[GOLD] R_PPC64_REL16_HIGH relocs
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2019 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44 #include "attributes.h"
45
46 namespace
47 {
48
49 using namespace gold;
50
51 template<int size, bool big_endian>
52 class Output_data_plt_powerpc;
53
54 template<int size, bool big_endian>
55 class Output_data_brlt_powerpc;
56
57 template<int size, bool big_endian>
58 class Output_data_got_powerpc;
59
60 template<int size, bool big_endian>
61 class Output_data_glink;
62
63 template<int size, bool big_endian>
64 class Stub_table;
65
66 template<int size, bool big_endian>
67 class Output_data_save_res;
68
69 template<int size, bool big_endian>
70 class Target_powerpc;
71
72 struct Stub_table_owner
73 {
74 Stub_table_owner()
75 : output_section(NULL), owner(NULL)
76 { }
77
78 Output_section* output_section;
79 const Output_section::Input_section* owner;
80 };
81
82 inline bool is_branch_reloc(unsigned int);
83
84 template<int size>
85 inline bool is_plt16_reloc(unsigned int);
86
87 // Counter incremented on every Powerpc_relobj constructed.
88 static uint32_t object_id = 0;
89
90 template<int size, bool big_endian>
91 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
92 {
93 public:
94 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
95 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
96 typedef Unordered_map<Address, Section_refs> Access_from;
97
98 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
99 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
100 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
101 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
102 has_small_toc_reloc_(false), opd_valid_(false),
103 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
104 access_from_map_(), has14_(), stub_table_index_(), st_other_(),
105 attributes_section_data_(NULL)
106 {
107 this->set_abiversion(0);
108 }
109
110 ~Powerpc_relobj()
111 { delete this->attributes_section_data_; }
112
113 // Read the symbols then set up st_other vector.
114 void
115 do_read_symbols(Read_symbols_data*);
116
117 // Arrange to always relocate .toc first.
118 virtual void
119 do_relocate_sections(
120 const Symbol_table* symtab, const Layout* layout,
121 const unsigned char* pshdrs, Output_file* of,
122 typename Sized_relobj_file<size, big_endian>::Views* pviews);
123
124 // The .toc section index.
125 unsigned int
126 toc_shndx() const
127 {
128 return this->toc_;
129 }
130
131 // Mark .toc entry at OFF as not optimizable.
132 void
133 set_no_toc_opt(Address off)
134 {
135 if (this->no_toc_opt_.empty())
136 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
137 / (size / 8));
138 off /= size / 8;
139 if (off < this->no_toc_opt_.size())
140 this->no_toc_opt_[off] = true;
141 }
142
143 // Mark the entire .toc as not optimizable.
144 void
145 set_no_toc_opt()
146 {
147 this->no_toc_opt_.resize(1);
148 this->no_toc_opt_[0] = true;
149 }
150
151 // Return true if code using the .toc entry at OFF should not be edited.
152 bool
153 no_toc_opt(Address off) const
154 {
155 if (this->no_toc_opt_.empty())
156 return false;
157 off /= size / 8;
158 if (off >= this->no_toc_opt_.size())
159 return true;
160 return this->no_toc_opt_[off];
161 }
162
163 // The .got2 section shndx.
164 unsigned int
165 got2_shndx() const
166 {
167 if (size == 32)
168 return this->special_;
169 else
170 return 0;
171 }
172
173 // The .opd section shndx.
174 unsigned int
175 opd_shndx() const
176 {
177 if (size == 32)
178 return 0;
179 else
180 return this->special_;
181 }
182
183 // Init OPD entry arrays.
184 void
185 init_opd(size_t opd_size)
186 {
187 size_t count = this->opd_ent_ndx(opd_size);
188 this->opd_ent_.resize(count);
189 }
190
191 // Return section and offset of function entry for .opd + R_OFF.
192 unsigned int
193 get_opd_ent(Address r_off, Address* value = NULL) const
194 {
195 size_t ndx = this->opd_ent_ndx(r_off);
196 gold_assert(ndx < this->opd_ent_.size());
197 gold_assert(this->opd_ent_[ndx].shndx != 0);
198 if (value != NULL)
199 *value = this->opd_ent_[ndx].off;
200 return this->opd_ent_[ndx].shndx;
201 }
202
203 // Set section and offset of function entry for .opd + R_OFF.
204 void
205 set_opd_ent(Address r_off, unsigned int shndx, Address value)
206 {
207 size_t ndx = this->opd_ent_ndx(r_off);
208 gold_assert(ndx < this->opd_ent_.size());
209 this->opd_ent_[ndx].shndx = shndx;
210 this->opd_ent_[ndx].off = value;
211 }
212
213 // Return discard flag for .opd + R_OFF.
214 bool
215 get_opd_discard(Address r_off) const
216 {
217 size_t ndx = this->opd_ent_ndx(r_off);
218 gold_assert(ndx < this->opd_ent_.size());
219 return this->opd_ent_[ndx].discard;
220 }
221
222 // Set discard flag for .opd + R_OFF.
223 void
224 set_opd_discard(Address r_off)
225 {
226 size_t ndx = this->opd_ent_ndx(r_off);
227 gold_assert(ndx < this->opd_ent_.size());
228 this->opd_ent_[ndx].discard = true;
229 }
230
231 bool
232 opd_valid() const
233 { return this->opd_valid_; }
234
235 void
236 set_opd_valid()
237 { this->opd_valid_ = true; }
238
239 // Examine .rela.opd to build info about function entry points.
240 void
241 scan_opd_relocs(size_t reloc_count,
242 const unsigned char* prelocs,
243 const unsigned char* plocal_syms);
244
245 // Returns true if a code sequence loading a TOC entry can be
246 // converted into code calculating a TOC pointer relative offset.
247 bool
248 make_toc_relative(Target_powerpc<size, big_endian>* target,
249 Address* value);
250
251 // Perform the Sized_relobj_file method, then set up opd info from
252 // .opd relocs.
253 void
254 do_read_relocs(Read_relocs_data*);
255
256 bool
257 do_find_special_sections(Read_symbols_data* sd);
258
259 // Adjust this local symbol value. Return false if the symbol
260 // should be discarded from the output file.
261 bool
262 do_adjust_local_symbol(Symbol_value<size>* lv) const
263 {
264 if (size == 64 && this->opd_shndx() != 0)
265 {
266 bool is_ordinary;
267 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
268 return true;
269 if (this->get_opd_discard(lv->input_value()))
270 return false;
271 }
272 return true;
273 }
274
275 Access_from*
276 access_from_map()
277 { return &this->access_from_map_; }
278
279 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
280 // section at DST_OFF.
281 void
282 add_reference(Relobj* src_obj,
283 unsigned int src_indx,
284 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
285 {
286 Section_id src_id(src_obj, src_indx);
287 this->access_from_map_[dst_off].insert(src_id);
288 }
289
290 // Add a reference to the code section specified by the .opd entry
291 // at DST_OFF
292 void
293 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
294 {
295 size_t ndx = this->opd_ent_ndx(dst_off);
296 if (ndx >= this->opd_ent_.size())
297 this->opd_ent_.resize(ndx + 1);
298 this->opd_ent_[ndx].gc_mark = true;
299 }
300
301 void
302 process_gc_mark(Symbol_table* symtab)
303 {
304 for (size_t i = 0; i < this->opd_ent_.size(); i++)
305 if (this->opd_ent_[i].gc_mark)
306 {
307 unsigned int shndx = this->opd_ent_[i].shndx;
308 symtab->gc()->worklist().push_back(Section_id(this, shndx));
309 }
310 }
311
312 // Return offset in output GOT section that this object will use
313 // as a TOC pointer. Won't be just a constant with multi-toc support.
314 Address
315 toc_base_offset() const
316 { return 0x8000; }
317
318 void
319 set_has_small_toc_reloc()
320 { has_small_toc_reloc_ = true; }
321
322 bool
323 has_small_toc_reloc() const
324 { return has_small_toc_reloc_; }
325
326 void
327 set_has_14bit_branch(unsigned int shndx)
328 {
329 if (shndx >= this->has14_.size())
330 this->has14_.resize(shndx + 1);
331 this->has14_[shndx] = true;
332 }
333
334 bool
335 has_14bit_branch(unsigned int shndx) const
336 { return shndx < this->has14_.size() && this->has14_[shndx]; }
337
338 void
339 set_stub_table(unsigned int shndx, unsigned int stub_index)
340 {
341 if (shndx >= this->stub_table_index_.size())
342 this->stub_table_index_.resize(shndx + 1, -1);
343 this->stub_table_index_[shndx] = stub_index;
344 }
345
346 Stub_table<size, big_endian>*
347 stub_table(unsigned int shndx)
348 {
349 if (shndx < this->stub_table_index_.size())
350 {
351 Target_powerpc<size, big_endian>* target
352 = static_cast<Target_powerpc<size, big_endian>*>(
353 parameters->sized_target<size, big_endian>());
354 unsigned int indx = this->stub_table_index_[shndx];
355 if (indx < target->stub_tables().size())
356 return target->stub_tables()[indx];
357 }
358 return NULL;
359 }
360
361 void
362 clear_stub_table()
363 {
364 this->stub_table_index_.clear();
365 }
366
367 uint32_t
368 uniq() const
369 { return this->uniq_; }
370
371 int
372 abiversion() const
373 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
374
375 // Set ABI version for input and output
376 void
377 set_abiversion(int ver);
378
379 unsigned int
380 st_other (unsigned int symndx) const
381 {
382 return this->st_other_[symndx];
383 }
384
385 unsigned int
386 ppc64_local_entry_offset(const Symbol* sym) const
387 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
388
389 unsigned int
390 ppc64_local_entry_offset(unsigned int symndx) const
391 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
392
393 // The contents of the .gnu.attributes section if there is one.
394 const Attributes_section_data*
395 attributes_section_data() const
396 { return this->attributes_section_data_; }
397
398 private:
399 struct Opd_ent
400 {
401 unsigned int shndx;
402 bool discard : 1;
403 bool gc_mark : 1;
404 Address off;
405 };
406
407 // Return index into opd_ent_ array for .opd entry at OFF.
408 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
409 // apart when the language doesn't use the last 8-byte word, the
410 // environment pointer. Thus dividing the entry section offset by
411 // 16 will give an index into opd_ent_ that works for either layout
412 // of .opd. (It leaves some elements of the vector unused when .opd
413 // entries are spaced 24 bytes apart, but we don't know the spacing
414 // until relocations are processed, and in any case it is possible
415 // for an object to have some entries spaced 16 bytes apart and
416 // others 24 bytes apart.)
417 size_t
418 opd_ent_ndx(size_t off) const
419 { return off >> 4;}
420
421 // Per object unique identifier
422 uint32_t uniq_;
423
424 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
425 unsigned int special_;
426
427 // For 64-bit the .rela.toc and .toc section shdnx.
428 unsigned int relatoc_;
429 unsigned int toc_;
430
431 // For 64-bit, whether this object uses small model relocs to access
432 // the toc.
433 bool has_small_toc_reloc_;
434
435 // Set at the start of gc_process_relocs, when we know opd_ent_
436 // vector is valid. The flag could be made atomic and set in
437 // do_read_relocs with memory_order_release and then tested with
438 // memory_order_acquire, potentially resulting in fewer entries in
439 // access_from_map_.
440 bool opd_valid_;
441
442 // Header e_flags
443 elfcpp::Elf_Word e_flags_;
444
445 // For 64-bit, an array with one entry per 64-bit word in the .toc
446 // section, set if accesses using that word cannot be optimised.
447 std::vector<bool> no_toc_opt_;
448
449 // The first 8-byte word of an OPD entry gives the address of the
450 // entry point of the function. Relocatable object files have a
451 // relocation on this word. The following vector records the
452 // section and offset specified by these relocations.
453 std::vector<Opd_ent> opd_ent_;
454
455 // References made to this object's .opd section when running
456 // gc_process_relocs for another object, before the opd_ent_ vector
457 // is valid for this object.
458 Access_from access_from_map_;
459
460 // Whether input section has a 14-bit branch reloc.
461 std::vector<bool> has14_;
462
463 // The stub table to use for a given input section.
464 std::vector<unsigned int> stub_table_index_;
465
466 // ELF st_other field for local symbols.
467 std::vector<unsigned char> st_other_;
468
469 // Object attributes if there is a .gnu.attributes section.
470 Attributes_section_data* attributes_section_data_;
471 };
472
473 template<int size, bool big_endian>
474 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
475 {
476 public:
477 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
478
479 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
480 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
481 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
482 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_(),
483 attributes_section_data_(NULL)
484 {
485 this->set_abiversion(0);
486 }
487
488 ~Powerpc_dynobj()
489 { delete this->attributes_section_data_; }
490
491 // Call Sized_dynobj::do_read_symbols to read the symbols then
492 // read .opd from a dynamic object, filling in opd_ent_ vector,
493 void
494 do_read_symbols(Read_symbols_data*);
495
496 // The .opd section shndx.
497 unsigned int
498 opd_shndx() const
499 {
500 return this->opd_shndx_;
501 }
502
503 // The .opd section address.
504 Address
505 opd_address() const
506 {
507 return this->opd_address_;
508 }
509
510 // Init OPD entry arrays.
511 void
512 init_opd(size_t opd_size)
513 {
514 size_t count = this->opd_ent_ndx(opd_size);
515 this->opd_ent_.resize(count);
516 }
517
518 // Return section and offset of function entry for .opd + R_OFF.
519 unsigned int
520 get_opd_ent(Address r_off, Address* value = NULL) const
521 {
522 size_t ndx = this->opd_ent_ndx(r_off);
523 gold_assert(ndx < this->opd_ent_.size());
524 gold_assert(this->opd_ent_[ndx].shndx != 0);
525 if (value != NULL)
526 *value = this->opd_ent_[ndx].off;
527 return this->opd_ent_[ndx].shndx;
528 }
529
530 // Set section and offset of function entry for .opd + R_OFF.
531 void
532 set_opd_ent(Address r_off, unsigned int shndx, Address value)
533 {
534 size_t ndx = this->opd_ent_ndx(r_off);
535 gold_assert(ndx < this->opd_ent_.size());
536 this->opd_ent_[ndx].shndx = shndx;
537 this->opd_ent_[ndx].off = value;
538 }
539
540 int
541 abiversion() const
542 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
543
544 // Set ABI version for input and output.
545 void
546 set_abiversion(int ver);
547
548 // The contents of the .gnu.attributes section if there is one.
549 const Attributes_section_data*
550 attributes_section_data() const
551 { return this->attributes_section_data_; }
552
553 private:
554 // Used to specify extent of executable sections.
555 struct Sec_info
556 {
557 Sec_info(Address start_, Address len_, unsigned int shndx_)
558 : start(start_), len(len_), shndx(shndx_)
559 { }
560
561 bool
562 operator<(const Sec_info& that) const
563 { return this->start < that.start; }
564
565 Address start;
566 Address len;
567 unsigned int shndx;
568 };
569
570 struct Opd_ent
571 {
572 unsigned int shndx;
573 Address off;
574 };
575
576 // Return index into opd_ent_ array for .opd entry at OFF.
577 size_t
578 opd_ent_ndx(size_t off) const
579 { return off >> 4;}
580
581 // For 64-bit the .opd section shndx and address.
582 unsigned int opd_shndx_;
583 Address opd_address_;
584
585 // Header e_flags
586 elfcpp::Elf_Word e_flags_;
587
588 // The first 8-byte word of an OPD entry gives the address of the
589 // entry point of the function. Records the section and offset
590 // corresponding to the address. Note that in dynamic objects,
591 // offset is *not* relative to the section.
592 std::vector<Opd_ent> opd_ent_;
593
594 // Object attributes if there is a .gnu.attributes section.
595 Attributes_section_data* attributes_section_data_;
596 };
597
598 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
599 // base class will emit.
600
601 template<int sh_type, int size, bool big_endian>
602 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
603 {
604 public:
605 Powerpc_copy_relocs()
606 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
607 { }
608
609 // Emit any saved relocations which turn out to be needed. This is
610 // called after all the relocs have been scanned.
611 void
612 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
613 };
614
615 template<int size, bool big_endian>
616 class Target_powerpc : public Sized_target<size, big_endian>
617 {
618 public:
619 typedef
620 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
621 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
622 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
623 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
624 static const Address invalid_address = static_cast<Address>(0) - 1;
625 // Offset of tp and dtp pointers from start of TLS block.
626 static const Address tp_offset = 0x7000;
627 static const Address dtp_offset = 0x8000;
628
629 Target_powerpc()
630 : Sized_target<size, big_endian>(&powerpc_info),
631 got_(NULL), plt_(NULL), iplt_(NULL), lplt_(NULL), brlt_section_(NULL),
632 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
633 tlsld_got_offset_(-1U),
634 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
635 plt_thread_safe_(false), plt_localentry0_(false),
636 plt_localentry0_init_(false), has_localentry0_(false),
637 has_tls_get_addr_opt_(false),
638 relax_failed_(false), relax_fail_count_(0),
639 stub_group_size_(0), savres_section_(0),
640 tls_get_addr_(NULL), tls_get_addr_opt_(NULL),
641 attributes_section_data_(NULL),
642 last_fp_(NULL), last_ld_(NULL), last_vec_(NULL), last_struct_(NULL)
643 {
644 }
645
646 // Process the relocations to determine unreferenced sections for
647 // garbage collection.
648 void
649 gc_process_relocs(Symbol_table* symtab,
650 Layout* layout,
651 Sized_relobj_file<size, big_endian>* object,
652 unsigned int data_shndx,
653 unsigned int sh_type,
654 const unsigned char* prelocs,
655 size_t reloc_count,
656 Output_section* output_section,
657 bool needs_special_offset_handling,
658 size_t local_symbol_count,
659 const unsigned char* plocal_symbols);
660
661 // Scan the relocations to look for symbol adjustments.
662 void
663 scan_relocs(Symbol_table* symtab,
664 Layout* layout,
665 Sized_relobj_file<size, big_endian>* object,
666 unsigned int data_shndx,
667 unsigned int sh_type,
668 const unsigned char* prelocs,
669 size_t reloc_count,
670 Output_section* output_section,
671 bool needs_special_offset_handling,
672 size_t local_symbol_count,
673 const unsigned char* plocal_symbols);
674
675 // Map input .toc section to output .got section.
676 const char*
677 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
678 {
679 if (size == 64 && strcmp(name, ".toc") == 0)
680 {
681 *plen = 4;
682 return ".got";
683 }
684 return NULL;
685 }
686
687 // Provide linker defined save/restore functions.
688 void
689 define_save_restore_funcs(Layout*, Symbol_table*);
690
691 // No stubs unless a final link.
692 bool
693 do_may_relax() const
694 { return !parameters->options().relocatable(); }
695
696 bool
697 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
698
699 void
700 do_plt_fde_location(const Output_data*, unsigned char*,
701 uint64_t*, off_t*) const;
702
703 // Stash info about branches, for stub generation.
704 void
705 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
706 unsigned int data_shndx, Address r_offset,
707 unsigned int r_type, unsigned int r_sym, Address addend)
708 {
709 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
710 this->branch_info_.push_back(info);
711 if (r_type == elfcpp::R_POWERPC_REL14
712 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
713 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
714 ppc_object->set_has_14bit_branch(data_shndx);
715 }
716
717 // Return whether the last branch is a plt call, and if so, mark the
718 // branch as having an R_PPC64_TOCSAVE.
719 bool
720 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
721 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
722 {
723 return (size == 64
724 && !this->branch_info_.empty()
725 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
726 r_offset, this, symtab));
727 }
728
729 // Say the given location, that of a nop in a function prologue with
730 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
731 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
732 void
733 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
734 unsigned int shndx, Address offset)
735 {
736 Symbol_location loc;
737 loc.object = ppc_object;
738 loc.shndx = shndx;
739 loc.offset = offset;
740 this->tocsave_loc_.insert(loc);
741 }
742
743 // Accessor
744 const Tocsave_loc
745 tocsave_loc() const
746 {
747 return this->tocsave_loc_;
748 }
749
750 void
751 do_define_standard_symbols(Symbol_table*, Layout*);
752
753 // Finalize the sections.
754 void
755 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
756
757 // Return the value to use for a dynamic which requires special
758 // treatment.
759 uint64_t
760 do_dynsym_value(const Symbol*) const;
761
762 // Return the PLT address to use for a local symbol.
763 uint64_t
764 do_plt_address_for_local(const Relobj*, unsigned int) const;
765
766 // Return the PLT address to use for a global symbol.
767 uint64_t
768 do_plt_address_for_global(const Symbol*) const;
769
770 // Return the offset to use for the GOT_INDX'th got entry which is
771 // for a local tls symbol specified by OBJECT, SYMNDX.
772 int64_t
773 do_tls_offset_for_local(const Relobj* object,
774 unsigned int symndx,
775 unsigned int got_indx) const;
776
777 // Return the offset to use for the GOT_INDX'th got entry which is
778 // for global tls symbol GSYM.
779 int64_t
780 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
781
782 void
783 do_function_location(Symbol_location*) const;
784
785 bool
786 do_can_check_for_function_pointers() const
787 { return true; }
788
789 // Adjust -fsplit-stack code which calls non-split-stack code.
790 void
791 do_calls_non_split(Relobj* object, unsigned int shndx,
792 section_offset_type fnoffset, section_size_type fnsize,
793 const unsigned char* prelocs, size_t reloc_count,
794 unsigned char* view, section_size_type view_size,
795 std::string* from, std::string* to) const;
796
797 // Relocate a section.
798 void
799 relocate_section(const Relocate_info<size, big_endian>*,
800 unsigned int sh_type,
801 const unsigned char* prelocs,
802 size_t reloc_count,
803 Output_section* output_section,
804 bool needs_special_offset_handling,
805 unsigned char* view,
806 Address view_address,
807 section_size_type view_size,
808 const Reloc_symbol_changes*);
809
810 // Scan the relocs during a relocatable link.
811 void
812 scan_relocatable_relocs(Symbol_table* symtab,
813 Layout* layout,
814 Sized_relobj_file<size, big_endian>* object,
815 unsigned int data_shndx,
816 unsigned int sh_type,
817 const unsigned char* prelocs,
818 size_t reloc_count,
819 Output_section* output_section,
820 bool needs_special_offset_handling,
821 size_t local_symbol_count,
822 const unsigned char* plocal_symbols,
823 Relocatable_relocs*);
824
825 // Scan the relocs for --emit-relocs.
826 void
827 emit_relocs_scan(Symbol_table* symtab,
828 Layout* layout,
829 Sized_relobj_file<size, big_endian>* object,
830 unsigned int data_shndx,
831 unsigned int sh_type,
832 const unsigned char* prelocs,
833 size_t reloc_count,
834 Output_section* output_section,
835 bool needs_special_offset_handling,
836 size_t local_symbol_count,
837 const unsigned char* plocal_syms,
838 Relocatable_relocs* rr);
839
840 // Emit relocations for a section.
841 void
842 relocate_relocs(const Relocate_info<size, big_endian>*,
843 unsigned int sh_type,
844 const unsigned char* prelocs,
845 size_t reloc_count,
846 Output_section* output_section,
847 typename elfcpp::Elf_types<size>::Elf_Off
848 offset_in_output_section,
849 unsigned char*,
850 Address view_address,
851 section_size_type,
852 unsigned char* reloc_view,
853 section_size_type reloc_view_size);
854
855 // Return whether SYM is defined by the ABI.
856 bool
857 do_is_defined_by_abi(const Symbol* sym) const
858 {
859 return strcmp(sym->name(), "__tls_get_addr") == 0;
860 }
861
862 // Return the size of the GOT section.
863 section_size_type
864 got_size() const
865 {
866 gold_assert(this->got_ != NULL);
867 return this->got_->data_size();
868 }
869
870 // Get the PLT section.
871 const Output_data_plt_powerpc<size, big_endian>*
872 plt_section() const
873 {
874 gold_assert(this->plt_ != NULL);
875 return this->plt_;
876 }
877
878 // Get the IPLT section.
879 const Output_data_plt_powerpc<size, big_endian>*
880 iplt_section() const
881 {
882 gold_assert(this->iplt_ != NULL);
883 return this->iplt_;
884 }
885
886 // Get the LPLT section.
887 const Output_data_plt_powerpc<size, big_endian>*
888 lplt_section() const
889 {
890 return this->lplt_;
891 }
892
893 // Return the plt offset and section for the given global sym.
894 Address
895 plt_off(const Symbol* gsym,
896 const Output_data_plt_powerpc<size, big_endian>** sec) const
897 {
898 if (gsym->type() == elfcpp::STT_GNU_IFUNC
899 && gsym->can_use_relative_reloc(false))
900 *sec = this->iplt_section();
901 else
902 *sec = this->plt_section();
903 return gsym->plt_offset();
904 }
905
906 // Return the plt offset and section for the given local sym.
907 Address
908 plt_off(const Sized_relobj_file<size, big_endian>* relobj,
909 unsigned int local_sym_index,
910 const Output_data_plt_powerpc<size, big_endian>** sec) const
911 {
912 const Symbol_value<size>* lsym = relobj->local_symbol(local_sym_index);
913 if (lsym->is_ifunc_symbol())
914 *sec = this->iplt_section();
915 else
916 *sec = this->lplt_section();
917 return relobj->local_plt_offset(local_sym_index);
918 }
919
920 // Get the .glink section.
921 const Output_data_glink<size, big_endian>*
922 glink_section() const
923 {
924 gold_assert(this->glink_ != NULL);
925 return this->glink_;
926 }
927
928 Output_data_glink<size, big_endian>*
929 glink_section()
930 {
931 gold_assert(this->glink_ != NULL);
932 return this->glink_;
933 }
934
935 bool has_glink() const
936 { return this->glink_ != NULL; }
937
938 // Get the GOT section.
939 const Output_data_got_powerpc<size, big_endian>*
940 got_section() const
941 {
942 gold_assert(this->got_ != NULL);
943 return this->got_;
944 }
945
946 // Get the GOT section, creating it if necessary.
947 Output_data_got_powerpc<size, big_endian>*
948 got_section(Symbol_table*, Layout*);
949
950 Object*
951 do_make_elf_object(const std::string&, Input_file*, off_t,
952 const elfcpp::Ehdr<size, big_endian>&);
953
954 // Return the number of entries in the GOT.
955 unsigned int
956 got_entry_count() const
957 {
958 if (this->got_ == NULL)
959 return 0;
960 return this->got_size() / (size / 8);
961 }
962
963 // Return the number of entries in the PLT.
964 unsigned int
965 plt_entry_count() const;
966
967 // Return the offset of the first non-reserved PLT entry.
968 unsigned int
969 first_plt_entry_offset() const
970 {
971 if (size == 32)
972 return 0;
973 if (this->abiversion() >= 2)
974 return 16;
975 return 24;
976 }
977
978 // Return the size of each PLT entry.
979 unsigned int
980 plt_entry_size() const
981 {
982 if (size == 32)
983 return 4;
984 if (this->abiversion() >= 2)
985 return 8;
986 return 24;
987 }
988
989 Output_data_save_res<size, big_endian>*
990 savres_section() const
991 {
992 return this->savres_section_;
993 }
994
995 // Add any special sections for this symbol to the gc work list.
996 // For powerpc64, this adds the code section of a function
997 // descriptor.
998 void
999 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
1000
1001 // Handle target specific gc actions when adding a gc reference from
1002 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1003 // and DST_OFF. For powerpc64, this adds a referenc to the code
1004 // section of a function descriptor.
1005 void
1006 do_gc_add_reference(Symbol_table* symtab,
1007 Relobj* src_obj,
1008 unsigned int src_shndx,
1009 Relobj* dst_obj,
1010 unsigned int dst_shndx,
1011 Address dst_off) const;
1012
1013 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
1014 const Stub_tables&
1015 stub_tables() const
1016 { return this->stub_tables_; }
1017
1018 const Output_data_brlt_powerpc<size, big_endian>*
1019 brlt_section() const
1020 { return this->brlt_section_; }
1021
1022 void
1023 add_branch_lookup_table(Address to)
1024 {
1025 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
1026 this->branch_lookup_table_.insert(std::make_pair(to, off));
1027 }
1028
1029 Address
1030 find_branch_lookup_table(Address to)
1031 {
1032 typename Branch_lookup_table::const_iterator p
1033 = this->branch_lookup_table_.find(to);
1034 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
1035 }
1036
1037 void
1038 write_branch_lookup_table(unsigned char *oview)
1039 {
1040 for (typename Branch_lookup_table::const_iterator p
1041 = this->branch_lookup_table_.begin();
1042 p != this->branch_lookup_table_.end();
1043 ++p)
1044 {
1045 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
1046 }
1047 }
1048
1049 // Wrapper used after relax to define a local symbol in output data,
1050 // from the end if value < 0.
1051 void
1052 define_local(Symbol_table* symtab, const char* name,
1053 Output_data* od, Address value, unsigned int symsize)
1054 {
1055 Symbol* sym
1056 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
1057 od, value, symsize, elfcpp::STT_NOTYPE,
1058 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1059 static_cast<Signed_address>(value) < 0,
1060 false);
1061 // We are creating this symbol late, so need to fix up things
1062 // done early in Layout::finalize.
1063 sym->set_dynsym_index(-1U);
1064 }
1065
1066 bool
1067 plt_thread_safe() const
1068 { return this->plt_thread_safe_; }
1069
1070 bool
1071 plt_localentry0() const
1072 { return this->plt_localentry0_; }
1073
1074 void
1075 set_has_localentry0()
1076 {
1077 this->has_localentry0_ = true;
1078 }
1079
1080 bool
1081 is_elfv2_localentry0(const Symbol* gsym) const
1082 {
1083 return (size == 64
1084 && this->abiversion() >= 2
1085 && this->plt_localentry0()
1086 && gsym->type() == elfcpp::STT_FUNC
1087 && gsym->is_defined()
1088 && gsym->nonvis() >> 3 == 0
1089 && !gsym->non_zero_localentry());
1090 }
1091
1092 bool
1093 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1094 unsigned int r_sym) const
1095 {
1096 const Powerpc_relobj<size, big_endian>* ppc_object
1097 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1098
1099 if (size == 64
1100 && this->abiversion() >= 2
1101 && this->plt_localentry0()
1102 && ppc_object->st_other(r_sym) >> 5 == 0)
1103 {
1104 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1105 bool is_ordinary;
1106 if (!psymval->is_ifunc_symbol()
1107 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1108 && is_ordinary)
1109 return true;
1110 }
1111 return false;
1112 }
1113
1114 // Remember any symbols seen with non-zero localentry, even those
1115 // not providing a definition
1116 bool
1117 resolve(Symbol* to, const elfcpp::Sym<size, big_endian>& sym, Object*,
1118 const char*)
1119 {
1120 if (size == 64)
1121 {
1122 unsigned char st_other = sym.get_st_other();
1123 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1124 to->set_non_zero_localentry();
1125 }
1126 // We haven't resolved anything, continue normal processing.
1127 return false;
1128 }
1129
1130 int
1131 abiversion() const
1132 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1133
1134 void
1135 set_abiversion(int ver)
1136 {
1137 elfcpp::Elf_Word flags = this->processor_specific_flags();
1138 flags &= ~elfcpp::EF_PPC64_ABI;
1139 flags |= ver & elfcpp::EF_PPC64_ABI;
1140 this->set_processor_specific_flags(flags);
1141 }
1142
1143 Symbol*
1144 tls_get_addr_opt() const
1145 { return this->tls_get_addr_opt_; }
1146
1147 Symbol*
1148 tls_get_addr() const
1149 { return this->tls_get_addr_; }
1150
1151 // If optimizing __tls_get_addr calls, whether this is the
1152 // "__tls_get_addr" symbol.
1153 bool
1154 is_tls_get_addr_opt(const Symbol* gsym) const
1155 {
1156 return this->tls_get_addr_opt_ && (gsym == this->tls_get_addr_
1157 || gsym == this->tls_get_addr_opt_);
1158 }
1159
1160 bool
1161 replace_tls_get_addr(const Symbol* gsym) const
1162 { return this->tls_get_addr_opt_ && gsym == this->tls_get_addr_; }
1163
1164 void
1165 set_has_tls_get_addr_opt()
1166 { this->has_tls_get_addr_opt_ = true; }
1167
1168 // Offset to toc save stack slot
1169 int
1170 stk_toc() const
1171 { return this->abiversion() < 2 ? 40 : 24; }
1172
1173 // Offset to linker save stack slot. ELFv2 doesn't have a linker word,
1174 // so use the CR save slot. Used only by __tls_get_addr call stub,
1175 // relying on __tls_get_addr not saving CR itself.
1176 int
1177 stk_linker() const
1178 { return this->abiversion() < 2 ? 32 : 8; }
1179
1180 // Merge object attributes from input object with those in the output.
1181 void
1182 merge_object_attributes(const char*, const Attributes_section_data*);
1183
1184 private:
1185
1186 class Track_tls
1187 {
1188 public:
1189 enum Tls_get_addr
1190 {
1191 NOT_EXPECTED = 0,
1192 EXPECTED = 1,
1193 SKIP = 2,
1194 NORMAL = 3
1195 };
1196
1197 Track_tls()
1198 : tls_get_addr_state_(NOT_EXPECTED),
1199 relinfo_(NULL), relnum_(0), r_offset_(0)
1200 { }
1201
1202 ~Track_tls()
1203 {
1204 if (this->tls_get_addr_state_ != NOT_EXPECTED)
1205 this->missing();
1206 }
1207
1208 void
1209 missing(void)
1210 {
1211 if (this->relinfo_ != NULL)
1212 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1213 _("missing expected __tls_get_addr call"));
1214 }
1215
1216 void
1217 expect_tls_get_addr_call(
1218 const Relocate_info<size, big_endian>* relinfo,
1219 size_t relnum,
1220 Address r_offset)
1221 {
1222 this->tls_get_addr_state_ = EXPECTED;
1223 this->relinfo_ = relinfo;
1224 this->relnum_ = relnum;
1225 this->r_offset_ = r_offset;
1226 }
1227
1228 void
1229 expect_tls_get_addr_call()
1230 { this->tls_get_addr_state_ = EXPECTED; }
1231
1232 void
1233 skip_next_tls_get_addr_call()
1234 {this->tls_get_addr_state_ = SKIP; }
1235
1236 Tls_get_addr
1237 maybe_skip_tls_get_addr_call(Target_powerpc<size, big_endian>* target,
1238 unsigned int r_type, const Symbol* gsym)
1239 {
1240 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1241 || r_type == elfcpp::R_PPC_PLTREL24
1242 || is_plt16_reloc<size>(r_type)
1243 || r_type == elfcpp::R_POWERPC_PLTSEQ
1244 || r_type == elfcpp::R_POWERPC_PLTCALL)
1245 && gsym != NULL
1246 && (gsym == target->tls_get_addr()
1247 || gsym == target->tls_get_addr_opt()));
1248 Tls_get_addr last_tls = this->tls_get_addr_state_;
1249 this->tls_get_addr_state_ = NOT_EXPECTED;
1250 if (is_tls_call && last_tls != EXPECTED)
1251 return last_tls;
1252 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1253 {
1254 this->missing();
1255 return EXPECTED;
1256 }
1257 return NORMAL;
1258 }
1259
1260 private:
1261 // What we're up to regarding calls to __tls_get_addr.
1262 // On powerpc, the branch and link insn making a call to
1263 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1264 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1265 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1266 // The marker relocation always comes first, and has the same
1267 // symbol as the reloc on the insn setting up the __tls_get_addr
1268 // argument. This ties the arg setup insn with the call insn,
1269 // allowing ld to safely optimize away the call. We check that
1270 // every call to __tls_get_addr has a marker relocation, and that
1271 // every marker relocation is on a call to __tls_get_addr.
1272 Tls_get_addr tls_get_addr_state_;
1273 // Info about the last reloc for error message.
1274 const Relocate_info<size, big_endian>* relinfo_;
1275 size_t relnum_;
1276 Address r_offset_;
1277 };
1278
1279 // The class which scans relocations.
1280 class Scan : protected Track_tls
1281 {
1282 public:
1283 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1284
1285 Scan()
1286 : Track_tls(), issued_non_pic_error_(false)
1287 { }
1288
1289 static inline int
1290 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1291
1292 inline void
1293 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1294 Sized_relobj_file<size, big_endian>* object,
1295 unsigned int data_shndx,
1296 Output_section* output_section,
1297 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1298 const elfcpp::Sym<size, big_endian>& lsym,
1299 bool is_discarded);
1300
1301 inline void
1302 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1303 Sized_relobj_file<size, big_endian>* object,
1304 unsigned int data_shndx,
1305 Output_section* output_section,
1306 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1307 Symbol* gsym);
1308
1309 inline bool
1310 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1311 Target_powerpc* ,
1312 Sized_relobj_file<size, big_endian>* relobj,
1313 unsigned int ,
1314 Output_section* ,
1315 const elfcpp::Rela<size, big_endian>& ,
1316 unsigned int r_type,
1317 const elfcpp::Sym<size, big_endian>&)
1318 {
1319 // PowerPC64 .opd is not folded, so any identical function text
1320 // may be folded and we'll still keep function addresses distinct.
1321 // That means no reloc is of concern here.
1322 if (size == 64)
1323 {
1324 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1325 <Powerpc_relobj<size, big_endian>*>(relobj);
1326 if (ppcobj->abiversion() == 1)
1327 return false;
1328 }
1329 // For 32-bit and ELFv2, conservatively assume anything but calls to
1330 // function code might be taking the address of the function.
1331 return !is_branch_reloc(r_type);
1332 }
1333
1334 inline bool
1335 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1336 Target_powerpc* ,
1337 Sized_relobj_file<size, big_endian>* relobj,
1338 unsigned int ,
1339 Output_section* ,
1340 const elfcpp::Rela<size, big_endian>& ,
1341 unsigned int r_type,
1342 Symbol*)
1343 {
1344 // As above.
1345 if (size == 64)
1346 {
1347 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1348 <Powerpc_relobj<size, big_endian>*>(relobj);
1349 if (ppcobj->abiversion() == 1)
1350 return false;
1351 }
1352 return !is_branch_reloc(r_type);
1353 }
1354
1355 static bool
1356 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1357 Sized_relobj_file<size, big_endian>* object,
1358 unsigned int r_type, bool report_err);
1359
1360 private:
1361 static void
1362 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1363 unsigned int r_type);
1364
1365 static void
1366 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1367 unsigned int r_type, Symbol*);
1368
1369 static void
1370 generate_tls_call(Symbol_table* symtab, Layout* layout,
1371 Target_powerpc* target);
1372
1373 void
1374 check_non_pic(Relobj*, unsigned int r_type);
1375
1376 // Whether we have issued an error about a non-PIC compilation.
1377 bool issued_non_pic_error_;
1378 };
1379
1380 bool
1381 symval_for_branch(const Symbol_table* symtab,
1382 const Sized_symbol<size>* gsym,
1383 Powerpc_relobj<size, big_endian>* object,
1384 Address *value, unsigned int *dest_shndx);
1385
1386 // The class which implements relocation.
1387 class Relocate : protected Track_tls
1388 {
1389 public:
1390 // Use 'at' branch hints when true, 'y' when false.
1391 // FIXME maybe: set this with an option.
1392 static const bool is_isa_v2 = true;
1393
1394 Relocate()
1395 : Track_tls()
1396 { }
1397
1398 // Do a relocation. Return false if the caller should not issue
1399 // any warnings about this relocation.
1400 inline bool
1401 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1402 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1403 const Sized_symbol<size>*, const Symbol_value<size>*,
1404 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1405 section_size_type);
1406 };
1407
1408 class Relocate_comdat_behavior
1409 {
1410 public:
1411 // Decide what the linker should do for relocations that refer to
1412 // discarded comdat sections.
1413 inline Comdat_behavior
1414 get(const char* name)
1415 {
1416 gold::Default_comdat_behavior default_behavior;
1417 Comdat_behavior ret = default_behavior.get(name);
1418 if (ret == CB_ERROR)
1419 {
1420 if (size == 32
1421 && (strcmp(name, ".fixup") == 0
1422 || strcmp(name, ".got2") == 0))
1423 ret = CB_IGNORE;
1424 if (size == 64
1425 && (strcmp(name, ".opd") == 0
1426 || strcmp(name, ".toc") == 0
1427 || strcmp(name, ".toc1") == 0))
1428 ret = CB_IGNORE;
1429 }
1430 return ret;
1431 }
1432 };
1433
1434 // Optimize the TLS relocation type based on what we know about the
1435 // symbol. IS_FINAL is true if the final address of this symbol is
1436 // known at link time.
1437
1438 tls::Tls_optimization
1439 optimize_tls_gd(bool is_final)
1440 {
1441 // If we are generating a shared library, then we can't do anything
1442 // in the linker.
1443 if (parameters->options().shared()
1444 || !parameters->options().tls_optimize())
1445 return tls::TLSOPT_NONE;
1446
1447 if (!is_final)
1448 return tls::TLSOPT_TO_IE;
1449 return tls::TLSOPT_TO_LE;
1450 }
1451
1452 tls::Tls_optimization
1453 optimize_tls_ld()
1454 {
1455 if (parameters->options().shared()
1456 || !parameters->options().tls_optimize())
1457 return tls::TLSOPT_NONE;
1458
1459 return tls::TLSOPT_TO_LE;
1460 }
1461
1462 tls::Tls_optimization
1463 optimize_tls_ie(bool is_final)
1464 {
1465 if (!is_final
1466 || parameters->options().shared()
1467 || !parameters->options().tls_optimize())
1468 return tls::TLSOPT_NONE;
1469
1470 return tls::TLSOPT_TO_LE;
1471 }
1472
1473 // Create glink.
1474 void
1475 make_glink_section(Layout*);
1476
1477 // Create the PLT section.
1478 void
1479 make_plt_section(Symbol_table*, Layout*);
1480
1481 void
1482 make_iplt_section(Symbol_table*, Layout*);
1483
1484 void
1485 make_lplt_section(Layout*);
1486
1487 void
1488 make_brlt_section(Layout*);
1489
1490 // Create a PLT entry for a global symbol.
1491 void
1492 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1493
1494 // Create a PLT entry for a local IFUNC symbol.
1495 void
1496 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1497 Sized_relobj_file<size, big_endian>*,
1498 unsigned int);
1499
1500 // Create a PLT entry for a local non-IFUNC symbol.
1501 void
1502 make_local_plt_entry(Layout*,
1503 Sized_relobj_file<size, big_endian>*,
1504 unsigned int);
1505
1506
1507 // Create a GOT entry for local dynamic __tls_get_addr.
1508 unsigned int
1509 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1510 Sized_relobj_file<size, big_endian>* object);
1511
1512 unsigned int
1513 tlsld_got_offset() const
1514 {
1515 return this->tlsld_got_offset_;
1516 }
1517
1518 // Get the dynamic reloc section, creating it if necessary.
1519 Reloc_section*
1520 rela_dyn_section(Layout*);
1521
1522 // Similarly, but for ifunc symbols get the one for ifunc.
1523 Reloc_section*
1524 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1525
1526 // Copy a relocation against a global symbol.
1527 void
1528 copy_reloc(Symbol_table* symtab, Layout* layout,
1529 Sized_relobj_file<size, big_endian>* object,
1530 unsigned int shndx, Output_section* output_section,
1531 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1532 {
1533 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1534 this->copy_relocs_.copy_reloc(symtab, layout,
1535 symtab->get_sized_symbol<size>(sym),
1536 object, shndx, output_section,
1537 r_type, reloc.get_r_offset(),
1538 reloc.get_r_addend(),
1539 this->rela_dyn_section(layout));
1540 }
1541
1542 // Look over all the input sections, deciding where to place stubs.
1543 void
1544 group_sections(Layout*, const Task*, bool);
1545
1546 // Sort output sections by address.
