[GOLD] Don't assert in powerpc stub_table
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 template<int size, bool big_endian>
85 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
86 {
87 public:
88 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
89 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
90 typedef Unordered_map<Address, Section_refs> Access_from;
91
92 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
93 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
94 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
95 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
96 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
97 e_flags_(ehdr.get_e_flags()), st_other_()
98 {
99 this->set_abiversion(0);
100 }
101
102 ~Powerpc_relobj()
103 { }
104
105 // Read the symbols then set up st_other vector.
106 void
107 do_read_symbols(Read_symbols_data*);
108
109 // The .got2 section shndx.
110 unsigned int
111 got2_shndx() const
112 {
113 if (size == 32)
114 return this->special_;
115 else
116 return 0;
117 }
118
119 // The .opd section shndx.
120 unsigned int
121 opd_shndx() const
122 {
123 if (size == 32)
124 return 0;
125 else
126 return this->special_;
127 }
128
129 // Init OPD entry arrays.
130 void
131 init_opd(size_t opd_size)
132 {
133 size_t count = this->opd_ent_ndx(opd_size);
134 this->opd_ent_.resize(count);
135 }
136
137 // Return section and offset of function entry for .opd + R_OFF.
138 unsigned int
139 get_opd_ent(Address r_off, Address* value = NULL) const
140 {
141 size_t ndx = this->opd_ent_ndx(r_off);
142 gold_assert(ndx < this->opd_ent_.size());
143 gold_assert(this->opd_ent_[ndx].shndx != 0);
144 if (value != NULL)
145 *value = this->opd_ent_[ndx].off;
146 return this->opd_ent_[ndx].shndx;
147 }
148
149 // Set section and offset of function entry for .opd + R_OFF.
150 void
151 set_opd_ent(Address r_off, unsigned int shndx, Address value)
152 {
153 size_t ndx = this->opd_ent_ndx(r_off);
154 gold_assert(ndx < this->opd_ent_.size());
155 this->opd_ent_[ndx].shndx = shndx;
156 this->opd_ent_[ndx].off = value;
157 }
158
159 // Return discard flag for .opd + R_OFF.
160 bool
161 get_opd_discard(Address r_off) const
162 {
163 size_t ndx = this->opd_ent_ndx(r_off);
164 gold_assert(ndx < this->opd_ent_.size());
165 return this->opd_ent_[ndx].discard;
166 }
167
168 // Set discard flag for .opd + R_OFF.
169 void
170 set_opd_discard(Address r_off)
171 {
172 size_t ndx = this->opd_ent_ndx(r_off);
173 gold_assert(ndx < this->opd_ent_.size());
174 this->opd_ent_[ndx].discard = true;
175 }
176
177 bool
178 opd_valid() const
179 { return this->opd_valid_; }
180
181 void
182 set_opd_valid()
183 { this->opd_valid_ = true; }
184
185 // Examine .rela.opd to build info about function entry points.
186 void
187 scan_opd_relocs(size_t reloc_count,
188 const unsigned char* prelocs,
189 const unsigned char* plocal_syms);
190
191 // Perform the Sized_relobj_file method, then set up opd info from
192 // .opd relocs.
193 void
194 do_read_relocs(Read_relocs_data*);
195
196 bool
197 do_find_special_sections(Read_symbols_data* sd);
198
199 // Adjust this local symbol value. Return false if the symbol
200 // should be discarded from the output file.
201 bool
202 do_adjust_local_symbol(Symbol_value<size>* lv) const
203 {
204 if (size == 64 && this->opd_shndx() != 0)
205 {
206 bool is_ordinary;
207 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
208 return true;
209 if (this->get_opd_discard(lv->input_value()))
210 return false;
211 }
212 return true;
213 }
214
215 Access_from*
216 access_from_map()
217 { return &this->access_from_map_; }
218
219 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
220 // section at DST_OFF.
221 void
222 add_reference(Relobj* src_obj,
223 unsigned int src_indx,
224 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
225 {
226 Section_id src_id(src_obj, src_indx);
227 this->access_from_map_[dst_off].insert(src_id);
228 }
229
230 // Add a reference to the code section specified by the .opd entry
231 // at DST_OFF
232 void
233 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
234 {
235 size_t ndx = this->opd_ent_ndx(dst_off);
236 if (ndx >= this->opd_ent_.size())
237 this->opd_ent_.resize(ndx + 1);
238 this->opd_ent_[ndx].gc_mark = true;
239 }
240
241 void
242 process_gc_mark(Symbol_table* symtab)
243 {
244 for (size_t i = 0; i < this->opd_ent_.size(); i++)
245 if (this->opd_ent_[i].gc_mark)
246 {
247 unsigned int shndx = this->opd_ent_[i].shndx;
248 symtab->gc()->worklist().push_back(Section_id(this, shndx));
249 }
250 }
251
252 // Return offset in output GOT section that this object will use
253 // as a TOC pointer. Won't be just a constant with multi-toc support.
254 Address
255 toc_base_offset() const
256 { return 0x8000; }
257
258 void
259 set_has_small_toc_reloc()
260 { has_small_toc_reloc_ = true; }
261
262 bool
263 has_small_toc_reloc() const
264 { return has_small_toc_reloc_; }
265
266 void
267 set_has_14bit_branch(unsigned int shndx)
268 {
269 if (shndx >= this->has14_.size())
270 this->has14_.resize(shndx + 1);
271 this->has14_[shndx] = true;
272 }
273
274 bool
275 has_14bit_branch(unsigned int shndx) const
276 { return shndx < this->has14_.size() && this->has14_[shndx]; }
277
278 void
279 set_stub_table(unsigned int shndx, unsigned int stub_index)
280 {
281 if (shndx >= this->stub_table_index_.size())
282 this->stub_table_index_.resize(shndx + 1, -1);
283 this->stub_table_index_[shndx] = stub_index;
284 }
285
286 Stub_table<size, big_endian>*
287 stub_table(unsigned int shndx)
288 {
289 if (shndx < this->stub_table_index_.size())
290 {
291 Target_powerpc<size, big_endian>* target
292 = static_cast<Target_powerpc<size, big_endian>*>(
293 parameters->sized_target<size, big_endian>());
294 unsigned int indx = this->stub_table_index_[shndx];
295 if (indx < target->stub_tables().size())
296 return target->stub_tables()[indx];
297 }
298 return NULL;
299 }
300
301 void
302 clear_stub_table()
303 {
304 this->stub_table_index_.clear();
305 }
306
307 int
308 abiversion() const
309 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
310
311 // Set ABI version for input and output
312 void
313 set_abiversion(int ver);
314
315 unsigned int
316 ppc64_local_entry_offset(const Symbol* sym) const
317 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
318
319 unsigned int
320 ppc64_local_entry_offset(unsigned int symndx) const
321 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
322
323 private:
324 struct Opd_ent
325 {
326 unsigned int shndx;
327 bool discard : 1;
328 bool gc_mark : 1;
329 Address off;
330 };
331
332 // Return index into opd_ent_ array for .opd entry at OFF.
333 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
334 // apart when the language doesn't use the last 8-byte word, the
335 // environment pointer. Thus dividing the entry section offset by
336 // 16 will give an index into opd_ent_ that works for either layout
337 // of .opd. (It leaves some elements of the vector unused when .opd
338 // entries are spaced 24 bytes apart, but we don't know the spacing
339 // until relocations are processed, and in any case it is possible
340 // for an object to have some entries spaced 16 bytes apart and
341 // others 24 bytes apart.)
342 size_t
343 opd_ent_ndx(size_t off) const
344 { return off >> 4;}
345
346 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
347 unsigned int special_;
348
349 // For 64-bit, whether this object uses small model relocs to access
350 // the toc.
351 bool has_small_toc_reloc_;
352
353 // Set at the start of gc_process_relocs, when we know opd_ent_
354 // vector is valid. The flag could be made atomic and set in
355 // do_read_relocs with memory_order_release and then tested with
356 // memory_order_acquire, potentially resulting in fewer entries in
357 // access_from_map_.
358 bool opd_valid_;
359
360 // The first 8-byte word of an OPD entry gives the address of the
361 // entry point of the function. Relocatable object files have a
362 // relocation on this word. The following vector records the
363 // section and offset specified by these relocations.
364 std::vector<Opd_ent> opd_ent_;
365
366 // References made to this object's .opd section when running
367 // gc_process_relocs for another object, before the opd_ent_ vector
368 // is valid for this object.
369 Access_from access_from_map_;
370
371 // Whether input section has a 14-bit branch reloc.
372 std::vector<bool> has14_;
373
374 // The stub table to use for a given input section.
375 std::vector<unsigned int> stub_table_index_;
376
377 // Header e_flags
378 elfcpp::Elf_Word e_flags_;
379
380 // ELF st_other field for local symbols.
381 std::vector<unsigned char> st_other_;
382 };
383
384 template<int size, bool big_endian>
385 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
386 {
387 public:
388 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
389
390 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
391 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
392 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
393 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
394 {
395 this->set_abiversion(0);
396 }
397
398 ~Powerpc_dynobj()
399 { }
400
401 // Call Sized_dynobj::do_read_symbols to read the symbols then
402 // read .opd from a dynamic object, filling in opd_ent_ vector,
403 void
404 do_read_symbols(Read_symbols_data*);
405
406 // The .opd section shndx.
407 unsigned int
408 opd_shndx() const
409 {
410 return this->opd_shndx_;
411 }
412
413 // The .opd section address.
414 Address
415 opd_address() const
416 {
417 return this->opd_address_;
418 }
419
420 // Init OPD entry arrays.
421 void
422 init_opd(size_t opd_size)
423 {
424 size_t count = this->opd_ent_ndx(opd_size);
425 this->opd_ent_.resize(count);
426 }
427
428 // Return section and offset of function entry for .opd + R_OFF.
429 unsigned int
430 get_opd_ent(Address r_off, Address* value = NULL) const
431 {
432 size_t ndx = this->opd_ent_ndx(r_off);
433 gold_assert(ndx < this->opd_ent_.size());
434 gold_assert(this->opd_ent_[ndx].shndx != 0);
435 if (value != NULL)
436 *value = this->opd_ent_[ndx].off;
437 return this->opd_ent_[ndx].shndx;
438 }
439
440 // Set section and offset of function entry for .opd + R_OFF.
441 void
442 set_opd_ent(Address r_off, unsigned int shndx, Address value)
443 {
444 size_t ndx = this->opd_ent_ndx(r_off);
445 gold_assert(ndx < this->opd_ent_.size());
446 this->opd_ent_[ndx].shndx = shndx;
447 this->opd_ent_[ndx].off = value;
448 }
449
450 int
451 abiversion() const
452 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
453
454 // Set ABI version for input and output.
455 void
456 set_abiversion(int ver);
457
458 private:
459 // Used to specify extent of executable sections.
460 struct Sec_info
461 {
462 Sec_info(Address start_, Address len_, unsigned int shndx_)
463 : start(start_), len(len_), shndx(shndx_)
464 { }
465
466 bool
467 operator<(const Sec_info& that) const
468 { return this->start < that.start; }
469
470 Address start;
471 Address len;
472 unsigned int shndx;
473 };
474
475 struct Opd_ent
476 {
477 unsigned int shndx;
478 Address off;
479 };
480
481 // Return index into opd_ent_ array for .opd entry at OFF.
482 size_t
483 opd_ent_ndx(size_t off) const
484 { return off >> 4;}
485
486 // For 64-bit the .opd section shndx and address.
487 unsigned int opd_shndx_;
488 Address opd_address_;
489
490 // The first 8-byte word of an OPD entry gives the address of the
491 // entry point of the function. Records the section and offset
492 // corresponding to the address. Note that in dynamic objects,
493 // offset is *not* relative to the section.
494 std::vector<Opd_ent> opd_ent_;
495
496 // Header e_flags
497 elfcpp::Elf_Word e_flags_;
498 };
499
500 template<int size, bool big_endian>
501 class Target_powerpc : public Sized_target<size, big_endian>
502 {
503 public:
504 typedef
505 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
506 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
507 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
508 static const Address invalid_address = static_cast<Address>(0) - 1;
509 // Offset of tp and dtp pointers from start of TLS block.
510 static const Address tp_offset = 0x7000;
511 static const Address dtp_offset = 0x8000;
512
513 Target_powerpc()
514 : Sized_target<size, big_endian>(&powerpc_info),
515 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
516 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
517 tlsld_got_offset_(-1U),
518 stub_tables_(), branch_lookup_table_(), branch_info_(),
519 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
520 stub_group_size_(0), savres_section_(0)
521 {
522 }
523
524 // Process the relocations to determine unreferenced sections for
525 // garbage collection.
526 void
527 gc_process_relocs(Symbol_table* symtab,
528 Layout* layout,
529 Sized_relobj_file<size, big_endian>* object,
530 unsigned int data_shndx,
531 unsigned int sh_type,
532 const unsigned char* prelocs,
533 size_t reloc_count,
534 Output_section* output_section,
535 bool needs_special_offset_handling,
536 size_t local_symbol_count,
537 const unsigned char* plocal_symbols);
538
539 // Scan the relocations to look for symbol adjustments.
540 void
541 scan_relocs(Symbol_table* symtab,
542 Layout* layout,
543 Sized_relobj_file<size, big_endian>* object,
544 unsigned int data_shndx,
545 unsigned int sh_type,
546 const unsigned char* prelocs,
547 size_t reloc_count,
548 Output_section* output_section,
549 bool needs_special_offset_handling,
550 size_t local_symbol_count,
551 const unsigned char* plocal_symbols);
552
553 // Map input .toc section to output .got section.
554 const char*
555 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
556 {
557 if (size == 64 && strcmp(name, ".toc") == 0)
558 {
559 *plen = 4;
560 return ".got";
561 }
562 return NULL;
563 }
564
565 // Provide linker defined save/restore functions.
566 void
567 define_save_restore_funcs(Layout*, Symbol_table*);
568
569 // No stubs unless a final link.
570 bool
571 do_may_relax() const
572 { return !parameters->options().relocatable(); }
573
574 bool
575 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
576
577 void
578 do_plt_fde_location(const Output_data*, unsigned char*,
579 uint64_t*, off_t*) const;
580
581 // Stash info about branches, for stub generation.
582 void
583 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
584 unsigned int data_shndx, Address r_offset,
585 unsigned int r_type, unsigned int r_sym, Address addend)
586 {
587 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
588 this->branch_info_.push_back(info);
589 if (r_type == elfcpp::R_POWERPC_REL14
590 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
591 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
592 ppc_object->set_has_14bit_branch(data_shndx);
593 }
594
595 void
596 do_define_standard_symbols(Symbol_table*, Layout*);
597
598 // Finalize the sections.
599 void
600 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
601
602 // Return the value to use for a dynamic which requires special
603 // treatment.
604 uint64_t
605 do_dynsym_value(const Symbol*) const;
606
607 // Return the PLT address to use for a local symbol.
608 uint64_t
609 do_plt_address_for_local(const Relobj*, unsigned int) const;
610
611 // Return the PLT address to use for a global symbol.
612 uint64_t
613 do_plt_address_for_global(const Symbol*) const;
614
615 // Return the offset to use for the GOT_INDX'th got entry which is
616 // for a local tls symbol specified by OBJECT, SYMNDX.
617 int64_t
618 do_tls_offset_for_local(const Relobj* object,
619 unsigned int symndx,
620 unsigned int got_indx) const;
621
622 // Return the offset to use for the GOT_INDX'th got entry which is
623 // for global tls symbol GSYM.
624 int64_t
625 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
626
627 void
628 do_function_location(Symbol_location*) const;
629
630 bool
631 do_can_check_for_function_pointers() const
632 { return true; }
633
634 // Adjust -fsplit-stack code which calls non-split-stack code.
635 void
636 do_calls_non_split(Relobj* object, unsigned int shndx,
637 section_offset_type fnoffset, section_size_type fnsize,
638 const unsigned char* prelocs, size_t reloc_count,
639 unsigned char* view, section_size_type view_size,
640 std::string* from, std::string* to) const;
641
642 // Relocate a section.
643 void
644 relocate_section(const Relocate_info<size, big_endian>*,
645 unsigned int sh_type,
646 const unsigned char* prelocs,
647 size_t reloc_count,
648 Output_section* output_section,
649 bool needs_special_offset_handling,
650 unsigned char* view,
651 Address view_address,
652 section_size_type view_size,
653 const Reloc_symbol_changes*);
654
655 // Scan the relocs during a relocatable link.
656 void
657 scan_relocatable_relocs(Symbol_table* symtab,
658 Layout* layout,
659 Sized_relobj_file<size, big_endian>* object,
660 unsigned int data_shndx,
661 unsigned int sh_type,
662 const unsigned char* prelocs,
663 size_t reloc_count,
664 Output_section* output_section,
665 bool needs_special_offset_handling,
666 size_t local_symbol_count,
667 const unsigned char* plocal_symbols,
668 Relocatable_relocs*);
669
670 // Scan the relocs for --emit-relocs.
671 void
672 emit_relocs_scan(Symbol_table* symtab,
673 Layout* layout,
674 Sized_relobj_file<size, big_endian>* object,
675 unsigned int data_shndx,
676 unsigned int sh_type,
677 const unsigned char* prelocs,
678 size_t reloc_count,
679 Output_section* output_section,
680 bool needs_special_offset_handling,
681 size_t local_symbol_count,
682 const unsigned char* plocal_syms,
683 Relocatable_relocs* rr);
684
685 // Emit relocations for a section.
686 void
687 relocate_relocs(const Relocate_info<size, big_endian>*,
688 unsigned int sh_type,
689 const unsigned char* prelocs,
690 size_t reloc_count,
691 Output_section* output_section,
692 typename elfcpp::Elf_types<size>::Elf_Off
693 offset_in_output_section,
694 unsigned char*,
695 Address view_address,
696 section_size_type,
697 unsigned char* reloc_view,
698 section_size_type reloc_view_size);
699
700 // Return whether SYM is defined by the ABI.
701 bool
702 do_is_defined_by_abi(const Symbol* sym) const
703 {
704 return strcmp(sym->name(), "__tls_get_addr") == 0;
705 }
706
707 // Return the size of the GOT section.
708 section_size_type
709 got_size() const
710 {
711 gold_assert(this->got_ != NULL);
712 return this->got_->data_size();
713 }
714
715 // Get the PLT section.
716 const Output_data_plt_powerpc<size, big_endian>*
717 plt_section() const
718 {
719 gold_assert(this->plt_ != NULL);
720 return this->plt_;
721 }
722
723 // Get the IPLT section.
724 const Output_data_plt_powerpc<size, big_endian>*
725 iplt_section() const
726 {
727 gold_assert(this->iplt_ != NULL);
728 return this->iplt_;
729 }
730
731 // Get the .glink section.
732 const Output_data_glink<size, big_endian>*
733 glink_section() const
734 {
735 gold_assert(this->glink_ != NULL);
736 return this->glink_;
737 }
738
739 Output_data_glink<size, big_endian>*
740 glink_section()
741 {
742 gold_assert(this->glink_ != NULL);
743 return this->glink_;
744 }
745
746 bool has_glink() const
747 { return this->glink_ != NULL; }
748
749 // Get the GOT section.
750 const Output_data_got_powerpc<size, big_endian>*
751 got_section() const
752 {
753 gold_assert(this->got_ != NULL);
754 return this->got_;
755 }
756
757 // Get the GOT section, creating it if necessary.
758 Output_data_got_powerpc<size, big_endian>*
759 got_section(Symbol_table*, Layout*);
760
761 Object*
762 do_make_elf_object(const std::string&, Input_file*, off_t,
763 const elfcpp::Ehdr<size, big_endian>&);
764
765 // Return the number of entries in the GOT.
766 unsigned int
767 got_entry_count() const
768 {
769 if (this->got_ == NULL)
770 return 0;
771 return this->got_size() / (size / 8);
772 }
773
774 // Return the number of entries in the PLT.
775 unsigned int
776 plt_entry_count() const;
777
778 // Return the offset of the first non-reserved PLT entry.
779 unsigned int
780 first_plt_entry_offset() const
781 {
782 if (size == 32)
783 return 0;
784 if (this->abiversion() >= 2)
785 return 16;
786 return 24;
787 }
788
789 // Return the size of each PLT entry.
790 unsigned int
791 plt_entry_size() const
792 {
793 if (size == 32)
794 return 4;
795 if (this->abiversion() >= 2)
796 return 8;
797 return 24;
798 }
799
800 Output_data_save_res<size, big_endian>*
801 savres_section() const
802 {
803 return this->savres_section_;
804 }
805
806 // Add any special sections for this symbol to the gc work list.
807 // For powerpc64, this adds the code section of a function
808 // descriptor.
809 void
810 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
811
812 // Handle target specific gc actions when adding a gc reference from
813 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
814 // and DST_OFF. For powerpc64, this adds a referenc to the code
815 // section of a function descriptor.
816 void
817 do_gc_add_reference(Symbol_table* symtab,
818 Relobj* src_obj,
819 unsigned int src_shndx,
820 Relobj* dst_obj,
821 unsigned int dst_shndx,
822 Address dst_off) const;
823
824 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
825 const Stub_tables&
826 stub_tables() const
827 { return this->stub_tables_; }
828
829 const Output_data_brlt_powerpc<size, big_endian>*
830 brlt_section() const
831 { return this->brlt_section_; }
832
833 void
834 add_branch_lookup_table(Address to)
835 {
836 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
837 this->branch_lookup_table_.insert(std::make_pair(to, off));
838 }
839
840 Address
841 find_branch_lookup_table(Address to)
842 {
843 typename Branch_lookup_table::const_iterator p
844 = this->branch_lookup_table_.find(to);
845 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
846 }
847
848 void
849 write_branch_lookup_table(unsigned char *oview)
850 {
851 for (typename Branch_lookup_table::const_iterator p
852 = this->branch_lookup_table_.begin();
853 p != this->branch_lookup_table_.end();
854 ++p)
855 {
856 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
857 }
858 }
859
860 bool
861 plt_thread_safe() const
862 { return this->plt_thread_safe_; }
863
864 int
865 abiversion () const
866 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
867
868 void
869 set_abiversion (int ver)
870 {
871 elfcpp::Elf_Word flags = this->processor_specific_flags();
872 flags &= ~elfcpp::EF_PPC64_ABI;
873 flags |= ver & elfcpp::EF_PPC64_ABI;
874 this->set_processor_specific_flags(flags);
875 }
876
877 // Offset to to save stack slot
878 int
879 stk_toc () const
880 { return this->abiversion() < 2 ? 40 : 24; }
881
882 private:
883
884 class Track_tls
885 {
886 public:
887 enum Tls_get_addr
888 {
889 NOT_EXPECTED = 0,
890 EXPECTED = 1,
891 SKIP = 2,
892 NORMAL = 3
893 };
894
895 Track_tls()
896 : tls_get_addr_(NOT_EXPECTED),
897 relinfo_(NULL), relnum_(0), r_offset_(0)
898 { }
899
900 ~Track_tls()
901 {
902 if (this->tls_get_addr_ != NOT_EXPECTED)
903 this->missing();
904 }
905
906 void
907 missing(void)
908 {
909 if (this->relinfo_ != NULL)
910 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
911 _("missing expected __tls_get_addr call"));
912 }
913
914 void
915 expect_tls_get_addr_call(
916 const Relocate_info<size, big_endian>* relinfo,
917 size_t relnum,
918 Address r_offset)
919 {
920 this->tls_get_addr_ = EXPECTED;
921 this->relinfo_ = relinfo;
922 this->relnum_ = relnum;
923 this->r_offset_ = r_offset;
924 }
925
926 void
927 expect_tls_get_addr_call()
928 { this->tls_get_addr_ = EXPECTED; }
929
930 void
931 skip_next_tls_get_addr_call()
932 {this->tls_get_addr_ = SKIP; }
933
934 Tls_get_addr
935 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
936 {
937 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
938 || r_type == elfcpp::R_PPC_PLTREL24)
939 && gsym != NULL
940 && strcmp(gsym->name(), "__tls_get_addr") == 0);
941 Tls_get_addr last_tls = this->tls_get_addr_;
942 this->tls_get_addr_ = NOT_EXPECTED;
943 if (is_tls_call && last_tls != EXPECTED)
944 return last_tls;
945 else if (!is_tls_call && last_tls != NOT_EXPECTED)
946 {
947 this->missing();
948 return EXPECTED;
949 }
950 return NORMAL;
951 }
952
953 private:
954 // What we're up to regarding calls to __tls_get_addr.
955 // On powerpc, the branch and link insn making a call to
956 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
957 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
958 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
959 // The marker relocation always comes first, and has the same
960 // symbol as the reloc on the insn setting up the __tls_get_addr
961 // argument. This ties the arg setup insn with the call insn,
962 // allowing ld to safely optimize away the call. We check that
963 // every call to __tls_get_addr has a marker relocation, and that
964 // every marker relocation is on a call to __tls_get_addr.
965 Tls_get_addr tls_get_addr_;
966 // Info about the last reloc for error message.
967 const Relocate_info<size, big_endian>* relinfo_;
968 size_t relnum_;
969 Address r_offset_;
970 };
971
972 // The class which scans relocations.
973 class Scan : protected Track_tls
974 {
975 public:
976 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
977
978 Scan()
979 : Track_tls(), issued_non_pic_error_(false)
980 { }
981
982 static inline int
983 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
984
985 inline void
986 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
987 Sized_relobj_file<size, big_endian>* object,
988 unsigned int data_shndx,
989 Output_section* output_section,
990 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
991 const elfcpp::Sym<size, big_endian>& lsym,
992 bool is_discarded);
993
994 inline void
995 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
996 Sized_relobj_file<size, big_endian>* object,
997 unsigned int data_shndx,
998 Output_section* output_section,
999 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1000 Symbol* gsym);
1001
1002 inline bool
1003 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1004 Target_powerpc* ,
1005 Sized_relobj_file<size, big_endian>* relobj,
1006 unsigned int ,
1007 Output_section* ,
1008 const elfcpp::Rela<size, big_endian>& ,
1009 unsigned int r_type,
1010 const elfcpp::Sym<size, big_endian>&)
1011 {
1012 // PowerPC64 .opd is not folded, so any identical function text
1013 // may be folded and we'll still keep function addresses distinct.
1014 // That means no reloc is of concern here.
1015 if (size == 64)
1016 {
1017 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1018 <Powerpc_relobj<size, big_endian>*>(relobj);
1019 if (ppcobj->abiversion() == 1)
1020 return false;
1021 }
1022 // For 32-bit and ELFv2, conservatively assume anything but calls to
1023 // function code might be taking the address of the function.
1024 return !is_branch_reloc(r_type);
1025 }
1026
1027 inline bool
1028 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1029 Target_powerpc* ,
1030 Sized_relobj_file<size, big_endian>* relobj,
1031 unsigned int ,
1032 Output_section* ,
1033 const elfcpp::Rela<size, big_endian>& ,
1034 unsigned int r_type,
1035 Symbol*)
1036 {
1037 // As above.
1038 if (size == 64)
1039 {
1040 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1041 <Powerpc_relobj<size, big_endian>*>(relobj);
1042 if (ppcobj->abiversion() == 1)
1043 return false;
1044 }
1045 return !is_branch_reloc(r_type);
1046 }
1047
1048 static bool
1049 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1050 Sized_relobj_file<size, big_endian>* object,
1051 unsigned int r_type, bool report_err);
1052
1053 private:
1054 static void
1055 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type);
1057
1058 static void
1059 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1060 unsigned int r_type, Symbol*);
1061
1062 static void
1063 generate_tls_call(Symbol_table* symtab, Layout* layout,
1064 Target_powerpc* target);
1065
1066 void
1067 check_non_pic(Relobj*, unsigned int r_type);
1068
1069 // Whether we have issued an error about a non-PIC compilation.
1070 bool issued_non_pic_error_;
1071 };
1072
1073 bool
1074 symval_for_branch(const Symbol_table* symtab,
1075 const Sized_symbol<size>* gsym,
1076 Powerpc_relobj<size, big_endian>* object,
1077 Address *value, unsigned int *dest_shndx);
1078
1079 // The class which implements relocation.
1080 class Relocate : protected Track_tls
1081 {
1082 public:
1083 // Use 'at' branch hints when true, 'y' when false.
1084 // FIXME maybe: set this with an option.
1085 static const bool is_isa_v2 = true;
1086
1087 Relocate()
1088 : Track_tls()
1089 { }
1090
1091 // Do a relocation. Return false if the caller should not issue
1092 // any warnings about this relocation.
1093 inline bool
1094 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1095 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1096 const Sized_symbol<size>*, const Symbol_value<size>*,
1097 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1098 section_size_type);
1099 };
1100
1101 class Relocate_comdat_behavior
1102 {
1103 public:
1104 // Decide what the linker should do for relocations that refer to
1105 // discarded comdat sections.
1106 inline Comdat_behavior
1107 get(const char* name)
1108 {
1109 gold::Default_comdat_behavior default_behavior;
1110 Comdat_behavior ret = default_behavior.get(name);
1111 if (ret == CB_WARNING)
1112 {
1113 if (size == 32
1114 && (strcmp(name, ".fixup") == 0
1115 || strcmp(name, ".got2") == 0))
1116 ret = CB_IGNORE;
1117 if (size == 64
1118 && (strcmp(name, ".opd") == 0
1119 || strcmp(name, ".toc") == 0
1120 || strcmp(name, ".toc1") == 0))
1121 ret = CB_IGNORE;
1122 }
1123 return ret;
1124 }
1125 };
1126
1127 // Optimize the TLS relocation type based on what we know about the
1128 // symbol. IS_FINAL is true if the final address of this symbol is
1129 // known at link time.
1130
1131 tls::Tls_optimization
1132 optimize_tls_gd(bool is_final)
1133 {
1134 // If we are generating a shared library, then we can't do anything
1135 // in the linker.
1136 if (parameters->options().shared())
1137 return tls::TLSOPT_NONE;
1138
1139 if (!is_final)
1140 return tls::TLSOPT_TO_IE;
1141 return tls::TLSOPT_TO_LE;
1142 }
1143
1144 tls::Tls_optimization
1145 optimize_tls_ld()
1146 {
1147 if (parameters->options().shared())
1148 return tls::TLSOPT_NONE;
1149
1150 return tls::TLSOPT_TO_LE;
1151 }
1152
1153 tls::Tls_optimization
1154 optimize_tls_ie(bool is_final)
1155 {
1156 if (!is_final || parameters->options().shared())
1157 return tls::TLSOPT_NONE;
1158
1159 return tls::TLSOPT_TO_LE;
1160 }
1161
1162 // Create glink.
1163 void
1164 make_glink_section(Layout*);
1165
1166 // Create the PLT section.
1167 void
1168 make_plt_section(Symbol_table*, Layout*);
1169
1170 void
1171 make_iplt_section(Symbol_table*, Layout*);
1172
1173 void
1174 make_brlt_section(Layout*);
1175
1176 // Create a PLT entry for a global symbol.
1177 void
1178 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1179
1180 // Create a PLT entry for a local IFUNC symbol.
1181 void
1182 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1183 Sized_relobj_file<size, big_endian>*,
1184 unsigned int);
1185
1186
1187 // Create a GOT entry for local dynamic __tls_get_addr.
1188 unsigned int
1189 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1190 Sized_relobj_file<size, big_endian>* object);
1191
1192 unsigned int
1193 tlsld_got_offset() const
1194 {
1195 return this->tlsld_got_offset_;
1196 }
1197
1198 // Get the dynamic reloc section, creating it if necessary.
1199 Reloc_section*
1200 rela_dyn_section(Layout*);
1201
1202 // Similarly, but for ifunc symbols get the one for ifunc.
1203 Reloc_section*
1204 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1205
1206 // Copy a relocation against a global symbol.
1207 void
1208 copy_reloc(Symbol_table* symtab, Layout* layout,
1209 Sized_relobj_file<size, big_endian>* object,
1210 unsigned int shndx, Output_section* output_section,
1211 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1212 {
1213 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1214 this->copy_relocs_.copy_reloc(symtab, layout,
1215 symtab->get_sized_symbol<size>(sym),
1216 object, shndx, output_section,
1217 r_type, reloc.get_r_offset(),
1218 reloc.get_r_addend(),
1219 this->rela_dyn_section(layout));
1220 }
1221
1222 // Look over all the input sections, deciding where to place stubs.
1223 void
1224 group_sections(Layout*, const Task*, bool);
1225
1226 // Sort output sections by address.
1227 struct Sort_sections
1228 {
1229 bool
1230 operator()(const Output_section* sec1, const Output_section* sec2)
1231 { return sec1->address() < sec2->address(); }
1232 };
1233
1234 class Branch_info
1235 {
1236 public:
1237 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1238 unsigned int data_shndx,
1239 Address r_offset,
1240 unsigned int r_type,
1241 unsigned int r_sym,
1242 Address addend)
1243 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1244 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1245 { }
1246
1247 ~Branch_info()
1248 { }
1249
1250 // If this branch needs a plt call stub, or a long branch stub, make one.
1251 bool
1252 make_stub(Stub_table<size, big_endian>*,
1253 Stub_table<size, big_endian>*,
1254 Symbol_table*) const;
1255
1256 private:
1257 // The branch location..
1258 Powerpc_relobj<size, big_endian>* object_;
1259 unsigned int shndx_;
1260 Address offset_;
1261 // ..and the branch type and destination.
1262 unsigned int r_type_;
1263 unsigned int r_sym_;
1264 Address addend_;
1265 };
1266
1267 // Information about this specific target which we pass to the
1268 // general Target structure.
1269 static Target::Target_info powerpc_info;
1270
1271 // The types of GOT entries needed for this platform.
1272 // These values are exposed to the ABI in an incremental link.
1273 // Do not renumber existing values without changing the version
1274 // number of the .gnu_incremental_inputs section.
1275 enum Got_type
1276 {
1277 GOT_TYPE_STANDARD,
1278 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1279 GOT_TYPE_DTPREL, // entry for @got@dtprel
1280 GOT_TYPE_TPREL // entry for @got@tprel
1281 };
1282
1283 // The GOT section.
1284 Output_data_got_powerpc<size, big_endian>* got_;
1285 // The PLT section. This is a container for a table of addresses,
1286 // and their relocations. Each address in the PLT has a dynamic
1287 // relocation (R_*_JMP_SLOT) and each address will have a
1288 // corresponding entry in .glink for lazy resolution of the PLT.
