
6704 operator()(const Output_section::Input_section& is1,
6705 const Output_section::Input_section& is2) const
6706 {
6707 if (!is1.is_input_section() && is2.is_input_section())
6708 return true;
6709 bool small1
6710 = (is1.is_input_section()
6711 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6712 ->has_small_toc_reloc()));
6713 bool small2
6714 = (is2.is_input_section()
6715 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6716 ->has_small_toc_reloc()));
6717 return small1 && !small2;
6718 }
6719 };
6720
6721 // Finalize the sections.
6722
6723 template<int size, bool big_endian>
6724 void
6725 Target_powerpc<size, big_endian>::do_finalize_sections(
6726 Layout* layout,
6727 const Input_objects*,
6728 Symbol_table* symtab)
6729 {
6730 if (parameters->doing_static_link())
6731 {
6732 // At least some versions of glibc elf-init.o have a strong
6733 // reference to __rela_iplt marker syms. A weak ref would be
6734 // better..
6735 if (this->iplt_ != NULL)
6736 {
6737 Reloc_section* rel = this->iplt_->rel_plt();
6738 symtab->define_in_output_data("__rela_iplt_start", NULL,
6739 Symbol_table::PREDEFINED, rel, 0, 0,
6740 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6741 elfcpp::STV_HIDDEN, 0, false, true);
6742 symtab->define_in_output_data("__rela_iplt_end", NULL,
6743 Symbol_table::PREDEFINED, rel, 0, 0,
6744 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6745 elfcpp::STV_HIDDEN, 0, true, true);
6746 }
6747 else
6748 {
6749 symtab->define_as_constant("__rela_iplt_start", NULL,
6750 Symbol_table::PREDEFINED, 0, 0,
6751 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6752 elfcpp::STV_HIDDEN, 0, true, false);
6753 symtab->define_as_constant("__rela_iplt_end", NULL,
6754 Symbol_table::PREDEFINED, 0, 0,
6755 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6756 elfcpp::STV_HIDDEN, 0, true, false);
6757 }
6758 }
6759
6760 if (size == 64)
6761 {
6762 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6763 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6764
6765 if (!parameters->options().relocatable())
6766 {
6767 this->define_save_restore_funcs(layout, symtab);
6768
6769 // Annoyingly, we need to make these sections now whether or
6770 // not we need them. If we delay until do_relax then we
6771 // need to mess with the relaxation machinery checkpointing.
6772 this->got_section(symtab, layout);
6773 this->make_brlt_section(layout);
6774
6775 if (parameters->options().toc_sort())
6776 {
6777 Output_section* os = this->got_->output_section();
6778 if (os != NULL && os->input_sections().size() > 1)
6779 std::stable_sort(os->input_sections().begin(),
6780 os->input_sections().end(),
6781 Sort_toc_sections<big_endian>());
6782 }
6783 }
6784 }
6785
6786 // Fill in some more dynamic tags.
6787 Output_data_dynamic* odyn = layout->dynamic_data();
6788 if (odyn != NULL)
6789 {
6790 const Reloc_section* rel_plt = (this->plt_ == NULL
6791 ? NULL
6792 : this->plt_->rel_plt());
6793 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6794 this->rela_dyn_, true, size == 32);
6795
6796 if (size == 32)
6797 {
6798 if (this->got_ != NULL)
6799 {
6800 this->got_->finalize_data_size();
6801 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6802 this->got_, this->got_->g_o_t());
6803 }
6804 }
6805 else
6806 {
6807 if (this->glink_ != NULL)
6808 {
6809 this->glink_->finalize_data_size();
6810 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6811 this->glink_,
6812 (this->glink_->pltresolve_size
6813 - 32));
6814 }
6815 }
6816 }
6817
6818 // Emit any relocs we saved in an attempt to avoid generating COPY
6819 // relocs.
6820 if (this->copy_relocs_.any_saved_relocs())
6821 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6822 }
6823
6824 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6825 // reloc.
6826
6827 static bool
6828 ok_lo_toc_insn(uint32_t insn)
6829 {
6830 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6831 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6832 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6833 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6834 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6835 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6836 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6837 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6838 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6839 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6840 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6841 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6842 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6843 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6844 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
6845 && (insn & 3) != 1)
6846 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
6847 && ((insn & 3) == 0 || (insn & 3) == 3))
6848 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
6849 }
6850
6851 // Return the value to use for a branch relocation.
6852
6853 template<int size, bool big_endian>
6854 bool
6855 Target_powerpc<size, big_endian>::symval_for_branch(
6856 const Symbol_table* symtab,
6857 const Sized_symbol<size>* gsym,
6858 Powerpc_relobj<size, big_endian>* object,
6859 Address *value,
6860 unsigned int *dest_shndx)
6861 {
6862 if (size == 32 || this->abiversion() >= 2)
6863 gold_unreachable();
6864 *dest_shndx = 0;
6865
6866 // If the symbol is defined in an opd section, ie. is a function
6867 // descriptor, use the function descriptor code entry address
6868 Powerpc_relobj<size, big_endian>* symobj = object;
6869 if (gsym != NULL
6870 && gsym->source() != Symbol::FROM_OBJECT)
6871 return true;
6872 if (gsym != NULL)
6873 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
6874 unsigned int shndx = symobj->opd_shndx();
6875 if (shndx == 0)
6876 return true;
6877 Address opd_addr = symobj->get_output_section_offset(shndx);
6878 if (opd_addr == invalid_address)
6879 return true;
6880 opd_addr += symobj->output_section_address(shndx);
6881 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
6882 {
6883 Address sec_off;
6884 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
6885 if (symtab->is_section_folded(symobj, *dest_shndx))
6886 {
6887 Section_id folded
6888 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
6889 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
6890 *dest_shndx = folded.second;
6891 }
6892 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
6893 if (sec_addr == invalid_address)
6894 return false;
6895
6896 sec_addr += symobj->output_section(*dest_shndx)->address();
6897 *value = sec_addr + sec_off;
6898 }
6899 return true;
6900 }
6901
6902 // Perform a relocation.
6903
6904 template<int size, bool big_endian>
6905 inline bool
6906 Target_powerpc<size, big_endian>::Relocate::relocate(
6907 const Relocate_info<size, big_endian>* relinfo,
6908 Target_powerpc* target,
6909 Output_section* os,
6910 size_t relnum,
6911 const elfcpp::Rela<size, big_endian>& rela,
6912 unsigned int r_type,
6913 const Sized_symbol<size>* gsym,
6914 const Symbol_value<size>* psymval,
6915 unsigned char* view,
6916 Address address,
6917 section_size_type view_size)
6918 {
6919 if (view == NULL)
6920 return true;
6921
6922 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
6923 {
6924 case Track_tls::NOT_EXPECTED:
6925 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6926 _("__tls_get_addr call lacks marker reloc"));
6927 break;
6928 case Track_tls::EXPECTED:
6929 // We have already complained.
