[GOLD] -Wimplicit-fallthrough warning fixes
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Output_section* output_section;
74 const Output_section::Input_section* owner;
75 };
76
77 inline bool
78 is_branch_reloc(unsigned int r_type);
79
80 template<int size, bool big_endian>
81 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
82 {
83 public:
84 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
85 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
86 typedef Unordered_map<Address, Section_refs> Access_from;
87
88 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
89 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
90 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
91 special_(0), has_small_toc_reloc_(false), opd_valid_(false),
92 opd_ent_(), access_from_map_(), has14_(), stub_table_index_(),
93 e_flags_(ehdr.get_e_flags()), st_other_()
94 {
95 this->set_abiversion(0);
96 }
97
98 ~Powerpc_relobj()
99 { }
100
101 // Read the symbols then set up st_other vector.
102 void
103 do_read_symbols(Read_symbols_data*);
104
105 // The .got2 section shndx.
106 unsigned int
107 got2_shndx() const
108 {
109 if (size == 32)
110 return this->special_;
111 else
112 return 0;
113 }
114
115 // The .opd section shndx.
116 unsigned int
117 opd_shndx() const
118 {
119 if (size == 32)
120 return 0;
121 else
122 return this->special_;
123 }
124
125 // Init OPD entry arrays.
126 void
127 init_opd(size_t opd_size)
128 {
129 size_t count = this->opd_ent_ndx(opd_size);
130 this->opd_ent_.resize(count);
131 }
132
133 // Return section and offset of function entry for .opd + R_OFF.
134 unsigned int
135 get_opd_ent(Address r_off, Address* value = NULL) const
136 {
137 size_t ndx = this->opd_ent_ndx(r_off);
138 gold_assert(ndx < this->opd_ent_.size());
139 gold_assert(this->opd_ent_[ndx].shndx != 0);
140 if (value != NULL)
141 *value = this->opd_ent_[ndx].off;
142 return this->opd_ent_[ndx].shndx;
143 }
144
145 // Set section and offset of function entry for .opd + R_OFF.
146 void
147 set_opd_ent(Address r_off, unsigned int shndx, Address value)
148 {
149 size_t ndx = this->opd_ent_ndx(r_off);
150 gold_assert(ndx < this->opd_ent_.size());
151 this->opd_ent_[ndx].shndx = shndx;
152 this->opd_ent_[ndx].off = value;
153 }
154
155 // Return discard flag for .opd + R_OFF.
156 bool
157 get_opd_discard(Address r_off) const
158 {
159 size_t ndx = this->opd_ent_ndx(r_off);
160 gold_assert(ndx < this->opd_ent_.size());
161 return this->opd_ent_[ndx].discard;
162 }
163
164 // Set discard flag for .opd + R_OFF.
165 void
166 set_opd_discard(Address r_off)
167 {
168 size_t ndx = this->opd_ent_ndx(r_off);
169 gold_assert(ndx < this->opd_ent_.size());
170 this->opd_ent_[ndx].discard = true;
171 }
172
173 bool
174 opd_valid() const
175 { return this->opd_valid_; }
176
177 void
178 set_opd_valid()
179 { this->opd_valid_ = true; }
180
181 // Examine .rela.opd to build info about function entry points.
182 void
183 scan_opd_relocs(size_t reloc_count,
184 const unsigned char* prelocs,
185 const unsigned char* plocal_syms);
186
187 // Perform the Sized_relobj_file method, then set up opd info from
188 // .opd relocs.
189 void
190 do_read_relocs(Read_relocs_data*);
191
192 bool
193 do_find_special_sections(Read_symbols_data* sd);
194
195 // Adjust this local symbol value. Return false if the symbol
196 // should be discarded from the output file.
197 bool
198 do_adjust_local_symbol(Symbol_value<size>* lv) const
199 {
200 if (size == 64 && this->opd_shndx() != 0)
201 {
202 bool is_ordinary;
203 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
204 return true;
205 if (this->get_opd_discard(lv->input_value()))
206 return false;
207 }
208 return true;
209 }
210
211 Access_from*
212 access_from_map()
213 { return &this->access_from_map_; }
214
215 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
216 // section at DST_OFF.
217 void
218 add_reference(Relobj* src_obj,
219 unsigned int src_indx,
220 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
221 {
222 Section_id src_id(src_obj, src_indx);
223 this->access_from_map_[dst_off].insert(src_id);
224 }
225
226 // Add a reference to the code section specified by the .opd entry
227 // at DST_OFF
228 void
229 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
230 {
231 size_t ndx = this->opd_ent_ndx(dst_off);
232 if (ndx >= this->opd_ent_.size())
233 this->opd_ent_.resize(ndx + 1);
234 this->opd_ent_[ndx].gc_mark = true;
235 }
236
237 void
238 process_gc_mark(Symbol_table* symtab)
239 {
240 for (size_t i = 0; i < this->opd_ent_.size(); i++)
241 if (this->opd_ent_[i].gc_mark)
242 {
243 unsigned int shndx = this->opd_ent_[i].shndx;
244 symtab->gc()->worklist().push_back(Section_id(this, shndx));
245 }
246 }
247
248 // Return offset in output GOT section that this object will use
249 // as a TOC pointer. Won't be just a constant with multi-toc support.
250 Address
251 toc_base_offset() const
252 { return 0x8000; }
253
254 void
255 set_has_small_toc_reloc()
256 { has_small_toc_reloc_ = true; }
257
258 bool
259 has_small_toc_reloc() const
260 { return has_small_toc_reloc_; }
261
262 void
263 set_has_14bit_branch(unsigned int shndx)
264 {
265 if (shndx >= this->has14_.size())
266 this->has14_.resize(shndx + 1);
267 this->has14_[shndx] = true;
268 }
269
270 bool
271 has_14bit_branch(unsigned int shndx) const
272 { return shndx < this->has14_.size() && this->has14_[shndx]; }
273
274 void
275 set_stub_table(unsigned int shndx, unsigned int stub_index)
276 {
277 if (shndx >= this->stub_table_index_.size())
278 this->stub_table_index_.resize(shndx + 1);
279 this->stub_table_index_[shndx] = stub_index;
280 }
281
282 Stub_table<size, big_endian>*
283 stub_table(unsigned int shndx)
284 {
285 if (shndx < this->stub_table_index_.size())
286 {
287 Target_powerpc<size, big_endian>* target
288 = static_cast<Target_powerpc<size, big_endian>*>(
289 parameters->sized_target<size, big_endian>());
290 unsigned int indx = this->stub_table_index_[shndx];
291 gold_assert(indx < target->stub_tables().size());
292 return target->stub_tables()[indx];
293 }
294 return NULL;
295 }
296
297 void
298 clear_stub_table()
299 {
300 this->stub_table_index_.clear();
301 }
302
303 int
304 abiversion() const
305 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
306
307 // Set ABI version for input and output
308 void
309 set_abiversion(int ver);
310
311 unsigned int
312 ppc64_local_entry_offset(const Symbol* sym) const
313 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
314
315 unsigned int
316 ppc64_local_entry_offset(unsigned int symndx) const
317 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
318
319 private:
320 struct Opd_ent
321 {
322 unsigned int shndx;
323 bool discard : 1;
324 bool gc_mark : 1;
325 Address off;
326 };
327
328 // Return index into opd_ent_ array for .opd entry at OFF.