1547 struct Sort_sections
1548 {
1549 bool
1550 operator()(const Output_section* sec1, const Output_section* sec2)
1551 { return sec1->address() < sec2->address(); }
1552 };
1553
1554 class Branch_info
1555 {
1556 public:
1557 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1558 unsigned int data_shndx,
1559 Address r_offset,
1560 unsigned int r_type,
1561 unsigned int r_sym,
1562 Address addend)
1563 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1564 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1565 { }
1566
1567 ~Branch_info()
1568 { }
1569
1570 // Return whether this branch is going via a plt call stub, and if
1571 // so, mark it as having an R_PPC64_TOCSAVE.
1572 bool
1573 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1574 unsigned int shndx, Address offset,
1575 Target_powerpc* target, Symbol_table* symtab);
1576
1577 // If this branch needs a plt call stub, or a long branch stub, make one.
1578 bool
1579 make_stub(Stub_table<size, big_endian>*,
1580 Stub_table<size, big_endian>*,
1581 Symbol_table*) const;
1582
1583 private:
1584 // The branch location..
1585 Powerpc_relobj<size, big_endian>* object_;
1586 unsigned int shndx_;
1587 Address offset_;
1588 // ..and the branch type and destination.
1589 unsigned int r_type_ : 31;
1590 unsigned int tocsave_ : 1;
1591 unsigned int r_sym_;
1592 Address addend_;
1593 };
1594
1595 // Information about this specific target which we pass to the
1596 // general Target structure.
1597 static Target::Target_info powerpc_info;
1598
1599 // The types of GOT entries needed for this platform.
1600 // These values are exposed to the ABI in an incremental link.
1601 // Do not renumber existing values without changing the version
1602 // number of the .gnu_incremental_inputs section.
1603 enum Got_type
1604 {
1605 GOT_TYPE_STANDARD,
1606 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1607 GOT_TYPE_DTPREL, // entry for @got@dtprel
1608 GOT_TYPE_TPREL // entry for @got@tprel
1609 };
1610
1611 // The GOT section.
1612 Output_data_got_powerpc<size, big_endian>* got_;
1613 // The PLT section. This is a container for a table of addresses,
1614 // and their relocations. Each address in the PLT has a dynamic
1615 // relocation (R_*_JMP_SLOT) and each address will have a
1616 // corresponding entry in .glink for lazy resolution of the PLT.
1617 // ppc32 initialises the PLT to point at the .glink entry, while
1618 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1619 // linker adds a stub that loads the PLT entry into ctr then
1620 // branches to ctr. There may be more than one stub for each PLT
1621 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1622 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1623 Output_data_plt_powerpc<size, big_endian>* plt_;
1624 // The IPLT section. Like plt_, this is a container for a table of
1625 // addresses and their relocations, specifically for STT_GNU_IFUNC
1626 // functions that resolve locally (STT_GNU_IFUNC functions that
1627 // don't resolve locally go in PLT). Unlike plt_, these have no
1628 // entry in .glink for lazy resolution, and the relocation section
1629 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1630 // the relocation section may contain relocations against
1631 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1632 // relocation section will appear at the end of other dynamic
1633 // relocations, so that ld.so applies these relocations after other
1634 // dynamic relocations. In a static executable, the relocation
1635 // section is emitted and marked with __rela_iplt_start and
1636 // __rela_iplt_end symbols.
1637 Output_data_plt_powerpc<size, big_endian>* iplt_;
1638 // A PLT style section for local, non-ifunc symbols
1639 Output_data_plt_powerpc<size, big_endian>* lplt_;
1640 // Section holding long branch destinations.
1641 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1642 // The .glink section.
1643 Output_data_glink<size, big_endian>* glink_;
1644 // The dynamic reloc section.
1645 Reloc_section* rela_dyn_;
1646 // Relocs saved to avoid a COPY reloc.
1647 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1648 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1649 unsigned int tlsld_got_offset_;
1650
1651 Stub_tables stub_tables_;
1652 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1653 Branch_lookup_table branch_lookup_table_;
1654
1655 typedef std::vector<Branch_info> Branches;
1656 Branches branch_info_;
1657 Tocsave_loc tocsave_loc_;
1658
1659 bool plt_thread_safe_;
1660 bool plt_localentry0_;
1661 bool plt_localentry0_init_;
1662 bool has_localentry0_;
1663 bool has_tls_get_addr_opt_;
1664
1665 bool relax_failed_;
1666 int relax_fail_count_;
1667 int32_t stub_group_size_;
1668
1669 Output_data_save_res<size, big_endian> *savres_section_;
1670
1671 // The "__tls_get_addr" symbol, if present
1672 Symbol* tls_get_addr_;
1673 // If optimizing __tls_get_addr calls, the "__tls_get_addr_opt" symbol.
1674 Symbol* tls_get_addr_opt_;
1675
1676 // Attributes in output.
1677 Attributes_section_data* attributes_section_data_;
1678
1679 // Last input file to change various attribute tags
1680 const char* last_fp_;
1681 const char* last_ld_;
1682 const char* last_vec_;
1683 const char* last_struct_;
1684 };
1685
1686 template<>
1687 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1688 {
1689 32, // size
1690 true, // is_big_endian
1691 elfcpp::EM_PPC, // machine_code
1692 false, // has_make_symbol
1693 false, // has_resolve
1694 false, // has_code_fill
1695 true, // is_default_stack_executable
1696 false, // can_icf_inline_merge_sections
1697 '\0', // wrap_char
1698 "/usr/lib/ld.so.1", // dynamic_linker
1699 0x10000000, // default_text_segment_address
1700 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1701 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1702 false, // isolate_execinstr
1703 0, // rosegment_gap
1704 elfcpp::SHN_UNDEF, // small_common_shndx
1705 elfcpp::SHN_UNDEF, // large_common_shndx
1706 0, // small_common_section_flags
1707 0, // large_common_section_flags
1708 NULL, // attributes_section
1709 NULL, // attributes_vendor
1710 "_start", // entry_symbol_name
1711 32, // hash_entry_size
1712 elfcpp::SHT_PROGBITS, // unwind_section_type
1713 };
1714
1715 template<>
1716 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1717 {
1718 32, // size
1719 false, // is_big_endian
1720 elfcpp::EM_PPC, // machine_code
1721 false, // has_make_symbol
1722 false, // has_resolve
1723 false, // has_code_fill
1724 true, // is_default_stack_executable
1725 false, // can_icf_inline_merge_sections
1726 '\0', // wrap_char
1727 "/usr/lib/ld.so.1", // dynamic_linker
1728 0x10000000, // default_text_segment_address
1729 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1730 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1731 false, // isolate_execinstr
1732 0, // rosegment_gap
1733 elfcpp::SHN_UNDEF, // small_common_shndx
1734 elfcpp::SHN_UNDEF, // large_common_shndx
1735 0, // small_common_section_flags
1736 0, // large_common_section_flags
1737 NULL, // attributes_section
1738 NULL, // attributes_vendor
1739 "_start", // entry_symbol_name
1740 32, // hash_entry_size
1741 elfcpp::SHT_PROGBITS, // unwind_section_type
1742 };
1743
1744 template<>
1745 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1746 {
1747 64, // size
1748 true, // is_big_endian
1749 elfcpp::EM_PPC64, // machine_code
1750 false, // has_make_symbol
1751 true, // has_resolve
1752 false, // has_code_fill
1753 false, // is_default_stack_executable
1754 false, // can_icf_inline_merge_sections
1755 '\0', // wrap_char
1756 "/usr/lib/ld.so.1", // dynamic_linker
1757 0x10000000, // default_text_segment_address
1758 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1759 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1760 false, // isolate_execinstr
1761 0, // rosegment_gap
1762 elfcpp::SHN_UNDEF, // small_common_shndx
1763 elfcpp::SHN_UNDEF, // large_common_shndx
1764 0, // small_common_section_flags
1765 0, // large_common_section_flags
1766 NULL, // attributes_section
1767 NULL, // attributes_vendor
1768 "_start", // entry_symbol_name
1769 32, // hash_entry_size
1770 elfcpp::SHT_PROGBITS, // unwind_section_type
1771 };
1772
1773 template<>
1774 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1775 {
1776 64, // size
1777 false, // is_big_endian
1778 elfcpp::EM_PPC64, // machine_code
1779 false, // has_make_symbol
1780 true, // has_resolve
1781 false, // has_code_fill
1782 false, // is_default_stack_executable
1783 false, // can_icf_inline_merge_sections
1784 '\0', // wrap_char
1785 "/usr/lib/ld.so.1", // dynamic_linker
1786 0x10000000, // default_text_segment_address
1787 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1788 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1789 false, // isolate_execinstr
1790 0, // rosegment_gap
1791 elfcpp::SHN_UNDEF, // small_common_shndx
1792 elfcpp::SHN_UNDEF, // large_common_shndx
1793 0, // small_common_section_flags
1794 0, // large_common_section_flags
1795 NULL, // attributes_section
1796 NULL, // attributes_vendor
1797 "_start", // entry_symbol_name
1798 32, // hash_entry_size
1799 elfcpp::SHT_PROGBITS, // unwind_section_type
1800 };
1801
1802 inline bool
1803 is_branch_reloc(unsigned int r_type)
1804 {
1805 return (r_type == elfcpp::R_POWERPC_REL24
1806 || r_type == elfcpp::R_PPC_PLTREL24
1807 || r_type == elfcpp::R_PPC_LOCAL24PC
1808 || r_type == elfcpp::R_POWERPC_REL14
1809 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1810 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1811 || r_type == elfcpp::R_POWERPC_ADDR24
1812 || r_type == elfcpp::R_POWERPC_ADDR14
1813 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1814 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1815 }
1816
1817 // Reloc resolves to plt entry.
1818 template<int size>
1819 inline bool
1820 is_plt16_reloc(unsigned int r_type)
1821 {
1822 return (r_type == elfcpp::R_POWERPC_PLT16_LO
1823 || r_type == elfcpp::R_POWERPC_PLT16_HI
1824 || r_type == elfcpp::R_POWERPC_PLT16_HA
1825 || (size == 64 && r_type == elfcpp::R_PPC64_PLT16_LO_DS));
1826 }
1827
1828 // If INSN is an opcode that may be used with an @tls operand, return
1829 // the transformed insn for TLS optimisation, otherwise return 0. If
1830 // REG is non-zero only match an insn with RB or RA equal to REG.
1831 uint32_t
1832 at_tls_transform(uint32_t insn, unsigned int reg)
1833 {
1834 if ((insn & (0x3f << 26)) != 31 << 26)
1835 return 0;
1836
1837 unsigned int rtra;
1838 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1839 rtra = insn & ((1 << 26) - (1 << 16));
1840 else if (((insn >> 16) & 0x1f) == reg)
1841 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1842 else
1843 return 0;
1844
1845 if ((insn & (0x3ff << 1)) == 266 << 1)
1846 // add -> addi
1847 insn = 14 << 26;
1848 else if ((insn & (0x1f << 1)) == 23 << 1
1849 && ((insn & (0x1f << 6)) < 14 << 6
1850 || ((insn & (0x1f << 6)) >= 16 << 6
1851 && (insn & (0x1f << 6)) < 24 << 6)))
1852 // load and store indexed -> dform
1853 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1854 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1855 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1856 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1857 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1858 // lwax -> lwa
1859 insn = (58 << 26) | 2;
1860 else
1861 return 0;
1862 insn |= rtra;
1863 return insn;
1864 }
1865
1866
1867 template<int size, bool big_endian>
1868 class Powerpc_relocate_functions
1869 {
1870 public:
1871 enum Overflow_check
1872 {
1873 CHECK_NONE,
1874 CHECK_SIGNED,
1875 CHECK_UNSIGNED,
1876 CHECK_BITFIELD,
1877 CHECK_LOW_INSN,
1878 CHECK_HIGH_INSN
1879 };
1880
1881 enum Status
1882 {
1883 STATUS_OK,
1884 STATUS_OVERFLOW
1885 };
1886
1887 private:
1888 typedef Powerpc_relocate_functions<size, big_endian> This;
1889 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1890 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1891
1892 template<int valsize>
1893 static inline bool
1894 has_overflow_signed(Address value)
1895 {
1896 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1897 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1898 limit <<= ((valsize - 1) >> 1);
1899 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1900 return value + limit > (limit << 1) - 1;
1901 }
1902
1903 template<int valsize>
1904 static inline bool
1905 has_overflow_unsigned(Address value)
1906 {
1907 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1908 limit <<= ((valsize - 1) >> 1);
1909 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1910 return value > (limit << 1) - 1;
1911 }
1912
1913 template<int valsize>
1914 static inline bool
1915 has_overflow_bitfield(Address value)
1916 {
1917 return (has_overflow_unsigned<valsize>(value)
1918 && has_overflow_signed<valsize>(value));
1919 }
1920
1921 template<int valsize>
1922 static inline Status
1923 overflowed(Address value, Overflow_check overflow)
1924 {
1925 if (overflow == CHECK_SIGNED)
1926 {
1927 if (has_overflow_signed<valsize>(value))
1928 return STATUS_OVERFLOW;
1929 }
1930 else if (overflow == CHECK_UNSIGNED)
1931 {
1932 if (has_overflow_unsigned<valsize>(value))
1933 return STATUS_OVERFLOW;
1934 }
1935 else if (overflow == CHECK_BITFIELD)
1936 {
1937 if (has_overflow_bitfield<valsize>(value))
1938 return STATUS_OVERFLOW;
1939 }
1940 return STATUS_OK;
1941 }
1942
1943 // Do a simple RELA relocation
1944 template<int fieldsize, int valsize>
1945 static inline Status
1946 rela(unsigned char* view, Address value, Overflow_check overflow)
1947 {
1948 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1949 Valtype* wv = reinterpret_cast<Valtype*>(view);
1950 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1951 return overflowed<valsize>(value, overflow);
1952 }
1953
1954 template<int fieldsize, int valsize>
1955 static inline Status
1956 rela(unsigned char* view,
1957 unsigned int right_shift,
1958 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1959 Address value,
1960 Overflow_check overflow)
1961 {
1962 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1963 Valtype* wv = reinterpret_cast<Valtype*>(view);
1964 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1965 Valtype reloc = value >> right_shift;
1966 val &= ~dst_mask;
1967 reloc &= dst_mask;
1968 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1969 return overflowed<valsize>(value >> right_shift, overflow);
1970 }
1971
1972 // Do a simple RELA relocation, unaligned.
1973 template<int fieldsize, int valsize>
1974 static inline Status
1975 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1976 {
1977 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1978 return overflowed<valsize>(value, overflow);
1979 }
1980
1981 template<int fieldsize, int valsize>
1982 static inline Status
1983 rela_ua(unsigned char* view,
1984 unsigned int right_shift,
1985 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1986 Address value,
1987 Overflow_check overflow)
1988 {
1989 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1990 Valtype;
1991 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1992 Valtype reloc = value >> right_shift;
1993 val &= ~dst_mask;
1994 reloc &= dst_mask;
1995 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1996 return overflowed<valsize>(value >> right_shift, overflow);
1997 }
1998
1999 public:
2000 // R_PPC64_ADDR64: (Symbol + Addend)
2001 static inline void
2002 addr64(unsigned char* view, Address value)
2003 { This::template rela<64,64>(view, value, CHECK_NONE); }
2004
2005 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
2006 static inline void
2007 addr64_u(unsigned char* view, Address value)
2008 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
2009
2010 // R_POWERPC_ADDR32: (Symbol + Addend)
2011 static inline Status
2012 addr32(unsigned char* view, Address value, Overflow_check overflow)
2013 { return This::template rela<32,32>(view, value, overflow); }
2014
2015 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
2016 static inline Status
2017 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
2018 { return This::template rela_ua<32,32>(view, value, overflow); }
2019
2020 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
2021 static inline Status
2022 addr24(unsigned char* view, Address value, Overflow_check overflow)
2023 {
2024 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
2025 value, overflow);
2026 if (overflow != CHECK_NONE && (value & 3) != 0)
2027 stat = STATUS_OVERFLOW;
2028 return stat;
2029 }
2030
2031 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
2032 static inline Status
2033 addr16(unsigned char* view, Address value, Overflow_check overflow)
2034 { return This::template rela<16,16>(view, value, overflow); }
2035
2036 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
2037 static inline Status
2038 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
2039 { return This::template rela_ua<16,16>(view, value, overflow); }
2040
2041 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
2042 static inline Status
2043 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
2044 {
2045 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
2046 if ((value & 3) != 0)
2047 stat = STATUS_OVERFLOW;
2048 return stat;
2049 }
2050
2051 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
2052 static inline Status
2053 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
2054 {
2055 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
2056 if ((value & 15) != 0)
2057 stat = STATUS_OVERFLOW;
2058 return stat;
2059 }
2060
2061 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
2062 static inline void
2063 addr16_hi(unsigned char* view, Address value)
2064 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
2065
2066 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
2067 static inline void
2068 addr16_ha(unsigned char* view, Address value)
2069 { This::addr16_hi(view, value + 0x8000); }
2070
2071 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
2072 static inline void
2073 addr16_hi2(unsigned char* view, Address value)
2074 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
2075
2076 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
2077 static inline void
2078 addr16_ha2(unsigned char* view, Address value)
2079 { This::addr16_hi2(view, value + 0x8000); }
2080
2081 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
2082 static inline void
2083 addr16_hi3(unsigned char* view, Address value)
2084 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
2085
2086 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
2087 static inline void
2088 addr16_ha3(unsigned char* view, Address value)
2089 { This::addr16_hi3(view, value + 0x8000); }
2090
2091 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
2092 static inline Status
2093 addr14(unsigned char* view, Address value, Overflow_check overflow)
2094 {
2095 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
2096 if (overflow != CHECK_NONE && (value & 3) != 0)
2097 stat = STATUS_OVERFLOW;
2098 return stat;
2099 }
2100
2101 // R_POWERPC_REL16DX_HA
2102 static inline Status
2103 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
2104 {
2105 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
2106 Valtype* wv = reinterpret_cast<Valtype*>(view);
2107 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
2108 value += 0x8000;
2109 value = static_cast<SignedAddress>(value) >> 16;
2110 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
2111 elfcpp::Swap<32, big_endian>::writeval(wv, val);
2112 return overflowed<16>(value, overflow);
2113 }
2114 };
2115
2116 // Set ABI version for input and output.
2117
2118 template<int size, bool big_endian>
2119 void
2120 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
2121 {
2122 this->e_flags_ |= ver;
2123 if (this->abiversion() != 0)
2124 {
2125 Target_powerpc<size, big_endian>* target =
2126 static_cast<Target_powerpc<size, big_endian>*>(
2127 parameters->sized_target<size, big_endian>());
2128 if (target->abiversion() == 0)
2129 target->set_abiversion(this->abiversion());
2130 else if (target->abiversion() != this->abiversion())
2131 gold_error(_("%s: ABI version %d is not compatible "
2132 "with ABI version %d output"),
2133 this->name().c_str(),
2134 this->abiversion(), target->abiversion());
2135
2136 }
2137 }
2138
2139 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
2140 // relocatable object, if such sections exists.
2141
2142 template<int size, bool big_endian>
2143 bool
2144 Powerpc_relobj<size, big_endian>::do_find_special_sections(
2145 Read_symbols_data* sd)
2146 {
2147 const unsigned char* const pshdrs = sd->section_headers->data();
2148 const unsigned char* namesu = sd->section_names->data();
2149 const char* names = reinterpret_cast<const char*>(namesu);
2150 section_size_type names_size = sd->section_names_size;
2151 const unsigned char* s;
2152
2153 s = this->template find_shdr<size, big_endian>(pshdrs,
2154 size == 32 ? ".got2" : ".opd",
2155 names, names_size, NULL);
2156 if (s != NULL)
2157 {
2158 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2159 this->special_ = ndx;
2160 if (size == 64)
2161 {
2162 if (this->abiversion() == 0)
2163 this->set_abiversion(1);
2164 else if (this->abiversion() > 1)
2165 gold_error(_("%s: .opd invalid in abiv%d"),
2166 this->name().c_str(), this->abiversion());
2167 }
2168 }
2169 if (size == 64)
2170 {
2171 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2172 names, names_size, NULL);
2173 if (s != NULL)
2174 {
2175 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2176 this->relatoc_ = ndx;
2177 typename elfcpp::Shdr<size, big_endian> shdr(s);
2178 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2179 }
2180 }
2181 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2182 }
2183
2184 // Examine .rela.opd to build info about function entry points.
2185
2186 template<int size, bool big_endian>
2187 void
2188 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2189 size_t reloc_count,
2190 const unsigned char* prelocs,
2191 const unsigned char* plocal_syms)
2192 {
2193 if (size == 64)
2194 {
2195 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2196 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2197 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2198 Address expected_off = 0;
2199 bool regular = true;
2200 unsigned int opd_ent_size = 0;
2201
2202 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2203 {
2204 Reltype reloc(prelocs);
2205 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2206 = reloc.get_r_info();
2207 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2208 if (r_type == elfcpp::R_PPC64_ADDR64)
2209 {
2210 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2211 typename elfcpp::Elf_types<size>::Elf_Addr value;
2212 bool is_ordinary;
2213 unsigned int shndx;
2214 if (r_sym < this->local_symbol_count())
2215 {
2216 typename elfcpp::Sym<size, big_endian>
2217 lsym(plocal_syms + r_sym * sym_size);
2218 shndx = lsym.get_st_shndx();
2219 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2220 value = lsym.get_st_value();
2221 }
2222 else
2223 shndx = this->symbol_section_and_value(r_sym, &value,
2224 &is_ordinary);
2225 this->set_opd_ent(reloc.get_r_offset(), shndx,
2226 value + reloc.get_r_addend());
2227 if (i == 2)
2228 {
2229 expected_off = reloc.get_r_offset();
2230 opd_ent_size = expected_off;
2231 }
2232 else if (expected_off != reloc.get_r_offset())
2233 regular = false;
2234 expected_off += opd_ent_size;
2235 }
2236 else if (r_type == elfcpp::R_PPC64_TOC)
2237 {
2238 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2239 regular = false;
2240 }
2241 else
2242 {
2243 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2244 this->name().c_str(), r_type);
2245 regular = false;
2246 }
2247 }
2248 if (reloc_count <= 2)
2249 opd_ent_size = this->section_size(this->opd_shndx());
2250 if (opd_ent_size != 24 && opd_ent_size != 16)
2251 regular = false;
2252 if (!regular)
2253 {
2254 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2255 this->name().c_str());
2256 opd_ent_size = 0;
2257 }
2258 }
2259 }
2260
2261 // Returns true if a code sequence loading the TOC entry at VALUE
2262 // relative to the TOC pointer can be converted into code calculating
2263 // a TOC pointer relative offset.
2264 // If so, the TOC pointer relative offset is stored to VALUE.
2265
2266 template<int size, bool big_endian>
2267 bool
2268 Powerpc_relobj<size, big_endian>::make_toc_relative(
2269 Target_powerpc<size, big_endian>* target,
2270 Address* value)
2271 {
2272 if (size != 64)
2273 return false;
2274
2275 // With -mcmodel=medium code it is quite possible to have
2276 // toc-relative relocs referring to objects outside the TOC.
2277 // Don't try to look at a non-existent TOC.
2278 if (this->toc_shndx() == 0)
2279 return false;
2280
2281 // Convert VALUE back to an address by adding got_base (see below),
2282 // then to an offset in the TOC by subtracting the TOC output
2283 // section address and the TOC output offset. Since this TOC output
2284 // section and the got output section are one and the same, we can
2285 // omit adding and subtracting the output section address.
2286 Address off = (*value + this->toc_base_offset()
2287 - this->output_section_offset(this->toc_shndx()));
2288 // Is this offset in the TOC? -mcmodel=medium code may be using
2289 // TOC relative access to variables outside the TOC. Those of
2290 // course can't be optimized. We also don't try to optimize code
2291 // that is using a different object's TOC.
2292 if (off >= this->section_size(this->toc_shndx()))
2293 return false;
2294
2295 if (this->no_toc_opt(off))
2296 return false;
2297
2298 section_size_type vlen;
2299 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2300 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2301 // The TOC pointer
2302 Address got_base = (target->got_section()->output_section()->address()
2303 + this->toc_base_offset());
2304 addr -= got_base;
2305 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2306 return false;
2307
2308 *value = addr;
2309 return true;
2310 }
2311
2312 // Perform the Sized_relobj_file method, then set up opd info from
2313 // .opd relocs.
2314
2315 template<int size, bool big_endian>
2316 void
2317 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2318 {
2319 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2320 if (size == 64)
2321 {
2322 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2323 p != rd->relocs.end();
2324 ++p)
2325 {
2326 if (p->data_shndx == this->opd_shndx())
2327 {
2328 uint64_t opd_size = this->section_size(this->opd_shndx());
2329 gold_assert(opd_size == static_cast<size_t>(opd_size));
2330 if (opd_size != 0)
2331 {
2332 this->init_opd(opd_size);
2333 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2334 rd->local_symbols->data());
2335 }
2336 break;
2337 }
2338 }
2339 }
2340 }
2341
2342 // Read the symbols then set up st_other vector.
2343
2344 template<int size, bool big_endian>
2345 void
2346 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2347 {
2348 this->base_read_symbols(sd);
2349 if (this->input_file()->format() != Input_file::FORMAT_ELF)
2350 return;
2351 if (size == 64)
2352 {
2353 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2354 const unsigned char* const pshdrs = sd->section_headers->data();
2355 const unsigned int loccount = this->do_local_symbol_count();
2356 if (loccount != 0)
2357 {
2358 this->st_other_.resize(loccount);
2359 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2360 off_t locsize = loccount * sym_size;
2361 const unsigned int symtab_shndx = this->symtab_shndx();
2362 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2363 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2364 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2365 locsize, true, false);
2366 psyms += sym_size;
2367 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2368 {
2369 elfcpp::Sym<size, big_endian> sym(psyms);
2370 unsigned char st_other = sym.get_st_other();
2371 this->st_other_[i] = st_other;
2372 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2373 {
2374 if (this->abiversion() == 0)
2375 this->set_abiversion(2);
2376 else if (this->abiversion() < 2)
2377 gold_error(_("%s: local symbol %d has invalid st_other"
2378 " for ABI version 1"),
2379 this->name().c_str(), i);
2380 }
2381 }
2382 }
2383 }
2384
2385 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2386 const unsigned char* ps = sd->section_headers->data() + shdr_size;
2387 bool merge_attributes = false;
2388 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
2389 {
2390 elfcpp::Shdr<size, big_endian> shdr(ps);
2391 switch (shdr.get_sh_type())
2392 {
2393 case elfcpp::SHT_GNU_ATTRIBUTES:
2394 {
2395 gold_assert(this->attributes_section_data_ == NULL);
2396 section_offset_type section_offset = shdr.get_sh_offset();
2397 section_size_type section_size =
2398 convert_to_section_size_type(shdr.get_sh_size());
2399 const unsigned char* view =
2400 this->get_view(section_offset, section_size, true, false);
2401 this->attributes_section_data_ =
2402 new Attributes_section_data(view, section_size);
2403 }
2404 break;
2405
2406 case elfcpp::SHT_SYMTAB:
2407 {
2408 // Sometimes an object has no contents except the section
2409 // name string table and an empty symbol table with the
2410 // undefined symbol. We don't want to merge
2411 // processor-specific flags from such an object.
2412 const typename elfcpp::Elf_types<size>::Elf_WXword sym_size =
2413 elfcpp::Elf_sizes<size>::sym_size;
2414 if (shdr.get_sh_size() > sym_size)
2415 merge_attributes = true;
2416 }
2417 break;
2418
2419 case elfcpp::SHT_STRTAB:
2420 break;
2421
2422 default:
2423 merge_attributes = true;
2424 break;
2425 }
2426 }
2427
2428 if (!merge_attributes)
2429 {
2430 // Should rarely happen.
2431 delete this->attributes_section_data_;
2432 this->attributes_section_data_ = NULL;
2433 }
2434 }
2435
2436 template<int size, bool big_endian>
2437 void
2438 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2439 {
2440 this->e_flags_ |= ver;
2441 if (this->abiversion() != 0)
2442 {
2443 Target_powerpc<size, big_endian>* target =
2444 static_cast<Target_powerpc<size, big_endian>*>(
2445 parameters->sized_target<size, big_endian>());
2446 if (target->abiversion() == 0)
2447 target->set_abiversion(this->abiversion());
2448 else if (target->abiversion() != this->abiversion())
2449 gold_error(_("%s: ABI version %d is not compatible "
2450 "with ABI version %d output"),
2451 this->name().c_str(),
2452 this->abiversion(), target->abiversion());
2453
2454 }
2455 }
2456
2457 // Call Sized_dynobj::base_read_symbols to read the symbols then
2458 // read .opd from a dynamic object, filling in opd_ent_ vector,
2459
2460 template<int size, bool big_endian>
2461 void
2462 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2463 {
2464 this->base_read_symbols(sd);
2465 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2466 const unsigned char* ps =
2467 sd->section_headers->data() + shdr_size * (this->shnum() - 1);
2468 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
2469 {
2470 elfcpp::Shdr<size, big_endian> shdr(ps);
2471 if (shdr.get_sh_type() == elfcpp::SHT_GNU_ATTRIBUTES)
2472 {
2473 section_offset_type section_offset = shdr.get_sh_offset();
2474 section_size_type section_size =
2475 convert_to_section_size_type(shdr.get_sh_size());
2476 const unsigned char* view =
2477 this->get_view(section_offset, section_size, true, false);
2478 this->attributes_section_data_ =
2479 new Attributes_section_data(view, section_size);
2480 break;
2481 }
2482 }
2483 if (size == 64)
2484 {
2485 const unsigned char* const pshdrs = sd->section_headers->data();
2486 const unsigned char* namesu = sd->section_names->data();
2487 const char* names = reinterpret_cast<const char*>(namesu);
2488 const unsigned char* s = NULL;
2489 const unsigned char* opd;
2490 section_size_type opd_size;
2491
2492 // Find and read .opd section.
2493 while (1)
2494 {
2495 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2496 sd->section_names_size,
2497 s);
2498 if (s == NULL)
2499 return;
2500
2501 typename elfcpp::Shdr<size, big_endian> shdr(s);
2502 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2503 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2504 {
2505 if (this->abiversion() == 0)
2506 this->set_abiversion(1);
2507 else if (this->abiversion() > 1)
2508 gold_error(_("%s: .opd invalid in abiv%d"),
2509 this->name().c_str(), this->abiversion());
2510
2511 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2512 this->opd_address_ = shdr.get_sh_addr();
2513 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2514 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2515 true, false);
2516 break;
2517 }
2518 }
2519
2520 // Build set of executable sections.
2521 // Using a set is probably overkill. There is likely to be only
2522 // a few executable sections, typically .init, .text and .fini,
2523 // and they are generally grouped together.
2524 typedef std::set<Sec_info> Exec_sections;
2525 Exec_sections exec_sections;
2526 s = pshdrs;
2527 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2528 {
2529 typename elfcpp::Shdr<size, big_endian> shdr(s);
2530 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2531 && ((shdr.get_sh_flags()
2532 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2533 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2534 && shdr.get_sh_size() != 0)
2535 {
2536 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2537 shdr.get_sh_size(), i));
2538 }
2539 }
2540 if (exec_sections.empty())
2541 return;
2542
2543 // Look over the OPD entries. This is complicated by the fact
2544 // that some binaries will use two-word entries while others
2545 // will use the standard three-word entries. In most cases
2546 // the third word (the environment pointer for languages like
2547 // Pascal) is unused and will be zero. If the third word is
2548 // used it should not be pointing into executable sections,
2549 // I think.
2550 this->init_opd(opd_size);
2551 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2552 {
2553 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2554 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2555 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2556 if (val == 0)
2557 // Chances are that this is the third word of an OPD entry.
2558 continue;
2559 typename Exec_sections::const_iterator e
2560 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2561 if (e != exec_sections.begin())
2562 {
2563 --e;
2564 if (e->start <= val && val < e->start + e->len)
2565 {
2566 // We have an address in an executable section.
2567 // VAL ought to be the function entry, set it up.
2568 this->set_opd_ent(p - opd, e->shndx, val);
2569 // Skip second word of OPD entry, the TOC pointer.
2570 p += 8;
2571 }
2572 }
2573 // If we didn't match any executable sections, we likely
2574 // have a non-zero third word in the OPD entry.
2575 }
2576 }
2577 }
2578
2579 // Relocate sections.
2580
2581 template<int size, bool big_endian>
2582 void
2583 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2584 const Symbol_table* symtab, const Layout* layout,
2585 const unsigned char* pshdrs, Output_file* of,
2586 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2587 {
2588 unsigned int start = 1;
2589 if (size == 64
2590 && this->relatoc_ != 0
2591 && !parameters->options().relocatable())
2592 {
2593 // Relocate .toc first.
2594 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2595 this->relatoc_, this->relatoc_);
2596 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2597 1, this->relatoc_ - 1);
2598 start = this->relatoc_ + 1;
2599 }
2600 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2601 start, this->shnum() - 1);
2602
2603 if (!parameters->options().output_is_position_independent())
2604 {
2605 Target_powerpc<size, big_endian>* target
2606 = static_cast<Target_powerpc<size, big_endian>*>(
2607 parameters->sized_target<size, big_endian>());
2608 if (target->lplt_section() && target->lplt_section()->data_size() != 0)
2609 {
2610 const section_size_type offset = target->lplt_section()->offset();
2611 const section_size_type oview_size
2612 = convert_to_section_size_type(target->lplt_section()->data_size());
2613 unsigned char* const oview = of->get_output_view(offset, oview_size);
2614
2615 bool modified = false;
2616 unsigned int nsyms = this->local_symbol_count();
2617 for (unsigned int i = 0; i < nsyms; i++)
2618 if (this->local_has_plt_offset(i))
2619 {
2620 Address value = this->local_symbol_value(i, 0);
2621 if (size == 64)
2622 value += ppc64_local_entry_offset(i);
2623 size_t off = this->local_plt_offset(i);
2624 elfcpp::Swap<size, big_endian>::writeval(oview + off, value);
2625 modified = true;
2626 }
2627 if (modified)
2628 of->write_output_view(offset, oview_size, oview);
2629 }
2630 }
2631 }
2632
2633 // Set up some symbols.
2634
2635 template<int size, bool big_endian>
2636 void
2637 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2638 Symbol_table* symtab,
2639 Layout* layout)
2640 {
2641 if (size == 32)
2642 {
2643 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2644 // undefined when scanning relocs (and thus requires
2645 // non-relative dynamic relocs). The proper value will be
2646 // updated later.
2647 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2648 if (gotsym != NULL && gotsym->is_undefined())
2649 {
2650 Target_powerpc<size, big_endian>* target =
2651 static_cast<Target_powerpc<size, big_endian>*>(
2652 parameters->sized_target<size, big_endian>());
2653 Output_data_got_powerpc<size, big_endian>* got
2654 = target->got_section(symtab, layout);
2655 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2656 Symbol_table::PREDEFINED,
2657 got, 0, 0,
2658 elfcpp::STT_OBJECT,
2659 elfcpp::STB_LOCAL,
2660 elfcpp::STV_HIDDEN, 0,
2661 false, false);
2662 }
2663
2664 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2665 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2666 if (sdasym != NULL && sdasym->is_undefined())
2667 {
2668 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2669 Output_section* os
2670 = layout->add_output_section_data(".sdata", 0,
2671 elfcpp::SHF_ALLOC
2672 | elfcpp::SHF_WRITE,
2673 sdata, ORDER_SMALL_DATA, false);
2674 symtab->define_in_output_data("_SDA_BASE_", NULL,
2675 Symbol_table::PREDEFINED,
2676 os, 32768, 0, elfcpp::STT_OBJECT,
2677 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2678 0, false, false);
2679 }
2680 }
2681 else
2682 {
2683 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2684 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2685 if (gotsym != NULL && gotsym->is_undefined())
2686 {
2687 Target_powerpc<size, big_endian>* target =
2688 static_cast<Target_powerpc<size, big_endian>*>(
2689 parameters->sized_target<size, big_endian>());
2690 Output_data_got_powerpc<size, big_endian>* got
2691 = target->got_section(symtab, layout);
2692 symtab->define_in_output_data(".TOC.", NULL,
2693 Symbol_table::PREDEFINED,
2694 got, 0x8000, 0,
2695 elfcpp::STT_OBJECT,
2696 elfcpp::STB_LOCAL,
2697 elfcpp::STV_HIDDEN, 0,
2698 false, false);
2699 }
2700 }
2701
2702 this->tls_get_addr_ = symtab->lookup("__tls_get_addr");
2703 if (parameters->options().tls_get_addr_optimize()
2704 && this->tls_get_addr_ != NULL
2705 && this->tls_get_addr_->in_reg())
2706 this->tls_get_addr_opt_ = symtab->lookup("__tls_get_addr_opt");
2707 if (this->tls_get_addr_opt_ != NULL)
2708 {
2709 if (this->tls_get_addr_->is_undefined()
2710 || this->tls_get_addr_->is_from_dynobj())
2711 {
2712 // Make it seem as if references to __tls_get_addr are
2713 // really to __tls_get_addr_opt, so the latter symbol is
2714 // made dynamic, not the former.
2715 this->tls_get_addr_->clear_in_reg();
2716 this->tls_get_addr_opt_->set_in_reg();
2717 }
2718 // We have a non-dynamic definition for __tls_get_addr.
2719 // Make __tls_get_addr_opt the same, if it does not already have
2720 // a non-dynamic definition.
2721 else if (this->tls_get_addr_opt_->is_undefined()
2722 || this->tls_get_addr_opt_->is_from_dynobj())
2723 {
2724 Sized_symbol<size>* from
2725 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_);
2726 Sized_symbol<size>* to
2727 = static_cast<Sized_symbol<size>*>(this->tls_get_addr_opt_);
2728 symtab->clone<size>(to, from);
2729 }
2730 }
2731 }
2732
2733 // Set up PowerPC target specific relobj.
2734
2735 template<int size, bool big_endian>
2736 Object*
2737 Target_powerpc<size, big_endian>::do_make_elf_object(
2738 const std::string& name,
2739 Input_file* input_file,
2740 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2741 {
2742 int et = ehdr.get_e_type();
2743 // ET_EXEC files are valid input for --just-symbols/-R,
2744 // and we treat them as relocatable objects.
2745 if (et == elfcpp::ET_REL
2746 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2747 {
2748 Powerpc_relobj<size, big_endian>* obj =
2749 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2750 obj->setup();
2751 return obj;
2752 }
2753 else if (et == elfcpp::ET_DYN)
2754 {
2755 Powerpc_dynobj<size, big_endian>* obj =
2756 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2757 obj->setup();
2758 return obj;
2759 }
2760 else
2761 {
2762 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2763 return NULL;
2764 }
2765 }
2766
2767 template<int size, bool big_endian>
2768 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2769 {
2770 public:
2771 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2772 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2773
2774 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2775 : Output_data_got<size, big_endian>(),
2776 symtab_(symtab), layout_(layout),
2777 header_ent_cnt_(size == 32 ? 3 : 1),
2778 header_index_(size == 32 ? 0x2000 : 0)
2779 {
2780 if (size == 64)
2781 this->set_addralign(256);
2782 }
2783
2784 // Override all the Output_data_got methods we use so as to first call
2785 // reserve_ent().
2786 bool
2787 add_global(Symbol* gsym, unsigned int got_type)
2788 {
2789 this->reserve_ent();
2790 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2791 }
2792
2793 bool
2794 add_global_plt(Symbol* gsym, unsigned int got_type)
2795 {
2796 this->reserve_ent();
2797 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2798 }
2799
2800 bool
2801 add_global_tls(Symbol* gsym, unsigned int got_type)
2802 { return this->add_global_plt(gsym, got_type); }
2803
2804 void
2805 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2806 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2807 {
2808 this->reserve_ent();
2809 Output_data_got<size, big_endian>::
2810 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2811 }
2812
2813 void
2814 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2815 Output_data_reloc_generic* rel_dyn,
2816 unsigned int r_type_1, unsigned int r_type_2)
2817 {
2818 if (gsym->has_got_offset(got_type))
2819 return;
2820
2821 this->reserve_ent(2);
2822 Output_data_got<size, big_endian>::
2823 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2824 }
2825
2826 bool
2827 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2828 {
2829 this->reserve_ent();
2830 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2831 got_type);
2832 }
2833
2834 bool
2835 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2836 {
2837 this->reserve_ent();
2838 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2839 got_type);
2840 }
2841
2842 bool
2843 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2844 { return this->add_local_plt(object, sym_index, got_type); }
2845
2846 void
2847 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2848 unsigned int got_type,
2849 Output_data_reloc_generic* rel_dyn,
2850 unsigned int r_type)
2851 {
2852 if (object->local_has_got_offset(sym_index, got_type))
2853 return;
2854
2855 this->reserve_ent(2);
2856 Output_data_got<size, big_endian>::
2857 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2858 }
2859
2860 unsigned int
2861 add_constant(Valtype constant)
2862 {
2863 this->reserve_ent();
2864 return Output_data_got<size, big_endian>::add_constant(constant);
2865 }
2866
2867 unsigned int
2868 add_constant_pair(Valtype c1, Valtype c2)
2869 {
2870 this->reserve_ent(2);
2871 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2872 }
2873
2874 // Offset of _GLOBAL_OFFSET_TABLE_.
2875 unsigned int
2876 g_o_t() const
2877 {
2878 return this->got_offset(this->header_index_);
2879 }
2880
2881 // Offset of base used to access the GOT/TOC.
2882 // The got/toc pointer reg will be set to this value.
2883 Valtype
2884 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2885 {
2886 if (size == 32)
2887 return this->g_o_t();
2888 else
2889 return (this->output_section()->address()
2890 + object->toc_base_offset()
2891 - this->address());
2892 }
2893
2894 // Ensure our GOT has a header.
2895 void
2896 set_final_data_size()
2897 {
2898 if (this->header_ent_cnt_ != 0)
2899 this->make_header();
2900 Output_data_got<size, big_endian>::set_final_data_size();
2901 }
2902
2903 // First word of GOT header needs some values that are not
2904 // handled by Output_data_got so poke them in here.
2905 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2906 void
2907 do_write(Output_file* of)
2908 {
2909 Valtype val = 0;
2910 if (size == 32 && this->layout_->dynamic_data() != NULL)
2911 val = this->layout_->dynamic_section()->address();
2912 if (size == 64)
2913 val = this->output_section()->address() + 0x8000;
2914 this->replace_constant(this->header_index_, val);
2915 Output_data_got<size, big_endian>::do_write(of);
2916 }
2917
2918 private:
2919 void
2920 reserve_ent(unsigned int cnt = 1)
2921 {
2922 if (this->header_ent_cnt_ == 0)
2923 return;
2924 if (this->num_entries() + cnt > this->header_index_)
2925 this->make_header();
2926 }
2927
2928 void
2929 make_header()
2930 {
2931 this->header_ent_cnt_ = 0;
2932 this->header_index_ = this->num_entries();
2933 if (size == 32)
2934 {
2935 Output_data_got<size, big_endian>::add_constant(0);
2936 Output_data_got<size, big_endian>::add_constant(0);
2937 Output_data_got<size, big_endian>::add_constant(0);
2938
2939 // Define _GLOBAL_OFFSET_TABLE_ at the header
2940 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2941 if (gotsym != NULL)
2942 {
2943 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2944 sym->set_value(this->g_o_t());
2945 }
2946 else
2947 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2948 Symbol_table::PREDEFINED,
2949 this, this->g_o_t(), 0,
2950 elfcpp::STT_OBJECT,
2951 elfcpp::STB_LOCAL,
2952 elfcpp::STV_HIDDEN, 0,
2953 false, false);
2954 }
2955 else
2956 Output_data_got<size, big_endian>::add_constant(0);
2957 }
2958
2959 // Stashed pointers.
2960 Symbol_table* symtab_;
2961 Layout* layout_;
2962
2963 // GOT header size.
2964 unsigned int header_ent_cnt_;
2965 // GOT header index.
2966 unsigned int header_index_;
2967 };
2968
2969 // Get the GOT section, creating it if necessary.