6930 break;
6931 case Track_tls::SKIP:
6932 return true;
6933 case Track_tls::NORMAL:
6934 break;
6935 }
6936
6937 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
6938 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
6939 Powerpc_relobj<size, big_endian>* const object
6940 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
6941 Address value = 0;
6942 bool has_stub_value = false;
6943 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6944 if ((gsym != NULL
6945 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
6946 : object->local_has_plt_offset(r_sym))
6947 && (!psymval->is_ifunc_symbol()
6948 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
6949 {
6950 if (size == 64
6951 && gsym != NULL
6952 && target->abiversion() >= 2
6953 && !parameters->options().output_is_position_independent()
6954 && !is_branch_reloc(r_type))
6955 {
6956 Address off = target->glink_section()->find_global_entry(gsym);
6957 if (off != invalid_address)
6958 {
6959 value = target->glink_section()->global_entry_address() + off;
6960 has_stub_value = true;
6961 }
6962 }
6963 else
6964 {
6965 Stub_table<size, big_endian>* stub_table
6966 = object->stub_table(relinfo->data_shndx);
6967 if (stub_table == NULL)
6968 {
6969 // This is a ref from a data section to an ifunc symbol.
6970 if (target->stub_tables().size() != 0)
6971 stub_table = target->stub_tables()[0];
6972 }
6973 if (stub_table != NULL)
6974 {
6975 Address off;
6976 if (gsym != NULL)
6977 off = stub_table->find_plt_call_entry(object, gsym, r_type,
6978 rela.get_r_addend());
6979 else
6980 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
6981 rela.get_r_addend());
6982 if (off != invalid_address)
6983 {
6984 value = stub_table->stub_address() + off;
6985 has_stub_value = true;
6986 }
6987 }
6988 }
6989 // We don't care too much about bogus debug references to
6990 // non-local functions, but otherwise there had better be a plt
6991 // call stub or global entry stub as appropriate.
6992 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
6993 }
6994
6995 if (r_type == elfcpp::R_POWERPC_GOT16
6996 || r_type == elfcpp::R_POWERPC_GOT16_LO
6997 || r_type == elfcpp::R_POWERPC_GOT16_HI
6998 || r_type == elfcpp::R_POWERPC_GOT16_HA
6999 || r_type == elfcpp::R_PPC64_GOT16_DS
7000 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7001 {
7002 if (gsym != NULL)
7003 {
7004 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7005 value = gsym->got_offset(GOT_TYPE_STANDARD);
7006 }
7007 else
7008 {
7009 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7010 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7011 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7012 }
7013 value -= target->got_section()->got_base_offset(object);
7014 }
7015 else if (r_type == elfcpp::R_PPC64_TOC)
7016 {
7017 value = (target->got_section()->output_section()->address()
7018 + object->toc_base_offset());
7019 }
7020 else if (gsym != NULL
7021 && (r_type == elfcpp::R_POWERPC_REL24
7022 || r_type == elfcpp::R_PPC_PLTREL24)
7023 && has_stub_value)
7024 {
7025 if (size == 64)
7026 {
7027 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7028 Valtype* wv = reinterpret_cast<Valtype*>(view);
7029 bool can_plt_call = false;
7030 if (rela.get_r_offset() + 8 <= view_size)
7031 {
7032 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7033 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7034 if ((insn & 1) != 0
7035 && (insn2 == nop
7036 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7037 {
7038 elfcpp::Swap<32, big_endian>::
7039 writeval(wv + 1, ld_2_1 + target->stk_toc());
7040 can_plt_call = true;
7041 }
7042 }
7043 if (!can_plt_call)
7044 {
7045 // If we don't have a branch and link followed by a nop,
7046 // we can't go via the plt because there is no place to
7047 // put a toc restoring instruction.
7048 // Unless we know we won't be returning.
7049 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7050 can_plt_call = true;
7051 }
7052 if (!can_plt_call)
7053 {
7054 // g++ as of 20130507 emits self-calls without a
7055 // following nop. This is arguably wrong since we have
7056 // conflicting information. On the one hand a global
7057 // symbol and on the other a local call sequence, but
7058 // don't error for this special case.
7059 // It isn't possible to cheaply verify we have exactly
7060 // such a call. Allow all calls to the same section.
7061 bool ok = false;
7062 Address code = value;
7063 if (gsym->source() == Symbol::FROM_OBJECT
7064 && gsym->object() == object)
7065 {
7066 unsigned int dest_shndx = 0;
7067 if (target->abiversion() < 2)
7068 {
7069 Address addend = rela.get_r_addend();
7070 code = psymval->value(object, addend);
7071 target->symval_for_branch(relinfo->symtab, gsym, object,
7072 &code, &dest_shndx);
7073 }
7074 bool is_ordinary;
7075 if (dest_shndx == 0)
7076 dest_shndx = gsym->shndx(&is_ordinary);
7077 ok = dest_shndx == relinfo->data_shndx;
7078 }
7079 if (!ok)
7080 {
7081 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7082 _("call lacks nop, can't restore toc; "
7083 "recompile with -fPIC"));
7084 value = code;
7085 }
7086 }
7087 }
7088 }
7089 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7090 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7091 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7092 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7093 {
7094 // First instruction of a global dynamic sequence, arg setup insn.
7095 const bool final = gsym == NULL || gsym->final_value_is_known();
7096 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7097 enum Got_type got_type = GOT_TYPE_STANDARD;
7098 if (tls_type == tls::TLSOPT_NONE)
7099 got_type = GOT_TYPE_TLSGD;
7100 else if (tls_type == tls::TLSOPT_TO_IE)
7101 got_type = GOT_TYPE_TPREL;
7102 if (got_type != GOT_TYPE_STANDARD)
7103 {
7104 if (gsym != NULL)
7105 {
7106 gold_assert(gsym->has_got_offset(got_type));
7107 value = gsym->got_offset(got_type);
7108 }
7109 else
7110 {
7111 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7112 gold_assert(object->local_has_got_offset(r_sym, got_type));
7113 value = object->local_got_offset(r_sym, got_type);
7114 }
7115 value -= target->got_section()->got_base_offset(object);
7116 }
7117 if (tls_type == tls::TLSOPT_TO_IE)
7118 {
7119 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7120 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7121 {
7122 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7123 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7124 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7125 if (size == 32)
7126 insn |= 32 << 26; // lwz
7127 else
7128 insn |= 58 << 26; // ld
7129 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7130 }
7131 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7132 - elfcpp::R_POWERPC_GOT_TLSGD16);
7133 }
7134 else if (tls_type == tls::TLSOPT_TO_LE)
7135 {
7136 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7137 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7138 {
7139 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7140 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7141 insn &= (1 << 26) - (1 << 21); // extract rt
7142 if (size == 32)
7143 insn |= addis_0_2;
7144 else
7145 insn |= addis_0_13;
7146 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7147 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7148 value = psymval->value(object, rela.get_r_addend());
7149 }
7150 else
7151 {
7152 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7153 Insn insn = nop;
7154 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7155 r_type = elfcpp::R_POWERPC_NONE;
7156 }
7157 }
7158 }
7159 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7160 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7161 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7162 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7163 {
7164 // First instruction of a local dynamic sequence, arg setup insn.
7165 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7166 if (tls_type == tls::TLSOPT_NONE)
7167 {
7168 value = target->tlsld_got_offset();
7169 value -= target->got_section()->got_base_offset(object);
7170 }
7171 else
7172 {
7173 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7174 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7175 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7176 {
7177 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7178 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7179 insn &= (1 << 26) - (1 << 21); // extract rt
7180 if (size == 32)
7181 insn |= addis_0_2;
7182 else
7183 insn |= addis_0_13;
7184 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7185 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7186 value = dtp_offset;
7187 }
7188 else
7189 {
7190 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7191 Insn insn = nop;
7192 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7193 r_type = elfcpp::R_POWERPC_NONE;
7194 }
7195 }
7196 }
7197 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7198 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7199 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7200 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7201 {
7202 // Accesses relative to a local dynamic sequence address,
7203 // no optimisation here.