329 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
330 // apart when the language doesn't use the last 8-byte word, the
331 // environment pointer. Thus dividing the entry section offset by
332 // 16 will give an index into opd_ent_ that works for either layout
333 // of .opd. (It leaves some elements of the vector unused when .opd
334 // entries are spaced 24 bytes apart, but we don't know the spacing
335 // until relocations are processed, and in any case it is possible
336 // for an object to have some entries spaced 16 bytes apart and
337 // others 24 bytes apart.)
338 size_t
339 opd_ent_ndx(size_t off) const
340 { return off >> 4;}
341
342 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
343 unsigned int special_;
344
345 // For 64-bit, whether this object uses small model relocs to access
346 // the toc.
347 bool has_small_toc_reloc_;
348
349 // Set at the start of gc_process_relocs, when we know opd_ent_
350 // vector is valid. The flag could be made atomic and set in
351 // do_read_relocs with memory_order_release and then tested with
352 // memory_order_acquire, potentially resulting in fewer entries in
353 // access_from_map_.
354 bool opd_valid_;
355
356 // The first 8-byte word of an OPD entry gives the address of the
357 // entry point of the function. Relocatable object files have a
358 // relocation on this word. The following vector records the
359 // section and offset specified by these relocations.
360 std::vector<Opd_ent> opd_ent_;
361
362 // References made to this object's .opd section when running
363 // gc_process_relocs for another object, before the opd_ent_ vector
364 // is valid for this object.
365 Access_from access_from_map_;
366
367 // Whether input section has a 14-bit branch reloc.
368 std::vector<bool> has14_;
369
370 // The stub table to use for a given input section.
371 std::vector<unsigned int> stub_table_index_;
372
373 // Header e_flags
374 elfcpp::Elf_Word e_flags_;
375
376 // ELF st_other field for local symbols.
377 std::vector<unsigned char> st_other_;
378 };
379
380 template<int size, bool big_endian>
381 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
382 {
383 public:
384 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
385
386 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
387 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
388 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
389 opd_shndx_(0), opd_ent_(), e_flags_(ehdr.get_e_flags())
390 {
391 this->set_abiversion(0);
392 }
393
394 ~Powerpc_dynobj()
395 { }
396
397 // Call Sized_dynobj::do_read_symbols to read the symbols then
398 // read .opd from a dynamic object, filling in opd_ent_ vector,
399 void
400 do_read_symbols(Read_symbols_data*);
401
402 // The .opd section shndx.
403 unsigned int
404 opd_shndx() const
405 {
406 return this->opd_shndx_;
407 }
408
409 // The .opd section address.
410 Address
411 opd_address() const
412 {
413 return this->opd_address_;
414 }
415
416 // Init OPD entry arrays.
417 void
418 init_opd(size_t opd_size)
419 {
420 size_t count = this->opd_ent_ndx(opd_size);
421 this->opd_ent_.resize(count);
422 }
423
424 // Return section and offset of function entry for .opd + R_OFF.
425 unsigned int
426 get_opd_ent(Address r_off, Address* value = NULL) const
427 {
428 size_t ndx = this->opd_ent_ndx(r_off);
429 gold_assert(ndx < this->opd_ent_.size());
430 gold_assert(this->opd_ent_[ndx].shndx != 0);
431 if (value != NULL)
432 *value = this->opd_ent_[ndx].off;
433 return this->opd_ent_[ndx].shndx;
434 }
435
436 // Set section and offset of function entry for .opd + R_OFF.
437 void
438 set_opd_ent(Address r_off, unsigned int shndx, Address value)
439 {
440 size_t ndx = this->opd_ent_ndx(r_off);
441 gold_assert(ndx < this->opd_ent_.size());
442 this->opd_ent_[ndx].shndx = shndx;
443 this->opd_ent_[ndx].off = value;
444 }
445
446 int
447 abiversion() const
448 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
449
450 // Set ABI version for input and output.
451 void
452 set_abiversion(int ver);
453
454 private:
455 // Used to specify extent of executable sections.
456 struct Sec_info
457 {
458 Sec_info(Address start_, Address len_, unsigned int shndx_)
459 : start(start_), len(len_), shndx(shndx_)
460 { }
461
462 bool
463 operator<(const Sec_info& that) const
464 { return this->start < that.start; }
465
466 Address start;
467 Address len;
468 unsigned int shndx;
469 };
470
471 struct Opd_ent
472 {
473 unsigned int shndx;
474 Address off;
475 };
476
477 // Return index into opd_ent_ array for .opd entry at OFF.
478 size_t
479 opd_ent_ndx(size_t off) const
480 { return off >> 4;}
481
482 // For 64-bit the .opd section shndx and address.
483 unsigned int opd_shndx_;
484 Address opd_address_;
485
486 // The first 8-byte word of an OPD entry gives the address of the
487 // entry point of the function. Records the section and offset
488 // corresponding to the address. Note that in dynamic objects,
489 // offset is *not* relative to the section.
490 std::vector<Opd_ent> opd_ent_;
491
492 // Header e_flags
493 elfcpp::Elf_Word e_flags_;
494 };
495
496 template<int size, bool big_endian>
497 class Target_powerpc : public Sized_target<size, big_endian>
498 {
499 public:
500 typedef
501 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
502 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
503 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
504 static const Address invalid_address = static_cast<Address>(0) - 1;
505 // Offset of tp and dtp pointers from start of TLS block.
506 static const Address tp_offset = 0x7000;
507 static const Address dtp_offset = 0x8000;
508
509 Target_powerpc()
510 : Sized_target<size, big_endian>(&powerpc_info),
511 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
512 glink_(NULL), rela_dyn_(NULL), copy_relocs_(elfcpp::R_POWERPC_COPY),
513 tlsld_got_offset_(-1U),
514 stub_tables_(), branch_lookup_table_(), branch_info_(),
515 plt_thread_safe_(false), relax_failed_(false), relax_fail_count_(0),
516 stub_group_size_(0), savres_section_(0)
517 {
518 }
519
520 // Process the relocations to determine unreferenced sections for
521 // garbage collection.
522 void
523 gc_process_relocs(Symbol_table* symtab,
524 Layout* layout,
525 Sized_relobj_file<size, big_endian>* object,
526 unsigned int data_shndx,
527 unsigned int sh_type,
528 const unsigned char* prelocs,
529 size_t reloc_count,
530 Output_section* output_section,
531 bool needs_special_offset_handling,
532 size_t local_symbol_count,
533 const unsigned char* plocal_symbols);
534
535 // Scan the relocations to look for symbol adjustments.