2970
2971 template<int size, bool big_endian>
2972 Output_data_got_powerpc<size, big_endian>*
2973 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2974 Layout* layout)
2975 {
2976 if (this->got_ == NULL)
2977 {
2978 gold_assert(symtab != NULL && layout != NULL);
2979
2980 this->got_
2981 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2982
2983 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2984 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2985 this->got_, ORDER_DATA, false);
2986 }
2987
2988 return this->got_;
2989 }
2990
2991 // Get the dynamic reloc section, creating it if necessary.
2992
2993 template<int size, bool big_endian>
2994 typename Target_powerpc<size, big_endian>::Reloc_section*
2995 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2996 {
2997 if (this->rela_dyn_ == NULL)
2998 {
2999 gold_assert(layout != NULL);
3000 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3001 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3002 elfcpp::SHF_ALLOC, this->rela_dyn_,
3003 ORDER_DYNAMIC_RELOCS, false);
3004 }
3005 return this->rela_dyn_;
3006 }
3007
3008 // Similarly, but for ifunc symbols get the one for ifunc.
3009
3010 template<int size, bool big_endian>
3011 typename Target_powerpc<size, big_endian>::Reloc_section*
3012 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
3013 Layout* layout,
3014 bool for_ifunc)
3015 {
3016 if (!for_ifunc)
3017 return this->rela_dyn_section(layout);
3018
3019 if (this->iplt_ == NULL)
3020 this->make_iplt_section(symtab, layout);
3021 return this->iplt_->rel_plt();
3022 }
3023
3024 class Stub_control
3025 {
3026 public:
3027 // Determine the stub group size. The group size is the absolute
3028 // value of the parameter --stub-group-size. If --stub-group-size
3029 // is passed a negative value, we restrict stubs to be always after
3030 // the stubbed branches.
3031 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
3032 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
3033 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
3034 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
3035 owner_(NULL), output_section_(NULL)
3036 {
3037 }
3038
3039 // Return true iff input section can be handled by current stub
3040 // group.
3041 bool
3042 can_add_to_stub_group(Output_section* o,
3043 const Output_section::Input_section* i,
3044 bool has14);
3045
3046 const Output_section::Input_section*
3047 owner()
3048 { return owner_; }
3049
3050 Output_section*
3051 output_section()
3052 { return output_section_; }
3053
3054 void
3055 set_output_and_owner(Output_section* o,
3056 const Output_section::Input_section* i)
3057 {
3058 this->output_section_ = o;
3059 this->owner_ = i;
3060 }
3061
3062 private:
3063 typedef enum
3064 {
3065 // Initial state.
3066 NO_GROUP,
3067 // Adding group sections before the stubs.
3068 FINDING_STUB_SECTION,
3069 // Adding group sections after the stubs.
3070 HAS_STUB_SECTION
3071 } State;
3072
3073 uint32_t stub_group_size_;
3074 bool stubs_always_after_branch_;
3075 bool suppress_size_errors_;
3076 // True if a stub group can serve multiple output sections.
3077 bool multi_os_;
3078 State state_;
3079 // Current max size of group. Starts at stub_group_size_ but is
3080 // reduced to stub_group_size_/1024 on seeing a section with
3081 // external conditional branches.
3082 uint32_t group_size_;
3083 uint64_t group_start_addr_;
3084 // owner_ and output_section_ specify the section to which stubs are
3085 // attached. The stubs are placed at the end of this section.
3086 const Output_section::Input_section* owner_;
3087 Output_section* output_section_;
3088 };
3089
3090 // Return true iff input section can be handled by current stub
3091 // group. Sections are presented to this function in order,
3092 // so the first section is the head of the group.
3093
3094 bool
3095 Stub_control::can_add_to_stub_group(Output_section* o,
3096 const Output_section::Input_section* i,
3097 bool has14)
3098 {
3099 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
3100 uint64_t this_size;
3101 uint64_t start_addr = o->address();
3102
3103 if (whole_sec)
3104 // .init and .fini sections are pasted together to form a single
3105 // function. We can't be adding stubs in the middle of the function.
3106 this_size = o->data_size();
3107 else
3108 {
3109 start_addr += i->relobj()->output_section_offset(i->shndx());
3110 this_size = i->data_size();
3111 }
3112
3113 uint64_t end_addr = start_addr + this_size;
3114 uint32_t group_size = this->stub_group_size_;
3115 if (has14)
3116 this->group_size_ = group_size = group_size >> 10;
3117
3118 if (this_size > group_size && !this->suppress_size_errors_)
3119 gold_warning(_("%s:%s exceeds group size"),
3120 i->relobj()->name().c_str(),
3121 i->relobj()->section_name(i->shndx()).c_str());
3122
3123 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
3124 has14 ? " 14bit" : "",
3125 i->relobj()->name().c_str(),
3126 i->relobj()->section_name(i->shndx()).c_str(),
3127 (long long) this_size,
3128 (this->state_ == NO_GROUP
3129 ? this_size
3130 : (long long) end_addr - this->group_start_addr_));
3131
3132 if (this->state_ == NO_GROUP)
3133 {
3134 // Only here on very first use of Stub_control
3135 this->owner_ = i;
3136 this->output_section_ = o;
3137 this->state_ = FINDING_STUB_SECTION;
3138 this->group_size_ = group_size;
3139 this->group_start_addr_ = start_addr;
3140 return true;
3141 }
3142 else if (!this->multi_os_ && this->output_section_ != o)
3143 ;
3144 else if (this->state_ == HAS_STUB_SECTION)
3145 {
3146 // Can we add this section, which is after the stubs, to the
3147 // group?
3148 if (end_addr - this->group_start_addr_ <= this->group_size_)
3149 return true;
3150 }
3151 else if (this->state_ == FINDING_STUB_SECTION)
3152 {
3153 if ((whole_sec && this->output_section_ == o)
3154 || end_addr - this->group_start_addr_ <= this->group_size_)
3155 {
3156 // Stubs are added at the end of "owner_".
3157 this->owner_ = i;
3158 this->output_section_ = o;
3159 return true;
3160 }
3161 // The group before the stubs has reached maximum size.
3162 // Now see about adding sections after the stubs to the
3163 // group. If the current section has a 14-bit branch and
3164 // the group before the stubs exceeds group_size_ (because
3165 // they didn't have 14-bit branches), don't add sections
3166 // after the stubs: The size of stubs for such a large
3167 // group may exceed the reach of a 14-bit branch.
3168 if (!this->stubs_always_after_branch_
3169 && this_size <= this->group_size_
3170 && start_addr - this->group_start_addr_ <= this->group_size_)
3171 {
3172 gold_debug(DEBUG_TARGET, "adding after stubs");
3173 this->state_ = HAS_STUB_SECTION;
3174 this->group_start_addr_ = start_addr;
3175 return true;
3176 }
3177 }
3178 else
3179 gold_unreachable();
3180
3181 gold_debug(DEBUG_TARGET,
3182 !this->multi_os_ && this->output_section_ != o
3183 ? "nope, new output section\n"
3184 : "nope, didn't fit\n");
3185
3186 // The section fails to fit in the current group. Set up a few
3187 // things for the next group. owner_ and output_section_ will be
3188 // set later after we've retrieved those values for the current
3189 // group.
3190 this->state_ = FINDING_STUB_SECTION;
3191 this->group_size_ = group_size;
3192 this->group_start_addr_ = start_addr;
3193 return false;
3194 }
3195
3196 // Look over all the input sections, deciding where to place stubs.
3197
3198 template<int size, bool big_endian>
3199 void
3200 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
3201 const Task*,
3202 bool no_size_errors)
3203 {
3204 Stub_control stub_control(this->stub_group_size_, no_size_errors,
3205 parameters->options().stub_group_multi());
3206
3207 // Group input sections and insert stub table
3208 Stub_table_owner* table_owner = NULL;
3209 std::vector<Stub_table_owner*> tables;
3210 Layout::Section_list section_list;
3211 layout->get_executable_sections(&section_list);
3212 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
3213 for (Layout::Section_list::iterator o = section_list.begin();
3214 o != section_list.end();
3215 ++o)
3216 {
3217 typedef Output_section::Input_section_list Input_section_list;
3218 for (Input_section_list::const_iterator i
3219 = (*o)->input_sections().begin();
3220 i != (*o)->input_sections().end();
3221 ++i)
3222 {
3223 if (i->is_input_section()
3224 || i->is_relaxed_input_section())
3225 {
3226 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3227 <Powerpc_relobj<size, big_endian>*>(i->relobj());
3228 bool has14 = ppcobj->has_14bit_branch(i->shndx());
3229 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
3230 {
3231 table_owner->output_section = stub_control.output_section();
3232 table_owner->owner = stub_control.owner();
3233 stub_control.set_output_and_owner(*o, &*i);
3234 table_owner = NULL;
3235 }
3236 if (table_owner == NULL)
3237 {
3238 table_owner = new Stub_table_owner;
3239 tables.push_back(table_owner);
3240 }
3241 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
3242 }
3243 }
3244 }
3245 if (table_owner != NULL)
3246 {
3247 table_owner->output_section = stub_control.output_section();
3248 table_owner->owner = stub_control.owner();;
3249 }
3250 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
3251 t != tables.end();
3252 ++t)
3253 {
3254 Stub_table<size, big_endian>* stub_table;
3255
3256 if ((*t)->owner->is_input_section())
3257 stub_table = new Stub_table<size, big_endian>(this,
3258 (*t)->output_section,
3259 (*t)->owner,
3260 this->stub_tables_.size());
3261 else if ((*t)->owner->is_relaxed_input_section())
3262 stub_table = static_cast<Stub_table<size, big_endian>*>(
3263 (*t)->owner->relaxed_input_section());
3264 else
3265 gold_unreachable();
3266 this->stub_tables_.push_back(stub_table);
3267 delete *t;
3268 }
3269 }
3270
3271 static unsigned long
3272 max_branch_delta (unsigned int r_type)
3273 {
3274 if (r_type == elfcpp::R_POWERPC_REL14
3275 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
3276 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
3277 return 1L << 15;
3278 if (r_type == elfcpp::R_POWERPC_REL24
3279 || r_type == elfcpp::R_PPC_PLTREL24
3280 || r_type == elfcpp::R_PPC_LOCAL24PC)
3281 return 1L << 25;
3282 return 0;
3283 }
3284
3285 // Return whether this branch is going via a plt call stub.
3286
3287 template<int size, bool big_endian>
3288 bool
3289 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
3290 Powerpc_relobj<size, big_endian>* ppc_object,
3291 unsigned int shndx,
3292 Address offset,
3293 Target_powerpc* target,
3294 Symbol_table* symtab)
3295 {
3296 if (this->object_ != ppc_object
3297 || this->shndx_ != shndx
3298 || this->offset_ != offset)
3299 return false;
3300
3301 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3302 if (sym != NULL && sym->is_forwarder())
3303 sym = symtab->resolve_forwards(sym);
3304 if (target->replace_tls_get_addr(sym))
3305 sym = target->tls_get_addr_opt();
3306 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3307 if (gsym != NULL
3308 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3309 && !target->is_elfv2_localentry0(gsym))
3310 : (this->object_->local_has_plt_offset(this->r_sym_)
3311 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3312 {
3313 this->tocsave_ = 1;
3314 return true;
3315 }
3316 return false;
3317 }
3318
3319 // If this branch needs a plt call stub, or a long branch stub, make one.
3320
3321 template<int size, bool big_endian>
3322 bool
3323 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3324 Stub_table<size, big_endian>* stub_table,
3325 Stub_table<size, big_endian>* ifunc_stub_table,
3326 Symbol_table* symtab) const
3327 {
3328 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3329 Target_powerpc<size, big_endian>* target =
3330 static_cast<Target_powerpc<size, big_endian>*>(
3331 parameters->sized_target<size, big_endian>());
3332 if (sym != NULL && sym->is_forwarder())
3333 sym = symtab->resolve_forwards(sym);
3334 if (target->replace_tls_get_addr(sym))
3335 sym = target->tls_get_addr_opt();
3336 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3337 bool ok = true;
3338
3339 if (gsym != NULL
3340 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3341 : this->object_->local_has_plt_offset(this->r_sym_))
3342 {
3343 if (size == 64
3344 && gsym != NULL
3345 && target->abiversion() >= 2
3346 && !parameters->options().output_is_position_independent()
3347 && !is_branch_reloc(this->r_type_))
3348 target->glink_section()->add_global_entry(gsym);
3349 else
3350 {
3351 if (stub_table == NULL
3352 && !(size == 32
3353 && gsym != NULL
3354 && !parameters->options().output_is_position_independent()
3355 && !is_branch_reloc(this->r_type_)))
3356 stub_table = this->object_->stub_table(this->shndx_);
3357 if (stub_table == NULL)
3358 {
3359 // This is a ref from a data section to an ifunc symbol,
3360 // or a non-branch reloc for which we always want to use
3361 // one set of stubs for resolving function addresses.
3362 stub_table = ifunc_stub_table;
3363 }
3364 gold_assert(stub_table != NULL);
3365 Address from = this->object_->get_output_section_offset(this->shndx_);
3366 if (from != invalid_address)
3367 from += (this->object_->output_section(this->shndx_)->address()
3368 + this->offset_);
3369 if (gsym != NULL)
3370 ok = stub_table->add_plt_call_entry(from,
3371 this->object_, gsym,
3372 this->r_type_, this->addend_,
3373 this->tocsave_);
3374 else
3375 ok = stub_table->add_plt_call_entry(from,
3376 this->object_, this->r_sym_,
3377 this->r_type_, this->addend_,
3378 this->tocsave_);
3379 }
3380 }
3381 else
3382 {
3383 Address max_branch_offset = max_branch_delta(this->r_type_);
3384 if (max_branch_offset == 0)
3385 return true;
3386 Address from = this->object_->get_output_section_offset(this->shndx_);
3387 gold_assert(from != invalid_address);
3388 from += (this->object_->output_section(this->shndx_)->address()
3389 + this->offset_);
3390 Address to;
3391 if (gsym != NULL)
3392 {
3393 switch (gsym->source())
3394 {
3395 case Symbol::FROM_OBJECT:
3396 {
3397 Object* symobj = gsym->object();
3398 if (symobj->is_dynamic()
3399 || symobj->pluginobj() != NULL)
3400 return true;
3401 bool is_ordinary;
3402 unsigned int shndx = gsym->shndx(&is_ordinary);
3403 if (shndx == elfcpp::SHN_UNDEF)
3404 return true;
3405 }
3406 break;
3407
3408 case Symbol::IS_UNDEFINED:
3409 return true;
3410
3411 default:
3412 break;
3413 }
3414 Symbol_table::Compute_final_value_status status;
3415 to = symtab->compute_final_value<size>(gsym, &status);
3416 if (status != Symbol_table::CFVS_OK)
3417 return true;
3418 if (size == 64)
3419 to += this->object_->ppc64_local_entry_offset(gsym);
3420 }
3421 else
3422 {
3423 const Symbol_value<size>* psymval
3424 = this->object_->local_symbol(this->r_sym_);
3425 Symbol_value<size> symval;
3426 if (psymval->is_section_symbol())
3427 symval.set_is_section_symbol();
3428 typedef Sized_relobj_file<size, big_endian> ObjType;
3429 typename ObjType::Compute_final_local_value_status status
3430 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3431 &symval, symtab);
3432 if (status != ObjType::CFLV_OK
3433 || !symval.has_output_value())
3434 return true;
3435 to = symval.value(this->object_, 0);
3436 if (size == 64)
3437 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3438 }
3439 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3440 to += this->addend_;
3441 if (stub_table == NULL)
3442 stub_table = this->object_->stub_table(this->shndx_);
3443 if (size == 64 && target->abiversion() < 2)
3444 {
3445 unsigned int dest_shndx;
3446 if (!target->symval_for_branch(symtab, gsym, this->object_,
3447 &to, &dest_shndx))
3448 return true;
3449 }
3450 Address delta = to - from;
3451 if (delta + max_branch_offset >= 2 * max_branch_offset)
3452 {
3453 if (stub_table == NULL)
3454 {
3455 gold_warning(_("%s:%s: branch in non-executable section,"
3456 " no long branch stub for you"),
3457 this->object_->name().c_str(),
3458 this->object_->section_name(this->shndx_).c_str());
3459 return true;
3460 }
3461 bool save_res = (size == 64
3462 && gsym != NULL
3463 && gsym->source() == Symbol::IN_OUTPUT_DATA
3464 && gsym->output_data() == target->savres_section());
3465 ok = stub_table->add_long_branch_entry(this->object_,
3466 this->r_type_,
3467 from, to, save_res);
3468 }
3469 }
3470 if (!ok)
3471 gold_debug(DEBUG_TARGET,
3472 "branch at %s:%s+%#lx\n"
3473 "can't reach stub attached to %s:%s",
3474 this->object_->name().c_str(),
3475 this->object_->section_name(this->shndx_).c_str(),
3476 (unsigned long) this->offset_,
3477 stub_table->relobj()->name().c_str(),
3478 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3479
3480 return ok;
3481 }
3482
3483 // Relaxation hook. This is where we do stub generation.
3484
3485 template<int size, bool big_endian>
3486 bool
3487 Target_powerpc<size, big_endian>::do_relax(int pass,
3488 const Input_objects*,
3489 Symbol_table* symtab,
3490 Layout* layout,
3491 const Task* task)
3492 {
3493 unsigned int prev_brlt_size = 0;
3494 if (pass == 1)
3495 {
3496 bool thread_safe
3497 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3498 if (size == 64
3499 && this->abiversion() < 2
3500 && !thread_safe
3501 && !parameters->options().user_set_plt_thread_safe())
3502 {
3503 static const char* const thread_starter[] =
3504 {
3505 "pthread_create",
3506 /* libstdc++ */
3507 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3508 /* librt */
3509 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3510 "mq_notify", "create_timer",
3511 /* libanl */
3512 "getaddrinfo_a",
3513 /* libgomp */
3514 "GOMP_parallel",
3515 "GOMP_parallel_start",
3516 "GOMP_parallel_loop_static",
3517 "GOMP_parallel_loop_static_start",
3518 "GOMP_parallel_loop_dynamic",
3519 "GOMP_parallel_loop_dynamic_start",
3520 "GOMP_parallel_loop_guided",
3521 "GOMP_parallel_loop_guided_start",
3522 "GOMP_parallel_loop_runtime",
3523 "GOMP_parallel_loop_runtime_start",
3524 "GOMP_parallel_sections",
3525 "GOMP_parallel_sections_start",
3526 /* libgo */
3527 "__go_go",
3528 };
3529
3530 if (parameters->options().shared())
3531 thread_safe = true;
3532 else
3533 {
3534 for (unsigned int i = 0;
3535 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3536 i++)
3537 {
3538 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3539 thread_safe = (sym != NULL
3540 && sym->in_reg()
3541 && sym->in_real_elf());
3542 if (thread_safe)
3543 break;
3544 }
3545 }
3546 }
3547 this->plt_thread_safe_ = thread_safe;
3548 }
3549
3550 if (pass == 1)
3551 {
3552 this->stub_group_size_ = parameters->options().stub_group_size();
3553 bool no_size_errors = true;
3554 if (this->stub_group_size_ == 1)
3555 this->stub_group_size_ = 0x1c00000;
3556 else if (this->stub_group_size_ == -1)
3557 this->stub_group_size_ = -0x1e00000;
3558 else
3559 no_size_errors = false;
3560 this->group_sections(layout, task, no_size_errors);
3561 }
3562 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3563 {
3564 this->branch_lookup_table_.clear();
3565 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3566 p != this->stub_tables_.end();
3567 ++p)
3568 {
3569 (*p)->clear_stubs(true);
3570 }
3571 this->stub_tables_.clear();
3572 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3573 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3574 program_name, this->stub_group_size_);
3575 this->group_sections(layout, task, true);
3576 }
3577
3578 // We need address of stub tables valid for make_stub.
3579 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3580 p != this->stub_tables_.end();
3581 ++p)
3582 {
3583 const Powerpc_relobj<size, big_endian>* object
3584 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3585 Address off = object->get_output_section_offset((*p)->shndx());
3586 gold_assert(off != invalid_address);
3587 Output_section* os = (*p)->output_section();
3588 (*p)->set_address_and_size(os, off);
3589 }
3590
3591 if (pass != 1)
3592 {
3593 // Clear plt call stubs, long branch stubs and branch lookup table.
3594 prev_brlt_size = this->branch_lookup_table_.size();
3595 this->branch_lookup_table_.clear();
3596 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3597 p != this->stub_tables_.end();
3598 ++p)
3599 {
3600 (*p)->clear_stubs(false);
3601 }
3602 }
3603
3604 // Build all the stubs.
3605 this->relax_failed_ = false;
3606 Stub_table<size, big_endian>* ifunc_stub_table
3607 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3608 Stub_table<size, big_endian>* one_stub_table
3609 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3610 for (typename Branches::const_iterator b = this->branch_info_.begin();
3611 b != this->branch_info_.end();
3612 b++)
3613 {
3614 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3615 && !this->relax_failed_)
3616 {
3617 this->relax_failed_ = true;
3618 this->relax_fail_count_++;
3619 if (this->relax_fail_count_ < 3)
3620 return true;
3621 }
3622 }
3623
3624 // Did anything change size?
3625 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3626 bool again = num_huge_branches != prev_brlt_size;
3627 if (size == 64 && num_huge_branches != 0)
3628 this->make_brlt_section(layout);
3629 if (size == 64 && again)
3630 this->brlt_section_->set_current_size(num_huge_branches);
3631
3632 for (typename Stub_tables::reverse_iterator p = this->stub_tables_.rbegin();
3633 p != this->stub_tables_.rend();
3634 ++p)
3635 (*p)->remove_eh_frame(layout);
3636
3637 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3638 p != this->stub_tables_.end();
3639 ++p)
3640 (*p)->add_eh_frame(layout);
3641
3642 typedef Unordered_set<Output_section*> Output_sections;
3643 Output_sections os_need_update;
3644 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3645 p != this->stub_tables_.end();
3646 ++p)
3647 {
3648 if ((*p)->size_update())
3649 {
3650 again = true;
3651 os_need_update.insert((*p)->output_section());
3652 }
3653 }
3654
3655 // Set output section offsets for all input sections in an output
3656 // section that just changed size. Anything past the stubs will
3657 // need updating.
3658 for (typename Output_sections::iterator p = os_need_update.begin();
3659 p != os_need_update.end();
3660 p++)
3661 {
3662 Output_section* os = *p;
3663 Address off = 0;
3664 typedef Output_section::Input_section_list Input_section_list;
3665 for (Input_section_list::const_iterator i = os->input_sections().begin();
3666 i != os->input_sections().end();
3667 ++i)
3668 {
3669 off = align_address(off, i->addralign());
3670 if (i->is_input_section() || i->is_relaxed_input_section())
3671 i->relobj()->set_section_offset(i->shndx(), off);
3672 if (i->is_relaxed_input_section())
3673 {
3674 Stub_table<size, big_endian>* stub_table
3675 = static_cast<Stub_table<size, big_endian>*>(
3676 i->relaxed_input_section());
3677 Address stub_table_size = stub_table->set_address_and_size(os, off);
3678 off += stub_table_size;
3679 // After a few iterations, set current stub table size
3680 // as min size threshold, so later stub tables can only
3681 // grow in size.
3682 if (pass >= 4)
3683 stub_table->set_min_size_threshold(stub_table_size);
3684 }
3685 else
3686 off += i->data_size();
3687 }
3688 // If .branch_lt is part of this output section, then we have
3689 // just done the offset adjustment.
3690 os->clear_section_offsets_need_adjustment();
3691 }
3692
3693 if (size == 64
3694 && !again
3695 && num_huge_branches != 0
3696 && parameters->options().output_is_position_independent())
3697 {
3698 // Fill in the BRLT relocs.
3699 this->brlt_section_->reset_brlt_sizes();
3700 for (typename Branch_lookup_table::const_iterator p
3701 = this->branch_lookup_table_.begin();
3702 p != this->branch_lookup_table_.end();
3703 ++p)
3704 {
3705 this->brlt_section_->add_reloc(p->first, p->second);
3706 }
3707 this->brlt_section_->finalize_brlt_sizes();
3708 }
3709
3710 if (!again
3711 && (parameters->options().user_set_emit_stub_syms()
3712 ? parameters->options().emit_stub_syms()
3713 : (size == 64
3714 || parameters->options().output_is_position_independent()
3715 || parameters->options().emit_relocs())))
3716 {
3717 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3718 p != this->stub_tables_.end();
3719 ++p)
3720 (*p)->define_stub_syms(symtab);
3721
3722 if (this->glink_ != NULL)
3723 {
3724 int stub_size = this->glink_->pltresolve_size();
3725 Address value = -stub_size;
3726 if (size == 64)
3727 {
3728 value = 8;
3729 stub_size -= 8;
3730 }
3731 this->define_local(symtab, "__glink_PLTresolve",
3732 this->glink_, value, stub_size);
3733
3734 if (size != 64)
3735 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3736 }
3737 }
3738
3739 return again;
3740 }
3741
3742 template<int size, bool big_endian>
3743 void
3744 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3745 unsigned char* oview,
3746 uint64_t* paddress,
3747 off_t* plen) const
3748 {
3749 uint64_t address = plt->address();
3750 off_t len = plt->data_size();
3751
3752 if (plt == this->glink_)
3753 {
3754 // See Output_data_glink::do_write() for glink contents.
3755 if (len == 0)
3756 {
3757 gold_assert(parameters->doing_static_link());
3758 // Static linking may need stubs, to support ifunc and long
3759 // branches. We need to create an output section for
3760 // .eh_frame early in the link process, to have a place to
3761 // attach stub .eh_frame info. We also need to have
3762 // registered a CIE that matches the stub CIE. Both of
3763 // these requirements are satisfied by creating an FDE and
3764 // CIE for .glink, even though static linking will leave
3765 // .glink zero length.
3766 // ??? Hopefully generating an FDE with a zero address range
3767 // won't confuse anything that consumes .eh_frame info.
3768 }
3769 else if (size == 64)
3770 {
3771 // There is one word before __glink_PLTresolve
3772 address += 8;
3773 len -= 8;
3774 }
3775 else if (parameters->options().output_is_position_independent())
3776 {
3777 // There are two FDEs for a position independent glink.
3778 // The first covers the branch table, the second
3779 // __glink_PLTresolve at the end of glink.
3780 off_t resolve_size = this->glink_->pltresolve_size();
3781 if (oview[9] == elfcpp::DW_CFA_nop)
3782 len -= resolve_size;
3783 else
3784 {
3785 address += len - resolve_size;
3786 len = resolve_size;
3787 }
3788 }
3789 }
3790 else
3791 {
3792 // Must be a stub table.
3793 const Stub_table<size, big_endian>* stub_table
3794 = static_cast<const Stub_table<size, big_endian>*>(plt);
3795 uint64_t stub_address = stub_table->stub_address();
3796 len -= stub_address - address;
3797 address = stub_address;
3798 }
3799
3800 *paddress = address;
3801 *plen = len;
3802 }
3803
3804 // A class to handle the PLT data.
3805
3806 template<int size, bool big_endian>
3807 class Output_data_plt_powerpc : public Output_section_data_build
3808 {
3809 public:
3810 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3811 size, big_endian> Reloc_section;
3812
3813 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3814 Reloc_section* plt_rel,
3815 const char* name)
3816 : Output_section_data_build(size == 32 ? 4 : 8),
3817 rel_(plt_rel),
3818 targ_(targ),
3819 name_(name)
3820 { }
3821
3822 // Add an entry to the PLT.
3823 void
3824 add_entry(Symbol*);
3825
3826 void
3827 add_ifunc_entry(Symbol*);
3828
3829 void
3830 add_local_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3831
3832 void
3833 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3834
3835 // Return the .rela.plt section data.
3836 Reloc_section*
3837 rel_plt() const
3838 {
3839 return this->rel_;
3840 }
3841
3842 // Return the number of PLT entries.
3843 unsigned int
3844 entry_count() const
3845 {
3846 if (this->current_data_size() == 0)
3847 return 0;
3848 return ((this->current_data_size() - this->first_plt_entry_offset())
3849 / this->plt_entry_size());
3850 }
3851
3852 protected:
3853 void
3854 do_adjust_output_section(Output_section* os)
3855 {
3856 os->set_entsize(0);
3857 }
3858
3859 // Write to a map file.
3860 void
3861 do_print_to_mapfile(Mapfile* mapfile) const
3862 { mapfile->print_output_data(this, this->name_); }
3863
3864 private:
3865 // Return the offset of the first non-reserved PLT entry.
3866 unsigned int
3867 first_plt_entry_offset() const
3868 {
3869 // IPLT and LPLT have no reserved entry.
3870 if (this->name_[3] == 'I' || this->name_[3] == 'L')
3871 return 0;
3872 return this->targ_->first_plt_entry_offset();
3873 }
3874
3875 // Return the size of each PLT entry.
3876 unsigned int
3877 plt_entry_size() const
3878 {
3879 return this->targ_->plt_entry_size();
3880 }
3881
3882 // Write out the PLT data.
3883 void
3884 do_write(Output_file*);
3885
3886 // The reloc section.
3887 Reloc_section* rel_;
3888 // Allows access to .glink for do_write.
3889 Target_powerpc<size, big_endian>* targ_;
3890 // What to report in map file.
3891 const char *name_;
3892 };
3893
3894 // Add an entry to the PLT.
3895
3896 template<int size, bool big_endian>
3897 void
3898 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3899 {
3900 if (!gsym->has_plt_offset())
3901 {
3902 section_size_type off = this->current_data_size();
3903 if (off == 0)
3904 off += this->first_plt_entry_offset();
3905 gsym->set_plt_offset(off);
3906 gsym->set_needs_dynsym_entry();
3907 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3908 this->rel_->add_global(gsym, dynrel, this, off, 0);
3909 off += this->plt_entry_size();
3910 this->set_current_data_size(off);
3911 }
3912 }
3913
3914 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3915
3916 template<int size, bool big_endian>
3917 void
3918 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3919 {
3920 if (!gsym->has_plt_offset())
3921 {
3922 section_size_type off = this->current_data_size();
3923 gsym->set_plt_offset(off);
3924 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3925 if (size == 64 && this->targ_->abiversion() < 2)
3926 dynrel = elfcpp::R_PPC64_JMP_IREL;
3927 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3928 off += this->plt_entry_size();
3929 this->set_current_data_size(off);
3930 }
3931 }
3932
3933 // Add an entry for a local symbol to the PLT.
3934
3935 template<int size, bool big_endian>
3936 void
3937 Output_data_plt_powerpc<size, big_endian>::add_local_entry(
3938 Sized_relobj_file<size, big_endian>* relobj,
3939 unsigned int local_sym_index)
3940 {
3941 if (!relobj->local_has_plt_offset(local_sym_index))
3942 {
3943 section_size_type off = this->current_data_size();
3944 relobj->set_local_plt_offset(local_sym_index, off);
3945 if (this->rel_)
3946 {
3947 unsigned int dynrel = elfcpp::R_POWERPC_RELATIVE;
3948 if (size == 64 && this->targ_->abiversion() < 2)
3949 dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3950 this->rel_->add_symbolless_local_addend(relobj, local_sym_index,
3951 dynrel, this, off, 0);
3952 }
3953 off += this->plt_entry_size();
3954 this->set_current_data_size(off);
3955 }
3956 }
3957
3958 // Add an entry for a local ifunc symbol to the IPLT.
3959
3960 template<int size, bool big_endian>
3961 void
3962 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3963 Sized_relobj_file<size, big_endian>* relobj,
3964 unsigned int local_sym_index)
3965 {
3966 if (!relobj->local_has_plt_offset(local_sym_index))
3967 {
3968 section_size_type off = this->current_data_size();
3969 relobj->set_local_plt_offset(local_sym_index, off);
3970 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3971 if (size == 64 && this->targ_->abiversion() < 2)
3972 dynrel = elfcpp::R_PPC64_JMP_IREL;
3973 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3974 this, off, 0);
3975 off += this->plt_entry_size();
3976 this->set_current_data_size(off);
3977 }
3978 }
3979
3980 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3981 static const uint32_t add_2_2_11 = 0x7c425a14;
3982 static const uint32_t add_2_2_12 = 0x7c426214;
3983 static const uint32_t add_3_3_2 = 0x7c631214;
3984 static const uint32_t add_3_3_13 = 0x7c636a14;
3985 static const uint32_t add_3_12_2 = 0x7c6c1214;
3986 static const uint32_t add_3_12_13 = 0x7c6c6a14;
3987 static const uint32_t add_11_0_11 = 0x7d605a14;
3988 static const uint32_t add_11_2_11 = 0x7d625a14;
3989 static const uint32_t add_11_11_2 = 0x7d6b1214;
3990 static const uint32_t addi_0_12 = 0x380c0000;
3991 static const uint32_t addi_2_2 = 0x38420000;
3992 static const uint32_t addi_3_3 = 0x38630000;
3993 static const uint32_t addi_11_11 = 0x396b0000;
3994 static const uint32_t addi_12_1 = 0x39810000;
3995 static const uint32_t addi_12_12 = 0x398c0000;
3996 static const uint32_t addis_0_2 = 0x3c020000;
3997 static const uint32_t addis_0_13 = 0x3c0d0000;
3998 static const uint32_t addis_2_12 = 0x3c4c0000;
3999 static const uint32_t addis_11_2 = 0x3d620000;
4000 static const uint32_t addis_11_11 = 0x3d6b0000;
4001 static const uint32_t addis_11_30 = 0x3d7e0000;
4002 static const uint32_t addis_12_1 = 0x3d810000;
4003 static const uint32_t addis_12_2 = 0x3d820000;
4004 static const uint32_t addis_12_12 = 0x3d8c0000;
4005 static const uint32_t b = 0x48000000;
4006 static const uint32_t bcl_20_31 = 0x429f0005;
4007 static const uint32_t bctr = 0x4e800420;
4008 static const uint32_t bctrl = 0x4e800421;
4009 static const uint32_t beqlr = 0x4d820020;
4010 static const uint32_t blr = 0x4e800020;
4011 static const uint32_t bnectr_p4 = 0x4ce20420;
4012 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
4013 static const uint32_t cmpldi_2_0 = 0x28220000;
4014 static const uint32_t cmpdi_11_0 = 0x2c2b0000;
4015 static const uint32_t cmpwi_11_0 = 0x2c0b0000;
4016 static const uint32_t cror_15_15_15 = 0x4def7b82;
4017 static const uint32_t cror_31_31_31 = 0x4ffffb82;
4018 static const uint32_t ld_0_1 = 0xe8010000;
4019 static const uint32_t ld_0_12 = 0xe80c0000;
4020 static const uint32_t ld_2_1 = 0xe8410000;
4021 static const uint32_t ld_2_2 = 0xe8420000;
4022 static const uint32_t ld_2_11 = 0xe84b0000;
4023 static const uint32_t ld_2_12 = 0xe84c0000;
4024 static const uint32_t ld_11_1 = 0xe9610000;
4025 static const uint32_t ld_11_2 = 0xe9620000;
4026 static const uint32_t ld_11_3 = 0xe9630000;
4027 static const uint32_t ld_11_11 = 0xe96b0000;
4028 static const uint32_t ld_12_2 = 0xe9820000;
4029 static const uint32_t ld_12_3 = 0xe9830000;
4030 static const uint32_t ld_12_11 = 0xe98b0000;
4031 static const uint32_t ld_12_12 = 0xe98c0000;
4032 static const uint32_t lfd_0_1 = 0xc8010000;
4033 static const uint32_t li_0_0 = 0x38000000;
4034 static const uint32_t li_12_0 = 0x39800000;
4035 static const uint32_t lis_0 = 0x3c000000;
4036 static const uint32_t lis_2 = 0x3c400000;
4037 static const uint32_t lis_11 = 0x3d600000;
4038 static const uint32_t lis_12 = 0x3d800000;
4039 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
4040 static const uint32_t lwz_0_12 = 0x800c0000;
4041 static const uint32_t lwz_11_3 = 0x81630000;
4042 static const uint32_t lwz_11_11 = 0x816b0000;
4043 static const uint32_t lwz_11_30 = 0x817e0000;
4044 static const uint32_t lwz_12_3 = 0x81830000;
4045 static const uint32_t lwz_12_12 = 0x818c0000;
4046 static const uint32_t lwzu_0_12 = 0x840c0000;
4047 static const uint32_t mflr_0 = 0x7c0802a6;
4048 static const uint32_t mflr_11 = 0x7d6802a6;
4049 static const uint32_t mflr_12 = 0x7d8802a6;
4050 static const uint32_t mr_0_3 = 0x7c601b78;
4051 static const uint32_t mr_3_0 = 0x7c030378;
4052 static const uint32_t mtctr_0 = 0x7c0903a6;
4053 static const uint32_t mtctr_11 = 0x7d6903a6;
4054 static const uint32_t mtctr_12 = 0x7d8903a6;
4055 static const uint32_t mtlr_0 = 0x7c0803a6;
4056 static const uint32_t mtlr_11 = 0x7d6803a6;
4057 static const uint32_t mtlr_12 = 0x7d8803a6;
4058 static const uint32_t nop = 0x60000000;
4059 static const uint32_t ori_0_0_0 = 0x60000000;
4060 static const uint32_t srdi_0_0_2 = 0x7800f082;
4061 static const uint32_t std_0_1 = 0xf8010000;
4062 static const uint32_t std_0_12 = 0xf80c0000;
4063 static const uint32_t std_2_1 = 0xf8410000;
4064 static const uint32_t std_11_1 = 0xf9610000;
4065 static const uint32_t stfd_0_1 = 0xd8010000;
4066 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
4067 static const uint32_t sub_11_11_12 = 0x7d6c5850;
4068 static const uint32_t sub_12_12_11 = 0x7d8b6050;
4069 static const uint32_t xor_2_12_12 = 0x7d826278;
4070 static const uint32_t xor_11_12_12 = 0x7d8b6278;
4071
4072 // Write out the PLT.
4073
4074 template<int size, bool big_endian>
4075 void
4076 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
4077 {
4078 if (size == 32 && (this->name_[3] != 'I' && this->name_[3] != 'L'))
4079 {
4080 const section_size_type offset = this->offset();
4081 const section_size_type oview_size
4082 = convert_to_section_size_type(this->data_size());
4083 unsigned char* const oview = of->get_output_view(offset, oview_size);
4084 unsigned char* pov = oview;
4085 unsigned char* endpov = oview + oview_size;
4086
4087 // The address of the .glink branch table
4088 const Output_data_glink<size, big_endian>* glink
4089 = this->targ_->glink_section();
4090 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
4091
4092 while (pov < endpov)
4093 {
4094 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
4095 pov += 4;
4096 branch_tab += 4;
4097 }
4098
4099 of->write_output_view(offset, oview_size, oview);
4100 }
4101 }
4102
4103 // Create the PLT section.
4104
4105 template<int size, bool big_endian>
4106 void
4107 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
4108 Layout* layout)
4109 {
4110 if (this->plt_ == NULL)
4111 {
4112 if (this->got_ == NULL)
4113 this->got_section(symtab, layout);
4114
4115 if (this->glink_ == NULL)
4116 make_glink_section(layout);
4117
4118 // Ensure that .rela.dyn always appears before .rela.plt This is
4119 // necessary due to how, on PowerPC and some other targets, .rela.dyn
4120 // needs to include .rela.plt in its range.
4121 this->rela_dyn_section(layout);
4122
4123 Reloc_section* plt_rel = new Reloc_section(false);
4124 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4125 elfcpp::SHF_ALLOC, plt_rel,
4126 ORDER_DYNAMIC_PLT_RELOCS, false);
4127 this->plt_
4128 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
4129 "** PLT");
4130 layout->add_output_section_data(".plt",
4131 (size == 32
4132 ? elfcpp::SHT_PROGBITS
4133 : elfcpp::SHT_NOBITS),
4134 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4135 this->plt_,
4136 (size == 32
4137 ? ORDER_SMALL_DATA
4138 : ORDER_SMALL_BSS),
4139 false);
4140
4141 Output_section* rela_plt_os = plt_rel->output_section();
4142 rela_plt_os->set_info_section(this->plt_->output_section());
4143 }
4144 }
4145
4146 // Create the IPLT section.
4147
4148 template<int size, bool big_endian>
4149 void
4150 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
4151 Layout* layout)
4152 {
4153 if (this->iplt_ == NULL)
4154 {
4155 this->make_plt_section(symtab, layout);
4156 this->make_lplt_section(layout);
4157
4158 Reloc_section* iplt_rel = new Reloc_section(false);
4159 if (this->rela_dyn_->output_section())
4160 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
4161 this->iplt_
4162 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
4163 "** IPLT");
4164 if (this->plt_->output_section())
4165 this->plt_->output_section()->add_output_section_data(this->iplt_);
4166 }
4167 }
4168
4169 // Create the LPLT section.
4170
4171 template<int size, bool big_endian>
4172 void
4173 Target_powerpc<size, big_endian>::make_lplt_section(Layout* layout)
4174 {
4175 if (this->lplt_ == NULL)
4176 {
4177 Reloc_section* lplt_rel = NULL;
4178 if (parameters->options().output_is_position_independent())
4179 {
4180 lplt_rel = new Reloc_section(false);
4181 this->rela_dyn_section(layout);
4182 if (this->rela_dyn_->output_section())
4183 this->rela_dyn_->output_section()
4184 ->add_output_section_data(lplt_rel);
4185 }
4186 this->lplt_
4187 = new Output_data_plt_powerpc<size, big_endian>(this, lplt_rel,
4188 "** LPLT");
4189 this->make_brlt_section(layout);
4190 if (this->brlt_section_ && this->brlt_section_->output_section())
4191 this->brlt_section_->output_section()
4192 ->add_output_section_data(this->lplt_);
4193 else
4194 layout->add_output_section_data(".branch_lt",
4195 elfcpp::SHT_PROGBITS,
4196 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4197 this->lplt_,
4198 ORDER_RELRO,
4199 true);
4200 }
4201 }
4202
4203 // A section for huge long branch addresses, similar to plt section.
4204
4205 template<int size, bool big_endian>
4206 class Output_data_brlt_powerpc : public Output_section_data_build
4207 {
4208 public:
4209 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4210 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
4211 size, big_endian> Reloc_section;
4212
4213 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
4214 Reloc_section* brlt_rel)
4215 : Output_section_data_build(size == 32 ? 4 : 8),
4216 rel_(brlt_rel),
4217 targ_(targ)
4218 { }
4219
4220 void
4221 reset_brlt_sizes()
4222 {
4223 this->reset_data_size();
4224 this->rel_->reset_data_size();
4225 }
4226
4227 void
4228 finalize_brlt_sizes()
4229 {
4230 this->finalize_data_size();
4231 this->rel_->finalize_data_size();
4232 }
4233
4234 // Add a reloc for an entry in the BRLT.
4235 void
4236 add_reloc(Address to, unsigned int off)
4237 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
4238
4239 // Update section and reloc section size.
4240 void
4241 set_current_size(unsigned int num_branches)
4242 {
4243 this->reset_address_and_file_offset();
4244 this->set_current_data_size(num_branches * 16);
4245 this->finalize_data_size();
4246 Output_section* os = this->output_section();
4247 os->set_section_offsets_need_adjustment();
4248 if (this->rel_ != NULL)
4249 {
4250 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
4251 this->rel_->reset_address_and_file_offset();
4252 this->rel_->set_current_data_size(num_branches * reloc_size);
4253 this->rel_->finalize_data_size();
4254 Output_section* os = this->rel_->output_section();
4255 os->set_section_offsets_need_adjustment();
4256 }
4257 }
4258
4259 protected:
4260 void
4261 do_adjust_output_section(Output_section* os)
4262 {
4263 os->set_entsize(0);
4264 }
4265
4266 // Write to a map file.
4267 void
4268 do_print_to_mapfile(Mapfile* mapfile) const
4269 { mapfile->print_output_data(this, "** BRLT"); }
4270
4271 private:
4272 // Write out the BRLT data.
4273 void
4274 do_write(Output_file*);
4275
4276 // The reloc section.
4277 Reloc_section* rel_;
4278 Target_powerpc<size, big_endian>* targ_;
4279 };
4280
4281 // Make the branch lookup table section.