7204 if (gsym != NULL)
7205 {
7206 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7207 value = gsym->got_offset(GOT_TYPE_DTPREL);
7208 }
7209 else
7210 {
7211 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7212 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7213 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7214 }
7215 value -= target->got_section()->got_base_offset(object);
7216 }
7217 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7218 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7219 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7220 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7221 {
7222 // First instruction of initial exec sequence.
7223 const bool final = gsym == NULL || gsym->final_value_is_known();
7224 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7225 if (tls_type == tls::TLSOPT_NONE)
7226 {
7227 if (gsym != NULL)
7228 {
7229 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7230 value = gsym->got_offset(GOT_TYPE_TPREL);
7231 }
7232 else
7233 {
7234 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7235 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7236 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7237 }
7238 value -= target->got_section()->got_base_offset(object);
7239 }
7240 else
7241 {
7242 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7243 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7244 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7245 {
7246 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7247 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7248 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7249 if (size == 32)
7250 insn |= addis_0_2;
7251 else
7252 insn |= addis_0_13;
7253 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7254 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7255 value = psymval->value(object, rela.get_r_addend());
7256 }
7257 else
7258 {
7259 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7260 Insn insn = nop;
7261 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7262 r_type = elfcpp::R_POWERPC_NONE;
7263 }
7264 }
7265 }
7266 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7267 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7268 {
7269 // Second instruction of a global dynamic sequence,
7270 // the __tls_get_addr call
7271 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7272 const bool final = gsym == NULL || gsym->final_value_is_known();
7273 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7274 if (tls_type != tls::TLSOPT_NONE)
7275 {
7276 if (tls_type == tls::TLSOPT_TO_IE)
7277 {
7278 Insn* iview = reinterpret_cast<Insn*>(view);
7279 Insn insn = add_3_3_13;
7280 if (size == 32)
7281 insn = add_3_3_2;
7282 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7283 r_type = elfcpp::R_POWERPC_NONE;
7284 }
7285 else
7286 {
7287 Insn* iview = reinterpret_cast<Insn*>(view);
7288 Insn insn = addi_3_3;
7289 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7290 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7291 view += 2 * big_endian;
7292 value = psymval->value(object, rela.get_r_addend());
7293 }
7294 this->skip_next_tls_get_addr_call();
7295 }
7296 }
7297 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7298 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7299 {
7300 // Second instruction of a local dynamic sequence,
7301 // the __tls_get_addr call
7302 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7303 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7304 if (tls_type == tls::TLSOPT_TO_LE)
7305 {
7306 Insn* iview = reinterpret_cast<Insn*>(view);
7307 Insn insn = addi_3_3;
7308 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7309 this->skip_next_tls_get_addr_call();
7310 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7311 view += 2 * big_endian;
7312 value = dtp_offset;
7313 }
7314 }
7315 else if (r_type == elfcpp::R_POWERPC_TLS)
7316 {
7317 // Second instruction of an initial exec sequence
7318 const bool final = gsym == NULL || gsym->final_value_is_known();
7319 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7320 if (tls_type == tls::TLSOPT_TO_LE)
7321 {
7322 Insn* iview = reinterpret_cast<Insn*>(view);
7323 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7324 unsigned int reg = size == 32 ? 2 : 13;
7325 insn = at_tls_transform(insn, reg);
7326 gold_assert(insn != 0);
7327 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7328 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7329 view += 2 * big_endian;
7330 value = psymval->value(object, rela.get_r_addend());
7331 }
7332 }
7333 else if (!has_stub_value)
7334 {
7335 Address addend = 0;
7336 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7337 addend = rela.get_r_addend();
7338 value = psymval->value(object, addend);
7339 if (size == 64 && is_branch_reloc(r_type))
7340 {
7341 if (target->abiversion() >= 2)
7342 {
7343 if (gsym != NULL)
7344 value += object->ppc64_local_entry_offset(gsym);
7345 else
7346 value += object->ppc64_local_entry_offset(r_sym);
7347 }
7348 else
7349 {
7350 unsigned int dest_shndx;
7351 target->symval_for_branch(relinfo->symtab, gsym, object,
7352 &value, &dest_shndx);
7353 }
7354 }
7355 Address max_branch_offset = max_branch_delta(r_type);
7356 if (max_branch_offset != 0
7357 && value - address + max_branch_offset >= 2 * max_branch_offset)
7358 {
7359 Stub_table<size, big_endian>* stub_table
7360 = object->stub_table(relinfo->data_shndx);
7361 if (stub_table != NULL)
7362 {
7363 Address off = stub_table->find_long_branch_entry(object, value);
7364 if (off != invalid_address)
7365 {
7366 value = (stub_table->stub_address() + stub_table->plt_size()
7367 + off);
7368 has_stub_value = true;
7369 }
7370 }
7371 }
7372 }
7373
7374 switch (r_type)
7375 {
7376 case elfcpp::R_PPC64_REL64:
7377 case elfcpp::R_POWERPC_REL32:
7378 case elfcpp::R_POWERPC_REL24:
7379 case elfcpp::R_PPC_PLTREL24:
7380 case elfcpp::R_PPC_LOCAL24PC:
7381 case elfcpp::R_POWERPC_REL16:
7382 case elfcpp::R_POWERPC_REL16_LO:
7383 case elfcpp::R_POWERPC_REL16_HI:
7384 case elfcpp::R_POWERPC_REL16_HA:
7385 case elfcpp::R_POWERPC_REL14:
7386 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7387 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7388 value -= address;
7389 break;
7390
7391 case elfcpp::R_PPC64_TOC16:
7392 case elfcpp::R_PPC64_TOC16_LO:
7393 case elfcpp::R_PPC64_TOC16_HI:
7394 case elfcpp::R_PPC64_TOC16_HA:
7395 case elfcpp::R_PPC64_TOC16_DS:
7396 case elfcpp::R_PPC64_TOC16_LO_DS:
7397 // Subtract the TOC base address.