536 void
537 scan_relocs(Symbol_table* symtab,
538 Layout* layout,
539 Sized_relobj_file<size, big_endian>* object,
540 unsigned int data_shndx,
541 unsigned int sh_type,
542 const unsigned char* prelocs,
543 size_t reloc_count,
544 Output_section* output_section,
545 bool needs_special_offset_handling,
546 size_t local_symbol_count,
547 const unsigned char* plocal_symbols);
548
549 // Map input .toc section to output .got section.
550 const char*
551 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
552 {
553 if (size == 64 && strcmp(name, ".toc") == 0)
554 {
555 *plen = 4;
556 return ".got";
557 }
558 return NULL;
559 }
560
561 // Provide linker defined save/restore functions.
562 void
563 define_save_restore_funcs(Layout*, Symbol_table*);
564
565 // No stubs unless a final link.
566 bool
567 do_may_relax() const
568 { return !parameters->options().relocatable(); }
569
570 bool
571 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
572
573 void
574 do_plt_fde_location(const Output_data*, unsigned char*,
575 uint64_t*, off_t*) const;
576
577 // Stash info about branches, for stub generation.
578 void
579 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
580 unsigned int data_shndx, Address r_offset,
581 unsigned int r_type, unsigned int r_sym, Address addend)
582 {
583 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
584 this->branch_info_.push_back(info);
585 if (r_type == elfcpp::R_POWERPC_REL14
586 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
587 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
588 ppc_object->set_has_14bit_branch(data_shndx);
589 }
590
591 void
592 do_define_standard_symbols(Symbol_table*, Layout*);
593
594 // Finalize the sections.
595 void
596 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
597
598 // Return the value to use for a dynamic which requires special
599 // treatment.
600 uint64_t
601 do_dynsym_value(const Symbol*) const;
602
603 // Return the PLT address to use for a local symbol.
604 uint64_t
605 do_plt_address_for_local(const Relobj*, unsigned int) const;
606
607 // Return the PLT address to use for a global symbol.
608 uint64_t
609 do_plt_address_for_global(const Symbol*) const;
610
611 // Return the offset to use for the GOT_INDX'th got entry which is
612 // for a local tls symbol specified by OBJECT, SYMNDX.
613 int64_t
614 do_tls_offset_for_local(const Relobj* object,
615 unsigned int symndx,
616 unsigned int got_indx) const;
617
618 // Return the offset to use for the GOT_INDX'th got entry which is
619 // for global tls symbol GSYM.
620 int64_t
621 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
622
623 void
624 do_function_location(Symbol_location*) const;
625
626 bool
627 do_can_check_for_function_pointers() const
628 { return true; }
629
630 // Adjust -fsplit-stack code which calls non-split-stack code.
631 void
632 do_calls_non_split(Relobj* object, unsigned int shndx,
633 section_offset_type fnoffset, section_size_type fnsize,
634 const unsigned char* prelocs, size_t reloc_count,
635 unsigned char* view, section_size_type view_size,
636 std::string* from, std::string* to) const;
637
638 // Relocate a section.
639 void
640 relocate_section(const Relocate_info<size, big_endian>*,
641 unsigned int sh_type,
642 const unsigned char* prelocs,
643 size_t reloc_count,
644 Output_section* output_section,
645 bool needs_special_offset_handling,
646 unsigned char* view,
647 Address view_address,
648 section_size_type view_size,
649 const Reloc_symbol_changes*);
650
651 // Scan the relocs during a relocatable link.
652 void
653 scan_relocatable_relocs(Symbol_table* symtab,
654 Layout* layout,
655 Sized_relobj_file<size, big_endian>* object,
656 unsigned int data_shndx,
657 unsigned int sh_type,
658 const unsigned char* prelocs,
659 size_t reloc_count,
660 Output_section* output_section,
661 bool needs_special_offset_handling,
662 size_t local_symbol_count,
663 const unsigned char* plocal_symbols,
664 Relocatable_relocs*);
665
666 // Scan the relocs for --emit-relocs.
667 void
668 emit_relocs_scan(Symbol_table* symtab,
669 Layout* layout,
670 Sized_relobj_file<size, big_endian>* object,
671 unsigned int data_shndx,
672 unsigned int sh_type,
673 const unsigned char* prelocs,
674 size_t reloc_count,
675 Output_section* output_section,
676 bool needs_special_offset_handling,
677 size_t local_symbol_count,
678 const unsigned char* plocal_syms,
679 Relocatable_relocs* rr);
680
681 // Emit relocations for a section.
682 void
683 relocate_relocs(const Relocate_info<size, big_endian>*,
684 unsigned int sh_type,
685 const unsigned char* prelocs,
686 size_t reloc_count,
687 Output_section* output_section,
688 typename elfcpp::Elf_types<size>::Elf_Off
689 offset_in_output_section,
690 unsigned char*,
691 Address view_address,
692 section_size_type,
693 unsigned char* reloc_view,
694 section_size_type reloc_view_size);
695
696 // Return whether SYM is defined by the ABI.
697 bool
698 do_is_defined_by_abi(const Symbol* sym) const
699 {
700 return strcmp(sym->name(), "__tls_get_addr") == 0;
701 }
702
703 // Return the size of the GOT section.
704 section_size_type
705 got_size() const
706 {
707 gold_assert(this->got_ != NULL);
708 return this->got_->data_size();
709 }
710
711 // Get the PLT section.
712 const Output_data_plt_powerpc<size, big_endian>*
713 plt_section() const
714 {
715 gold_assert(this->plt_ != NULL);
716 return this->plt_;
717 }
718
719 // Get the IPLT section.
720 const Output_data_plt_powerpc<size, big_endian>*
721 iplt_section() const
722 {
723 gold_assert(this->iplt_ != NULL);
724 return this->iplt_;
725 }
726
727 // Get the .glink section.
728 const Output_data_glink<size, big_endian>*
729 glink_section() const
730 {
731 gold_assert(this->glink_ != NULL);
732 return this->glink_;
733 }
734
735 Output_data_glink<size, big_endian>*
736 glink_section()
737 {
738 gold_assert(this->glink_ != NULL);
739 return this->glink_;
740 }
741
742 bool has_glink() const
743 { return this->glink_ != NULL; }
744
745 // Get the GOT section.
746 const Output_data_got_powerpc<size, big_endian>*
747 got_section() const
748 {
749 gold_assert(this->got_ != NULL);
750 return this->got_;
751 }
752
753 // Get the GOT section, creating it if necessary.
754 Output_data_got_powerpc<size, big_endian>*
755 got_section(Symbol_table*, Layout*);
756
757 Object*
758 do_make_elf_object(const std::string&, Input_file*, off_t,
759 const elfcpp::Ehdr<size, big_endian>&);
760
761 // Return the number of entries in the GOT.