4282
4283 template<int size, bool big_endian>
4284 void
4285 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
4286 {
4287 if (size == 64 && this->brlt_section_ == NULL)
4288 {
4289 Reloc_section* brlt_rel = NULL;
4290 bool is_pic = parameters->options().output_is_position_independent();
4291 if (is_pic)
4292 {
4293 // When PIC we can't fill in .branch_lt but must initialise at
4294 // runtime via dynamic relocations.
4295 this->rela_dyn_section(layout);
4296 brlt_rel = new Reloc_section(false);
4297 if (this->rela_dyn_->output_section())
4298 this->rela_dyn_->output_section()
4299 ->add_output_section_data(brlt_rel);
4300 }
4301 this->brlt_section_
4302 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
4303 if (this->plt_ && is_pic && this->plt_->output_section())
4304 this->plt_->output_section()
4305 ->add_output_section_data(this->brlt_section_);
4306 else
4307 layout->add_output_section_data(".branch_lt",
4308 elfcpp::SHT_PROGBITS,
4309 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
4310 this->brlt_section_,
4311 ORDER_RELRO,
4312 true);
4313 }
4314 }
4315
4316 // Write out .branch_lt when non-PIC.
4317
4318 template<int size, bool big_endian>
4319 void
4320 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
4321 {
4322 if (size == 64 && !parameters->options().output_is_position_independent())
4323 {
4324 const section_size_type offset = this->offset();
4325 const section_size_type oview_size
4326 = convert_to_section_size_type(this->data_size());
4327 unsigned char* const oview = of->get_output_view(offset, oview_size);
4328
4329 this->targ_->write_branch_lookup_table(oview);
4330 of->write_output_view(offset, oview_size, oview);
4331 }
4332 }
4333
4334 static inline uint32_t
4335 l(uint32_t a)
4336 {
4337 return a & 0xffff;
4338 }
4339
4340 static inline uint32_t
4341 hi(uint32_t a)
4342 {
4343 return l(a >> 16);
4344 }
4345
4346 static inline uint32_t
4347 ha(uint32_t a)
4348 {
4349 return hi(a + 0x8000);
4350 }
4351
4352 template<int size>
4353 struct Eh_cie
4354 {
4355 static const unsigned char eh_frame_cie[12];
4356 };
4357
4358 template<int size>
4359 const unsigned char Eh_cie<size>::eh_frame_cie[] =
4360 {
4361 1, // CIE version.
4362 'z', 'R', 0, // Augmentation string.
4363 4, // Code alignment.
4364 0x80 - size / 8 , // Data alignment.
4365 65, // RA reg.
4366 1, // Augmentation size.
4367 (elfcpp::DW_EH_PE_pcrel
4368 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
4369 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
4370 };
4371
4372 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
4373 static const unsigned char glink_eh_frame_fde_64v1[] =
4374 {
4375 0, 0, 0, 0, // Replaced with offset to .glink.
4376 0, 0, 0, 0, // Replaced with size of .glink.
4377 0, // Augmentation size.
4378 elfcpp::DW_CFA_advance_loc + 1,
4379 elfcpp::DW_CFA_register, 65, 12,
4380 elfcpp::DW_CFA_advance_loc + 5,
4381 elfcpp::DW_CFA_restore_extended, 65
4382 };
4383
4384 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
4385 static const unsigned char glink_eh_frame_fde_64v2[] =
4386 {
4387 0, 0, 0, 0, // Replaced with offset to .glink.
4388 0, 0, 0, 0, // Replaced with size of .glink.
4389 0, // Augmentation size.
4390 elfcpp::DW_CFA_advance_loc + 1,
4391 elfcpp::DW_CFA_register, 65, 0,
4392 elfcpp::DW_CFA_advance_loc + 7,
4393 elfcpp::DW_CFA_restore_extended, 65
4394 };
4395
4396 // Describe __glink_PLTresolve use of LR, 32-bit version.
4397 static const unsigned char glink_eh_frame_fde_32[] =
4398 {
4399 0, 0, 0, 0, // Replaced with offset to .glink.
4400 0, 0, 0, 0, // Replaced with size of .glink.
4401 0, // Augmentation size.
4402 elfcpp::DW_CFA_advance_loc + 2,
4403 elfcpp::DW_CFA_register, 65, 0,
4404 elfcpp::DW_CFA_advance_loc + 4,
4405 elfcpp::DW_CFA_restore_extended, 65
4406 };
4407
4408 static const unsigned char default_fde[] =
4409 {
4410 0, 0, 0, 0, // Replaced with offset to stubs.
4411 0, 0, 0, 0, // Replaced with size of stubs.
4412 0, // Augmentation size.
4413 elfcpp::DW_CFA_nop, // Pad.
4414 elfcpp::DW_CFA_nop,
4415 elfcpp::DW_CFA_nop
4416 };
4417
4418 template<bool big_endian>
4419 static inline void
4420 write_insn(unsigned char* p, uint32_t v)
4421 {
4422 elfcpp::Swap<32, big_endian>::writeval(p, v);
4423 }
4424
4425 template<int size>
4426 static inline unsigned int
4427 param_plt_align()
4428 {
4429 if (!parameters->options().user_set_plt_align())
4430 return size == 64 ? 32 : 8;
4431 return 1 << parameters->options().plt_align();
4432 }
4433
4434 // Stub_table holds information about plt and long branch stubs.
4435 // Stubs are built in an area following some input section determined
4436 // by group_sections(). This input section is converted to a relaxed
4437 // input section allowing it to be resized to accommodate the stubs
4438
4439 template<int size, bool big_endian>
4440 class Stub_table : public Output_relaxed_input_section
4441 {
4442 public:
4443 struct Plt_stub_ent
4444 {
4445 Plt_stub_ent(unsigned int off, unsigned int indx)
4446 : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4447 { }
4448
4449 unsigned int off_;
4450 unsigned int indx_ : 30;
4451 unsigned int r2save_ : 1;
4452 unsigned int localentry0_ : 1;
4453 };
4454 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4455 static const Address invalid_address = static_cast<Address>(0) - 1;
4456
4457 Stub_table(Target_powerpc<size, big_endian>* targ,
4458 Output_section* output_section,
4459 const Output_section::Input_section* owner,
4460 uint32_t id)
4461 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4462 owner->relobj()
4463 ->section_addralign(owner->shndx())),
4464 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4465 orig_data_size_(owner->current_data_size()),
4466 plt_size_(0), last_plt_size_(0),
4467 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4468 need_save_res_(false), uniq_(id), tls_get_addr_opt_bctrl_(-1u),
4469 plt_fde_len_(0)
4470 {
4471 this->set_output_section(output_section);
4472
4473 std::vector<Output_relaxed_input_section*> new_relaxed;
4474 new_relaxed.push_back(this);
4475 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4476 }
4477
4478 // Add a plt call stub.
4479 bool
4480 add_plt_call_entry(Address,
4481 const Sized_relobj_file<size, big_endian>*,
4482 const Symbol*,
4483 unsigned int,
4484 Address,
4485 bool);
4486
4487 bool
4488 add_plt_call_entry(Address,
4489 const Sized_relobj_file<size, big_endian>*,
4490 unsigned int,
4491 unsigned int,
4492 Address,
4493 bool);
4494
4495 // Find a given plt call stub.
4496 const Plt_stub_ent*
4497 find_plt_call_entry(const Symbol*) const;
4498
4499 const Plt_stub_ent*
4500 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4501 unsigned int) const;
4502
4503 const Plt_stub_ent*
4504 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4505 const Symbol*,
4506 unsigned int,
4507 Address) const;
4508
4509 const Plt_stub_ent*
4510 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4511 unsigned int,
4512 unsigned int,
4513 Address) const;
4514
4515 // Add a long branch stub.
4516 bool
4517 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4518 unsigned int, Address, Address, bool);
4519
4520 Address
4521 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4522 Address) const;
4523
4524 bool
4525 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4526 {
4527 Address max_branch_offset = max_branch_delta(r_type);
4528 if (max_branch_offset == 0)
4529 return true;
4530 gold_assert(from != invalid_address);
4531 Address loc = off + this->stub_address();
4532 return loc - from + max_branch_offset < 2 * max_branch_offset;
4533 }
4534
4535 void
4536 clear_stubs(bool all)
4537 {
4538 this->plt_call_stubs_.clear();
4539 this->plt_size_ = 0;
4540 this->long_branch_stubs_.clear();
4541 this->branch_size_ = 0;
4542 this->need_save_res_ = false;
4543 if (all)
4544 {
4545 this->last_plt_size_ = 0;
4546 this->last_branch_size_ = 0;
4547 }
4548 }
4549
4550 Address
4551 set_address_and_size(const Output_section* os, Address off)
4552 {
4553 Address start_off = off;
4554 off += this->orig_data_size_;
4555 Address my_size = this->plt_size_ + this->branch_size_;
4556 if (this->need_save_res_)
4557 my_size += this->targ_->savres_section()->data_size();
4558 if (my_size != 0)
4559 off = align_address(off, this->stub_align());
4560 // Include original section size and alignment padding in size
4561 my_size += off - start_off;
4562 // Ensure new size is always larger than min size
4563 // threshold. Alignment requirement is included in "my_size", so
4564 // increase "my_size" does not invalidate alignment.
4565 if (my_size < this->min_size_threshold_)
4566 my_size = this->min_size_threshold_;
4567 this->reset_address_and_file_offset();
4568 this->set_current_data_size(my_size);
4569 this->set_address_and_file_offset(os->address() + start_off,
4570 os->offset() + start_off);
4571 return my_size;
4572 }
4573
4574 Address
4575 stub_address() const
4576 {
4577 return align_address(this->address() + this->orig_data_size_,
4578 this->stub_align());
4579 }
4580
4581 Address
4582 stub_offset() const
4583 {
4584 return align_address(this->offset() + this->orig_data_size_,
4585 this->stub_align());
4586 }
4587
4588 section_size_type
4589 plt_size() const
4590 { return this->plt_size_; }
4591
4592 void
4593 set_min_size_threshold(Address min_size)
4594 { this->min_size_threshold_ = min_size; }
4595
4596 void
4597 define_stub_syms(Symbol_table*);
4598
4599 bool
4600 size_update()
4601 {
4602 Output_section* os = this->output_section();
4603 if (os->addralign() < this->stub_align())
4604 {
4605 os->set_addralign(this->stub_align());
4606 // FIXME: get rid of the insane checkpointing.
4607 // We can't increase alignment of the input section to which
4608 // stubs are attached; The input section may be .init which
4609 // is pasted together with other .init sections to form a
4610 // function. Aligning might insert zero padding resulting in
4611 // sigill. However we do need to increase alignment of the
4612 // output section so that the align_address() on offset in
4613 // set_address_and_size() adds the same padding as the
4614 // align_address() on address in stub_address().
4615 // What's more, we need this alignment for the layout done in
4616 // relaxation_loop_body() so that the output section starts at
4617 // a suitably aligned address.
4618 os->checkpoint_set_addralign(this->stub_align());
4619 }
4620 if (this->last_plt_size_ != this->plt_size_
4621 || this->last_branch_size_ != this->branch_size_)
4622 {
4623 this->last_plt_size_ = this->plt_size_;
4624 this->last_branch_size_ = this->branch_size_;
4625 return true;
4626 }
4627 return false;
4628 }
4629
4630 // Generate a suitable FDE to describe code in this stub group.
4631 void
4632 init_plt_fde();
4633
4634 // Add .eh_frame info for this stub section.
4635 void
4636 add_eh_frame(Layout* layout);
4637
4638 // Remove .eh_frame info for this stub section.
4639 void
4640 remove_eh_frame(Layout* layout);
4641
4642 Target_powerpc<size, big_endian>*
4643 targ() const
4644 { return targ_; }
4645
4646 private:
4647 class Plt_stub_key;
4648 class Plt_stub_key_hash;
4649 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4650 Plt_stub_key_hash> Plt_stub_entries;
4651 class Branch_stub_ent;
4652 class Branch_stub_ent_hash;
4653 typedef Unordered_map<Branch_stub_ent, unsigned int,
4654 Branch_stub_ent_hash> Branch_stub_entries;
4655
4656 // Alignment of stub section.
4657 unsigned int
4658 stub_align() const
4659 {
4660 unsigned int min_align = size == 64 ? 32 : 16;
4661 unsigned int user_align = 1 << parameters->options().plt_align();
4662 return std::max(user_align, min_align);
4663 }
4664
4665 // Return the plt offset for the given call stub.
4666 Address
4667 plt_off(typename Plt_stub_entries::const_iterator p,
4668 const Output_data_plt_powerpc<size, big_endian>** sec) const
4669 {
4670 const Symbol* gsym = p->first.sym_;
4671 if (gsym != NULL)
4672 return this->targ_->plt_off(gsym, sec);
4673 else
4674 {
4675 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4676 unsigned int local_sym_index = p->first.locsym_;
4677 return this->targ_->plt_off(relobj, local_sym_index, sec);
4678 }
4679 }
4680
4681 // Size of a given plt call stub.
4682 unsigned int
4683 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4684 {
4685 if (size == 32)
4686 {
4687 const Symbol* gsym = p->first.sym_;
4688 return (4 * 4
4689 + (this->targ_->is_tls_get_addr_opt(gsym) ? 8 * 4 : 0));
4690 }
4691
4692 const Output_data_plt_powerpc<size, big_endian>* plt;
4693 Address plt_addr = this->plt_off(p, &plt);
4694 plt_addr += plt->address();
4695 Address got_addr = this->targ_->got_section()->output_section()->address();
4696 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4697 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4698 got_addr += ppcobj->toc_base_offset();
4699 Address off = plt_addr - got_addr;
4700 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4701 const Symbol* gsym = p->first.sym_;
4702 if (this->targ_->is_tls_get_addr_opt(gsym))
4703 bytes += 13 * 4;
4704 if (this->targ_->abiversion() < 2)
4705 {
4706 bool static_chain = parameters->options().plt_static_chain();
4707 bool thread_safe = this->targ_->plt_thread_safe();
4708 bytes += (4
4709 + 4 * static_chain
4710 + 8 * thread_safe
4711 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4712 }
4713 return bytes;
4714 }
4715
4716 unsigned int
4717 plt_call_align(unsigned int bytes) const
4718 {
4719 unsigned int align = param_plt_align<size>();
4720 return (bytes + align - 1) & -align;
4721 }
4722
4723 // Return long branch stub size.
4724 unsigned int
4725 branch_stub_size(typename Branch_stub_entries::const_iterator p)
4726 {
4727 Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4728 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4729 return 4;
4730 unsigned int bytes = 16;
4731 if (size == 32 && parameters->options().output_is_position_independent())
4732 bytes += 16;
4733 return bytes;
4734 }
4735
4736 // Write out stubs.
4737 void
4738 do_write(Output_file*);
4739
4740 // Plt call stub keys.
4741 class Plt_stub_key
4742 {
4743 public:
4744 Plt_stub_key(const Symbol* sym)
4745 : sym_(sym), object_(0), addend_(0), locsym_(0)
4746 { }
4747
4748 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4749 unsigned int locsym_index)
4750 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4751 { }
4752
4753 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4754 const Symbol* sym,
4755 unsigned int r_type,
4756 Address addend)
4757 : sym_(sym), object_(0), addend_(0), locsym_(0)
4758 {
4759 if (size != 32)
4760 this->addend_ = addend;
4761 else if (parameters->options().output_is_position_independent()
4762 && (r_type == elfcpp::R_PPC_PLTREL24
4763 || r_type == elfcpp::R_POWERPC_PLTCALL))
4764 {
4765 this->addend_ = addend;
4766 if (this->addend_ >= 32768)
4767 this->object_ = object;
4768 }
4769 }
4770
4771 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4772 unsigned int locsym_index,
4773 unsigned int r_type,
4774 Address addend)
4775 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4776 {
4777 if (size != 32)
4778 this->addend_ = addend;
4779 else if (parameters->options().output_is_position_independent()
4780 && (r_type == elfcpp::R_PPC_PLTREL24
4781 || r_type == elfcpp::R_POWERPC_PLTCALL))
4782 this->addend_ = addend;
4783 }
4784
4785 bool operator==(const Plt_stub_key& that) const
4786 {
4787 return (this->sym_ == that.sym_
4788 && this->object_ == that.object_
4789 && this->addend_ == that.addend_
4790 && this->locsym_ == that.locsym_);
4791 }
4792
4793 const Symbol* sym_;
4794 const Sized_relobj_file<size, big_endian>* object_;
4795 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4796 unsigned int locsym_;
4797 };
4798
4799 class Plt_stub_key_hash
4800 {
4801 public:
4802 size_t operator()(const Plt_stub_key& ent) const
4803 {
4804 return (reinterpret_cast<uintptr_t>(ent.sym_)
4805 ^ reinterpret_cast<uintptr_t>(ent.object_)
4806 ^ ent.addend_
4807 ^ ent.locsym_);
4808 }
4809 };
4810
4811 // Long branch stub keys.
4812 class Branch_stub_ent
4813 {
4814 public:
4815 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4816 Address to, bool save_res)
4817 : dest_(to), toc_base_off_(0), save_res_(save_res)
4818 {
4819 if (size == 64)
4820 toc_base_off_ = obj->toc_base_offset();
4821 }
4822
4823 bool operator==(const Branch_stub_ent& that) const
4824 {
4825 return (this->dest_ == that.dest_
4826 && (size == 32
4827 || this->toc_base_off_ == that.toc_base_off_));
4828 }
4829
4830 Address dest_;
4831 unsigned int toc_base_off_;
4832 bool save_res_;
4833 };
4834
4835 class Branch_stub_ent_hash
4836 {
4837 public:
4838 size_t operator()(const Branch_stub_ent& ent) const
4839 { return ent.dest_ ^ ent.toc_base_off_; }
4840 };
4841
4842 // In a sane world this would be a global.
4843 Target_powerpc<size, big_endian>* targ_;
4844 // Map sym/object/addend to stub offset.
4845 Plt_stub_entries plt_call_stubs_;
4846 // Map destination address to stub offset.
4847 Branch_stub_entries long_branch_stubs_;
4848 // size of input section
4849 section_size_type orig_data_size_;
4850 // size of stubs
4851 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4852 // Some rare cases cause (PR/20529) fluctuation in stub table
4853 // size, which leads to an endless relax loop. This is to be fixed
4854 // by, after the first few iterations, allowing only increase of
4855 // stub table size. This variable sets the minimal possible size of
4856 // a stub table, it is zero for the first few iterations, then
4857 // increases monotonically.
4858 Address min_size_threshold_;
4859 // Set if this stub group needs a copy of out-of-line register
4860 // save/restore functions.
4861 bool need_save_res_;
4862 // Per stub table unique identifier.
4863 uint32_t uniq_;
4864 // The bctrl in the __tls_get_addr_opt stub, if present.
4865 unsigned int tls_get_addr_opt_bctrl_;
4866 // FDE unwind info for this stub group.
4867 unsigned int plt_fde_len_;
4868 unsigned char plt_fde_[20];
4869 };
4870
4871 // Add a plt call stub, if we do not already have one for this
4872 // sym/object/addend combo.
4873
4874 template<int size, bool big_endian>
4875 bool
4876 Stub_table<size, big_endian>::add_plt_call_entry(
4877 Address from,
4878 const Sized_relobj_file<size, big_endian>* object,
4879 const Symbol* gsym,
4880 unsigned int r_type,
4881 Address addend,
4882 bool tocsave)
4883 {
4884 Plt_stub_key key(object, gsym, r_type, addend);
4885 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4886 std::pair<typename Plt_stub_entries::iterator, bool> p
4887 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4888 if (p.second)
4889 {
4890 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4891 if (size == 64
4892 && this->targ_->is_elfv2_localentry0(gsym))
4893 {
4894 p.first->second.localentry0_ = 1;
4895 this->targ_->set_has_localentry0();
4896 }
4897 if (this->targ_->is_tls_get_addr_opt(gsym))
4898 {
4899 this->targ_->set_has_tls_get_addr_opt();
4900 this->tls_get_addr_opt_bctrl_ = this->plt_size_ - 5 * 4;
4901 }
4902 this->plt_size_ = this->plt_call_align(this->plt_size_);
4903 }
4904 if (size == 64
4905 && !tocsave
4906 && !p.first->second.localentry0_)
4907 p.first->second.r2save_ = 1;
4908 return this->can_reach_stub(from, ent.off_, r_type);
4909 }
4910
4911 template<int size, bool big_endian>
4912 bool
4913 Stub_table<size, big_endian>::add_plt_call_entry(
4914 Address from,
4915 const Sized_relobj_file<size, big_endian>* object,
4916 unsigned int locsym_index,
4917 unsigned int r_type,
4918 Address addend,
4919 bool tocsave)
4920 {
4921 Plt_stub_key key(object, locsym_index, r_type, addend);
4922 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4923 std::pair<typename Plt_stub_entries::iterator, bool> p
4924 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4925 if (p.second)
4926 {
4927 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4928 this->plt_size_ = this->plt_call_align(this->plt_size_);
4929 if (size == 64
4930 && this->targ_->is_elfv2_localentry0(object, locsym_index))
4931 {
4932 p.first->second.localentry0_ = 1;
4933 this->targ_->set_has_localentry0();
4934 }
4935 }
4936 if (size == 64
4937 && !tocsave
4938 && !p.first->second.localentry0_)
4939 p.first->second.r2save_ = 1;
4940 return this->can_reach_stub(from, ent.off_, r_type);
4941 }
4942
4943 // Find a plt call stub.
4944
4945 template<int size, bool big_endian>
4946 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4947 Stub_table<size, big_endian>::find_plt_call_entry(
4948 const Sized_relobj_file<size, big_endian>* object,
4949 const Symbol* gsym,
4950 unsigned int r_type,
4951 Address addend) const
4952 {
4953 Plt_stub_key key(object, gsym, r_type, addend);
4954 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4955 if (p == this->plt_call_stubs_.end())
4956 return NULL;
4957 return &p->second;
4958 }
4959
4960 template<int size, bool big_endian>
4961 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4962 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4963 {
4964 Plt_stub_key key(gsym);
4965 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4966 if (p == this->plt_call_stubs_.end())
4967 return NULL;
4968 return &p->second;
4969 }
4970
4971 template<int size, bool big_endian>
4972 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4973 Stub_table<size, big_endian>::find_plt_call_entry(
4974 const Sized_relobj_file<size, big_endian>* object,
4975 unsigned int locsym_index,
4976 unsigned int r_type,
4977 Address addend) const
4978 {
4979 Plt_stub_key key(object, locsym_index, r_type, addend);
4980 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4981 if (p == this->plt_call_stubs_.end())
4982 return NULL;
4983 return &p->second;
4984 }
4985
4986 template<int size, bool big_endian>
4987 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4988 Stub_table<size, big_endian>::find_plt_call_entry(
4989 const Sized_relobj_file<size, big_endian>* object,
4990 unsigned int locsym_index) const
4991 {
4992 Plt_stub_key key(object, locsym_index);
4993 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4994 if (p == this->plt_call_stubs_.end())
4995 return NULL;
4996 return &p->second;
4997 }
4998
4999 // Add a long branch stub if we don't already have one to given
5000 // destination.
5001
5002 template<int size, bool big_endian>
5003 bool
5004 Stub_table<size, big_endian>::add_long_branch_entry(
5005 const Powerpc_relobj<size, big_endian>* object,
5006 unsigned int r_type,
5007 Address from,
5008 Address to,
5009 bool save_res)
5010 {
5011 Branch_stub_ent ent(object, to, save_res);
5012 Address off = this->branch_size_;
5013 std::pair<typename Branch_stub_entries::iterator, bool> p
5014 = this->long_branch_stubs_.insert(std::make_pair(ent, off));
5015 if (p.second)
5016 {
5017 if (save_res)
5018 this->need_save_res_ = true;
5019 else
5020 {
5021 unsigned int stub_size = this->branch_stub_size(p.first);
5022 this->branch_size_ = off + stub_size;
5023 if (size == 64 && stub_size != 4)
5024 this->targ_->add_branch_lookup_table(to);
5025 }
5026 }
5027 return this->can_reach_stub(from, off, r_type);
5028 }
5029
5030 // Find long branch stub offset.
5031
5032 template<int size, bool big_endian>
5033 typename Stub_table<size, big_endian>::Address
5034 Stub_table<size, big_endian>::find_long_branch_entry(
5035 const Powerpc_relobj<size, big_endian>* object,
5036 Address to) const
5037 {
5038 Branch_stub_ent ent(object, to, false);
5039 typename Branch_stub_entries::const_iterator p
5040 = this->long_branch_stubs_.find(ent);
5041 if (p == this->long_branch_stubs_.end())
5042 return invalid_address;
5043 if (p->first.save_res_)
5044 return to - this->targ_->savres_section()->address() + this->branch_size_;
5045 return p->second;
5046 }
5047
5048 // Generate a suitable FDE to describe code in this stub group.
5049 // The __tls_get_addr_opt call stub needs to describe where it saves
5050 // LR, to support exceptions that might be thrown from __tls_get_addr.
5051
5052 template<int size, bool big_endian>
5053 void
5054 Stub_table<size, big_endian>::init_plt_fde()
5055 {
5056 unsigned char* p = this->plt_fde_;
5057 // offset pcrel sdata4, size udata4, and augmentation size byte.
5058 memset (p, 0, 9);
5059 p += 9;
5060 if (this->tls_get_addr_opt_bctrl_ != -1u)
5061 {
5062 unsigned int to_bctrl = this->tls_get_addr_opt_bctrl_ / 4;
5063 if (to_bctrl < 64)
5064 *p++ = elfcpp::DW_CFA_advance_loc + to_bctrl;
5065 else if (to_bctrl < 256)
5066 {
5067 *p++ = elfcpp::DW_CFA_advance_loc1;
5068 *p++ = to_bctrl;
5069 }
5070 else if (to_bctrl < 65536)
5071 {
5072 *p++ = elfcpp::DW_CFA_advance_loc2;
5073 elfcpp::Swap<16, big_endian>::writeval(p, to_bctrl);
5074 p += 2;
5075 }
5076 else
5077 {
5078 *p++ = elfcpp::DW_CFA_advance_loc4;
5079 elfcpp::Swap<32, big_endian>::writeval(p, to_bctrl);
5080 p += 4;
5081 }
5082 *p++ = elfcpp::DW_CFA_offset_extended_sf;
5083 *p++ = 65;
5084 *p++ = -(this->targ_->stk_linker() / 8) & 0x7f;
5085 *p++ = elfcpp::DW_CFA_advance_loc + 4;
5086 *p++ = elfcpp::DW_CFA_restore_extended;
5087 *p++ = 65;
5088 }
5089 this->plt_fde_len_ = p - this->plt_fde_;
5090 }
5091
5092 // Add .eh_frame info for this stub section. Unlike other linker
5093 // generated .eh_frame this is added late in the link, because we
5094 // only want the .eh_frame info if this particular stub section is
5095 // non-empty.
5096
5097 template<int size, bool big_endian>
5098 void
5099 Stub_table<size, big_endian>::add_eh_frame(Layout* layout)
5100 {
5101 if (!parameters->options().ld_generated_unwind_info())
5102 return;
5103
5104 // Since we add stub .eh_frame info late, it must be placed
5105 // after all other linker generated .eh_frame info so that
5106 // merge mapping need not be updated for input sections.
5107 // There is no provision to use a different CIE to that used
5108 // by .glink.
5109 if (!this->targ_->has_glink())
5110 return;
5111
5112 if (this->plt_size_ + this->branch_size_ + this->need_save_res_ == 0)
5113 return;
5114
5115 this->init_plt_fde();
5116 layout->add_eh_frame_for_plt(this,
5117 Eh_cie<size>::eh_frame_cie,
5118 sizeof (Eh_cie<size>::eh_frame_cie),
5119 this->plt_fde_, this->plt_fde_len_);
5120 }
5121
5122 template<int size, bool big_endian>
5123 void
5124 Stub_table<size, big_endian>::remove_eh_frame(Layout* layout)
5125 {
5126 if (this->plt_fde_len_ != 0)
5127 {
5128 layout->remove_eh_frame_for_plt(this,
5129 Eh_cie<size>::eh_frame_cie,
5130 sizeof (Eh_cie<size>::eh_frame_cie),
5131 this->plt_fde_, this->plt_fde_len_);
5132 this->plt_fde_len_ = 0;
5133 }
5134 }
5135
5136 // A class to handle .glink.
5137
5138 template<int size, bool big_endian>
5139 class Output_data_glink : public Output_section_data
5140 {
5141 public:
5142 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5143 static const Address invalid_address = static_cast<Address>(0) - 1;
5144
5145 Output_data_glink(Target_powerpc<size, big_endian>* targ)
5146 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
5147 end_branch_table_(), ge_size_(0)
5148 { }
5149
5150 void
5151 add_eh_frame(Layout* layout);
5152
5153 void
5154 add_global_entry(const Symbol*);
5155
5156 Address
5157 find_global_entry(const Symbol*) const;
5158
5159 unsigned int
5160 global_entry_align(unsigned int off) const
5161 {
5162 unsigned int align = param_plt_align<size>();
5163 return (off + align - 1) & -align;
5164 }
5165
5166 unsigned int
5167 global_entry_off() const
5168 {
5169 return this->global_entry_align(this->end_branch_table_);
5170 }
5171
5172 Address
5173 global_entry_address() const
5174 {
5175 gold_assert(this->is_data_size_valid());
5176 return this->address() + this->global_entry_off();
5177 }
5178
5179 int
5180 pltresolve_size() const
5181 {
5182 if (size == 64)
5183 return (8
5184 + (this->targ_->abiversion() < 2 ? 11 * 4 : 14 * 4));
5185 return 16 * 4;
5186 }
5187
5188 protected:
5189 // Write to a map file.
5190 void
5191 do_print_to_mapfile(Mapfile* mapfile) const
5192 { mapfile->print_output_data(this, _("** glink")); }
5193
5194 private:
5195 void
5196 set_final_data_size();
5197
5198 // Write out .glink
5199 void
5200 do_write(Output_file*);
5201
5202 // Allows access to .got and .plt for do_write.
5203 Target_powerpc<size, big_endian>* targ_;
5204
5205 // Map sym to stub offset.
5206 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
5207 Global_entry_stub_entries global_entry_stubs_;
5208
5209 unsigned int end_branch_table_, ge_size_;
5210 };
5211
5212 template<int size, bool big_endian>
5213 void
5214 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
5215 {
5216 if (!parameters->options().ld_generated_unwind_info())
5217 return;
5218
5219 if (size == 64)
5220 {
5221 if (this->targ_->abiversion() < 2)
5222 layout->add_eh_frame_for_plt(this,
5223 Eh_cie<64>::eh_frame_cie,
5224 sizeof (Eh_cie<64>::eh_frame_cie),
5225 glink_eh_frame_fde_64v1,
5226 sizeof (glink_eh_frame_fde_64v1));
5227 else
5228 layout->add_eh_frame_for_plt(this,
5229 Eh_cie<64>::eh_frame_cie,
5230 sizeof (Eh_cie<64>::eh_frame_cie),
5231 glink_eh_frame_fde_64v2,
5232 sizeof (glink_eh_frame_fde_64v2));
5233 }
5234 else
5235 {
5236 // 32-bit .glink can use the default since the CIE return
5237 // address reg, LR, is valid.
5238 layout->add_eh_frame_for_plt(this,
5239 Eh_cie<32>::eh_frame_cie,
5240 sizeof (Eh_cie<32>::eh_frame_cie),
5241 default_fde,
5242 sizeof (default_fde));
5243 // Except where LR is used in a PIC __glink_PLTresolve.
5244 if (parameters->options().output_is_position_independent())
5245 layout->add_eh_frame_for_plt(this,
5246 Eh_cie<32>::eh_frame_cie,
5247 sizeof (Eh_cie<32>::eh_frame_cie),
5248 glink_eh_frame_fde_32,
5249 sizeof (glink_eh_frame_fde_32));
5250 }
5251 }
5252
5253 template<int size, bool big_endian>
5254 void
5255 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
5256 {
5257 unsigned int off = this->global_entry_align(this->ge_size_);
5258 std::pair<typename Global_entry_stub_entries::iterator, bool> p
5259 = this->global_entry_stubs_.insert(std::make_pair(gsym, off));
5260 if (p.second)
5261 this->ge_size_ = off + 16;
5262 }
5263
5264 template<int size, bool big_endian>
5265 typename Output_data_glink<size, big_endian>::Address
5266 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
5267 {
5268 typename Global_entry_stub_entries::const_iterator p
5269 = this->global_entry_stubs_.find(gsym);
5270 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
5271 }
5272
5273 template<int size, bool big_endian>
5274 void
5275 Output_data_glink<size, big_endian>::set_final_data_size()
5276 {
5277 unsigned int count = this->targ_->plt_entry_count();
5278 section_size_type total = 0;
5279
5280 if (count != 0)
5281 {
5282 if (size == 32)
5283 {
5284 // space for branch table
5285 total += 4 * (count - 1);
5286
5287 total += -total & 15;
5288 total += this->pltresolve_size();
5289 }
5290 else
5291 {
5292 total += this->pltresolve_size();
5293
5294 // space for branch table
5295 total += 4 * count;
5296 if (this->targ_->abiversion() < 2)
5297 {
5298 total += 4 * count;
5299 if (count > 0x8000)
5300 total += 4 * (count - 0x8000);
5301 }
5302 }
5303 }
5304 this->end_branch_table_ = total;
5305 total = this->global_entry_align(total);
5306 total += this->ge_size_;
5307
5308 this->set_data_size(total);
5309 }
5310
5311 // Define symbols on stubs, identifying the stub.
5312
5313 template<int size, bool big_endian>
5314 void
5315 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
5316 {
5317 if (!this->plt_call_stubs_.empty())
5318 {
5319 // The key for the plt call stub hash table includes addresses,
5320 // therefore traversal order depends on those addresses, which
5321 // can change between runs if gold is a PIE. Unfortunately the
5322 // output .symtab ordering depends on the order in which symbols
5323 // are added to the linker symtab. We want reproducible output
5324 // so must sort the call stub symbols.
5325 typedef typename Plt_stub_entries::const_iterator plt_iter;
5326 std::vector<plt_iter> sorted;
5327 sorted.resize(this->plt_call_stubs_.size());
5328
5329 for (plt_iter cs = this->plt_call_stubs_.begin();
5330 cs != this->plt_call_stubs_.end();
5331 ++cs)
5332 sorted[cs->second.indx_] = cs;
5333
5334 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
5335 {
5336 plt_iter cs = sorted[i];
5337 char add[10];
5338 add[0] = 0;
5339 if (cs->first.addend_ != 0)
5340 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
5341 char obj[10];
5342 obj[0] = 0;
5343 if (cs->first.object_)
5344 {
5345 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5346 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5347 sprintf(obj, "%x:", ppcobj->uniq());
5348 }
5349 char localname[9];
5350 const char *symname;
5351 if (cs->first.sym_ == NULL)
5352 {
5353 sprintf(localname, "%x", cs->first.locsym_);
5354 symname = localname;
5355 }
5356 else if (this->targ_->is_tls_get_addr_opt(cs->first.sym_))
5357 symname = this->targ_->tls_get_addr_opt()->name();
5358 else
5359 symname = cs->first.sym_->name();
5360 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
5361 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
5362 Address value
5363 = this->stub_address() - this->address() + cs->second.off_;
5364 unsigned int stub_size = this->plt_call_align(this->plt_call_size(cs));
5365 this->targ_->define_local(symtab, name, this, value, stub_size);
5366 }
5367 }
5368
5369 typedef typename Branch_stub_entries::const_iterator branch_iter;
5370 for (branch_iter bs = this->long_branch_stubs_.begin();
5371 bs != this->long_branch_stubs_.end();
5372 ++bs)
5373 {
5374 if (bs->first.save_res_)
5375 continue;
5376
5377 char* name = new char[8 + 13 + 16 + 1];
5378 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
5379 static_cast<unsigned long long>(bs->first.dest_));
5380 Address value = (this->stub_address() - this->address()
5381 + this->plt_size_ + bs->second);
5382 unsigned int stub_size = this->branch_stub_size(bs);
5383 this->targ_->define_local(symtab, name, this, value, stub_size);
5384 }
5385 }
5386
5387 // Write out plt and long branch stub code.
5388
5389 template<int size, bool big_endian>
5390 void
5391 Stub_table<size, big_endian>::do_write(Output_file* of)
5392 {
5393 if (this->plt_call_stubs_.empty()
5394 && this->long_branch_stubs_.empty())
5395 return;
5396
5397 const section_size_type start_off = this->offset();
5398 const section_size_type off = this->stub_offset();
5399 const section_size_type oview_size =
5400 convert_to_section_size_type(this->data_size() - (off - start_off));
5401 unsigned char* const oview = of->get_output_view(off, oview_size);
5402 unsigned char* p;
5403
5404 if (size == 64)
5405 {
5406 const Output_data_got_powerpc<size, big_endian>* got
5407 = this->targ_->got_section();
5408 Address got_os_addr = got->output_section()->address();
5409
5410 if (!this->plt_call_stubs_.empty())
5411 {
5412 // Write out plt call stubs.
5413 typename Plt_stub_entries::const_iterator cs;
5414 for (cs = this->plt_call_stubs_.begin();
5415 cs != this->plt_call_stubs_.end();
5416 ++cs)
5417 {
5418 const Output_data_plt_powerpc<size, big_endian>* plt;
5419 Address pltoff = this->plt_off(cs, &plt);
5420 Address plt_addr = pltoff + plt->address();
5421 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
5422 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
5423 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
5424 Address off = plt_addr - got_addr;
5425
5426 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
5427 gold_error(_("%s: linkage table error against `%s'"),
5428 cs->first.object_->name().c_str(),
5429 cs->first.sym_->demangled_name().c_str());
5430
5431 bool plt_load_toc = this->targ_->abiversion() < 2;
5432 bool static_chain
5433 = plt_load_toc && parameters->options().plt_static_chain();
5434 bool thread_safe
5435 = plt_load_toc && this->targ_->plt_thread_safe();
5436 bool use_fake_dep = false;
5437 Address cmp_branch_off = 0;
5438 if (thread_safe)
5439 {
5440 unsigned int pltindex
5441 = ((pltoff - this->targ_->first_plt_entry_offset())
5442 / this->targ_->plt_entry_size());
5443 Address glinkoff
5444 = (this->targ_->glink_section()->pltresolve_size()
5445 + pltindex * 8);
5446 if (pltindex > 32768)
5447 glinkoff += (pltindex - 32768) * 4;
5448 Address to
5449 = this->targ_->glink_section()->address() + glinkoff;
5450 Address from
5451 = (this->stub_address() + cs->second.off_ + 20
5452 + 4 * cs->second.r2save_
5453 + 4 * (ha(off) != 0)
5454 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
5455 + 4 * static_chain);
5456 cmp_branch_off = to - from;
5457 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
5458 }
5459
5460 p = oview + cs->second.off_;
5461 const Symbol* gsym = cs->first.sym_;
5462 if (this->targ_->is_tls_get_addr_opt(gsym))
5463 {
5464 write_insn<big_endian>(p, ld_11_3 + 0);
5465 p += 4;
5466 write_insn<big_endian>(p, ld_12_3 + 8);
5467 p += 4;
5468 write_insn<big_endian>(p, mr_0_3);
5469 p += 4;
5470 write_insn<big_endian>(p, cmpdi_11_0);
5471 p += 4;
5472 write_insn<big_endian>(p, add_3_12_13);
5473 p += 4;
5474 write_insn<big_endian>(p, beqlr);
5475 p += 4;
5476 write_insn<big_endian>(p, mr_3_0);
5477 p += 4;
5478 if (!cs->second.localentry0_)
5479 {
5480 write_insn<big_endian>(p, mflr_11);
5481 p += 4;
5482 write_insn<big_endian>(p, (std_11_1
5483 + this->targ_->stk_linker()));
5484 p += 4;
5485 }
5486 use_fake_dep = thread_safe;
5487 }
5488 if (ha(off) != 0)
5489 {
5490 if (cs->second.r2save_)
5491 {
5492 write_insn<big_endian>(p,
5493 std_2_1 + this->targ_->stk_toc());
5494 p += 4;
5495 }
5496 if (plt_load_toc)
5497 {
5498 write_insn<big_endian>(p, addis_11_2 + ha(off));
5499 p += 4;
5500 write_insn<big_endian>(p, ld_12_11 + l(off));
5501 p += 4;
5502 }
5503 else
5504 {
5505 write_insn<big_endian>(p, addis_12_2 + ha(off));
5506 p += 4;
5507 write_insn<big_endian>(p, ld_12_12 + l(off));
5508 p += 4;
5509 }
5510 if (plt_load_toc
5511 && ha(off + 8 + 8 * static_chain) != ha(off))
5512 {
5513 write_insn<big_endian>(p, addi_11_11 + l(off));
5514 p += 4;
5515 off = 0;
5516 }
5517 write_insn<big_endian>(p, mtctr_12);
5518 p += 4;
5519 if (plt_load_toc)
5520 {
5521 if (use_fake_dep)
5522 {
5523 write_insn<big_endian>(p, xor_2_12_12);
5524 p += 4;
5525 write_insn<big_endian>(p, add_11_11_2);
5526 p += 4;
5527 }
5528 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5529 p += 4;
5530 if (static_chain)
5531 {
5532 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5533 p += 4;
5534 }
5535 }
5536 }
5537 else
5538 {
5539 if (cs->second.r2save_)
5540 {
5541 write_insn<big_endian>(p,
5542 std_2_1 + this->targ_->stk_toc());
5543 p += 4;
5544 }
5545 write_insn<big_endian>(p, ld_12_2 + l(off));
5546 p += 4;
5547 if (plt_load_toc
5548 && ha(off + 8 + 8 * static_chain) != ha(off))
5549 {
5550 write_insn<big_endian>(p, addi_2_2 + l(off));
5551 p += 4;
5552 off = 0;
5553 }
5554 write_insn<big_endian>(p, mtctr_12);
5555 p += 4;
5556 if (plt_load_toc)
5557 {
5558 if (use_fake_dep)
5559 {
5560 write_insn<big_endian>(p, xor_11_12_12);
5561 p += 4;
5562 write_insn<big_endian>(p, add_2_2_11);
5563 p += 4;
5564 }
5565 if (static_chain)
5566 {
5567 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5568 p += 4;
5569 }
5570 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5571 p += 4;
5572 }
5573 }
5574 if (!cs->second.localentry0_
5575 && this->targ_->is_tls_get_addr_opt(gsym))
5576 {
5577 write_insn<big_endian>(p, bctrl);
5578 p += 4;
5579 write_insn<big_endian>(p, ld_2_1 + this->targ_->stk_toc());
5580 p += 4;
5581 write_insn<big_endian>(p, ld_11_1 + this->targ_->stk_linker());
5582 p += 4;
5583 write_insn<big_endian>(p, mtlr_11);
5584 p += 4;
5585 write_insn<big_endian>(p, blr);
5586 }
5587 else if (thread_safe && !use_fake_dep)
5588 {
5589 write_insn<big_endian>(p, cmpldi_2_0);
5590 p += 4;
5591 write_insn<big_endian>(p, bnectr_p4);
5592 p += 4;
5593 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5594 }
5595 else
5596 write_insn<big_endian>(p, bctr);
5597 }
5598 }
5599
5600 // Write out long branch stubs.
5601 typename Branch_stub_entries::const_iterator bs;
5602 for (bs = this->long_branch_stubs_.begin();
5603 bs != this->long_branch_stubs_.end();
5604 ++bs)
5605 {
5606 if (bs->first.save_res_)
5607 continue;
5608 p = oview + this->plt_size_ + bs->second;
5609 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5610 Address delta = bs->first.dest_ - loc;
5611 if (delta + (1 << 25) < 2 << 25)
5612 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5613 else
5614 {
5615 Address brlt_addr
5616 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5617 gold_assert(brlt_addr != invalid_address);
5618 brlt_addr += this->targ_->brlt_section()->address();
5619 Address got_addr = got_os_addr + bs->first.toc_base_off_;
5620 Address brltoff = brlt_addr - got_addr;
5621 if (ha(brltoff) == 0)
5622 {
5623 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
5624 }
5625 else
5626 {
5627 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
5628 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
5629 }
5630 write_insn<big_endian>(p, mtctr_12), p += 4;
5631 write_insn<big_endian>(p, bctr);
5632 }
5633 }
5634 }
5635 else
5636 {
5637 if (!this->plt_call_stubs_.empty())
5638 {
5639 // The address of _GLOBAL_OFFSET_TABLE_.