7398 value -= (target->got_section()->output_section()->address()
7399 + object->toc_base_offset());
7400 break;
7401
7402 case elfcpp::R_POWERPC_SECTOFF:
7403 case elfcpp::R_POWERPC_SECTOFF_LO:
7404 case elfcpp::R_POWERPC_SECTOFF_HI:
7405 case elfcpp::R_POWERPC_SECTOFF_HA:
7406 case elfcpp::R_PPC64_SECTOFF_DS:
7407 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7408 if (os != NULL)
7409 value -= os->address();
7410 break;
7411
7412 case elfcpp::R_PPC64_TPREL16_DS:
7413 case elfcpp::R_PPC64_TPREL16_LO_DS:
7414 case elfcpp::R_PPC64_TPREL16_HIGH:
7415 case elfcpp::R_PPC64_TPREL16_HIGHA:
7416 if (size != 64)
7417 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7418 break;
7419 case elfcpp::R_POWERPC_TPREL16:
7420 case elfcpp::R_POWERPC_TPREL16_LO:
7421 case elfcpp::R_POWERPC_TPREL16_HI:
7422 case elfcpp::R_POWERPC_TPREL16_HA:
7423 case elfcpp::R_POWERPC_TPREL:
7424 case elfcpp::R_PPC64_TPREL16_HIGHER:
7425 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7426 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7427 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7428 // tls symbol values are relative to tls_segment()->vaddr()
7429 value -= tp_offset;
7430 break;
7431
7432 case elfcpp::R_PPC64_DTPREL16_DS:
7433 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7434 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7435 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7436 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7437 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7438 if (size != 64)
7439 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7440 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7441 break;
7442 case elfcpp::R_POWERPC_DTPREL16:
7443 case elfcpp::R_POWERPC_DTPREL16_LO:
7444 case elfcpp::R_POWERPC_DTPREL16_HI:
7445 case elfcpp::R_POWERPC_DTPREL16_HA:
7446 case elfcpp::R_POWERPC_DTPREL:
7447 case elfcpp::R_PPC64_DTPREL16_HIGH:
7448 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7449 // tls symbol values are relative to tls_segment()->vaddr()
7450 value -= dtp_offset;
7451 break;
7452
7453 case elfcpp::R_PPC64_ADDR64_LOCAL:
7454 if (gsym != NULL)
7455 value += object->ppc64_local_entry_offset(gsym);
7456 else
7457 value += object->ppc64_local_entry_offset(r_sym);
7458 break;
7459
7460 default:
7461 break;
7462 }
7463
7464 Insn branch_bit = 0;
7465 switch (r_type)
7466 {
7467 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7468 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7469 branch_bit = 1 << 21;
7470 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7471 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7472 {
7473 Insn* iview = reinterpret_cast<Insn*>(view);
7474 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7475 insn &= ~(1 << 21);
7476 insn |= branch_bit;
7477 if (this->is_isa_v2)
7478 {
7479 // Set 'a' bit. This is 0b00010 in BO field for branch
7480 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7481 // for branch on CTR insns (BO == 1a00t or 1a01t).
7482 if ((insn & (0x14 << 21)) == (0x04 << 21))
7483 insn |= 0x02 << 21;
7484 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7485 insn |= 0x08 << 21;
7486 else
7487 break;
7488 }
7489 else
7490 {
7491 // Invert 'y' bit if not the default.
7492 if (static_cast<Signed_address>(value) < 0)
7493 insn ^= 1 << 21;
7494 }
7495 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7496 }
7497 break;
7498
7499 default:
7500 break;
7501 }
7502
7503 if (size == 64)
7504 {
7505 // Multi-instruction sequences that access the TOC can be
7506 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7507 // to nop; addi rb,r2,x;
7508 switch (r_type)
7509 {
7510 default:
7511 break;
7512
7513 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7514 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7515 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7516 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7517 case elfcpp::R_POWERPC_GOT16_HA:
7518 case elfcpp::R_PPC64_TOC16_HA:
7519 if (parameters->options().toc_optimize())
7520 {
7521 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7522 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7523 if ((insn & ((0x3f << 26) | 0x1f << 16))
7524 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7525 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7526 _("toc optimization is not supported "
7527 "for %#08x instruction"), insn);
7528 else if (value + 0x8000 < 0x10000)
7529 {
7530 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7531 return true;
7532 }
7533 }
7534 break;
7535
7536 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7537 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7538 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7539 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7540 case elfcpp::R_POWERPC_GOT16_LO:
7541 case elfcpp::R_PPC64_GOT16_LO_DS:
7542 case elfcpp::R_PPC64_TOC16_LO:
7543 case elfcpp::R_PPC64_TOC16_LO_DS:
7544 if (parameters->options().toc_optimize())
7545 {
7546 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7547 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7548 if (!ok_lo_toc_insn(insn))
7549 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7550 _("toc optimization is not supported "
7551 "for %#08x instruction"), insn);
7552 else if (value + 0x8000 < 0x10000)
7553 {
7554 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7555 {
7556 // Transform addic to addi when we change reg.
7557 insn &= ~((0x3f << 26) | (0x1f << 16));
7558 insn |= (14u << 26) | (2 << 16);
7559 }
7560 else
7561 {
7562 insn &= ~(0x1f << 16);
7563 insn |= 2 << 16;
7564 }
7565 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7566 }
7567 }
7568 break;
7569 }
7570 }
7571
7572 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7573 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7574 switch (r_type)
7575 {
7576 case elfcpp::R_POWERPC_ADDR32:
7577 case elfcpp::R_POWERPC_UADDR32:
7578 if (size == 64)
7579 overflow = Reloc::CHECK_BITFIELD;
7580 break;
7581
7582 case elfcpp::R_POWERPC_REL32:
7583 if (size == 64)
7584 overflow = Reloc::CHECK_SIGNED;
7585 break;
7586
7587 case elfcpp::R_POWERPC_UADDR16:
7588 overflow = Reloc::CHECK_BITFIELD;
7589 break;
7590
7591 case elfcpp::R_POWERPC_ADDR16:
7592 // We really should have three separate relocations,
7593 // one for 16-bit data, one for insns with 16-bit signed fields,
7594 // and one for insns with 16-bit unsigned fields.
7595 overflow = Reloc::CHECK_BITFIELD;
7596 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7597 overflow = Reloc::CHECK_LOW_INSN;
7598 break;
7599
7600 case elfcpp::R_POWERPC_ADDR16_HI:
7601 case elfcpp::R_POWERPC_ADDR16_HA:
7602 case elfcpp::R_POWERPC_GOT16_HI:
7603 case elfcpp::R_POWERPC_GOT16_HA:
7604 case elfcpp::R_POWERPC_PLT16_HI:
7605 case elfcpp::R_POWERPC_PLT16_HA:
7606 case elfcpp::R_POWERPC_SECTOFF_HI:
7607 case elfcpp::R_POWERPC_SECTOFF_HA:
7608 case elfcpp::R_PPC64_TOC16_HI:
7609 case elfcpp::R_PPC64_TOC16_HA:
7610 case elfcpp::R_PPC64_PLTGOT16_HI:
7611 case elfcpp::R_PPC64_PLTGOT16_HA:
7612 case elfcpp::R_POWERPC_TPREL16_HI:
7613 case elfcpp::R_POWERPC_TPREL16_HA:
7614 case elfcpp::R_POWERPC_DTPREL16_HI:
7615 case elfcpp::R_POWERPC_DTPREL16_HA:
7616 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7617 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7618 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7619 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7620 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7621 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7622 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7623 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7624 case elfcpp::R_POWERPC_REL16_HI:
7625 case elfcpp::R_POWERPC_REL16_HA:
7626 if (size != 32)
7627 overflow = Reloc::CHECK_HIGH_INSN;
7628 break;
7629
7630 case elfcpp::R_POWERPC_REL16:
7631 case elfcpp::R_PPC64_TOC16:
7632 case elfcpp::R_POWERPC_GOT16:
7633 case elfcpp::R_POWERPC_SECTOFF:
7634 case elfcpp::R_POWERPC_TPREL16:
7635 case elfcpp::R_POWERPC_DTPREL16:
7636 case elfcpp::R_POWERPC_GOT_TLSGD16:
7637 case elfcpp::R_POWERPC_GOT_TLSLD16:
7638 case elfcpp::R_POWERPC_GOT_TPREL16:
7639 case elfcpp::R_POWERPC_GOT_DTPREL16:
7640 overflow = Reloc::CHECK_LOW_INSN;
7641 break;
7642
7643 case elfcpp::R_POWERPC_ADDR24:
7644 case elfcpp::R_POWERPC_ADDR14:
7645 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7646 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7647 case elfcpp::R_PPC64_ADDR16_DS:
7648 case elfcpp::R_POWERPC_REL24:
7649 case elfcpp::R_PPC_PLTREL24:
7650 case elfcpp::R_PPC_LOCAL24PC:
7651 case elfcpp::R_PPC64_TPREL16_DS:
7652 case elfcpp::R_PPC64_DTPREL16_DS:
7653 case elfcpp::R_PPC64_TOC16_DS:
7654 case elfcpp::R_PPC64_GOT16_DS:
7655 case elfcpp::R_PPC64_SECTOFF_DS:
7656 case elfcpp::R_POWERPC_REL14:
7657 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7658 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7659 overflow = Reloc::CHECK_SIGNED;
7660 break;
7661 }
7662
7663 if (overflow == Reloc::CHECK_LOW_INSN
7664 || overflow == Reloc::CHECK_HIGH_INSN)
7665 {
7666 Insn* iview = reinterpret_cast<Insn*>(view - 2 * big_endian);
7667 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7668
7669 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7670 overflow = Reloc::CHECK_BITFIELD;
7671 else if (overflow == Reloc::CHECK_LOW_INSN
7672 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7673 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7674 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7675 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7676 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7677 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7678 overflow = Reloc::CHECK_UNSIGNED;
7679 else
7680 overflow = Reloc::CHECK_SIGNED;
7681 }
7682
7683 typename Powerpc_relocate_functions<size, big_endian>::Status status
7684 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7685 switch (r_type)
7686 {
7687 case elfcpp::R_POWERPC_NONE:
7688 case elfcpp::R_POWERPC_TLS:
7689 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7690 case elfcpp::R_POWERPC_GNU_VTENTRY:
7691 break;
7692
7693 case elfcpp::R_PPC64_ADDR64:
7694 case elfcpp::R_PPC64_REL64:
7695 case elfcpp::R_PPC64_TOC:
7696 case elfcpp::R_PPC64_ADDR64_LOCAL:
7697 Reloc::addr64(view, value);
7698 break;
7699
7700 case elfcpp::R_POWERPC_TPREL:
7701 case elfcpp::R_POWERPC_DTPREL:
7702 if (size == 64)
7703 Reloc::addr64(view, value);
7704 else
7705 status = Reloc::addr32(view, value, overflow);
7706 break;
7707
7708 case elfcpp::R_PPC64_UADDR64:
7709 Reloc::addr64_u(view, value);
7710 break;
7711
7712 case elfcpp::R_POWERPC_ADDR32:
7713 status = Reloc::addr32(view, value, overflow);
7714 break;
7715
7716 case elfcpp::R_POWERPC_REL32:
7717 case elfcpp::R_POWERPC_UADDR32:
7718 status = Reloc::addr32_u(view, value, overflow);
7719 break;
7720
7721 case elfcpp::R_POWERPC_ADDR24:
7722 case elfcpp::R_POWERPC_REL24:
7723 case elfcpp::R_PPC_PLTREL24:
7724 case elfcpp::R_PPC_LOCAL24PC:
7725 status = Reloc::addr24(view, value, overflow);
7726 break;
7727
7728 case elfcpp::R_POWERPC_GOT_DTPREL16:
7729 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7730 case elfcpp::R_POWERPC_GOT_TPREL16:
7731 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7732 if (size == 64)
7733 {
7734 // On ppc64 these are all ds form
7735 status = Reloc::addr16_ds(view, value, overflow);
7736 break;
7737 }
7738 case elfcpp::R_POWERPC_ADDR16:
7739 case elfcpp::R_POWERPC_REL16:
7740 case elfcpp::R_PPC64_TOC16:
7741 case elfcpp::R_POWERPC_GOT16:
7742 case elfcpp::R_POWERPC_SECTOFF:
7743 case elfcpp::R_POWERPC_TPREL16:
7744 case elfcpp::R_POWERPC_DTPREL16:
7745 case elfcpp::R_POWERPC_GOT_TLSGD16:
7746 case elfcpp::R_POWERPC_GOT_TLSLD16:
7747 case elfcpp::R_POWERPC_ADDR16_LO:
7748 case elfcpp::R_POWERPC_REL16_LO:
7749 case elfcpp::R_PPC64_TOC16_LO:
7750 case elfcpp::R_POWERPC_GOT16_LO:
7751 case elfcpp::R_POWERPC_SECTOFF_LO:
7752 case elfcpp::R_POWERPC_TPREL16_LO:
7753 case elfcpp::R_POWERPC_DTPREL16_LO:
7754 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7755 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7756 status = Reloc::addr16(view, value, overflow);
7757 break;
7758
7759 case elfcpp::R_POWERPC_UADDR16:
7760 status = Reloc::addr16_u(view, value, overflow);
7761 break;
7762
7763 case elfcpp::R_PPC64_ADDR16_HIGH:
7764 case elfcpp::R_PPC64_TPREL16_HIGH:
7765 case elfcpp::R_PPC64_DTPREL16_HIGH:
7766 if (size == 32)
7767 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
7768 goto unsupp;
7769 case elfcpp::R_POWERPC_ADDR16_HI:
7770 case elfcpp::R_POWERPC_REL16_HI:
7771 case elfcpp::R_PPC64_TOC16_HI:
7772 case elfcpp::R_POWERPC_GOT16_HI:
7773 case elfcpp::R_POWERPC_SECTOFF_HI:
7774 case elfcpp::R_POWERPC_TPREL16_HI:
7775 case elfcpp::R_POWERPC_DTPREL16_HI:
7776 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7777 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7778 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7779 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7780 Reloc::addr16_hi(view, value);
7781 break;
7782
7783 case elfcpp::R_PPC64_ADDR16_HIGHA:
7784 case elfcpp::R_PPC64_TPREL16_HIGHA:
7785 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7786 if (size == 32)
7787 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
7788 goto unsupp;
7789 case elfcpp::R_POWERPC_ADDR16_HA:
7790 case elfcpp::R_POWERPC_REL16_HA:
7791 case elfcpp::R_PPC64_TOC16_HA:
7792 case elfcpp::R_POWERPC_GOT16_HA:
7793 case elfcpp::R_POWERPC_SECTOFF_HA:
7794 case elfcpp::R_POWERPC_TPREL16_HA:
7795 case elfcpp::R_POWERPC_DTPREL16_HA:
7796 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7797 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7798 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7799 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7800 Reloc::addr16_ha(view, value);
7801 break;
7802
7803 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7804 if (size == 32)
7805 // R_PPC_EMB_NADDR16_LO
7806 goto unsupp;
7807 case elfcpp::R_PPC64_ADDR16_HIGHER:
7808 case elfcpp::R_PPC64_TPREL16_HIGHER:
7809 Reloc::addr16_hi2(view, value);
7810 break;
7811
7812 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7813 if (size == 32)