762 unsigned int
763 got_entry_count() const
764 {
765 if (this->got_ == NULL)
766 return 0;
767 return this->got_size() / (size / 8);
768 }
769
770 // Return the number of entries in the PLT.
771 unsigned int
772 plt_entry_count() const;
773
774 // Return the offset of the first non-reserved PLT entry.
775 unsigned int
776 first_plt_entry_offset() const
777 {
778 if (size == 32)
779 return 0;
780 if (this->abiversion() >= 2)
781 return 16;
782 return 24;
783 }
784
785 // Return the size of each PLT entry.
786 unsigned int
787 plt_entry_size() const
788 {
789 if (size == 32)
790 return 4;
791 if (this->abiversion() >= 2)
792 return 8;
793 return 24;
794 }
795
796 Output_data_save_res<size, big_endian>*
797 savres_section() const
798 {
799 return this->savres_section_;
800 }
801
802 // Add any special sections for this symbol to the gc work list.
803 // For powerpc64, this adds the code section of a function
804 // descriptor.
805 void
806 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
807
808 // Handle target specific gc actions when adding a gc reference from
809 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
810 // and DST_OFF. For powerpc64, this adds a referenc to the code
811 // section of a function descriptor.
812 void
813 do_gc_add_reference(Symbol_table* symtab,
814 Relobj* src_obj,
815 unsigned int src_shndx,
816 Relobj* dst_obj,
817 unsigned int dst_shndx,
818 Address dst_off) const;
819
820 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
821 const Stub_tables&
822 stub_tables() const
823 { return this->stub_tables_; }
824
825 const Output_data_brlt_powerpc<size, big_endian>*
826 brlt_section() const
827 { return this->brlt_section_; }
828
829 void
830 add_branch_lookup_table(Address to)
831 {
832 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
833 this->branch_lookup_table_.insert(std::make_pair(to, off));
834 }
835
836 Address
837 find_branch_lookup_table(Address to)
838 {
839 typename Branch_lookup_table::const_iterator p
840 = this->branch_lookup_table_.find(to);
841 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
842 }
843
844 void
845 write_branch_lookup_table(unsigned char *oview)
846 {
847 for (typename Branch_lookup_table::const_iterator p
848 = this->branch_lookup_table_.begin();
849 p != this->branch_lookup_table_.end();
850 ++p)
851 {
852 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
853 }
854 }
855
856 bool
857 plt_thread_safe() const
858 { return this->plt_thread_safe_; }
859
860 int
861 abiversion () const
862 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
863
864 void
865 set_abiversion (int ver)
866 {
867 elfcpp::Elf_Word flags = this->processor_specific_flags();
868 flags &= ~elfcpp::EF_PPC64_ABI;
869 flags |= ver & elfcpp::EF_PPC64_ABI;
870 this->set_processor_specific_flags(flags);
871 }
872
873 // Offset to to save stack slot
874 int
875 stk_toc () const
876 { return this->abiversion() < 2 ? 40 : 24; }
877
878 private:
879
880 class Track_tls
881 {
882 public:
883 enum Tls_get_addr
884 {
885 NOT_EXPECTED = 0,
886 EXPECTED = 1,
887 SKIP = 2,
888 NORMAL = 3
889 };
890
891 Track_tls()
892 : tls_get_addr_(NOT_EXPECTED),
893 relinfo_(NULL), relnum_(0), r_offset_(0)
894 { }
895
896 ~Track_tls()
897 {
898 if (this->tls_get_addr_ != NOT_EXPECTED)
899 this->missing();
900 }
901
902 void
903 missing(void)
904 {
905 if (this->relinfo_ != NULL)
906 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
907 _("missing expected __tls_get_addr call"));
908 }
909
910 void
911 expect_tls_get_addr_call(
912 const Relocate_info<size, big_endian>* relinfo,
913 size_t relnum,
914 Address r_offset)
915 {
916 this->tls_get_addr_ = EXPECTED;
917 this->relinfo_ = relinfo;
918 this->relnum_ = relnum;
919 this->r_offset_ = r_offset;
920 }
921
922 void
923 expect_tls_get_addr_call()
924 { this->tls_get_addr_ = EXPECTED; }
925
926 void
927 skip_next_tls_get_addr_call()
928 {this->tls_get_addr_ = SKIP; }
929
930 Tls_get_addr
931 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
932 {
933 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
934 || r_type == elfcpp::R_PPC_PLTREL24)
935 && gsym != NULL
936 && strcmp(gsym->name(), "__tls_get_addr") == 0);
937 Tls_get_addr last_tls = this->tls_get_addr_;
938 this->tls_get_addr_ = NOT_EXPECTED;
939 if (is_tls_call && last_tls != EXPECTED)
940 return last_tls;
941 else if (!is_tls_call && last_tls != NOT_EXPECTED)
942 {
943 this->missing();
944 return EXPECTED;
945 }
946 return NORMAL;
947 }
948
949 private:
950 // What we're up to regarding calls to __tls_get_addr.
951 // On powerpc, the branch and link insn making a call to
952 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
953 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
954 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
955 // The marker relocation always comes first, and has the same
956 // symbol as the reloc on the insn setting up the __tls_get_addr
957 // argument. This ties the arg setup insn with the call insn,
958 // allowing ld to safely optimize away the call. We check that
959 // every call to __tls_get_addr has a marker relocation, and that
960 // every marker relocation is on a call to __tls_get_addr.
961 Tls_get_addr tls_get_addr_;
962 // Info about the last reloc for error message.
963 const Relocate_info<size, big_endian>* relinfo_;
964 size_t relnum_;
965 Address r_offset_;
966 };
967
968 // The class which scans relocations.
969 class Scan : protected Track_tls
970 {
971 public:
972 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
973
974 Scan()
975 : Track_tls(), issued_non_pic_error_(false)
976 { }
977
978 static inline int
979 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
980
981 inline void
982 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
983 Sized_relobj_file<size, big_endian>* object,
984 unsigned int data_shndx,
985 Output_section* output_section,
986 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
987 const elfcpp::Sym<size, big_endian>& lsym,
988 bool is_discarded);
989
990 inline void
991 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
992 Sized_relobj_file<size, big_endian>* object,
993 unsigned int data_shndx,
994 Output_section* output_section,
995 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
996 Symbol* gsym);
997
998 inline bool
999 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1000 Target_powerpc* ,
1001 Sized_relobj_file<size, big_endian>* relobj,
1002 unsigned int ,
1003 Output_section* ,
1004 const elfcpp::Rela<size, big_endian>& ,
1005 unsigned int r_type,
1006 const elfcpp::Sym<size, big_endian>&)
1007 {
1008 // PowerPC64 .opd is not folded, so any identical function text
1009 // may be folded and we'll still keep function addresses distinct.
1010 // That means no reloc is of concern here.