1289 // ppc32 initialises the PLT to point at the .glink entry, while
1290 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1291 // linker adds a stub that loads the PLT entry into ctr then
1292 // branches to ctr. There may be more than one stub for each PLT
1293 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1294 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1295 Output_data_plt_powerpc<size, big_endian>* plt_;
1296 // The IPLT section. Like plt_, this is a container for a table of
1297 // addresses and their relocations, specifically for STT_GNU_IFUNC
1298 // functions that resolve locally (STT_GNU_IFUNC functions that
1299 // don't resolve locally go in PLT). Unlike plt_, these have no
1300 // entry in .glink for lazy resolution, and the relocation section
1301 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1302 // the relocation section may contain relocations against
1303 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1304 // relocation section will appear at the end of other dynamic
1305 // relocations, so that ld.so applies these relocations after other
1306 // dynamic relocations. In a static executable, the relocation
1307 // section is emitted and marked with __rela_iplt_start and
1308 // __rela_iplt_end symbols.
1309 Output_data_plt_powerpc<size, big_endian>* iplt_;
1310 // Section holding long branch destinations.
1311 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1312 // The .glink section.
1313 Output_data_glink<size, big_endian>* glink_;
1314 // The dynamic reloc section.
1315 Reloc_section* rela_dyn_;
1316 // Relocs saved to avoid a COPY reloc.
1317 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1318 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1319 unsigned int tlsld_got_offset_;
1320
1321 Stub_tables stub_tables_;
1322 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1323 Branch_lookup_table branch_lookup_table_;
1324
1325 typedef std::vector<Branch_info> Branches;
1326 Branches branch_info_;
1327
1328 bool plt_thread_safe_;
1329
1330 bool relax_failed_;
1331 int relax_fail_count_;
1332 int32_t stub_group_size_;
1333
1334 Output_data_save_res<size, big_endian> *savres_section_;
1335 };
1336
1337 template<>
1338 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1339 {
1340 32, // size
1341 true, // is_big_endian
1342 elfcpp::EM_PPC, // machine_code
1343 false, // has_make_symbol
1344 false, // has_resolve
1345 false, // has_code_fill
1346 true, // is_default_stack_executable
1347 false, // can_icf_inline_merge_sections
1348 '\0', // wrap_char
1349 "/usr/lib/ld.so.1", // dynamic_linker
1350 0x10000000, // default_text_segment_address
1351 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1352 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1353 false, // isolate_execinstr
1354 0, // rosegment_gap
1355 elfcpp::SHN_UNDEF, // small_common_shndx
1356 elfcpp::SHN_UNDEF, // large_common_shndx
1357 0, // small_common_section_flags
1358 0, // large_common_section_flags
1359 NULL, // attributes_section
1360 NULL, // attributes_vendor
1361 "_start", // entry_symbol_name
1362 32, // hash_entry_size
1363 };
1364
1365 template<>
1366 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1367 {
1368 32, // size
1369 false, // is_big_endian
1370 elfcpp::EM_PPC, // machine_code
1371 false, // has_make_symbol
1372 false, // has_resolve
1373 false, // has_code_fill
1374 true, // is_default_stack_executable
1375 false, // can_icf_inline_merge_sections
1376 '\0', // wrap_char
1377 "/usr/lib/ld.so.1", // dynamic_linker
1378 0x10000000, // default_text_segment_address
1379 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1380 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1381 false, // isolate_execinstr
1382 0, // rosegment_gap
1383 elfcpp::SHN_UNDEF, // small_common_shndx
1384 elfcpp::SHN_UNDEF, // large_common_shndx
1385 0, // small_common_section_flags
1386 0, // large_common_section_flags
1387 NULL, // attributes_section
1388 NULL, // attributes_vendor
1389 "_start", // entry_symbol_name
1390 32, // hash_entry_size
1391 };
1392
1393 template<>
1394 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1395 {
1396 64, // size
1397 true, // is_big_endian
1398 elfcpp::EM_PPC64, // machine_code
1399 false, // has_make_symbol
1400 false, // has_resolve
1401 false, // has_code_fill
1402 true, // is_default_stack_executable
1403 false, // can_icf_inline_merge_sections
1404 '\0', // wrap_char
1405 "/usr/lib/ld.so.1", // dynamic_linker
1406 0x10000000, // default_text_segment_address
1407 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1408 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1409 false, // isolate_execinstr
1410 0, // rosegment_gap
1411 elfcpp::SHN_UNDEF, // small_common_shndx
1412 elfcpp::SHN_UNDEF, // large_common_shndx
1413 0, // small_common_section_flags
1414 0, // large_common_section_flags
1415 NULL, // attributes_section
1416 NULL, // attributes_vendor
1417 "_start", // entry_symbol_name
1418 32, // hash_entry_size
1419 };
1420
1421 template<>
1422 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1423 {
1424 64, // size
1425 false, // is_big_endian
1426 elfcpp::EM_PPC64, // machine_code
1427 false, // has_make_symbol
1428 false, // has_resolve
1429 false, // has_code_fill
1430 true, // is_default_stack_executable
1431 false, // can_icf_inline_merge_sections
1432 '\0', // wrap_char
1433 "/usr/lib/ld.so.1", // dynamic_linker
1434 0x10000000, // default_text_segment_address
1435 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1436 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1437 false, // isolate_execinstr
1438 0, // rosegment_gap
1439 elfcpp::SHN_UNDEF, // small_common_shndx
1440 elfcpp::SHN_UNDEF, // large_common_shndx
1441 0, // small_common_section_flags
1442 0, // large_common_section_flags
1443 NULL, // attributes_section
1444 NULL, // attributes_vendor
1445 "_start", // entry_symbol_name
1446 32, // hash_entry_size
1447 };
1448
1449 inline bool
1450 is_branch_reloc(unsigned int r_type)
1451 {
1452 return (r_type == elfcpp::R_POWERPC_REL24
1453 || r_type == elfcpp::R_PPC_PLTREL24
1454 || r_type == elfcpp::R_PPC_LOCAL24PC
1455 || r_type == elfcpp::R_POWERPC_REL14
1456 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1458 || r_type == elfcpp::R_POWERPC_ADDR24
1459 || r_type == elfcpp::R_POWERPC_ADDR14
1460 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1461 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1462 }
1463
1464 // If INSN is an opcode that may be used with an @tls operand, return
1465 // the transformed insn for TLS optimisation, otherwise return 0. If
1466 // REG is non-zero only match an insn with RB or RA equal to REG.
1467 uint32_t
1468 at_tls_transform(uint32_t insn, unsigned int reg)
1469 {
1470 if ((insn & (0x3f << 26)) != 31 << 26)
1471 return 0;
1472
1473 unsigned int rtra;
1474 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1475 rtra = insn & ((1 << 26) - (1 << 16));
1476 else if (((insn >> 16) & 0x1f) == reg)
1477 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1478 else
1479 return 0;
1480
1481 if ((insn & (0x3ff << 1)) == 266 << 1)
1482 // add -> addi
1483 insn = 14 << 26;
1484 else if ((insn & (0x1f << 1)) == 23 << 1
1485 && ((insn & (0x1f << 6)) < 14 << 6
1486 || ((insn & (0x1f << 6)) >= 16 << 6
1487 && (insn & (0x1f << 6)) < 24 << 6)))
1488 // load and store indexed -> dform
1489 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1490 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1491 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1492 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1493 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1494 // lwax -> lwa
1495 insn = (58 << 26) | 2;
1496 else
1497 return 0;
1498 insn |= rtra;
1499 return insn;
1500 }
1501
1502
1503 template<int size, bool big_endian>
1504 class Powerpc_relocate_functions
1505 {
1506 public:
1507 enum Overflow_check
1508 {
1509 CHECK_NONE,
1510 CHECK_SIGNED,
1511 CHECK_UNSIGNED,
1512 CHECK_BITFIELD,
1513 CHECK_LOW_INSN,
1514 CHECK_HIGH_INSN
1515 };
1516
1517 enum Status
1518 {
1519 STATUS_OK,
1520 STATUS_OVERFLOW
1521 };
1522
1523 private:
1524 typedef Powerpc_relocate_functions<size, big_endian> This;
1525 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1526 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1527
1528 template<int valsize>
1529 static inline bool
1530 has_overflow_signed(Address value)
1531 {
1532 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1533 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1534 limit <<= ((valsize - 1) >> 1);
1535 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1536 return value + limit > (limit << 1) - 1;
1537 }
1538
1539 template<int valsize>
1540 static inline bool
1541 has_overflow_unsigned(Address value)
1542 {
1543 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1544 limit <<= ((valsize - 1) >> 1);
1545 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1546 return value > (limit << 1) - 1;
1547 }
1548
1549 template<int valsize>
1550 static inline bool
1551 has_overflow_bitfield(Address value)
1552 {
1553 return (has_overflow_unsigned<valsize>(value)
1554 && has_overflow_signed<valsize>(value));
1555 }
1556
1557 template<int valsize>
1558 static inline Status
1559 overflowed(Address value, Overflow_check overflow)
1560 {
1561 if (overflow == CHECK_SIGNED)
1562 {
1563 if (has_overflow_signed<valsize>(value))
1564 return STATUS_OVERFLOW;
1565 }
1566 else if (overflow == CHECK_UNSIGNED)
1567 {
1568 if (has_overflow_unsigned<valsize>(value))
1569 return STATUS_OVERFLOW;
1570 }
1571 else if (overflow == CHECK_BITFIELD)
1572 {
1573 if (has_overflow_bitfield<valsize>(value))
1574 return STATUS_OVERFLOW;
1575 }
1576 return STATUS_OK;
1577 }
1578
1579 // Do a simple RELA relocation
1580 template<int fieldsize, int valsize>
1581 static inline Status
1582 rela(unsigned char* view, Address value, Overflow_check overflow)
1583 {
1584 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1585 Valtype* wv = reinterpret_cast<Valtype*>(view);
1586 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1587 return overflowed<valsize>(value, overflow);
1588 }
1589
1590 template<int fieldsize, int valsize>
1591 static inline Status
1592 rela(unsigned char* view,
1593 unsigned int right_shift,
1594 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1595 Address value,
1596 Overflow_check overflow)
1597 {
1598 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1599 Valtype* wv = reinterpret_cast<Valtype*>(view);
1600 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1601 Valtype reloc = value >> right_shift;
1602 val &= ~dst_mask;
1603 reloc &= dst_mask;
1604 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1605 return overflowed<valsize>(value >> right_shift, overflow);
1606 }
1607
1608 // Do a simple RELA relocation, unaligned.
1609 template<int fieldsize, int valsize>
1610 static inline Status
1611 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1612 {
1613 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1614 return overflowed<valsize>(value, overflow);
1615 }
1616
1617 template<int fieldsize, int valsize>
1618 static inline Status
1619 rela_ua(unsigned char* view,
1620 unsigned int right_shift,
1621 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1622 Address value,
1623 Overflow_check overflow)
1624 {
1625 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1626 Valtype;
1627 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1628 Valtype reloc = value >> right_shift;
1629 val &= ~dst_mask;
1630 reloc &= dst_mask;
1631 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1632 return overflowed<valsize>(value >> right_shift, overflow);
1633 }
1634
1635 public:
1636 // R_PPC64_ADDR64: (Symbol + Addend)
1637 static inline void
1638 addr64(unsigned char* view, Address value)
1639 { This::template rela<64,64>(view, value, CHECK_NONE); }
1640
1641 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1642 static inline void
1643 addr64_u(unsigned char* view, Address value)
1644 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1645
1646 // R_POWERPC_ADDR32: (Symbol + Addend)
1647 static inline Status
1648 addr32(unsigned char* view, Address value, Overflow_check overflow)
1649 { return This::template rela<32,32>(view, value, overflow); }
1650
1651 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1652 static inline Status
1653 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1654 { return This::template rela_ua<32,32>(view, value, overflow); }
1655
1656 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1657 static inline Status
1658 addr24(unsigned char* view, Address value, Overflow_check overflow)
1659 {
1660 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1661 value, overflow);
1662 if (overflow != CHECK_NONE && (value & 3) != 0)
1663 stat = STATUS_OVERFLOW;
1664 return stat;
1665 }
1666
1667 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1668 static inline Status
1669 addr16(unsigned char* view, Address value, Overflow_check overflow)
1670 { return This::template rela<16,16>(view, value, overflow); }
1671
1672 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1673 static inline Status
1674 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1675 { return This::template rela_ua<16,16>(view, value, overflow); }
1676
1677 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1678 static inline Status
1679 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1680 {
1681 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1682 if ((value & 3) != 0)
1683 stat = STATUS_OVERFLOW;
1684 return stat;
1685 }
1686
1687 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1688 static inline Status
1689 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1690 {
1691 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1692 if ((value & 15) != 0)
1693 stat = STATUS_OVERFLOW;
1694 return stat;
1695 }
1696
1697 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1698 static inline void
1699 addr16_hi(unsigned char* view, Address value)
1700 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1701
1702 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1703 static inline void
1704 addr16_ha(unsigned char* view, Address value)
1705 { This::addr16_hi(view, value + 0x8000); }
1706
1707 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1708 static inline void
1709 addr16_hi2(unsigned char* view, Address value)
1710 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1711
1712 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1713 static inline void
1714 addr16_ha2(unsigned char* view, Address value)
1715 { This::addr16_hi2(view, value + 0x8000); }
1716
1717 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1718 static inline void
1719 addr16_hi3(unsigned char* view, Address value)
1720 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1721
1722 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1723 static inline void
1724 addr16_ha3(unsigned char* view, Address value)
1725 { This::addr16_hi3(view, value + 0x8000); }
1726
1727 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1728 static inline Status
1729 addr14(unsigned char* view, Address value, Overflow_check overflow)
1730 {
1731 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1732 if (overflow != CHECK_NONE && (value & 3) != 0)
1733 stat = STATUS_OVERFLOW;
1734 return stat;
1735 }
1736
1737 // R_POWERPC_REL16DX_HA
1738 static inline Status
1739 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1740 {
1741 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1742 Valtype* wv = reinterpret_cast<Valtype*>(view);
1743 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1744 value += 0x8000;
1745 value = static_cast<SignedAddress>(value) >> 16;
1746 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1747 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1748 return overflowed<16>(value, overflow);
1749 }
1750 };
1751
1752 // Set ABI version for input and output.
1753
1754 template<int size, bool big_endian>
1755 void
1756 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1757 {
1758 this->e_flags_ |= ver;
1759 if (this->abiversion() != 0)
1760 {
1761 Target_powerpc<size, big_endian>* target =
1762 static_cast<Target_powerpc<size, big_endian>*>(
1763 parameters->sized_target<size, big_endian>());
1764 if (target->abiversion() == 0)
1765 target->set_abiversion(this->abiversion());
1766 else if (target->abiversion() != this->abiversion())
1767 gold_error(_("%s: ABI version %d is not compatible "
1768 "with ABI version %d output"),
1769 this->name().c_str(),
1770 this->abiversion(), target->abiversion());
1771
1772 }
1773 }
1774
1775 // Stash away the index of .got2 or .opd in a relocatable object, if
1776 // such a section exists.
1777
1778 template<int size, bool big_endian>
1779 bool
1780 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1781 Read_symbols_data* sd)
1782 {
1783 const unsigned char* const pshdrs = sd->section_headers->data();
1784 const unsigned char* namesu = sd->section_names->data();
1785 const char* names = reinterpret_cast<const char*>(namesu);
1786 section_size_type names_size = sd->section_names_size;
1787 const unsigned char* s;
1788
1789 s = this->template find_shdr<size, big_endian>(pshdrs,
1790 size == 32 ? ".got2" : ".opd",
1791 names, names_size, NULL);
1792 if (s != NULL)
1793 {
1794 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1795 this->special_ = ndx;
1796 if (size == 64)
1797 {
1798 if (this->abiversion() == 0)
1799 this->set_abiversion(1);
1800 else if (this->abiversion() > 1)
1801 gold_error(_("%s: .opd invalid in abiv%d"),
1802 this->name().c_str(), this->abiversion());
1803 }
1804 }
1805 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1806 }
1807
1808 // Examine .rela.opd to build info about function entry points.
1809
1810 template<int size, bool big_endian>
1811 void
1812 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1813 size_t reloc_count,
1814 const unsigned char* prelocs,
1815 const unsigned char* plocal_syms)
1816 {
1817 if (size == 64)
1818 {
1819 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1820 Reltype;
1821 const int reloc_size
1822 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1823 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1824 Address expected_off = 0;
1825 bool regular = true;
1826 unsigned int opd_ent_size = 0;
1827
1828 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1829 {
1830 Reltype reloc(prelocs);
1831 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1832 = reloc.get_r_info();
1833 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1834 if (r_type == elfcpp::R_PPC64_ADDR64)
1835 {
1836 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1837 typename elfcpp::Elf_types<size>::Elf_Addr value;
1838 bool is_ordinary;
1839 unsigned int shndx;
1840 if (r_sym < this->local_symbol_count())
1841 {
1842 typename elfcpp::Sym<size, big_endian>
1843 lsym(plocal_syms + r_sym * sym_size);
1844 shndx = lsym.get_st_shndx();
1845 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1846 value = lsym.get_st_value();
1847 }
1848 else
1849 shndx = this->symbol_section_and_value(r_sym, &value,
1850 &is_ordinary);
1851 this->set_opd_ent(reloc.get_r_offset(), shndx,
1852 value + reloc.get_r_addend());
1853 if (i == 2)
1854 {
1855 expected_off = reloc.get_r_offset();
1856 opd_ent_size = expected_off;
1857 }
1858 else if (expected_off != reloc.get_r_offset())
1859 regular = false;
1860 expected_off += opd_ent_size;
1861 }
1862 else if (r_type == elfcpp::R_PPC64_TOC)
1863 {
1864 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1865 regular = false;
1866 }
1867 else
1868 {
1869 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1870 this->name().c_str(), r_type);
1871 regular = false;
1872 }
1873 }
1874 if (reloc_count <= 2)
1875 opd_ent_size = this->section_size(this->opd_shndx());
1876 if (opd_ent_size != 24 && opd_ent_size != 16)
1877 regular = false;
1878 if (!regular)
1879 {
1880 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1881 this->name().c_str());
1882 opd_ent_size = 0;
1883 }
1884 }
1885 }
1886
1887 template<int size, bool big_endian>
1888 void
1889 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1890 {
1891 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1892 if (size == 64)
1893 {
1894 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1895 p != rd->relocs.end();
1896 ++p)
1897 {
1898 if (p->data_shndx == this->opd_shndx())
1899 {
1900 uint64_t opd_size = this->section_size(this->opd_shndx());
1901 gold_assert(opd_size == static_cast<size_t>(opd_size));
1902 if (opd_size != 0)
1903 {
1904 this->init_opd(opd_size);
1905 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1906 rd->local_symbols->data());
1907 }
1908 break;
1909 }
1910 }
1911 }
1912 }
1913
1914 // Read the symbols then set up st_other vector.
1915
1916 template<int size, bool big_endian>
1917 void
1918 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1919 {
1920 this->base_read_symbols(sd);
1921 if (size == 64)
1922 {
1923 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1924 const unsigned char* const pshdrs = sd->section_headers->data();
1925 const unsigned int loccount = this->do_local_symbol_count();
1926 if (loccount != 0)
1927 {
1928 this->st_other_.resize(loccount);
1929 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1930 off_t locsize = loccount * sym_size;
1931 const unsigned int symtab_shndx = this->symtab_shndx();
1932 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1933 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1934 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1935 locsize, true, false);
1936 psyms += sym_size;
1937 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1938 {
1939 elfcpp::Sym<size, big_endian> sym(psyms);
1940 unsigned char st_other = sym.get_st_other();
1941 this->st_other_[i] = st_other;
1942 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1943 {
1944 if (this->abiversion() == 0)
1945 this->set_abiversion(2);
1946 else if (this->abiversion() < 2)
1947 gold_error(_("%s: local symbol %d has invalid st_other"
1948 " for ABI version 1"),
1949 this->name().c_str(), i);
1950 }
1951 }
1952 }
1953 }
1954 }
1955
1956 template<int size, bool big_endian>
1957 void
1958 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1959 {
1960 this->e_flags_ |= ver;
1961 if (this->abiversion() != 0)
1962 {
1963 Target_powerpc<size, big_endian>* target =
1964 static_cast<Target_powerpc<size, big_endian>*>(
1965 parameters->sized_target<size, big_endian>());
1966 if (target->abiversion() == 0)
1967 target->set_abiversion(this->abiversion());
1968 else if (target->abiversion() != this->abiversion())
1969 gold_error(_("%s: ABI version %d is not compatible "
1970 "with ABI version %d output"),
1971 this->name().c_str(),
1972 this->abiversion(), target->abiversion());
1973
1974 }
1975 }
1976
1977 // Call Sized_dynobj::base_read_symbols to read the symbols then
1978 // read .opd from a dynamic object, filling in opd_ent_ vector,
1979
1980 template<int size, bool big_endian>
1981 void
1982 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1983 {
1984 this->base_read_symbols(sd);
1985 if (size == 64)
1986 {
1987 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1988 const unsigned char* const pshdrs = sd->section_headers->data();
1989 const unsigned char* namesu = sd->section_names->data();
1990 const char* names = reinterpret_cast<const char*>(namesu);
1991 const unsigned char* s = NULL;
1992 const unsigned char* opd;
1993 section_size_type opd_size;
1994
1995 // Find and read .opd section.
1996 while (1)
1997 {
1998 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1999 sd->section_names_size,
2000 s);
2001 if (s == NULL)
2002 return;
2003
2004 typename elfcpp::Shdr<size, big_endian> shdr(s);
2005 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2006 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2007 {
2008 if (this->abiversion() == 0)
2009 this->set_abiversion(1);
2010 else if (this->abiversion() > 1)
2011 gold_error(_("%s: .opd invalid in abiv%d"),
2012 this->name().c_str(), this->abiversion());
2013
2014 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2015 this->opd_address_ = shdr.get_sh_addr();
2016 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2017 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2018 true, false);
2019 break;
2020 }
2021 }
2022
2023 // Build set of executable sections.
2024 // Using a set is probably overkill. There is likely to be only
2025 // a few executable sections, typically .init, .text and .fini,
2026 // and they are generally grouped together.
2027 typedef std::set<Sec_info> Exec_sections;
2028 Exec_sections exec_sections;
2029 s = pshdrs;
2030 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2031 {
2032 typename elfcpp::Shdr<size, big_endian> shdr(s);
2033 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2034 && ((shdr.get_sh_flags()
2035 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2036 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2037 && shdr.get_sh_size() != 0)
2038 {
2039 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2040 shdr.get_sh_size(), i));
2041 }
2042 }
2043 if (exec_sections.empty())
2044 return;
2045
2046 // Look over the OPD entries. This is complicated by the fact
2047 // that some binaries will use two-word entries while others
2048 // will use the standard three-word entries. In most cases
2049 // the third word (the environment pointer for languages like
2050 // Pascal) is unused and will be zero. If the third word is
2051 // used it should not be pointing into executable sections,
2052 // I think.
2053 this->init_opd(opd_size);
2054 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2055 {
2056 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2057 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2058 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2059 if (val == 0)
2060 // Chances are that this is the third word of an OPD entry.
2061 continue;
2062 typename Exec_sections::const_iterator e
2063 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2064 if (e != exec_sections.begin())
2065 {
2066 --e;
2067 if (e->start <= val && val < e->start + e->len)
2068 {
2069 // We have an address in an executable section.
2070 // VAL ought to be the function entry, set it up.
2071 this->set_opd_ent(p - opd, e->shndx, val);
2072 // Skip second word of OPD entry, the TOC pointer.
2073 p += 8;
2074 }
2075 }
2076 // If we didn't match any executable sections, we likely
2077 // have a non-zero third word in the OPD entry.
2078 }
2079 }
2080 }
2081
2082 // Set up some symbols.
2083
2084 template<int size, bool big_endian>
2085 void
2086 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2087 Symbol_table* symtab,
2088 Layout* layout)
2089 {
2090 if (size == 32)
2091 {
2092 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2093 // undefined when scanning relocs (and thus requires
2094 // non-relative dynamic relocs). The proper value will be
2095 // updated later.
2096 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2097 if (gotsym != NULL && gotsym->is_undefined())
2098 {
2099 Target_powerpc<size, big_endian>* target =
2100 static_cast<Target_powerpc<size, big_endian>*>(
2101 parameters->sized_target<size, big_endian>());
2102 Output_data_got_powerpc<size, big_endian>* got
2103 = target->got_section(symtab, layout);
2104 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2105 Symbol_table::PREDEFINED,
2106 got, 0, 0,
2107 elfcpp::STT_OBJECT,
2108 elfcpp::STB_LOCAL,
2109 elfcpp::STV_HIDDEN, 0,
2110 false, false);
2111 }
2112
2113 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2114 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2115 if (sdasym != NULL && sdasym->is_undefined())
2116 {
2117 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2118 Output_section* os
2119 = layout->add_output_section_data(".sdata", 0,
2120 elfcpp::SHF_ALLOC
2121 | elfcpp::SHF_WRITE,
2122 sdata, ORDER_SMALL_DATA, false);
2123 symtab->define_in_output_data("_SDA_BASE_", NULL,
2124 Symbol_table::PREDEFINED,
2125 os, 32768, 0, elfcpp::STT_OBJECT,
2126 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2127 0, false, false);
2128 }
2129 }
2130 else
2131 {
2132 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2133 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2134 if (gotsym != NULL && gotsym->is_undefined())
2135 {
2136 Target_powerpc<size, big_endian>* target =
2137 static_cast<Target_powerpc<size, big_endian>*>(
2138 parameters->sized_target<size, big_endian>());
2139 Output_data_got_powerpc<size, big_endian>* got
2140 = target->got_section(symtab, layout);
2141 symtab->define_in_output_data(".TOC.", NULL,
2142 Symbol_table::PREDEFINED,
2143 got, 0x8000, 0,
2144 elfcpp::STT_OBJECT,
2145 elfcpp::STB_LOCAL,
2146 elfcpp::STV_HIDDEN, 0,
2147 false, false);
2148 }
2149 }
2150 }
2151
2152 // Set up PowerPC target specific relobj.
2153
2154 template<int size, bool big_endian>
2155 Object*
2156 Target_powerpc<size, big_endian>::do_make_elf_object(
2157 const std::string& name,
2158 Input_file* input_file,
2159 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2160 {
2161 int et = ehdr.get_e_type();
2162 // ET_EXEC files are valid input for --just-symbols/-R,
2163 // and we treat them as relocatable objects.
2164 if (et == elfcpp::ET_REL
2165 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2166 {
2167 Powerpc_relobj<size, big_endian>* obj =
2168 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2169 obj->setup();
2170 return obj;
2171 }
2172 else if (et == elfcpp::ET_DYN)
2173 {
2174 Powerpc_dynobj<size, big_endian>* obj =
2175 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2176 obj->setup();
2177 return obj;
2178 }
2179 else
2180 {
2181 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2182 return NULL;
2183 }
2184 }
2185
2186 template<int size, bool big_endian>
2187 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2188 {
2189 public:
2190 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2191 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2192
2193 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2194 : Output_data_got<size, big_endian>(),
2195 symtab_(symtab), layout_(layout),
2196 header_ent_cnt_(size == 32 ? 3 : 1),
2197 header_index_(size == 32 ? 0x2000 : 0)
2198 {
2199 if (size == 64)
2200 this->set_addralign(256);
2201 }
2202
2203 // Override all the Output_data_got methods we use so as to first call
2204 // reserve_ent().
2205 bool
2206 add_global(Symbol* gsym, unsigned int got_type)
2207 {
2208 this->reserve_ent();
2209 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2210 }
2211
2212 bool
2213 add_global_plt(Symbol* gsym, unsigned int got_type)
2214 {
2215 this->reserve_ent();
2216 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2217 }
2218
2219 bool
2220 add_global_tls(Symbol* gsym, unsigned int got_type)
2221 { return this->add_global_plt(gsym, got_type); }
2222
2223 void
2224 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2225 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2226 {
2227 this->reserve_ent();
2228 Output_data_got<size, big_endian>::
2229 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2230 }
2231
2232 void
2233 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2234 Output_data_reloc_generic* rel_dyn,
2235 unsigned int r_type_1, unsigned int r_type_2)
2236 {
2237 this->reserve_ent(2);
2238 Output_data_got<size, big_endian>::
2239 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2240 }
2241
2242 bool
2243 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2244 {
2245 this->reserve_ent();
2246 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2247 got_type);
2248 }
2249
2250 bool
2251 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2252 {
2253 this->reserve_ent();
2254 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2255 got_type);
2256 }
2257
2258 bool
2259 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2260 { return this->add_local_plt(object, sym_index, got_type); }
2261
2262 void
2263 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2264 unsigned int got_type,
2265 Output_data_reloc_generic* rel_dyn,
2266 unsigned int r_type)
2267 {
2268 this->reserve_ent(2);
2269 Output_data_got<size, big_endian>::
2270 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2271 }
2272
2273 unsigned int
2274 add_constant(Valtype constant)
2275 {
2276 this->reserve_ent();
2277 return Output_data_got<size, big_endian>::add_constant(constant);
2278 }
2279
2280 unsigned int
2281 add_constant_pair(Valtype c1, Valtype c2)
2282 {
2283 this->reserve_ent(2);
2284 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2285 }
2286
2287 // Offset of _GLOBAL_OFFSET_TABLE_.
2288 unsigned int
2289 g_o_t() const
2290 {
2291 return this->got_offset(this->header_index_);
2292 }
2293
2294 // Offset of base used to access the GOT/TOC.
2295 // The got/toc pointer reg will be set to this value.
2296 Valtype
2297 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2298 {
2299 if (size == 32)
2300 return this->g_o_t();
2301 else
2302 return (this->output_section()->address()
2303 + object->toc_base_offset()
2304 - this->address());
2305 }
2306
2307 // Ensure our GOT has a header.
2308 void
2309 set_final_data_size()
2310 {
2311 if (this->header_ent_cnt_ != 0)
2312 this->make_header();
2313 Output_data_got<size, big_endian>::set_final_data_size();
2314 }
2315
2316 // First word of GOT header needs some values that are not
2317 // handled by Output_data_got so poke them in here.
2318 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2319 void
2320 do_write(Output_file* of)
2321 {
2322 Valtype val = 0;
2323 if (size == 32 && this->layout_->dynamic_data() != NULL)
2324 val = this->layout_->dynamic_section()->address();
2325 if (size == 64)
2326 val = this->output_section()->address() + 0x8000;
2327 this->replace_constant(this->header_index_, val);
2328 Output_data_got<size, big_endian>::do_write(of);
2329 }
2330
2331 private:
2332 void
2333 reserve_ent(unsigned int cnt = 1)
2334 {
2335 if (this->header_ent_cnt_ == 0)
2336 return;
2337 if (this->num_entries() + cnt > this->header_index_)
2338 this->make_header();
2339 }
2340
2341 void
2342 make_header()
2343 {
2344 this->header_ent_cnt_ = 0;
2345 this->header_index_ = this->num_entries();
2346 if (size == 32)
2347 {
2348 Output_data_got<size, big_endian>::add_constant(0);
2349 Output_data_got<size, big_endian>::add_constant(0);
2350 Output_data_got<size, big_endian>::add_constant(0);
2351
2352 // Define _GLOBAL_OFFSET_TABLE_ at the header
2353 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2354 if (gotsym != NULL)
2355 {
2356 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2357 sym->set_value(this->g_o_t());
2358 }
2359 else
2360 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2361 Symbol_table::PREDEFINED,
2362 this, this->g_o_t(), 0,
2363 elfcpp::STT_OBJECT,
2364 elfcpp::STB_LOCAL,
2365 elfcpp::STV_HIDDEN, 0,
2366 false, false);
2367 }
2368 else
2369 Output_data_got<size, big_endian>::add_constant(0);
2370 }
2371
2372 // Stashed pointers.
2373 Symbol_table* symtab_;
2374 Layout* layout_;
2375
2376 // GOT header size.
2377 unsigned int header_ent_cnt_;
2378 // GOT header index.
2379 unsigned int header_index_;
2380 };
2381
2382 // Get the GOT section, creating it if necessary.
2383
2384 template<int size, bool big_endian>
2385 Output_data_got_powerpc<size, big_endian>*
2386 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2387 Layout* layout)
2388 {
2389 if (this->got_ == NULL)
2390 {
2391 gold_assert(symtab != NULL && layout != NULL);
2392
2393 this->got_
2394 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2395
2396 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2397 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2398 this->got_, ORDER_DATA, false);
2399 }
2400
2401 return this->got_;
2402 }
2403
2404 // Get the dynamic reloc section, creating it if necessary.
2405
2406 template<int size, bool big_endian>
2407 typename Target_powerpc<size, big_endian>::Reloc_section*
2408 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2409 {
2410 if (this->rela_dyn_ == NULL)
2411 {
2412 gold_assert(layout != NULL);
2413 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2414 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2415 elfcpp::SHF_ALLOC, this->rela_dyn_,
2416 ORDER_DYNAMIC_RELOCS, false);
2417 }
2418 return this->rela_dyn_;
2419 }
2420
2421 // Similarly, but for ifunc symbols get the one for ifunc.
2422
2423 template<int size, bool big_endian>
2424 typename Target_powerpc<size, big_endian>::Reloc_section*
2425 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2426 Layout* layout,
2427 bool for_ifunc)
2428 {
2429 if (!for_ifunc)
2430 return this->rela_dyn_section(layout);
2431
2432 if (this->iplt_ == NULL)
2433 this->make_iplt_section(symtab, layout);
2434 return this->iplt_->rel_plt();
2435 }
2436
2437 class Stub_control
2438 {
2439 public:
2440 // Determine the stub group size. The group size is the absolute
2441 // value of the parameter --stub-group-size. If --stub-group-size
2442 // is passed a negative value, we restrict stubs to be always after
2443 // the stubbed branches.
2444 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2445 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2446 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2447 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2448 owner_(NULL), output_section_(NULL)
2449 {
2450 }
2451
2452 // Return true iff input section can be handled by current stub
2453 // group.