7814 // R_PPC_EMB_NADDR16_HI
7815 goto unsupp;
7816 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7817 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7818 Reloc::addr16_ha2(view, value);
7819 break;
7820
7821 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7822 if (size == 32)
7823 // R_PPC_EMB_NADDR16_HA
7824 goto unsupp;
7825 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7826 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7827 Reloc::addr16_hi3(view, value);
7828 break;
7829
7830 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7831 if (size == 32)
7832 // R_PPC_EMB_SDAI16
7833 goto unsupp;
7834 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7835 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7836 Reloc::addr16_ha3(view, value);
7837 break;
7838
7839 case elfcpp::R_PPC64_DTPREL16_DS:
7840 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7841 if (size == 32)
7842 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
7843 goto unsupp;
7844 case elfcpp::R_PPC64_TPREL16_DS:
7845 case elfcpp::R_PPC64_TPREL16_LO_DS:
7846 if (size == 32)
7847 // R_PPC_TLSGD, R_PPC_TLSLD
7848 break;
7849 case elfcpp::R_PPC64_ADDR16_DS:
7850 case elfcpp::R_PPC64_ADDR16_LO_DS:
7851 case elfcpp::R_PPC64_TOC16_DS:
7852 case elfcpp::R_PPC64_TOC16_LO_DS:
7853 case elfcpp::R_PPC64_GOT16_DS:
7854 case elfcpp::R_PPC64_GOT16_LO_DS:
7855 case elfcpp::R_PPC64_SECTOFF_DS:
7856 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7857 status = Reloc::addr16_ds(view, value, overflow);
7858 break;
7859
7860 case elfcpp::R_POWERPC_ADDR14:
7861 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7862 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7863 case elfcpp::R_POWERPC_REL14:
7864 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7865 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7866 status = Reloc::addr14(view, value, overflow);
7867 break;
7868
7869 case elfcpp::R_POWERPC_COPY:
7870 case elfcpp::R_POWERPC_GLOB_DAT:
7871 case elfcpp::R_POWERPC_JMP_SLOT:
7872 case elfcpp::R_POWERPC_RELATIVE:
7873 case elfcpp::R_POWERPC_DTPMOD:
7874 case elfcpp::R_PPC64_JMP_IREL:
7875 case elfcpp::R_POWERPC_IRELATIVE:
7876 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7877 _("unexpected reloc %u in object file"),
7878 r_type);
7879 break;
7880
7881 case elfcpp::R_PPC_EMB_SDA21:
7882 if (size == 32)
7883 goto unsupp;
7884 else
7885 {
7886 // R_PPC64_TOCSAVE. For the time being this can be ignored.
7887 }
7888 break;
7889
7890 case elfcpp::R_PPC_EMB_SDA2I16:
7891 case elfcpp::R_PPC_EMB_SDA2REL:
7892 if (size == 32)
7893 goto unsupp;
7894 // R_PPC64_TLSGD, R_PPC64_TLSLD
7895 break;
7896
7897 case elfcpp::R_POWERPC_PLT32:
7898 case elfcpp::R_POWERPC_PLTREL32:
7899 case elfcpp::R_POWERPC_PLT16_LO:
7900 case elfcpp::R_POWERPC_PLT16_HI:
7901 case elfcpp::R_POWERPC_PLT16_HA:
7902 case elfcpp::R_PPC_SDAREL16:
7903 case elfcpp::R_POWERPC_ADDR30:
7904 case elfcpp::R_PPC64_PLT64:
7905 case elfcpp::R_PPC64_PLTREL64:
7906 case elfcpp::R_PPC64_PLTGOT16:
7907 case elfcpp::R_PPC64_PLTGOT16_LO:
7908 case elfcpp::R_PPC64_PLTGOT16_HI:
7909 case elfcpp::R_PPC64_PLTGOT16_HA:
7910 case elfcpp::R_PPC64_PLT16_LO_DS:
7911 case elfcpp::R_PPC64_PLTGOT16_DS:
7912 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
7913 case elfcpp::R_PPC_EMB_RELSDA:
7914 case elfcpp::R_PPC_TOC16:
7915 default:
7916 unsupp:
7917 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7918 _("unsupported reloc %u"),
7919 r_type);
7920 break;
7921 }
7922 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
7923 && (has_stub_value
7924 || !(gsym != NULL
7925 && gsym->is_undefined()
7926 && is_branch_reloc(r_type))))
7927 {
7928 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7929 _("relocation overflow"));
7930 if (has_stub_value)
7931 gold_info(_("try relinking with a smaller --stub-group-size"));
7932 }
7933
7934 return true;
7935 }
7936
7937 // Relocate section data.
7938
7939 template<int size, bool big_endian>
7940 void
7941 Target_powerpc<size, big_endian>::relocate_section(
7942 const Relocate_info<size, big_endian>* relinfo,
7943 unsigned int sh_type,
7944 const unsigned char* prelocs,
7945 size_t reloc_count,
7946 Output_section* output_section,
7947 bool needs_special_offset_handling,
7948 unsigned char* view,
7949 Address address,
7950 section_size_type view_size,
7951 const Reloc_symbol_changes* reloc_symbol_changes)
7952 {
7953 typedef Target_powerpc<size, big_endian> Powerpc;
7954 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
7955 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
7956 Powerpc_comdat_behavior;
7957
7958 gold_assert(sh_type == elfcpp::SHT_RELA);
7959
7960 gold::relocate_section<size, big_endian, Powerpc, elfcpp::SHT_RELA,
7961 Powerpc_relocate, Powerpc_comdat_behavior>(
7962 relinfo,
7963 this,
7964 prelocs,
7965 reloc_count,
7966 output_section,
7967 needs_special_offset_handling,
7968 view,
7969 address,
7970 view_size,
7971 reloc_symbol_changes);
7972 }
7973
7974 class Powerpc_scan_relocatable_reloc
7975 {
7976 public:
7977 // Return the strategy to use for a local symbol which is not a
7978 // section symbol, given the relocation type.
7979 inline Relocatable_relocs::Reloc_strategy
7980 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
7981 {
7982 if (r_type == 0 && r_sym == 0)
7983 return Relocatable_relocs::RELOC_DISCARD;
7984 return Relocatable_relocs::RELOC_COPY;
7985 }
7986
7987 // Return the strategy to use for a local symbol which is a section
7988 // symbol, given the relocation type.
7989 inline Relocatable_relocs::Reloc_strategy
7990 local_section_strategy(unsigned int, Relobj*)
7991 {
7992 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
7993 }
7994
7995 // Return the strategy to use for a global symbol, given the
7996 // relocation type, the object, and the symbol index.
7997 inline Relocatable_relocs::Reloc_strategy
7998 global_strategy(unsigned int r_type, Relobj*, unsigned int)
7999 {
8000 if (r_type == elfcpp::R_PPC_PLTREL24)
8001 return Relocatable_relocs::RELOC_SPECIAL;
8002 return Relocatable_relocs::RELOC_COPY;
8003 }
8004 };
8005
8006 // Scan the relocs during a relocatable link.
8007
8008 template<int size, bool big_endian>
8009 void
8010 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8011 Symbol_table* symtab,
8012 Layout* layout,
8013 Sized_relobj_file<size, big_endian>* object,
8014 unsigned int data_shndx,
8015 unsigned int sh_type,
8016 const unsigned char* prelocs,
8017 size_t reloc_count,
8018 Output_section* output_section,
8019 bool needs_special_offset_handling,
8020 size_t local_symbol_count,
8021 const unsigned char* plocal_symbols,
8022 Relocatable_relocs* rr)
8023 {
8024 gold_assert(sh_type == elfcpp::SHT_RELA);
8025
8026 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
8027 Powerpc_scan_relocatable_reloc>(
8028 symtab,
8029 layout,
8030 object,
8031 data_shndx,
8032 prelocs,
8033 reloc_count,
8034 output_section,
8035 needs_special_offset_handling,
8036 local_symbol_count,
8037 plocal_symbols,
8038 rr);
8039 }
8040
8041 // Emit relocations for a section.