1011 if (size == 64)
1012 {
1013 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1014 <Powerpc_relobj<size, big_endian>*>(relobj);
1015 if (ppcobj->abiversion() == 1)
1016 return false;
1017 }
1018 // For 32-bit and ELFv2, conservatively assume anything but calls to
1019 // function code might be taking the address of the function.
1020 return !is_branch_reloc(r_type);
1021 }
1022
1023 inline bool
1024 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1025 Target_powerpc* ,
1026 Sized_relobj_file<size, big_endian>* relobj,
1027 unsigned int ,
1028 Output_section* ,
1029 const elfcpp::Rela<size, big_endian>& ,
1030 unsigned int r_type,
1031 Symbol*)
1032 {
1033 // As above.
1034 if (size == 64)
1035 {
1036 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1037 <Powerpc_relobj<size, big_endian>*>(relobj);
1038 if (ppcobj->abiversion() == 1)
1039 return false;
1040 }
1041 return !is_branch_reloc(r_type);
1042 }
1043
1044 static bool
1045 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1046 Sized_relobj_file<size, big_endian>* object,
1047 unsigned int r_type, bool report_err);
1048
1049 private:
1050 static void
1051 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1052 unsigned int r_type);
1053
1054 static void
1055 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1056 unsigned int r_type, Symbol*);
1057
1058 static void
1059 generate_tls_call(Symbol_table* symtab, Layout* layout,
1060 Target_powerpc* target);
1061
1062 void
1063 check_non_pic(Relobj*, unsigned int r_type);
1064
1065 // Whether we have issued an error about a non-PIC compilation.
1066 bool issued_non_pic_error_;
1067 };
1068
1069 bool
1070 symval_for_branch(const Symbol_table* symtab,
1071 const Sized_symbol<size>* gsym,
1072 Powerpc_relobj<size, big_endian>* object,
1073 Address *value, unsigned int *dest_shndx);
1074
1075 // The class which implements relocation.
1076 class Relocate : protected Track_tls
1077 {
1078 public:
1079 // Use 'at' branch hints when true, 'y' when false.
1080 // FIXME maybe: set this with an option.
1081 static const bool is_isa_v2 = true;
1082
1083 Relocate()
1084 : Track_tls()
1085 { }
1086
1087 // Do a relocation. Return false if the caller should not issue
1088 // any warnings about this relocation.
1089 inline bool
1090 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1091 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1092 const Sized_symbol<size>*, const Symbol_value<size>*,
1093 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1094 section_size_type);
1095 };
1096
1097 class Relocate_comdat_behavior
1098 {
1099 public:
1100 // Decide what the linker should do for relocations that refer to
1101 // discarded comdat sections.
1102 inline Comdat_behavior
1103 get(const char* name)
1104 {
1105 gold::Default_comdat_behavior default_behavior;
1106 Comdat_behavior ret = default_behavior.get(name);
1107 if (ret == CB_WARNING)
1108 {
1109 if (size == 32
1110 && (strcmp(name, ".fixup") == 0
1111 || strcmp(name, ".got2") == 0))
1112 ret = CB_IGNORE;
1113 if (size == 64
1114 && (strcmp(name, ".opd") == 0
1115 || strcmp(name, ".toc") == 0
1116 || strcmp(name, ".toc1") == 0))
1117 ret = CB_IGNORE;
1118 }
1119 return ret;
1120 }
1121 };
1122
1123 // Optimize the TLS relocation type based on what we know about the
1124 // symbol. IS_FINAL is true if the final address of this symbol is
1125 // known at link time.
1126
1127 tls::Tls_optimization
1128 optimize_tls_gd(bool is_final)
1129 {
1130 // If we are generating a shared library, then we can't do anything
1131 // in the linker.
1132 if (parameters->options().shared())
1133 return tls::TLSOPT_NONE;
1134
1135 if (!is_final)
1136 return tls::TLSOPT_TO_IE;
1137 return tls::TLSOPT_TO_LE;
1138 }
1139
1140 tls::Tls_optimization
1141 optimize_tls_ld()
1142 {
1143 if (parameters->options().shared())
1144 return tls::TLSOPT_NONE;
1145
1146 return tls::TLSOPT_TO_LE;
1147 }
1148
1149 tls::Tls_optimization
1150 optimize_tls_ie(bool is_final)
1151 {
1152 if (!is_final || parameters->options().shared())
1153 return tls::TLSOPT_NONE;
1154
1155 return tls::TLSOPT_TO_LE;
1156 }
1157
1158 // Create glink.
1159 void
1160 make_glink_section(Layout*);
1161
1162 // Create the PLT section.
1163 void
1164 make_plt_section(Symbol_table*, Layout*);
1165
1166 void
1167 make_iplt_section(Symbol_table*, Layout*);
1168
1169 void
1170 make_brlt_section(Layout*);
1171
1172 // Create a PLT entry for a global symbol.
1173 void
1174 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1175
1176 // Create a PLT entry for a local IFUNC symbol.
1177 void
1178 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1179 Sized_relobj_file<size, big_endian>*,
1180 unsigned int);
1181
1182
1183 // Create a GOT entry for local dynamic __tls_get_addr.
1184 unsigned int
1185 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1186 Sized_relobj_file<size, big_endian>* object);
1187
1188 unsigned int
1189 tlsld_got_offset() const
1190 {
1191 return this->tlsld_got_offset_;
1192 }
1193
1194 // Get the dynamic reloc section, creating it if necessary.
1195 Reloc_section*
1196 rela_dyn_section(Layout*);
1197
1198 // Similarly, but for ifunc symbols get the one for ifunc.
1199 Reloc_section*
1200 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1201
1202 // Copy a relocation against a global symbol.
1203 void
1204 copy_reloc(Symbol_table* symtab, Layout* layout,
1205 Sized_relobj_file<size, big_endian>* object,
1206 unsigned int shndx, Output_section* output_section,
1207 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1208 {
1209 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1210 this->copy_relocs_.copy_reloc(symtab, layout,
1211 symtab->get_sized_symbol<size>(sym),
1212 object, shndx, output_section,
1213 r_type, reloc.get_r_offset(),
1214 reloc.get_r_addend(),
1215 this->rela_dyn_section(layout));
1216 }
1217
1218 // Look over all the input sections, deciding where to place stubs.
1219 void
1220 group_sections(Layout*, const Task*, bool);
1221
1222 // Sort output sections by address.
1223 struct Sort_sections
1224 {
1225 bool
1226 operator()(const Output_section* sec1, const Output_section* sec2)
1227 { return sec1->address() < sec2->address(); }
1228 };
1229
1230 class Branch_info
1231 {
1232 public:
1233 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1234 unsigned int data_shndx,
1235 Address r_offset,
1236 unsigned int r_type,
1237 unsigned int r_sym,
1238 Address addend)
1239 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1240 r_type_(r_type), r_sym_(r_sym), addend_(addend)
1241 { }
1242
1243 ~Branch_info()
1244 { }
1245
1246 // If this branch needs a plt call stub, or a long branch stub, make one.