2454 bool
2455 can_add_to_stub_group(Output_section* o,
2456 const Output_section::Input_section* i,
2457 bool has14);
2458
2459 const Output_section::Input_section*
2460 owner()
2461 { return owner_; }
2462
2463 Output_section*
2464 output_section()
2465 { return output_section_; }
2466
2467 void
2468 set_output_and_owner(Output_section* o,
2469 const Output_section::Input_section* i)
2470 {
2471 this->output_section_ = o;
2472 this->owner_ = i;
2473 }
2474
2475 private:
2476 typedef enum
2477 {
2478 // Initial state.
2479 NO_GROUP,
2480 // Adding group sections before the stubs.
2481 FINDING_STUB_SECTION,
2482 // Adding group sections after the stubs.
2483 HAS_STUB_SECTION
2484 } State;
2485
2486 uint32_t stub_group_size_;
2487 bool stubs_always_after_branch_;
2488 bool suppress_size_errors_;
2489 // True if a stub group can serve multiple output sections.
2490 bool multi_os_;
2491 State state_;
2492 // Current max size of group. Starts at stub_group_size_ but is
2493 // reduced to stub_group_size_/1024 on seeing a section with
2494 // external conditional branches.
2495 uint32_t group_size_;
2496 uint64_t group_start_addr_;
2497 // owner_ and output_section_ specify the section to which stubs are
2498 // attached. The stubs are placed at the end of this section.
2499 const Output_section::Input_section* owner_;
2500 Output_section* output_section_;
2501 };
2502
2503 // Return true iff input section can be handled by current stub
2504 // group. Sections are presented to this function in order,
2505 // so the first section is the head of the group.
2506
2507 bool
2508 Stub_control::can_add_to_stub_group(Output_section* o,
2509 const Output_section::Input_section* i,
2510 bool has14)
2511 {
2512 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2513 uint64_t this_size;
2514 uint64_t start_addr = o->address();
2515
2516 if (whole_sec)
2517 // .init and .fini sections are pasted together to form a single
2518 // function. We can't be adding stubs in the middle of the function.
2519 this_size = o->data_size();
2520 else
2521 {
2522 start_addr += i->relobj()->output_section_offset(i->shndx());
2523 this_size = i->data_size();
2524 }
2525
2526 uint64_t end_addr = start_addr + this_size;
2527 uint32_t group_size = this->stub_group_size_;
2528 if (has14)
2529 this->group_size_ = group_size = group_size >> 10;
2530
2531 if (this_size > group_size && !this->suppress_size_errors_)
2532 gold_warning(_("%s:%s exceeds group size"),
2533 i->relobj()->name().c_str(),
2534 i->relobj()->section_name(i->shndx()).c_str());
2535
2536 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2537 has14 ? " 14bit" : "",
2538 i->relobj()->name().c_str(),
2539 i->relobj()->section_name(i->shndx()).c_str(),
2540 (long long) this_size,
2541 (this->state_ == NO_GROUP
2542 ? this_size
2543 : (long long) end_addr - this->group_start_addr_));
2544
2545 if (this->state_ == NO_GROUP)
2546 {
2547 // Only here on very first use of Stub_control
2548 this->owner_ = i;
2549 this->output_section_ = o;
2550 this->state_ = FINDING_STUB_SECTION;
2551 this->group_size_ = group_size;
2552 this->group_start_addr_ = start_addr;
2553 return true;
2554 }
2555 else if (!this->multi_os_ && this->output_section_ != o)
2556 ;
2557 else if (this->state_ == HAS_STUB_SECTION)
2558 {
2559 // Can we add this section, which is after the stubs, to the
2560 // group?
2561 if (end_addr - this->group_start_addr_ <= this->group_size_)
2562 return true;
2563 }
2564 else if (this->state_ == FINDING_STUB_SECTION)
2565 {
2566 if ((whole_sec && this->output_section_ == o)
2567 || end_addr - this->group_start_addr_ <= this->group_size_)
2568 {
2569 // Stubs are added at the end of "owner_".
2570 this->owner_ = i;
2571 this->output_section_ = o;
2572 return true;
2573 }
2574 // The group before the stubs has reached maximum size.
2575 // Now see about adding sections after the stubs to the
2576 // group. If the current section has a 14-bit branch and
2577 // the group before the stubs exceeds group_size_ (because
2578 // they didn't have 14-bit branches), don't add sections
2579 // after the stubs: The size of stubs for such a large
2580 // group may exceed the reach of a 14-bit branch.
2581 if (!this->stubs_always_after_branch_
2582 && this_size <= this->group_size_
2583 && start_addr - this->group_start_addr_ <= this->group_size_)
2584 {
2585 gold_debug(DEBUG_TARGET, "adding after stubs");
2586 this->state_ = HAS_STUB_SECTION;
2587 this->group_start_addr_ = start_addr;
2588 return true;
2589 }
2590 }
2591 else
2592 gold_unreachable();
2593
2594 gold_debug(DEBUG_TARGET,
2595 !this->multi_os_ && this->output_section_ != o
2596 ? "nope, new output section\n"
2597 : "nope, didn't fit\n");
2598
2599 // The section fails to fit in the current group. Set up a few
2600 // things for the next group. owner_ and output_section_ will be
2601 // set later after we've retrieved those values for the current
2602 // group.
2603 this->state_ = FINDING_STUB_SECTION;
2604 this->group_size_ = group_size;
2605 this->group_start_addr_ = start_addr;
2606 return false;
2607 }
2608
2609 // Look over all the input sections, deciding where to place stubs.
2610
2611 template<int size, bool big_endian>
2612 void
2613 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2614 const Task*,
2615 bool no_size_errors)
2616 {
2617 Stub_control stub_control(this->stub_group_size_, no_size_errors,
2618 parameters->options().stub_group_multi());
2619
2620 // Group input sections and insert stub table
2621 Stub_table_owner* table_owner = NULL;
2622 std::vector<Stub_table_owner*> tables;
2623 Layout::Section_list section_list;
2624 layout->get_executable_sections(&section_list);
2625 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2626 for (Layout::Section_list::iterator o = section_list.begin();
2627 o != section_list.end();
2628 ++o)
2629 {
2630 typedef Output_section::Input_section_list Input_section_list;
2631 for (Input_section_list::const_iterator i
2632 = (*o)->input_sections().begin();
2633 i != (*o)->input_sections().end();
2634 ++i)
2635 {
2636 if (i->is_input_section()
2637 || i->is_relaxed_input_section())
2638 {
2639 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2640 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2641 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2642 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2643 {
2644 table_owner->output_section = stub_control.output_section();
2645 table_owner->owner = stub_control.owner();
2646 stub_control.set_output_and_owner(*o, &*i);
2647 table_owner = NULL;
2648 }
2649 if (table_owner == NULL)
2650 {
2651 table_owner = new Stub_table_owner;
2652 tables.push_back(table_owner);
2653 }
2654 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2655 }
2656 }
2657 }
2658 if (table_owner != NULL)
2659 {
2660 table_owner->output_section = stub_control.output_section();
2661 table_owner->owner = stub_control.owner();;
2662 }
2663 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2664 t != tables.end();
2665 ++t)
2666 {
2667 Stub_table<size, big_endian>* stub_table;
2668
2669 if ((*t)->owner->is_input_section())
2670 stub_table = new Stub_table<size, big_endian>(this,
2671 (*t)->output_section,
2672 (*t)->owner);
2673 else if ((*t)->owner->is_relaxed_input_section())
2674 stub_table = static_cast<Stub_table<size, big_endian>*>(
2675 (*t)->owner->relaxed_input_section());
2676 else
2677 gold_unreachable();
2678 this->stub_tables_.push_back(stub_table);
2679 delete *t;
2680 }
2681 }
2682
2683 static unsigned long
2684 max_branch_delta (unsigned int r_type)
2685 {
2686 if (r_type == elfcpp::R_POWERPC_REL14
2687 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2688 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2689 return 1L << 15;
2690 if (r_type == elfcpp::R_POWERPC_REL24
2691 || r_type == elfcpp::R_PPC_PLTREL24
2692 || r_type == elfcpp::R_PPC_LOCAL24PC)
2693 return 1L << 25;
2694 return 0;
2695 }
2696
2697 // If this branch needs a plt call stub, or a long branch stub, make one.
2698
2699 template<int size, bool big_endian>
2700 bool
2701 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2702 Stub_table<size, big_endian>* stub_table,
2703 Stub_table<size, big_endian>* ifunc_stub_table,
2704 Symbol_table* symtab) const
2705 {
2706 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2707 if (sym != NULL && sym->is_forwarder())
2708 sym = symtab->resolve_forwards(sym);
2709 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2710 Target_powerpc<size, big_endian>* target =
2711 static_cast<Target_powerpc<size, big_endian>*>(
2712 parameters->sized_target<size, big_endian>());
2713 bool ok = true;
2714
2715 if (gsym != NULL
2716 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2717 : this->object_->local_has_plt_offset(this->r_sym_))
2718 {
2719 if (size == 64
2720 && gsym != NULL
2721 && target->abiversion() >= 2
2722 && !parameters->options().output_is_position_independent()
2723 && !is_branch_reloc(this->r_type_))
2724 target->glink_section()->add_global_entry(gsym);
2725 else
2726 {
2727 if (stub_table == NULL)
2728 stub_table = this->object_->stub_table(this->shndx_);
2729 if (stub_table == NULL)
2730 {
2731 // This is a ref from a data section to an ifunc symbol.
2732 stub_table = ifunc_stub_table;
2733 }
2734 gold_assert(stub_table != NULL);
2735 Address from = this->object_->get_output_section_offset(this->shndx_);
2736 if (from != invalid_address)
2737 from += (this->object_->output_section(this->shndx_)->address()
2738 + this->offset_);
2739 if (gsym != NULL)
2740 ok = stub_table->add_plt_call_entry(from,
2741 this->object_, gsym,
2742 this->r_type_, this->addend_);
2743 else
2744 ok = stub_table->add_plt_call_entry(from,
2745 this->object_, this->r_sym_,
2746 this->r_type_, this->addend_);
2747 }
2748 }
2749 else
2750 {
2751 Address max_branch_offset = max_branch_delta(this->r_type_);
2752 if (max_branch_offset == 0)
2753 return true;
2754 Address from = this->object_->get_output_section_offset(this->shndx_);
2755 gold_assert(from != invalid_address);
2756 from += (this->object_->output_section(this->shndx_)->address()
2757 + this->offset_);
2758 Address to;
2759 if (gsym != NULL)
2760 {
2761 switch (gsym->source())
2762 {
2763 case Symbol::FROM_OBJECT:
2764 {
2765 Object* symobj = gsym->object();
2766 if (symobj->is_dynamic()
2767 || symobj->pluginobj() != NULL)
2768 return true;
2769 bool is_ordinary;
2770 unsigned int shndx = gsym->shndx(&is_ordinary);
2771 if (shndx == elfcpp::SHN_UNDEF)
2772 return true;
2773 }
2774 break;
2775
2776 case Symbol::IS_UNDEFINED:
2777 return true;
2778
2779 default:
2780 break;
2781 }
2782 Symbol_table::Compute_final_value_status status;
2783 to = symtab->compute_final_value<size>(gsym, &status);
2784 if (status != Symbol_table::CFVS_OK)
2785 return true;
2786 if (size == 64)
2787 to += this->object_->ppc64_local_entry_offset(gsym);
2788 }
2789 else
2790 {
2791 const Symbol_value<size>* psymval
2792 = this->object_->local_symbol(this->r_sym_);
2793 Symbol_value<size> symval;
2794 if (psymval->is_section_symbol())
2795 symval.set_is_section_symbol();
2796 typedef Sized_relobj_file<size, big_endian> ObjType;
2797 typename ObjType::Compute_final_local_value_status status
2798 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2799 &symval, symtab);
2800 if (status != ObjType::CFLV_OK
2801 || !symval.has_output_value())
2802 return true;
2803 to = symval.value(this->object_, 0);
2804 if (size == 64)
2805 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2806 }
2807 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2808 to += this->addend_;
2809 if (stub_table == NULL)
2810 stub_table = this->object_->stub_table(this->shndx_);
2811 if (size == 64 && target->abiversion() < 2)
2812 {
2813 unsigned int dest_shndx;
2814 if (!target->symval_for_branch(symtab, gsym, this->object_,
2815 &to, &dest_shndx))
2816 return true;
2817 }
2818 Address delta = to - from;
2819 if (delta + max_branch_offset >= 2 * max_branch_offset)
2820 {
2821 if (stub_table == NULL)
2822 {
2823 gold_warning(_("%s:%s: branch in non-executable section,"
2824 " no long branch stub for you"),
2825 this->object_->name().c_str(),
2826 this->object_->section_name(this->shndx_).c_str());
2827 return true;
2828 }
2829 bool save_res = (size == 64
2830 && gsym != NULL
2831 && gsym->source() == Symbol::IN_OUTPUT_DATA
2832 && gsym->output_data() == target->savres_section());
2833 ok = stub_table->add_long_branch_entry(this->object_,
2834 this->r_type_,
2835 from, to, save_res);
2836 }
2837 }
2838 if (!ok)
2839 gold_debug(DEBUG_TARGET,
2840 "branch at %s:%s+%#lx\n"
2841 "can't reach stub attached to %s:%s",
2842 this->object_->name().c_str(),
2843 this->object_->section_name(this->shndx_).c_str(),
2844 (unsigned long) this->offset_,
2845 stub_table->relobj()->name().c_str(),
2846 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
2847
2848 return ok;
2849 }
2850
2851 // Relaxation hook. This is where we do stub generation.
2852
2853 template<int size, bool big_endian>
2854 bool
2855 Target_powerpc<size, big_endian>::do_relax(int pass,
2856 const Input_objects*,
2857 Symbol_table* symtab,
2858 Layout* layout,
2859 const Task* task)
2860 {
2861 unsigned int prev_brlt_size = 0;
2862 if (pass == 1)
2863 {
2864 bool thread_safe
2865 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2866 if (size == 64
2867 && this->abiversion() < 2
2868 && !thread_safe
2869 && !parameters->options().user_set_plt_thread_safe())
2870 {
2871 static const char* const thread_starter[] =
2872 {
2873 "pthread_create",
2874 /* libstdc++ */
2875 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2876 /* librt */
2877 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2878 "mq_notify", "create_timer",
2879 /* libanl */
2880 "getaddrinfo_a",
2881 /* libgomp */
2882 "GOMP_parallel",
2883 "GOMP_parallel_start",
2884 "GOMP_parallel_loop_static",
2885 "GOMP_parallel_loop_static_start",
2886 "GOMP_parallel_loop_dynamic",
2887 "GOMP_parallel_loop_dynamic_start",
2888 "GOMP_parallel_loop_guided",
2889 "GOMP_parallel_loop_guided_start",
2890 "GOMP_parallel_loop_runtime",
2891 "GOMP_parallel_loop_runtime_start",
2892 "GOMP_parallel_sections",
2893 "GOMP_parallel_sections_start",
2894 /* libgo */
2895 "__go_go",
2896 };
2897
2898 if (parameters->options().shared())
2899 thread_safe = true;
2900 else
2901 {
2902 for (unsigned int i = 0;
2903 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2904 i++)
2905 {
2906 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2907 thread_safe = (sym != NULL
2908 && sym->in_reg()
2909 && sym->in_real_elf());
2910 if (thread_safe)
2911 break;
2912 }
2913 }
2914 }
2915 this->plt_thread_safe_ = thread_safe;
2916 }
2917
2918 if (pass == 1)
2919 {
2920 this->stub_group_size_ = parameters->options().stub_group_size();
2921 bool no_size_errors = true;
2922 if (this->stub_group_size_ == 1)
2923 this->stub_group_size_ = 0x1c00000;
2924 else if (this->stub_group_size_ == -1)
2925 this->stub_group_size_ = -0x1e00000;
2926 else
2927 no_size_errors = false;
2928 this->group_sections(layout, task, no_size_errors);
2929 }
2930 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2931 {
2932 this->branch_lookup_table_.clear();
2933 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2934 p != this->stub_tables_.end();
2935 ++p)
2936 {
2937 (*p)->clear_stubs(true);
2938 }
2939 this->stub_tables_.clear();
2940 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2941 gold_info(_("%s: stub group size is too large; retrying with %#x"),
2942 program_name, this->stub_group_size_);
2943 this->group_sections(layout, task, true);
2944 }
2945
2946 // We need address of stub tables valid for make_stub.
2947 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2948 p != this->stub_tables_.end();
2949 ++p)
2950 {
2951 const Powerpc_relobj<size, big_endian>* object
2952 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2953 Address off = object->get_output_section_offset((*p)->shndx());
2954 gold_assert(off != invalid_address);
2955 Output_section* os = (*p)->output_section();
2956 (*p)->set_address_and_size(os, off);
2957 }
2958
2959 if (pass != 1)
2960 {
2961 // Clear plt call stubs, long branch stubs and branch lookup table.
2962 prev_brlt_size = this->branch_lookup_table_.size();
2963 this->branch_lookup_table_.clear();
2964 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2965 p != this->stub_tables_.end();
2966 ++p)
2967 {
2968 (*p)->clear_stubs(false);
2969 }
2970 }
2971
2972 // Build all the stubs.
2973 this->relax_failed_ = false;
2974 Stub_table<size, big_endian>* ifunc_stub_table
2975 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2976 Stub_table<size, big_endian>* one_stub_table
2977 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2978 for (typename Branches::const_iterator b = this->branch_info_.begin();
2979 b != this->branch_info_.end();
2980 b++)
2981 {
2982 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2983 && !this->relax_failed_)
2984 {
2985 this->relax_failed_ = true;
2986 this->relax_fail_count_++;
2987 if (this->relax_fail_count_ < 3)
2988 return true;
2989 }
2990 }
2991
2992 // Did anything change size?
2993 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2994 bool again = num_huge_branches != prev_brlt_size;
2995 if (size == 64 && num_huge_branches != 0)
2996 this->make_brlt_section(layout);
2997 if (size == 64 && again)
2998 this->brlt_section_->set_current_size(num_huge_branches);
2999
3000 typedef Unordered_set<Output_section*> Output_sections;
3001 Output_sections os_need_update;
3002 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3003 p != this->stub_tables_.end();
3004 ++p)
3005 {
3006 if ((*p)->size_update())
3007 {
3008 again = true;
3009 (*p)->add_eh_frame(layout);
3010 os_need_update.insert((*p)->output_section());
3011 }
3012 }
3013
3014 // Set output section offsets for all input sections in an output
3015 // section that just changed size. Anything past the stubs will
3016 // need updating.
3017 for (typename Output_sections::iterator p = os_need_update.begin();
3018 p != os_need_update.end();
3019 p++)
3020 {
3021 Output_section* os = *p;
3022 Address off = 0;
3023 typedef Output_section::Input_section_list Input_section_list;
3024 for (Input_section_list::const_iterator i = os->input_sections().begin();
3025 i != os->input_sections().end();
3026 ++i)
3027 {
3028 off = align_address(off, i->addralign());
3029 if (i->is_input_section() || i->is_relaxed_input_section())
3030 i->relobj()->set_section_offset(i->shndx(), off);
3031 if (i->is_relaxed_input_section())
3032 {
3033 Stub_table<size, big_endian>* stub_table
3034 = static_cast<Stub_table<size, big_endian>*>(
3035 i->relaxed_input_section());
3036 Address stub_table_size = stub_table->set_address_and_size(os, off);
3037 off += stub_table_size;
3038 // After a few iterations, set current stub table size
3039 // as min size threshold, so later stub tables can only
3040 // grow in size.
3041 if (pass >= 4)
3042 stub_table->set_min_size_threshold(stub_table_size);
3043 }
3044 else
3045 off += i->data_size();
3046 }
3047 // If .branch_lt is part of this output section, then we have
3048 // just done the offset adjustment.
3049 os->clear_section_offsets_need_adjustment();
3050 }
3051
3052 if (size == 64
3053 && !again
3054 && num_huge_branches != 0
3055 && parameters->options().output_is_position_independent())
3056 {
3057 // Fill in the BRLT relocs.
3058 this->brlt_section_->reset_brlt_sizes();
3059 for (typename Branch_lookup_table::const_iterator p
3060 = this->branch_lookup_table_.begin();
3061 p != this->branch_lookup_table_.end();
3062 ++p)
3063 {
3064 this->brlt_section_->add_reloc(p->first, p->second);
3065 }
3066 this->brlt_section_->finalize_brlt_sizes();
3067 }
3068 return again;
3069 }
3070
3071 template<int size, bool big_endian>
3072 void
3073 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3074 unsigned char* oview,
3075 uint64_t* paddress,
3076 off_t* plen) const
3077 {
3078 uint64_t address = plt->address();
3079 off_t len = plt->data_size();
3080
3081 if (plt == this->glink_)
3082 {
3083 // See Output_data_glink::do_write() for glink contents.
3084 if (len == 0)
3085 {
3086 gold_assert(parameters->doing_static_link());
3087 // Static linking may need stubs, to support ifunc and long
3088 // branches. We need to create an output section for
3089 // .eh_frame early in the link process, to have a place to
3090 // attach stub .eh_frame info. We also need to have
3091 // registered a CIE that matches the stub CIE. Both of
3092 // these requirements are satisfied by creating an FDE and
3093 // CIE for .glink, even though static linking will leave
3094 // .glink zero length.
3095 // ??? Hopefully generating an FDE with a zero address range
3096 // won't confuse anything that consumes .eh_frame info.
3097 }
3098 else if (size == 64)
3099 {
3100 // There is one word before __glink_PLTresolve
3101 address += 8;
3102 len -= 8;
3103 }
3104 else if (parameters->options().output_is_position_independent())
3105 {
3106 // There are two FDEs for a position independent glink.
3107 // The first covers the branch table, the second
3108 // __glink_PLTresolve at the end of glink.
3109 off_t resolve_size = this->glink_->pltresolve_size;
3110 if (oview[9] == elfcpp::DW_CFA_nop)
3111 len -= resolve_size;
3112 else
3113 {
3114 address += len - resolve_size;
3115 len = resolve_size;
3116 }
3117 }
3118 }
3119 else
3120 {
3121 // Must be a stub table.
3122 const Stub_table<size, big_endian>* stub_table
3123 = static_cast<const Stub_table<size, big_endian>*>(plt);
3124 uint64_t stub_address = stub_table->stub_address();
3125 len -= stub_address - address;
3126 address = stub_address;
3127 }
3128
3129 *paddress = address;
3130 *plen = len;
3131 }
3132
3133 // A class to handle the PLT data.
3134
3135 template<int size, bool big_endian>
3136 class Output_data_plt_powerpc : public Output_section_data_build
3137 {
3138 public:
3139 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3140 size, big_endian> Reloc_section;
3141
3142 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3143 Reloc_section* plt_rel,
3144 const char* name)
3145 : Output_section_data_build(size == 32 ? 4 : 8),
3146 rel_(plt_rel),
3147 targ_(targ),
3148 name_(name)
3149 { }
3150
3151 // Add an entry to the PLT.
3152 void
3153 add_entry(Symbol*);
3154
3155 void
3156 add_ifunc_entry(Symbol*);
3157
3158 void
3159 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3160
3161 // Return the .rela.plt section data.
3162 Reloc_section*
3163 rel_plt() const
3164 {
3165 return this->rel_;
3166 }
3167
3168 // Return the number of PLT entries.
3169 unsigned int
3170 entry_count() const
3171 {
3172 if (this->current_data_size() == 0)
3173 return 0;
3174 return ((this->current_data_size() - this->first_plt_entry_offset())
3175 / this->plt_entry_size());
3176 }
3177
3178 protected:
3179 void
3180 do_adjust_output_section(Output_section* os)
3181 {
3182 os->set_entsize(0);
3183 }
3184
3185 // Write to a map file.
3186 void
3187 do_print_to_mapfile(Mapfile* mapfile) const
3188 { mapfile->print_output_data(this, this->name_); }
3189
3190 private:
3191 // Return the offset of the first non-reserved PLT entry.
3192 unsigned int
3193 first_plt_entry_offset() const
3194 {
3195 // IPLT has no reserved entry.
3196 if (this->name_[3] == 'I')
3197 return 0;
3198 return this->targ_->first_plt_entry_offset();
3199 }
3200
3201 // Return the size of each PLT entry.
3202 unsigned int
3203 plt_entry_size() const
3204 {
3205 return this->targ_->plt_entry_size();
3206 }
3207
3208 // Write out the PLT data.
3209 void
3210 do_write(Output_file*);
3211
3212 // The reloc section.
3213 Reloc_section* rel_;
3214 // Allows access to .glink for do_write.
3215 Target_powerpc<size, big_endian>* targ_;
3216 // What to report in map file.
3217 const char *name_;
3218 };
3219
3220 // Add an entry to the PLT.
3221
3222 template<int size, bool big_endian>
3223 void
3224 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3225 {
3226 if (!gsym->has_plt_offset())
3227 {
3228 section_size_type off = this->current_data_size();
3229 if (off == 0)
3230 off += this->first_plt_entry_offset();
3231 gsym->set_plt_offset(off);
3232 gsym->set_needs_dynsym_entry();
3233 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3234 this->rel_->add_global(gsym, dynrel, this, off, 0);
3235 off += this->plt_entry_size();
3236 this->set_current_data_size(off);
3237 }
3238 }
3239
3240 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3241
3242 template<int size, bool big_endian>
3243 void
3244 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3245 {
3246 if (!gsym->has_plt_offset())
3247 {
3248 section_size_type off = this->current_data_size();
3249 gsym->set_plt_offset(off);
3250 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3251 if (size == 64 && this->targ_->abiversion() < 2)
3252 dynrel = elfcpp::R_PPC64_JMP_IREL;
3253 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3254 off += this->plt_entry_size();
3255 this->set_current_data_size(off);
3256 }
3257 }
3258
3259 // Add an entry for a local ifunc symbol to the IPLT.
3260
3261 template<int size, bool big_endian>
3262 void
3263 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3264 Sized_relobj_file<size, big_endian>* relobj,
3265 unsigned int local_sym_index)
3266 {
3267 if (!relobj->local_has_plt_offset(local_sym_index))
3268 {
3269 section_size_type off = this->current_data_size();
3270 relobj->set_local_plt_offset(local_sym_index, off);
3271 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3272 if (size == 64 && this->targ_->abiversion() < 2)
3273 dynrel = elfcpp::R_PPC64_JMP_IREL;
3274 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3275 this, off, 0);
3276 off += this->plt_entry_size();
3277 this->set_current_data_size(off);
3278 }
3279 }
3280
3281 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3282 static const uint32_t add_2_2_11 = 0x7c425a14;
3283 static const uint32_t add_2_2_12 = 0x7c426214;
3284 static const uint32_t add_3_3_2 = 0x7c631214;
3285 static const uint32_t add_3_3_13 = 0x7c636a14;
3286 static const uint32_t add_11_0_11 = 0x7d605a14;
3287 static const uint32_t add_11_2_11 = 0x7d625a14;
3288 static const uint32_t add_11_11_2 = 0x7d6b1214;
3289 static const uint32_t addi_0_12 = 0x380c0000;
3290 static const uint32_t addi_2_2 = 0x38420000;
3291 static const uint32_t addi_3_3 = 0x38630000;
3292 static const uint32_t addi_11_11 = 0x396b0000;
3293 static const uint32_t addi_12_1 = 0x39810000;
3294 static const uint32_t addi_12_12 = 0x398c0000;
3295 static const uint32_t addis_0_2 = 0x3c020000;
3296 static const uint32_t addis_0_13 = 0x3c0d0000;
3297 static const uint32_t addis_2_12 = 0x3c4c0000;
3298 static const uint32_t addis_11_2 = 0x3d620000;
3299 static const uint32_t addis_11_11 = 0x3d6b0000;
3300 static const uint32_t addis_11_30 = 0x3d7e0000;
3301 static const uint32_t addis_12_1 = 0x3d810000;
3302 static const uint32_t addis_12_2 = 0x3d820000;
3303 static const uint32_t addis_12_12 = 0x3d8c0000;
3304 static const uint32_t b = 0x48000000;
3305 static const uint32_t bcl_20_31 = 0x429f0005;
3306 static const uint32_t bctr = 0x4e800420;
3307 static const uint32_t blr = 0x4e800020;
3308 static const uint32_t bnectr_p4 = 0x4ce20420;
3309 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3310 static const uint32_t cmpldi_2_0 = 0x28220000;
3311 static const uint32_t cror_15_15_15 = 0x4def7b82;
3312 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3313 static const uint32_t ld_0_1 = 0xe8010000;
3314 static const uint32_t ld_0_12 = 0xe80c0000;
3315 static const uint32_t ld_2_1 = 0xe8410000;
3316 static const uint32_t ld_2_2 = 0xe8420000;
3317 static const uint32_t ld_2_11 = 0xe84b0000;
3318 static const uint32_t ld_2_12 = 0xe84c0000;
3319 static const uint32_t ld_11_2 = 0xe9620000;
3320 static const uint32_t ld_11_11 = 0xe96b0000;
3321 static const uint32_t ld_12_2 = 0xe9820000;
3322 static const uint32_t ld_12_11 = 0xe98b0000;
3323 static const uint32_t ld_12_12 = 0xe98c0000;
3324 static const uint32_t lfd_0_1 = 0xc8010000;
3325 static const uint32_t li_0_0 = 0x38000000;
3326 static const uint32_t li_12_0 = 0x39800000;
3327 static const uint32_t lis_0 = 0x3c000000;
3328 static const uint32_t lis_2 = 0x3c400000;
3329 static const uint32_t lis_11 = 0x3d600000;
3330 static const uint32_t lis_12 = 0x3d800000;
3331 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3332 static const uint32_t lwz_0_12 = 0x800c0000;
3333 static const uint32_t lwz_11_11 = 0x816b0000;
3334 static const uint32_t lwz_11_30 = 0x817e0000;
3335 static const uint32_t lwz_12_12 = 0x818c0000;
3336 static const uint32_t lwzu_0_12 = 0x840c0000;
3337 static const uint32_t mflr_0 = 0x7c0802a6;
3338 static const uint32_t mflr_11 = 0x7d6802a6;
3339 static const uint32_t mflr_12 = 0x7d8802a6;
3340 static const uint32_t mtctr_0 = 0x7c0903a6;
3341 static const uint32_t mtctr_11 = 0x7d6903a6;
3342 static const uint32_t mtctr_12 = 0x7d8903a6;
3343 static const uint32_t mtlr_0 = 0x7c0803a6;
3344 static const uint32_t mtlr_12 = 0x7d8803a6;
3345 static const uint32_t nop = 0x60000000;
3346 static const uint32_t ori_0_0_0 = 0x60000000;
3347 static const uint32_t srdi_0_0_2 = 0x7800f082;
3348 static const uint32_t std_0_1 = 0xf8010000;
3349 static const uint32_t std_0_12 = 0xf80c0000;
3350 static const uint32_t std_2_1 = 0xf8410000;
3351 static const uint32_t stfd_0_1 = 0xd8010000;
3352 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3353 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3354 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3355 static const uint32_t xor_2_12_12 = 0x7d826278;
3356 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3357
3358 // Write out the PLT.
3359
3360 template<int size, bool big_endian>
3361 void
3362 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3363 {
3364 if (size == 32 && this->name_[3] != 'I')
3365 {
3366 const section_size_type offset = this->offset();
3367 const section_size_type oview_size
3368 = convert_to_section_size_type(this->data_size());
3369 unsigned char* const oview = of->get_output_view(offset, oview_size);
3370 unsigned char* pov = oview;
3371 unsigned char* endpov = oview + oview_size;
3372
3373 // The address of the .glink branch table
3374 const Output_data_glink<size, big_endian>* glink
3375 = this->targ_->glink_section();
3376 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3377
3378 while (pov < endpov)
3379 {
3380 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3381 pov += 4;
3382 branch_tab += 4;
3383 }
3384
3385 of->write_output_view(offset, oview_size, oview);
3386 }
3387 }
3388
3389 // Create the PLT section.
3390
3391 template<int size, bool big_endian>
3392 void
3393 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3394 Layout* layout)
3395 {
3396 if (this->plt_ == NULL)
3397 {
3398 if (this->got_ == NULL)
3399 this->got_section(symtab, layout);
3400
3401 if (this->glink_ == NULL)
3402 make_glink_section(layout);
3403
3404 // Ensure that .rela.dyn always appears before .rela.plt This is
3405 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3406 // needs to include .rela.plt in its range.
3407 this->rela_dyn_section(layout);
3408
3409 Reloc_section* plt_rel = new Reloc_section(false);
3410 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3411 elfcpp::SHF_ALLOC, plt_rel,
3412 ORDER_DYNAMIC_PLT_RELOCS, false);
3413 this->plt_
3414 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3415 "** PLT");
3416 layout->add_output_section_data(".plt",
3417 (size == 32
3418 ? elfcpp::SHT_PROGBITS
3419 : elfcpp::SHT_NOBITS),
3420 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3421 this->plt_,
3422 (size == 32
3423 ? ORDER_SMALL_DATA
3424 : ORDER_SMALL_BSS),
3425 false);
3426 }
3427 }
3428
3429 // Create the IPLT section.
3430
3431 template<int size, bool big_endian>
3432 void
3433 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3434 Layout* layout)
3435 {
3436 if (this->iplt_ == NULL)
3437 {
3438 this->make_plt_section(symtab, layout);
3439
3440 Reloc_section* iplt_rel = new Reloc_section(false);
3441 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3442 this->iplt_
3443 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3444 "** IPLT");
3445 this->plt_->output_section()->add_output_section_data(this->iplt_);
3446 }
3447 }
3448
3449 // A section for huge long branch addresses, similar to plt section.
3450
3451 template<int size, bool big_endian>
3452 class Output_data_brlt_powerpc : public Output_section_data_build
3453 {
3454 public:
3455 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3456 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3457 size, big_endian> Reloc_section;
3458
3459 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3460 Reloc_section* brlt_rel)
3461 : Output_section_data_build(size == 32 ? 4 : 8),
3462 rel_(brlt_rel),
3463 targ_(targ)
3464 { }
3465
3466 void
3467 reset_brlt_sizes()
3468 {
3469 this->reset_data_size();
3470 this->rel_->reset_data_size();
3471 }
3472
3473 void
3474 finalize_brlt_sizes()
3475 {
3476 this->finalize_data_size();
3477 this->rel_->finalize_data_size();
3478 }
3479
3480 // Add a reloc for an entry in the BRLT.
3481 void
3482 add_reloc(Address to, unsigned int off)
3483 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3484
3485 // Update section and reloc section size.