8042 // This is a modified version of the function by the same name in
8043 // target-reloc.h. Using relocate_special_relocatable for
8044 // R_PPC_PLTREL24 would require duplication of the entire body of the
8045 // loop, so we may as well duplicate the whole thing.
8046
8047 template<int size, bool big_endian>
8048 void
8049 Target_powerpc<size, big_endian>::relocate_relocs(
8050 const Relocate_info<size, big_endian>* relinfo,
8051 unsigned int sh_type,
8052 const unsigned char* prelocs,
8053 size_t reloc_count,
8054 Output_section* output_section,
8055 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8056 const Relocatable_relocs* rr,
8057 unsigned char*,
8058 Address view_address,
8059 section_size_type,
8060 unsigned char* reloc_view,
8061 section_size_type reloc_view_size)
8062 {
8063 gold_assert(sh_type == elfcpp::SHT_RELA);
8064
8065 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8066 Reltype;
8067 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8068 Reltype_write;
8069 const int reloc_size
8070 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8071
8072 Powerpc_relobj<size, big_endian>* const object
8073 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8074 const unsigned int local_count = object->local_symbol_count();
8075 unsigned int got2_shndx = object->got2_shndx();
8076 Address got2_addend = 0;
8077 if (got2_shndx != 0)
8078 {
8079 got2_addend = object->get_output_section_offset(got2_shndx);
8080 gold_assert(got2_addend != invalid_address);
8081 }
8082
8083 unsigned char* pwrite = reloc_view;
8084 bool zap_next = false;
8085 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8086 {
8087 Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
8088 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8089 continue;
8090
8091 Reltype reloc(prelocs);
8092 Reltype_write reloc_write(pwrite);
8093
8094 Address offset = reloc.get_r_offset();
8095 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8096 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8097 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8098 const unsigned int orig_r_sym = r_sym;
8099 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8100 = reloc.get_r_addend();
8101 const Symbol* gsym = NULL;
8102
8103 if (zap_next)
8104 {
8105 // We could arrange to discard these and other relocs for
8106 // tls optimised sequences in the strategy methods, but for
8107 // now do as BFD ld does.
8108 r_type = elfcpp::R_POWERPC_NONE;
8109 zap_next = false;
8110 }
8111
8112 // Get the new symbol index.
8113 Output_section* os = NULL;
8114 if (r_sym < local_count)
8115 {
8116 switch (strategy)
8117 {
8118 case Relocatable_relocs::RELOC_COPY:
8119 case Relocatable_relocs::RELOC_SPECIAL:
8120 if (r_sym != 0)
8121 {
8122 r_sym = object->symtab_index(r_sym);
8123 gold_assert(r_sym != -1U);
8124 }
8125 break;
8126
8127 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8128 {
8129 // We are adjusting a section symbol. We need to find
8130 // the symbol table index of the section symbol for
8131 // the output section corresponding to input section
8132 // in which this symbol is defined.
8133 gold_assert(r_sym < local_count);
8134 bool is_ordinary;
8135 unsigned int shndx =
8136 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8137 gold_assert(is_ordinary);
8138 os = object->output_section(shndx);
8139 gold_assert(os != NULL);
8140 gold_assert(os->needs_symtab_index());
8141 r_sym = os->symtab_index();
8142 }
8143 break;
8144
8145 default:
8146 gold_unreachable();
8147 }
8148 }
8149 else
8150 {
8151 gsym = object->global_symbol(r_sym);
8152 gold_assert(gsym != NULL);
8153 if (gsym->is_forwarder())
8154 gsym = relinfo->symtab->resolve_forwards(gsym);
8155
8156 gold_assert(gsym->has_symtab_index());
8157 r_sym = gsym->symtab_index();
8158 }
8159
8160 // Get the new offset--the location in the output section where
8161 // this relocation should be applied.
8162 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8163 offset += offset_in_output_section;
8164 else
8165 {
8166 section_offset_type sot_offset =
8167 convert_types<section_offset_type, Address>(offset);
8168 section_offset_type new_sot_offset =
8169 output_section->output_offset(object, relinfo->data_shndx,
8170 sot_offset);
8171 gold_assert(new_sot_offset != -1);
8172 offset = new_sot_offset;
8173 }
8174
8175 // In an object file, r_offset is an offset within the section.
8176 // In an executable or dynamic object, generated by
8177 // --emit-relocs, r_offset is an absolute address.
8178 if (!parameters->options().relocatable())
8179 {
8180 offset += view_address;
8181 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8182 offset -= offset_in_output_section;
8183 }
8184
8185 // Handle the reloc addend based on the strategy.
8186 if (strategy == Relocatable_relocs::RELOC_COPY)
8187 ;
8188 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8189 {
8190 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8191 gold_assert(os != NULL);
8192 addend = psymval->value(object, addend) - os->address();
8193 }
8194 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8195 {
8196 if (addend >= 32768)
8197 addend += got2_addend;
8198 }
8199 else
8200 gold_unreachable();
8201
8202 if (!parameters->options().relocatable())
8203 {
8204 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8205 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8206 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8207 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8208 {
8209 // First instruction of a global dynamic sequence,
8210 // arg setup insn.
8211 const bool final = gsym == NULL || gsym->final_value_is_known();
8212 switch (this->optimize_tls_gd(final))
8213 {
8214 case tls::TLSOPT_TO_IE:
8215 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8216 - elfcpp::R_POWERPC_GOT_TLSGD16);
8217 break;
8218 case tls::TLSOPT_TO_LE:
8219 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8220 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8221 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8222 else
8223 {
8224 r_type = elfcpp::R_POWERPC_NONE;
8225 offset -= 2 * big_endian;
8226 }
8227 break;
8228 default:
8229 break;
8230 }
8231 }
8232 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8233 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8234 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8235 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8236 {
8237 // First instruction of a local dynamic sequence,
8238 // arg setup insn.
8239 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8240 {
8241 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8242 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8243 {
8244 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8245 const Output_section* os = relinfo->layout->tls_segment()
8246 ->first_section();
8247 gold_assert(os != NULL);
8248 gold_assert(os->needs_symtab_index());
8249 r_sym = os->symtab_index();
8250 addend = dtp_offset;
8251 }
8252 else
8253 {
8254 r_type = elfcpp::R_POWERPC_NONE;
8255 offset -= 2 * big_endian;
8256 }
8257 }
8258 }
8259 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8260 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8261 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8262 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8263 {
8264 // First instruction of initial exec sequence.