1247 bool
1248 make_stub(Stub_table<size, big_endian>*,
1249 Stub_table<size, big_endian>*,
1250 Symbol_table*) const;
1251
1252 private:
1253 // The branch location..
1254 Powerpc_relobj<size, big_endian>* object_;
1255 unsigned int shndx_;
1256 Address offset_;
1257 // ..and the branch type and destination.
1258 unsigned int r_type_;
1259 unsigned int r_sym_;
1260 Address addend_;
1261 };
1262
1263 // Information about this specific target which we pass to the
1264 // general Target structure.
1265 static Target::Target_info powerpc_info;
1266
1267 // The types of GOT entries needed for this platform.
1268 // These values are exposed to the ABI in an incremental link.
1269 // Do not renumber existing values without changing the version
1270 // number of the .gnu_incremental_inputs section.
1271 enum Got_type
1272 {
1273 GOT_TYPE_STANDARD,
1274 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1275 GOT_TYPE_DTPREL, // entry for @got@dtprel
1276 GOT_TYPE_TPREL // entry for @got@tprel
1277 };
1278
1279 // The GOT section.
1280 Output_data_got_powerpc<size, big_endian>* got_;
1281 // The PLT section. This is a container for a table of addresses,
1282 // and their relocations. Each address in the PLT has a dynamic
1283 // relocation (R_*_JMP_SLOT) and each address will have a
1284 // corresponding entry in .glink for lazy resolution of the PLT.
1285 // ppc32 initialises the PLT to point at the .glink entry, while
1286 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1287 // linker adds a stub that loads the PLT entry into ctr then
1288 // branches to ctr. There may be more than one stub for each PLT
1289 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1290 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1291 Output_data_plt_powerpc<size, big_endian>* plt_;
1292 // The IPLT section. Like plt_, this is a container for a table of
1293 // addresses and their relocations, specifically for STT_GNU_IFUNC
1294 // functions that resolve locally (STT_GNU_IFUNC functions that
1295 // don't resolve locally go in PLT). Unlike plt_, these have no
1296 // entry in .glink for lazy resolution, and the relocation section
1297 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1298 // the relocation section may contain relocations against
1299 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1300 // relocation section will appear at the end of other dynamic
1301 // relocations, so that ld.so applies these relocations after other
1302 // dynamic relocations. In a static executable, the relocation
1303 // section is emitted and marked with __rela_iplt_start and
1304 // __rela_iplt_end symbols.
1305 Output_data_plt_powerpc<size, big_endian>* iplt_;
1306 // Section holding long branch destinations.
1307 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1308 // The .glink section.
1309 Output_data_glink<size, big_endian>* glink_;
1310 // The dynamic reloc section.
1311 Reloc_section* rela_dyn_;
1312 // Relocs saved to avoid a COPY reloc.
1313 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1314 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1315 unsigned int tlsld_got_offset_;
1316
1317 Stub_tables stub_tables_;
1318 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1319 Branch_lookup_table branch_lookup_table_;
1320
1321 typedef std::vector<Branch_info> Branches;
1322 Branches branch_info_;
1323
1324 bool plt_thread_safe_;
1325
1326 bool relax_failed_;
1327 int relax_fail_count_;
1328 int32_t stub_group_size_;
1329
1330 Output_data_save_res<size, big_endian> *savres_section_;
1331 };
1332
1333 template<>
1334 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1335 {
1336 32, // size
1337 true, // is_big_endian
1338 elfcpp::EM_PPC, // machine_code
1339 false, // has_make_symbol
1340 false, // has_resolve
1341 false, // has_code_fill
1342 true, // is_default_stack_executable
1343 false, // can_icf_inline_merge_sections
1344 '\0', // wrap_char
1345 "/usr/lib/ld.so.1", // dynamic_linker
1346 0x10000000, // default_text_segment_address
1347 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1348 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1349 false, // isolate_execinstr
1350 0, // rosegment_gap
1351 elfcpp::SHN_UNDEF, // small_common_shndx
1352 elfcpp::SHN_UNDEF, // large_common_shndx
1353 0, // small_common_section_flags
1354 0, // large_common_section_flags
1355 NULL, // attributes_section
1356 NULL, // attributes_vendor
1357 "_start", // entry_symbol_name
1358 32, // hash_entry_size
1359 };
1360
1361 template<>
1362 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1363 {
1364 32, // size
1365 false, // is_big_endian
1366 elfcpp::EM_PPC, // machine_code
1367 false, // has_make_symbol
1368 false, // has_resolve
1369 false, // has_code_fill
1370 true, // is_default_stack_executable
1371 false, // can_icf_inline_merge_sections
1372 '\0', // wrap_char
1373 "/usr/lib/ld.so.1", // dynamic_linker
1374 0x10000000, // default_text_segment_address
1375 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1376 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1377 false, // isolate_execinstr
1378 0, // rosegment_gap
1379 elfcpp::SHN_UNDEF, // small_common_shndx
1380 elfcpp::SHN_UNDEF, // large_common_shndx
1381 0, // small_common_section_flags
1382 0, // large_common_section_flags
1383 NULL, // attributes_section
1384 NULL, // attributes_vendor
1385 "_start", // entry_symbol_name
1386 32, // hash_entry_size
1387 };
1388
1389 template<>
1390 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1391 {
1392 64, // size
1393 true, // is_big_endian
1394 elfcpp::EM_PPC64, // machine_code
1395 false, // has_make_symbol
1396 false, // has_resolve
1397 false, // has_code_fill
1398 true, // is_default_stack_executable
1399 false, // can_icf_inline_merge_sections
1400 '\0', // wrap_char
1401 "/usr/lib/ld.so.1", // dynamic_linker
1402 0x10000000, // default_text_segment_address
1403 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1404 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1405 false, // isolate_execinstr
1406 0, // rosegment_gap
1407 elfcpp::SHN_UNDEF, // small_common_shndx
1408 elfcpp::SHN_UNDEF, // large_common_shndx
1409 0, // small_common_section_flags
1410 0, // large_common_section_flags
1411 NULL, // attributes_section
1412 NULL, // attributes_vendor
1413 "_start", // entry_symbol_name
1414 32, // hash_entry_size
1415 };
1416
1417 template<>
1418 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1419 {
1420 64, // size
1421 false, // is_big_endian
1422 elfcpp::EM_PPC64, // machine_code
1423 false, // has_make_symbol
1424 false, // has_resolve
1425 false, // has_code_fill
1426 true, // is_default_stack_executable
1427 false, // can_icf_inline_merge_sections
1428 '\0', // wrap_char
1429 "/usr/lib/ld.so.1", // dynamic_linker
1430 0x10000000, // default_text_segment_address
1431 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1432 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1433 false, // isolate_execinstr
1434 0, // rosegment_gap
1435 elfcpp::SHN_UNDEF, // small_common_shndx
1436 elfcpp::SHN_UNDEF, // large_common_shndx
1437 0, // small_common_section_flags
1438 0, // large_common_section_flags
1439 NULL, // attributes_section
1440 NULL, // attributes_vendor
1441 "_start", // entry_symbol_name
1442 32, // hash_entry_size
1443 };
1444
1445 inline bool
1446 is_branch_reloc(unsigned int r_type)
1447 {
1448 return (r_type == elfcpp::R_POWERPC_REL24
1449 || r_type == elfcpp::R_PPC_PLTREL24
1450 || r_type == elfcpp::R_PPC_LOCAL24PC
1451 || r_type == elfcpp::R_POWERPC_REL14
1452 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1453 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1454 || r_type == elfcpp::R_POWERPC_ADDR24
1455 || r_type == elfcpp::R_POWERPC_ADDR14
1456 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1457 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1458 }
1459
1460 // If INSN is an opcode that may be used with an @tls operand, return
1461 // the transformed insn for TLS optimisation, otherwise return 0. If
1462 // REG is non-zero only match an insn with RB or RA equal to REG.