3486 void
3487 set_current_size(unsigned int num_branches)
3488 {
3489 this->reset_address_and_file_offset();
3490 this->set_current_data_size(num_branches * 16);
3491 this->finalize_data_size();
3492 Output_section* os = this->output_section();
3493 os->set_section_offsets_need_adjustment();
3494 if (this->rel_ != NULL)
3495 {
3496 unsigned int reloc_size
3497 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3498 this->rel_->reset_address_and_file_offset();
3499 this->rel_->set_current_data_size(num_branches * reloc_size);
3500 this->rel_->finalize_data_size();
3501 Output_section* os = this->rel_->output_section();
3502 os->set_section_offsets_need_adjustment();
3503 }
3504 }
3505
3506 protected:
3507 void
3508 do_adjust_output_section(Output_section* os)
3509 {
3510 os->set_entsize(0);
3511 }
3512
3513 // Write to a map file.
3514 void
3515 do_print_to_mapfile(Mapfile* mapfile) const
3516 { mapfile->print_output_data(this, "** BRLT"); }
3517
3518 private:
3519 // Write out the BRLT data.
3520 void
3521 do_write(Output_file*);
3522
3523 // The reloc section.
3524 Reloc_section* rel_;
3525 Target_powerpc<size, big_endian>* targ_;
3526 };
3527
3528 // Make the branch lookup table section.
3529
3530 template<int size, bool big_endian>
3531 void
3532 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3533 {
3534 if (size == 64 && this->brlt_section_ == NULL)
3535 {
3536 Reloc_section* brlt_rel = NULL;
3537 bool is_pic = parameters->options().output_is_position_independent();
3538 if (is_pic)
3539 {
3540 // When PIC we can't fill in .branch_lt (like .plt it can be
3541 // a bss style section) but must initialise at runtime via
3542 // dynamic relocats.
3543 this->rela_dyn_section(layout);
3544 brlt_rel = new Reloc_section(false);
3545 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3546 }
3547 this->brlt_section_
3548 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3549 if (this->plt_ && is_pic)
3550 this->plt_->output_section()
3551 ->add_output_section_data(this->brlt_section_);
3552 else
3553 layout->add_output_section_data(".branch_lt",
3554 (is_pic ? elfcpp::SHT_NOBITS
3555 : elfcpp::SHT_PROGBITS),
3556 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3557 this->brlt_section_,
3558 (is_pic ? ORDER_SMALL_BSS
3559 : ORDER_SMALL_DATA),
3560 false);
3561 }
3562 }
3563
3564 // Write out .branch_lt when non-PIC.
3565
3566 template<int size, bool big_endian>
3567 void
3568 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3569 {
3570 if (size == 64 && !parameters->options().output_is_position_independent())
3571 {
3572 const section_size_type offset = this->offset();
3573 const section_size_type oview_size
3574 = convert_to_section_size_type(this->data_size());
3575 unsigned char* const oview = of->get_output_view(offset, oview_size);
3576
3577 this->targ_->write_branch_lookup_table(oview);
3578 of->write_output_view(offset, oview_size, oview);
3579 }
3580 }
3581
3582 static inline uint32_t
3583 l(uint32_t a)
3584 {
3585 return a & 0xffff;
3586 }
3587
3588 static inline uint32_t
3589 hi(uint32_t a)
3590 {
3591 return l(a >> 16);
3592 }
3593
3594 static inline uint32_t
3595 ha(uint32_t a)
3596 {
3597 return hi(a + 0x8000);
3598 }
3599
3600 template<int size>
3601 struct Eh_cie
3602 {
3603 static const unsigned char eh_frame_cie[12];
3604 };
3605
3606 template<int size>
3607 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3608 {
3609 1, // CIE version.
3610 'z', 'R', 0, // Augmentation string.
3611 4, // Code alignment.
3612 0x80 - size / 8 , // Data alignment.
3613 65, // RA reg.
3614 1, // Augmentation size.
3615 (elfcpp::DW_EH_PE_pcrel
3616 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3617 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3618 };
3619
3620 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3621 static const unsigned char glink_eh_frame_fde_64v1[] =
3622 {
3623 0, 0, 0, 0, // Replaced with offset to .glink.
3624 0, 0, 0, 0, // Replaced with size of .glink.
3625 0, // Augmentation size.
3626 elfcpp::DW_CFA_advance_loc + 1,
3627 elfcpp::DW_CFA_register, 65, 12,
3628 elfcpp::DW_CFA_advance_loc + 4,
3629 elfcpp::DW_CFA_restore_extended, 65
3630 };
3631
3632 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3633 static const unsigned char glink_eh_frame_fde_64v2[] =
3634 {
3635 0, 0, 0, 0, // Replaced with offset to .glink.
3636 0, 0, 0, 0, // Replaced with size of .glink.
3637 0, // Augmentation size.
3638 elfcpp::DW_CFA_advance_loc + 1,
3639 elfcpp::DW_CFA_register, 65, 0,
3640 elfcpp::DW_CFA_advance_loc + 4,
3641 elfcpp::DW_CFA_restore_extended, 65
3642 };
3643
3644 // Describe __glink_PLTresolve use of LR, 32-bit version.
3645 static const unsigned char glink_eh_frame_fde_32[] =
3646 {
3647 0, 0, 0, 0, // Replaced with offset to .glink.
3648 0, 0, 0, 0, // Replaced with size of .glink.
3649 0, // Augmentation size.
3650 elfcpp::DW_CFA_advance_loc + 2,
3651 elfcpp::DW_CFA_register, 65, 0,
3652 elfcpp::DW_CFA_advance_loc + 4,
3653 elfcpp::DW_CFA_restore_extended, 65
3654 };
3655
3656 static const unsigned char default_fde[] =
3657 {
3658 0, 0, 0, 0, // Replaced with offset to stubs.
3659 0, 0, 0, 0, // Replaced with size of stubs.
3660 0, // Augmentation size.
3661 elfcpp::DW_CFA_nop, // Pad.
3662 elfcpp::DW_CFA_nop,
3663 elfcpp::DW_CFA_nop
3664 };
3665
3666 template<bool big_endian>
3667 static inline void
3668 write_insn(unsigned char* p, uint32_t v)
3669 {
3670 elfcpp::Swap<32, big_endian>::writeval(p, v);
3671 }
3672
3673 // Stub_table holds information about plt and long branch stubs.
3674 // Stubs are built in an area following some input section determined
3675 // by group_sections(). This input section is converted to a relaxed
3676 // input section allowing it to be resized to accommodate the stubs
3677
3678 template<int size, bool big_endian>
3679 class Stub_table : public Output_relaxed_input_section
3680 {
3681 public:
3682 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3683 static const Address invalid_address = static_cast<Address>(0) - 1;
3684
3685 Stub_table(Target_powerpc<size, big_endian>* targ,
3686 Output_section* output_section,
3687 const Output_section::Input_section* owner)
3688 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3689 owner->relobj()
3690 ->section_addralign(owner->shndx())),
3691 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3692 orig_data_size_(owner->current_data_size()),
3693 plt_size_(0), last_plt_size_(0),
3694 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3695 eh_frame_added_(false), need_save_res_(false)
3696 {
3697 this->set_output_section(output_section);
3698
3699 std::vector<Output_relaxed_input_section*> new_relaxed;
3700 new_relaxed.push_back(this);
3701 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3702 }
3703
3704 // Add a plt call stub.
3705 bool
3706 add_plt_call_entry(Address,
3707 const Sized_relobj_file<size, big_endian>*,
3708 const Symbol*,
3709 unsigned int,
3710 Address);
3711
3712 bool
3713 add_plt_call_entry(Address,
3714 const Sized_relobj_file<size, big_endian>*,
3715 unsigned int,
3716 unsigned int,
3717 Address);
3718
3719 // Find a given plt call stub.
3720 Address
3721 find_plt_call_entry(const Symbol*) const;
3722
3723 Address
3724 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3725 unsigned int) const;
3726
3727 Address
3728 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3729 const Symbol*,
3730 unsigned int,
3731 Address) const;
3732
3733 Address
3734 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3735 unsigned int,
3736 unsigned int,
3737 Address) const;
3738
3739 // Add a long branch stub.
3740 bool
3741 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3742 unsigned int, Address, Address, bool);
3743
3744 Address
3745 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3746 Address) const;
3747
3748 bool
3749 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3750 {
3751 Address max_branch_offset = max_branch_delta(r_type);
3752 if (max_branch_offset == 0)
3753 return true;
3754 gold_assert(from != invalid_address);
3755 Address loc = off + this->stub_address();
3756 return loc - from + max_branch_offset < 2 * max_branch_offset;
3757 }
3758
3759 void
3760 clear_stubs(bool all)
3761 {
3762 this->plt_call_stubs_.clear();
3763 this->plt_size_ = 0;
3764 this->long_branch_stubs_.clear();
3765 this->branch_size_ = 0;
3766 this->need_save_res_ = false;
3767 if (all)
3768 {
3769 this->last_plt_size_ = 0;
3770 this->last_branch_size_ = 0;
3771 }
3772 }
3773
3774 Address
3775 set_address_and_size(const Output_section* os, Address off)
3776 {
3777 Address start_off = off;
3778 off += this->orig_data_size_;
3779 Address my_size = this->plt_size_ + this->branch_size_;
3780 if (this->need_save_res_)
3781 my_size += this->targ_->savres_section()->data_size();
3782 if (my_size != 0)
3783 off = align_address(off, this->stub_align());
3784 // Include original section size and alignment padding in size
3785 my_size += off - start_off;
3786 // Ensure new size is always larger than min size
3787 // threshold. Alignment requirement is included in "my_size", so
3788 // increase "my_size" does not invalidate alignment.
3789 if (my_size < this->min_size_threshold_)
3790 my_size = this->min_size_threshold_;
3791 this->reset_address_and_file_offset();
3792 this->set_current_data_size(my_size);
3793 this->set_address_and_file_offset(os->address() + start_off,
3794 os->offset() + start_off);
3795 return my_size;
3796 }
3797
3798 Address
3799 stub_address() const
3800 {
3801 return align_address(this->address() + this->orig_data_size_,
3802 this->stub_align());
3803 }
3804
3805 Address
3806 stub_offset() const
3807 {
3808 return align_address(this->offset() + this->orig_data_size_,
3809 this->stub_align());
3810 }
3811
3812 section_size_type
3813 plt_size() const
3814 { return this->plt_size_; }
3815
3816 void set_min_size_threshold(Address min_size)
3817 { this->min_size_threshold_ = min_size; }
3818
3819 bool
3820 size_update()
3821 {
3822 Output_section* os = this->output_section();
3823 if (os->addralign() < this->stub_align())
3824 {
3825 os->set_addralign(this->stub_align());
3826 // FIXME: get rid of the insane checkpointing.
3827 // We can't increase alignment of the input section to which
3828 // stubs are attached; The input section may be .init which
3829 // is pasted together with other .init sections to form a
3830 // function. Aligning might insert zero padding resulting in
3831 // sigill. However we do need to increase alignment of the
3832 // output section so that the align_address() on offset in
3833 // set_address_and_size() adds the same padding as the
3834 // align_address() on address in stub_address().
3835 // What's more, we need this alignment for the layout done in
3836 // relaxation_loop_body() so that the output section starts at
3837 // a suitably aligned address.
3838 os->checkpoint_set_addralign(this->stub_align());
3839 }
3840 if (this->last_plt_size_ != this->plt_size_
3841 || this->last_branch_size_ != this->branch_size_)
3842 {
3843 this->last_plt_size_ = this->plt_size_;
3844 this->last_branch_size_ = this->branch_size_;
3845 return true;
3846 }
3847 return false;
3848 }
3849
3850 // Add .eh_frame info for this stub section. Unlike other linker
3851 // generated .eh_frame this is added late in the link, because we
3852 // only want the .eh_frame info if this particular stub section is
3853 // non-empty.
3854 void
3855 add_eh_frame(Layout* layout)
3856 {
3857 if (!this->eh_frame_added_)
3858 {
3859 if (!parameters->options().ld_generated_unwind_info())
3860 return;
3861
3862 // Since we add stub .eh_frame info late, it must be placed
3863 // after all other linker generated .eh_frame info so that
3864 // merge mapping need not be updated for input sections.
3865 // There is no provision to use a different CIE to that used
3866 // by .glink.
3867 if (!this->targ_->has_glink())
3868 return;
3869
3870 layout->add_eh_frame_for_plt(this,
3871 Eh_cie<size>::eh_frame_cie,
3872 sizeof (Eh_cie<size>::eh_frame_cie),
3873 default_fde,
3874 sizeof (default_fde));
3875 this->eh_frame_added_ = true;
3876 }
3877 }
3878
3879 Target_powerpc<size, big_endian>*
3880 targ() const
3881 { return targ_; }
3882
3883 private:
3884 class Plt_stub_ent;
3885 class Plt_stub_ent_hash;
3886 typedef Unordered_map<Plt_stub_ent, unsigned int,
3887 Plt_stub_ent_hash> Plt_stub_entries;
3888
3889 // Alignment of stub section.
3890 unsigned int
3891 stub_align() const
3892 {
3893 if (size == 32)
3894 return 16;
3895 unsigned int min_align = 32;
3896 unsigned int user_align = 1 << parameters->options().plt_align();
3897 return std::max(user_align, min_align);
3898 }
3899
3900 // Return the plt offset for the given call stub.
3901 Address
3902 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3903 {
3904 const Symbol* gsym = p->first.sym_;
3905 if (gsym != NULL)
3906 {
3907 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3908 && gsym->can_use_relative_reloc(false));
3909 return gsym->plt_offset();
3910 }
3911 else
3912 {
3913 *is_iplt = true;
3914 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3915 unsigned int local_sym_index = p->first.locsym_;
3916 return relobj->local_plt_offset(local_sym_index);
3917 }
3918 }
3919
3920 // Size of a given plt call stub.
3921 unsigned int
3922 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3923 {
3924 if (size == 32)
3925 return 16;
3926
3927 bool is_iplt;
3928 Address plt_addr = this->plt_off(p, &is_iplt);
3929 if (is_iplt)
3930 plt_addr += this->targ_->iplt_section()->address();
3931 else
3932 plt_addr += this->targ_->plt_section()->address();
3933 Address got_addr = this->targ_->got_section()->output_section()->address();
3934 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3935 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3936 got_addr += ppcobj->toc_base_offset();
3937 Address off = plt_addr - got_addr;
3938 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3939 if (this->targ_->abiversion() < 2)
3940 {
3941 bool static_chain = parameters->options().plt_static_chain();
3942 bool thread_safe = this->targ_->plt_thread_safe();
3943 bytes += (4
3944 + 4 * static_chain
3945 + 8 * thread_safe
3946 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3947 }
3948 unsigned int align = 1 << parameters->options().plt_align();
3949 if (align > 1)
3950 bytes = (bytes + align - 1) & -align;
3951 return bytes;
3952 }
3953
3954 // Return long branch stub size.
3955 unsigned int
3956 branch_stub_size(Address to)
3957 {
3958 Address loc
3959 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3960 if (to - loc + (1 << 25) < 2 << 25)
3961 return 4;
3962 if (size == 64 || !parameters->options().output_is_position_independent())
3963 return 16;
3964 return 32;
3965 }
3966
3967 // Write out stubs.
3968 void
3969 do_write(Output_file*);
3970
3971 // Plt call stub keys.
3972 class Plt_stub_ent
3973 {
3974 public:
3975 Plt_stub_ent(const Symbol* sym)
3976 : sym_(sym), object_(0), addend_(0), locsym_(0)
3977 { }
3978
3979 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3980 unsigned int locsym_index)
3981 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3982 { }
3983
3984 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3985 const Symbol* sym,
3986 unsigned int r_type,
3987 Address addend)
3988 : sym_(sym), object_(0), addend_(0), locsym_(0)
3989 {
3990 if (size != 32)
3991 this->addend_ = addend;
3992 else if (parameters->options().output_is_position_independent()
3993 && r_type == elfcpp::R_PPC_PLTREL24)
3994 {
3995 this->addend_ = addend;
3996 if (this->addend_ >= 32768)
3997 this->object_ = object;
3998 }
3999 }
4000
4001 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
4002 unsigned int locsym_index,
4003 unsigned int r_type,
4004 Address addend)
4005 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4006 {
4007 if (size != 32)
4008 this->addend_ = addend;
4009 else if (parameters->options().output_is_position_independent()
4010 && r_type == elfcpp::R_PPC_PLTREL24)
4011 this->addend_ = addend;
4012 }
4013
4014 bool operator==(const Plt_stub_ent& that) const
4015 {
4016 return (this->sym_ == that.sym_
4017 && this->object_ == that.object_
4018 && this->addend_ == that.addend_
4019 && this->locsym_ == that.locsym_);
4020 }
4021
4022 const Symbol* sym_;
4023 const Sized_relobj_file<size, big_endian>* object_;
4024 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4025 unsigned int locsym_;
4026 };
4027
4028 class Plt_stub_ent_hash
4029 {
4030 public:
4031 size_t operator()(const Plt_stub_ent& ent) const
4032 {
4033 return (reinterpret_cast<uintptr_t>(ent.sym_)
4034 ^ reinterpret_cast<uintptr_t>(ent.object_)
4035 ^ ent.addend_
4036 ^ ent.locsym_);
4037 }
4038 };
4039
4040 // Long branch stub keys.
4041 class Branch_stub_ent
4042 {
4043 public:
4044 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4045 Address to, bool save_res)
4046 : dest_(to), toc_base_off_(0), save_res_(save_res)
4047 {
4048 if (size == 64)
4049 toc_base_off_ = obj->toc_base_offset();
4050 }
4051
4052 bool operator==(const Branch_stub_ent& that) const
4053 {
4054 return (this->dest_ == that.dest_
4055 && (size == 32
4056 || this->toc_base_off_ == that.toc_base_off_));
4057 }
4058
4059 Address dest_;
4060 unsigned int toc_base_off_;
4061 bool save_res_;
4062 };
4063
4064 class Branch_stub_ent_hash
4065 {
4066 public:
4067 size_t operator()(const Branch_stub_ent& ent) const
4068 { return ent.dest_ ^ ent.toc_base_off_; }
4069 };
4070
4071 // In a sane world this would be a global.
4072 Target_powerpc<size, big_endian>* targ_;
4073 // Map sym/object/addend to stub offset.
4074 Plt_stub_entries plt_call_stubs_;
4075 // Map destination address to stub offset.
4076 typedef Unordered_map<Branch_stub_ent, unsigned int,
4077 Branch_stub_ent_hash> Branch_stub_entries;
4078 Branch_stub_entries long_branch_stubs_;
4079 // size of input section
4080 section_size_type orig_data_size_;
4081 // size of stubs
4082 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4083 // Some rare cases cause (PR/20529) fluctuation in stub table
4084 // size, which leads to an endless relax loop. This is to be fixed
4085 // by, after the first few iterations, allowing only increase of
4086 // stub table size. This variable sets the minimal possible size of
4087 // a stub table, it is zero for the first few iterations, then
4088 // increases monotonically.
4089 Address min_size_threshold_;
4090 // Whether .eh_frame info has been created for this stub section.
4091 bool eh_frame_added_;
4092 // Set if this stub group needs a copy of out-of-line register
4093 // save/restore functions.
4094 bool need_save_res_;
4095 };
4096
4097 // Add a plt call stub, if we do not already have one for this
4098 // sym/object/addend combo.
4099
4100 template<int size, bool big_endian>
4101 bool
4102 Stub_table<size, big_endian>::add_plt_call_entry(
4103 Address from,
4104 const Sized_relobj_file<size, big_endian>* object,
4105 const Symbol* gsym,
4106 unsigned int r_type,
4107 Address addend)
4108 {
4109 Plt_stub_ent ent(object, gsym, r_type, addend);
4110 unsigned int off = this->plt_size_;
4111 std::pair<typename Plt_stub_entries::iterator, bool> p
4112 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4113 if (p.second)
4114 this->plt_size_ = off + this->plt_call_size(p.first);
4115 return this->can_reach_stub(from, off, r_type);
4116 }
4117
4118 template<int size, bool big_endian>
4119 bool
4120 Stub_table<size, big_endian>::add_plt_call_entry(
4121 Address from,
4122 const Sized_relobj_file<size, big_endian>* object,
4123 unsigned int locsym_index,
4124 unsigned int r_type,
4125 Address addend)
4126 {
4127 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4128 unsigned int off = this->plt_size_;
4129 std::pair<typename Plt_stub_entries::iterator, bool> p
4130 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4131 if (p.second)
4132 this->plt_size_ = off + this->plt_call_size(p.first);
4133 return this->can_reach_stub(from, off, r_type);
4134 }
4135
4136 // Find a plt call stub.
4137
4138 template<int size, bool big_endian>
4139 typename Stub_table<size, big_endian>::Address
4140 Stub_table<size, big_endian>::find_plt_call_entry(
4141 const Sized_relobj_file<size, big_endian>* object,
4142 const Symbol* gsym,
4143 unsigned int r_type,
4144 Address addend) const
4145 {
4146 Plt_stub_ent ent(object, gsym, r_type, addend);
4147 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4148 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4149 }
4150
4151 template<int size, bool big_endian>
4152 typename Stub_table<size, big_endian>::Address
4153 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4154 {
4155 Plt_stub_ent ent(gsym);
4156 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4157 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4158 }
4159
4160 template<int size, bool big_endian>
4161 typename Stub_table<size, big_endian>::Address
4162 Stub_table<size, big_endian>::find_plt_call_entry(
4163 const Sized_relobj_file<size, big_endian>* object,
4164 unsigned int locsym_index,
4165 unsigned int r_type,
4166 Address addend) const
4167 {
4168 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4169 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4170 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4171 }
4172
4173 template<int size, bool big_endian>
4174 typename Stub_table<size, big_endian>::Address
4175 Stub_table<size, big_endian>::find_plt_call_entry(
4176 const Sized_relobj_file<size, big_endian>* object,
4177 unsigned int locsym_index) const
4178 {
4179 Plt_stub_ent ent(object, locsym_index);
4180 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4181 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4182 }
4183
4184 // Add a long branch stub if we don't already have one to given
4185 // destination.
4186
4187 template<int size, bool big_endian>
4188 bool
4189 Stub_table<size, big_endian>::add_long_branch_entry(
4190 const Powerpc_relobj<size, big_endian>* object,
4191 unsigned int r_type,
4192 Address from,
4193 Address to,
4194 bool save_res)
4195 {
4196 Branch_stub_ent ent(object, to, save_res);
4197 Address off = this->branch_size_;
4198 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4199 {
4200 if (save_res)
4201 this->need_save_res_ = true;
4202 else
4203 {
4204 unsigned int stub_size = this->branch_stub_size(to);
4205 this->branch_size_ = off + stub_size;
4206 if (size == 64 && stub_size != 4)
4207 this->targ_->add_branch_lookup_table(to);
4208 }
4209 }
4210 return this->can_reach_stub(from, off, r_type);
4211 }
4212
4213 // Find long branch stub offset.
4214
4215 template<int size, bool big_endian>
4216 typename Stub_table<size, big_endian>::Address
4217 Stub_table<size, big_endian>::find_long_branch_entry(
4218 const Powerpc_relobj<size, big_endian>* object,
4219 Address to) const
4220 {
4221 Branch_stub_ent ent(object, to, false);
4222 typename Branch_stub_entries::const_iterator p
4223 = this->long_branch_stubs_.find(ent);
4224 if (p == this->long_branch_stubs_.end())
4225 return invalid_address;
4226 if (p->first.save_res_)
4227 return to - this->targ_->savres_section()->address() + this->branch_size_;
4228 return p->second;
4229 }
4230
4231 // A class to handle .glink.
4232
4233 template<int size, bool big_endian>
4234 class Output_data_glink : public Output_section_data
4235 {
4236 public:
4237 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4238 static const Address invalid_address = static_cast<Address>(0) - 1;
4239 static const int pltresolve_size = 16*4;
4240
4241 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4242 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4243 end_branch_table_(), ge_size_(0)
4244 { }
4245
4246 void
4247 add_eh_frame(Layout* layout);
4248
4249 void
4250 add_global_entry(const Symbol*);
4251
4252 Address
4253 find_global_entry(const Symbol*) const;
4254
4255 Address
4256 global_entry_address() const
4257 {
4258 gold_assert(this->is_data_size_valid());
4259 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4260 return this->address() + global_entry_off;
4261 }
4262
4263 protected:
4264 // Write to a map file.
4265 void
4266 do_print_to_mapfile(Mapfile* mapfile) const
4267 { mapfile->print_output_data(this, _("** glink")); }
4268
4269 private:
4270 void
4271 set_final_data_size();
4272
4273 // Write out .glink
4274 void
4275 do_write(Output_file*);
4276
4277 // Allows access to .got and .plt for do_write.
4278 Target_powerpc<size, big_endian>* targ_;
4279
4280 // Map sym to stub offset.
4281 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4282 Global_entry_stub_entries global_entry_stubs_;
4283
4284 unsigned int end_branch_table_, ge_size_;
4285 };
4286
4287 template<int size, bool big_endian>
4288 void
4289 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4290 {
4291 if (!parameters->options().ld_generated_unwind_info())
4292 return;
4293
4294 if (size == 64)
4295 {
4296 if (this->targ_->abiversion() < 2)
4297 layout->add_eh_frame_for_plt(this,
4298 Eh_cie<64>::eh_frame_cie,
4299 sizeof (Eh_cie<64>::eh_frame_cie),
4300 glink_eh_frame_fde_64v1,
4301 sizeof (glink_eh_frame_fde_64v1));
4302 else
4303 layout->add_eh_frame_for_plt(this,
4304 Eh_cie<64>::eh_frame_cie,
4305 sizeof (Eh_cie<64>::eh_frame_cie),
4306 glink_eh_frame_fde_64v2,
4307 sizeof (glink_eh_frame_fde_64v2));
4308 }
4309 else
4310 {
4311 // 32-bit .glink can use the default since the CIE return
4312 // address reg, LR, is valid.
4313 layout->add_eh_frame_for_plt(this,
4314 Eh_cie<32>::eh_frame_cie,
4315 sizeof (Eh_cie<32>::eh_frame_cie),
4316 default_fde,
4317 sizeof (default_fde));
4318 // Except where LR is used in a PIC __glink_PLTresolve.
4319 if (parameters->options().output_is_position_independent())
4320 layout->add_eh_frame_for_plt(this,
4321 Eh_cie<32>::eh_frame_cie,
4322 sizeof (Eh_cie<32>::eh_frame_cie),
4323 glink_eh_frame_fde_32,
4324 sizeof (glink_eh_frame_fde_32));
4325 }
4326 }
4327
4328 template<int size, bool big_endian>
4329 void
4330 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4331 {
4332 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4333 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4334 if (p.second)
4335 this->ge_size_ += 16;
4336 }
4337
4338 template<int size, bool big_endian>
4339 typename Output_data_glink<size, big_endian>::Address
4340 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4341 {
4342 typename Global_entry_stub_entries::const_iterator p
4343 = this->global_entry_stubs_.find(gsym);
4344 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4345 }
4346
4347 template<int size, bool big_endian>
4348 void
4349 Output_data_glink<size, big_endian>::set_final_data_size()
4350 {
4351 unsigned int count = this->targ_->plt_entry_count();
4352 section_size_type total = 0;
4353
4354 if (count != 0)
4355 {
4356 if (size == 32)
4357 {
4358 // space for branch table
4359 total += 4 * (count - 1);
4360
4361 total += -total & 15;
4362 total += this->pltresolve_size;
4363 }
4364 else
4365 {
4366 total += this->pltresolve_size;
4367
4368 // space for branch table
4369 total += 4 * count;
4370 if (this->targ_->abiversion() < 2)
4371 {
4372 total += 4 * count;
4373 if (count > 0x8000)
4374 total += 4 * (count - 0x8000);
4375 }
4376 }
4377 }
4378 this->end_branch_table_ = total;
4379 total = (total + 15) & -16;
4380 total += this->ge_size_;
4381
4382 this->set_data_size(total);
4383 }
4384
4385 // Write out plt and long branch stub code.
4386
4387 template<int size, bool big_endian>
4388 void
4389 Stub_table<size, big_endian>::do_write(Output_file* of)
4390 {
4391 if (this->plt_call_stubs_.empty()
4392 && this->long_branch_stubs_.empty())
4393 return;
4394
4395 const section_size_type start_off = this->offset();
4396 const section_size_type off = this->stub_offset();
4397 const section_size_type oview_size =
4398 convert_to_section_size_type(this->data_size() - (off - start_off));
4399 unsigned char* const oview = of->get_output_view(off, oview_size);
4400 unsigned char* p;
4401
4402 if (size == 64)
4403 {
4404 const Output_data_got_powerpc<size, big_endian>* got
4405 = this->targ_->got_section();
4406 Address got_os_addr = got->output_section()->address();
4407
4408 if (!this->plt_call_stubs_.empty())
4409 {
4410 // The base address of the .plt section.
4411 Address plt_base = this->targ_->plt_section()->address();
4412 Address iplt_base = invalid_address;
4413
4414 // Write out plt call stubs.
4415 typename Plt_stub_entries::const_iterator cs;
4416 for (cs = this->plt_call_stubs_.begin();
4417 cs != this->plt_call_stubs_.end();
4418 ++cs)
4419 {
4420 bool is_iplt;
4421 Address pltoff = this->plt_off(cs, &is_iplt);
4422 Address plt_addr = pltoff;
4423 if (is_iplt)
4424 {
4425 if (iplt_base == invalid_address)
4426 iplt_base = this->targ_->iplt_section()->address();
4427 plt_addr += iplt_base;
4428 }
4429 else
4430 plt_addr += plt_base;
4431 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4432 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4433 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4434 Address off = plt_addr - got_addr;
4435
4436 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4437 gold_error(_("%s: linkage table error against `%s'"),
4438 cs->first.object_->name().c_str(),
4439 cs->first.sym_->demangled_name().c_str());
4440
4441 bool plt_load_toc = this->targ_->abiversion() < 2;
4442 bool static_chain
4443 = plt_load_toc && parameters->options().plt_static_chain();
4444 bool thread_safe
4445 = plt_load_toc && this->targ_->plt_thread_safe();
4446 bool use_fake_dep = false;
4447 Address cmp_branch_off = 0;
4448 if (thread_safe)
4449 {
4450 unsigned int pltindex
4451 = ((pltoff - this->targ_->first_plt_entry_offset())
4452 / this->targ_->plt_entry_size());
4453 Address glinkoff
4454 = (this->targ_->glink_section()->pltresolve_size
4455 + pltindex * 8);
4456 if (pltindex > 32768)
4457 glinkoff += (pltindex - 32768) * 4;
4458 Address to
4459 = this->targ_->glink_section()->address() + glinkoff;
4460 Address from
4461 = (this->stub_address() + cs->second + 24
4462 + 4 * (ha(off) != 0)
4463 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4464 + 4 * static_chain);
4465 cmp_branch_off = to - from;
4466 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4467 }
4468
4469 p = oview + cs->second;
4470 if (ha(off) != 0)
4471 {
4472 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4473 p += 4;
4474 if (plt_load_toc)
4475 {
4476 write_insn<big_endian>(p, addis_11_2 + ha(off));
4477 p += 4;
4478 write_insn<big_endian>(p, ld_12_11 + l(off));
4479 p += 4;
4480 }
4481 else
4482 {
4483 write_insn<big_endian>(p, addis_12_2 + ha(off));
4484 p += 4;
4485 write_insn<big_endian>(p, ld_12_12 + l(off));
4486 p += 4;
4487 }
4488 if (plt_load_toc
4489 && ha(off + 8 + 8 * static_chain) != ha(off))
4490 {
4491 write_insn<big_endian>(p, addi_11_11 + l(off));
4492 p += 4;
4493 off = 0;
4494 }
4495 write_insn<big_endian>(p, mtctr_12);
4496 p += 4;
4497 if (plt_load_toc)
4498 {
4499 if (use_fake_dep)
4500 {
4501 write_insn<big_endian>(p, xor_2_12_12);
4502 p += 4;
4503 write_insn<big_endian>(p, add_11_11_2);
4504 p += 4;
4505 }
4506 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4507 p += 4;
4508 if (static_chain)
4509 {
4510 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4511 p += 4;
4512 }
4513 }
4514 }
4515 else
4516 {
4517 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4518 p += 4;
4519 write_insn<big_endian>(p, ld_12_2 + l(off));
4520 p += 4;
4521 if (plt_load_toc
4522 && ha(off + 8 + 8 * static_chain) != ha(off))
4523 {
4524 write_insn<big_endian>(p, addi_2_2 + l(off));
4525 p += 4;
4526 off = 0;
4527 }
4528 write_insn<big_endian>(p, mtctr_12);
4529 p += 4;
4530 if (plt_load_toc)
4531 {
4532 if (use_fake_dep)
4533 {
4534 write_insn<big_endian>(p, xor_11_12_12);
4535 p += 4;
4536 write_insn<big_endian>(p, add_2_2_11);
4537 p += 4;
4538 }
4539 if (static_chain)
4540 {
4541 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4542 p += 4;
4543 }
4544 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4545 p += 4;
4546 }
4547 }
4548 if (thread_safe && !use_fake_dep)
4549 {
4550 write_insn<big_endian>(p, cmpldi_2_0);
4551 p += 4;
4552 write_insn<big_endian>(p, bnectr_p4);
4553 p += 4;
4554 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4555 }
4556 else
4557 write_insn<big_endian>(p, bctr);
4558 }
4559 }
4560
4561 // Write out long branch stubs.
4562 typename Branch_stub_entries::const_iterator bs;
4563 for (bs = this->long_branch_stubs_.begin();
4564 bs != this->long_branch_stubs_.end();
4565 ++bs)
4566 {
4567 if (bs->first.save_res_)
4568 continue;
4569 p = oview + this->plt_size_ + bs->second;
4570 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4571 Address delta = bs->first.dest_ - loc;
4572 if (delta + (1 << 25) < 2 << 25)
4573 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4574 else
4575 {
4576 Address brlt_addr
4577 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4578 gold_assert(brlt_addr != invalid_address);
4579 brlt_addr += this->targ_->brlt_section()->address();
4580 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4581 Address brltoff = brlt_addr - got_addr;
4582 if (ha(brltoff) == 0)
4583 {
4584 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4585 }
4586 else
4587 {
4588 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4589 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4590 }
4591 write_insn<big_endian>(p, mtctr_12), p += 4;
4592 write_insn<big_endian>(p, bctr);
4593 }
4594 }
4595 }
4596 else
4597 {
4598 if (!this->plt_call_stubs_.empty())
4599 {
4600 // The base address of the .plt section.