5640 Address g_o_t = invalid_address;
5641
5642 // Write out plt call stubs.
5643 typename Plt_stub_entries::const_iterator cs;
5644 for (cs = this->plt_call_stubs_.begin();
5645 cs != this->plt_call_stubs_.end();
5646 ++cs)
5647 {
5648 const Output_data_plt_powerpc<size, big_endian>* plt;
5649 Address plt_addr = this->plt_off(cs, &plt);
5650 plt_addr += plt->address();
5651
5652 p = oview + cs->second.off_;
5653 const Symbol* gsym = cs->first.sym_;
5654 if (this->targ_->is_tls_get_addr_opt(gsym))
5655 {
5656 write_insn<big_endian>(p, lwz_11_3 + 0);
5657 p += 4;
5658 write_insn<big_endian>(p, lwz_12_3 + 4);
5659 p += 4;
5660 write_insn<big_endian>(p, mr_0_3);
5661 p += 4;
5662 write_insn<big_endian>(p, cmpwi_11_0);
5663 p += 4;
5664 write_insn<big_endian>(p, add_3_12_2);
5665 p += 4;
5666 write_insn<big_endian>(p, beqlr);
5667 p += 4;
5668 write_insn<big_endian>(p, mr_3_0);
5669 p += 4;
5670 write_insn<big_endian>(p, nop);
5671 p += 4;
5672 }
5673 if (parameters->options().output_is_position_independent())
5674 {
5675 Address got_addr;
5676 const Powerpc_relobj<size, big_endian>* ppcobj
5677 = (static_cast<const Powerpc_relobj<size, big_endian>*>
5678 (cs->first.object_));
5679 if (ppcobj != NULL && cs->first.addend_ >= 32768)
5680 {
5681 unsigned int got2 = ppcobj->got2_shndx();
5682 got_addr = ppcobj->get_output_section_offset(got2);
5683 gold_assert(got_addr != invalid_address);
5684 got_addr += (ppcobj->output_section(got2)->address()
5685 + cs->first.addend_);
5686 }
5687 else
5688 {
5689 if (g_o_t == invalid_address)
5690 {
5691 const Output_data_got_powerpc<size, big_endian>* got
5692 = this->targ_->got_section();
5693 g_o_t = got->address() + got->g_o_t();
5694 }
5695 got_addr = g_o_t;
5696 }
5697
5698 Address off = plt_addr - got_addr;
5699 if (ha(off) == 0)
5700 write_insn<big_endian>(p, lwz_11_30 + l(off));
5701 else
5702 {
5703 write_insn<big_endian>(p, addis_11_30 + ha(off));
5704 p += 4;
5705 write_insn<big_endian>(p, lwz_11_11 + l(off));
5706 }
5707 }
5708 else
5709 {
5710 write_insn<big_endian>(p, lis_11 + ha(plt_addr));
5711 p += 4;
5712 write_insn<big_endian>(p, lwz_11_11 + l(plt_addr));
5713 }
5714 p += 4;
5715 write_insn<big_endian>(p, mtctr_11);
5716 p += 4;
5717 write_insn<big_endian>(p, bctr);
5718 }
5719 }
5720
5721 // Write out long branch stubs.
5722 typename Branch_stub_entries::const_iterator bs;
5723 for (bs = this->long_branch_stubs_.begin();
5724 bs != this->long_branch_stubs_.end();
5725 ++bs)
5726 {
5727 if (bs->first.save_res_)
5728 continue;
5729 p = oview + this->plt_size_ + bs->second;
5730 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5731 Address delta = bs->first.dest_ - loc;
5732 if (delta + (1 << 25) < 2 << 25)
5733 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5734 else if (!parameters->options().output_is_position_independent())
5735 {
5736 write_insn<big_endian>(p, lis_12 + ha(bs->first.dest_));
5737 p += 4;
5738 write_insn<big_endian>(p, addi_12_12 + l(bs->first.dest_));
5739 }
5740 else
5741 {
5742 delta -= 8;
5743 write_insn<big_endian>(p, mflr_0);
5744 p += 4;
5745 write_insn<big_endian>(p, bcl_20_31);
5746 p += 4;
5747 write_insn<big_endian>(p, mflr_12);
5748 p += 4;
5749 write_insn<big_endian>(p, addis_12_12 + ha(delta));
5750 p += 4;
5751 write_insn<big_endian>(p, addi_12_12 + l(delta));
5752 p += 4;
5753 write_insn<big_endian>(p, mtlr_0);
5754 }
5755 p += 4;
5756 write_insn<big_endian>(p, mtctr_12);
5757 p += 4;
5758 write_insn<big_endian>(p, bctr);
5759 }
5760 }
5761 if (this->need_save_res_)
5762 {
5763 p = oview + this->plt_size_ + this->branch_size_;
5764 memcpy (p, this->targ_->savres_section()->contents(),
5765 this->targ_->savres_section()->data_size());
5766 }
5767 }
5768
5769 // Write out .glink.
5770
5771 template<int size, bool big_endian>
5772 void
5773 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5774 {
5775 const section_size_type off = this->offset();
5776 const section_size_type oview_size =
5777 convert_to_section_size_type(this->data_size());
5778 unsigned char* const oview = of->get_output_view(off, oview_size);
5779 unsigned char* p;
5780
5781 // The base address of the .plt section.
5782 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5783 Address plt_base = this->targ_->plt_section()->address();
5784
5785 if (size == 64)
5786 {
5787 if (this->end_branch_table_ != 0)
5788 {
5789 // Write pltresolve stub.
5790 p = oview;
5791 Address after_bcl = this->address() + 16;
5792 Address pltoff = plt_base - after_bcl;
5793
5794 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
5795
5796 if (this->targ_->abiversion() < 2)
5797 {
5798 write_insn<big_endian>(p, mflr_12), p += 4;
5799 write_insn<big_endian>(p, bcl_20_31), p += 4;
5800 write_insn<big_endian>(p, mflr_11), p += 4;
5801 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5802 write_insn<big_endian>(p, mtlr_12), p += 4;
5803 write_insn<big_endian>(p, add_11_2_11), p += 4;
5804 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5805 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
5806 write_insn<big_endian>(p, mtctr_12), p += 4;
5807 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
5808 }
5809 else
5810 {
5811 write_insn<big_endian>(p, mflr_0), p += 4;
5812 write_insn<big_endian>(p, bcl_20_31), p += 4;
5813 write_insn<big_endian>(p, mflr_11), p += 4;
5814 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
5815 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5816 write_insn<big_endian>(p, mtlr_0), p += 4;
5817 write_insn<big_endian>(p, sub_12_12_11), p += 4;
5818 write_insn<big_endian>(p, add_11_2_11), p += 4;
5819 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
5820 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5821 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
5822 write_insn<big_endian>(p, mtctr_12), p += 4;
5823 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
5824 }
5825 write_insn<big_endian>(p, bctr), p += 4;
5826 gold_assert(p == oview + this->pltresolve_size());
5827
5828 // Write lazy link call stubs.
5829 uint32_t indx = 0;
5830 while (p < oview + this->end_branch_table_)
5831 {
5832 if (this->targ_->abiversion() < 2)
5833 {
5834 if (indx < 0x8000)
5835 {
5836 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
5837 }
5838 else
5839 {
5840 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
5841 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
5842 }
5843 }
5844 uint32_t branch_off = 8 - (p - oview);
5845 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
5846 indx++;
5847 }
5848 }
5849
5850 Address plt_base = this->targ_->plt_section()->address();
5851 Address iplt_base = invalid_address;
5852 unsigned int global_entry_off = this->global_entry_off();
5853 Address global_entry_base = this->address() + global_entry_off;
5854 typename Global_entry_stub_entries::const_iterator ge;
5855 for (ge = this->global_entry_stubs_.begin();
5856 ge != this->global_entry_stubs_.end();
5857 ++ge)
5858 {
5859 p = oview + global_entry_off + ge->second;
5860 Address plt_addr = ge->first->plt_offset();
5861 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5862 && ge->first->can_use_relative_reloc(false))
5863 {
5864 if (iplt_base == invalid_address)
5865 iplt_base = this->targ_->iplt_section()->address();
5866 plt_addr += iplt_base;
5867 }
5868 else
5869 plt_addr += plt_base;
5870 Address my_addr = global_entry_base + ge->second;
5871 Address off = plt_addr - my_addr;
5872
5873 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5874 gold_error(_("%s: linkage table error against `%s'"),
5875 ge->first->object()->name().c_str(),
5876 ge->first->demangled_name().c_str());
5877
5878 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
5879 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5880 write_insn<big_endian>(p, mtctr_12), p += 4;
5881 write_insn<big_endian>(p, bctr);
5882 }
5883 }
5884 else
5885 {
5886 const Output_data_got_powerpc<size, big_endian>* got
5887 = this->targ_->got_section();
5888 // The address of _GLOBAL_OFFSET_TABLE_.
5889 Address g_o_t = got->address() + got->g_o_t();
5890
5891 // Write out pltresolve branch table.
5892 p = oview;
5893 unsigned int the_end = oview_size - this->pltresolve_size();
5894 unsigned char* end_p = oview + the_end;
5895 while (p < end_p - 8 * 4)
5896 write_insn<big_endian>(p, b + end_p - p), p += 4;
5897 while (p < end_p)
5898 write_insn<big_endian>(p, nop), p += 4;
5899
5900 // Write out pltresolve call stub.
5901 end_p = oview + oview_size;
5902 if (parameters->options().output_is_position_independent())
5903 {
5904 Address res0_off = 0;
5905 Address after_bcl_off = the_end + 12;
5906 Address bcl_res0 = after_bcl_off - res0_off;
5907
5908 write_insn<big_endian>(p, addis_11_11 + ha(bcl_res0));
5909 p += 4;
5910 write_insn<big_endian>(p, mflr_0);
5911 p += 4;
5912 write_insn<big_endian>(p, bcl_20_31);
5913 p += 4;
5914 write_insn<big_endian>(p, addi_11_11 + l(bcl_res0));
5915 p += 4;
5916 write_insn<big_endian>(p, mflr_12);
5917 p += 4;
5918 write_insn<big_endian>(p, mtlr_0);
5919 p += 4;
5920 write_insn<big_endian>(p, sub_11_11_12);
5921 p += 4;
5922
5923 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5924
5925 write_insn<big_endian>(p, addis_12_12 + ha(got_bcl));
5926 p += 4;
5927 if (ha(got_bcl) == ha(got_bcl + 4))
5928 {
5929 write_insn<big_endian>(p, lwz_0_12 + l(got_bcl));
5930 p += 4;
5931 write_insn<big_endian>(p, lwz_12_12 + l(got_bcl + 4));
5932 }
5933 else
5934 {
5935 write_insn<big_endian>(p, lwzu_0_12 + l(got_bcl));
5936 p += 4;
5937 write_insn<big_endian>(p, lwz_12_12 + 4);
5938 }
5939 p += 4;
5940 write_insn<big_endian>(p, mtctr_0);
5941 p += 4;
5942 write_insn<big_endian>(p, add_0_11_11);
5943 p += 4;
5944 write_insn<big_endian>(p, add_11_0_11);
5945 }
5946 else
5947 {
5948 Address res0 = this->address();
5949
5950 write_insn<big_endian>(p, lis_12 + ha(g_o_t + 4));
5951 p += 4;
5952 write_insn<big_endian>(p, addis_11_11 + ha(-res0));
5953 p += 4;
5954 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5955 write_insn<big_endian>(p, lwz_0_12 + l(g_o_t + 4));
5956 else
5957 write_insn<big_endian>(p, lwzu_0_12 + l(g_o_t + 4));
5958 p += 4;
5959 write_insn<big_endian>(p, addi_11_11 + l(-res0));
5960 p += 4;
5961 write_insn<big_endian>(p, mtctr_0);
5962 p += 4;
5963 write_insn<big_endian>(p, add_0_11_11);
5964 p += 4;
5965 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5966 write_insn<big_endian>(p, lwz_12_12 + l(g_o_t + 8));
5967 else
5968 write_insn<big_endian>(p, lwz_12_12 + 4);
5969 p += 4;
5970 write_insn<big_endian>(p, add_11_0_11);
5971 }
5972 p += 4;
5973 write_insn<big_endian>(p, bctr);
5974 p += 4;
5975 while (p < end_p)
5976 {
5977 write_insn<big_endian>(p, nop);
5978 p += 4;
5979 }
5980 }
5981
5982 of->write_output_view(off, oview_size, oview);
5983 }
5984
5985
5986 // A class to handle linker generated save/restore functions.
5987
5988 template<int size, bool big_endian>
5989 class Output_data_save_res : public Output_section_data_build
5990 {
5991 public:
5992 Output_data_save_res(Symbol_table* symtab);
5993
5994 const unsigned char*
5995 contents() const
5996 {
5997 return contents_;
5998 }
5999
6000 protected:
6001 // Write to a map file.
6002 void
6003 do_print_to_mapfile(Mapfile* mapfile) const
6004 { mapfile->print_output_data(this, _("** save/restore")); }
6005
6006 void
6007 do_write(Output_file*);
6008
6009 private:
6010 // The maximum size of save/restore contents.
6011 static const unsigned int savres_max = 218*4;
6012
6013 void
6014 savres_define(Symbol_table* symtab,
6015 const char *name,
6016 unsigned int lo, unsigned int hi,
6017 unsigned char* write_ent(unsigned char*, int),
6018 unsigned char* write_tail(unsigned char*, int));
6019
6020 unsigned char *contents_;
6021 };
6022
6023 template<bool big_endian>
6024 static unsigned char*
6025 savegpr0(unsigned char* p, int r)
6026 {
6027 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6028 write_insn<big_endian>(p, insn);
6029 return p + 4;
6030 }
6031
6032 template<bool big_endian>
6033 static unsigned char*
6034 savegpr0_tail(unsigned char* p, int r)
6035 {
6036 p = savegpr0<big_endian>(p, r);
6037 uint32_t insn = std_0_1 + 16;
6038 write_insn<big_endian>(p, insn);
6039 p = p + 4;
6040 write_insn<big_endian>(p, blr);
6041 return p + 4;
6042 }
6043
6044 template<bool big_endian>
6045 static unsigned char*
6046 restgpr0(unsigned char* p, int r)
6047 {
6048 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6049 write_insn<big_endian>(p, insn);
6050 return p + 4;
6051 }
6052
6053 template<bool big_endian>
6054 static unsigned char*
6055 restgpr0_tail(unsigned char* p, int r)
6056 {
6057 uint32_t insn = ld_0_1 + 16;
6058 write_insn<big_endian>(p, insn);
6059 p = p + 4;
6060 p = restgpr0<big_endian>(p, r);
6061 write_insn<big_endian>(p, mtlr_0);
6062 p = p + 4;
6063 if (r == 29)
6064 {
6065 p = restgpr0<big_endian>(p, 30);
6066 p = restgpr0<big_endian>(p, 31);
6067 }
6068 write_insn<big_endian>(p, blr);
6069 return p + 4;
6070 }
6071
6072 template<bool big_endian>
6073 static unsigned char*
6074 savegpr1(unsigned char* p, int r)
6075 {
6076 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6077 write_insn<big_endian>(p, insn);
6078 return p + 4;
6079 }
6080
6081 template<bool big_endian>
6082 static unsigned char*
6083 savegpr1_tail(unsigned char* p, int r)
6084 {
6085 p = savegpr1<big_endian>(p, r);
6086 write_insn<big_endian>(p, blr);
6087 return p + 4;
6088 }
6089
6090 template<bool big_endian>
6091 static unsigned char*
6092 restgpr1(unsigned char* p, int r)
6093 {
6094 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
6095 write_insn<big_endian>(p, insn);
6096 return p + 4;
6097 }
6098
6099 template<bool big_endian>
6100 static unsigned char*
6101 restgpr1_tail(unsigned char* p, int r)
6102 {
6103 p = restgpr1<big_endian>(p, r);
6104 write_insn<big_endian>(p, blr);
6105 return p + 4;
6106 }
6107
6108 template<bool big_endian>
6109 static unsigned char*
6110 savefpr(unsigned char* p, int r)
6111 {
6112 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6113 write_insn<big_endian>(p, insn);
6114 return p + 4;
6115 }
6116
6117 template<bool big_endian>
6118 static unsigned char*
6119 savefpr0_tail(unsigned char* p, int r)
6120 {
6121 p = savefpr<big_endian>(p, r);
6122 write_insn<big_endian>(p, std_0_1 + 16);
6123 p = p + 4;
6124 write_insn<big_endian>(p, blr);
6125 return p + 4;
6126 }
6127
6128 template<bool big_endian>
6129 static unsigned char*
6130 restfpr(unsigned char* p, int r)
6131 {
6132 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
6133 write_insn<big_endian>(p, insn);
6134 return p + 4;
6135 }
6136
6137 template<bool big_endian>
6138 static unsigned char*
6139 restfpr0_tail(unsigned char* p, int r)
6140 {
6141 write_insn<big_endian>(p, ld_0_1 + 16);
6142 p = p + 4;
6143 p = restfpr<big_endian>(p, r);
6144 write_insn<big_endian>(p, mtlr_0);
6145 p = p + 4;
6146 if (r == 29)
6147 {
6148 p = restfpr<big_endian>(p, 30);
6149 p = restfpr<big_endian>(p, 31);
6150 }
6151 write_insn<big_endian>(p, blr);
6152 return p + 4;
6153 }
6154
6155 template<bool big_endian>
6156 static unsigned char*
6157 savefpr1_tail(unsigned char* p, int r)
6158 {
6159 p = savefpr<big_endian>(p, r);
6160 write_insn<big_endian>(p, blr);
6161 return p + 4;
6162 }
6163
6164 template<bool big_endian>
6165 static unsigned char*
6166 restfpr1_tail(unsigned char* p, int r)
6167 {
6168 p = restfpr<big_endian>(p, r);
6169 write_insn<big_endian>(p, blr);
6170 return p + 4;
6171 }
6172
6173 template<bool big_endian>
6174 static unsigned char*
6175 savevr(unsigned char* p, int r)
6176 {
6177 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6178 write_insn<big_endian>(p, insn);
6179 p = p + 4;
6180 insn = stvx_0_12_0 + (r << 21);
6181 write_insn<big_endian>(p, insn);
6182 return p + 4;
6183 }
6184
6185 template<bool big_endian>
6186 static unsigned char*
6187 savevr_tail(unsigned char* p, int r)
6188 {
6189 p = savevr<big_endian>(p, r);
6190 write_insn<big_endian>(p, blr);
6191 return p + 4;
6192 }
6193
6194 template<bool big_endian>
6195 static unsigned char*
6196 restvr(unsigned char* p, int r)
6197 {
6198 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
6199 write_insn<big_endian>(p, insn);
6200 p = p + 4;
6201 insn = lvx_0_12_0 + (r << 21);
6202 write_insn<big_endian>(p, insn);
6203 return p + 4;
6204 }
6205
6206 template<bool big_endian>
6207 static unsigned char*
6208 restvr_tail(unsigned char* p, int r)
6209 {
6210 p = restvr<big_endian>(p, r);
6211 write_insn<big_endian>(p, blr);
6212 return p + 4;
6213 }
6214
6215
6216 template<int size, bool big_endian>
6217 Output_data_save_res<size, big_endian>::Output_data_save_res(
6218 Symbol_table* symtab)
6219 : Output_section_data_build(4),
6220 contents_(NULL)
6221 {
6222 this->savres_define(symtab,
6223 "_savegpr0_", 14, 31,
6224 savegpr0<big_endian>, savegpr0_tail<big_endian>);
6225 this->savres_define(symtab,
6226 "_restgpr0_", 14, 29,
6227 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6228 this->savres_define(symtab,
6229 "_restgpr0_", 30, 31,
6230 restgpr0<big_endian>, restgpr0_tail<big_endian>);
6231 this->savres_define(symtab,
6232 "_savegpr1_", 14, 31,
6233 savegpr1<big_endian>, savegpr1_tail<big_endian>);
6234 this->savres_define(symtab,
6235 "_restgpr1_", 14, 31,
6236 restgpr1<big_endian>, restgpr1_tail<big_endian>);
6237 this->savres_define(symtab,
6238 "_savefpr_", 14, 31,
6239 savefpr<big_endian>, savefpr0_tail<big_endian>);
6240 this->savres_define(symtab,
6241 "_restfpr_", 14, 29,
6242 restfpr<big_endian>, restfpr0_tail<big_endian>);
6243 this->savres_define(symtab,
6244 "_restfpr_", 30, 31,
6245 restfpr<big_endian>, restfpr0_tail<big_endian>);
6246 this->savres_define(symtab,
6247 "._savef", 14, 31,
6248 savefpr<big_endian>, savefpr1_tail<big_endian>);
6249 this->savres_define(symtab,
6250 "._restf", 14, 31,
6251 restfpr<big_endian>, restfpr1_tail<big_endian>);
6252 this->savres_define(symtab,
6253 "_savevr_", 20, 31,
6254 savevr<big_endian>, savevr_tail<big_endian>);
6255 this->savres_define(symtab,
6256 "_restvr_", 20, 31,
6257 restvr<big_endian>, restvr_tail<big_endian>);
6258 }
6259
6260 template<int size, bool big_endian>
6261 void
6262 Output_data_save_res<size, big_endian>::savres_define(
6263 Symbol_table* symtab,
6264 const char *name,
6265 unsigned int lo, unsigned int hi,
6266 unsigned char* write_ent(unsigned char*, int),
6267 unsigned char* write_tail(unsigned char*, int))
6268 {
6269 size_t len = strlen(name);
6270 bool writing = false;
6271 char sym[16];
6272
6273 memcpy(sym, name, len);
6274 sym[len + 2] = 0;
6275
6276 for (unsigned int i = lo; i <= hi; i++)
6277 {
6278 sym[len + 0] = i / 10 + '0';
6279 sym[len + 1] = i % 10 + '0';
6280 Symbol* gsym = symtab->lookup(sym);
6281 bool refd = gsym != NULL && gsym->is_undefined();
6282 writing = writing || refd;
6283 if (writing)
6284 {
6285 if (this->contents_ == NULL)
6286 this->contents_ = new unsigned char[this->savres_max];
6287
6288 section_size_type value = this->current_data_size();
6289 unsigned char* p = this->contents_ + value;
6290 if (i != hi)
6291 p = write_ent(p, i);
6292 else
6293 p = write_tail(p, i);
6294 section_size_type cur_size = p - this->contents_;
6295 this->set_current_data_size(cur_size);
6296 if (refd)
6297 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
6298 this, value, cur_size - value,
6299 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
6300 elfcpp::STV_HIDDEN, 0, false, false);
6301 }
6302 }
6303 }
6304
6305 // Write out save/restore.
6306
6307 template<int size, bool big_endian>
6308 void
6309 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
6310 {
6311 const section_size_type off = this->offset();
6312 const section_size_type oview_size =
6313 convert_to_section_size_type(this->data_size());
6314 unsigned char* const oview = of->get_output_view(off, oview_size);
6315 memcpy(oview, this->contents_, oview_size);
6316 of->write_output_view(off, oview_size, oview);
6317 }
6318
6319
6320 // Create the glink section.
6321
6322 template<int size, bool big_endian>
6323 void
6324 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
6325 {
6326 if (this->glink_ == NULL)
6327 {
6328 this->glink_ = new Output_data_glink<size, big_endian>(this);
6329 this->glink_->add_eh_frame(layout);
6330 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6331 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6332 this->glink_, ORDER_TEXT, false);
6333 }
6334 }
6335
6336 // Create a PLT entry for a global symbol.
6337
6338 template<int size, bool big_endian>
6339 void
6340 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
6341 Layout* layout,
6342 Symbol* gsym)
6343 {
6344 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6345 && gsym->can_use_relative_reloc(false))
6346 {
6347 if (this->iplt_ == NULL)
6348 this->make_iplt_section(symtab, layout);
6349 this->iplt_->add_ifunc_entry(gsym);
6350 }
6351 else
6352 {
6353 if (this->plt_ == NULL)
6354 this->make_plt_section(symtab, layout);
6355 this->plt_->add_entry(gsym);
6356 }
6357 }
6358
6359 // Make a PLT entry for a local symbol.
6360
6361 template<int size, bool big_endian>
6362 void
6363 Target_powerpc<size, big_endian>::make_local_plt_entry(
6364 Layout* layout,
6365 Sized_relobj_file<size, big_endian>* relobj,
6366 unsigned int r_sym)
6367 {
6368 if (this->lplt_ == NULL)
6369 this->make_lplt_section(layout);
6370 this->lplt_->add_local_entry(relobj, r_sym);
6371 }
6372
6373 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6374
6375 template<int size, bool big_endian>
6376 void
6377 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
6378 Symbol_table* symtab,
6379 Layout* layout,
6380 Sized_relobj_file<size, big_endian>* relobj,
6381 unsigned int r_sym)
6382 {
6383 if (this->iplt_ == NULL)
6384 this->make_iplt_section(symtab, layout);
6385 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
6386 }
6387
6388 // Return the number of entries in the PLT.
6389
6390 template<int size, bool big_endian>
6391 unsigned int
6392 Target_powerpc<size, big_endian>::plt_entry_count() const
6393 {
6394 if (this->plt_ == NULL)
6395 return 0;
6396 return this->plt_->entry_count();
6397 }
6398
6399 // Create a GOT entry for local dynamic __tls_get_addr calls.
6400
6401 template<int size, bool big_endian>
6402 unsigned int
6403 Target_powerpc<size, big_endian>::tlsld_got_offset(
6404 Symbol_table* symtab,
6405 Layout* layout,
6406 Sized_relobj_file<size, big_endian>* object)
6407 {
6408 if (this->tlsld_got_offset_ == -1U)
6409 {
6410 gold_assert(symtab != NULL && layout != NULL && object != NULL);
6411 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
6412 Output_data_got_powerpc<size, big_endian>* got
6413 = this->got_section(symtab, layout);
6414 unsigned int got_offset = got->add_constant_pair(0, 0);
6415 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
6416 got_offset, 0);
6417 this->tlsld_got_offset_ = got_offset;
6418 }
6419 return this->tlsld_got_offset_;
6420 }
6421
6422 // Get the Reference_flags for a particular relocation.
6423
6424 template<int size, bool big_endian>
6425 int
6426 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
6427 unsigned int r_type,
6428 const Target_powerpc* target)
6429 {
6430 int ref = 0;
6431
6432 switch (r_type)
6433 {
6434 case elfcpp::R_POWERPC_NONE:
6435 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6436 case elfcpp::R_POWERPC_GNU_VTENTRY:
6437 case elfcpp::R_PPC64_TOC:
6438 // No symbol reference.
6439 break;
6440
6441 case elfcpp::R_PPC64_ADDR64:
6442 case elfcpp::R_PPC64_UADDR64:
6443 case elfcpp::R_POWERPC_ADDR32:
6444 case elfcpp::R_POWERPC_UADDR32:
6445 case elfcpp::R_POWERPC_ADDR16:
6446 case elfcpp::R_POWERPC_UADDR16:
6447 case elfcpp::R_POWERPC_ADDR16_LO:
6448 case elfcpp::R_POWERPC_ADDR16_HI:
6449 case elfcpp::R_POWERPC_ADDR16_HA:
6450 ref = Symbol::ABSOLUTE_REF;
6451 break;
6452
6453 case elfcpp::R_POWERPC_ADDR24:
6454 case elfcpp::R_POWERPC_ADDR14:
6455 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6456 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6457 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
6458 break;
6459
6460 case elfcpp::R_PPC64_REL64:
6461 case elfcpp::R_POWERPC_REL32:
6462 case elfcpp::R_PPC_LOCAL24PC:
6463 case elfcpp::R_POWERPC_REL16:
6464 case elfcpp::R_POWERPC_REL16_LO:
6465 case elfcpp::R_POWERPC_REL16_HI:
6466 case elfcpp::R_POWERPC_REL16_HA:
6467 case elfcpp::R_PPC64_REL16_HIGH:
6468 case elfcpp::R_PPC64_REL16_HIGHA:
6469 case elfcpp::R_PPC64_REL16_HIGHER:
6470 case elfcpp::R_PPC64_REL16_HIGHERA:
6471 case elfcpp::R_PPC64_REL16_HIGHEST:
6472 case elfcpp::R_PPC64_REL16_HIGHESTA:
6473 ref = Symbol::RELATIVE_REF;
6474 break;
6475
6476 case elfcpp::R_POWERPC_REL24:
6477 case elfcpp::R_PPC_PLTREL24:
6478 case elfcpp::R_POWERPC_REL14:
6479 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6480 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6481 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
6482 break;
6483
6484 case elfcpp::R_POWERPC_GOT16:
6485 case elfcpp::R_POWERPC_GOT16_LO:
6486 case elfcpp::R_POWERPC_GOT16_HI:
6487 case elfcpp::R_POWERPC_GOT16_HA:
6488 case elfcpp::R_PPC64_GOT16_DS:
6489 case elfcpp::R_PPC64_GOT16_LO_DS:
6490 case elfcpp::R_PPC64_TOC16:
6491 case elfcpp::R_PPC64_TOC16_LO:
6492 case elfcpp::R_PPC64_TOC16_HI:
6493 case elfcpp::R_PPC64_TOC16_HA:
6494 case elfcpp::R_PPC64_TOC16_DS:
6495 case elfcpp::R_PPC64_TOC16_LO_DS:
6496 case elfcpp::R_POWERPC_PLT16_LO:
6497 case elfcpp::R_POWERPC_PLT16_HI:
6498 case elfcpp::R_POWERPC_PLT16_HA:
6499 case elfcpp::R_PPC64_PLT16_LO_DS:
6500 ref = Symbol::RELATIVE_REF;
6501 break;
6502
6503 case elfcpp::R_POWERPC_GOT_TPREL16:
6504 case elfcpp::R_POWERPC_TLS:
6505 ref = Symbol::TLS_REF;
6506 break;
6507
6508 case elfcpp::R_POWERPC_COPY:
6509 case elfcpp::R_POWERPC_GLOB_DAT:
6510 case elfcpp::R_POWERPC_JMP_SLOT:
6511 case elfcpp::R_POWERPC_RELATIVE:
6512 case elfcpp::R_POWERPC_DTPMOD:
6513 default:
6514 // Not expected. We will give an error later.
6515 break;
6516 }
6517
6518 if (size == 64 && target->abiversion() < 2)
6519 ref |= Symbol::FUNC_DESC_ABI;
6520 return ref;
6521 }
6522
6523 // Report an unsupported relocation against a local symbol.
6524
6525 template<int size, bool big_endian>
6526 void
6527 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
6528 Sized_relobj_file<size, big_endian>* object,
6529 unsigned int r_type)
6530 {
6531 gold_error(_("%s: unsupported reloc %u against local symbol"),
6532 object->name().c_str(), r_type);
6533 }
6534
6535 // We are about to emit a dynamic relocation of type R_TYPE. If the
6536 // dynamic linker does not support it, issue an error.
6537
6538 template<int size, bool big_endian>
6539 void
6540 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
6541 unsigned int r_type)
6542 {
6543 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
6544
6545 // These are the relocation types supported by glibc for both 32-bit
6546 // and 64-bit powerpc.
6547 switch (r_type)
6548 {
6549 case elfcpp::R_POWERPC_NONE:
6550 case elfcpp::R_POWERPC_RELATIVE:
6551 case elfcpp::R_POWERPC_GLOB_DAT:
6552 case elfcpp::R_POWERPC_DTPMOD:
6553 case elfcpp::R_POWERPC_DTPREL:
6554 case elfcpp::R_POWERPC_TPREL:
6555 case elfcpp::R_POWERPC_JMP_SLOT:
6556 case elfcpp::R_POWERPC_COPY:
6557 case elfcpp::R_POWERPC_IRELATIVE:
6558 case elfcpp::R_POWERPC_ADDR32:
6559 case elfcpp::R_POWERPC_UADDR32:
6560 case elfcpp::R_POWERPC_ADDR24:
6561 case elfcpp::R_POWERPC_ADDR16:
6562 case elfcpp::R_POWERPC_UADDR16:
6563 case elfcpp::R_POWERPC_ADDR16_LO:
6564 case elfcpp::R_POWERPC_ADDR16_HI:
6565 case elfcpp::R_POWERPC_ADDR16_HA:
6566 case elfcpp::R_POWERPC_ADDR14:
6567 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6568 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6569 case elfcpp::R_POWERPC_REL32:
6570 case elfcpp::R_POWERPC_REL24:
6571 case elfcpp::R_POWERPC_TPREL16:
6572 case elfcpp::R_POWERPC_TPREL16_LO:
6573 case elfcpp::R_POWERPC_TPREL16_HI:
6574 case elfcpp::R_POWERPC_TPREL16_HA:
6575 return;
6576
6577 default:
6578 break;
6579 }
6580
6581 if (size == 64)
6582 {
6583 switch (r_type)
6584 {
6585 // These are the relocation types supported only on 64-bit.
6586 case elfcpp::R_PPC64_ADDR64:
6587 case elfcpp::R_PPC64_UADDR64:
6588 case elfcpp::R_PPC64_JMP_IREL:
6589 case elfcpp::R_PPC64_ADDR16_DS:
6590 case elfcpp::R_PPC64_ADDR16_LO_DS:
6591 case elfcpp::R_PPC64_ADDR16_HIGH:
6592 case elfcpp::R_PPC64_ADDR16_HIGHA:
6593 case elfcpp::R_PPC64_ADDR16_HIGHER:
6594 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6595 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6596 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6597 case elfcpp::R_PPC64_REL64:
6598 case elfcpp::R_POWERPC_ADDR30:
6599 case elfcpp::R_PPC64_TPREL16_DS:
6600 case elfcpp::R_PPC64_TPREL16_LO_DS:
6601 case elfcpp::R_PPC64_TPREL16_HIGH:
6602 case elfcpp::R_PPC64_TPREL16_HIGHA:
6603 case elfcpp::R_PPC64_TPREL16_HIGHER:
6604 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6605 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6606 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6607 return;
6608
6609 default:
6610 break;
6611 }
6612 }
6613 else
6614 {
6615 switch (r_type)
6616 {
6617 // These are the relocation types supported only on 32-bit.
6618 // ??? glibc ld.so doesn't need to support these.
6619 case elfcpp::R_POWERPC_DTPREL16:
6620 case elfcpp::R_POWERPC_DTPREL16_LO:
6621 case elfcpp::R_POWERPC_DTPREL16_HI:
6622 case elfcpp::R_POWERPC_DTPREL16_HA:
6623 return;
6624
6625 default:
6626 break;
6627 }
6628 }
6629
6630 // This prevents us from issuing more than one error per reloc
6631 // section. But we can still wind up issuing more than one
6632 // error per object file.
6633 if (this->issued_non_pic_error_)
6634 return;
6635 gold_assert(parameters->options().output_is_position_independent());
6636 object->error(_("requires unsupported dynamic reloc; "
6637 "recompile with -fPIC"));
6638 this->issued_non_pic_error_ = true;
6639 return;
6640 }
6641
6642 // Return whether we need to make a PLT entry for a relocation of the
6643 // given type against a STT_GNU_IFUNC symbol.
6644
6645 template<int size, bool big_endian>
6646 bool
6647 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6648 Target_powerpc<size, big_endian>* target,
6649 Sized_relobj_file<size, big_endian>* object,
6650 unsigned int r_type,
6651 bool report_err)
6652 {
6653 // In non-pic code any reference will resolve to the plt call stub
6654 // for the ifunc symbol.
6655 if ((size == 32 || target->abiversion() >= 2)
6656 && !parameters->options().output_is_position_independent())
6657 return true;
6658
6659 switch (r_type)
6660 {
6661 // Word size refs from data sections are OK, but don't need a PLT entry.
6662 case elfcpp::R_POWERPC_ADDR32:
6663 case elfcpp::R_POWERPC_UADDR32:
6664 if (size == 32)
6665 return false;
6666 break;
6667
6668 case elfcpp::R_PPC64_ADDR64:
6669 case elfcpp::R_PPC64_UADDR64:
6670 if (size == 64)
6671 return false;
6672 break;
6673
6674 // GOT refs are good, but also don't need a PLT entry.
6675 case elfcpp::R_POWERPC_GOT16:
6676 case elfcpp::R_POWERPC_GOT16_LO:
6677 case elfcpp::R_POWERPC_GOT16_HI:
6678 case elfcpp::R_POWERPC_GOT16_HA:
6679 case elfcpp::R_PPC64_GOT16_DS:
6680 case elfcpp::R_PPC64_GOT16_LO_DS:
6681 return false;
6682
6683 // PLT relocs are OK and need a PLT entry.
6684 case elfcpp::R_POWERPC_PLT16_LO:
6685 case elfcpp::R_POWERPC_PLT16_HI:
6686 case elfcpp::R_POWERPC_PLT16_HA:
6687 case elfcpp::R_PPC64_PLT16_LO_DS:
6688 case elfcpp::R_POWERPC_PLTSEQ:
6689 case elfcpp::R_POWERPC_PLTCALL:
6690 return true;
6691 break;
6692
6693 // Function calls are good, and these do need a PLT entry.
6694 case elfcpp::R_POWERPC_ADDR24:
6695 case elfcpp::R_POWERPC_ADDR14:
6696 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6697 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6698 case elfcpp::R_POWERPC_REL24:
6699 case elfcpp::R_PPC_PLTREL24:
6700 case elfcpp::R_POWERPC_REL14:
6701 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6702 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6703 return true;
6704
6705 default:
6706 break;
6707 }
6708
6709 // Anything else is a problem.
6710 // If we are building a static executable, the libc startup function
6711 // responsible for applying indirect function relocations is going
6712 // to complain about the reloc type.
6713 // If we are building a dynamic executable, we will have a text
6714 // relocation. The dynamic loader will set the text segment
6715 // writable and non-executable to apply text relocations. So we'll
6716 // segfault when trying to run the indirection function to resolve
6717 // the reloc.
6718 if (report_err)
6719 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6720 object->name().c_str(), r_type);
6721 return false;
6722 }
6723
6724 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6725 // reloc.
6726
6727 static bool
6728 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6729 {
6730 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6731 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6732 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6733 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6734 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6735 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6736 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6737 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6738 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6739 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6740 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6741 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6742 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6743 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6744 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6745 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6746 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6747 /* Exclude lfqu by testing reloc. If relocs are ever
6748 defined for the reduced D field in psq_lu then those
6749 will need testing too. */
6750 && r_type != elfcpp::R_PPC64_TOC16_LO
6751 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6752 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6753 && (insn & 1) == 0)
6754 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6755 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6756 /* Exclude stfqu. psq_stu as above for psq_lu. */
6757 && r_type != elfcpp::R_PPC64_TOC16_LO
6758 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6759 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6760 && (insn & 1) == 0));
6761 }
6762
6763 // Scan a relocation for a local symbol.
6764
6765 template<int size, bool big_endian>
6766 inline void
6767 Target_powerpc<size, big_endian>::Scan::local(
6768 Symbol_table* symtab,
6769 Layout* layout,
6770 Target_powerpc<size, big_endian>* target,
6771 Sized_relobj_file<size, big_endian>* object,
6772 unsigned int data_shndx,
6773 Output_section* output_section,
6774 const elfcpp::Rela<size, big_endian>& reloc,
6775 unsigned int r_type,
6776 const elfcpp::Sym<size, big_endian>& lsym,
6777 bool is_discarded)
6778 {
6779 this->maybe_skip_tls_get_addr_call(target, r_type, NULL);
6780
6781 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6782 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6783 {
6784 this->expect_tls_get_addr_call();
6785 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6786 if (tls_type != tls::TLSOPT_NONE)
6787 this->skip_next_tls_get_addr_call();
6788 }
6789 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6790 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6791 {
6792 this->expect_tls_get_addr_call();
6793 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6794 if (tls_type != tls::TLSOPT_NONE)
6795 this->skip_next_tls_get_addr_call();
6796 }
6797
6798 Powerpc_relobj<size, big_endian>* ppc_object
6799 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6800
6801 if (is_discarded)
6802 {
6803 if (size == 64
6804 && data_shndx == ppc_object->opd_shndx()
6805 && r_type == elfcpp::R_PPC64_ADDR64)
6806 ppc_object->set_opd_discard(reloc.get_r_offset());
6807 return;
6808 }
6809
6810 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6811 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6812 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6813 {
6814 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6815 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6816 r_type, r_sym, reloc.get_r_addend());
6817 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6818 }
6819
6820 switch (r_type)
6821 {
6822 case elfcpp::R_POWERPC_NONE:
6823 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6824 case elfcpp::R_POWERPC_GNU_VTENTRY:
6825 case elfcpp::R_POWERPC_TLS:
6826 case elfcpp::R_PPC64_ENTRY:
6827 case elfcpp::R_POWERPC_PLTSEQ:
6828 case elfcpp::R_POWERPC_PLTCALL:
6829 break;
6830
6831 case elfcpp::R_PPC64_TOC:
6832 {
6833 Output_data_got_powerpc<size, big_endian>* got
6834 = target->got_section(symtab, layout);
6835 if (parameters->options().output_is_position_independent())
6836 {
6837 Address off = reloc.get_r_offset();
6838 if (size == 64
6839 && target->abiversion() < 2
6840 && data_shndx == ppc_object->opd_shndx()
6841 && ppc_object->get_opd_discard(off - 8))
6842 break;
6843
6844 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6845 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6846 rela_dyn->add_output_section_relative(got->output_section(),
6847 elfcpp::R_POWERPC_RELATIVE,
6848 output_section,
6849 object, data_shndx, off,
6850 symobj->toc_base_offset());
6851 }
6852 }
6853 break;
6854
6855 case elfcpp::R_PPC64_ADDR64:
6856 case elfcpp::R_PPC64_UADDR64:
6857 case elfcpp::R_POWERPC_ADDR32:
6858 case elfcpp::R_POWERPC_UADDR32:
6859 case elfcpp::R_POWERPC_ADDR24:
6860 case elfcpp::R_POWERPC_ADDR16:
6861 case elfcpp::R_POWERPC_ADDR16_LO:
6862 case elfcpp::R_POWERPC_ADDR16_HI:
6863 case elfcpp::R_POWERPC_ADDR16_HA:
6864 case elfcpp::R_POWERPC_UADDR16:
6865 case elfcpp::R_PPC64_ADDR16_HIGH:
6866 case elfcpp::R_PPC64_ADDR16_HIGHA:
6867 case elfcpp::R_PPC64_ADDR16_HIGHER:
6868 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6869 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6870 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6871 case elfcpp::R_PPC64_ADDR16_DS:
6872 case elfcpp::R_PPC64_ADDR16_LO_DS:
6873 case elfcpp::R_POWERPC_ADDR14:
6874 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6875 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6876 // If building a shared library (or a position-independent
6877 // executable), we need to create a dynamic relocation for
6878 // this location.