8265 const bool final = gsym == NULL || gsym->final_value_is_known();
8266 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8267 {
8268 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8269 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8270 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8271 else
8272 {
8273 r_type = elfcpp::R_POWERPC_NONE;
8274 offset -= 2 * big_endian;
8275 }
8276 }
8277 }
8278 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8279 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8280 {
8281 // Second instruction of a global dynamic sequence,
8282 // the __tls_get_addr call
8283 const bool final = gsym == NULL || gsym->final_value_is_known();
8284 switch (this->optimize_tls_gd(final))
8285 {
8286 case tls::TLSOPT_TO_IE:
8287 r_type = elfcpp::R_POWERPC_NONE;
8288 zap_next = true;
8289 break;
8290 case tls::TLSOPT_TO_LE:
8291 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8292 offset += 2 * big_endian;
8293 zap_next = true;
8294 break;
8295 default:
8296 break;
8297 }
8298 }
8299 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8300 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8301 {
8302 // Second instruction of a local dynamic sequence,
8303 // the __tls_get_addr call
8304 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8305 {
8306 const Output_section* os = relinfo->layout->tls_segment()
8307 ->first_section();
8308 gold_assert(os != NULL);
8309 gold_assert(os->needs_symtab_index());
8310 r_sym = os->symtab_index();
8311 addend = dtp_offset;
8312 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8313 offset += 2 * big_endian;
8314 zap_next = true;
8315 }
8316 }
8317 else if (r_type == elfcpp::R_POWERPC_TLS)
8318 {
8319 // Second instruction of an initial exec sequence
8320 const bool final = gsym == NULL || gsym->final_value_is_known();
8321 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8322 {
8323 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8324 offset += 2 * big_endian;
8325 }
8326 }
8327 }
8328
8329 reloc_write.put_r_offset(offset);
8330 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8331 reloc_write.put_r_addend(addend);
8332
8333 pwrite += reloc_size;
8334 }
8335
8336 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8337 == reloc_view_size);
8338 }
8339
8340 // Return the value to use for a dynamic symbol which requires special
8341 // treatment. This is how we support equality comparisons of function
8342 // pointers across shared library boundaries, as described in the
8343 // processor specific ABI supplement.
8344
8345 template<int size, bool big_endian>
8346 uint64_t
8347 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8348 {
8349 if (size == 32)
8350 {
8351 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8352 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8353 p != this->stub_tables_.end();
8354 ++p)
8355 {
8356 Address off = (*p)->find_plt_call_entry(gsym);
8357 if (off != invalid_address)
8358 return (*p)->stub_address() + off;
8359 }
8360 }
8361 else if (this->abiversion() >= 2)
8362 {
8363 Address off = this->glink_section()->find_global_entry(gsym);
8364 if (off != invalid_address)
8365 return this->glink_section()->global_entry_address() + off;
8366 }
8367 gold_unreachable();
8368 }
8369
8370 // Return the PLT address to use for a local symbol.
8371 template<int size, bool big_endian>
8372 uint64_t
8373 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8374 const Relobj* object,
8375 unsigned int symndx) const
8376 {
8377 if (size == 32)
8378 {
8379 const Sized_relobj<size, big_endian>* relobj
8380 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8381 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8382 p != this->stub_tables_.end();
8383 ++p)
8384 {
8385 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8386 symndx);
8387 if (off != invalid_address)
8388 return (*p)->stub_address() + off;
8389 }
8390 }
8391 gold_unreachable();
8392 }
8393
8394 // Return the PLT address to use for a global symbol.
8395 template<int size, bool big_endian>
8396 uint64_t
8397 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8398 const Symbol* gsym) const
8399 {
8400 if (size == 32)
8401 {
8402 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8403 p != this->stub_tables_.end();
8404 ++p)
8405 {
8406 Address off = (*p)->find_plt_call_entry(gsym);
8407 if (off != invalid_address)
8408 return (*p)->stub_address() + off;
8409 }
8410 }
8411 else if (this->abiversion() >= 2)
8412 {
8413 Address off = this->glink_section()->find_global_entry(gsym);
8414 if (off != invalid_address)
8415 return this->glink_section()->global_entry_address() + off;
8416 }
8417 gold_unreachable();
8418 }
8419
8420 // Return the offset to use for the GOT_INDX'th got entry which is
8421 // for a local tls symbol specified by OBJECT, SYMNDX.
8422 template<int size, bool big_endian>
8423 int64_t
8424 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8425 const Relobj* object,
8426 unsigned int symndx,
8427 unsigned int got_indx) const
8428 {
8429 const Powerpc_relobj<size, big_endian>* ppc_object
8430 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8431 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8432 {
8433 for (Got_type got_type = GOT_TYPE_TLSGD;
8434 got_type <= GOT_TYPE_TPREL;
8435 got_type = Got_type(got_type + 1))
8436 if (ppc_object->local_has_got_offset(symndx, got_type))
8437 {
8438 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8439 if (got_type == GOT_TYPE_TLSGD)
8440 off += size / 8;
8441 if (off == got_indx * (size / 8))
8442 {
8443 if (got_type == GOT_TYPE_TPREL)
8444 return -tp_offset;
8445 else
8446 return -dtp_offset;
8447 }
8448 }
8449 }
8450 gold_unreachable();
8451 }
8452
8453 // Return the offset to use for the GOT_INDX'th got entry which is
8454 // for global tls symbol GSYM.
8455 template<int size, bool big_endian>
8456 int64_t
8457 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8458 Symbol* gsym,
8459 unsigned int got_indx) const
8460 {
8461 if (gsym->type() == elfcpp::STT_TLS)
8462 {
8463 for (Got_type got_type = GOT_TYPE_TLSGD;
8464 got_type <= GOT_TYPE_TPREL;
8465 got_type = Got_type(got_type + 1))
8466 if (gsym->has_got_offset(got_type))
8467 {
8468 unsigned int off = gsym->got_offset(got_type);
8469 if (got_type == GOT_TYPE_TLSGD)
8470 off += size / 8;
8471 if (off == got_indx * (size / 8))
8472 {
8473 if (got_type == GOT_TYPE_TPREL)
8474 return -tp_offset;
8475 else
8476 return -dtp_offset;
8477 }
8478 }
8479 }
8480 gold_unreachable();
8481 }
8482
8483 // The selector for powerpc object files.
8484
8485 template<int size, bool big_endian>
8486 class Target_selector_powerpc : public Target_selector
8487 {
8488 public:
8489 Target_selector_powerpc()
8490 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8491 size, big_endian,
8492 (size == 64
8493 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8494 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8495 (size == 64
8496 ? (big_endian ? "elf64ppc" : "elf64lppc")
8497 : (big_endian ? "elf32ppc" : "elf32lppc")))
8498 { }
8499
8500 virtual Target*
8501 do_instantiate_target()
8502 { return new Target_powerpc<size, big_endian>(); }
8503 };
8504
8505 Target_selector_powerpc<32, true> target_selector_ppc32;
8506 Target_selector_powerpc<32, false> target_selector_ppc32le;
8507 Target_selector_powerpc<64, true> target_selector_ppc64;
8508 Target_selector_powerpc<64, false> target_selector_ppc64le;
8509
8510 // Instantiate these constants for -O0
8511 template<int size, bool big_endian>
8512 const int Output_data_glink<size, big_endian>::pltresolve_size;
8513 template<int size, bool big_endian>
8514 const typename Output_data_glink<size, big_endian>::Address
8515 Output_data_glink<size, big_endian>::invalid_address;
8516 template<int size, bool big_endian>
8517 const typename Stub_table<size, big_endian>::Address
8518 Stub_table<size, big_endian>::invalid_address;
8519 template<int size, bool big_endian>
8520 const typename Target_powerpc<size, big_endian>::Address
8521 Target_powerpc<size, big_endian>::invalid_address;
8522
8523 } // End anonymous namespace.
This page took 0.315637 seconds and 5 git commands to generate.