4601 Address plt_base = this->targ_->plt_section()->address();
4602 Address iplt_base = invalid_address;
4603 // The address of _GLOBAL_OFFSET_TABLE_.
4604 Address g_o_t = invalid_address;
4605
4606 // Write out plt call stubs.
4607 typename Plt_stub_entries::const_iterator cs;
4608 for (cs = this->plt_call_stubs_.begin();
4609 cs != this->plt_call_stubs_.end();
4610 ++cs)
4611 {
4612 bool is_iplt;
4613 Address plt_addr = this->plt_off(cs, &is_iplt);
4614 if (is_iplt)
4615 {
4616 if (iplt_base == invalid_address)
4617 iplt_base = this->targ_->iplt_section()->address();
4618 plt_addr += iplt_base;
4619 }
4620 else
4621 plt_addr += plt_base;
4622
4623 p = oview + cs->second;
4624 if (parameters->options().output_is_position_independent())
4625 {
4626 Address got_addr;
4627 const Powerpc_relobj<size, big_endian>* ppcobj
4628 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4629 (cs->first.object_));
4630 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4631 {
4632 unsigned int got2 = ppcobj->got2_shndx();
4633 got_addr = ppcobj->get_output_section_offset(got2);
4634 gold_assert(got_addr != invalid_address);
4635 got_addr += (ppcobj->output_section(got2)->address()
4636 + cs->first.addend_);
4637 }
4638 else
4639 {
4640 if (g_o_t == invalid_address)
4641 {
4642 const Output_data_got_powerpc<size, big_endian>* got
4643 = this->targ_->got_section();
4644 g_o_t = got->address() + got->g_o_t();
4645 }
4646 got_addr = g_o_t;
4647 }
4648
4649 Address off = plt_addr - got_addr;
4650 if (ha(off) == 0)
4651 {
4652 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4653 write_insn<big_endian>(p + 4, mtctr_11);
4654 write_insn<big_endian>(p + 8, bctr);
4655 }
4656 else
4657 {
4658 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4659 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4660 write_insn<big_endian>(p + 8, mtctr_11);
4661 write_insn<big_endian>(p + 12, bctr);
4662 }
4663 }
4664 else
4665 {
4666 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4667 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4668 write_insn<big_endian>(p + 8, mtctr_11);
4669 write_insn<big_endian>(p + 12, bctr);
4670 }
4671 }
4672 }
4673
4674 // Write out long branch stubs.
4675 typename Branch_stub_entries::const_iterator bs;
4676 for (bs = this->long_branch_stubs_.begin();
4677 bs != this->long_branch_stubs_.end();
4678 ++bs)
4679 {
4680 if (bs->first.save_res_)
4681 continue;
4682 p = oview + this->plt_size_ + bs->second;
4683 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4684 Address delta = bs->first.dest_ - loc;
4685 if (delta + (1 << 25) < 2 << 25)
4686 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4687 else if (!parameters->options().output_is_position_independent())
4688 {
4689 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4690 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4691 write_insn<big_endian>(p + 8, mtctr_12);
4692 write_insn<big_endian>(p + 12, bctr);
4693 }
4694 else
4695 {
4696 delta -= 8;
4697 write_insn<big_endian>(p + 0, mflr_0);
4698 write_insn<big_endian>(p + 4, bcl_20_31);
4699 write_insn<big_endian>(p + 8, mflr_12);
4700 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4701 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4702 write_insn<big_endian>(p + 20, mtlr_0);
4703 write_insn<big_endian>(p + 24, mtctr_12);
4704 write_insn<big_endian>(p + 28, bctr);
4705 }
4706 }
4707 }
4708 if (this->need_save_res_)
4709 {
4710 p = oview + this->plt_size_ + this->branch_size_;
4711 memcpy (p, this->targ_->savres_section()->contents(),
4712 this->targ_->savres_section()->data_size());
4713 }
4714 }
4715
4716 // Write out .glink.
4717
4718 template<int size, bool big_endian>
4719 void
4720 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4721 {
4722 const section_size_type off = this->offset();
4723 const section_size_type oview_size =
4724 convert_to_section_size_type(this->data_size());
4725 unsigned char* const oview = of->get_output_view(off, oview_size);
4726 unsigned char* p;
4727
4728 // The base address of the .plt section.
4729 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4730 Address plt_base = this->targ_->plt_section()->address();
4731
4732 if (size == 64)
4733 {
4734 if (this->end_branch_table_ != 0)
4735 {
4736 // Write pltresolve stub.
4737 p = oview;
4738 Address after_bcl = this->address() + 16;
4739 Address pltoff = plt_base - after_bcl;
4740
4741 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4742
4743 if (this->targ_->abiversion() < 2)
4744 {
4745 write_insn<big_endian>(p, mflr_12), p += 4;
4746 write_insn<big_endian>(p, bcl_20_31), p += 4;
4747 write_insn<big_endian>(p, mflr_11), p += 4;
4748 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4749 write_insn<big_endian>(p, mtlr_12), p += 4;
4750 write_insn<big_endian>(p, add_11_2_11), p += 4;
4751 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4752 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4753 write_insn<big_endian>(p, mtctr_12), p += 4;
4754 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4755 }
4756 else
4757 {
4758 write_insn<big_endian>(p, mflr_0), p += 4;
4759 write_insn<big_endian>(p, bcl_20_31), p += 4;
4760 write_insn<big_endian>(p, mflr_11), p += 4;
4761 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4762 write_insn<big_endian>(p, mtlr_0), p += 4;
4763 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4764 write_insn<big_endian>(p, add_11_2_11), p += 4;
4765 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4766 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4767 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4768 write_insn<big_endian>(p, mtctr_12), p += 4;
4769 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4770 }
4771 write_insn<big_endian>(p, bctr), p += 4;
4772 while (p < oview + this->pltresolve_size)
4773 write_insn<big_endian>(p, nop), p += 4;
4774
4775 // Write lazy link call stubs.
4776 uint32_t indx = 0;
4777 while (p < oview + this->end_branch_table_)
4778 {
4779 if (this->targ_->abiversion() < 2)
4780 {
4781 if (indx < 0x8000)
4782 {
4783 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4784 }
4785 else
4786 {
4787 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4788 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4789 }
4790 }
4791 uint32_t branch_off = 8 - (p - oview);
4792 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4793 indx++;
4794 }
4795 }
4796
4797 Address plt_base = this->targ_->plt_section()->address();
4798 Address iplt_base = invalid_address;
4799 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4800 Address global_entry_base = this->address() + global_entry_off;
4801 typename Global_entry_stub_entries::const_iterator ge;
4802 for (ge = this->global_entry_stubs_.begin();
4803 ge != this->global_entry_stubs_.end();
4804 ++ge)
4805 {
4806 p = oview + global_entry_off + ge->second;
4807 Address plt_addr = ge->first->plt_offset();
4808 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4809 && ge->first->can_use_relative_reloc(false))
4810 {
4811 if (iplt_base == invalid_address)
4812 iplt_base = this->targ_->iplt_section()->address();
4813 plt_addr += iplt_base;
4814 }
4815 else
4816 plt_addr += plt_base;
4817 Address my_addr = global_entry_base + ge->second;
4818 Address off = plt_addr - my_addr;
4819
4820 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4821 gold_error(_("%s: linkage table error against `%s'"),
4822 ge->first->object()->name().c_str(),
4823 ge->first->demangled_name().c_str());
4824
4825 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4826 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4827 write_insn<big_endian>(p, mtctr_12), p += 4;
4828 write_insn<big_endian>(p, bctr);
4829 }
4830 }
4831 else
4832 {
4833 const Output_data_got_powerpc<size, big_endian>* got
4834 = this->targ_->got_section();
4835 // The address of _GLOBAL_OFFSET_TABLE_.
4836 Address g_o_t = got->address() + got->g_o_t();
4837
4838 // Write out pltresolve branch table.
4839 p = oview;
4840 unsigned int the_end = oview_size - this->pltresolve_size;
4841 unsigned char* end_p = oview + the_end;
4842 while (p < end_p - 8 * 4)
4843 write_insn<big_endian>(p, b + end_p - p), p += 4;
4844 while (p < end_p)
4845 write_insn<big_endian>(p, nop), p += 4;
4846
4847 // Write out pltresolve call stub.
4848 if (parameters->options().output_is_position_independent())
4849 {
4850 Address res0_off = 0;
4851 Address after_bcl_off = the_end + 12;
4852 Address bcl_res0 = after_bcl_off - res0_off;
4853
4854 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4855 write_insn<big_endian>(p + 4, mflr_0);
4856 write_insn<big_endian>(p + 8, bcl_20_31);
4857 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4858 write_insn<big_endian>(p + 16, mflr_12);
4859 write_insn<big_endian>(p + 20, mtlr_0);
4860 write_insn<big_endian>(p + 24, sub_11_11_12);
4861
4862 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4863
4864 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4865 if (ha(got_bcl) == ha(got_bcl + 4))
4866 {
4867 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4868 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4869 }
4870 else
4871 {
4872 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4873 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4874 }
4875 write_insn<big_endian>(p + 40, mtctr_0);
4876 write_insn<big_endian>(p + 44, add_0_11_11);
4877 write_insn<big_endian>(p + 48, add_11_0_11);
4878 write_insn<big_endian>(p + 52, bctr);
4879 write_insn<big_endian>(p + 56, nop);
4880 write_insn<big_endian>(p + 60, nop);
4881 }
4882 else
4883 {
4884 Address res0 = this->address();
4885
4886 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4887 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4888 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4889 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4890 else
4891 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4892 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4893 write_insn<big_endian>(p + 16, mtctr_0);
4894 write_insn<big_endian>(p + 20, add_0_11_11);
4895 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4896 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4897 else
4898 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4899 write_insn<big_endian>(p + 28, add_11_0_11);
4900 write_insn<big_endian>(p + 32, bctr);
4901 write_insn<big_endian>(p + 36, nop);
4902 write_insn<big_endian>(p + 40, nop);
4903 write_insn<big_endian>(p + 44, nop);
4904 write_insn<big_endian>(p + 48, nop);
4905 write_insn<big_endian>(p + 52, nop);
4906 write_insn<big_endian>(p + 56, nop);
4907 write_insn<big_endian>(p + 60, nop);
4908 }
4909 p += 64;
4910 }
4911
4912 of->write_output_view(off, oview_size, oview);
4913 }
4914
4915
4916 // A class to handle linker generated save/restore functions.
4917
4918 template<int size, bool big_endian>
4919 class Output_data_save_res : public Output_section_data_build
4920 {
4921 public:
4922 Output_data_save_res(Symbol_table* symtab);
4923
4924 const unsigned char*
4925 contents() const
4926 {
4927 return contents_;
4928 }
4929
4930 protected:
4931 // Write to a map file.
4932 void
4933 do_print_to_mapfile(Mapfile* mapfile) const
4934 { mapfile->print_output_data(this, _("** save/restore")); }
4935
4936 void
4937 do_write(Output_file*);
4938
4939 private:
4940 // The maximum size of save/restore contents.
4941 static const unsigned int savres_max = 218*4;
4942
4943 void
4944 savres_define(Symbol_table* symtab,
4945 const char *name,
4946 unsigned int lo, unsigned int hi,
4947 unsigned char* write_ent(unsigned char*, int),
4948 unsigned char* write_tail(unsigned char*, int));
4949
4950 unsigned char *contents_;
4951 };
4952
4953 template<bool big_endian>
4954 static unsigned char*
4955 savegpr0(unsigned char* p, int r)
4956 {
4957 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4958 write_insn<big_endian>(p, insn);
4959 return p + 4;
4960 }
4961
4962 template<bool big_endian>
4963 static unsigned char*
4964 savegpr0_tail(unsigned char* p, int r)
4965 {
4966 p = savegpr0<big_endian>(p, r);
4967 uint32_t insn = std_0_1 + 16;
4968 write_insn<big_endian>(p, insn);
4969 p = p + 4;
4970 write_insn<big_endian>(p, blr);
4971 return p + 4;
4972 }
4973
4974 template<bool big_endian>
4975 static unsigned char*
4976 restgpr0(unsigned char* p, int r)
4977 {
4978 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4979 write_insn<big_endian>(p, insn);
4980 return p + 4;
4981 }
4982
4983 template<bool big_endian>
4984 static unsigned char*
4985 restgpr0_tail(unsigned char* p, int r)
4986 {
4987 uint32_t insn = ld_0_1 + 16;
4988 write_insn<big_endian>(p, insn);
4989 p = p + 4;
4990 p = restgpr0<big_endian>(p, r);
4991 write_insn<big_endian>(p, mtlr_0);
4992 p = p + 4;
4993 if (r == 29)
4994 {
4995 p = restgpr0<big_endian>(p, 30);
4996 p = restgpr0<big_endian>(p, 31);
4997 }
4998 write_insn<big_endian>(p, blr);
4999 return p + 4;
5000 }
5001
5002 template<bool big_endian>
5003 static unsigned char*
5004 savegpr1(unsigned char* p, int r)
5005 {
5006 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5007 write_insn<big_endian>(p, insn);
5008 return p + 4;
5009 }
5010
5011 template<bool big_endian>
5012 static unsigned char*
5013 savegpr1_tail(unsigned char* p, int r)
5014 {
5015 p = savegpr1<big_endian>(p, r);
5016 write_insn<big_endian>(p, blr);
5017 return p + 4;
5018 }
5019
5020 template<bool big_endian>
5021 static unsigned char*
5022 restgpr1(unsigned char* p, int r)
5023 {
5024 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5025 write_insn<big_endian>(p, insn);
5026 return p + 4;
5027 }
5028
5029 template<bool big_endian>
5030 static unsigned char*
5031 restgpr1_tail(unsigned char* p, int r)
5032 {
5033 p = restgpr1<big_endian>(p, r);
5034 write_insn<big_endian>(p, blr);
5035 return p + 4;
5036 }
5037
5038 template<bool big_endian>
5039 static unsigned char*
5040 savefpr(unsigned char* p, int r)
5041 {
5042 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5043 write_insn<big_endian>(p, insn);
5044 return p + 4;
5045 }
5046
5047 template<bool big_endian>
5048 static unsigned char*
5049 savefpr0_tail(unsigned char* p, int r)
5050 {
5051 p = savefpr<big_endian>(p, r);
5052 write_insn<big_endian>(p, std_0_1 + 16);
5053 p = p + 4;
5054 write_insn<big_endian>(p, blr);
5055 return p + 4;
5056 }
5057
5058 template<bool big_endian>
5059 static unsigned char*
5060 restfpr(unsigned char* p, int r)
5061 {
5062 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5063 write_insn<big_endian>(p, insn);
5064 return p + 4;
5065 }
5066
5067 template<bool big_endian>
5068 static unsigned char*
5069 restfpr0_tail(unsigned char* p, int r)
5070 {
5071 write_insn<big_endian>(p, ld_0_1 + 16);
5072 p = p + 4;
5073 p = restfpr<big_endian>(p, r);
5074 write_insn<big_endian>(p, mtlr_0);
5075 p = p + 4;
5076 if (r == 29)
5077 {
5078 p = restfpr<big_endian>(p, 30);
5079 p = restfpr<big_endian>(p, 31);
5080 }
5081 write_insn<big_endian>(p, blr);
5082 return p + 4;
5083 }
5084
5085 template<bool big_endian>
5086 static unsigned char*
5087 savefpr1_tail(unsigned char* p, int r)
5088 {
5089 p = savefpr<big_endian>(p, r);
5090 write_insn<big_endian>(p, blr);
5091 return p + 4;
5092 }
5093
5094 template<bool big_endian>
5095 static unsigned char*
5096 restfpr1_tail(unsigned char* p, int r)
5097 {
5098 p = restfpr<big_endian>(p, r);
5099 write_insn<big_endian>(p, blr);
5100 return p + 4;
5101 }
5102
5103 template<bool big_endian>
5104 static unsigned char*
5105 savevr(unsigned char* p, int r)
5106 {
5107 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5108 write_insn<big_endian>(p, insn);
5109 p = p + 4;
5110 insn = stvx_0_12_0 + (r << 21);
5111 write_insn<big_endian>(p, insn);
5112 return p + 4;
5113 }
5114
5115 template<bool big_endian>
5116 static unsigned char*
5117 savevr_tail(unsigned char* p, int r)
5118 {
5119 p = savevr<big_endian>(p, r);
5120 write_insn<big_endian>(p, blr);
5121 return p + 4;
5122 }
5123
5124 template<bool big_endian>
5125 static unsigned char*
5126 restvr(unsigned char* p, int r)
5127 {
5128 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5129 write_insn<big_endian>(p, insn);
5130 p = p + 4;
5131 insn = lvx_0_12_0 + (r << 21);
5132 write_insn<big_endian>(p, insn);
5133 return p + 4;
5134 }
5135
5136 template<bool big_endian>
5137 static unsigned char*
5138 restvr_tail(unsigned char* p, int r)
5139 {
5140 p = restvr<big_endian>(p, r);
5141 write_insn<big_endian>(p, blr);
5142 return p + 4;
5143 }
5144
5145
5146 template<int size, bool big_endian>
5147 Output_data_save_res<size, big_endian>::Output_data_save_res(
5148 Symbol_table* symtab)
5149 : Output_section_data_build(4),
5150 contents_(NULL)
5151 {
5152 this->savres_define(symtab,
5153 "_savegpr0_", 14, 31,
5154 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5155 this->savres_define(symtab,
5156 "_restgpr0_", 14, 29,
5157 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5158 this->savres_define(symtab,
5159 "_restgpr0_", 30, 31,
5160 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5161 this->savres_define(symtab,
5162 "_savegpr1_", 14, 31,
5163 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5164 this->savres_define(symtab,
5165 "_restgpr1_", 14, 31,
5166 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5167 this->savres_define(symtab,
5168 "_savefpr_", 14, 31,
5169 savefpr<big_endian>, savefpr0_tail<big_endian>);
5170 this->savres_define(symtab,
5171 "_restfpr_", 14, 29,
5172 restfpr<big_endian>, restfpr0_tail<big_endian>);
5173 this->savres_define(symtab,
5174 "_restfpr_", 30, 31,
5175 restfpr<big_endian>, restfpr0_tail<big_endian>);
5176 this->savres_define(symtab,
5177 "._savef", 14, 31,
5178 savefpr<big_endian>, savefpr1_tail<big_endian>);
5179 this->savres_define(symtab,
5180 "._restf", 14, 31,
5181 restfpr<big_endian>, restfpr1_tail<big_endian>);
5182 this->savres_define(symtab,
5183 "_savevr_", 20, 31,
5184 savevr<big_endian>, savevr_tail<big_endian>);
5185 this->savres_define(symtab,
5186 "_restvr_", 20, 31,
5187 restvr<big_endian>, restvr_tail<big_endian>);
5188 }
5189
5190 template<int size, bool big_endian>
5191 void
5192 Output_data_save_res<size, big_endian>::savres_define(
5193 Symbol_table* symtab,
5194 const char *name,
5195 unsigned int lo, unsigned int hi,
5196 unsigned char* write_ent(unsigned char*, int),
5197 unsigned char* write_tail(unsigned char*, int))
5198 {
5199 size_t len = strlen(name);
5200 bool writing = false;
5201 char sym[16];
5202
5203 memcpy(sym, name, len);
5204 sym[len + 2] = 0;
5205
5206 for (unsigned int i = lo; i <= hi; i++)
5207 {
5208 sym[len + 0] = i / 10 + '0';
5209 sym[len + 1] = i % 10 + '0';
5210 Symbol* gsym = symtab->lookup(sym);
5211 bool refd = gsym != NULL && gsym->is_undefined();
5212 writing = writing || refd;
5213 if (writing)
5214 {
5215 if (this->contents_ == NULL)
5216 this->contents_ = new unsigned char[this->savres_max];
5217
5218 section_size_type value = this->current_data_size();
5219 unsigned char* p = this->contents_ + value;
5220 if (i != hi)
5221 p = write_ent(p, i);
5222 else
5223 p = write_tail(p, i);
5224 section_size_type cur_size = p - this->contents_;
5225 this->set_current_data_size(cur_size);
5226 if (refd)
5227 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5228 this, value, cur_size - value,
5229 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5230 elfcpp::STV_HIDDEN, 0, false, false);
5231 }
5232 }
5233 }
5234
5235 // Write out save/restore.
5236
5237 template<int size, bool big_endian>
5238 void
5239 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5240 {
5241 const section_size_type off = this->offset();
5242 const section_size_type oview_size =
5243 convert_to_section_size_type(this->data_size());
5244 unsigned char* const oview = of->get_output_view(off, oview_size);
5245 memcpy(oview, this->contents_, oview_size);
5246 of->write_output_view(off, oview_size, oview);
5247 }
5248
5249
5250 // Create the glink section.
5251
5252 template<int size, bool big_endian>
5253 void
5254 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5255 {
5256 if (this->glink_ == NULL)
5257 {
5258 this->glink_ = new Output_data_glink<size, big_endian>(this);
5259 this->glink_->add_eh_frame(layout);
5260 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5261 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5262 this->glink_, ORDER_TEXT, false);
5263 }
5264 }
5265
5266 // Create a PLT entry for a global symbol.
5267
5268 template<int size, bool big_endian>
5269 void
5270 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5271 Layout* layout,
5272 Symbol* gsym)
5273 {
5274 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5275 && gsym->can_use_relative_reloc(false))
5276 {
5277 if (this->iplt_ == NULL)
5278 this->make_iplt_section(symtab, layout);
5279 this->iplt_->add_ifunc_entry(gsym);
5280 }
5281 else
5282 {
5283 if (this->plt_ == NULL)
5284 this->make_plt_section(symtab, layout);
5285 this->plt_->add_entry(gsym);
5286 }
5287 }
5288
5289 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5290
5291 template<int size, bool big_endian>
5292 void
5293 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5294 Symbol_table* symtab,
5295 Layout* layout,
5296 Sized_relobj_file<size, big_endian>* relobj,
5297 unsigned int r_sym)
5298 {
5299 if (this->iplt_ == NULL)
5300 this->make_iplt_section(symtab, layout);
5301 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5302 }
5303
5304 // Return the number of entries in the PLT.
5305
5306 template<int size, bool big_endian>
5307 unsigned int
5308 Target_powerpc<size, big_endian>::plt_entry_count() const
5309 {
5310 if (this->plt_ == NULL)
5311 return 0;
5312 return this->plt_->entry_count();
5313 }
5314
5315 // Create a GOT entry for local dynamic __tls_get_addr calls.
5316
5317 template<int size, bool big_endian>
5318 unsigned int
5319 Target_powerpc<size, big_endian>::tlsld_got_offset(
5320 Symbol_table* symtab,
5321 Layout* layout,
5322 Sized_relobj_file<size, big_endian>* object)
5323 {
5324 if (this->tlsld_got_offset_ == -1U)
5325 {
5326 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5327 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5328 Output_data_got_powerpc<size, big_endian>* got
5329 = this->got_section(symtab, layout);
5330 unsigned int got_offset = got->add_constant_pair(0, 0);
5331 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5332 got_offset, 0);
5333 this->tlsld_got_offset_ = got_offset;
5334 }
5335 return this->tlsld_got_offset_;
5336 }
5337
5338 // Get the Reference_flags for a particular relocation.
5339
5340 template<int size, bool big_endian>
5341 int
5342 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5343 unsigned int r_type,
5344 const Target_powerpc* target)
5345 {
5346 int ref = 0;
5347
5348 switch (r_type)
5349 {
5350 case elfcpp::R_POWERPC_NONE:
5351 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5352 case elfcpp::R_POWERPC_GNU_VTENTRY:
5353 case elfcpp::R_PPC64_TOC:
5354 // No symbol reference.
5355 break;
5356
5357 case elfcpp::R_PPC64_ADDR64:
5358 case elfcpp::R_PPC64_UADDR64:
5359 case elfcpp::R_POWERPC_ADDR32:
5360 case elfcpp::R_POWERPC_UADDR32:
5361 case elfcpp::R_POWERPC_ADDR16:
5362 case elfcpp::R_POWERPC_UADDR16:
5363 case elfcpp::R_POWERPC_ADDR16_LO:
5364 case elfcpp::R_POWERPC_ADDR16_HI:
5365 case elfcpp::R_POWERPC_ADDR16_HA:
5366 ref = Symbol::ABSOLUTE_REF;
5367 break;
5368
5369 case elfcpp::R_POWERPC_ADDR24:
5370 case elfcpp::R_POWERPC_ADDR14:
5371 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5372 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5373 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5374 break;
5375
5376 case elfcpp::R_PPC64_REL64:
5377 case elfcpp::R_POWERPC_REL32:
5378 case elfcpp::R_PPC_LOCAL24PC:
5379 case elfcpp::R_POWERPC_REL16:
5380 case elfcpp::R_POWERPC_REL16_LO:
5381 case elfcpp::R_POWERPC_REL16_HI:
5382 case elfcpp::R_POWERPC_REL16_HA:
5383 ref = Symbol::RELATIVE_REF;
5384 break;
5385
5386 case elfcpp::R_POWERPC_REL24:
5387 case elfcpp::R_PPC_PLTREL24:
5388 case elfcpp::R_POWERPC_REL14:
5389 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5390 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5391 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5392 break;
5393
5394 case elfcpp::R_POWERPC_GOT16:
5395 case elfcpp::R_POWERPC_GOT16_LO:
5396 case elfcpp::R_POWERPC_GOT16_HI:
5397 case elfcpp::R_POWERPC_GOT16_HA:
5398 case elfcpp::R_PPC64_GOT16_DS:
5399 case elfcpp::R_PPC64_GOT16_LO_DS:
5400 case elfcpp::R_PPC64_TOC16:
5401 case elfcpp::R_PPC64_TOC16_LO:
5402 case elfcpp::R_PPC64_TOC16_HI:
5403 case elfcpp::R_PPC64_TOC16_HA:
5404 case elfcpp::R_PPC64_TOC16_DS:
5405 case elfcpp::R_PPC64_TOC16_LO_DS:
5406 ref = Symbol::RELATIVE_REF;
5407 break;
5408
5409 case elfcpp::R_POWERPC_GOT_TPREL16:
5410 case elfcpp::R_POWERPC_TLS:
5411 ref = Symbol::TLS_REF;
5412 break;
5413
5414 case elfcpp::R_POWERPC_COPY:
5415 case elfcpp::R_POWERPC_GLOB_DAT:
5416 case elfcpp::R_POWERPC_JMP_SLOT:
5417 case elfcpp::R_POWERPC_RELATIVE:
5418 case elfcpp::R_POWERPC_DTPMOD:
5419 default:
5420 // Not expected. We will give an error later.
5421 break;
5422 }
5423
5424 if (size == 64 && target->abiversion() < 2)
5425 ref |= Symbol::FUNC_DESC_ABI;
5426 return ref;
5427 }
5428
5429 // Report an unsupported relocation against a local symbol.
5430
5431 template<int size, bool big_endian>
5432 void
5433 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5434 Sized_relobj_file<size, big_endian>* object,
5435 unsigned int r_type)
5436 {
5437 gold_error(_("%s: unsupported reloc %u against local symbol"),
5438 object->name().c_str(), r_type);
5439 }
5440
5441 // We are about to emit a dynamic relocation of type R_TYPE. If the
5442 // dynamic linker does not support it, issue an error.
5443
5444 template<int size, bool big_endian>
5445 void
5446 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5447 unsigned int r_type)
5448 {
5449 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5450
5451 // These are the relocation types supported by glibc for both 32-bit
5452 // and 64-bit powerpc.
5453 switch (r_type)
5454 {
5455 case elfcpp::R_POWERPC_NONE:
5456 case elfcpp::R_POWERPC_RELATIVE:
5457 case elfcpp::R_POWERPC_GLOB_DAT:
5458 case elfcpp::R_POWERPC_DTPMOD:
5459 case elfcpp::R_POWERPC_DTPREL:
5460 case elfcpp::R_POWERPC_TPREL:
5461 case elfcpp::R_POWERPC_JMP_SLOT:
5462 case elfcpp::R_POWERPC_COPY:
5463 case elfcpp::R_POWERPC_IRELATIVE:
5464 case elfcpp::R_POWERPC_ADDR32:
5465 case elfcpp::R_POWERPC_UADDR32:
5466 case elfcpp::R_POWERPC_ADDR24:
5467 case elfcpp::R_POWERPC_ADDR16:
5468 case elfcpp::R_POWERPC_UADDR16:
5469 case elfcpp::R_POWERPC_ADDR16_LO:
5470 case elfcpp::R_POWERPC_ADDR16_HI:
5471 case elfcpp::R_POWERPC_ADDR16_HA:
5472 case elfcpp::R_POWERPC_ADDR14:
5473 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5474 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5475 case elfcpp::R_POWERPC_REL32:
5476 case elfcpp::R_POWERPC_REL24:
5477 case elfcpp::R_POWERPC_TPREL16:
5478 case elfcpp::R_POWERPC_TPREL16_LO:
5479 case elfcpp::R_POWERPC_TPREL16_HI:
5480 case elfcpp::R_POWERPC_TPREL16_HA:
5481 return;
5482
5483 default:
5484 break;
5485 }
5486
5487 if (size == 64)
5488 {
5489 switch (r_type)
5490 {
5491 // These are the relocation types supported only on 64-bit.
5492 case elfcpp::R_PPC64_ADDR64:
5493 case elfcpp::R_PPC64_UADDR64:
5494 case elfcpp::R_PPC64_JMP_IREL:
5495 case elfcpp::R_PPC64_ADDR16_DS:
5496 case elfcpp::R_PPC64_ADDR16_LO_DS:
5497 case elfcpp::R_PPC64_ADDR16_HIGH:
5498 case elfcpp::R_PPC64_ADDR16_HIGHA:
5499 case elfcpp::R_PPC64_ADDR16_HIGHER:
5500 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5501 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5502 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5503 case elfcpp::R_PPC64_REL64:
5504 case elfcpp::R_POWERPC_ADDR30:
5505 case elfcpp::R_PPC64_TPREL16_DS:
5506 case elfcpp::R_PPC64_TPREL16_LO_DS:
5507 case elfcpp::R_PPC64_TPREL16_HIGH:
5508 case elfcpp::R_PPC64_TPREL16_HIGHA:
5509 case elfcpp::R_PPC64_TPREL16_HIGHER:
5510 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5511 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5512 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5513 return;
5514
5515 default:
5516 break;
5517 }
5518 }
5519 else
5520 {
5521 switch (r_type)
5522 {
5523 // These are the relocation types supported only on 32-bit.
5524 // ??? glibc ld.so doesn't need to support these.
5525 case elfcpp::R_POWERPC_DTPREL16:
5526 case elfcpp::R_POWERPC_DTPREL16_LO:
5527 case elfcpp::R_POWERPC_DTPREL16_HI:
5528 case elfcpp::R_POWERPC_DTPREL16_HA:
5529 return;
5530
5531 default:
5532 break;
5533 }
5534 }
5535
5536 // This prevents us from issuing more than one error per reloc
5537 // section. But we can still wind up issuing more than one
5538 // error per object file.
5539 if (this->issued_non_pic_error_)
5540 return;
5541 gold_assert(parameters->options().output_is_position_independent());
5542 object->error(_("requires unsupported dynamic reloc; "
5543 "recompile with -fPIC"));
5544 this->issued_non_pic_error_ = true;
5545 return;
5546 }
5547
5548 // Return whether we need to make a PLT entry for a relocation of the
5549 // given type against a STT_GNU_IFUNC symbol.
5550
5551 template<int size, bool big_endian>
5552 bool
5553 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5554 Target_powerpc<size, big_endian>* target,
5555 Sized_relobj_file<size, big_endian>* object,
5556 unsigned int r_type,
5557 bool report_err)
5558 {
5559 // In non-pic code any reference will resolve to the plt call stub
5560 // for the ifunc symbol.
5561 if ((size == 32 || target->abiversion() >= 2)
5562 && !parameters->options().output_is_position_independent())
5563 return true;
5564
5565 switch (r_type)
5566 {
5567 // Word size refs from data sections are OK, but don't need a PLT entry.
5568 case elfcpp::R_POWERPC_ADDR32:
5569 case elfcpp::R_POWERPC_UADDR32:
5570 if (size == 32)
5571 return false;
5572 break;
5573
5574 case elfcpp::R_PPC64_ADDR64:
5575 case elfcpp::R_PPC64_UADDR64:
5576 if (size == 64)
5577 return false;
5578 break;
5579
5580 // GOT refs are good, but also don't need a PLT entry.
5581 case elfcpp::R_POWERPC_GOT16:
5582 case elfcpp::R_POWERPC_GOT16_LO:
5583 case elfcpp::R_POWERPC_GOT16_HI:
5584 case elfcpp::R_POWERPC_GOT16_HA:
5585 case elfcpp::R_PPC64_GOT16_DS:
5586 case elfcpp::R_PPC64_GOT16_LO_DS:
5587 return false;
5588
5589 // Function calls are good, and these do need a PLT entry.
5590 case elfcpp::R_POWERPC_ADDR24:
5591 case elfcpp::R_POWERPC_ADDR14:
5592 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5593 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5594 case elfcpp::R_POWERPC_REL24:
5595 case elfcpp::R_PPC_PLTREL24:
5596 case elfcpp::R_POWERPC_REL14:
5597 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5598 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5599 return true;
5600
5601 default:
5602 break;
5603 }
5604
5605 // Anything else is a problem.
5606 // If we are building a static executable, the libc startup function
5607 // responsible for applying indirect function relocations is going
5608 // to complain about the reloc type.
5609 // If we are building a dynamic executable, we will have a text
5610 // relocation. The dynamic loader will set the text segment
5611 // writable and non-executable to apply text relocations. So we'll
5612 // segfault when trying to run the indirection function to resolve
5613 // the reloc.
5614 if (report_err)
5615 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5616 object->name().c_str(), r_type);
5617 return false;
5618 }
5619
5620 // Scan a relocation for a local symbol.