6879 if (parameters->options().output_is_position_independent()
6880 || (size == 64 && is_ifunc && target->abiversion() < 2))
6881 {
6882 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6883 is_ifunc);
6884 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6885 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6886 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6887 {
6888 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6889 : elfcpp::R_POWERPC_RELATIVE);
6890 rela_dyn->add_local_relative(object, r_sym, dynrel,
6891 output_section, data_shndx,
6892 reloc.get_r_offset(),
6893 reloc.get_r_addend(), false);
6894 }
6895 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6896 {
6897 check_non_pic(object, r_type);
6898 rela_dyn->add_local(object, r_sym, r_type, output_section,
6899 data_shndx, reloc.get_r_offset(),
6900 reloc.get_r_addend());
6901 }
6902 else
6903 {
6904 gold_assert(lsym.get_st_value() == 0);
6905 unsigned int shndx = lsym.get_st_shndx();
6906 bool is_ordinary;
6907 shndx = object->adjust_sym_shndx(r_sym, shndx,
6908 &is_ordinary);
6909 if (!is_ordinary)
6910 object->error(_("section symbol %u has bad shndx %u"),
6911 r_sym, shndx);
6912 else
6913 rela_dyn->add_local_section(object, shndx, r_type,
6914 output_section, data_shndx,
6915 reloc.get_r_offset());
6916 }
6917 }
6918 break;
6919
6920 case elfcpp::R_POWERPC_PLT16_LO:
6921 case elfcpp::R_POWERPC_PLT16_HI:
6922 case elfcpp::R_POWERPC_PLT16_HA:
6923 case elfcpp::R_PPC64_PLT16_LO_DS:
6924 if (!is_ifunc)
6925 {
6926 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6927 target->make_local_plt_entry(layout, object, r_sym);
6928 }
6929 break;
6930
6931 case elfcpp::R_POWERPC_REL24:
6932 case elfcpp::R_PPC_PLTREL24:
6933 case elfcpp::R_PPC_LOCAL24PC:
6934 case elfcpp::R_POWERPC_REL14:
6935 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6936 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6937 if (!is_ifunc)
6938 {
6939 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6940 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6941 r_type, r_sym, reloc.get_r_addend());
6942 }
6943 break;
6944
6945 case elfcpp::R_PPC64_TOCSAVE:
6946 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6947 // caller has already saved r2 and thus a plt call stub need not
6948 // save r2.
6949 if (size == 64
6950 && target->mark_pltcall(ppc_object, data_shndx,
6951 reloc.get_r_offset() - 4, symtab))
6952 {
6953 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6954 unsigned int shndx = lsym.get_st_shndx();
6955 bool is_ordinary;
6956 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6957 if (!is_ordinary)
6958 object->error(_("tocsave symbol %u has bad shndx %u"),
6959 r_sym, shndx);
6960 else
6961 target->add_tocsave(ppc_object, shndx,
6962 lsym.get_st_value() + reloc.get_r_addend());
6963 }
6964 break;
6965
6966 case elfcpp::R_PPC64_REL64:
6967 case elfcpp::R_POWERPC_REL32:
6968 case elfcpp::R_POWERPC_REL16:
6969 case elfcpp::R_POWERPC_REL16_LO:
6970 case elfcpp::R_POWERPC_REL16_HI:
6971 case elfcpp::R_POWERPC_REL16_HA:
6972 case elfcpp::R_POWERPC_REL16DX_HA:
6973 case elfcpp::R_PPC64_REL16_HIGH:
6974 case elfcpp::R_PPC64_REL16_HIGHA:
6975 case elfcpp::R_PPC64_REL16_HIGHER:
6976 case elfcpp::R_PPC64_REL16_HIGHERA:
6977 case elfcpp::R_PPC64_REL16_HIGHEST:
6978 case elfcpp::R_PPC64_REL16_HIGHESTA:
6979 case elfcpp::R_POWERPC_SECTOFF:
6980 case elfcpp::R_POWERPC_SECTOFF_LO:
6981 case elfcpp::R_POWERPC_SECTOFF_HI:
6982 case elfcpp::R_POWERPC_SECTOFF_HA:
6983 case elfcpp::R_PPC64_SECTOFF_DS:
6984 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6985 case elfcpp::R_POWERPC_TPREL16:
6986 case elfcpp::R_POWERPC_TPREL16_LO:
6987 case elfcpp::R_POWERPC_TPREL16_HI:
6988 case elfcpp::R_POWERPC_TPREL16_HA:
6989 case elfcpp::R_PPC64_TPREL16_DS:
6990 case elfcpp::R_PPC64_TPREL16_LO_DS:
6991 case elfcpp::R_PPC64_TPREL16_HIGH:
6992 case elfcpp::R_PPC64_TPREL16_HIGHA:
6993 case elfcpp::R_PPC64_TPREL16_HIGHER:
6994 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6995 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6996 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6997 case elfcpp::R_POWERPC_DTPREL16:
6998 case elfcpp::R_POWERPC_DTPREL16_LO:
6999 case elfcpp::R_POWERPC_DTPREL16_HI:
7000 case elfcpp::R_POWERPC_DTPREL16_HA:
7001 case elfcpp::R_PPC64_DTPREL16_DS:
7002 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7003 case elfcpp::R_PPC64_DTPREL16_HIGH:
7004 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7005 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7006 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7007 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7008 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7009 case elfcpp::R_PPC64_TLSGD:
7010 case elfcpp::R_PPC64_TLSLD:
7011 case elfcpp::R_PPC64_ADDR64_LOCAL:
7012 break;
7013
7014 case elfcpp::R_POWERPC_GOT16:
7015 case elfcpp::R_POWERPC_GOT16_LO:
7016 case elfcpp::R_POWERPC_GOT16_HI:
7017 case elfcpp::R_POWERPC_GOT16_HA:
7018 case elfcpp::R_PPC64_GOT16_DS:
7019 case elfcpp::R_PPC64_GOT16_LO_DS:
7020 {
7021 // The symbol requires a GOT entry.
7022 Output_data_got_powerpc<size, big_endian>* got
7023 = target->got_section(symtab, layout);
7024 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7025
7026 if (!parameters->options().output_is_position_independent())
7027 {
7028 if (is_ifunc
7029 && (size == 32 || target->abiversion() >= 2))
7030 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
7031 else
7032 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
7033 }
7034 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
7035 {
7036 // If we are generating a shared object or a pie, this
7037 // symbol's GOT entry will be set by a dynamic relocation.
7038 unsigned int off;
7039 off = got->add_constant(0);
7040 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
7041
7042 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
7043 is_ifunc);
7044 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7045 : elfcpp::R_POWERPC_RELATIVE);
7046 rela_dyn->add_local_relative(object, r_sym, dynrel,
7047 got, off, 0, false);
7048 }
7049 }
7050 break;
7051
7052 case elfcpp::R_PPC64_TOC16:
7053 case elfcpp::R_PPC64_TOC16_LO:
7054 case elfcpp::R_PPC64_TOC16_HI:
7055 case elfcpp::R_PPC64_TOC16_HA:
7056 case elfcpp::R_PPC64_TOC16_DS:
7057 case elfcpp::R_PPC64_TOC16_LO_DS:
7058 // We need a GOT section.
7059 target->got_section(symtab, layout);
7060 break;
7061
7062 case elfcpp::R_POWERPC_GOT_TLSGD16:
7063 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7064 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7065 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7066 {
7067 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
7068 if (tls_type == tls::TLSOPT_NONE)
7069 {
7070 Output_data_got_powerpc<size, big_endian>* got
7071 = target->got_section(symtab, layout);
7072 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7073 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7074 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
7075 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
7076 }
7077 else if (tls_type == tls::TLSOPT_TO_LE)
7078 {
7079 // no GOT relocs needed for Local Exec.
7080 }
7081 else
7082 gold_unreachable();
7083 }
7084 break;
7085
7086 case elfcpp::R_POWERPC_GOT_TLSLD16:
7087 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7088 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7089 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7090 {
7091 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7092 if (tls_type == tls::TLSOPT_NONE)
7093 target->tlsld_got_offset(symtab, layout, object);
7094 else if (tls_type == tls::TLSOPT_TO_LE)
7095 {
7096 // no GOT relocs needed for Local Exec.
7097 if (parameters->options().emit_relocs())
7098 {
7099 Output_section* os = layout->tls_segment()->first_section();
7100 gold_assert(os != NULL);
7101 os->set_needs_symtab_index();
7102 }
7103 }
7104 else
7105 gold_unreachable();
7106 }
7107 break;
7108
7109 case elfcpp::R_POWERPC_GOT_DTPREL16:
7110 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7111 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7112 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7113 {
7114 Output_data_got_powerpc<size, big_endian>* got
7115 = target->got_section(symtab, layout);
7116 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7117 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
7118 }
7119 break;
7120
7121 case elfcpp::R_POWERPC_GOT_TPREL16:
7122 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7123 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7124 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7125 {
7126 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
7127 if (tls_type == tls::TLSOPT_NONE)
7128 {
7129 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7130 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
7131 {
7132 Output_data_got_powerpc<size, big_endian>* got
7133 = target->got_section(symtab, layout);
7134 unsigned int off = got->add_constant(0);
7135 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
7136
7137 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7138 rela_dyn->add_symbolless_local_addend(object, r_sym,
7139 elfcpp::R_POWERPC_TPREL,
7140 got, off, 0);
7141 }
7142 }
7143 else if (tls_type == tls::TLSOPT_TO_LE)
7144 {
7145 // no GOT relocs needed for Local Exec.
7146 }
7147 else
7148 gold_unreachable();
7149 }
7150 break;
7151
7152 default:
7153 unsupported_reloc_local(object, r_type);
7154 break;
7155 }
7156
7157 if (size == 64
7158 && parameters->options().toc_optimize())
7159 {
7160 if (data_shndx == ppc_object->toc_shndx())
7161 {
7162 bool ok = true;
7163 if (r_type != elfcpp::R_PPC64_ADDR64
7164 || (is_ifunc && target->abiversion() < 2))
7165 ok = false;
7166 else if (parameters->options().output_is_position_independent())
7167 {
7168 if (is_ifunc)
7169 ok = false;
7170 else
7171 {
7172 unsigned int shndx = lsym.get_st_shndx();
7173 if (shndx >= elfcpp::SHN_LORESERVE
7174 && shndx != elfcpp::SHN_XINDEX)
7175 ok = false;
7176 }
7177 }
7178 if (!ok)
7179 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7180 }
7181
7182 enum {no_check, check_lo, check_ha} insn_check;
7183 switch (r_type)
7184 {
7185 default:
7186 insn_check = no_check;
7187 break;
7188
7189 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7190 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7191 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7192 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7193 case elfcpp::R_POWERPC_GOT16_HA:
7194 case elfcpp::R_PPC64_TOC16_HA:
7195 insn_check = check_ha;
7196 break;
7197
7198 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7199 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7200 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7201 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7202 case elfcpp::R_POWERPC_GOT16_LO:
7203 case elfcpp::R_PPC64_GOT16_LO_DS:
7204 case elfcpp::R_PPC64_TOC16_LO:
7205 case elfcpp::R_PPC64_TOC16_LO_DS:
7206 insn_check = check_lo;
7207 break;
7208 }
7209
7210 section_size_type slen;
7211 const unsigned char* view = NULL;
7212 if (insn_check != no_check)
7213 {
7214 view = ppc_object->section_contents(data_shndx, &slen, false);
7215 section_size_type off =
7216 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7217 if (off < slen)
7218 {
7219 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7220 if (insn_check == check_lo
7221 ? !ok_lo_toc_insn(insn, r_type)
7222 : ((insn & ((0x3f << 26) | 0x1f << 16))
7223 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7224 {
7225 ppc_object->set_no_toc_opt();
7226 gold_warning(_("%s: toc optimization is not supported "
7227 "for %#08x instruction"),
7228 ppc_object->name().c_str(), insn);
7229 }
7230 }
7231 }
7232
7233 switch (r_type)
7234 {
7235 default:
7236 break;
7237 case elfcpp::R_PPC64_TOC16:
7238 case elfcpp::R_PPC64_TOC16_LO:
7239 case elfcpp::R_PPC64_TOC16_HI:
7240 case elfcpp::R_PPC64_TOC16_HA:
7241 case elfcpp::R_PPC64_TOC16_DS:
7242 case elfcpp::R_PPC64_TOC16_LO_DS:
7243 unsigned int shndx = lsym.get_st_shndx();
7244 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7245 bool is_ordinary;
7246 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7247 if (is_ordinary && shndx == ppc_object->toc_shndx())
7248 {
7249 Address dst_off = lsym.get_st_value() + reloc.get_r_addend();
7250 if (dst_off < ppc_object->section_size(shndx))
7251 {
7252 bool ok = false;
7253 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7254 ok = true;
7255 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7256 {
7257 // Need to check that the insn is a ld
7258 if (!view)
7259 view = ppc_object->section_contents(data_shndx,
7260 &slen,
7261 false);
7262 section_size_type off =
7263 (convert_to_section_size_type(reloc.get_r_offset())
7264 + (big_endian ? -2 : 3));
7265 if (off < slen
7266 && (view[off] & (0x3f << 2)) == 58u << 2)
7267 ok = true;
7268 }
7269 if (!ok)
7270 ppc_object->set_no_toc_opt(dst_off);
7271 }
7272 }
7273 break;
7274 }
7275 }
7276
7277 if (size == 32)
7278 {
7279 switch (r_type)
7280 {
7281 case elfcpp::R_POWERPC_REL32:
7282 if (ppc_object->got2_shndx() != 0
7283 && parameters->options().output_is_position_independent())
7284 {
7285 unsigned int shndx = lsym.get_st_shndx();
7286 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7287 bool is_ordinary;
7288 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
7289 if (is_ordinary && shndx == ppc_object->got2_shndx()
7290 && (ppc_object->section_flags(data_shndx)
7291 & elfcpp::SHF_EXECINSTR) != 0)
7292 gold_error(_("%s: unsupported -mbss-plt code"),
7293 ppc_object->name().c_str());
7294 }
7295 break;
7296 default:
7297 break;
7298 }
7299 }
7300
7301 switch (r_type)
7302 {
7303 case elfcpp::R_POWERPC_GOT_TLSLD16:
7304 case elfcpp::R_POWERPC_GOT_TLSGD16:
7305 case elfcpp::R_POWERPC_GOT_TPREL16:
7306 case elfcpp::R_POWERPC_GOT_DTPREL16:
7307 case elfcpp::R_POWERPC_GOT16:
7308 case elfcpp::R_PPC64_GOT16_DS:
7309 case elfcpp::R_PPC64_TOC16:
7310 case elfcpp::R_PPC64_TOC16_DS:
7311 ppc_object->set_has_small_toc_reloc();
7312 default:
7313 break;
7314 }
7315 }
7316
7317 // Report an unsupported relocation against a global symbol.
7318
7319 template<int size, bool big_endian>
7320 void
7321 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
7322 Sized_relobj_file<size, big_endian>* object,
7323 unsigned int r_type,
7324 Symbol* gsym)
7325 {
7326 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
7327 object->name().c_str(), r_type, gsym->demangled_name().c_str());
7328 }
7329
7330 // Scan a relocation for a global symbol.
7331
7332 template<int size, bool big_endian>
7333 inline void
7334 Target_powerpc<size, big_endian>::Scan::global(
7335 Symbol_table* symtab,
7336 Layout* layout,
7337 Target_powerpc<size, big_endian>* target,
7338 Sized_relobj_file<size, big_endian>* object,
7339 unsigned int data_shndx,
7340 Output_section* output_section,
7341 const elfcpp::Rela<size, big_endian>& reloc,
7342 unsigned int r_type,
7343 Symbol* gsym)
7344 {
7345 if (this->maybe_skip_tls_get_addr_call(target, r_type, gsym)
7346 == Track_tls::SKIP)
7347 return;
7348
7349 if (target->replace_tls_get_addr(gsym))
7350 // Change a __tls_get_addr reference to __tls_get_addr_opt
7351 // so dynamic relocs are emitted against the latter symbol.
7352 gsym = target->tls_get_addr_opt();
7353
7354 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7355 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7356 {
7357 this->expect_tls_get_addr_call();
7358 const bool final = gsym->final_value_is_known();
7359 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7360 if (tls_type != tls::TLSOPT_NONE)
7361 this->skip_next_tls_get_addr_call();
7362 }
7363 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7364 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7365 {
7366 this->expect_tls_get_addr_call();
7367 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7368 if (tls_type != tls::TLSOPT_NONE)
7369 this->skip_next_tls_get_addr_call();
7370 }
7371
7372 Powerpc_relobj<size, big_endian>* ppc_object
7373 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7374
7375 // A STT_GNU_IFUNC symbol may require a PLT entry.
7376 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
7377 bool pushed_ifunc = false;
7378 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
7379 {
7380 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7381 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7382 r_type, r_sym, reloc.get_r_addend());
7383 target->make_plt_entry(symtab, layout, gsym);
7384 pushed_ifunc = true;
7385 }
7386
7387 switch (r_type)
7388 {
7389 case elfcpp::R_POWERPC_NONE:
7390 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7391 case elfcpp::R_POWERPC_GNU_VTENTRY:
7392 case elfcpp::R_PPC_LOCAL24PC:
7393 case elfcpp::R_POWERPC_TLS:
7394 case elfcpp::R_PPC64_ENTRY:
7395 case elfcpp::R_POWERPC_PLTSEQ:
7396 case elfcpp::R_POWERPC_PLTCALL:
7397 break;
7398
7399 case elfcpp::R_PPC64_TOC:
7400 {
7401 Output_data_got_powerpc<size, big_endian>* got
7402 = target->got_section(symtab, layout);
7403 if (parameters->options().output_is_position_independent())
7404 {
7405 Address off = reloc.get_r_offset();
7406 if (size == 64
7407 && data_shndx == ppc_object->opd_shndx()
7408 && ppc_object->get_opd_discard(off - 8))
7409 break;
7410
7411 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7412 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
7413 if (data_shndx != ppc_object->opd_shndx())
7414 symobj = static_cast
7415 <Powerpc_relobj<size, big_endian>*>(gsym->object());
7416 rela_dyn->add_output_section_relative(got->output_section(),
7417 elfcpp::R_POWERPC_RELATIVE,
7418 output_section,
7419 object, data_shndx, off,
7420 symobj->toc_base_offset());
7421 }
7422 }
7423 break;
7424
7425 case elfcpp::R_PPC64_ADDR64:
7426 if (size == 64
7427 && target->abiversion() < 2
7428 && data_shndx == ppc_object->opd_shndx()
7429 && (gsym->is_defined_in_discarded_section()
7430 || gsym->object() != object))
7431 {
7432 ppc_object->set_opd_discard(reloc.get_r_offset());
7433 break;
7434 }
7435 // Fall through.
7436 case elfcpp::R_PPC64_UADDR64:
7437 case elfcpp::R_POWERPC_ADDR32:
7438 case elfcpp::R_POWERPC_UADDR32:
7439 case elfcpp::R_POWERPC_ADDR24:
7440 case elfcpp::R_POWERPC_ADDR16:
7441 case elfcpp::R_POWERPC_ADDR16_LO:
7442 case elfcpp::R_POWERPC_ADDR16_HI:
7443 case elfcpp::R_POWERPC_ADDR16_HA:
7444 case elfcpp::R_POWERPC_UADDR16:
7445 case elfcpp::R_PPC64_ADDR16_HIGH:
7446 case elfcpp::R_PPC64_ADDR16_HIGHA:
7447 case elfcpp::R_PPC64_ADDR16_HIGHER:
7448 case elfcpp::R_PPC64_ADDR16_HIGHERA:
7449 case elfcpp::R_PPC64_ADDR16_HIGHEST:
7450 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
7451 case elfcpp::R_PPC64_ADDR16_DS:
7452 case elfcpp::R_PPC64_ADDR16_LO_DS:
7453 case elfcpp::R_POWERPC_ADDR14:
7454 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7455 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7456 {
7457 // Make a PLT entry if necessary.
7458 if (gsym->needs_plt_entry())
7459 {
7460 // Since this is not a PC-relative relocation, we may be
7461 // taking the address of a function. In that case we need to
7462 // set the entry in the dynamic symbol table to the address of
7463 // the PLT call stub.
7464 bool need_ifunc_plt = false;
7465 if ((size == 32 || target->abiversion() >= 2)
7466 && gsym->is_from_dynobj()
7467 && !parameters->options().output_is_position_independent())
7468 {
7469 gsym->set_needs_dynsym_value();
7470 need_ifunc_plt = true;
7471 }
7472 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
7473 {
7474 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7475 target->push_branch(ppc_object, data_shndx,
7476 reloc.get_r_offset(), r_type, r_sym,
7477 reloc.get_r_addend());
7478 target->make_plt_entry(symtab, layout, gsym);
7479 }
7480 }
7481 // Make a dynamic relocation if necessary.
7482 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
7483 || (size == 64 && is_ifunc && target->abiversion() < 2))
7484 {
7485 if (!parameters->options().output_is_position_independent()
7486 && gsym->may_need_copy_reloc())
7487 {
7488 target->copy_reloc(symtab, layout, object,
7489 data_shndx, output_section, gsym, reloc);
7490 }
7491 else if ((((size == 32
7492 && r_type == elfcpp::R_POWERPC_ADDR32)
7493 || (size == 64
7494 && r_type == elfcpp::R_PPC64_ADDR64
7495 && target->abiversion() >= 2))
7496 && gsym->can_use_relative_reloc(false)
7497 && !(gsym->visibility() == elfcpp::STV_PROTECTED
7498 && parameters->options().shared()))
7499 || (size == 64
7500 && r_type == elfcpp::R_PPC64_ADDR64
7501 && target->abiversion() < 2
7502 && (gsym->can_use_relative_reloc(false)
7503 || data_shndx == ppc_object->opd_shndx())))
7504 {
7505 Reloc_section* rela_dyn
7506 = target->rela_dyn_section(symtab, layout, is_ifunc);
7507 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7508 : elfcpp::R_POWERPC_RELATIVE);
7509 rela_dyn->add_symbolless_global_addend(
7510 gsym, dynrel, output_section, object, data_shndx,
7511 reloc.get_r_offset(), reloc.get_r_addend());
7512 }
7513 else
7514 {
7515 Reloc_section* rela_dyn
7516 = target->rela_dyn_section(symtab, layout, is_ifunc);
7517 check_non_pic(object, r_type);
7518 rela_dyn->add_global(gsym, r_type, output_section,
7519 object, data_shndx,
7520 reloc.get_r_offset(),
7521 reloc.get_r_addend());
7522
7523 if (size == 64
7524 && parameters->options().toc_optimize()
7525 && data_shndx == ppc_object->toc_shndx())
7526 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7527 }
7528 }
7529 }
7530 break;
7531
7532 case elfcpp::R_POWERPC_PLT16_LO:
7533 case elfcpp::R_POWERPC_PLT16_HI:
7534 case elfcpp::R_POWERPC_PLT16_HA:
7535 case elfcpp::R_PPC64_PLT16_LO_DS:
7536 if (!pushed_ifunc)
7537 target->make_plt_entry(symtab, layout, gsym);
7538 break;
7539
7540 case elfcpp::R_PPC_PLTREL24:
7541 case elfcpp::R_POWERPC_REL24:
7542 if (!is_ifunc)
7543 {
7544 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7545 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7546 r_type, r_sym, reloc.get_r_addend());
7547 if (gsym->needs_plt_entry()
7548 || (!gsym->final_value_is_known()
7549 && (gsym->is_undefined()
7550 || gsym->is_from_dynobj()
7551 || gsym->is_preemptible())))
7552 target->make_plt_entry(symtab, layout, gsym);
7553 }
7554 // Fall through.
7555
7556 case elfcpp::R_PPC64_REL64:
7557 case elfcpp::R_POWERPC_REL32:
7558 // Make a dynamic relocation if necessary.
7559 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
7560 {
7561 if (!parameters->options().output_is_position_independent()
7562 && gsym->may_need_copy_reloc())
7563 {
7564 target->copy_reloc(symtab, layout, object,
7565 data_shndx, output_section, gsym,
7566 reloc);
7567 }
7568 else
7569 {
7570 Reloc_section* rela_dyn
7571 = target->rela_dyn_section(symtab, layout, is_ifunc);
7572 check_non_pic(object, r_type);
7573 rela_dyn->add_global(gsym, r_type, output_section, object,
7574 data_shndx, reloc.get_r_offset(),
7575 reloc.get_r_addend());
7576 }
7577 }
7578 break;
7579
7580 case elfcpp::R_POWERPC_REL14:
7581 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7582 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7583 if (!is_ifunc)
7584 {
7585 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7586 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
7587 r_type, r_sym, reloc.get_r_addend());
7588 }
7589 break;
7590
7591 case elfcpp::R_PPC64_TOCSAVE:
7592 // R_PPC64_TOCSAVE follows a call instruction to indicate the
7593 // caller has already saved r2 and thus a plt call stub need not
7594 // save r2.
7595 if (size == 64
7596 && target->mark_pltcall(ppc_object, data_shndx,
7597 reloc.get_r_offset() - 4, symtab))
7598 {
7599 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
7600 bool is_ordinary;
7601 unsigned int shndx = gsym->shndx(&is_ordinary);
7602 if (!is_ordinary)
7603 object->error(_("tocsave symbol %u has bad shndx %u"),
7604 r_sym, shndx);
7605 else
7606 {
7607 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7608 target->add_tocsave(ppc_object, shndx,
7609 sym->value() + reloc.get_r_addend());
7610 }
7611 }
7612 break;
7613
7614 case elfcpp::R_POWERPC_REL16:
7615 case elfcpp::R_POWERPC_REL16_LO:
7616 case elfcpp::R_POWERPC_REL16_HI:
7617 case elfcpp::R_POWERPC_REL16_HA:
7618 case elfcpp::R_POWERPC_REL16DX_HA:
7619 case elfcpp::R_PPC64_REL16_HIGH:
7620 case elfcpp::R_PPC64_REL16_HIGHA:
7621 case elfcpp::R_PPC64_REL16_HIGHER:
7622 case elfcpp::R_PPC64_REL16_HIGHERA:
7623 case elfcpp::R_PPC64_REL16_HIGHEST:
7624 case elfcpp::R_PPC64_REL16_HIGHESTA:
7625 case elfcpp::R_POWERPC_SECTOFF:
7626 case elfcpp::R_POWERPC_SECTOFF_LO:
7627 case elfcpp::R_POWERPC_SECTOFF_HI:
7628 case elfcpp::R_POWERPC_SECTOFF_HA:
7629 case elfcpp::R_PPC64_SECTOFF_DS:
7630 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7631 case elfcpp::R_POWERPC_TPREL16:
7632 case elfcpp::R_POWERPC_TPREL16_LO:
7633 case elfcpp::R_POWERPC_TPREL16_HI:
7634 case elfcpp::R_POWERPC_TPREL16_HA:
7635 case elfcpp::R_PPC64_TPREL16_DS:
7636 case elfcpp::R_PPC64_TPREL16_LO_DS:
7637 case elfcpp::R_PPC64_TPREL16_HIGH:
7638 case elfcpp::R_PPC64_TPREL16_HIGHA:
7639 case elfcpp::R_PPC64_TPREL16_HIGHER:
7640 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7641 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7642 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7643 case elfcpp::R_POWERPC_DTPREL16:
7644 case elfcpp::R_POWERPC_DTPREL16_LO:
7645 case elfcpp::R_POWERPC_DTPREL16_HI:
7646 case elfcpp::R_POWERPC_DTPREL16_HA:
7647 case elfcpp::R_PPC64_DTPREL16_DS:
7648 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7649 case elfcpp::R_PPC64_DTPREL16_HIGH:
7650 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7651 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7652 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7653 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7654 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7655 case elfcpp::R_PPC64_TLSGD:
7656 case elfcpp::R_PPC64_TLSLD:
7657 case elfcpp::R_PPC64_ADDR64_LOCAL:
7658 break;
7659
7660 case elfcpp::R_POWERPC_GOT16:
7661 case elfcpp::R_POWERPC_GOT16_LO:
7662 case elfcpp::R_POWERPC_GOT16_HI:
7663 case elfcpp::R_POWERPC_GOT16_HA:
7664 case elfcpp::R_PPC64_GOT16_DS:
7665 case elfcpp::R_PPC64_GOT16_LO_DS:
7666 {
7667 // The symbol requires a GOT entry.
7668 Output_data_got_powerpc<size, big_endian>* got;
7669
7670 got = target->got_section(symtab, layout);
7671 if (gsym->final_value_is_known())
7672 {
7673 if (is_ifunc
7674 && (size == 32 || target->abiversion() >= 2))
7675 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7676 else
7677 got->add_global(gsym, GOT_TYPE_STANDARD);
7678 }
7679 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7680 {
7681 // If we are generating a shared object or a pie, this
7682 // symbol's GOT entry will be set by a dynamic relocation.
7683 unsigned int off = got->add_constant(0);
7684 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7685
7686 Reloc_section* rela_dyn
7687 = target->rela_dyn_section(symtab, layout, is_ifunc);
7688
7689 if (gsym->can_use_relative_reloc(false)
7690 && !((size == 32
7691 || target->abiversion() >= 2)
7692 && gsym->visibility() == elfcpp::STV_PROTECTED
7693 && parameters->options().shared()))
7694 {
7695 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7696 : elfcpp::R_POWERPC_RELATIVE);
7697 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7698 }
7699 else
7700 {
7701 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7702 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7703 }
7704 }
7705 }
7706 break;
7707
7708 case elfcpp::R_PPC64_TOC16:
7709 case elfcpp::R_PPC64_TOC16_LO:
7710 case elfcpp::R_PPC64_TOC16_HI:
7711 case elfcpp::R_PPC64_TOC16_HA:
7712 case elfcpp::R_PPC64_TOC16_DS:
7713 case elfcpp::R_PPC64_TOC16_LO_DS:
7714 // We need a GOT section.
7715 target->got_section(symtab, layout);
7716 break;
7717
7718 case elfcpp::R_POWERPC_GOT_TLSGD16:
7719 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7720 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7721 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7722 {
7723 const bool final = gsym->final_value_is_known();
7724 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7725 if (tls_type == tls::TLSOPT_NONE)
7726 {
7727 Output_data_got_powerpc<size, big_endian>* got
7728 = target->got_section(symtab, layout);
7729 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7730 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7731 elfcpp::R_POWERPC_DTPMOD,
7732 elfcpp::R_POWERPC_DTPREL);
7733 }
7734 else if (tls_type == tls::TLSOPT_TO_IE)
7735 {
7736 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7737 {
7738 Output_data_got_powerpc<size, big_endian>* got
7739 = target->got_section(symtab, layout);
7740 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7741 if (gsym->is_undefined()
7742 || gsym->is_from_dynobj())
7743 {
7744 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7745 elfcpp::R_POWERPC_TPREL);
7746 }
7747 else
7748 {
7749 unsigned int off = got->add_constant(0);
7750 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7751 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7752 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7753 got, off, 0);
7754 }
7755 }
7756 }
7757 else if (tls_type == tls::TLSOPT_TO_LE)
7758 {
7759 // no GOT relocs needed for Local Exec.
7760 }
7761 else
7762 gold_unreachable();
7763 }
7764 break;
7765
7766 case elfcpp::R_POWERPC_GOT_TLSLD16:
7767 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7768 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7769 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7770 {
7771 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7772 if (tls_type == tls::TLSOPT_NONE)
7773 target->tlsld_got_offset(symtab, layout, object);
7774 else if (tls_type == tls::TLSOPT_TO_LE)
7775 {
7776 // no GOT relocs needed for Local Exec.
7777 if (parameters->options().emit_relocs())
7778 {
7779 Output_section* os = layout->tls_segment()->first_section();
7780 gold_assert(os != NULL);
7781 os->set_needs_symtab_index();
7782 }
7783 }
7784 else
7785 gold_unreachable();
7786 }
7787 break;
7788
7789 case elfcpp::R_POWERPC_GOT_DTPREL16:
7790 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7791 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7792 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7793 {
7794 Output_data_got_powerpc<size, big_endian>* got
7795 = target->got_section(symtab, layout);
7796 if (!gsym->final_value_is_known()
7797 && (gsym->is_from_dynobj()
7798 || gsym->is_undefined()
7799 || gsym->is_preemptible()))
7800 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7801 target->rela_dyn_section(layout),
7802 elfcpp::R_POWERPC_DTPREL);
7803 else
7804 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7805 }
7806 break;
7807
7808 case elfcpp::R_POWERPC_GOT_TPREL16:
7809 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7810 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7811 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7812 {
7813 const bool final = gsym->final_value_is_known();
7814 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7815 if (tls_type == tls::TLSOPT_NONE)
7816 {
7817 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7818 {
7819 Output_data_got_powerpc<size, big_endian>* got
7820 = target->got_section(symtab, layout);
7821 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7822 if (gsym->is_undefined()
7823 || gsym->is_from_dynobj())
7824 {
7825 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7826 elfcpp::R_POWERPC_TPREL);
7827 }
7828 else
7829 {
7830 unsigned int off = got->add_constant(0);
7831 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7832 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7833 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7834 got, off, 0);
7835 }
7836 }
7837 }
7838 else if (tls_type == tls::TLSOPT_TO_LE)
7839 {
7840 // no GOT relocs needed for Local Exec.
7841 }
7842 else
7843 gold_unreachable();
7844 }
7845 break;
7846
7847 default:
7848 unsupported_reloc_global(object, r_type, gsym);
7849 break;
7850 }
7851
7852 if (size == 64
7853 && parameters->options().toc_optimize())
7854 {
7855 if (data_shndx == ppc_object->toc_shndx())
7856 {
7857 bool ok = true;
7858 if (r_type != elfcpp::R_PPC64_ADDR64
7859 || (is_ifunc && target->abiversion() < 2))
7860 ok = false;
7861 else if (parameters->options().output_is_position_independent()
7862 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7863 ok = false;
7864 if (!ok)
7865 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7866 }
7867
7868 enum {no_check, check_lo, check_ha} insn_check;
7869 switch (r_type)
7870 {
7871 default:
7872 insn_check = no_check;
7873 break;
7874
7875 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7876 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7877 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7878 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7879 case elfcpp::R_POWERPC_GOT16_HA:
7880 case elfcpp::R_PPC64_TOC16_HA:
7881 insn_check = check_ha;
7882 break;
7883
7884 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7885 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7886 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7887 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7888 case elfcpp::R_POWERPC_GOT16_LO:
7889 case elfcpp::R_PPC64_GOT16_LO_DS:
7890 case elfcpp::R_PPC64_TOC16_LO:
7891 case elfcpp::R_PPC64_TOC16_LO_DS:
7892 insn_check = check_lo;
7893 break;
7894 }
7895
7896 section_size_type slen;
7897 const unsigned char* view = NULL;
7898 if (insn_check != no_check)
7899 {
7900 view = ppc_object->section_contents(data_shndx, &slen, false);
7901 section_size_type off =
7902 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7903 if (off < slen)
7904 {
7905 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7906 if (insn_check == check_lo
7907 ? !ok_lo_toc_insn(insn, r_type)
7908 : ((insn & ((0x3f << 26) | 0x1f << 16))
7909 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7910 {
7911 ppc_object->set_no_toc_opt();
7912 gold_warning(_("%s: toc optimization is not supported "
7913 "for %#08x instruction"),
7914 ppc_object->name().c_str(), insn);
7915 }
7916 }
7917 }
7918
7919 switch (r_type)
7920 {
7921 default:
7922 break;
7923 case elfcpp::R_PPC64_TOC16:
7924 case elfcpp::R_PPC64_TOC16_LO:
7925 case elfcpp::R_PPC64_TOC16_HI:
7926 case elfcpp::R_PPC64_TOC16_HA:
7927 case elfcpp::R_PPC64_TOC16_DS:
7928 case elfcpp::R_PPC64_TOC16_LO_DS:
7929 if (gsym->source() == Symbol::FROM_OBJECT
7930 && !gsym->object()->is_dynamic())
7931 {
7932 Powerpc_relobj<size, big_endian>* sym_object
7933 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7934 bool is_ordinary;
7935 unsigned int shndx = gsym->shndx(&is_ordinary);
7936 if (shndx == sym_object->toc_shndx())
7937 {
7938 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7939 Address dst_off = sym->value() + reloc.get_r_addend();
7940 if (dst_off < sym_object->section_size(shndx))
7941 {
7942 bool ok = false;
7943 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7944 ok = true;
7945 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7946 {
7947 // Need to check that the insn is a ld
7948 if (!view)
7949 view = ppc_object->section_contents(data_shndx,
7950 &slen,
7951 false);
7952 section_size_type off =
7953 (convert_to_section_size_type(reloc.get_r_offset())
7954 + (big_endian ? -2 : 3));
7955 if (off < slen
7956 && (view[off] & (0x3f << 2)) == (58u << 2))
7957 ok = true;
7958 }
7959 if (!ok)
7960 sym_object->set_no_toc_opt(dst_off);
7961 }
7962 }
7963 }
7964 break;
7965 }
7966 }
7967
7968 if (size == 32)
7969 {
7970 switch (r_type)
7971 {
7972 case elfcpp::R_PPC_LOCAL24PC:
7973 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7974 gold_error(_("%s: unsupported -mbss-plt code"),
7975 ppc_object->name().c_str());
7976 break;
7977 default:
7978 break;
7979 }
7980 }
7981
7982 switch (r_type)
7983 {
7984 case elfcpp::R_POWERPC_GOT_TLSLD16:
7985 case elfcpp::R_POWERPC_GOT_TLSGD16:
7986 case elfcpp::R_POWERPC_GOT_TPREL16:
7987 case elfcpp::R_POWERPC_GOT_DTPREL16:
7988 case elfcpp::R_POWERPC_GOT16:
7989 case elfcpp::R_PPC64_GOT16_DS:
7990 case elfcpp::R_PPC64_TOC16:
7991 case elfcpp::R_PPC64_TOC16_DS:
7992 ppc_object->set_has_small_toc_reloc();
7993 default:
7994 break;
7995 }
7996 }
7997
7998 // Process relocations for gc.
7999
8000 template<int size, bool big_endian>
8001 void
8002 Target_powerpc<size, big_endian>::gc_process_relocs(
8003 Symbol_table* symtab,
8004 Layout* layout,
8005 Sized_relobj_file<size, big_endian>* object,
8006 unsigned int data_shndx,
8007 unsigned int,
8008 const unsigned char* prelocs,
8009 size_t reloc_count,
8010 Output_section* output_section,
8011 bool needs_special_offset_handling,
8012 size_t local_symbol_count,
8013 const unsigned char* plocal_symbols)
8014 {
8015 typedef Target_powerpc<size, big_endian> Powerpc;
8016 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8017 Classify_reloc;
8018
8019 Powerpc_relobj<size, big_endian>* ppc_object
8020 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
8021 if (size == 64)
8022 ppc_object->set_opd_valid();
8023 if (size == 64 && data_shndx == ppc_object->opd_shndx())
8024 {
8025 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
8026 for (p = ppc_object->access_from_map()->begin();
8027 p != ppc_object->access_from_map()->end();
8028 ++p)
8029 {
8030 Address dst_off = p->first;
8031 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8032 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
8033 for (s = p->second.begin(); s != p->second.end(); ++s)
8034 {
8035 Relobj* src_obj = s->first;
8036 unsigned int src_indx = s->second;
8037 symtab->gc()->add_reference(src_obj, src_indx,
8038 ppc_object, dst_indx);
8039 }
8040 p->second.clear();
8041 }
8042 ppc_object->access_from_map()->clear();
8043 ppc_object->process_gc_mark(symtab);
8044 // Don't look at .opd relocs as .opd will reference everything.
8045 return;
8046 }
8047
8048 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8049 symtab,
8050 layout,
8051 this,
8052 object,
8053 data_shndx,
8054 prelocs,
8055 reloc_count,
8056 output_section,
8057 needs_special_offset_handling,
8058 local_symbol_count,
8059 plocal_symbols);
8060 }
8061
8062 // Handle target specific gc actions when adding a gc reference from
8063 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
8064 // and DST_OFF. For powerpc64, this adds a referenc to the code
8065 // section of a function descriptor.
8066
8067 template<int size, bool big_endian>
8068 void
8069 Target_powerpc<size, big_endian>::do_gc_add_reference(
8070 Symbol_table* symtab,
8071 Relobj* src_obj,
8072 unsigned int src_shndx,
8073 Relobj* dst_obj,
8074 unsigned int dst_shndx,
8075 Address dst_off) const
8076 {
8077 if (size != 64 || dst_obj->is_dynamic())
8078 return;
8079
8080 Powerpc_relobj<size, big_endian>* ppc_object
8081 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
8082 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
8083 {
8084 if (ppc_object->opd_valid())
8085 {
8086 dst_shndx = ppc_object->get_opd_ent(dst_off);
8087 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
8088 }
8089 else
8090 {
8091 // If we haven't run scan_opd_relocs, we must delay
8092 // processing this function descriptor reference.
8093 ppc_object->add_reference(src_obj, src_shndx, dst_off);
8094 }
8095 }
8096 }
8097
8098 // Add any special sections for this symbol to the gc work list.
8099 // For powerpc64, this adds the code section of a function
8100 // descriptor.
8101
8102 template<int size, bool big_endian>
8103 void
8104 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
8105 Symbol_table* symtab,
8106 Symbol* sym) const
8107 {
8108 if (size == 64)
8109 {
8110 Powerpc_relobj<size, big_endian>* ppc_object
8111 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
8112 bool is_ordinary;
8113 unsigned int shndx = sym->shndx(&is_ordinary);
8114 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
8115 {
8116 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
8117 Address dst_off = gsym->value();
8118 if (ppc_object->opd_valid())
8119 {
8120 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
8121 symtab->gc()->worklist().push_back(Section_id(ppc_object,
8122 dst_indx));
8123 }
8124 else
8125 ppc_object->add_gc_mark(dst_off);
8126 }
8127 }
8128 }
8129
8130 // For a symbol location in .opd, set LOC to the location of the
8131 // function entry.
8132
8133 template<int size, bool big_endian>
8134 void
8135 Target_powerpc<size, big_endian>::do_function_location(
8136 Symbol_location* loc) const
8137 {
8138 if (size == 64 && loc->shndx != 0)
8139 {
8140 if (loc->object->is_dynamic())
8141 {
8142 Powerpc_dynobj<size, big_endian>* ppc_object
8143 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
8144 if (loc->shndx == ppc_object->opd_shndx())
8145 {
8146 Address dest_off;
8147 Address off = loc->offset - ppc_object->opd_address();
8148 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
8149 loc->offset = dest_off;
8150 }
8151 }
8152 else
8153 {
8154 const Powerpc_relobj<size, big_endian>* ppc_object
8155 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
8156 if (loc->shndx == ppc_object->opd_shndx())
8157 {
8158 Address dest_off;
8159 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
8160 loc->offset = dest_off;
8161 }
8162 }
8163 }
8164 }
8165
8166 // FNOFFSET in section SHNDX in OBJECT is the start of a function
8167 // compiled with -fsplit-stack. The function calls non-split-stack
8168 // code. Change the function to ensure it has enough stack space to
8169 // call some random function.
8170
8171 template<int size, bool big_endian>
8172 void
8173 Target_powerpc<size, big_endian>::do_calls_non_split(
8174 Relobj* object,
8175 unsigned int shndx,
8176 section_offset_type fnoffset,
8177 section_size_type fnsize,
8178 const unsigned char* prelocs,
8179 size_t reloc_count,
8180 unsigned char* view,
8181 section_size_type view_size,
8182 std::string* from,
8183 std::string* to) const
8184 {
8185 // 32-bit not supported.