1463 uint32_t
1464 at_tls_transform(uint32_t insn, unsigned int reg)
1465 {
1466 if ((insn & (0x3f << 26)) != 31 << 26)
1467 return 0;
1468
1469 unsigned int rtra;
1470 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1471 rtra = insn & ((1 << 26) - (1 << 16));
1472 else if (((insn >> 16) & 0x1f) == reg)
1473 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1474 else
1475 return 0;
1476
1477 if ((insn & (0x3ff << 1)) == 266 << 1)
1478 // add -> addi
1479 insn = 14 << 26;
1480 else if ((insn & (0x1f << 1)) == 23 << 1
1481 && ((insn & (0x1f << 6)) < 14 << 6
1482 || ((insn & (0x1f << 6)) >= 16 << 6
1483 && (insn & (0x1f << 6)) < 24 << 6)))
1484 // load and store indexed -> dform
1485 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1486 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1487 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1488 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1489 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1490 // lwax -> lwa
1491 insn = (58 << 26) | 2;
1492 else
1493 return 0;
1494 insn |= rtra;
1495 return insn;
1496 }
1497
1498
1499 template<int size, bool big_endian>
1500 class Powerpc_relocate_functions
1501 {
1502 public:
1503 enum Overflow_check
1504 {
1505 CHECK_NONE,
1506 CHECK_SIGNED,
1507 CHECK_UNSIGNED,
1508 CHECK_BITFIELD,
1509 CHECK_LOW_INSN,
1510 CHECK_HIGH_INSN
1511 };
1512
1513 enum Status
1514 {
1515 STATUS_OK,
1516 STATUS_OVERFLOW
1517 };
1518
1519 private:
1520 typedef Powerpc_relocate_functions<size, big_endian> This;
1521 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1522 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1523
1524 template<int valsize>
1525 static inline bool
1526 has_overflow_signed(Address value)
1527 {
1528 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1529 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1530 limit <<= ((valsize - 1) >> 1);
1531 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1532 return value + limit > (limit << 1) - 1;
1533 }
1534
1535 template<int valsize>
1536 static inline bool
1537 has_overflow_unsigned(Address value)
1538 {
1539 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1540 limit <<= ((valsize - 1) >> 1);
1541 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1542 return value > (limit << 1) - 1;
1543 }
1544
1545 template<int valsize>
1546 static inline bool
1547 has_overflow_bitfield(Address value)
1548 {
1549 return (has_overflow_unsigned<valsize>(value)
1550 && has_overflow_signed<valsize>(value));
1551 }
1552
1553 template<int valsize>
1554 static inline Status
1555 overflowed(Address value, Overflow_check overflow)
1556 {
1557 if (overflow == CHECK_SIGNED)
1558 {
1559 if (has_overflow_signed<valsize>(value))
1560 return STATUS_OVERFLOW;
1561 }
1562 else if (overflow == CHECK_UNSIGNED)
1563 {
1564 if (has_overflow_unsigned<valsize>(value))
1565 return STATUS_OVERFLOW;
1566 }
1567 else if (overflow == CHECK_BITFIELD)
1568 {
1569 if (has_overflow_bitfield<valsize>(value))
1570 return STATUS_OVERFLOW;
1571 }
1572 return STATUS_OK;
1573 }
1574
1575 // Do a simple RELA relocation
1576 template<int fieldsize, int valsize>
1577 static inline Status
1578 rela(unsigned char* view, Address value, Overflow_check overflow)
1579 {
1580 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1581 Valtype* wv = reinterpret_cast<Valtype*>(view);
1582 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1583 return overflowed<valsize>(value, overflow);
1584 }
1585
1586 template<int fieldsize, int valsize>
1587 static inline Status
1588 rela(unsigned char* view,
1589 unsigned int right_shift,
1590 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1591 Address value,
1592 Overflow_check overflow)
1593 {
1594 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1595 Valtype* wv = reinterpret_cast<Valtype*>(view);
1596 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1597 Valtype reloc = value >> right_shift;
1598 val &= ~dst_mask;
1599 reloc &= dst_mask;
1600 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1601 return overflowed<valsize>(value >> right_shift, overflow);
1602 }
1603
1604 // Do a simple RELA relocation, unaligned.