5621
5622 template<int size, bool big_endian>
5623 inline void
5624 Target_powerpc<size, big_endian>::Scan::local(
5625 Symbol_table* symtab,
5626 Layout* layout,
5627 Target_powerpc<size, big_endian>* target,
5628 Sized_relobj_file<size, big_endian>* object,
5629 unsigned int data_shndx,
5630 Output_section* output_section,
5631 const elfcpp::Rela<size, big_endian>& reloc,
5632 unsigned int r_type,
5633 const elfcpp::Sym<size, big_endian>& lsym,
5634 bool is_discarded)
5635 {
5636 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5637
5638 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5639 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5640 {
5641 this->expect_tls_get_addr_call();
5642 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5643 if (tls_type != tls::TLSOPT_NONE)
5644 this->skip_next_tls_get_addr_call();
5645 }
5646 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5647 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5648 {
5649 this->expect_tls_get_addr_call();
5650 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5651 if (tls_type != tls::TLSOPT_NONE)
5652 this->skip_next_tls_get_addr_call();
5653 }
5654
5655 Powerpc_relobj<size, big_endian>* ppc_object
5656 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5657
5658 if (is_discarded)
5659 {
5660 if (size == 64
5661 && data_shndx == ppc_object->opd_shndx()
5662 && r_type == elfcpp::R_PPC64_ADDR64)
5663 ppc_object->set_opd_discard(reloc.get_r_offset());
5664 return;
5665 }
5666
5667 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5668 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5669 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5670 {
5671 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5672 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5673 r_type, r_sym, reloc.get_r_addend());
5674 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5675 }
5676
5677 switch (r_type)
5678 {
5679 case elfcpp::R_POWERPC_NONE:
5680 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5681 case elfcpp::R_POWERPC_GNU_VTENTRY:
5682 case elfcpp::R_PPC64_TOCSAVE:
5683 case elfcpp::R_POWERPC_TLS:
5684 case elfcpp::R_PPC64_ENTRY:
5685 break;
5686
5687 case elfcpp::R_PPC64_TOC:
5688 {
5689 Output_data_got_powerpc<size, big_endian>* got
5690 = target->got_section(symtab, layout);
5691 if (parameters->options().output_is_position_independent())
5692 {
5693 Address off = reloc.get_r_offset();
5694 if (size == 64
5695 && target->abiversion() < 2
5696 && data_shndx == ppc_object->opd_shndx()
5697 && ppc_object->get_opd_discard(off - 8))
5698 break;
5699
5700 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5701 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5702 rela_dyn->add_output_section_relative(got->output_section(),
5703 elfcpp::R_POWERPC_RELATIVE,
5704 output_section,
5705 object, data_shndx, off,
5706 symobj->toc_base_offset());
5707 }
5708 }
5709 break;
5710
5711 case elfcpp::R_PPC64_ADDR64:
5712 case elfcpp::R_PPC64_UADDR64:
5713 case elfcpp::R_POWERPC_ADDR32:
5714 case elfcpp::R_POWERPC_UADDR32:
5715 case elfcpp::R_POWERPC_ADDR24:
5716 case elfcpp::R_POWERPC_ADDR16:
5717 case elfcpp::R_POWERPC_ADDR16_LO:
5718 case elfcpp::R_POWERPC_ADDR16_HI:
5719 case elfcpp::R_POWERPC_ADDR16_HA:
5720 case elfcpp::R_POWERPC_UADDR16:
5721 case elfcpp::R_PPC64_ADDR16_HIGH:
5722 case elfcpp::R_PPC64_ADDR16_HIGHA:
5723 case elfcpp::R_PPC64_ADDR16_HIGHER:
5724 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5725 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5726 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5727 case elfcpp::R_PPC64_ADDR16_DS:
5728 case elfcpp::R_PPC64_ADDR16_LO_DS:
5729 case elfcpp::R_POWERPC_ADDR14:
5730 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5731 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5732 // If building a shared library (or a position-independent
5733 // executable), we need to create a dynamic relocation for
5734 // this location.
5735 if (parameters->options().output_is_position_independent()
5736 || (size == 64 && is_ifunc && target->abiversion() < 2))
5737 {
5738 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5739 is_ifunc);
5740 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5741 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5742 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5743 {
5744 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5745 : elfcpp::R_POWERPC_RELATIVE);
5746 rela_dyn->add_local_relative(object, r_sym, dynrel,
5747 output_section, data_shndx,
5748 reloc.get_r_offset(),
5749 reloc.get_r_addend(), false);
5750 }
5751 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5752 {
5753 check_non_pic(object, r_type);
5754 rela_dyn->add_local(object, r_sym, r_type, output_section,
5755 data_shndx, reloc.get_r_offset(),
5756 reloc.get_r_addend());
5757 }
5758 else
5759 {
5760 gold_assert(lsym.get_st_value() == 0);
5761 unsigned int shndx = lsym.get_st_shndx();
5762 bool is_ordinary;
5763 shndx = object->adjust_sym_shndx(r_sym, shndx,
5764 &is_ordinary);
5765 if (!is_ordinary)
5766 object->error(_("section symbol %u has bad shndx %u"),
5767 r_sym, shndx);
5768 else
5769 rela_dyn->add_local_section(object, shndx, r_type,
5770 output_section, data_shndx,
5771 reloc.get_r_offset());
5772 }
5773 }
5774 break;
5775
5776 case elfcpp::R_POWERPC_REL24:
5777 case elfcpp::R_PPC_PLTREL24:
5778 case elfcpp::R_PPC_LOCAL24PC:
5779 case elfcpp::R_POWERPC_REL14:
5780 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5781 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5782 if (!is_ifunc)
5783 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5784 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5785 reloc.get_r_addend());
5786 break;
5787
5788 case elfcpp::R_PPC64_REL64:
5789 case elfcpp::R_POWERPC_REL32:
5790 case elfcpp::R_POWERPC_REL16:
5791 case elfcpp::R_POWERPC_REL16_LO:
5792 case elfcpp::R_POWERPC_REL16_HI:
5793 case elfcpp::R_POWERPC_REL16_HA:
5794 case elfcpp::R_POWERPC_REL16DX_HA:
5795 case elfcpp::R_POWERPC_SECTOFF:
5796 case elfcpp::R_POWERPC_SECTOFF_LO:
5797 case elfcpp::R_POWERPC_SECTOFF_HI:
5798 case elfcpp::R_POWERPC_SECTOFF_HA:
5799 case elfcpp::R_PPC64_SECTOFF_DS:
5800 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5801 case elfcpp::R_POWERPC_TPREL16:
5802 case elfcpp::R_POWERPC_TPREL16_LO:
5803 case elfcpp::R_POWERPC_TPREL16_HI:
5804 case elfcpp::R_POWERPC_TPREL16_HA:
5805 case elfcpp::R_PPC64_TPREL16_DS:
5806 case elfcpp::R_PPC64_TPREL16_LO_DS:
5807 case elfcpp::R_PPC64_TPREL16_HIGH:
5808 case elfcpp::R_PPC64_TPREL16_HIGHA:
5809 case elfcpp::R_PPC64_TPREL16_HIGHER:
5810 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5811 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5812 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5813 case elfcpp::R_POWERPC_DTPREL16:
5814 case elfcpp::R_POWERPC_DTPREL16_LO:
5815 case elfcpp::R_POWERPC_DTPREL16_HI:
5816 case elfcpp::R_POWERPC_DTPREL16_HA:
5817 case elfcpp::R_PPC64_DTPREL16_DS:
5818 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5819 case elfcpp::R_PPC64_DTPREL16_HIGH:
5820 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5821 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5822 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5823 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5824 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5825 case elfcpp::R_PPC64_TLSGD:
5826 case elfcpp::R_PPC64_TLSLD:
5827 case elfcpp::R_PPC64_ADDR64_LOCAL:
5828 break;
5829
5830 case elfcpp::R_POWERPC_GOT16:
5831 case elfcpp::R_POWERPC_GOT16_LO:
5832 case elfcpp::R_POWERPC_GOT16_HI:
5833 case elfcpp::R_POWERPC_GOT16_HA:
5834 case elfcpp::R_PPC64_GOT16_DS:
5835 case elfcpp::R_PPC64_GOT16_LO_DS:
5836 {
5837 // The symbol requires a GOT entry.
5838 Output_data_got_powerpc<size, big_endian>* got
5839 = target->got_section(symtab, layout);
5840 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5841
5842 if (!parameters->options().output_is_position_independent())
5843 {
5844 if (is_ifunc
5845 && (size == 32 || target->abiversion() >= 2))
5846 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5847 else
5848 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5849 }
5850 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5851 {
5852 // If we are generating a shared object or a pie, this
5853 // symbol's GOT entry will be set by a dynamic relocation.
5854 unsigned int off;
5855 off = got->add_constant(0);
5856 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5857
5858 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5859 is_ifunc);
5860 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5861 : elfcpp::R_POWERPC_RELATIVE);
5862 rela_dyn->add_local_relative(object, r_sym, dynrel,
5863 got, off, 0, false);
5864 }
5865 }
5866 break;
5867
5868 case elfcpp::R_PPC64_TOC16:
5869 case elfcpp::R_PPC64_TOC16_LO:
5870 case elfcpp::R_PPC64_TOC16_HI:
5871 case elfcpp::R_PPC64_TOC16_HA:
5872 case elfcpp::R_PPC64_TOC16_DS:
5873 case elfcpp::R_PPC64_TOC16_LO_DS:
5874 // We need a GOT section.
5875 target->got_section(symtab, layout);
5876 break;
5877
5878 case elfcpp::R_POWERPC_GOT_TLSGD16:
5879 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5880 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5881 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5882 {
5883 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5884 if (tls_type == tls::TLSOPT_NONE)
5885 {
5886 Output_data_got_powerpc<size, big_endian>* got
5887 = target->got_section(symtab, layout);
5888 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5889 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5890 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5891 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5892 }
5893 else if (tls_type == tls::TLSOPT_TO_LE)
5894 {
5895 // no GOT relocs needed for Local Exec.
5896 }
5897 else
5898 gold_unreachable();
5899 }
5900 break;
5901
5902 case elfcpp::R_POWERPC_GOT_TLSLD16:
5903 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5904 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5905 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5906 {
5907 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5908 if (tls_type == tls::TLSOPT_NONE)
5909 target->tlsld_got_offset(symtab, layout, object);
5910 else if (tls_type == tls::TLSOPT_TO_LE)
5911 {
5912 // no GOT relocs needed for Local Exec.
5913 if (parameters->options().emit_relocs())
5914 {
5915 Output_section* os = layout->tls_segment()->first_section();
5916 gold_assert(os != NULL);
5917 os->set_needs_symtab_index();
5918 }
5919 }
5920 else
5921 gold_unreachable();
5922 }
5923 break;
5924
5925 case elfcpp::R_POWERPC_GOT_DTPREL16:
5926 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5927 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5928 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5929 {
5930 Output_data_got_powerpc<size, big_endian>* got
5931 = target->got_section(symtab, layout);
5932 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5933 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5934 }
5935 break;
5936
5937 case elfcpp::R_POWERPC_GOT_TPREL16:
5938 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5939 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5940 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5941 {
5942 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5943 if (tls_type == tls::TLSOPT_NONE)
5944 {
5945 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5946 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5947 {
5948 Output_data_got_powerpc<size, big_endian>* got
5949 = target->got_section(symtab, layout);
5950 unsigned int off = got->add_constant(0);
5951 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5952
5953 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5954 rela_dyn->add_symbolless_local_addend(object, r_sym,
5955 elfcpp::R_POWERPC_TPREL,
5956 got, off, 0);
5957 }
5958 }
5959 else if (tls_type == tls::TLSOPT_TO_LE)
5960 {
5961 // no GOT relocs needed for Local Exec.
5962 }
5963 else
5964 gold_unreachable();
5965 }
5966 break;
5967
5968 default:
5969 unsupported_reloc_local(object, r_type);
5970 break;
5971 }
5972
5973 switch (r_type)
5974 {
5975 case elfcpp::R_POWERPC_GOT_TLSLD16:
5976 case elfcpp::R_POWERPC_GOT_TLSGD16:
5977 case elfcpp::R_POWERPC_GOT_TPREL16:
5978 case elfcpp::R_POWERPC_GOT_DTPREL16:
5979 case elfcpp::R_POWERPC_GOT16:
5980 case elfcpp::R_PPC64_GOT16_DS:
5981 case elfcpp::R_PPC64_TOC16:
5982 case elfcpp::R_PPC64_TOC16_DS:
5983 ppc_object->set_has_small_toc_reloc();
5984 default:
5985 break;
5986 }
5987 }
5988
5989 // Report an unsupported relocation against a global symbol.
5990
5991 template<int size, bool big_endian>
5992 void
5993 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5994 Sized_relobj_file<size, big_endian>* object,
5995 unsigned int r_type,
5996 Symbol* gsym)
5997 {
5998 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5999 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6000 }
6001
6002 // Scan a relocation for a global symbol.
6003
6004 template<int size, bool big_endian>
6005 inline void
6006 Target_powerpc<size, big_endian>::Scan::global(
6007 Symbol_table* symtab,
6008 Layout* layout,
6009 Target_powerpc<size, big_endian>* target,
6010 Sized_relobj_file<size, big_endian>* object,
6011 unsigned int data_shndx,
6012 Output_section* output_section,
6013 const elfcpp::Rela<size, big_endian>& reloc,
6014 unsigned int r_type,
6015 Symbol* gsym)
6016 {
6017 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6018 return;
6019
6020 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6021 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6022 {
6023 this->expect_tls_get_addr_call();
6024 const bool final = gsym->final_value_is_known();
6025 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6026 if (tls_type != tls::TLSOPT_NONE)
6027 this->skip_next_tls_get_addr_call();
6028 }
6029 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6030 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6031 {
6032 this->expect_tls_get_addr_call();
6033 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6034 if (tls_type != tls::TLSOPT_NONE)
6035 this->skip_next_tls_get_addr_call();
6036 }
6037
6038 Powerpc_relobj<size, big_endian>* ppc_object
6039 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6040
6041 // A STT_GNU_IFUNC symbol may require a PLT entry.
6042 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6043 bool pushed_ifunc = false;
6044 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6045 {
6046 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6047 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6048 reloc.get_r_addend());
6049 target->make_plt_entry(symtab, layout, gsym);
6050 pushed_ifunc = true;
6051 }
6052
6053 switch (r_type)
6054 {
6055 case elfcpp::R_POWERPC_NONE:
6056 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6057 case elfcpp::R_POWERPC_GNU_VTENTRY:
6058 case elfcpp::R_PPC_LOCAL24PC:
6059 case elfcpp::R_POWERPC_TLS:
6060 case elfcpp::R_PPC64_ENTRY:
6061 break;
6062
6063 case elfcpp::R_PPC64_TOC:
6064 {
6065 Output_data_got_powerpc<size, big_endian>* got
6066 = target->got_section(symtab, layout);
6067 if (parameters->options().output_is_position_independent())
6068 {
6069 Address off = reloc.get_r_offset();
6070 if (size == 64
6071 && data_shndx == ppc_object->opd_shndx()
6072 && ppc_object->get_opd_discard(off - 8))
6073 break;
6074
6075 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6076 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6077 if (data_shndx != ppc_object->opd_shndx())
6078 symobj = static_cast
6079 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6080 rela_dyn->add_output_section_relative(got->output_section(),
6081 elfcpp::R_POWERPC_RELATIVE,
6082 output_section,
6083 object, data_shndx, off,
6084 symobj->toc_base_offset());
6085 }
6086 }
6087 break;
6088
6089 case elfcpp::R_PPC64_ADDR64:
6090 if (size == 64
6091 && target->abiversion() < 2
6092 && data_shndx == ppc_object->opd_shndx()
6093 && (gsym->is_defined_in_discarded_section()
6094 || gsym->object() != object))
6095 {
6096 ppc_object->set_opd_discard(reloc.get_r_offset());
6097 break;
6098 }
6099 // Fall through.
6100 case elfcpp::R_PPC64_UADDR64:
6101 case elfcpp::R_POWERPC_ADDR32:
6102 case elfcpp::R_POWERPC_UADDR32:
6103 case elfcpp::R_POWERPC_ADDR24:
6104 case elfcpp::R_POWERPC_ADDR16:
6105 case elfcpp::R_POWERPC_ADDR16_LO:
6106 case elfcpp::R_POWERPC_ADDR16_HI:
6107 case elfcpp::R_POWERPC_ADDR16_HA:
6108 case elfcpp::R_POWERPC_UADDR16:
6109 case elfcpp::R_PPC64_ADDR16_HIGH:
6110 case elfcpp::R_PPC64_ADDR16_HIGHA:
6111 case elfcpp::R_PPC64_ADDR16_HIGHER:
6112 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6113 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6114 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6115 case elfcpp::R_PPC64_ADDR16_DS:
6116 case elfcpp::R_PPC64_ADDR16_LO_DS:
6117 case elfcpp::R_POWERPC_ADDR14:
6118 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6119 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6120 {
6121 // Make a PLT entry if necessary.
6122 if (gsym->needs_plt_entry())
6123 {
6124 // Since this is not a PC-relative relocation, we may be
6125 // taking the address of a function. In that case we need to
6126 // set the entry in the dynamic symbol table to the address of
6127 // the PLT call stub.
6128 bool need_ifunc_plt = false;
6129 if ((size == 32 || target->abiversion() >= 2)
6130 && gsym->is_from_dynobj()
6131 && !parameters->options().output_is_position_independent())
6132 {
6133 gsym->set_needs_dynsym_value();
6134 need_ifunc_plt = true;
6135 }
6136 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6137 {
6138 target->push_branch(ppc_object, data_shndx,
6139 reloc.get_r_offset(), r_type,
6140 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6141 reloc.get_r_addend());
6142 target->make_plt_entry(symtab, layout, gsym);
6143 }
6144 }
6145 // Make a dynamic relocation if necessary.
6146 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6147 || (size == 64 && is_ifunc && target->abiversion() < 2))
6148 {
6149 if (!parameters->options().output_is_position_independent()
6150 && gsym->may_need_copy_reloc())
6151 {
6152 target->copy_reloc(symtab, layout, object,
6153 data_shndx, output_section, gsym, reloc);
6154 }
6155 else if ((((size == 32
6156 && r_type == elfcpp::R_POWERPC_ADDR32)
6157 || (size == 64
6158 && r_type == elfcpp::R_PPC64_ADDR64
6159 && target->abiversion() >= 2))
6160 && gsym->can_use_relative_reloc(false)
6161 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6162 && parameters->options().shared()))
6163 || (size == 64
6164 && r_type == elfcpp::R_PPC64_ADDR64
6165 && target->abiversion() < 2
6166 && (gsym->can_use_relative_reloc(false)
6167 || data_shndx == ppc_object->opd_shndx())))
6168 {
6169 Reloc_section* rela_dyn
6170 = target->rela_dyn_section(symtab, layout, is_ifunc);
6171 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6172 : elfcpp::R_POWERPC_RELATIVE);
6173 rela_dyn->add_symbolless_global_addend(
6174 gsym, dynrel, output_section, object, data_shndx,
6175 reloc.get_r_offset(), reloc.get_r_addend());
6176 }
6177 else
6178 {
6179 Reloc_section* rela_dyn
6180 = target->rela_dyn_section(symtab, layout, is_ifunc);
6181 check_non_pic(object, r_type);
6182 rela_dyn->add_global(gsym, r_type, output_section,
6183 object, data_shndx,
6184 reloc.get_r_offset(),
6185 reloc.get_r_addend());
6186 }
6187 }
6188 }
6189 break;
6190
6191 case elfcpp::R_PPC_PLTREL24:
6192 case elfcpp::R_POWERPC_REL24:
6193 if (!is_ifunc)
6194 {
6195 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6196 r_type,
6197 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6198 reloc.get_r_addend());
6199 if (gsym->needs_plt_entry()
6200 || (!gsym->final_value_is_known()
6201 && (gsym->is_undefined()
6202 || gsym->is_from_dynobj()
6203 || gsym->is_preemptible())))
6204 target->make_plt_entry(symtab, layout, gsym);
6205 }
6206 // Fall through.
6207
6208 case elfcpp::R_PPC64_REL64:
6209 case elfcpp::R_POWERPC_REL32:
6210 // Make a dynamic relocation if necessary.
6211 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6212 {
6213 if (!parameters->options().output_is_position_independent()
6214 && gsym->may_need_copy_reloc())
6215 {
6216 target->copy_reloc(symtab, layout, object,
6217 data_shndx, output_section, gsym,
6218 reloc);
6219 }
6220 else
6221 {
6222 Reloc_section* rela_dyn
6223 = target->rela_dyn_section(symtab, layout, is_ifunc);
6224 check_non_pic(object, r_type);
6225 rela_dyn->add_global(gsym, r_type, output_section, object,
6226 data_shndx, reloc.get_r_offset(),
6227 reloc.get_r_addend());
6228 }
6229 }
6230 break;
6231
6232 case elfcpp::R_POWERPC_REL14:
6233 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6234 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6235 if (!is_ifunc)
6236 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6237 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6238 reloc.get_r_addend());
6239 break;
6240
6241 case elfcpp::R_POWERPC_REL16:
6242 case elfcpp::R_POWERPC_REL16_LO:
6243 case elfcpp::R_POWERPC_REL16_HI:
6244 case elfcpp::R_POWERPC_REL16_HA:
6245 case elfcpp::R_POWERPC_REL16DX_HA:
6246 case elfcpp::R_POWERPC_SECTOFF:
6247 case elfcpp::R_POWERPC_SECTOFF_LO:
6248 case elfcpp::R_POWERPC_SECTOFF_HI:
6249 case elfcpp::R_POWERPC_SECTOFF_HA:
6250 case elfcpp::R_PPC64_SECTOFF_DS:
6251 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6252 case elfcpp::R_POWERPC_TPREL16:
6253 case elfcpp::R_POWERPC_TPREL16_LO:
6254 case elfcpp::R_POWERPC_TPREL16_HI:
6255 case elfcpp::R_POWERPC_TPREL16_HA:
6256 case elfcpp::R_PPC64_TPREL16_DS:
6257 case elfcpp::R_PPC64_TPREL16_LO_DS:
6258 case elfcpp::R_PPC64_TPREL16_HIGH:
6259 case elfcpp::R_PPC64_TPREL16_HIGHA:
6260 case elfcpp::R_PPC64_TPREL16_HIGHER:
6261 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6262 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6263 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6264 case elfcpp::R_POWERPC_DTPREL16:
6265 case elfcpp::R_POWERPC_DTPREL16_LO:
6266 case elfcpp::R_POWERPC_DTPREL16_HI:
6267 case elfcpp::R_POWERPC_DTPREL16_HA:
6268 case elfcpp::R_PPC64_DTPREL16_DS:
6269 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6270 case elfcpp::R_PPC64_DTPREL16_HIGH:
6271 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6272 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6273 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6274 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6275 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6276 case elfcpp::R_PPC64_TLSGD:
6277 case elfcpp::R_PPC64_TLSLD:
6278 case elfcpp::R_PPC64_ADDR64_LOCAL:
6279 break;
6280
6281 case elfcpp::R_POWERPC_GOT16:
6282 case elfcpp::R_POWERPC_GOT16_LO:
6283 case elfcpp::R_POWERPC_GOT16_HI:
6284 case elfcpp::R_POWERPC_GOT16_HA:
6285 case elfcpp::R_PPC64_GOT16_DS:
6286 case elfcpp::R_PPC64_GOT16_LO_DS:
6287 {
6288 // The symbol requires a GOT entry.
6289 Output_data_got_powerpc<size, big_endian>* got;
6290
6291 got = target->got_section(symtab, layout);
6292 if (gsym->final_value_is_known())
6293 {
6294 if (is_ifunc
6295 && (size == 32 || target->abiversion() >= 2))
6296 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6297 else
6298 got->add_global(gsym, GOT_TYPE_STANDARD);
6299 }
6300 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6301 {
6302 // If we are generating a shared object or a pie, this
6303 // symbol's GOT entry will be set by a dynamic relocation.
6304 unsigned int off = got->add_constant(0);
6305 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6306
6307 Reloc_section* rela_dyn
6308 = target->rela_dyn_section(symtab, layout, is_ifunc);
6309
6310 if (gsym->can_use_relative_reloc(false)
6311 && !((size == 32
6312 || target->abiversion() >= 2)
6313 && gsym->visibility() == elfcpp::STV_PROTECTED
6314 && parameters->options().shared()))
6315 {
6316 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6317 : elfcpp::R_POWERPC_RELATIVE);
6318 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6319 }
6320 else
6321 {
6322 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6323 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6324 }
6325 }
6326 }
6327 break;
6328
6329 case elfcpp::R_PPC64_TOC16:
6330 case elfcpp::R_PPC64_TOC16_LO:
6331 case elfcpp::R_PPC64_TOC16_HI:
6332 case elfcpp::R_PPC64_TOC16_HA:
6333 case elfcpp::R_PPC64_TOC16_DS:
6334 case elfcpp::R_PPC64_TOC16_LO_DS:
6335 // We need a GOT section.
6336 target->got_section(symtab, layout);
6337 break;
6338
6339 case elfcpp::R_POWERPC_GOT_TLSGD16:
6340 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6341 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6342 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6343 {
6344 const bool final = gsym->final_value_is_known();
6345 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6346 if (tls_type == tls::TLSOPT_NONE)
6347 {
6348 Output_data_got_powerpc<size, big_endian>* got
6349 = target->got_section(symtab, layout);
6350 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6351 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6352 elfcpp::R_POWERPC_DTPMOD,
6353 elfcpp::R_POWERPC_DTPREL);
6354 }
6355 else if (tls_type == tls::TLSOPT_TO_IE)
6356 {
6357 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6358 {
6359 Output_data_got_powerpc<size, big_endian>* got
6360 = target->got_section(symtab, layout);
6361 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6362 if (gsym->is_undefined()
6363 || gsym->is_from_dynobj())
6364 {
6365 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6366 elfcpp::R_POWERPC_TPREL);
6367 }
6368 else
6369 {
6370 unsigned int off = got->add_constant(0);
6371 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6372 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6373 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6374 got, off, 0);
6375 }
6376 }
6377 }
6378 else if (tls_type == tls::TLSOPT_TO_LE)
6379 {
6380 // no GOT relocs needed for Local Exec.
6381 }
6382 else
6383 gold_unreachable();
6384 }
6385 break;
6386
6387 case elfcpp::R_POWERPC_GOT_TLSLD16:
6388 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6389 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6390 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6391 {
6392 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6393 if (tls_type == tls::TLSOPT_NONE)
6394 target->tlsld_got_offset(symtab, layout, object);
6395 else if (tls_type == tls::TLSOPT_TO_LE)
6396 {
6397 // no GOT relocs needed for Local Exec.
6398 if (parameters->options().emit_relocs())
6399 {
6400 Output_section* os = layout->tls_segment()->first_section();
6401 gold_assert(os != NULL);
6402 os->set_needs_symtab_index();
6403 }
6404 }
6405 else
6406 gold_unreachable();
6407 }
6408 break;
6409
6410 case elfcpp::R_POWERPC_GOT_DTPREL16:
6411 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6412 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6413 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6414 {
6415 Output_data_got_powerpc<size, big_endian>* got
6416 = target->got_section(symtab, layout);
6417 if (!gsym->final_value_is_known()
6418 && (gsym->is_from_dynobj()
6419 || gsym->is_undefined()
6420 || gsym->is_preemptible()))
6421 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6422 target->rela_dyn_section(layout),
6423 elfcpp::R_POWERPC_DTPREL);
6424 else
6425 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6426 }
6427 break;
6428
6429 case elfcpp::R_POWERPC_GOT_TPREL16:
6430 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6431 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6432 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6433 {
6434 const bool final = gsym->final_value_is_known();
6435 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6436 if (tls_type == tls::TLSOPT_NONE)
6437 {
6438 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6439 {
6440 Output_data_got_powerpc<size, big_endian>* got
6441 = target->got_section(symtab, layout);
6442 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6443 if (gsym->is_undefined()
6444 || gsym->is_from_dynobj())
6445 {
6446 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6447 elfcpp::R_POWERPC_TPREL);
6448 }
6449 else
6450 {
6451 unsigned int off = got->add_constant(0);
6452 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6453 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6454 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6455 got, off, 0);
6456 }
6457 }
6458 }
6459 else if (tls_type == tls::TLSOPT_TO_LE)
6460 {
6461 // no GOT relocs needed for Local Exec.
6462 }
6463 else
6464 gold_unreachable();
6465 }
6466 break;
6467
6468 default:
6469 unsupported_reloc_global(object, r_type, gsym);
6470 break;
6471 }
6472
6473 switch (r_type)
6474 {
6475 case elfcpp::R_POWERPC_GOT_TLSLD16:
6476 case elfcpp::R_POWERPC_GOT_TLSGD16:
6477 case elfcpp::R_POWERPC_GOT_TPREL16:
6478 case elfcpp::R_POWERPC_GOT_DTPREL16:
6479 case elfcpp::R_POWERPC_GOT16:
6480 case elfcpp::R_PPC64_GOT16_DS:
6481 case elfcpp::R_PPC64_TOC16:
6482 case elfcpp::R_PPC64_TOC16_DS:
6483 ppc_object->set_has_small_toc_reloc();
6484 default:
6485 break;
6486 }
6487 }
6488
6489 // Process relocations for gc.
6490
6491 template<int size, bool big_endian>
6492 void
6493 Target_powerpc<size, big_endian>::gc_process_relocs(
6494 Symbol_table* symtab,
6495 Layout* layout,
6496 Sized_relobj_file<size, big_endian>* object,
6497 unsigned int data_shndx,
6498 unsigned int,
6499 const unsigned char* prelocs,
6500 size_t reloc_count,
6501 Output_section* output_section,
6502 bool needs_special_offset_handling,
6503 size_t local_symbol_count,
6504 const unsigned char* plocal_symbols)
6505 {
6506 typedef Target_powerpc<size, big_endian> Powerpc;
6507 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6508 Classify_reloc;
6509
6510 Powerpc_relobj<size, big_endian>* ppc_object
6511 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6512 if (size == 64)
6513 ppc_object->set_opd_valid();
6514 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6515 {
6516 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6517 for (p = ppc_object->access_from_map()->begin();
6518 p != ppc_object->access_from_map()->end();
6519 ++p)
6520 {
6521 Address dst_off = p->first;
6522 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6523 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6524 for (s = p->second.begin(); s != p->second.end(); ++s)
6525 {
6526 Relobj* src_obj = s->first;
6527 unsigned int src_indx = s->second;
6528 symtab->gc()->add_reference(src_obj, src_indx,
6529 ppc_object, dst_indx);
6530 }
6531 p->second.clear();
6532 }
6533 ppc_object->access_from_map()->clear();
6534 ppc_object->process_gc_mark(symtab);
6535 // Don't look at .opd relocs as .opd will reference everything.
6536 return;
6537 }
6538
6539 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6540 symtab,
6541 layout,
6542 this,
6543 object,
6544 data_shndx,
6545 prelocs,
6546 reloc_count,
6547 output_section,
6548 needs_special_offset_handling,
6549 local_symbol_count,
6550 plocal_symbols);
6551 }
6552
6553 // Handle target specific gc actions when adding a gc reference from
6554 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6555 // and DST_OFF. For powerpc64, this adds a referenc to the code
6556 // section of a function descriptor.
6557
6558 template<int size, bool big_endian>
6559 void
6560 Target_powerpc<size, big_endian>::do_gc_add_reference(
6561 Symbol_table* symtab,
6562 Relobj* src_obj,
6563 unsigned int src_shndx,
6564 Relobj* dst_obj,
6565 unsigned int dst_shndx,
6566 Address dst_off) const
6567 {
6568 if (size != 64 || dst_obj->is_dynamic())
6569 return;
6570
6571 Powerpc_relobj<size, big_endian>* ppc_object
6572 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6573 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6574 {
6575 if (ppc_object->opd_valid())
6576 {
6577 dst_shndx = ppc_object->get_opd_ent(dst_off);
6578 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6579 }
6580 else
6581 {
6582 // If we haven't run scan_opd_relocs, we must delay
6583 // processing this function descriptor reference.
6584 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6585 }
6586 }
6587 }
6588
6589 // Add any special sections for this symbol to the gc work list.
6590 // For powerpc64, this adds the code section of a function
6591 // descriptor.
6592
6593 template<int size, bool big_endian>
6594 void
6595 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6596 Symbol_table* symtab,
6597 Symbol* sym) const
6598 {
6599 if (size == 64)
6600 {
6601 Powerpc_relobj<size, big_endian>* ppc_object
6602 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6603 bool is_ordinary;
6604 unsigned int shndx = sym->shndx(&is_ordinary);
6605 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6606 {
6607 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6608 Address dst_off = gsym->value();
6609 if (ppc_object->opd_valid())
6610 {
6611 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6612 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6613 dst_indx));
6614 }
6615 else
6616 ppc_object->add_gc_mark(dst_off);
6617 }
6618 }
6619 }
6620
6621 // For a symbol location in .opd, set LOC to the location of the
6622 // function entry.
6623
6624 template<int size, bool big_endian>
6625 void
6626 Target_powerpc<size, big_endian>::do_function_location(
6627 Symbol_location* loc) const
6628 {
6629 if (size == 64 && loc->shndx != 0)
6630 {
6631 if (loc->object->is_dynamic())
6632 {
6633 Powerpc_dynobj<size, big_endian>* ppc_object
6634 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6635 if (loc->shndx == ppc_object->opd_shndx())
6636 {
6637 Address dest_off;
6638 Address off = loc->offset - ppc_object->opd_address();
6639 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6640 loc->offset = dest_off;
6641 }
6642 }
6643 else
6644 {
6645 const Powerpc_relobj<size, big_endian>* ppc_object
6646 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6647 if (loc->shndx == ppc_object->opd_shndx())
6648 {
6649 Address dest_off;
6650 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6651 loc->offset = dest_off;
6652 }
6653 }
6654 }
6655 }
6656
6657 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6658 // compiled with -fsplit-stack. The function calls non-split-stack
6659 // code. Change the function to ensure it has enough stack space to
6660 // call some random function.
6661
6662 template<int size, bool big_endian>
6663 void
6664 Target_powerpc<size, big_endian>::do_calls_non_split(
6665 Relobj* object,
6666 unsigned int shndx,
6667 section_offset_type fnoffset,
6668 section_size_type fnsize,
6669 const unsigned char* prelocs,
6670 size_t reloc_count,
6671 unsigned char* view,
6672 section_size_type view_size,
6673 std::string* from,
6674 std::string* to) const
6675 {
6676 // 32-bit not supported.