8186 if (size == 32)
8187 {
8188 // warn
8189 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
8190 prelocs, reloc_count, view, view_size,
8191 from, to);
8192 return;
8193 }
8194
8195 // The function always starts with
8196 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
8197 // addis %r12,%r1,-allocate@ha
8198 // addi %r12,%r12,-allocate@l
8199 // cmpld %r12,%r0
8200 // but note that the addis or addi may be replaced with a nop
8201
8202 unsigned char *entry = view + fnoffset;
8203 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
8204
8205 if ((insn & 0xffff0000) == addis_2_12)
8206 {
8207 /* Skip ELFv2 global entry code. */
8208 entry += 8;
8209 insn = elfcpp::Swap<32, big_endian>::readval(entry);
8210 }
8211
8212 unsigned char *pinsn = entry;
8213 bool ok = false;
8214 const uint32_t ld_private_ss = 0xe80d8fc0;
8215 if (insn == ld_private_ss)
8216 {
8217 int32_t allocate = 0;
8218 while (1)
8219 {
8220 pinsn += 4;
8221 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
8222 if ((insn & 0xffff0000) == addis_12_1)
8223 allocate += (insn & 0xffff) << 16;
8224 else if ((insn & 0xffff0000) == addi_12_1
8225 || (insn & 0xffff0000) == addi_12_12)
8226 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
8227 else if (insn != nop)
8228 break;
8229 }
8230 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
8231 {
8232 int extra = parameters->options().split_stack_adjust_size();
8233 allocate -= extra;
8234 if (allocate >= 0 || extra < 0)
8235 {
8236 object->error(_("split-stack stack size overflow at "
8237 "section %u offset %0zx"),
8238 shndx, static_cast<size_t>(fnoffset));
8239 return;
8240 }
8241 pinsn = entry + 4;
8242 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
8243 if (insn != addis_12_1)
8244 {
8245 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8246 pinsn += 4;
8247 insn = addi_12_12 | (allocate & 0xffff);
8248 if (insn != addi_12_12)
8249 {
8250 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8251 pinsn += 4;
8252 }
8253 }
8254 else
8255 {
8256 insn = addi_12_1 | (allocate & 0xffff);
8257 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
8258 pinsn += 4;
8259 }
8260 if (pinsn != entry + 12)
8261 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
8262
8263 ok = true;
8264 }
8265 }
8266
8267 if (!ok)
8268 {
8269 if (!object->has_no_split_stack())
8270 object->error(_("failed to match split-stack sequence at "
8271 "section %u offset %0zx"),
8272 shndx, static_cast<size_t>(fnoffset));
8273 }
8274 }
8275
8276 // Scan relocations for a section.
8277
8278 template<int size, bool big_endian>
8279 void
8280 Target_powerpc<size, big_endian>::scan_relocs(
8281 Symbol_table* symtab,
8282 Layout* layout,
8283 Sized_relobj_file<size, big_endian>* object,
8284 unsigned int data_shndx,
8285 unsigned int sh_type,
8286 const unsigned char* prelocs,
8287 size_t reloc_count,
8288 Output_section* output_section,
8289 bool needs_special_offset_handling,
8290 size_t local_symbol_count,
8291 const unsigned char* plocal_symbols)
8292 {
8293 typedef Target_powerpc<size, big_endian> Powerpc;
8294 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8295 Classify_reloc;
8296
8297 if (!this->plt_localentry0_init_)
8298 {
8299 bool plt_localentry0 = false;
8300 if (size == 64
8301 && this->abiversion() >= 2)
8302 {
8303 if (parameters->options().user_set_plt_localentry())
8304 plt_localentry0 = parameters->options().plt_localentry();
8305 if (plt_localentry0
8306 && symtab->lookup("GLIBC_2.26", NULL) == NULL)
8307 gold_warning(_("--plt-localentry is especially dangerous without "
8308 "ld.so support to detect ABI violations"));
8309 }
8310 this->plt_localentry0_ = plt_localentry0;
8311 this->plt_localentry0_init_ = true;
8312 }
8313
8314 if (sh_type == elfcpp::SHT_REL)
8315 {
8316 gold_error(_("%s: unsupported REL reloc section"),
8317 object->name().c_str());
8318 return;
8319 }
8320
8321 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
8322 symtab,
8323 layout,
8324 this,
8325 object,
8326 data_shndx,
8327 prelocs,
8328 reloc_count,
8329 output_section,
8330 needs_special_offset_handling,
8331 local_symbol_count,
8332 plocal_symbols);
8333 }
8334
8335 // Functor class for processing the global symbol table.
8336 // Removes symbols defined on discarded opd entries.
8337
8338 template<bool big_endian>
8339 class Global_symbol_visitor_opd
8340 {
8341 public:
8342 Global_symbol_visitor_opd()
8343 { }
8344
8345 void
8346 operator()(Sized_symbol<64>* sym)
8347 {
8348 if (sym->has_symtab_index()
8349 || sym->source() != Symbol::FROM_OBJECT
8350 || !sym->in_real_elf())
8351 return;
8352
8353 if (sym->object()->is_dynamic())
8354 return;
8355
8356 Powerpc_relobj<64, big_endian>* symobj
8357 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
8358 if (symobj->opd_shndx() == 0)
8359 return;
8360
8361 bool is_ordinary;
8362 unsigned int shndx = sym->shndx(&is_ordinary);
8363 if (shndx == symobj->opd_shndx()
8364 && symobj->get_opd_discard(sym->value()))
8365 {
8366 sym->set_undefined();
8367 sym->set_visibility(elfcpp::STV_DEFAULT);
8368 sym->set_is_defined_in_discarded_section();
8369 sym->set_symtab_index(-1U);
8370 }
8371 }
8372 };
8373
8374 template<int size, bool big_endian>
8375 void
8376 Target_powerpc<size, big_endian>::define_save_restore_funcs(
8377 Layout* layout,
8378 Symbol_table* symtab)
8379 {
8380 if (size == 64)
8381 {
8382 Output_data_save_res<size, big_endian>* savres
8383 = new Output_data_save_res<size, big_endian>(symtab);
8384 this->savres_section_ = savres;
8385 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
8386 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
8387 savres, ORDER_TEXT, false);
8388 }
8389 }
8390
8391 // Sort linker created .got section first (for the header), then input
8392 // sections belonging to files using small model code.
8393
8394 template<bool big_endian>
8395 class Sort_toc_sections
8396 {
8397 public:
8398 bool
8399 operator()(const Output_section::Input_section& is1,
8400 const Output_section::Input_section& is2) const
8401 {
8402 if (!is1.is_input_section() && is2.is_input_section())
8403 return true;
8404 bool small1
8405 = (is1.is_input_section()
8406 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
8407 ->has_small_toc_reloc()));
8408 bool small2
8409 = (is2.is_input_section()
8410 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
8411 ->has_small_toc_reloc()));
8412 return small1 && !small2;
8413 }
8414 };
8415
8416 // Finalize the sections.
8417
8418 template<int size, bool big_endian>
8419 void
8420 Target_powerpc<size, big_endian>::do_finalize_sections(
8421 Layout* layout,
8422 const Input_objects* input_objects,
8423 Symbol_table* symtab)
8424 {
8425 if (parameters->doing_static_link())
8426 {
8427 // At least some versions of glibc elf-init.o have a strong
8428 // reference to __rela_iplt marker syms. A weak ref would be
8429 // better..
8430 if (this->iplt_ != NULL)
8431 {
8432 Reloc_section* rel = this->iplt_->rel_plt();
8433 symtab->define_in_output_data("__rela_iplt_start", NULL,
8434 Symbol_table::PREDEFINED, rel, 0, 0,
8435 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8436 elfcpp::STV_HIDDEN, 0, false, true);
8437 symtab->define_in_output_data("__rela_iplt_end", NULL,
8438 Symbol_table::PREDEFINED, rel, 0, 0,
8439 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8440 elfcpp::STV_HIDDEN, 0, true, true);
8441 }
8442 else
8443 {
8444 symtab->define_as_constant("__rela_iplt_start", NULL,
8445 Symbol_table::PREDEFINED, 0, 0,
8446 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8447 elfcpp::STV_HIDDEN, 0, true, false);
8448 symtab->define_as_constant("__rela_iplt_end", NULL,
8449 Symbol_table::PREDEFINED, 0, 0,
8450 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
8451 elfcpp::STV_HIDDEN, 0, true, false);
8452 }
8453 }
8454
8455 if (size == 64)
8456 {
8457 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
8458 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
8459
8460 if (!parameters->options().relocatable())
8461 {
8462 this->define_save_restore_funcs(layout, symtab);
8463
8464 // Annoyingly, we need to make these sections now whether or
8465 // not we need them. If we delay until do_relax then we
8466 // need to mess with the relaxation machinery checkpointing.
8467 this->got_section(symtab, layout);
8468 this->make_brlt_section(layout);
8469
8470 if (parameters->options().toc_sort())
8471 {
8472 Output_section* os = this->got_->output_section();
8473 if (os != NULL && os->input_sections().size() > 1)
8474 std::stable_sort(os->input_sections().begin(),
8475 os->input_sections().end(),
8476 Sort_toc_sections<big_endian>());
8477 }
8478 }
8479 }
8480
8481 // Fill in some more dynamic tags.
8482 Output_data_dynamic* odyn = layout->dynamic_data();
8483 if (odyn != NULL)
8484 {
8485 const Reloc_section* rel_plt = (this->plt_ == NULL
8486 ? NULL
8487 : this->plt_->rel_plt());
8488 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
8489 this->rela_dyn_, true, size == 32);
8490
8491 if (size == 32)
8492 {
8493 if (this->got_ != NULL)
8494 {
8495 this->got_->finalize_data_size();
8496 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
8497 this->got_, this->got_->g_o_t());
8498 }
8499 if (this->has_tls_get_addr_opt_)
8500 odyn->add_constant(elfcpp::DT_PPC_OPT, elfcpp::PPC_OPT_TLS);
8501 }
8502 else
8503 {
8504 if (this->glink_ != NULL)
8505 {
8506 this->glink_->finalize_data_size();
8507 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
8508 this->glink_,
8509 (this->glink_->pltresolve_size()
8510 - 32));
8511 }
8512 if (this->has_localentry0_ || this->has_tls_get_addr_opt_)
8513 odyn->add_constant(elfcpp::DT_PPC64_OPT,
8514 ((this->has_localentry0_
8515 ? elfcpp::PPC64_OPT_LOCALENTRY : 0)
8516 | (this->has_tls_get_addr_opt_
8517 ? elfcpp::PPC64_OPT_TLS : 0)));
8518 }
8519 }
8520
8521 // Emit any relocs we saved in an attempt to avoid generating COPY
8522 // relocs.
8523 if (this->copy_relocs_.any_saved_relocs())
8524 this->copy_relocs_.emit(this->rela_dyn_section(layout));
8525
8526 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8527 p != input_objects->relobj_end();
8528 ++p)
8529 {
8530 Powerpc_relobj<size, big_endian>* ppc_relobj
8531 = static_cast<Powerpc_relobj<size, big_endian>*>(*p);
8532 if (ppc_relobj->attributes_section_data())
8533 this->merge_object_attributes(ppc_relobj->name().c_str(),
8534 ppc_relobj->attributes_section_data());
8535 }
8536 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8537 p != input_objects->dynobj_end();
8538 ++p)
8539 {
8540 Powerpc_dynobj<size, big_endian>* ppc_dynobj
8541 = static_cast<Powerpc_dynobj<size, big_endian>*>(*p);
8542 if (ppc_dynobj->attributes_section_data())
8543 this->merge_object_attributes(ppc_dynobj->name().c_str(),
8544 ppc_dynobj->attributes_section_data());
8545 }
8546
8547 // Create a .gnu.attributes section if we have merged any attributes
8548 // from inputs.
8549 if (this->attributes_section_data_ != NULL
8550 && this->attributes_section_data_->size() != 0)
8551 {
8552 Output_attributes_section_data* attributes_section
8553 = new Output_attributes_section_data(*this->attributes_section_data_);
8554 layout->add_output_section_data(".gnu.attributes",
8555 elfcpp::SHT_GNU_ATTRIBUTES, 0,
8556 attributes_section, ORDER_INVALID, false);
8557 }
8558 }
8559
8560 // Merge object attributes from input file called NAME with those of the
8561 // output. The input object attributes are in the object pointed by PASD.
8562
8563 template<int size, bool big_endian>
8564 void
8565 Target_powerpc<size, big_endian>::merge_object_attributes(
8566 const char* name,
8567 const Attributes_section_data* pasd)
8568 {
8569 // Return if there is no attributes section data.
8570 if (pasd == NULL)
8571 return;
8572
8573 // Create output object attributes.
8574 if (this->attributes_section_data_ == NULL)
8575 this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
8576
8577 const int vendor = Object_attribute::OBJ_ATTR_GNU;
8578 const Object_attribute* in_attr = pasd->known_attributes(vendor);
8579 Object_attribute* out_attr
8580 = this->attributes_section_data_->known_attributes(vendor);
8581
8582 const char* err;
8583 const char* first;
8584 const char* second;
8585 int tag = elfcpp::Tag_GNU_Power_ABI_FP;
8586 int in_fp = in_attr[tag].int_value() & 0xf;
8587 int out_fp = out_attr[tag].int_value() & 0xf;
8588 if (in_fp != out_fp)
8589 {
8590 err = NULL;
8591 if ((in_fp & 3) == 0)
8592 ;
8593 else if ((out_fp & 3) == 0)
8594 {
8595 out_fp |= in_fp & 3;
8596 out_attr[tag].set_int_value(out_fp);
8597 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8598 this->last_fp_ = name;
8599 }
8600 else if ((out_fp & 3) != 2 && (in_fp & 3) == 2)
8601 {
8602 err = N_("%s uses hard float, %s uses soft float");
8603 first = this->last_fp_;
8604 second = name;
8605 }
8606 else if ((out_fp & 3) == 2 && (in_fp & 3) != 2)
8607 {
8608 err = N_("%s uses hard float, %s uses soft float");
8609 first = name;
8610 second = this->last_fp_;
8611 }
8612 else if ((out_fp & 3) == 1 && (in_fp & 3) == 3)
8613 {
8614 err = N_("%s uses double-precision hard float, "
8615 "%s uses single-precision hard float");
8616 first = this->last_fp_;
8617 second = name;
8618 }
8619 else if ((out_fp & 3) == 3 && (in_fp & 3) == 1)
8620 {
8621 err = N_("%s uses double-precision hard float, "
8622 "%s uses single-precision hard float");
8623 first = name;
8624 second = this->last_fp_;
8625 }
8626
8627 if (err || (in_fp & 0xc) == 0)
8628 ;
8629 else if ((out_fp & 0xc) == 0)
8630 {
8631 out_fp |= in_fp & 0xc;
8632 out_attr[tag].set_int_value(out_fp);
8633 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8634 this->last_ld_ = name;
8635 }
8636 else if ((out_fp & 0xc) != 2 * 4 && (in_fp & 0xc) == 2 * 4)
8637 {
8638 err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
8639 first = name;
8640 second = this->last_ld_;
8641 }
8642 else if ((in_fp & 0xc) != 2 * 4 && (out_fp & 0xc) == 2 * 4)
8643 {
8644 err = N_("%s uses 64-bit long double, %s uses 128-bit long double");
8645 first = this->last_ld_;
8646 second = name;
8647 }
8648 else if ((out_fp & 0xc) == 1 * 4 && (in_fp & 0xc) == 3 * 4)
8649 {
8650 err = N_("%s uses IBM long double, %s uses IEEE long double");
8651 first = this->last_ld_;
8652 second = name;
8653 }
8654 else if ((out_fp & 0xc) == 3 * 4 && (in_fp & 0xc) == 1 * 4)
8655 {
8656 err = N_("%s uses IBM long double, %s uses IEEE long double");
8657 first = name;
8658 second = this->last_ld_;
8659 }
8660
8661 if (err)
8662 {
8663 if (parameters->options().warn_mismatch())
8664 gold_error(_(err), first, second);
8665 // Arrange for this attribute to be deleted. It's better to
8666 // say "don't know" about a file than to wrongly claim compliance.
8667 out_attr[tag].set_type(0);
8668 }
8669 }
8670
8671 if (size == 32)
8672 {
8673 tag = elfcpp::Tag_GNU_Power_ABI_Vector;
8674 int in_vec = in_attr[tag].int_value() & 3;
8675 int out_vec = out_attr[tag].int_value() & 3;
8676 if (in_vec != out_vec)
8677 {
8678 err = NULL;
8679 if (in_vec == 0)
8680 ;
8681 else if (out_vec == 0)
8682 {
8683 out_vec = in_vec;
8684 out_attr[tag].set_int_value(out_vec);
8685 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8686 this->last_vec_ = name;
8687 }
8688 // For now, allow generic to transition to AltiVec or SPE
8689 // without a warning. If GCC marked files with their stack
8690 // alignment and used don't-care markings for files which are
8691 // not affected by the vector ABI, we could warn about this
8692 // case too. */
8693 else if (in_vec == 1)
8694 ;
8695 else if (out_vec == 1)
8696 {
8697 out_vec = in_vec;
8698 out_attr[tag].set_int_value(out_vec);
8699 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8700 this->last_vec_ = name;
8701 }
8702 else if (out_vec < in_vec)
8703 {
8704 err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
8705 first = this->last_vec_;
8706 second = name;
8707 }
8708 else if (out_vec > in_vec)
8709 {
8710 err = N_("%s uses AltiVec vector ABI, %s uses SPE vector ABI");
8711 first = name;
8712 second = this->last_vec_;
8713 }
8714 if (err)
8715 {
8716 if (parameters->options().warn_mismatch())
8717 gold_error(_(err), first, second);
8718 out_attr[tag].set_type(0);
8719 }
8720 }
8721
8722 tag = elfcpp::Tag_GNU_Power_ABI_Struct_Return;
8723 int in_struct = in_attr[tag].int_value() & 3;
8724 int out_struct = out_attr[tag].int_value() & 3;
8725 if (in_struct != out_struct)
8726 {
8727 err = NULL;
8728 if (in_struct == 0 || in_struct == 3)
8729 ;
8730 else if (out_struct == 0)
8731 {
8732 out_struct = in_struct;
8733 out_attr[tag].set_int_value(out_struct);
8734 out_attr[tag].set_type(Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
8735 this->last_struct_ = name;
8736 }
8737 else if (out_struct < in_struct)
8738 {
8739 err = N_("%s uses r3/r4 for small structure returns, "
8740 "%s uses memory");
8741 first = this->last_struct_;
8742 second = name;
8743 }
8744 else if (out_struct > in_struct)
8745 {
8746 err = N_("%s uses r3/r4 for small structure returns, "
8747 "%s uses memory");
8748 first = name;
8749 second = this->last_struct_;
8750 }
8751 if (err)
8752 {
8753 if (parameters->options().warn_mismatch())
8754 gold_error(_(err), first, second);
8755 out_attr[tag].set_type(0);
8756 }
8757 }
8758 }
8759
8760 // Merge Tag_compatibility attributes and any common GNU ones.
8761 this->attributes_section_data_->merge(name, pasd);
8762 }
8763
8764 // Emit any saved relocs, and mark toc entries using any of these
8765 // relocs as not optimizable.
8766
8767 template<int sh_type, int size, bool big_endian>
8768 void
8769 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
8770 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
8771 {
8772 if (size == 64
8773 && parameters->options().toc_optimize())
8774 {
8775 for (typename Copy_relocs<sh_type, size, big_endian>::
8776 Copy_reloc_entries::iterator p = this->entries_.begin();
8777 p != this->entries_.end();
8778 ++p)
8779 {
8780 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
8781 entry = *p;
8782
8783 // If the symbol is no longer defined in a dynamic object,
8784 // then we emitted a COPY relocation. If it is still
8785 // dynamic then we'll need dynamic relocations and thus
8786 // can't optimize toc entries.
8787 if (entry.sym_->is_from_dynobj())
8788 {
8789 Powerpc_relobj<size, big_endian>* ppc_object
8790 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
8791 if (entry.shndx_ == ppc_object->toc_shndx())
8792 ppc_object->set_no_toc_opt(entry.address_);
8793 }
8794 }
8795 }
8796
8797 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
8798 }
8799
8800 // Return the value to use for a branch relocation.
8801
8802 template<int size, bool big_endian>
8803 bool
8804 Target_powerpc<size, big_endian>::symval_for_branch(
8805 const Symbol_table* symtab,
8806 const Sized_symbol<size>* gsym,
8807 Powerpc_relobj<size, big_endian>* object,
8808 Address *value,
8809 unsigned int *dest_shndx)
8810 {
8811 if (size == 32 || this->abiversion() >= 2)
8812 gold_unreachable();
8813 *dest_shndx = 0;
8814
8815 // If the symbol is defined in an opd section, ie. is a function
8816 // descriptor, use the function descriptor code entry address
8817 Powerpc_relobj<size, big_endian>* symobj = object;
8818 if (gsym != NULL
8819 && (gsym->source() != Symbol::FROM_OBJECT
8820 || gsym->object()->is_dynamic()))
8821 return true;
8822 if (gsym != NULL)
8823 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
8824 unsigned int shndx = symobj->opd_shndx();
8825 if (shndx == 0)
8826 return true;
8827 Address opd_addr = symobj->get_output_section_offset(shndx);
8828 if (opd_addr == invalid_address)
8829 return true;
8830 opd_addr += symobj->output_section_address(shndx);
8831 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
8832 {
8833 Address sec_off;
8834 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
8835 if (symtab->is_section_folded(symobj, *dest_shndx))
8836 {
8837 Section_id folded
8838 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
8839 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
8840 *dest_shndx = folded.second;
8841 }
8842 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
8843 if (sec_addr == invalid_address)
8844 return false;
8845
8846 sec_addr += symobj->output_section(*dest_shndx)->address();
8847 *value = sec_addr + sec_off;
8848 }
8849 return true;
8850 }
8851
8852 // Perform a relocation.
8853
8854 template<int size, bool big_endian>
8855 inline bool
8856 Target_powerpc<size, big_endian>::Relocate::relocate(
8857 const Relocate_info<size, big_endian>* relinfo,
8858 unsigned int,
8859 Target_powerpc* target,
8860 Output_section* os,
8861 size_t relnum,
8862 const unsigned char* preloc,
8863 const Sized_symbol<size>* gsym,
8864 const Symbol_value<size>* psymval,
8865 unsigned char* view,
8866 Address address,
8867 section_size_type view_size)
8868 {
8869 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8870 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8871 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8872
8873 if (view == NULL)
8874 return true;
8875
8876 if (target->replace_tls_get_addr(gsym))
8877 gsym = static_cast<const Sized_symbol<size>*>(target->tls_get_addr_opt());
8878
8879 const elfcpp::Rela<size, big_endian> rela(preloc);
8880 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
8881 switch (this->maybe_skip_tls_get_addr_call(target, r_type, gsym))
8882 {
8883 case Track_tls::NOT_EXPECTED:
8884 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8885 _("__tls_get_addr call lacks marker reloc"));
8886 break;
8887 case Track_tls::EXPECTED:
8888 // We have already complained.
8889 break;
8890 case Track_tls::SKIP:
8891 if (is_plt16_reloc<size>(r_type)
8892 || r_type == elfcpp::R_POWERPC_PLTSEQ)
8893 {
8894 Insn* iview = reinterpret_cast<Insn*>(view);
8895 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8896 }
8897 else if (size == 64 && r_type == elfcpp::R_POWERPC_PLTCALL)
8898 {
8899 Insn* iview = reinterpret_cast<Insn*>(view);
8900 elfcpp::Swap<32, big_endian>::writeval(iview + 1, nop);
8901 }
8902 return true;
8903 case Track_tls::NORMAL:
8904 break;
8905 }
8906
8907 // Offset from start of insn to d-field reloc.
8908 const int d_offset = big_endian ? 2 : 0;
8909
8910 Powerpc_relobj<size, big_endian>* const object
8911 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8912 Address value = 0;
8913 bool has_stub_value = false;
8914 bool localentry0 = false;
8915 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8916 bool has_plt_offset
8917 = (gsym != NULL
8918 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8919 : object->local_has_plt_offset(r_sym));
8920 if (has_plt_offset
8921 && !is_plt16_reloc<size>(r_type)
8922 && r_type != elfcpp::R_POWERPC_PLTSEQ
8923 && r_type != elfcpp::R_POWERPC_PLTCALL
8924 && (!psymval->is_ifunc_symbol()
8925 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8926 {
8927 if (size == 64
8928 && gsym != NULL
8929 && target->abiversion() >= 2
8930 && !parameters->options().output_is_position_independent()
8931 && !is_branch_reloc(r_type))
8932 {
8933 Address off = target->glink_section()->find_global_entry(gsym);
8934 if (off != invalid_address)
8935 {
8936 value = target->glink_section()->global_entry_address() + off;
8937 has_stub_value = true;
8938 }
8939 }
8940 else
8941 {
8942 Stub_table<size, big_endian>* stub_table = NULL;
8943 if (target->stub_tables().size() == 1)
8944 stub_table = target->stub_tables()[0];
8945 if (stub_table == NULL
8946 && !(size == 32
8947 && gsym != NULL
8948 && !parameters->options().output_is_position_independent()
8949 && !is_branch_reloc(r_type)))
8950 stub_table = object->stub_table(relinfo->data_shndx);
8951 if (stub_table == NULL)
8952 {
8953 // This is a ref from a data section to an ifunc symbol,
8954 // or a non-branch reloc for which we always want to use
8955 // one set of stubs for resolving function addresses.
8956 if (target->stub_tables().size() != 0)
8957 stub_table = target->stub_tables()[0];
8958 }
8959 if (stub_table != NULL)
8960 {
8961 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8962 if (gsym != NULL)
8963 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8964 rela.get_r_addend());
8965 else
8966 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8967 rela.get_r_addend());
8968 if (ent != NULL)
8969 {
8970 value = stub_table->stub_address() + ent->off_;
8971 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8972 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8973 size_t reloc_count = shdr.get_sh_size() / reloc_size;
8974 if (size == 64
8975 && ent->r2save_
8976 && relnum + 1 < reloc_count)
8977 {
8978 Reltype next_rela(preloc + reloc_size);
8979 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8980 == elfcpp::R_PPC64_TOCSAVE
8981 && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8982 value += 4;
8983 }
8984 localentry0 = ent->localentry0_;
8985 has_stub_value = true;
8986 }
8987 }
8988 }
8989 // We don't care too much about bogus debug references to
8990 // non-local functions, but otherwise there had better be a plt
8991 // call stub or global entry stub as appropriate.
8992 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8993 }
8994
8995 if (has_plt_offset && is_plt16_reloc<size>(r_type))
8996 {
8997 const Output_data_plt_powerpc<size, big_endian>* plt;
8998 if (gsym)
8999 value = target->plt_off(gsym, &plt);
9000 else
9001 value = target->plt_off(object, r_sym, &plt);
9002 value += plt->address();
9003
9004 if (size == 64)
9005 value -= (target->got_section()->output_section()->address()
9006 + object->toc_base_offset());
9007 else if (parameters->options().output_is_position_independent())
9008 {
9009 if (rela.get_r_addend() >= 32768)
9010 {
9011 unsigned int got2 = object->got2_shndx();
9012 value -= (object->get_output_section_offset(got2)
9013 + object->output_section(got2)->address()
9014 + rela.get_r_addend());
9015 }
9016 else
9017 value -= (target->got_section()->address()
9018 + target->got_section()->g_o_t());
9019 }
9020 }
9021 else if (!has_plt_offset
9022 && (is_plt16_reloc<size>(r_type)
9023 || r_type == elfcpp::R_POWERPC_PLTSEQ))
9024 {
9025 Insn* iview = reinterpret_cast<Insn*>(view);
9026 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9027 r_type = elfcpp::R_POWERPC_NONE;
9028 }
9029 else if (r_type == elfcpp::R_POWERPC_GOT16
9030 || r_type == elfcpp::R_POWERPC_GOT16_LO
9031 || r_type == elfcpp::R_POWERPC_GOT16_HI
9032 || r_type == elfcpp::R_POWERPC_GOT16_HA
9033 || r_type == elfcpp::R_PPC64_GOT16_DS
9034 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
9035 {
9036 if (gsym != NULL)
9037 {
9038 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
9039 value = gsym->got_offset(GOT_TYPE_STANDARD);
9040 }
9041 else
9042 {
9043 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
9044 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
9045 }
9046 value -= target->got_section()->got_base_offset(object);
9047 }
9048 else if (r_type == elfcpp::R_PPC64_TOC)
9049 {
9050 value = (target->got_section()->output_section()->address()
9051 + object->toc_base_offset());
9052 }
9053 else if (gsym != NULL
9054 && (r_type == elfcpp::R_POWERPC_REL24
9055 || r_type == elfcpp::R_PPC_PLTREL24)
9056 && has_stub_value)
9057 {
9058 if (size == 64)
9059 {
9060 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
9061 Valtype* wv = reinterpret_cast<Valtype*>(view);
9062 bool can_plt_call = localentry0 || target->is_tls_get_addr_opt(gsym);
9063 if (!can_plt_call && rela.get_r_offset() + 8 <= view_size)
9064 {
9065 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
9066 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
9067 if ((insn & 1) != 0
9068 && (insn2 == nop
9069 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
9070 {
9071 elfcpp::Swap<32, big_endian>::
9072 writeval(wv + 1, ld_2_1 + target->stk_toc());
9073 can_plt_call = true;
9074 }
9075 }
9076 if (!can_plt_call)
9077 {
9078 // If we don't have a branch and link followed by a nop,
9079 // we can't go via the plt because there is no place to
9080 // put a toc restoring instruction.
9081 // Unless we know we won't be returning.
9082 if (strcmp(gsym->name(), "__libc_start_main") == 0)
9083 can_plt_call = true;
9084 }
9085 if (!can_plt_call)
9086 {
9087 // g++ as of 20130507 emits self-calls without a
9088 // following nop. This is arguably wrong since we have
9089 // conflicting information. On the one hand a global
9090 // symbol and on the other a local call sequence, but
9091 // don't error for this special case.
9092 // It isn't possible to cheaply verify we have exactly
9093 // such a call. Allow all calls to the same section.
9094 bool ok = false;
9095 Address code = value;
9096 if (gsym->source() == Symbol::FROM_OBJECT
9097 && gsym->object() == object)
9098 {
9099 unsigned int dest_shndx = 0;
9100 if (target->abiversion() < 2)
9101 {
9102 Address addend = rela.get_r_addend();
9103 code = psymval->value(object, addend);
9104 target->symval_for_branch(relinfo->symtab, gsym, object,
9105 &code, &dest_shndx);
9106 }
9107 bool is_ordinary;
9108 if (dest_shndx == 0)
9109 dest_shndx = gsym->shndx(&is_ordinary);
9110 ok = dest_shndx == relinfo->data_shndx;
9111 }
9112 if (!ok)
9113 {
9114 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9115 _("call lacks nop, can't restore toc; "
9116 "recompile with -fPIC"));
9117 value = code;
9118 }
9119 }
9120 }
9121 }
9122 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9123 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9124 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9125 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9126 {
9127 // First instruction of a global dynamic sequence, arg setup insn.
9128 const bool final = gsym == NULL || gsym->final_value_is_known();
9129 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
9130 enum Got_type got_type = GOT_TYPE_STANDARD;
9131 if (tls_type == tls::TLSOPT_NONE)
9132 got_type = GOT_TYPE_TLSGD;
9133 else if (tls_type == tls::TLSOPT_TO_IE)
9134 got_type = GOT_TYPE_TPREL;
9135 if (got_type != GOT_TYPE_STANDARD)
9136 {
9137 if (gsym != NULL)
9138 {
9139 gold_assert(gsym->has_got_offset(got_type));
9140 value = gsym->got_offset(got_type);
9141 }
9142 else
9143 {
9144 gold_assert(object->local_has_got_offset(r_sym, got_type));
9145 value = object->local_got_offset(r_sym, got_type);
9146 }
9147 value -= target->got_section()->got_base_offset(object);
9148 }
9149 if (tls_type == tls::TLSOPT_TO_IE)
9150 {
9151 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9152 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9153 {
9154 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9155 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9156 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
9157 if (size == 32)
9158 insn |= 32 << 26; // lwz
9159 else
9160 insn |= 58 << 26; // ld
9161 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9162 }
9163 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9164 - elfcpp::R_POWERPC_GOT_TLSGD16);
9165 }
9166 else if (tls_type == tls::TLSOPT_TO_LE)
9167 {
9168 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9169 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9170 {
9171 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9172 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9173 insn &= (1 << 26) - (1 << 21); // extract rt
9174 if (size == 32)
9175 insn |= addis_0_2;
9176 else
9177 insn |= addis_0_13;
9178 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9179 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9180 value = psymval->value(object, rela.get_r_addend());
9181 }
9182 else
9183 {
9184 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9185 Insn insn = nop;
9186 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9187 r_type = elfcpp::R_POWERPC_NONE;
9188 }
9189 }
9190 }
9191 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9192 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9193 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9194 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9195 {
9196 // First instruction of a local dynamic sequence, arg setup insn.
9197 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
9198 if (tls_type == tls::TLSOPT_NONE)
9199 {
9200 value = target->tlsld_got_offset();
9201 value -= target->got_section()->got_base_offset(object);
9202 }
9203 else
9204 {
9205 gold_assert(tls_type == tls::TLSOPT_TO_LE);
9206 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9207 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9208 {
9209 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9210 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9211 insn &= (1 << 26) - (1 << 21); // extract rt
9212 if (size == 32)
9213 insn |= addis_0_2;
9214 else
9215 insn |= addis_0_13;
9216 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9217 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9218 value = dtp_offset;
9219 }
9220 else
9221 {
9222 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9223 Insn insn = nop;
9224 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9225 r_type = elfcpp::R_POWERPC_NONE;
9226 }
9227 }
9228 }
9229 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
9230 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
9231 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
9232 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
9233 {
9234 // Accesses relative to a local dynamic sequence address,
9235 // no optimisation here.
9236 if (gsym != NULL)
9237 {
9238 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
9239 value = gsym->got_offset(GOT_TYPE_DTPREL);
9240 }
9241 else
9242 {
9243 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
9244 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
9245 }
9246 value -= target->got_section()->got_base_offset(object);
9247 }
9248 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9249 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9250 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9251 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9252 {
9253 // First instruction of initial exec sequence.
9254 const bool final = gsym == NULL || gsym->final_value_is_known();
9255 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
9256 if (tls_type == tls::TLSOPT_NONE)
9257 {
9258 if (gsym != NULL)
9259 {
9260 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
9261 value = gsym->got_offset(GOT_TYPE_TPREL);
9262 }
9263 else
9264 {
9265 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
9266 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
9267 }
9268 value -= target->got_section()->got_base_offset(object);
9269 }
9270 else
9271 {
9272 gold_assert(tls_type == tls::TLSOPT_TO_LE);
9273 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9274 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9275 {
9276 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9277 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9278 insn &= (1 << 26) - (1 << 21); // extract rt from ld
9279 if (size == 32)
9280 insn |= addis_0_2;
9281 else
9282 insn |= addis_0_13;
9283 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9284 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9285 value = psymval->value(object, rela.get_r_addend());
9286 }
9287 else
9288 {
9289 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9290 Insn insn = nop;
9291 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9292 r_type = elfcpp::R_POWERPC_NONE;
9293 }
9294 }
9295 }
9296 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9297 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9298 {
9299 // Second instruction of a global dynamic sequence,
9300 // the __tls_get_addr call
9301 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
9302 const bool final = gsym == NULL || gsym->final_value_is_known();
9303 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
9304 if (tls_type != tls::TLSOPT_NONE)
9305 {
9306 if (tls_type == tls::TLSOPT_TO_IE)
9307 {
9308 Insn* iview = reinterpret_cast<Insn*>(view);
9309 Insn insn = add_3_3_13;
9310 if (size == 32)
9311 insn = add_3_3_2;
9312 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9313 r_type = elfcpp::R_POWERPC_NONE;
9314 }
9315 else
9316 {
9317 Insn* iview = reinterpret_cast<Insn*>(view);
9318 Insn insn = addi_3_3;
9319 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9320 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9321 view += d_offset;
9322 value = psymval->value(object, rela.get_r_addend());
9323 }
9324 this->skip_next_tls_get_addr_call();
9325 }
9326 }
9327 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9328 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9329 {
9330 // Second instruction of a local dynamic sequence,
9331 // the __tls_get_addr call
9332 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
9333 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
9334 if (tls_type == tls::TLSOPT_TO_LE)
9335 {
9336 Insn* iview = reinterpret_cast<Insn*>(view);
9337 Insn insn = addi_3_3;
9338 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9339 this->skip_next_tls_get_addr_call();
9340 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9341 view += d_offset;
9342 value = dtp_offset;
9343 }
9344 }
9345 else if (r_type == elfcpp::R_POWERPC_TLS)
9346 {
9347 // Second instruction of an initial exec sequence
9348 const bool final = gsym == NULL || gsym->final_value_is_known();
9349 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
9350 if (tls_type == tls::TLSOPT_TO_LE)
9351 {
9352 Insn* iview = reinterpret_cast<Insn*>(view);
9353 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9354 unsigned int reg = size == 32 ? 2 : 13;
9355 insn = at_tls_transform(insn, reg);
9356 gold_assert(insn != 0);
9357 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9358 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9359 view += d_offset;
9360 value = psymval->value(object, rela.get_r_addend());
9361 }
9362 }
9363 else if (!has_stub_value)
9364 {
9365 if (!has_plt_offset && r_type == elfcpp::R_POWERPC_PLTCALL)
9366 {
9367 // PLTCALL without plt entry => convert to direct call
9368 Insn* iview = reinterpret_cast<Insn*>(view);
9369 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9370 insn = (insn & 1) | b;
9371 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9372 if (size == 32)
9373 r_type = elfcpp::R_PPC_PLTREL24;
9374 else
9375 r_type = elfcpp::R_POWERPC_REL24;
9376 }
9377 Address addend = 0;
9378 if (!(size == 32
9379 && (r_type == elfcpp::R_PPC_PLTREL24
9380 || r_type == elfcpp::R_POWERPC_PLT16_LO
9381 || r_type == elfcpp::R_POWERPC_PLT16_HI
9382 || r_type == elfcpp::R_POWERPC_PLT16_HA)))
9383 addend = rela.get_r_addend();
9384 value = psymval->value(object, addend);
9385 if (size == 64 && is_branch_reloc(r_type))
9386 {
9387 if (target->abiversion() >= 2)
9388 {
9389 if (gsym != NULL)
9390 value += object->ppc64_local_entry_offset(gsym);
9391 else
9392 value += object->ppc64_local_entry_offset(r_sym);
9393 }
9394 else
9395 {
9396 unsigned int dest_shndx;
9397 target->symval_for_branch(relinfo->symtab, gsym, object,
9398 &value, &dest_shndx);
9399 }
9400 }
9401 Address max_branch_offset = max_branch_delta(r_type);
9402 if (max_branch_offset != 0
9403 && value - address + max_branch_offset >= 2 * max_branch_offset)
9404 {
9405 Stub_table<size, big_endian>* stub_table
9406 = object->stub_table(relinfo->data_shndx);
9407 if (stub_table != NULL)
9408 {
9409 Address off = stub_table->find_long_branch_entry(object, value);
9410 if (off != invalid_address)
9411 {
9412 value = (stub_table->stub_address() + stub_table->plt_size()
9413 + off);
9414 has_stub_value = true;
9415 }
9416 }
9417 }
9418 }
9419
9420 switch (r_type)
9421 {
9422 case elfcpp::R_PPC64_REL64:
9423 case elfcpp::R_POWERPC_REL32:
9424 case elfcpp::R_POWERPC_REL24:
9425 case elfcpp::R_PPC_PLTREL24:
9426 case elfcpp::R_PPC_LOCAL24PC:
9427 case elfcpp::R_POWERPC_REL16:
9428 case elfcpp::R_POWERPC_REL16_LO:
9429 case elfcpp::R_POWERPC_REL16_HI:
9430 case elfcpp::R_POWERPC_REL16_HA:
9431 case elfcpp::R_POWERPC_REL16DX_HA:
9432 case elfcpp::R_PPC64_REL16_HIGH:
9433 case elfcpp::R_PPC64_REL16_HIGHA:
9434 case elfcpp::R_PPC64_REL16_HIGHER:
9435 case elfcpp::R_PPC64_REL16_HIGHERA:
9436 case elfcpp::R_PPC64_REL16_HIGHEST:
9437 case elfcpp::R_PPC64_REL16_HIGHESTA:
9438 case elfcpp::R_POWERPC_REL14:
9439 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9440 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9441 value -= address;
9442 break;
9443
9444 case elfcpp::R_PPC64_TOC16:
9445 case elfcpp::R_PPC64_TOC16_LO:
9446 case elfcpp::R_PPC64_TOC16_HI:
9447 case elfcpp::R_PPC64_TOC16_HA:
9448 case elfcpp::R_PPC64_TOC16_DS:
9449 case elfcpp::R_PPC64_TOC16_LO_DS:
9450 // Subtract the TOC base address.
9451 value -= (target->got_section()->output_section()->address()
9452 + object->toc_base_offset());
9453 break;
9454
9455 case elfcpp::R_POWERPC_SECTOFF:
9456 case elfcpp::R_POWERPC_SECTOFF_LO:
9457 case elfcpp::R_POWERPC_SECTOFF_HI:
9458 case elfcpp::R_POWERPC_SECTOFF_HA:
9459 case elfcpp::R_PPC64_SECTOFF_DS:
9460 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9461 if (os != NULL)
9462 value -= os->address();
9463 break;
9464
9465 case elfcpp::R_PPC64_TPREL16_DS:
9466 case elfcpp::R_PPC64_TPREL16_LO_DS:
9467 case elfcpp::R_PPC64_TPREL16_HIGH:
9468 case elfcpp::R_PPC64_TPREL16_HIGHA:
9469 if (size != 64)
9470 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
9471 break;
9472 // Fall through.
9473 case elfcpp::R_POWERPC_TPREL16:
9474 case elfcpp::R_POWERPC_TPREL16_LO:
9475 case elfcpp::R_POWERPC_TPREL16_HI:
9476 case elfcpp::R_POWERPC_TPREL16_HA:
9477 case elfcpp::R_POWERPC_TPREL:
9478 case elfcpp::R_PPC64_TPREL16_HIGHER:
9479 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9480 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9481 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9482 // tls symbol values are relative to tls_segment()->vaddr()
9483 value -= tp_offset;
9484 break;
9485
9486 case elfcpp::R_PPC64_DTPREL16_DS:
9487 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9488 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9489 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9490 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9491 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9492 if (size != 64)
9493 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
9494 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
9495 break;
9496 // Fall through.
9497 case elfcpp::R_POWERPC_DTPREL16:
9498 case elfcpp::R_POWERPC_DTPREL16_LO:
9499 case elfcpp::R_POWERPC_DTPREL16_HI:
9500 case elfcpp::R_POWERPC_DTPREL16_HA:
9501 case elfcpp::R_POWERPC_DTPREL:
9502 case elfcpp::R_PPC64_DTPREL16_HIGH:
9503 case elfcpp::R_PPC64_DTPREL16_HIGHA:
9504 // tls symbol values are relative to tls_segment()->vaddr()
9505 value -= dtp_offset;
9506 break;
9507
9508 case elfcpp::R_PPC64_ADDR64_LOCAL:
9509 if (gsym != NULL)
9510 value += object->ppc64_local_entry_offset(gsym);
9511 else
9512 value += object->ppc64_local_entry_offset(r_sym);
9513 break;
9514
9515 default:
9516 break;
9517 }
9518
9519 Insn branch_bit = 0;
9520 switch (r_type)
9521 {
9522 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9523 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9524 branch_bit = 1 << 21;
9525 // Fall through.
9526 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9527 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9528 {
9529 Insn* iview = reinterpret_cast<Insn*>(view);
9530 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9531 insn &= ~(1 << 21);
9532 insn |= branch_bit;
9533 if (this->is_isa_v2)
9534 {
9535 // Set 'a' bit. This is 0b00010 in BO field for branch
9536 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
9537 // for branch on CTR insns (BO == 1a00t or 1a01t).
9538 if ((insn & (0x14 << 21)) == (0x04 << 21))
9539 insn |= 0x02 << 21;
9540 else if ((insn & (0x14 << 21)) == (0x10 << 21))
9541 insn |= 0x08 << 21;
9542 else
9543 break;
9544 }
9545 else
9546 {
9547 // Invert 'y' bit if not the default.
9548 if (static_cast<Signed_address>(value) < 0)
9549 insn ^= 1 << 21;
9550 }
9551 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9552 }
9553 break;
9554
9555 case elfcpp::R_POWERPC_PLT16_HA:
9556 if (size == 32
9557 && !parameters->options().output_is_position_independent())
9558 {
9559 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9560 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9561
9562 // Convert addis to lis.
9563 if ((insn & (0x3f << 26)) == 15u << 26
9564 && (insn & (0x1f << 16)) != 0)
9565 {
9566 insn &= ~(0x1f << 16);
9567 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9568 }
9569 }
9570 break;
9571
9572 default:
9573 break;
9574 }
9575
9576 if (size == 64)
9577 {
9578 switch (r_type)
9579 {
9580 default:
9581 break;
9582
9583 // Multi-instruction sequences that access the GOT/TOC can
9584 // be optimized, eg.