6677 if (size == 32)
6678 {
6679 // warn
6680 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6681 prelocs, reloc_count, view, view_size,
6682 from, to);
6683 return;
6684 }
6685
6686 // The function always starts with
6687 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6688 // addis %r12,%r1,-allocate@ha
6689 // addi %r12,%r12,-allocate@l
6690 // cmpld %r12,%r0
6691 // but note that the addis or addi may be replaced with a nop
6692
6693 unsigned char *entry = view + fnoffset;
6694 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6695
6696 if ((insn & 0xffff0000) == addis_2_12)
6697 {
6698 /* Skip ELFv2 global entry code. */
6699 entry += 8;
6700 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6701 }
6702
6703 unsigned char *pinsn = entry;
6704 bool ok = false;
6705 const uint32_t ld_private_ss = 0xe80d8fc0;
6706 if (insn == ld_private_ss)
6707 {
6708 int32_t allocate = 0;
6709 while (1)
6710 {
6711 pinsn += 4;
6712 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6713 if ((insn & 0xffff0000) == addis_12_1)
6714 allocate += (insn & 0xffff) << 16;
6715 else if ((insn & 0xffff0000) == addi_12_1
6716 || (insn & 0xffff0000) == addi_12_12)
6717 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6718 else if (insn != nop)
6719 break;
6720 }
6721 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6722 {
6723 int extra = parameters->options().split_stack_adjust_size();
6724 allocate -= extra;
6725 if (allocate >= 0 || extra < 0)
6726 {
6727 object->error(_("split-stack stack size overflow at "
6728 "section %u offset %0zx"),
6729 shndx, static_cast<size_t>(fnoffset));
6730 return;
6731 }
6732 pinsn = entry + 4;
6733 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6734 if (insn != addis_12_1)
6735 {
6736 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6737 pinsn += 4;
6738 insn = addi_12_12 | (allocate & 0xffff);
6739 if (insn != addi_12_12)
6740 {
6741 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6742 pinsn += 4;
6743 }
6744 }
6745 else
6746 {
6747 insn = addi_12_1 | (allocate & 0xffff);
6748 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6749 pinsn += 4;
6750 }
6751 if (pinsn != entry + 12)
6752 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6753
6754 ok = true;
6755 }
6756 }
6757
6758 if (!ok)
6759 {
6760 if (!object->has_no_split_stack())
6761 object->error(_("failed to match split-stack sequence at "
6762 "section %u offset %0zx"),
6763 shndx, static_cast<size_t>(fnoffset));
6764 }
6765 }
6766
6767 // Scan relocations for a section.
6768
6769 template<int size, bool big_endian>
6770 void
6771 Target_powerpc<size, big_endian>::scan_relocs(
6772 Symbol_table* symtab,
6773 Layout* layout,
6774 Sized_relobj_file<size, big_endian>* object,
6775 unsigned int data_shndx,
6776 unsigned int sh_type,
6777 const unsigned char* prelocs,
6778 size_t reloc_count,
6779 Output_section* output_section,
6780 bool needs_special_offset_handling,
6781 size_t local_symbol_count,
6782 const unsigned char* plocal_symbols)
6783 {
6784 typedef Target_powerpc<size, big_endian> Powerpc;
6785 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6786 Classify_reloc;
6787
6788 if (sh_type == elfcpp::SHT_REL)
6789 {
6790 gold_error(_("%s: unsupported REL reloc section"),
6791 object->name().c_str());
6792 return;
6793 }
6794
6795 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6796 symtab,
6797 layout,
6798 this,
6799 object,
6800 data_shndx,
6801 prelocs,
6802 reloc_count,
6803 output_section,
6804 needs_special_offset_handling,
6805 local_symbol_count,
6806 plocal_symbols);
6807 }
6808
6809 // Functor class for processing the global symbol table.
6810 // Removes symbols defined on discarded opd entries.
6811
6812 template<bool big_endian>
6813 class Global_symbol_visitor_opd
6814 {
6815 public:
6816 Global_symbol_visitor_opd()
6817 { }
6818
6819 void
6820 operator()(Sized_symbol<64>* sym)
6821 {
6822 if (sym->has_symtab_index()
6823 || sym->source() != Symbol::FROM_OBJECT
6824 || !sym->in_real_elf())
6825 return;
6826
6827 if (sym->object()->is_dynamic())
6828 return;
6829
6830 Powerpc_relobj<64, big_endian>* symobj
6831 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6832 if (symobj->opd_shndx() == 0)
6833 return;
6834
6835 bool is_ordinary;
6836 unsigned int shndx = sym->shndx(&is_ordinary);
6837 if (shndx == symobj->opd_shndx()
6838 && symobj->get_opd_discard(sym->value()))
6839 {
6840 sym->set_undefined();
6841 sym->set_visibility(elfcpp::STV_DEFAULT);
6842 sym->set_is_defined_in_discarded_section();
6843 sym->set_symtab_index(-1U);
6844 }
6845 }
6846 };
6847
6848 template<int size, bool big_endian>
6849 void
6850 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6851 Layout* layout,
6852 Symbol_table* symtab)
6853 {
6854 if (size == 64)
6855 {
6856 Output_data_save_res<size, big_endian>* savres
6857 = new Output_data_save_res<size, big_endian>(symtab);
6858 this->savres_section_ = savres;
6859 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6860 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6861 savres, ORDER_TEXT, false);
6862 }
6863 }
6864
6865 // Sort linker created .got section first (for the header), then input
6866 // sections belonging to files using small model code.
6867
6868 template<bool big_endian>
6869 class Sort_toc_sections
6870 {
6871 public:
6872 bool
6873 operator()(const Output_section::Input_section& is1,
6874 const Output_section::Input_section& is2) const
6875 {
6876 if (!is1.is_input_section() && is2.is_input_section())
6877 return true;
6878 bool small1
6879 = (is1.is_input_section()
6880 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6881 ->has_small_toc_reloc()));
6882 bool small2
6883 = (is2.is_input_section()
6884 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6885 ->has_small_toc_reloc()));
6886 return small1 && !small2;
6887 }
6888 };
6889
6890 // Finalize the sections.
6891
6892 template<int size, bool big_endian>
6893 void
6894 Target_powerpc<size, big_endian>::do_finalize_sections(
6895 Layout* layout,
6896 const Input_objects*,
6897 Symbol_table* symtab)
6898 {
6899 if (parameters->doing_static_link())
6900 {
6901 // At least some versions of glibc elf-init.o have a strong
6902 // reference to __rela_iplt marker syms. A weak ref would be
6903 // better..
6904 if (this->iplt_ != NULL)
6905 {
6906 Reloc_section* rel = this->iplt_->rel_plt();
6907 symtab->define_in_output_data("__rela_iplt_start", NULL,
6908 Symbol_table::PREDEFINED, rel, 0, 0,
6909 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6910 elfcpp::STV_HIDDEN, 0, false, true);
6911 symtab->define_in_output_data("__rela_iplt_end", NULL,
6912 Symbol_table::PREDEFINED, rel, 0, 0,
6913 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6914 elfcpp::STV_HIDDEN, 0, true, true);
6915 }
6916 else
6917 {
6918 symtab->define_as_constant("__rela_iplt_start", NULL,
6919 Symbol_table::PREDEFINED, 0, 0,
6920 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6921 elfcpp::STV_HIDDEN, 0, true, false);
6922 symtab->define_as_constant("__rela_iplt_end", NULL,
6923 Symbol_table::PREDEFINED, 0, 0,
6924 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6925 elfcpp::STV_HIDDEN, 0, true, false);
6926 }
6927 }
6928
6929 if (size == 64)
6930 {
6931 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6932 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6933
6934 if (!parameters->options().relocatable())
6935 {
6936 this->define_save_restore_funcs(layout, symtab);
6937
6938 // Annoyingly, we need to make these sections now whether or
6939 // not we need them. If we delay until do_relax then we
6940 // need to mess with the relaxation machinery checkpointing.
6941 this->got_section(symtab, layout);
6942 this->make_brlt_section(layout);
6943
6944 if (parameters->options().toc_sort())
6945 {
6946 Output_section* os = this->got_->output_section();
6947 if (os != NULL && os->input_sections().size() > 1)
6948 std::stable_sort(os->input_sections().begin(),
6949 os->input_sections().end(),
6950 Sort_toc_sections<big_endian>());
6951 }
6952 }
6953 }
6954
6955 // Fill in some more dynamic tags.
6956 Output_data_dynamic* odyn = layout->dynamic_data();
6957 if (odyn != NULL)
6958 {
6959 const Reloc_section* rel_plt = (this->plt_ == NULL
6960 ? NULL
6961 : this->plt_->rel_plt());
6962 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6963 this->rela_dyn_, true, size == 32);
6964
6965 if (size == 32)
6966 {
6967 if (this->got_ != NULL)
6968 {
6969 this->got_->finalize_data_size();
6970 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6971 this->got_, this->got_->g_o_t());
6972 }
6973 }
6974 else
6975 {
6976 if (this->glink_ != NULL)
6977 {
6978 this->glink_->finalize_data_size();
6979 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6980 this->glink_,
6981 (this->glink_->pltresolve_size
6982 - 32));
6983 }
6984 }
6985 }
6986
6987 // Emit any relocs we saved in an attempt to avoid generating COPY
6988 // relocs.
6989 if (this->copy_relocs_.any_saved_relocs())
6990 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6991 }
6992
6993 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6994 // reloc.
6995
6996 static bool
6997 ok_lo_toc_insn(uint32_t insn)
6998 {
6999 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
7000 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
7001 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
7002 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
7003 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7004 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7005 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7006 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7007 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7008 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7009 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7010 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7011 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7012 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7013 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7014 && (insn & 3) != 1)
7015 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7016 && ((insn & 3) == 0 || (insn & 3) == 3))
7017 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7018 }
7019
7020 // Return the value to use for a branch relocation.
7021
7022 template<int size, bool big_endian>
7023 bool
7024 Target_powerpc<size, big_endian>::symval_for_branch(
7025 const Symbol_table* symtab,
7026 const Sized_symbol<size>* gsym,
7027 Powerpc_relobj<size, big_endian>* object,
7028 Address *value,
7029 unsigned int *dest_shndx)
7030 {
7031 if (size == 32 || this->abiversion() >= 2)
7032 gold_unreachable();
7033 *dest_shndx = 0;
7034
7035 // If the symbol is defined in an opd section, ie. is a function
7036 // descriptor, use the function descriptor code entry address
7037 Powerpc_relobj<size, big_endian>* symobj = object;
7038 if (gsym != NULL
7039 && gsym->source() != Symbol::FROM_OBJECT)
7040 return true;
7041 if (gsym != NULL)
7042 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7043 unsigned int shndx = symobj->opd_shndx();
7044 if (shndx == 0)
7045 return true;
7046 Address opd_addr = symobj->get_output_section_offset(shndx);
7047 if (opd_addr == invalid_address)
7048 return true;
7049 opd_addr += symobj->output_section_address(shndx);
7050 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7051 {
7052 Address sec_off;
7053 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7054 if (symtab->is_section_folded(symobj, *dest_shndx))
7055 {
7056 Section_id folded
7057 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7058 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7059 *dest_shndx = folded.second;
7060 }
7061 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7062 if (sec_addr == invalid_address)
7063 return false;
7064
7065 sec_addr += symobj->output_section(*dest_shndx)->address();
7066 *value = sec_addr + sec_off;
7067 }
7068 return true;
7069 }
7070
7071 // Perform a relocation.
7072
7073 template<int size, bool big_endian>
7074 inline bool
7075 Target_powerpc<size, big_endian>::Relocate::relocate(
7076 const Relocate_info<size, big_endian>* relinfo,
7077 unsigned int,
7078 Target_powerpc* target,
7079 Output_section* os,
7080 size_t relnum,
7081 const unsigned char* preloc,
7082 const Sized_symbol<size>* gsym,
7083 const Symbol_value<size>* psymval,
7084 unsigned char* view,
7085 Address address,
7086 section_size_type view_size)
7087 {
7088 if (view == NULL)
7089 return true;
7090
7091 const elfcpp::Rela<size, big_endian> rela(preloc);
7092 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7093 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7094 {
7095 case Track_tls::NOT_EXPECTED:
7096 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7097 _("__tls_get_addr call lacks marker reloc"));
7098 break;
7099 case Track_tls::EXPECTED:
7100 // We have already complained.
7101 break;
7102 case Track_tls::SKIP:
7103 return true;
7104 case Track_tls::NORMAL:
7105 break;
7106 }
7107
7108 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7109 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7110 typedef typename Reloc_types<elfcpp::SHT_RELA,
7111 size, big_endian>::Reloc Reltype;
7112 // Offset from start of insn to d-field reloc.
7113 const int d_offset = big_endian ? 2 : 0;
7114
7115 Powerpc_relobj<size, big_endian>* const object
7116 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7117 Address value = 0;
7118 bool has_stub_value = false;
7119 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7120 if ((gsym != NULL
7121 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7122 : object->local_has_plt_offset(r_sym))
7123 && (!psymval->is_ifunc_symbol()
7124 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7125 {
7126 if (size == 64
7127 && gsym != NULL
7128 && target->abiversion() >= 2
7129 && !parameters->options().output_is_position_independent()
7130 && !is_branch_reloc(r_type))
7131 {
7132 Address off = target->glink_section()->find_global_entry(gsym);
7133 if (off != invalid_address)
7134 {
7135 value = target->glink_section()->global_entry_address() + off;
7136 has_stub_value = true;
7137 }
7138 }
7139 else
7140 {
7141 Stub_table<size, big_endian>* stub_table
7142 = object->stub_table(relinfo->data_shndx);
7143 if (stub_table == NULL)
7144 {
7145 // This is a ref from a data section to an ifunc symbol.
7146 if (target->stub_tables().size() != 0)
7147 stub_table = target->stub_tables()[0];
7148 }
7149 if (stub_table != NULL)
7150 {
7151 Address off;
7152 if (gsym != NULL)
7153 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7154 rela.get_r_addend());
7155 else
7156 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7157 rela.get_r_addend());
7158 if (off != invalid_address)
7159 {
7160 value = stub_table->stub_address() + off;
7161 has_stub_value = true;
7162 }
7163 }
7164 }
7165 // We don't care too much about bogus debug references to
7166 // non-local functions, but otherwise there had better be a plt
7167 // call stub or global entry stub as appropriate.
7168 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7169 }
7170
7171 if (r_type == elfcpp::R_POWERPC_GOT16
7172 || r_type == elfcpp::R_POWERPC_GOT16_LO
7173 || r_type == elfcpp::R_POWERPC_GOT16_HI
7174 || r_type == elfcpp::R_POWERPC_GOT16_HA
7175 || r_type == elfcpp::R_PPC64_GOT16_DS
7176 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7177 {
7178 if (gsym != NULL)
7179 {
7180 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7181 value = gsym->got_offset(GOT_TYPE_STANDARD);
7182 }
7183 else
7184 {
7185 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7186 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7187 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7188 }
7189 value -= target->got_section()->got_base_offset(object);
7190 }
7191 else if (r_type == elfcpp::R_PPC64_TOC)
7192 {
7193 value = (target->got_section()->output_section()->address()
7194 + object->toc_base_offset());
7195 }
7196 else if (gsym != NULL
7197 && (r_type == elfcpp::R_POWERPC_REL24
7198 || r_type == elfcpp::R_PPC_PLTREL24)
7199 && has_stub_value)
7200 {
7201 if (size == 64)
7202 {
7203 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7204 Valtype* wv = reinterpret_cast<Valtype*>(view);
7205 bool can_plt_call = false;
7206 if (rela.get_r_offset() + 8 <= view_size)
7207 {
7208 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7209 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7210 if ((insn & 1) != 0
7211 && (insn2 == nop
7212 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7213 {
7214 elfcpp::Swap<32, big_endian>::
7215 writeval(wv + 1, ld_2_1 + target->stk_toc());
7216 can_plt_call = true;
7217 }
7218 }
7219 if (!can_plt_call)
7220 {
7221 // If we don't have a branch and link followed by a nop,
7222 // we can't go via the plt because there is no place to
7223 // put a toc restoring instruction.
7224 // Unless we know we won't be returning.
7225 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7226 can_plt_call = true;
7227 }
7228 if (!can_plt_call)
7229 {
7230 // g++ as of 20130507 emits self-calls without a
7231 // following nop. This is arguably wrong since we have
7232 // conflicting information. On the one hand a global
7233 // symbol and on the other a local call sequence, but
7234 // don't error for this special case.
7235 // It isn't possible to cheaply verify we have exactly
7236 // such a call. Allow all calls to the same section.
7237 bool ok = false;
7238 Address code = value;
7239 if (gsym->source() == Symbol::FROM_OBJECT
7240 && gsym->object() == object)
7241 {
7242 unsigned int dest_shndx = 0;
7243 if (target->abiversion() < 2)
7244 {
7245 Address addend = rela.get_r_addend();
7246 code = psymval->value(object, addend);
7247 target->symval_for_branch(relinfo->symtab, gsym, object,
7248 &code, &dest_shndx);
7249 }
7250 bool is_ordinary;
7251 if (dest_shndx == 0)
7252 dest_shndx = gsym->shndx(&is_ordinary);
7253 ok = dest_shndx == relinfo->data_shndx;
7254 }
7255 if (!ok)
7256 {
7257 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7258 _("call lacks nop, can't restore toc; "
7259 "recompile with -fPIC"));
7260 value = code;
7261 }
7262 }
7263 }
7264 }
7265 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7266 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7267 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7268 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7269 {
7270 // First instruction of a global dynamic sequence, arg setup insn.
7271 const bool final = gsym == NULL || gsym->final_value_is_known();
7272 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7273 enum Got_type got_type = GOT_TYPE_STANDARD;
7274 if (tls_type == tls::TLSOPT_NONE)
7275 got_type = GOT_TYPE_TLSGD;
7276 else if (tls_type == tls::TLSOPT_TO_IE)
7277 got_type = GOT_TYPE_TPREL;
7278 if (got_type != GOT_TYPE_STANDARD)
7279 {
7280 if (gsym != NULL)
7281 {
7282 gold_assert(gsym->has_got_offset(got_type));
7283 value = gsym->got_offset(got_type);
7284 }
7285 else
7286 {
7287 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7288 gold_assert(object->local_has_got_offset(r_sym, got_type));
7289 value = object->local_got_offset(r_sym, got_type);
7290 }
7291 value -= target->got_section()->got_base_offset(object);
7292 }
7293 if (tls_type == tls::TLSOPT_TO_IE)
7294 {
7295 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7296 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7297 {
7298 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7299 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7300 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7301 if (size == 32)
7302 insn |= 32 << 26; // lwz
7303 else
7304 insn |= 58 << 26; // ld
7305 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7306 }
7307 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7308 - elfcpp::R_POWERPC_GOT_TLSGD16);
7309 }
7310 else if (tls_type == tls::TLSOPT_TO_LE)
7311 {
7312 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7313 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7314 {
7315 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7316 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7317 insn &= (1 << 26) - (1 << 21); // extract rt
7318 if (size == 32)
7319 insn |= addis_0_2;
7320 else
7321 insn |= addis_0_13;
7322 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7323 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7324 value = psymval->value(object, rela.get_r_addend());
7325 }
7326 else
7327 {
7328 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7329 Insn insn = nop;
7330 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7331 r_type = elfcpp::R_POWERPC_NONE;
7332 }
7333 }
7334 }
7335 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7336 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7337 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7338 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7339 {
7340 // First instruction of a local dynamic sequence, arg setup insn.
7341 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7342 if (tls_type == tls::TLSOPT_NONE)
7343 {
7344 value = target->tlsld_got_offset();
7345 value -= target->got_section()->got_base_offset(object);
7346 }
7347 else
7348 {
7349 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7350 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7351 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7352 {
7353 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7354 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7355 insn &= (1 << 26) - (1 << 21); // extract rt
7356 if (size == 32)
7357 insn |= addis_0_2;
7358 else
7359 insn |= addis_0_13;
7360 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7361 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7362 value = dtp_offset;
7363 }
7364 else
7365 {
7366 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7367 Insn insn = nop;
7368 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7369 r_type = elfcpp::R_POWERPC_NONE;
7370 }
7371 }
7372 }
7373 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7374 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7375 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7376 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7377 {
7378 // Accesses relative to a local dynamic sequence address,
7379 // no optimisation here.
7380 if (gsym != NULL)
7381 {
7382 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7383 value = gsym->got_offset(GOT_TYPE_DTPREL);
7384 }
7385 else
7386 {
7387 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7388 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7389 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7390 }
7391 value -= target->got_section()->got_base_offset(object);
7392 }
7393 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7394 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7395 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7396 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7397 {
7398 // First instruction of initial exec sequence.
7399 const bool final = gsym == NULL || gsym->final_value_is_known();
7400 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7401 if (tls_type == tls::TLSOPT_NONE)
7402 {
7403 if (gsym != NULL)
7404 {
7405 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7406 value = gsym->got_offset(GOT_TYPE_TPREL);
7407 }
7408 else
7409 {
7410 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7411 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7412 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7413 }
7414 value -= target->got_section()->got_base_offset(object);
7415 }
7416 else
7417 {
7418 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7419 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7420 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7421 {
7422 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7423 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7424 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7425 if (size == 32)
7426 insn |= addis_0_2;
7427 else
7428 insn |= addis_0_13;
7429 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7430 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7431 value = psymval->value(object, rela.get_r_addend());
7432 }
7433 else
7434 {
7435 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7436 Insn insn = nop;
7437 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7438 r_type = elfcpp::R_POWERPC_NONE;
7439 }
7440 }
7441 }
7442 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7443 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7444 {
7445 // Second instruction of a global dynamic sequence,
7446 // the __tls_get_addr call
7447 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7448 const bool final = gsym == NULL || gsym->final_value_is_known();
7449 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7450 if (tls_type != tls::TLSOPT_NONE)
7451 {
7452 if (tls_type == tls::TLSOPT_TO_IE)
7453 {
7454 Insn* iview = reinterpret_cast<Insn*>(view);
7455 Insn insn = add_3_3_13;
7456 if (size == 32)
7457 insn = add_3_3_2;
7458 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7459 r_type = elfcpp::R_POWERPC_NONE;
7460 }
7461 else
7462 {
7463 Insn* iview = reinterpret_cast<Insn*>(view);
7464 Insn insn = addi_3_3;
7465 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7466 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7467 view += d_offset;
7468 value = psymval->value(object, rela.get_r_addend());
7469 }
7470 this->skip_next_tls_get_addr_call();
7471 }
7472 }
7473 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7474 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7475 {
7476 // Second instruction of a local dynamic sequence,
7477 // the __tls_get_addr call
7478 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7479 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7480 if (tls_type == tls::TLSOPT_TO_LE)
7481 {
7482 Insn* iview = reinterpret_cast<Insn*>(view);
7483 Insn insn = addi_3_3;
7484 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7485 this->skip_next_tls_get_addr_call();
7486 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7487 view += d_offset;
7488 value = dtp_offset;
7489 }
7490 }
7491 else if (r_type == elfcpp::R_POWERPC_TLS)
7492 {
7493 // Second instruction of an initial exec sequence
7494 const bool final = gsym == NULL || gsym->final_value_is_known();
7495 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7496 if (tls_type == tls::TLSOPT_TO_LE)
7497 {
7498 Insn* iview = reinterpret_cast<Insn*>(view);
7499 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7500 unsigned int reg = size == 32 ? 2 : 13;
7501 insn = at_tls_transform(insn, reg);
7502 gold_assert(insn != 0);
7503 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7504 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7505 view += d_offset;
7506 value = psymval->value(object, rela.get_r_addend());
7507 }
7508 }
7509 else if (!has_stub_value)
7510 {
7511 Address addend = 0;
7512 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7513 addend = rela.get_r_addend();
7514 value = psymval->value(object, addend);
7515 if (size == 64 && is_branch_reloc(r_type))
7516 {
7517 if (target->abiversion() >= 2)
7518 {
7519 if (gsym != NULL)
7520 value += object->ppc64_local_entry_offset(gsym);
7521 else
7522 value += object->ppc64_local_entry_offset(r_sym);
7523 }
7524 else
7525 {
7526 unsigned int dest_shndx;
7527 target->symval_for_branch(relinfo->symtab, gsym, object,
7528 &value, &dest_shndx);
7529 }
7530 }
7531 Address max_branch_offset = max_branch_delta(r_type);
7532 if (max_branch_offset != 0
7533 && value - address + max_branch_offset >= 2 * max_branch_offset)
7534 {
7535 Stub_table<size, big_endian>* stub_table
7536 = object->stub_table(relinfo->data_shndx);
7537 if (stub_table != NULL)
7538 {
7539 Address off = stub_table->find_long_branch_entry(object, value);
7540 if (off != invalid_address)
7541 {
7542 value = (stub_table->stub_address() + stub_table->plt_size()
7543 + off);
7544 has_stub_value = true;
7545 }
7546 }
7547 }
7548 }
7549
7550 switch (r_type)
7551 {
7552 case elfcpp::R_PPC64_REL64:
7553 case elfcpp::R_POWERPC_REL32:
7554 case elfcpp::R_POWERPC_REL24:
7555 case elfcpp::R_PPC_PLTREL24:
7556 case elfcpp::R_PPC_LOCAL24PC:
7557 case elfcpp::R_POWERPC_REL16:
7558 case elfcpp::R_POWERPC_REL16_LO:
7559 case elfcpp::R_POWERPC_REL16_HI:
7560 case elfcpp::R_POWERPC_REL16_HA:
7561 case elfcpp::R_POWERPC_REL16DX_HA:
7562 case elfcpp::R_POWERPC_REL14:
7563 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7564 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7565 value -= address;
7566 break;
7567
7568 case elfcpp::R_PPC64_TOC16:
7569 case elfcpp::R_PPC64_TOC16_LO:
7570 case elfcpp::R_PPC64_TOC16_HI:
7571 case elfcpp::R_PPC64_TOC16_HA:
7572 case elfcpp::R_PPC64_TOC16_DS:
7573 case elfcpp::R_PPC64_TOC16_LO_DS:
7574 // Subtract the TOC base address.
7575 value -= (target->got_section()->output_section()->address()
7576 + object->toc_base_offset());
7577 break;
7578
7579 case elfcpp::R_POWERPC_SECTOFF:
7580 case elfcpp::R_POWERPC_SECTOFF_LO:
7581 case elfcpp::R_POWERPC_SECTOFF_HI:
7582 case elfcpp::R_POWERPC_SECTOFF_HA:
7583 case elfcpp::R_PPC64_SECTOFF_DS:
7584 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7585 if (os != NULL)
7586 value -= os->address();
7587 break;
7588
7589 case elfcpp::R_PPC64_TPREL16_DS:
7590 case elfcpp::R_PPC64_TPREL16_LO_DS:
7591 case elfcpp::R_PPC64_TPREL16_HIGH:
7592 case elfcpp::R_PPC64_TPREL16_HIGHA:
7593 if (size != 64)
7594 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7595 break;
7596 // Fall through.
7597 case elfcpp::R_POWERPC_TPREL16:
7598 case elfcpp::R_POWERPC_TPREL16_LO:
7599 case elfcpp::R_POWERPC_TPREL16_HI:
7600 case elfcpp::R_POWERPC_TPREL16_HA:
7601 case elfcpp::R_POWERPC_TPREL:
7602 case elfcpp::R_PPC64_TPREL16_HIGHER:
7603 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7604 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7605 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7606 // tls symbol values are relative to tls_segment()->vaddr()
7607 value -= tp_offset;
7608 break;
7609
7610 case elfcpp::R_PPC64_DTPREL16_DS:
7611 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7612 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7613 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7614 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7615 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7616 if (size != 64)
7617 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7618 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7619 break;
7620 // Fall through.
7621 case elfcpp::R_POWERPC_DTPREL16:
7622 case elfcpp::R_POWERPC_DTPREL16_LO:
7623 case elfcpp::R_POWERPC_DTPREL16_HI:
7624 case elfcpp::R_POWERPC_DTPREL16_HA:
7625 case elfcpp::R_POWERPC_DTPREL:
7626 case elfcpp::R_PPC64_DTPREL16_HIGH:
7627 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7628 // tls symbol values are relative to tls_segment()->vaddr()
7629 value -= dtp_offset;
7630 break;
7631
7632 case elfcpp::R_PPC64_ADDR64_LOCAL:
7633 if (gsym != NULL)
7634 value += object->ppc64_local_entry_offset(gsym);
7635 else
7636 value += object->ppc64_local_entry_offset(r_sym);
7637 break;
7638
7639 default:
7640 break;
7641 }
7642
7643 Insn branch_bit = 0;
7644 switch (r_type)
7645 {
7646 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7647 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7648 branch_bit = 1 << 21;
7649 // Fall through.
7650 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7651 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7652 {
7653 Insn* iview = reinterpret_cast<Insn*>(view);
7654 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7655 insn &= ~(1 << 21);
7656 insn |= branch_bit;
7657 if (this->is_isa_v2)
7658 {
7659 // Set 'a' bit. This is 0b00010 in BO field for branch
7660 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7661 // for branch on CTR insns (BO == 1a00t or 1a01t).
7662 if ((insn & (0x14 << 21)) == (0x04 << 21))
7663 insn |= 0x02 << 21;
7664 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7665 insn |= 0x08 << 21;
7666 else
7667 break;
7668 }
7669 else
7670 {
7671 // Invert 'y' bit if not the default.
7672 if (static_cast<Signed_address>(value) < 0)
7673 insn ^= 1 << 21;
7674 }
7675 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7676 }
7677 break;
7678
7679 default:
7680 break;
7681 }
7682
7683 if (size == 64)
7684 {
7685 // Multi-instruction sequences that access the TOC can be
7686 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7687 // to nop; addi rb,r2,x;
7688 switch (r_type)
7689 {
7690 default:
7691 break;
7692
7693 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7694 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7695 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7696 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7697 case elfcpp::R_POWERPC_GOT16_HA:
7698 case elfcpp::R_PPC64_TOC16_HA:
7699 if (parameters->options().toc_optimize())
7700 {
7701 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7702 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7703 if ((insn & ((0x3f << 26) | 0x1f << 16))
7704 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7705 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7706 _("toc optimization is not supported "
7707 "for %#08x instruction"), insn);
7708 else if (value + 0x8000 < 0x10000)
7709 {
7710 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7711 return true;
7712 }
7713 }
7714 break;
7715
7716 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7717 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7718 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7719 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7720 case elfcpp::R_POWERPC_GOT16_LO:
7721 case elfcpp::R_PPC64_GOT16_LO_DS:
7722 case elfcpp::R_PPC64_TOC16_LO:
7723 case elfcpp::R_PPC64_TOC16_LO_DS:
7724 if (parameters->options().toc_optimize())
7725 {
7726 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7727 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7728 if (!ok_lo_toc_insn(insn))
7729 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7730 _("toc optimization is not supported "
7731 "for %#08x instruction"), insn);
7732 else if (value + 0x8000 < 0x10000)
7733 {
7734 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7735 {
7736 // Transform addic to addi when we change reg.
7737 insn &= ~((0x3f << 26) | (0x1f << 16));
7738 insn |= (14u << 26) | (2 << 16);
7739 }
7740 else
7741 {
7742 insn &= ~(0x1f << 16);
7743 insn |= 2 << 16;
7744 }
7745 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7746 }
7747 }
7748 break;
7749
7750 case elfcpp::R_PPC64_ENTRY:
7751 value = (target->got_section()->output_section()->address()
7752 + object->toc_base_offset());
7753 if (value + 0x80008000 <= 0xffffffff
7754 && !parameters->options().output_is_position_independent())
7755 {
7756 Insn* iview = reinterpret_cast<Insn*>(view);
7757 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7758 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7759
7760 if ((insn1 & ~0xfffc) == ld_2_12
7761 && insn2 == add_2_2_12)
7762 {
7763 insn1 = lis_2 + ha(value);
7764 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7765 insn2 = addi_2_2 + l(value);
7766 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7767 return true;
7768 }
7769 }
7770 else
7771 {
7772 value -= address;
7773 if (value + 0x80008000 <= 0xffffffff)
7774 {
7775 Insn* iview = reinterpret_cast<Insn*>(view);
7776 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7777 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7778
7779 if ((insn1 & ~0xfffc) == ld_2_12
7780 && insn2 == add_2_2_12)
7781 {
7782 insn1 = addis_2_12 + ha(value);
7783 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7784 insn2 = addi_2_2 + l(value);
7785 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7786 return true;
7787 }
7788 }
7789 }
7790 break;
7791
7792 case elfcpp::R_POWERPC_REL16_LO:
7793 // If we are generating a non-PIC executable, edit
7794 // 0: addis 2,12,.TOC.-0b@ha
7795 // addi 2,2,.TOC.-0b@l
7796 // used by ELFv2 global entry points to set up r2, to
7797 // lis 2,.TOC.@ha
7798 // addi 2,2,.TOC.@l
7799 // if .TOC. is in range. */
7800 if (value + address - 4 + 0x80008000 <= 0xffffffff
7801 && relnum != 0
7802 && preloc != NULL
7803 && target->abiversion() >= 2
7804 && !parameters->options().output_is_position_independent()
7805 && rela.get_r_addend() == d_offset + 4
7806 && gsym != NULL
7807 && strcmp(gsym->name(), ".TOC.") == 0)
7808 {
7809 const int reloc_size
7810 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7811 Reltype prev_rela(preloc - reloc_size);
7812 if ((prev_rela.get_r_info()
7813 == elfcpp::elf_r_info<size>(r_sym,
7814 elfcpp::R_POWERPC_REL16_HA))
7815 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7816 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7817 {
7818 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7819 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7820 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7821
7822 if ((insn1 & 0xffff0000) == addis_2_12
7823 && (insn2 & 0xffff0000) == addi_2_2)
7824 {
7825 insn1 = lis_2 + ha(value + address - 4);
7826 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7827 insn2 = addi_2_2 + l(value + address - 4);
7828 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7829 if (relinfo->rr)
7830 {
7831 relinfo->rr->set_strategy(relnum - 1,
7832 Relocatable_relocs::RELOC_SPECIAL);
7833 relinfo->rr->set_strategy(relnum,
7834 Relocatable_relocs::RELOC_SPECIAL);
7835 }
7836 return true;
7837 }
7838 }
7839 }
7840 break;
7841 }
7842 }
7843
7844 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7845 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7846 switch (r_type)
7847 {
7848 case elfcpp::R_POWERPC_ADDR32:
7849 case elfcpp::R_POWERPC_UADDR32:
7850 if (size == 64)
7851 overflow = Reloc::CHECK_BITFIELD;
7852 break;
7853
7854 case elfcpp::R_POWERPC_REL32:
7855 case elfcpp::R_POWERPC_REL16DX_HA:
7856 if (size == 64)
7857 overflow = Reloc::CHECK_SIGNED;
7858 break;
7859
7860 case elfcpp::R_POWERPC_UADDR16:
7861 overflow = Reloc::CHECK_BITFIELD;
7862 break;
7863
7864 case elfcpp::R_POWERPC_ADDR16:
7865 // We really should have three separate relocations,
7866 // one for 16-bit data, one for insns with 16-bit signed fields,
7867 // and one for insns with 16-bit unsigned fields.
7868 overflow = Reloc::CHECK_BITFIELD;
7869 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7870 overflow = Reloc::CHECK_LOW_INSN;
7871 break;
7872
7873 case elfcpp::R_POWERPC_ADDR16_HI:
7874 case elfcpp::R_POWERPC_ADDR16_HA:
7875 case elfcpp::R_POWERPC_GOT16_HI:
7876 case elfcpp::R_POWERPC_GOT16_HA:
7877 case elfcpp::R_POWERPC_PLT16_HI:
7878 case elfcpp::R_POWERPC_PLT16_HA:
7879 case elfcpp::R_POWERPC_SECTOFF_HI:
7880 case elfcpp::R_POWERPC_SECTOFF_HA:
7881 case elfcpp::R_PPC64_TOC16_HI:
7882 case elfcpp::R_PPC64_TOC16_HA:
7883 case elfcpp::R_PPC64_PLTGOT16_HI:
7884 case elfcpp::R_PPC64_PLTGOT16_HA:
7885 case elfcpp::R_POWERPC_TPREL16_HI:
7886 case elfcpp::R_POWERPC_TPREL16_HA:
7887 case elfcpp::R_POWERPC_DTPREL16_HI:
7888 case elfcpp::R_POWERPC_DTPREL16_HA:
7889 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7890 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7891 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7892 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7893 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7894 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7895 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7896 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7897 case elfcpp::R_POWERPC_REL16_HI:
7898 case elfcpp::R_POWERPC_REL16_HA:
7899 if (size != 32)
7900 overflow = Reloc::CHECK_HIGH_INSN;
7901 break;
7902
7903 case elfcpp::R_POWERPC_REL16:
7904 case elfcpp::R_PPC64_TOC16:
7905 case elfcpp::R_POWERPC_GOT16:
7906 case elfcpp::R_POWERPC_SECTOFF:
7907 case elfcpp::R_POWERPC_TPREL16:
7908 case elfcpp::R_POWERPC_DTPREL16:
7909 case elfcpp::R_POWERPC_GOT_TLSGD16:
7910 case elfcpp::R_POWERPC_GOT_TLSLD16:
7911 case elfcpp::R_POWERPC_GOT_TPREL16:
7912 case elfcpp::R_POWERPC_GOT_DTPREL16:
7913 overflow = Reloc::CHECK_LOW_INSN;
7914 break;
7915
7916 case elfcpp::R_POWERPC_ADDR24:
7917 case elfcpp::R_POWERPC_ADDR14:
7918 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7919 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7920 case elfcpp::R_PPC64_ADDR16_DS:
7921 case elfcpp::R_POWERPC_REL24:
7922 case elfcpp::R_PPC_PLTREL24:
7923 case elfcpp::R_PPC_LOCAL24PC:
7924 case elfcpp::R_PPC64_TPREL16_DS:
7925 case elfcpp::R_PPC64_DTPREL16_DS:
7926 case elfcpp::R_PPC64_TOC16_DS:
7927 case elfcpp::R_PPC64_GOT16_DS:
7928 case elfcpp::R_PPC64_SECTOFF_DS:
7929 case elfcpp::R_POWERPC_REL14:
7930 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7931 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7932 overflow = Reloc::CHECK_SIGNED;
7933 break;
7934 }
7935
7936 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7937 Insn insn = 0;
7938
7939 if (overflow == Reloc::CHECK_LOW_INSN
7940 || overflow == Reloc::CHECK_HIGH_INSN)
7941 {
7942 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7943
7944 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7945 overflow = Reloc::CHECK_BITFIELD;
7946 else if (overflow == Reloc::CHECK_LOW_INSN
7947 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7948 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7949 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7950 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7951 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7952 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7953 overflow = Reloc::CHECK_UNSIGNED;
7954 else
7955 overflow = Reloc::CHECK_SIGNED;
7956 }
7957
7958 bool maybe_dq_reloc = false;
7959 typename Powerpc_relocate_functions<size, big_endian>::Status status
7960 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7961 switch (r_type)
7962 {
7963 case elfcpp::R_POWERPC_NONE:
7964 case elfcpp::R_POWERPC_TLS:
7965 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7966 case elfcpp::R_POWERPC_GNU_VTENTRY:
7967 break;
7968
7969 case elfcpp::R_PPC64_ADDR64:
7970 case elfcpp::R_PPC64_REL64:
7971 case elfcpp::R_PPC64_TOC:
7972 case elfcpp::R_PPC64_ADDR64_LOCAL:
7973 Reloc::addr64(view, value);
7974 break;
7975
7976 case elfcpp::R_POWERPC_TPREL:
7977 case elfcpp::R_POWERPC_DTPREL:
7978 if (size == 64)
7979 Reloc::addr64(view, value);
7980 else
7981 status = Reloc::addr32(view, value, overflow);
7982 break;
7983
7984 case elfcpp::R_PPC64_UADDR64:
7985 Reloc::addr64_u(view, value);
7986 break;
7987
7988 case elfcpp::R_POWERPC_ADDR32:
7989 status = Reloc::addr32(view, value, overflow);
7990 break;
7991
7992 case elfcpp::R_POWERPC_REL32:
7993 case elfcpp::R_POWERPC_UADDR32:
7994 status = Reloc::addr32_u(view, value, overflow);
7995 break;
7996
7997 case elfcpp::R_POWERPC_ADDR24:
7998 case elfcpp::R_POWERPC_REL24:
7999 case elfcpp::R_PPC_PLTREL24:
8000 case elfcpp::R_PPC_LOCAL24PC:
8001 status = Reloc::addr24(view, value, overflow);
8002 break;
8003
8004 case elfcpp::R_POWERPC_GOT_DTPREL16:
8005 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8006 case elfcpp::R_POWERPC_GOT_TPREL16:
8007 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8008 if (size == 64)
8009 {
8010 // On ppc64 these are all ds form
8011 maybe_dq_reloc = true;
8012 break;
8013 }
8014 // Fall through.
8015 case elfcpp::R_POWERPC_ADDR16:
8016 case elfcpp::R_POWERPC_REL16:
8017 case elfcpp::R_PPC64_TOC16:
8018 case elfcpp::R_POWERPC_GOT16:
8019 case elfcpp::R_POWERPC_SECTOFF:
8020 case elfcpp::R_POWERPC_TPREL16:
8021 case elfcpp::R_POWERPC_DTPREL16:
8022 case elfcpp::R_POWERPC_GOT_TLSGD16:
8023 case elfcpp::R_POWERPC_GOT_TLSLD16:
8024 case elfcpp::R_POWERPC_ADDR16_LO:
8025 case elfcpp::R_POWERPC_REL16_LO:
8026 case elfcpp::R_PPC64_TOC16_LO:
8027 case elfcpp::R_POWERPC_GOT16_LO:
8028 case elfcpp::R_POWERPC_SECTOFF_LO:
8029 case elfcpp::R_POWERPC_TPREL16_LO:
8030 case elfcpp::R_POWERPC_DTPREL16_LO:
8031 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8032 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8033 if (size == 64)
8034 status = Reloc::addr16(view, value, overflow);
8035 else
8036 maybe_dq_reloc = true;
8037 break;
8038
8039 case elfcpp::R_POWERPC_UADDR16:
8040 status = Reloc::addr16_u(view, value, overflow);
8041 break;
8042
8043 case elfcpp::R_PPC64_ADDR16_HIGH:
8044 case elfcpp::R_PPC64_TPREL16_HIGH:
8045 case elfcpp::R_PPC64_DTPREL16_HIGH:
8046 if (size == 32)
8047 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8048 goto unsupp;
8049 // Fall through.
8050 case elfcpp::R_POWERPC_ADDR16_HI:
8051 case elfcpp::R_POWERPC_REL16_HI:
8052 case elfcpp::R_PPC64_TOC16_HI:
8053 case elfcpp::R_POWERPC_GOT16_HI:
8054 case elfcpp::R_POWERPC_SECTOFF_HI:
8055 case elfcpp::R_POWERPC_TPREL16_HI:
8056 case elfcpp::R_POWERPC_DTPREL16_HI:
8057 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8058 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8059 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8060 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8061 Reloc::addr16_hi(view, value);
8062 break;
8063
8064 case elfcpp::R_PPC64_ADDR16_HIGHA:
8065 case elfcpp::R_PPC64_TPREL16_HIGHA:
8066 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8067 if (size == 32)
8068 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8069 goto unsupp;
8070 // Fall through.
8071 case elfcpp::R_POWERPC_ADDR16_HA:
8072 case elfcpp::R_POWERPC_REL16_HA:
8073 case elfcpp::R_PPC64_TOC16_HA:
8074 case elfcpp::R_POWERPC_GOT16_HA:
8075 case elfcpp::R_POWERPC_SECTOFF_HA:
8076 case elfcpp::R_POWERPC_TPREL16_HA:
8077 case elfcpp::R_POWERPC_DTPREL16_HA:
8078 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8079 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8080 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8081 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8082 Reloc::addr16_ha(view, value);
8083 break;
8084
8085 case elfcpp::R_POWERPC_REL16DX_HA:
8086 status = Reloc::addr16dx_ha(view, value, overflow);
8087 break;
8088
8089 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8090 if (size == 32)
8091 // R_PPC_EMB_NADDR16_LO
8092 goto unsupp;
8093 // Fall through.
8094 case elfcpp::R_PPC64_ADDR16_HIGHER:
8095 case elfcpp::R_PPC64_TPREL16_HIGHER:
8096 Reloc::addr16_hi2(view, value);
8097 break;
8098
8099 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8100 if (size == 32)
8101 // R_PPC_EMB_NADDR16_HI
8102 goto unsupp;
8103 // Fall through.
8104 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8105 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8106 Reloc::addr16_ha2(view, value);
8107 break;
8108
8109 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8110 if (size == 32)
8111 // R_PPC_EMB_NADDR16_HA
8112 goto unsupp;
8113 // Fall through.
8114 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8115 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8116 Reloc::addr16_hi3(view, value);
8117 break;
8118
8119 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8120 if (size == 32)
8121 // R_PPC_EMB_SDAI16
8122 goto unsupp;
8123 // Fall through.
8124 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8125 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8126 Reloc::addr16_ha3(view, value);
8127 break;
8128
8129 case elfcpp::R_PPC64_DTPREL16_DS:
8130 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8131 if (size == 32)
8132 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8133 goto unsupp;
8134 // Fall through.
8135 case elfcpp::R_PPC64_TPREL16_DS:
8136 case elfcpp::R_PPC64_TPREL16_LO_DS:
8137 if (size == 32)
8138 // R_PPC_TLSGD, R_PPC_TLSLD
8139 break;
8140 // Fall through.
8141 case elfcpp::R_PPC64_ADDR16_DS:
8142 case elfcpp::R_PPC64_ADDR16_LO_DS:
8143 case elfcpp::R_PPC64_TOC16_DS:
8144 case elfcpp::R_PPC64_TOC16_LO_DS:
8145 case elfcpp::R_PPC64_GOT16_DS:
8146 case elfcpp::R_PPC64_GOT16_LO_DS:
8147 case elfcpp::R_PPC64_SECTOFF_DS:
8148 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8149 maybe_dq_reloc = true;
8150 break;
8151
8152 case elfcpp::R_POWERPC_ADDR14:
8153 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8154 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8155 case elfcpp::R_POWERPC_REL14:
8156 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8157 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8158 status = Reloc::addr14(view, value, overflow);
8159 break;
8160
8161 case elfcpp::R_POWERPC_COPY:
8162 case elfcpp::R_POWERPC_GLOB_DAT:
8163 case elfcpp::R_POWERPC_JMP_SLOT:
8164 case elfcpp::R_POWERPC_RELATIVE:
8165 case elfcpp::R_POWERPC_DTPMOD:
8166 case elfcpp::R_PPC64_JMP_IREL:
8167 case elfcpp::R_POWERPC_IRELATIVE:
8168 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8169 _("unexpected reloc %u in object file"),
8170 r_type);
8171 break;
8172
8173 case elfcpp::R_PPC_EMB_SDA21:
8174 if (size == 32)
8175 goto unsupp;
8176 else
8177 {
8178 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8179 }
8180 break;
8181
8182 case elfcpp::R_PPC_EMB_SDA2I16:
8183 case elfcpp::R_PPC_EMB_SDA2REL:
8184 if (size == 32)
8185 goto unsupp;
8186 // R_PPC64_TLSGD, R_PPC64_TLSLD
8187 break;
8188
8189 case elfcpp::R_POWERPC_PLT32:
8190 case elfcpp::R_POWERPC_PLTREL32:
8191 case elfcpp::R_POWERPC_PLT16_LO:
8192 case elfcpp::R_POWERPC_PLT16_HI:
8193 case elfcpp::R_POWERPC_PLT16_HA:
8194 case elfcpp::R_PPC_SDAREL16:
8195 case elfcpp::R_POWERPC_ADDR30:
8196 case elfcpp::R_PPC64_PLT64:
8197 case elfcpp::R_PPC64_PLTREL64:
8198 case elfcpp::R_PPC64_PLTGOT16:
8199 case elfcpp::R_PPC64_PLTGOT16_LO:
8200 case elfcpp::R_PPC64_PLTGOT16_HI:
8201 case elfcpp::R_PPC64_PLTGOT16_HA:
8202 case elfcpp::R_PPC64_PLT16_LO_DS:
8203 case elfcpp::R_PPC64_PLTGOT16_DS:
8204 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8205 case elfcpp::R_PPC_EMB_RELSDA:
8206 case elfcpp::R_PPC_TOC16:
8207 default:
8208 unsupp:
8209 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8210 _("unsupported reloc %u"),
8211 r_type);
8212 break;
8213 }
8214
8215 if (maybe_dq_reloc)
8216 {
8217 if (insn == 0)
8218 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8219
8220 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8221 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8222 && (insn & 3) == 1))
8223 status = Reloc::addr16_dq(view, value, overflow);
8224 else if (size == 64
8225 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8226 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8227 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8228 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8229 status = Reloc::addr16_ds(view, value, overflow);
8230 else
8231 status = Reloc::addr16(view, value, overflow);
8232 }
8233
8234 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8235 && (has_stub_value
8236 || !(gsym != NULL
8237 && gsym->is_undefined()
8238 && is_branch_reloc(r_type))))
8239 {
8240 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8241 _("relocation overflow"));
8242 if (has_stub_value)
8243 gold_info(_("try relinking with a smaller --stub-group-size"));
8244 }
8245
8246 return true;
8247 }
8248
8249 // Relocate section data.
8250
8251 template<int size, bool big_endian>
8252 void
8253 Target_powerpc<size, big_endian>::relocate_section(
8254 const Relocate_info<size, big_endian>* relinfo,
8255 unsigned int sh_type,
8256 const unsigned char* prelocs,
8257 size_t reloc_count,
8258 Output_section* output_section,
8259 bool needs_special_offset_handling,
8260 unsigned char* view,
8261 Address address,
8262 section_size_type view_size,
8263 const Reloc_symbol_changes* reloc_symbol_changes)
8264 {
8265 typedef Target_powerpc<size, big_endian> Powerpc;
8266 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8267 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8268 Powerpc_comdat_behavior;
8269 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8270 Classify_reloc;
8271
8272 gold_assert(sh_type == elfcpp::SHT_RELA);
8273
8274 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8275 Powerpc_comdat_behavior, Classify_reloc>(
8276 relinfo,
8277 this,
8278 prelocs,
8279 reloc_count,
8280 output_section,
8281 needs_special_offset_handling,
8282 view,
8283 address,
8284 view_size,
8285 reloc_symbol_changes);
8286 }
8287
8288 template<int size, bool big_endian>
8289 class Powerpc_scan_relocatable_reloc
8290 {
8291 public:
8292 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8293 Reltype;
8294 static const int reloc_size =
8295 Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8296 static const int sh_type = elfcpp::SHT_RELA;
8297
8298 // Return the symbol referred to by the relocation.
8299 static inline unsigned int
8300 get_r_sym(const Reltype* reloc)
8301 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8302
8303 // Return the type of the relocation.
8304 static inline unsigned int
8305 get_r_type(const Reltype* reloc)
8306 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8307
8308 // Return the strategy to use for a local symbol which is not a
8309 // section symbol, given the relocation type.
8310 inline Relocatable_relocs::Reloc_strategy
8311 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8312 {
8313 if (r_type == 0 && r_sym == 0)
8314 return Relocatable_relocs::RELOC_DISCARD;
8315 return Relocatable_relocs::RELOC_COPY;
8316 }
8317
8318 // Return the strategy to use for a local symbol which is a section
8319 // symbol, given the relocation type.
8320 inline Relocatable_relocs::Reloc_strategy
8321 local_section_strategy(unsigned int, Relobj*)
8322 {
8323 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8324 }
8325
8326 // Return the strategy to use for a global symbol, given the
8327 // relocation type, the object, and the symbol index.
8328 inline Relocatable_relocs::Reloc_strategy
8329 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8330 {
8331 if (r_type == elfcpp::R_PPC_PLTREL24)
8332 return Relocatable_relocs::RELOC_SPECIAL;
8333 return Relocatable_relocs::RELOC_COPY;
8334 }
8335 };
8336
8337 // Scan the relocs during a relocatable link.
8338
8339 template<int size, bool big_endian>
8340 void
8341 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8342 Symbol_table* symtab,
8343 Layout* layout,
8344 Sized_relobj_file<size, big_endian>* object,
8345 unsigned int data_shndx,
8346 unsigned int sh_type,
8347 const unsigned char* prelocs,
8348 size_t reloc_count,
8349 Output_section* output_section,
8350 bool needs_special_offset_handling,
8351 size_t local_symbol_count,
8352 const unsigned char* plocal_symbols,
8353 Relocatable_relocs* rr)
8354 {
8355 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8356
8357 gold_assert(sh_type == elfcpp::SHT_RELA);
8358
8359 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8360 symtab,
8361 layout,
8362 object,
8363 data_shndx,
8364 prelocs,
8365 reloc_count,
8366 output_section,
8367 needs_special_offset_handling,
8368 local_symbol_count,
8369 plocal_symbols,
8370 rr);
8371 }
8372
8373 // Scan the relocs for --emit-relocs.
8374
8375 template<int size, bool big_endian>
8376 void
8377 Target_powerpc<size, big_endian>::emit_relocs_scan(
8378 Symbol_table* symtab,
8379 Layout* layout,
8380 Sized_relobj_file<size, big_endian>* object,
8381 unsigned int data_shndx,
8382 unsigned int sh_type,
8383 const unsigned char* prelocs,
8384 size_t reloc_count,
8385 Output_section* output_section,
8386 bool needs_special_offset_handling,
8387 size_t local_symbol_count,
8388 const unsigned char* plocal_syms,
8389 Relocatable_relocs* rr)
8390 {
8391 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8392 Classify_reloc;
8393 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8394 Emit_relocs_strategy;
8395
8396 gold_assert(sh_type == elfcpp::SHT_RELA);
8397
8398 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8399 symtab,
8400 layout,
8401 object,
8402 data_shndx,
8403 prelocs,
8404 reloc_count,
8405 output_section,
8406 needs_special_offset_handling,
8407 local_symbol_count,
8408 plocal_syms,
8409 rr);
8410 }
8411
8412 // Emit relocations for a section.
8413 // This is a modified version of the function by the same name in
8414 // target-reloc.h. Using relocate_special_relocatable for
8415 // R_PPC_PLTREL24 would require duplication of the entire body of the
8416 // loop, so we may as well duplicate the whole thing.
8417
8418 template<int size, bool big_endian>
8419 void
8420 Target_powerpc<size, big_endian>::relocate_relocs(
8421 const Relocate_info<size, big_endian>* relinfo,
8422 unsigned int sh_type,
8423 const unsigned char* prelocs,
8424 size_t reloc_count,
8425 Output_section* output_section,
8426 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8427 unsigned char*,
8428 Address view_address,
8429 section_size_type,
8430 unsigned char* reloc_view,
8431 section_size_type reloc_view_size)
8432 {
8433 gold_assert(sh_type == elfcpp::SHT_RELA);
8434
8435 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8436 Reltype;
8437 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8438 Reltype_write;
8439 const int reloc_size
8440 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8441 // Offset from start of insn to d-field reloc.
8442 const int d_offset = big_endian ? 2 : 0;
8443
8444 Powerpc_relobj<size, big_endian>* const object
8445 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8446 const unsigned int local_count = object->local_symbol_count();
8447 unsigned int got2_shndx = object->got2_shndx();
8448 Address got2_addend = 0;
8449 if (got2_shndx != 0)
8450 {
8451 got2_addend = object->get_output_section_offset(got2_shndx);
8452 gold_assert(got2_addend != invalid_address);
8453 }
8454
8455 unsigned char* pwrite = reloc_view;
8456 bool zap_next = false;
8457 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8458 {
8459 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8460 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8461 continue;
8462
8463 Reltype reloc(prelocs);
8464 Reltype_write reloc_write(pwrite);
8465
8466 Address offset = reloc.get_r_offset();
8467 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8468 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8469 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8470 const unsigned int orig_r_sym = r_sym;
8471 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8472 = reloc.get_r_addend();
8473 const Symbol* gsym = NULL;
8474
8475 if (zap_next)
8476 {
8477 // We could arrange to discard these and other relocs for
8478 // tls optimised sequences in the strategy methods, but for
8479 // now do as BFD ld does.
8480 r_type = elfcpp::R_POWERPC_NONE;
8481 zap_next = false;
8482 }
8483
8484 // Get the new symbol index.
8485 Output_section* os = NULL;
8486 if (r_sym < local_count)
8487 {
8488 switch (strategy)
8489 {
8490 case Relocatable_relocs::RELOC_COPY:
8491 case Relocatable_relocs::RELOC_SPECIAL:
8492 if (r_sym != 0)
8493 {
8494 r_sym = object->symtab_index(r_sym);
8495 gold_assert(r_sym != -1U);
8496 }
8497 break;
8498
8499 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8500 {
8501 // We are adjusting a section symbol. We need to find
8502 // the symbol table index of the section symbol for
8503 // the output section corresponding to input section
8504 // in which this symbol is defined.
8505 gold_assert(r_sym < local_count);
8506 bool is_ordinary;
8507 unsigned int shndx =
8508 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8509 gold_assert(is_ordinary);
8510 os = object->output_section(shndx);
8511 gold_assert(os != NULL);
8512 gold_assert(os->needs_symtab_index());
8513 r_sym = os->symtab_index();
8514 }
8515 break;
8516
8517 default:
8518 gold_unreachable();
8519 }
8520 }
8521 else
8522 {
8523 gsym = object->global_symbol(r_sym);
8524 gold_assert(gsym != NULL);
8525 if (gsym->is_forwarder())
8526 gsym = relinfo->symtab->resolve_forwards(gsym);
8527
8528 gold_assert(gsym->has_symtab_index());
8529 r_sym = gsym->symtab_index();
8530 }
8531
8532 // Get the new offset--the location in the output section where
8533 // this relocation should be applied.
8534 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8535 offset += offset_in_output_section;
8536 else
8537 {
8538 section_offset_type sot_offset =
8539 convert_types<section_offset_type, Address>(offset);
8540 section_offset_type new_sot_offset =
8541 output_section->output_offset(object, relinfo->data_shndx,
8542 sot_offset);
8543 gold_assert(new_sot_offset != -1);
8544 offset = new_sot_offset;
8545 }
8546
8547 // In an object file, r_offset is an offset within the section.
8548 // In an executable or dynamic object, generated by
8549 // --emit-relocs, r_offset is an absolute address.
8550 if (!parameters->options().relocatable())
8551 {
8552 offset += view_address;
8553 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8554 offset -= offset_in_output_section;
8555 }
8556
8557 // Handle the reloc addend based on the strategy.
8558 if (strategy == Relocatable_relocs::RELOC_COPY)
8559 ;
8560 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8561 {
8562 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8563 gold_assert(os != NULL);
8564 addend = psymval->value(object, addend) - os->address();
8565 }
8566 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8567 {
8568 if (size == 32)
8569 {
8570 if (addend >= 32768)
8571 addend += got2_addend;
8572 }
8573 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8574 {
8575 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8576 addend -= d_offset;
8577 }
8578 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8579 {
8580 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8581 addend -= d_offset + 4;
8582 }
8583 }
8584 else
8585 gold_unreachable();
8586
8587 if (!parameters->options().relocatable())
8588 {
8589 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8590 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8591 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8592 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8593 {
8594 // First instruction of a global dynamic sequence,
8595 // arg setup insn.
8596 const bool final = gsym == NULL || gsym->final_value_is_known();
8597 switch (this->optimize_tls_gd(final))
8598 {
8599 case tls::TLSOPT_TO_IE:
8600 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8601 - elfcpp::R_POWERPC_GOT_TLSGD16);
8602 break;
8603 case tls::TLSOPT_TO_LE:
8604 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8605 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8606 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8607 else
8608 {
8609 r_type = elfcpp::R_POWERPC_NONE;
8610 offset -= d_offset;
8611 }
8612 break;
8613 default:
8614 break;
8615 }
8616 }
8617 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8618 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8619 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8620 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8621 {
8622 // First instruction of a local dynamic sequence,
8623 // arg setup insn.
8624 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8625 {
8626 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8627 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8628 {
8629 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8630 const Output_section* os = relinfo->layout->tls_segment()
8631 ->first_section();
8632 gold_assert(os != NULL);
8633 gold_assert(os->needs_symtab_index());
8634 r_sym = os->symtab_index();
8635 addend = dtp_offset;
8636 }
8637 else
8638 {
8639 r_type = elfcpp::R_POWERPC_NONE;
8640 offset -= d_offset;
8641 }
8642 }
8643 }
8644 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8645 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8646 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8647 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8648 {
8649 // First instruction of initial exec sequence.
8650 const bool final = gsym == NULL || gsym->final_value_is_known();
8651 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8652 {
8653 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8654 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8655 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8656 else
8657 {
8658 r_type = elfcpp::R_POWERPC_NONE;
8659 offset -= d_offset;
8660 }
8661 }
8662 }
8663 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8664 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8665 {
8666 // Second instruction of a global dynamic sequence,
8667 // the __tls_get_addr call
8668 const bool final = gsym == NULL || gsym->final_value_is_known();
8669 switch (this->optimize_tls_gd(final))
8670 {
8671 case tls::TLSOPT_TO_IE:
8672 r_type = elfcpp::R_POWERPC_NONE;
8673 zap_next = true;
8674 break;
8675 case tls::TLSOPT_TO_LE:
8676 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8677 offset += d_offset;
8678 zap_next = true;
8679 break;
8680 default:
8681 break;
8682 }
8683 }
8684 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8685 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8686 {
8687 // Second instruction of a local dynamic sequence,
8688 // the __tls_get_addr call
8689 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8690 {
8691 const Output_section* os = relinfo->layout->tls_segment()
8692 ->first_section();
8693 gold_assert(os != NULL);
8694 gold_assert(os->needs_symtab_index());
8695 r_sym = os->symtab_index();
8696 addend = dtp_offset;
8697 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8698 offset += d_offset;
8699 zap_next = true;
8700 }
8701 }
8702 else if (r_type == elfcpp::R_POWERPC_TLS)
8703 {
8704 // Second instruction of an initial exec sequence
8705 const bool final = gsym == NULL || gsym->final_value_is_known();
8706 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8707 {
8708 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8709 offset += d_offset;
8710 }
8711 }
8712 }
8713
8714 reloc_write.put_r_offset(offset);
8715 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8716 reloc_write.put_r_addend(addend);
8717
8718 pwrite += reloc_size;
8719 }
8720
8721 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8722 == reloc_view_size);
8723 }
8724
8725 // Return the value to use for a dynamic symbol which requires special
8726 // treatment. This is how we support equality comparisons of function
8727 // pointers across shared library boundaries, as described in the
8728 // processor specific ABI supplement.
8729
8730 template<int size, bool big_endian>
8731 uint64_t
8732 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8733 {
8734 if (size == 32)
8735 {
8736 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8737 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8738 p != this->stub_tables_.end();
8739 ++p)
8740 {
8741 Address off = (*p)->find_plt_call_entry(gsym);
8742 if (off != invalid_address)
8743 return (*p)->stub_address() + off;
8744 }
8745 }
8746 else if (this->abiversion() >= 2)
8747 {
8748 Address off = this->glink_section()->find_global_entry(gsym);
8749 if (off != invalid_address)
8750 return this->glink_section()->global_entry_address() + off;
8751 }
8752 gold_unreachable();
8753 }
8754
8755 // Return the PLT address to use for a local symbol.
8756 template<int size, bool big_endian>
8757 uint64_t
8758 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8759 const Relobj* object,
8760 unsigned int symndx) const
8761 {
8762 if (size == 32)
8763 {
8764 const Sized_relobj<size, big_endian>* relobj
8765 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8766 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8767 p != this->stub_tables_.end();
8768 ++p)
8769 {
8770 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8771 symndx);
8772 if (off != invalid_address)
8773 return (*p)->stub_address() + off;
8774 }
8775 }
8776 gold_unreachable();
8777 }
8778
8779 // Return the PLT address to use for a global symbol.
8780 template<int size, bool big_endian>
8781 uint64_t
8782 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8783 const Symbol* gsym) const
8784 {
8785 if (size == 32)
8786 {
8787 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8788 p != this->stub_tables_.end();
8789 ++p)
8790 {
8791 Address off = (*p)->find_plt_call_entry(gsym);
8792 if (off != invalid_address)
8793 return (*p)->stub_address() + off;
8794 }
8795 }
8796 else if (this->abiversion() >= 2)
8797 {
8798 Address off = this->glink_section()->find_global_entry(gsym);
8799 if (off != invalid_address)
8800 return this->glink_section()->global_entry_address() + off;
8801 }
8802 gold_unreachable();
8803 }
8804
8805 // Return the offset to use for the GOT_INDX'th got entry which is
8806 // for a local tls symbol specified by OBJECT, SYMNDX.
8807 template<int size, bool big_endian>
8808 int64_t
8809 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8810 const Relobj* object,
8811 unsigned int symndx,
8812 unsigned int got_indx) const
8813 {
8814 const Powerpc_relobj<size, big_endian>* ppc_object
8815 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8816 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8817 {
8818 for (Got_type got_type = GOT_TYPE_TLSGD;
8819 got_type <= GOT_TYPE_TPREL;
8820 got_type = Got_type(got_type + 1))
8821 if (ppc_object->local_has_got_offset(symndx, got_type))
8822 {
8823 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8824 if (got_type == GOT_TYPE_TLSGD)
8825 off += size / 8;
8826 if (off == got_indx * (size / 8))
8827 {
8828 if (got_type == GOT_TYPE_TPREL)
8829 return -tp_offset;
8830 else
8831 return -dtp_offset;
8832 }
8833 }
8834 }
8835 gold_unreachable();
8836 }
8837
8838 // Return the offset to use for the GOT_INDX'th got entry which is
8839 // for global tls symbol GSYM.
8840 template<int size, bool big_endian>
8841 int64_t
8842 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8843 Symbol* gsym,
8844 unsigned int got_indx) const
8845 {
8846 if (gsym->type() == elfcpp::STT_TLS)
8847 {
8848 for (Got_type got_type = GOT_TYPE_TLSGD;
8849 got_type <= GOT_TYPE_TPREL;
8850 got_type = Got_type(got_type + 1))
8851 if (gsym->has_got_offset(got_type))
8852 {
8853 unsigned int off = gsym->got_offset(got_type);
8854 if (got_type == GOT_TYPE_TLSGD)
8855 off += size / 8;
8856 if (off == got_indx * (size / 8))
8857 {
8858 if (got_type == GOT_TYPE_TPREL)
8859 return -tp_offset;
8860 else
8861 return -dtp_offset;
8862 }
8863 }
8864 }
8865 gold_unreachable();
8866 }
8867
8868 // The selector for powerpc object files.
8869
8870 template<int size, bool big_endian>
8871 class Target_selector_powerpc : public Target_selector
8872 {
8873 public:
8874 Target_selector_powerpc()
8875 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8876 size, big_endian,
8877 (size == 64
8878 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8879 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8880 (size == 64
8881 ? (big_endian ? "elf64ppc" : "elf64lppc")
8882 : (big_endian ? "elf32ppc" : "elf32lppc")))
8883 { }
8884
8885 virtual Target*
8886 do_instantiate_target()
8887 { return new Target_powerpc<size, big_endian>(); }
8888 };
8889
8890 Target_selector_powerpc<32, true> target_selector_ppc32;
8891 Target_selector_powerpc<32, false> target_selector_ppc32le;
8892 Target_selector_powerpc<64, true> target_selector_ppc64;
8893 Target_selector_powerpc<64, false> target_selector_ppc64le;
8894
8895 // Instantiate these constants for -O0
8896 template<int size, bool big_endian>
8897 const int Output_data_glink<size, big_endian>::pltresolve_size;
8898 template<int size, bool big_endian>
8899 const typename Output_data_glink<size, big_endian>::Address
8900 Output_data_glink<size, big_endian>::invalid_address;
8901 template<int size, bool big_endian>
8902 const typename Stub_table<size, big_endian>::Address
8903 Stub_table<size, big_endian>::invalid_address;
8904 template<int size, bool big_endian>
8905 const typename Target_powerpc<size, big_endian>::Address
8906 Target_powerpc<size, big_endian>::invalid_address;
8907
8908 } // End anonymous namespace.
This page took 0.21508 seconds and 5 git commands to generate.