9585 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
9586 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
9587 // and
9588 // addis ra,r2,0; addi rb,ra,x@toc@l;
9589 // to nop; addi rb,r2,x@toc;
9590 // FIXME: the @got sequence shown above is not yet
9591 // optimized. Note that gcc as of 2017-01-07 doesn't use
9592 // the ELF @got relocs except for TLS, instead using the
9593 // PowerOpen variant of a compiler managed GOT (called TOC).
9594 // The PowerOpen TOC sequence equivalent to the first
9595 // example is optimized.
9596 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9597 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9598 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9599 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9600 case elfcpp::R_POWERPC_GOT16_HA:
9601 case elfcpp::R_PPC64_TOC16_HA:
9602 if (parameters->options().toc_optimize())
9603 {
9604 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9605 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9606 if (r_type == elfcpp::R_PPC64_TOC16_HA
9607 && object->make_toc_relative(target, &value))
9608 {
9609 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
9610 == ((15u << 26) | (2 << 16)));
9611 }
9612 if (((insn & ((0x3f << 26) | 0x1f << 16))
9613 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
9614 && value + 0x8000 < 0x10000)
9615 {
9616 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9617 return true;
9618 }
9619 }
9620 break;
9621
9622 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9623 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9624 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9625 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9626 case elfcpp::R_POWERPC_GOT16_LO:
9627 case elfcpp::R_PPC64_GOT16_LO_DS:
9628 case elfcpp::R_PPC64_TOC16_LO:
9629 case elfcpp::R_PPC64_TOC16_LO_DS:
9630 if (parameters->options().toc_optimize())
9631 {
9632 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9633 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9634 bool changed = false;
9635 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
9636 && object->make_toc_relative(target, &value))
9637 {
9638 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
9639 insn ^= (14u << 26) ^ (58u << 26);
9640 r_type = elfcpp::R_PPC64_TOC16_LO;
9641 changed = true;
9642 }
9643 if (ok_lo_toc_insn(insn, r_type)
9644 && value + 0x8000 < 0x10000)
9645 {
9646 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
9647 {
9648 // Transform addic to addi when we change reg.
9649 insn &= ~((0x3f << 26) | (0x1f << 16));
9650 insn |= (14u << 26) | (2 << 16);
9651 }
9652 else
9653 {
9654 insn &= ~(0x1f << 16);
9655 insn |= 2 << 16;
9656 }
9657 changed = true;
9658 }
9659 if (changed)
9660 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9661 }
9662 break;
9663
9664 case elfcpp::R_POWERPC_TPREL16_HA:
9665 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9666 {
9667 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9668 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9669 if ((insn & ((0x3f << 26) | 0x1f << 16))
9670 != ((15u << 26) | ((size == 32 ? 2 : 13) << 16)))
9671 ;
9672 else
9673 {
9674 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
9675 return true;
9676 }
9677 }
9678 break;
9679
9680 case elfcpp::R_PPC64_TPREL16_LO_DS:
9681 if (size == 32)
9682 // R_PPC_TLSGD, R_PPC_TLSLD
9683 break;
9684 // Fall through.
9685 case elfcpp::R_POWERPC_TPREL16_LO:
9686 if (parameters->options().tls_optimize() && value + 0x8000 < 0x10000)
9687 {
9688 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9689 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
9690 insn &= ~(0x1f << 16);
9691 insn |= (size == 32 ? 2 : 13) << 16;
9692 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
9693 }
9694 break;
9695
9696 case elfcpp::R_PPC64_ENTRY:
9697 value = (target->got_section()->output_section()->address()
9698 + object->toc_base_offset());
9699 if (value + 0x80008000 <= 0xffffffff
9700 && !parameters->options().output_is_position_independent())
9701 {
9702 Insn* iview = reinterpret_cast<Insn*>(view);
9703 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9704 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9705
9706 if ((insn1 & ~0xfffc) == ld_2_12
9707 && insn2 == add_2_2_12)
9708 {
9709 insn1 = lis_2 + ha(value);
9710 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9711 insn2 = addi_2_2 + l(value);
9712 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9713 return true;
9714 }
9715 }
9716 else
9717 {
9718 value -= address;
9719 if (value + 0x80008000 <= 0xffffffff)
9720 {
9721 Insn* iview = reinterpret_cast<Insn*>(view);
9722 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
9723 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
9724
9725 if ((insn1 & ~0xfffc) == ld_2_12
9726 && insn2 == add_2_2_12)
9727 {
9728 insn1 = addis_2_12 + ha(value);
9729 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
9730 insn2 = addi_2_2 + l(value);
9731 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
9732 return true;
9733 }
9734 }
9735 }
9736 break;
9737
9738 case elfcpp::R_POWERPC_REL16_LO:
9739 // If we are generating a non-PIC executable, edit
9740 // 0: addis 2,12,.TOC.-0b@ha
9741 // addi 2,2,.TOC.-0b@l
9742 // used by ELFv2 global entry points to set up r2, to
9743 // lis 2,.TOC.@ha
9744 // addi 2,2,.TOC.@l
9745 // if .TOC. is in range. */
9746 if (value + address - 4 + 0x80008000 <= 0xffffffff
9747 && relnum != 0
9748 && preloc != NULL
9749 && target->abiversion() >= 2
9750 && !parameters->options().output_is_position_independent()
9751 && rela.get_r_addend() == d_offset + 4
9752 && gsym != NULL
9753 && strcmp(gsym->name(), ".TOC.") == 0)
9754 {
9755 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9756 Reltype prev_rela(preloc - reloc_size);
9757 if ((prev_rela.get_r_info()
9758 == elfcpp::elf_r_info<size>(r_sym,
9759 elfcpp::R_POWERPC_REL16_HA))
9760 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
9761 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
9762 {
9763 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9764 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
9765 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
9766
9767 if ((insn1 & 0xffff0000) == addis_2_12
9768 && (insn2 & 0xffff0000) == addi_2_2)
9769 {
9770 insn1 = lis_2 + ha(value + address - 4);
9771 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
9772 insn2 = addi_2_2 + l(value + address - 4);
9773 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
9774 if (relinfo->rr)
9775 {
9776 relinfo->rr->set_strategy(relnum - 1,
9777 Relocatable_relocs::RELOC_SPECIAL);
9778 relinfo->rr->set_strategy(relnum,
9779 Relocatable_relocs::RELOC_SPECIAL);
9780 }
9781 return true;
9782 }
9783 }
9784 }
9785 break;
9786 }
9787 }
9788
9789 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
9790 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
9791 switch (r_type)
9792 {
9793 case elfcpp::R_POWERPC_ADDR32:
9794 case elfcpp::R_POWERPC_UADDR32:
9795 if (size == 64)
9796 overflow = Reloc::CHECK_BITFIELD;
9797 break;
9798
9799 case elfcpp::R_POWERPC_REL32:
9800 case elfcpp::R_POWERPC_REL16DX_HA:
9801 if (size == 64)
9802 overflow = Reloc::CHECK_SIGNED;
9803 break;
9804
9805 case elfcpp::R_POWERPC_UADDR16:
9806 overflow = Reloc::CHECK_BITFIELD;
9807 break;
9808
9809 case elfcpp::R_POWERPC_ADDR16:
9810 // We really should have three separate relocations,
9811 // one for 16-bit data, one for insns with 16-bit signed fields,
9812 // and one for insns with 16-bit unsigned fields.
9813 overflow = Reloc::CHECK_BITFIELD;
9814 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
9815 overflow = Reloc::CHECK_LOW_INSN;
9816 break;
9817
9818 case elfcpp::R_POWERPC_ADDR16_HI:
9819 case elfcpp::R_POWERPC_ADDR16_HA:
9820 case elfcpp::R_POWERPC_GOT16_HI:
9821 case elfcpp::R_POWERPC_GOT16_HA:
9822 case elfcpp::R_POWERPC_PLT16_HI:
9823 case elfcpp::R_POWERPC_PLT16_HA:
9824 case elfcpp::R_POWERPC_SECTOFF_HI:
9825 case elfcpp::R_POWERPC_SECTOFF_HA:
9826 case elfcpp::R_PPC64_TOC16_HI:
9827 case elfcpp::R_PPC64_TOC16_HA:
9828 case elfcpp::R_PPC64_PLTGOT16_HI:
9829 case elfcpp::R_PPC64_PLTGOT16_HA:
9830 case elfcpp::R_POWERPC_TPREL16_HI:
9831 case elfcpp::R_POWERPC_TPREL16_HA:
9832 case elfcpp::R_POWERPC_DTPREL16_HI:
9833 case elfcpp::R_POWERPC_DTPREL16_HA:
9834 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
9835 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9836 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
9837 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9838 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
9839 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9840 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
9841 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9842 case elfcpp::R_POWERPC_REL16_HI:
9843 case elfcpp::R_POWERPC_REL16_HA:
9844 if (size != 32)
9845 overflow = Reloc::CHECK_HIGH_INSN;
9846 break;
9847
9848 case elfcpp::R_POWERPC_REL16:
9849 case elfcpp::R_PPC64_TOC16:
9850 case elfcpp::R_POWERPC_GOT16:
9851 case elfcpp::R_POWERPC_SECTOFF:
9852 case elfcpp::R_POWERPC_TPREL16:
9853 case elfcpp::R_POWERPC_DTPREL16:
9854 case elfcpp::R_POWERPC_GOT_TLSGD16:
9855 case elfcpp::R_POWERPC_GOT_TLSLD16:
9856 case elfcpp::R_POWERPC_GOT_TPREL16:
9857 case elfcpp::R_POWERPC_GOT_DTPREL16:
9858 overflow = Reloc::CHECK_LOW_INSN;
9859 break;
9860
9861 case elfcpp::R_POWERPC_ADDR24:
9862 case elfcpp::R_POWERPC_ADDR14:
9863 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9864 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9865 case elfcpp::R_PPC64_ADDR16_DS:
9866 case elfcpp::R_POWERPC_REL24:
9867 case elfcpp::R_PPC_PLTREL24:
9868 case elfcpp::R_PPC_LOCAL24PC:
9869 case elfcpp::R_PPC64_TPREL16_DS:
9870 case elfcpp::R_PPC64_DTPREL16_DS:
9871 case elfcpp::R_PPC64_TOC16_DS:
9872 case elfcpp::R_PPC64_GOT16_DS:
9873 case elfcpp::R_PPC64_SECTOFF_DS:
9874 case elfcpp::R_POWERPC_REL14:
9875 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9876 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9877 overflow = Reloc::CHECK_SIGNED;
9878 break;
9879 }
9880
9881 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
9882 Insn insn = 0;
9883
9884 if (overflow == Reloc::CHECK_LOW_INSN
9885 || overflow == Reloc::CHECK_HIGH_INSN)
9886 {
9887 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9888
9889 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
9890 overflow = Reloc::CHECK_BITFIELD;
9891 else if (overflow == Reloc::CHECK_LOW_INSN
9892 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
9893 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
9894 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
9895 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
9896 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
9897 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
9898 overflow = Reloc::CHECK_UNSIGNED;
9899 else
9900 overflow = Reloc::CHECK_SIGNED;
9901 }
9902
9903 bool maybe_dq_reloc = false;
9904 typename Powerpc_relocate_functions<size, big_endian>::Status status
9905 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
9906 switch (r_type)
9907 {
9908 case elfcpp::R_POWERPC_NONE:
9909 case elfcpp::R_POWERPC_TLS:
9910 case elfcpp::R_POWERPC_GNU_VTINHERIT:
9911 case elfcpp::R_POWERPC_GNU_VTENTRY:
9912 case elfcpp::R_POWERPC_PLTSEQ:
9913 case elfcpp::R_POWERPC_PLTCALL:
9914 break;
9915
9916 case elfcpp::R_PPC64_ADDR64:
9917 case elfcpp::R_PPC64_REL64:
9918 case elfcpp::R_PPC64_TOC:
9919 case elfcpp::R_PPC64_ADDR64_LOCAL:
9920 Reloc::addr64(view, value);
9921 break;
9922
9923 case elfcpp::R_POWERPC_TPREL:
9924 case elfcpp::R_POWERPC_DTPREL:
9925 if (size == 64)
9926 Reloc::addr64(view, value);
9927 else
9928 status = Reloc::addr32(view, value, overflow);
9929 break;
9930
9931 case elfcpp::R_PPC64_UADDR64:
9932 Reloc::addr64_u(view, value);
9933 break;
9934
9935 case elfcpp::R_POWERPC_ADDR32:
9936 status = Reloc::addr32(view, value, overflow);
9937 break;
9938
9939 case elfcpp::R_POWERPC_REL32:
9940 case elfcpp::R_POWERPC_UADDR32:
9941 status = Reloc::addr32_u(view, value, overflow);
9942 break;
9943
9944 case elfcpp::R_POWERPC_ADDR24:
9945 case elfcpp::R_POWERPC_REL24:
9946 case elfcpp::R_PPC_PLTREL24:
9947 case elfcpp::R_PPC_LOCAL24PC:
9948 status = Reloc::addr24(view, value, overflow);
9949 break;
9950
9951 case elfcpp::R_POWERPC_GOT_DTPREL16:
9952 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
9953 case elfcpp::R_POWERPC_GOT_TPREL16:
9954 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
9955 if (size == 64)
9956 {
9957 // On ppc64 these are all ds form
9958 maybe_dq_reloc = true;
9959 break;
9960 }
9961 // Fall through.
9962 case elfcpp::R_POWERPC_ADDR16:
9963 case elfcpp::R_POWERPC_REL16:
9964 case elfcpp::R_PPC64_TOC16:
9965 case elfcpp::R_POWERPC_GOT16:
9966 case elfcpp::R_POWERPC_SECTOFF:
9967 case elfcpp::R_POWERPC_TPREL16:
9968 case elfcpp::R_POWERPC_DTPREL16:
9969 case elfcpp::R_POWERPC_GOT_TLSGD16:
9970 case elfcpp::R_POWERPC_GOT_TLSLD16:
9971 case elfcpp::R_POWERPC_ADDR16_LO:
9972 case elfcpp::R_POWERPC_REL16_LO:
9973 case elfcpp::R_PPC64_TOC16_LO:
9974 case elfcpp::R_POWERPC_GOT16_LO:
9975 case elfcpp::R_POWERPC_PLT16_LO:
9976 case elfcpp::R_POWERPC_SECTOFF_LO:
9977 case elfcpp::R_POWERPC_TPREL16_LO:
9978 case elfcpp::R_POWERPC_DTPREL16_LO:
9979 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
9980 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
9981 if (size == 64)
9982 status = Reloc::addr16(view, value, overflow);
9983 else
9984 maybe_dq_reloc = true;
9985 break;
9986
9987 case elfcpp::R_POWERPC_UADDR16:
9988 status = Reloc::addr16_u(view, value, overflow);
9989 break;
9990
9991 case elfcpp::R_PPC64_ADDR16_HIGH:
9992 case elfcpp::R_PPC64_TPREL16_HIGH:
9993 case elfcpp::R_PPC64_DTPREL16_HIGH:
9994 if (size == 32)
9995 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
9996 goto unsupp;
9997 // Fall through.
9998 case elfcpp::R_POWERPC_ADDR16_HI:
9999 case elfcpp::R_POWERPC_REL16_HI:
10000 case elfcpp::R_PPC64_REL16_HIGH:
10001 case elfcpp::R_PPC64_TOC16_HI:
10002 case elfcpp::R_POWERPC_GOT16_HI:
10003 case elfcpp::R_POWERPC_PLT16_HI:
10004 case elfcpp::R_POWERPC_SECTOFF_HI:
10005 case elfcpp::R_POWERPC_TPREL16_HI:
10006 case elfcpp::R_POWERPC_DTPREL16_HI:
10007 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
10008 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
10009 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
10010 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
10011 Reloc::addr16_hi(view, value);
10012 break;
10013
10014 case elfcpp::R_PPC64_ADDR16_HIGHA:
10015 case elfcpp::R_PPC64_TPREL16_HIGHA:
10016 case elfcpp::R_PPC64_DTPREL16_HIGHA:
10017 if (size == 32)
10018 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
10019 goto unsupp;
10020 // Fall through.
10021 case elfcpp::R_POWERPC_ADDR16_HA:
10022 case elfcpp::R_POWERPC_REL16_HA:
10023 case elfcpp::R_PPC64_REL16_HIGHA:
10024 case elfcpp::R_PPC64_TOC16_HA:
10025 case elfcpp::R_POWERPC_GOT16_HA:
10026 case elfcpp::R_POWERPC_PLT16_HA:
10027 case elfcpp::R_POWERPC_SECTOFF_HA:
10028 case elfcpp::R_POWERPC_TPREL16_HA:
10029 case elfcpp::R_POWERPC_DTPREL16_HA:
10030 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
10031 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
10032 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
10033 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
10034 Reloc::addr16_ha(view, value);
10035 break;
10036
10037 case elfcpp::R_POWERPC_REL16DX_HA:
10038 status = Reloc::addr16dx_ha(view, value, overflow);
10039 break;
10040
10041 case elfcpp::R_PPC64_DTPREL16_HIGHER:
10042 if (size == 32)
10043 // R_PPC_EMB_NADDR16_LO
10044 goto unsupp;
10045 // Fall through.
10046 case elfcpp::R_PPC64_ADDR16_HIGHER:
10047 case elfcpp::R_PPC64_REL16_HIGHER:
10048 case elfcpp::R_PPC64_TPREL16_HIGHER:
10049 Reloc::addr16_hi2(view, value);
10050 break;
10051
10052 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
10053 if (size == 32)
10054 // R_PPC_EMB_NADDR16_HI
10055 goto unsupp;
10056 // Fall through.
10057 case elfcpp::R_PPC64_ADDR16_HIGHERA:
10058 case elfcpp::R_PPC64_REL16_HIGHERA:
10059 case elfcpp::R_PPC64_TPREL16_HIGHERA:
10060 Reloc::addr16_ha2(view, value);
10061 break;
10062
10063 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
10064 if (size == 32)
10065 // R_PPC_EMB_NADDR16_HA
10066 goto unsupp;
10067 // Fall through.
10068 case elfcpp::R_PPC64_ADDR16_HIGHEST:
10069 case elfcpp::R_PPC64_REL16_HIGHEST:
10070 case elfcpp::R_PPC64_TPREL16_HIGHEST:
10071 Reloc::addr16_hi3(view, value);
10072 break;
10073
10074 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
10075 if (size == 32)
10076 // R_PPC_EMB_SDAI16
10077 goto unsupp;
10078 // Fall through.
10079 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
10080 case elfcpp::R_PPC64_REL16_HIGHESTA:
10081 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
10082 Reloc::addr16_ha3(view, value);
10083 break;
10084
10085 case elfcpp::R_PPC64_DTPREL16_DS:
10086 case elfcpp::R_PPC64_DTPREL16_LO_DS:
10087 if (size == 32)
10088 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
10089 goto unsupp;
10090 // Fall through.
10091 case elfcpp::R_PPC64_TPREL16_DS:
10092 case elfcpp::R_PPC64_TPREL16_LO_DS:
10093 if (size == 32)
10094 // R_PPC_TLSGD, R_PPC_TLSLD
10095 break;
10096 // Fall through.
10097 case elfcpp::R_PPC64_ADDR16_DS:
10098 case elfcpp::R_PPC64_ADDR16_LO_DS:
10099 case elfcpp::R_PPC64_TOC16_DS:
10100 case elfcpp::R_PPC64_TOC16_LO_DS:
10101 case elfcpp::R_PPC64_GOT16_DS:
10102 case elfcpp::R_PPC64_GOT16_LO_DS:
10103 case elfcpp::R_PPC64_PLT16_LO_DS:
10104 case elfcpp::R_PPC64_SECTOFF_DS:
10105 case elfcpp::R_PPC64_SECTOFF_LO_DS:
10106 maybe_dq_reloc = true;
10107 break;
10108
10109 case elfcpp::R_POWERPC_ADDR14:
10110 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
10111 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
10112 case elfcpp::R_POWERPC_REL14:
10113 case elfcpp::R_POWERPC_REL14_BRTAKEN:
10114 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
10115 status = Reloc::addr14(view, value, overflow);
10116 break;
10117
10118 case elfcpp::R_POWERPC_COPY:
10119 case elfcpp::R_POWERPC_GLOB_DAT:
10120 case elfcpp::R_POWERPC_JMP_SLOT:
10121 case elfcpp::R_POWERPC_RELATIVE:
10122 case elfcpp::R_POWERPC_DTPMOD:
10123 case elfcpp::R_PPC64_JMP_IREL:
10124 case elfcpp::R_POWERPC_IRELATIVE:
10125 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10126 _("unexpected reloc %u in object file"),
10127 r_type);
10128 break;
10129
10130 case elfcpp::R_PPC64_TOCSAVE:
10131 if (size == 32)
10132 // R_PPC_EMB_SDA21
10133 goto unsupp;
10134 else
10135 {
10136 Symbol_location loc;
10137 loc.object = relinfo->object;
10138 loc.shndx = relinfo->data_shndx;
10139 loc.offset = rela.get_r_offset();
10140 Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
10141 if (p != target->tocsave_loc().end())
10142 {
10143 // If we've generated plt calls using this tocsave, then
10144 // the nop needs to be changed to save r2.
10145 Insn* iview = reinterpret_cast<Insn*>(view);
10146 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
10147 elfcpp::Swap<32, big_endian>::
10148 writeval(iview, std_2_1 + target->stk_toc());
10149 }
10150 }
10151 break;
10152
10153 case elfcpp::R_PPC_EMB_SDA2I16:
10154 case elfcpp::R_PPC_EMB_SDA2REL:
10155 if (size == 32)
10156 goto unsupp;
10157 // R_PPC64_TLSGD, R_PPC64_TLSLD
10158 break;
10159
10160 case elfcpp::R_POWERPC_PLT32:
10161 case elfcpp::R_POWERPC_PLTREL32:
10162 case elfcpp::R_PPC_SDAREL16:
10163 case elfcpp::R_POWERPC_ADDR30:
10164 case elfcpp::R_PPC64_PLT64:
10165 case elfcpp::R_PPC64_PLTREL64:
10166 case elfcpp::R_PPC64_PLTGOT16:
10167 case elfcpp::R_PPC64_PLTGOT16_LO:
10168 case elfcpp::R_PPC64_PLTGOT16_HI:
10169 case elfcpp::R_PPC64_PLTGOT16_HA:
10170 case elfcpp::R_PPC64_PLTGOT16_DS:
10171 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
10172 case elfcpp::R_PPC_EMB_RELSDA:
10173 case elfcpp::R_PPC_TOC16:
10174 default:
10175 unsupp:
10176 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10177 _("unsupported reloc %u"),
10178 r_type);
10179 break;
10180 }
10181
10182 if (maybe_dq_reloc)
10183 {
10184 if (insn == 0)
10185 insn = elfcpp::Swap<32, big_endian>::readval(iview);
10186
10187 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
10188 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
10189 && (insn & 3) == 1))
10190 status = Reloc::addr16_dq(view, value, overflow);
10191 else if (size == 64
10192 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
10193 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
10194 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
10195 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
10196 status = Reloc::addr16_ds(view, value, overflow);
10197 else
10198 status = Reloc::addr16(view, value, overflow);
10199 }
10200
10201 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
10202 && (has_stub_value
10203 || !(gsym != NULL
10204 && gsym->is_undefined()
10205 && is_branch_reloc(r_type))))
10206 {
10207 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
10208 _("relocation overflow"));
10209 if (has_stub_value)
10210 gold_info(_("try relinking with a smaller --stub-group-size"));
10211 }
10212
10213 return true;
10214 }
10215
10216 // Relocate section data.
10217
10218 template<int size, bool big_endian>
10219 void
10220 Target_powerpc<size, big_endian>::relocate_section(
10221 const Relocate_info<size, big_endian>* relinfo,
10222 unsigned int sh_type,
10223 const unsigned char* prelocs,
10224 size_t reloc_count,
10225 Output_section* output_section,
10226 bool needs_special_offset_handling,
10227 unsigned char* view,
10228 Address address,
10229 section_size_type view_size,
10230 const Reloc_symbol_changes* reloc_symbol_changes)
10231 {
10232 typedef Target_powerpc<size, big_endian> Powerpc;
10233 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
10234 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
10235 Powerpc_comdat_behavior;
10236 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10237 Classify_reloc;
10238
10239 gold_assert(sh_type == elfcpp::SHT_RELA);
10240
10241 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
10242 Powerpc_comdat_behavior, Classify_reloc>(
10243 relinfo,
10244 this,
10245 prelocs,
10246 reloc_count,
10247 output_section,
10248 needs_special_offset_handling,
10249 view,
10250 address,
10251 view_size,
10252 reloc_symbol_changes);
10253 }
10254
10255 template<int size, bool big_endian>
10256 class Powerpc_scan_relocatable_reloc
10257 {
10258 public:
10259 typedef typename elfcpp::Rela<size, big_endian> Reltype;
10260 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10261 static const int sh_type = elfcpp::SHT_RELA;
10262
10263 // Return the symbol referred to by the relocation.
10264 static inline unsigned int
10265 get_r_sym(const Reltype* reloc)
10266 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
10267
10268 // Return the type of the relocation.
10269 static inline unsigned int
10270 get_r_type(const Reltype* reloc)
10271 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
10272
10273 // Return the strategy to use for a local symbol which is not a
10274 // section symbol, given the relocation type.
10275 inline Relocatable_relocs::Reloc_strategy
10276 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
10277 {
10278 if (r_type == 0 && r_sym == 0)
10279 return Relocatable_relocs::RELOC_DISCARD;
10280 return Relocatable_relocs::RELOC_COPY;
10281 }
10282
10283 // Return the strategy to use for a local symbol which is a section
10284 // symbol, given the relocation type.
10285 inline Relocatable_relocs::Reloc_strategy
10286 local_section_strategy(unsigned int, Relobj*)
10287 {
10288 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
10289 }
10290
10291 // Return the strategy to use for a global symbol, given the
10292 // relocation type, the object, and the symbol index.
10293 inline Relocatable_relocs::Reloc_strategy
10294 global_strategy(unsigned int r_type, Relobj*, unsigned int)
10295 {
10296 if (size == 32
10297 && (r_type == elfcpp::R_PPC_PLTREL24
10298 || r_type == elfcpp::R_POWERPC_PLT16_LO
10299 || r_type == elfcpp::R_POWERPC_PLT16_HI
10300 || r_type == elfcpp::R_POWERPC_PLT16_HA))
10301 return Relocatable_relocs::RELOC_SPECIAL;
10302 return Relocatable_relocs::RELOC_COPY;
10303 }
10304 };
10305
10306 // Scan the relocs during a relocatable link.
10307
10308 template<int size, bool big_endian>
10309 void
10310 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
10311 Symbol_table* symtab,
10312 Layout* layout,
10313 Sized_relobj_file<size, big_endian>* object,
10314 unsigned int data_shndx,
10315 unsigned int sh_type,
10316 const unsigned char* prelocs,
10317 size_t reloc_count,
10318 Output_section* output_section,
10319 bool needs_special_offset_handling,
10320 size_t local_symbol_count,
10321 const unsigned char* plocal_symbols,
10322 Relocatable_relocs* rr)
10323 {
10324 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
10325
10326 gold_assert(sh_type == elfcpp::SHT_RELA);
10327
10328 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
10329 symtab,
10330 layout,
10331 object,
10332 data_shndx,
10333 prelocs,
10334 reloc_count,
10335 output_section,
10336 needs_special_offset_handling,
10337 local_symbol_count,
10338 plocal_symbols,
10339 rr);
10340 }
10341
10342 // Scan the relocs for --emit-relocs.
10343
10344 template<int size, bool big_endian>
10345 void
10346 Target_powerpc<size, big_endian>::emit_relocs_scan(
10347 Symbol_table* symtab,
10348 Layout* layout,
10349 Sized_relobj_file<size, big_endian>* object,
10350 unsigned int data_shndx,
10351 unsigned int sh_type,
10352 const unsigned char* prelocs,
10353 size_t reloc_count,
10354 Output_section* output_section,
10355 bool needs_special_offset_handling,
10356 size_t local_symbol_count,
10357 const unsigned char* plocal_syms,
10358 Relocatable_relocs* rr)
10359 {
10360 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
10361 Classify_reloc;
10362 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
10363 Emit_relocs_strategy;
10364
10365 gold_assert(sh_type == elfcpp::SHT_RELA);
10366
10367 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
10368 symtab,
10369 layout,
10370 object,
10371 data_shndx,
10372 prelocs,
10373 reloc_count,
10374 output_section,
10375 needs_special_offset_handling,
10376 local_symbol_count,
10377 plocal_syms,
10378 rr);
10379 }
10380
10381 // Emit relocations for a section.
10382 // This is a modified version of the function by the same name in
10383 // target-reloc.h. Using relocate_special_relocatable for
10384 // R_PPC_PLTREL24 would require duplication of the entire body of the
10385 // loop, so we may as well duplicate the whole thing.
10386
10387 template<int size, bool big_endian>
10388 void
10389 Target_powerpc<size, big_endian>::relocate_relocs(
10390 const Relocate_info<size, big_endian>* relinfo,
10391 unsigned int sh_type,
10392 const unsigned char* prelocs,
10393 size_t reloc_count,
10394 Output_section* output_section,
10395 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
10396 unsigned char*,
10397 Address view_address,
10398 section_size_type,
10399 unsigned char* reloc_view,
10400 section_size_type reloc_view_size)
10401 {
10402 gold_assert(sh_type == elfcpp::SHT_RELA);
10403
10404 typedef typename elfcpp::Rela<size, big_endian> Reltype;
10405 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
10406 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
10407 // Offset from start of insn to d-field reloc.
10408 const int d_offset = big_endian ? 2 : 0;
10409
10410 Powerpc_relobj<size, big_endian>* const object
10411 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
10412 const unsigned int local_count = object->local_symbol_count();
10413 unsigned int got2_shndx = object->got2_shndx();
10414 Address got2_addend = 0;
10415 if (got2_shndx != 0)
10416 {
10417 got2_addend = object->get_output_section_offset(got2_shndx);
10418 gold_assert(got2_addend != invalid_address);
10419 }
10420
10421 const bool relocatable = parameters->options().relocatable();
10422
10423 unsigned char* pwrite = reloc_view;
10424 bool zap_next = false;
10425 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
10426 {
10427 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
10428 if (strategy == Relocatable_relocs::RELOC_DISCARD)
10429 continue;
10430
10431 Reltype reloc(prelocs);
10432 Reltype_write reloc_write(pwrite);
10433
10434 Address offset = reloc.get_r_offset();
10435 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
10436 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
10437 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
10438 const unsigned int orig_r_sym = r_sym;
10439 typename elfcpp::Elf_types<size>::Elf_Swxword addend
10440 = reloc.get_r_addend();
10441 const Symbol* gsym = NULL;
10442
10443 if (zap_next)
10444 {
10445 // We could arrange to discard these and other relocs for
10446 // tls optimised sequences in the strategy methods, but for
10447 // now do as BFD ld does.
10448 r_type = elfcpp::R_POWERPC_NONE;
10449 zap_next = false;
10450 }
10451
10452 // Get the new symbol index.
10453 Output_section* os = NULL;
10454 if (r_sym < local_count)
10455 {
10456 switch (strategy)
10457 {
10458 case Relocatable_relocs::RELOC_COPY:
10459 case Relocatable_relocs::RELOC_SPECIAL:
10460 if (r_sym != 0)
10461 {
10462 r_sym = object->symtab_index(r_sym);
10463 gold_assert(r_sym != -1U);
10464 }
10465 break;
10466
10467 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
10468 {
10469 // We are adjusting a section symbol. We need to find
10470 // the symbol table index of the section symbol for
10471 // the output section corresponding to input section
10472 // in which this symbol is defined.
10473 gold_assert(r_sym < local_count);
10474 bool is_ordinary;
10475 unsigned int shndx =
10476 object->local_symbol_input_shndx(r_sym, &is_ordinary);
10477 gold_assert(is_ordinary);
10478 os = object->output_section(shndx);
10479 gold_assert(os != NULL);
10480 gold_assert(os->needs_symtab_index());
10481 r_sym = os->symtab_index();
10482 }
10483 break;
10484
10485 default:
10486 gold_unreachable();
10487 }
10488 }
10489 else
10490 {
10491 gsym = object->global_symbol(r_sym);
10492 gold_assert(gsym != NULL);
10493 if (gsym->is_forwarder())
10494 gsym = relinfo->symtab->resolve_forwards(gsym);
10495
10496 gold_assert(gsym->has_symtab_index());
10497 r_sym = gsym->symtab_index();
10498 }
10499
10500 // Get the new offset--the location in the output section where
10501 // this relocation should be applied.
10502 if (static_cast<Address>(offset_in_output_section) != invalid_address)
10503 offset += offset_in_output_section;
10504 else
10505 {
10506 section_offset_type sot_offset =
10507 convert_types<section_offset_type, Address>(offset);
10508 section_offset_type new_sot_offset =
10509 output_section->output_offset(object, relinfo->data_shndx,
10510 sot_offset);
10511 gold_assert(new_sot_offset != -1);
10512 offset = new_sot_offset;
10513 }
10514
10515 // In an object file, r_offset is an offset within the section.
10516 // In an executable or dynamic object, generated by
10517 // --emit-relocs, r_offset is an absolute address.
10518 if (!relocatable)
10519 {
10520 offset += view_address;
10521 if (static_cast<Address>(offset_in_output_section) != invalid_address)
10522 offset -= offset_in_output_section;
10523 }
10524
10525 // Handle the reloc addend based on the strategy.
10526 if (strategy == Relocatable_relocs::RELOC_COPY)
10527 ;
10528 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
10529 {
10530 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
10531 addend = psymval->value(object, addend);
10532 // In a relocatable link, the symbol value is relative to
10533 // the start of the output section. For a non-relocatable
10534 // link, we need to adjust the addend.
10535 if (!relocatable)
10536 {
10537 gold_assert(os != NULL);
10538 addend -= os->address();
10539 }
10540 }
10541 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
10542 {
10543 if (size == 32)
10544 {
10545 if (addend >= 32768)
10546 addend += got2_addend;
10547 }
10548 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
10549 {
10550 r_type = elfcpp::R_POWERPC_ADDR16_HA;
10551 addend -= d_offset;
10552 }
10553 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
10554 {
10555 r_type = elfcpp::R_POWERPC_ADDR16_LO;
10556 addend -= d_offset + 4;
10557 }
10558 }
10559 else
10560 gold_unreachable();
10561
10562 if (!relocatable)
10563 {
10564 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10565 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
10566 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
10567 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
10568 {
10569 // First instruction of a global dynamic sequence,
10570 // arg setup insn.
10571 const bool final = gsym == NULL || gsym->final_value_is_known();
10572 switch (this->optimize_tls_gd(final))
10573 {
10574 case tls::TLSOPT_TO_IE:
10575 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
10576 - elfcpp::R_POWERPC_GOT_TLSGD16);
10577 break;
10578 case tls::TLSOPT_TO_LE:
10579 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
10580 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
10581 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10582 else
10583 {
10584 r_type = elfcpp::R_POWERPC_NONE;
10585 offset -= d_offset;
10586 }
10587 break;
10588 default:
10589 break;
10590 }
10591 }
10592 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10593 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
10594 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
10595 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
10596 {
10597 // First instruction of a local dynamic sequence,
10598 // arg setup insn.
10599 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10600 {
10601 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
10602 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
10603 {
10604 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10605 const Output_section* os = relinfo->layout->tls_segment()
10606 ->first_section();
10607 gold_assert(os != NULL);
10608 gold_assert(os->needs_symtab_index());
10609 r_sym = os->symtab_index();
10610 addend = dtp_offset;
10611 }
10612 else
10613 {
10614 r_type = elfcpp::R_POWERPC_NONE;
10615 offset -= d_offset;
10616 }
10617 }
10618 }
10619 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10620 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
10621 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
10622 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
10623 {
10624 // First instruction of initial exec sequence.
10625 const bool final = gsym == NULL || gsym->final_value_is_known();
10626 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10627 {
10628 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
10629 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
10630 r_type = elfcpp::R_POWERPC_TPREL16_HA;
10631 else
10632 {
10633 r_type = elfcpp::R_POWERPC_NONE;
10634 offset -= d_offset;
10635 }
10636 }
10637 }
10638 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
10639 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
10640 {
10641 // Second instruction of a global dynamic sequence,
10642 // the __tls_get_addr call
10643 const bool final = gsym == NULL || gsym->final_value_is_known();
10644 switch (this->optimize_tls_gd(final))
10645 {
10646 case tls::TLSOPT_TO_IE:
10647 r_type = elfcpp::R_POWERPC_NONE;
10648 zap_next = true;
10649 break;
10650 case tls::TLSOPT_TO_LE:
10651 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10652 offset += d_offset;
10653 zap_next = true;
10654 break;
10655 default:
10656 break;
10657 }
10658 }
10659 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
10660 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
10661 {
10662 // Second instruction of a local dynamic sequence,
10663 // the __tls_get_addr call
10664 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
10665 {
10666 const Output_section* os = relinfo->layout->tls_segment()
10667 ->first_section();
10668 gold_assert(os != NULL);
10669 gold_assert(os->needs_symtab_index());
10670 r_sym = os->symtab_index();
10671 addend = dtp_offset;
10672 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10673 offset += d_offset;
10674 zap_next = true;
10675 }
10676 }
10677 else if (r_type == elfcpp::R_POWERPC_TLS)
10678 {
10679 // Second instruction of an initial exec sequence
10680 const bool final = gsym == NULL || gsym->final_value_is_known();
10681 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
10682 {
10683 r_type = elfcpp::R_POWERPC_TPREL16_LO;
10684 offset += d_offset;
10685 }
10686 }
10687 }
10688
10689 reloc_write.put_r_offset(offset);
10690 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
10691 reloc_write.put_r_addend(addend);
10692
10693 pwrite += reloc_size;
10694 }
10695
10696 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
10697 == reloc_view_size);
10698 }
10699
10700 // Return the value to use for a dynamic symbol which requires special
10701 // treatment. This is how we support equality comparisons of function
10702 // pointers across shared library boundaries, as described in the
10703 // processor specific ABI supplement.
10704
10705 template<int size, bool big_endian>
10706 uint64_t
10707 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
10708 {
10709 if (size == 32)
10710 {
10711 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
10712 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10713 p != this->stub_tables_.end();
10714 ++p)
10715 {
10716 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10717 = (*p)->find_plt_call_entry(gsym);
10718 if (ent != NULL)
10719 return (*p)->stub_address() + ent->off_;
10720 }
10721 }
10722 else if (this->abiversion() >= 2)
10723 {
10724 Address off = this->glink_section()->find_global_entry(gsym);
10725 if (off != invalid_address)
10726 return this->glink_section()->global_entry_address() + off;
10727 }
10728 gold_unreachable();
10729 }
10730
10731 // Return the PLT address to use for a local symbol.
10732 template<int size, bool big_endian>
10733 uint64_t
10734 Target_powerpc<size, big_endian>::do_plt_address_for_local(
10735 const Relobj* object,
10736 unsigned int symndx) const
10737 {
10738 if (size == 32)
10739 {
10740 const Sized_relobj<size, big_endian>* relobj
10741 = static_cast<const Sized_relobj<size, big_endian>*>(object);
10742 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10743 p != this->stub_tables_.end();
10744 ++p)
10745 {
10746 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10747 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
10748 if (ent != NULL)
10749 return (*p)->stub_address() + ent->off_;
10750 }
10751 }
10752 gold_unreachable();
10753 }
10754
10755 // Return the PLT address to use for a global symbol.
10756 template<int size, bool big_endian>
10757 uint64_t
10758 Target_powerpc<size, big_endian>::do_plt_address_for_global(
10759 const Symbol* gsym) const
10760 {
10761 if (size == 32)
10762 {
10763 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
10764 p != this->stub_tables_.end();
10765 ++p)
10766 {
10767 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
10768 = (*p)->find_plt_call_entry(gsym);
10769 if (ent != NULL)
10770 return (*p)->stub_address() + ent->off_;
10771 }
10772 }
10773 else if (this->abiversion() >= 2)
10774 {
10775 Address off = this->glink_section()->find_global_entry(gsym);
10776 if (off != invalid_address)
10777 return this->glink_section()->global_entry_address() + off;
10778 }
10779 gold_unreachable();
10780 }
10781
10782 // Return the offset to use for the GOT_INDX'th got entry which is
10783 // for a local tls symbol specified by OBJECT, SYMNDX.
10784 template<int size, bool big_endian>
10785 int64_t
10786 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
10787 const Relobj* object,
10788 unsigned int symndx,
10789 unsigned int got_indx) const
10790 {
10791 const Powerpc_relobj<size, big_endian>* ppc_object
10792 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
10793 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
10794 {
10795 for (Got_type got_type = GOT_TYPE_TLSGD;
10796 got_type <= GOT_TYPE_TPREL;
10797 got_type = Got_type(got_type + 1))
10798 if (ppc_object->local_has_got_offset(symndx, got_type))
10799 {
10800 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
10801 if (got_type == GOT_TYPE_TLSGD)
10802 off += size / 8;
10803 if (off == got_indx * (size / 8))
10804 {
10805 if (got_type == GOT_TYPE_TPREL)
10806 return -tp_offset;
10807 else
10808 return -dtp_offset;
10809 }
10810 }
10811 }
10812 gold_unreachable();
10813 }
10814
10815 // Return the offset to use for the GOT_INDX'th got entry which is
10816 // for global tls symbol GSYM.
10817 template<int size, bool big_endian>
10818 int64_t
10819 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
10820 Symbol* gsym,
10821 unsigned int got_indx) const
10822 {
10823 if (gsym->type() == elfcpp::STT_TLS)
10824 {
10825 for (Got_type got_type = GOT_TYPE_TLSGD;
10826 got_type <= GOT_TYPE_TPREL;
10827 got_type = Got_type(got_type + 1))
10828 if (gsym->has_got_offset(got_type))
10829 {
10830 unsigned int off = gsym->got_offset(got_type);
10831 if (got_type == GOT_TYPE_TLSGD)
10832 off += size / 8;
10833 if (off == got_indx * (size / 8))
10834 {
10835 if (got_type == GOT_TYPE_TPREL)
10836 return -tp_offset;
10837 else
10838 return -dtp_offset;
10839 }
10840 }
10841 }
10842 gold_unreachable();
10843 }
10844
10845 // The selector for powerpc object files.
10846
10847 template<int size, bool big_endian>
10848 class Target_selector_powerpc : public Target_selector
10849 {
10850 public:
10851 Target_selector_powerpc()
10852 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
10853 size, big_endian,
10854 (size == 64
10855 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
10856 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
10857 (size == 64
10858 ? (big_endian ? "elf64ppc" : "elf64lppc")
10859 : (big_endian ? "elf32ppc" : "elf32lppc")))
10860 { }
10861
10862 virtual Target*
10863 do_instantiate_target()
10864 { return new Target_powerpc<size, big_endian>(); }
10865 };
10866
10867 Target_selector_powerpc<32, true> target_selector_ppc32;
10868 Target_selector_powerpc<32, false> target_selector_ppc32le;
10869 Target_selector_powerpc<64, true> target_selector_ppc64;
10870 Target_selector_powerpc<64, false> target_selector_ppc64le;
10871
10872 // Instantiate these constants for -O0
10873 template<int size, bool big_endian>
10874 const typename Output_data_glink<size, big_endian>::Address
10875 Output_data_glink<size, big_endian>::invalid_address;
10876 template<int size, bool big_endian>
10877 const typename Stub_table<size, big_endian>::Address
10878 Stub_table<size, big_endian>::invalid_address;
10879 template<int size, bool big_endian>
10880 const typename Target_powerpc<size, big_endian>::Address
10881 Target_powerpc<size, big_endian>::invalid_address;
10882
10883 } // End anonymous namespace.
This page took 0.25528 seconds and 5 git commands to generate.