1605 template<int fieldsize, int valsize>
1606 static inline Status
1607 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1608 {
1609 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1610 return overflowed<valsize>(value, overflow);
1611 }
1612
1613 template<int fieldsize, int valsize>
1614 static inline Status
1615 rela_ua(unsigned char* view,
1616 unsigned int right_shift,
1617 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1618 Address value,
1619 Overflow_check overflow)
1620 {
1621 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1622 Valtype;
1623 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1624 Valtype reloc = value >> right_shift;
1625 val &= ~dst_mask;
1626 reloc &= dst_mask;
1627 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1628 return overflowed<valsize>(value >> right_shift, overflow);
1629 }
1630
1631 public:
1632 // R_PPC64_ADDR64: (Symbol + Addend)
1633 static inline void
1634 addr64(unsigned char* view, Address value)
1635 { This::template rela<64,64>(view, value, CHECK_NONE); }
1636
1637 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1638 static inline void
1639 addr64_u(unsigned char* view, Address value)
1640 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1641
1642 // R_POWERPC_ADDR32: (Symbol + Addend)
1643 static inline Status
1644 addr32(unsigned char* view, Address value, Overflow_check overflow)
1645 { return This::template rela<32,32>(view, value, overflow); }
1646
1647 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1648 static inline Status
1649 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1650 { return This::template rela_ua<32,32>(view, value, overflow); }
1651
1652 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1653 static inline Status
1654 addr24(unsigned char* view, Address value, Overflow_check overflow)
1655 {
1656 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1657 value, overflow);
1658 if (overflow != CHECK_NONE && (value & 3) != 0)
1659 stat = STATUS_OVERFLOW;
1660 return stat;
1661 }
1662
1663 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1664 static inline Status
1665 addr16(unsigned char* view, Address value, Overflow_check overflow)
1666 { return This::template rela<16,16>(view, value, overflow); }
1667
1668 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1669 static inline Status
1670 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1671 { return This::template rela_ua<16,16>(view, value, overflow); }
1672
1673 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1674 static inline Status
1675 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1676 {
1677 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1678 if ((value & 3) != 0)
1679 stat = STATUS_OVERFLOW;
1680 return stat;
1681 }
1682
1683 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1684 static inline Status
1685 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1686 {
1687 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1688 if ((value & 15) != 0)
1689 stat = STATUS_OVERFLOW;
1690 return stat;
1691 }
1692
1693 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1694 static inline void
1695 addr16_hi(unsigned char* view, Address value)
1696 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1697
1698 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1699 static inline void
1700 addr16_ha(unsigned char* view, Address value)
1701 { This::addr16_hi(view, value + 0x8000); }
1702
1703 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1704 static inline void
1705 addr16_hi2(unsigned char* view, Address value)
1706 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1707
1708 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1709 static inline void
1710 addr16_ha2(unsigned char* view, Address value)
1711 { This::addr16_hi2(view, value + 0x8000); }
1712
1713 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1714 static inline void
1715 addr16_hi3(unsigned char* view, Address value)
1716 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1717
1718 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1719 static inline void
1720 addr16_ha3(unsigned char* view, Address value)
1721 { This::addr16_hi3(view, value + 0x8000); }
1722
1723 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1724 static inline Status
1725 addr14(unsigned char* view, Address value, Overflow_check overflow)
1726 {
1727 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1728 if (overflow != CHECK_NONE && (value & 3) != 0)
1729 stat = STATUS_OVERFLOW;
1730 return stat;
1731 }
1732
1733 // R_POWERPC_REL16DX_HA
1734 static inline Status
1735 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1736 {
1737 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1738 Valtype* wv = reinterpret_cast<Valtype*>(view);
1739 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1740 value += 0x8000;
1741 value = static_cast<SignedAddress>(value) >> 16;
1742 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1743 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1744 return overflowed<16>(value, overflow);
1745 }
1746 };
1747
1748 // Set ABI version for input and output.
1749
1750 template<int size, bool big_endian>
1751 void
1752 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1753 {
1754 this->e_flags_ |= ver;
1755 if (this->abiversion() != 0)
1756 {
1757 Target_powerpc<size, big_endian>* target =
1758 static_cast<Target_powerpc<size, big_endian>*>(
1759 parameters->sized_target<size, big_endian>());
1760 if (target->abiversion() == 0)
1761 target->set_abiversion(this->abiversion());
1762 else if (target->abiversion() != this->abiversion())
1763 gold_error(_("%s: ABI version %d is not compatible "
1764 "with ABI version %d output"),
1765 this->name().c_str(),
1766 this->abiversion(), target->abiversion());
1767
1768 }
1769 }
1770
1771 // Stash away the index of .got2 or .opd in a relocatable object, if
1772 // such a section exists.
1773
1774 template<int size, bool big_endian>
1775 bool
1776 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1777 Read_symbols_data* sd)
1778 {
1779 const unsigned char* const pshdrs = sd->section_headers->data();
1780 const unsigned char* namesu = sd->section_names->data();
1781 const char* names = reinterpret_cast<const char*>(namesu);
1782 section_size_type names_size = sd->section_names_size;
1783 const unsigned char* s;
1784
1785 s = this->template find_shdr<size, big_endian>(pshdrs,
1786 size == 32 ? ".got2" : ".opd",
1787 names, names_size, NULL);
1788 if (s != NULL)
1789 {
1790 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1791 this->special_ = ndx;
1792 if (size == 64)
1793 {
1794 if (this->abiversion() == 0)
1795 this->set_abiversion(1);
1796 else if (this->abiversion() > 1)
1797 gold_error(_("%s: .opd invalid in abiv%d"),
1798 this->name().c_str(), this->abiversion());
1799 }
1800 }
1801 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
1802 }
1803
1804 // Examine .rela.opd to build info about function entry points.
1805
1806 template<int size, bool big_endian>
1807 void
1808 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
1809 size_t reloc_count,
1810 const unsigned char* prelocs,
1811 const unsigned char* plocal_syms)
1812 {
1813 if (size == 64)
1814 {
1815 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
1816 Reltype;
1817 const int reloc_size
1818 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
1819 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1820 Address expected_off = 0;
1821 bool regular = true;
1822 unsigned int opd_ent_size = 0;
1823
1824 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
1825 {
1826 Reltype reloc(prelocs);
1827 typename elfcpp::Elf_types<size>::Elf_WXword r_info
1828 = reloc.get_r_info();
1829 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
1830 if (r_type == elfcpp::R_PPC64_ADDR64)
1831 {
1832 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
1833 typename elfcpp::Elf_types<size>::Elf_Addr value;
1834 bool is_ordinary;
1835 unsigned int shndx;
1836 if (r_sym < this->local_symbol_count())
1837 {
1838 typename elfcpp::Sym<size, big_endian>
1839 lsym(plocal_syms + r_sym * sym_size);
1840 shndx = lsym.get_st_shndx();
1841 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
1842 value = lsym.get_st_value();
1843 }
1844 else
1845 shndx = this->symbol_section_and_value(r_sym, &value,
1846 &is_ordinary);
1847 this->set_opd_ent(reloc.get_r_offset(), shndx,
1848 value + reloc.get_r_addend());
1849 if (i == 2)
1850 {
1851 expected_off = reloc.get_r_offset();
1852 opd_ent_size = expected_off;
1853 }
1854 else if (expected_off != reloc.get_r_offset())
1855 regular = false;
1856 expected_off += opd_ent_size;
1857 }
1858 else if (r_type == elfcpp::R_PPC64_TOC)
1859 {
1860 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
1861 regular = false;
1862 }
1863 else
1864 {
1865 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
1866 this->name().c_str(), r_type);
1867 regular = false;
1868 }
1869 }
1870 if (reloc_count <= 2)
1871 opd_ent_size = this->section_size(this->opd_shndx());
1872 if (opd_ent_size != 24 && opd_ent_size != 16)
1873 regular = false;
1874 if (!regular)
1875 {
1876 gold_warning(_("%s: .opd is not a regular array of opd entries"),
1877 this->name().c_str());
1878 opd_ent_size = 0;
1879 }
1880 }
1881 }
1882
1883 template<int size, bool big_endian>
1884 void
1885 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
1886 {
1887 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
1888 if (size == 64)
1889 {
1890 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
1891 p != rd->relocs.end();
1892 ++p)
1893 {
1894 if (p->data_shndx == this->opd_shndx())
1895 {
1896 uint64_t opd_size = this->section_size(this->opd_shndx());
1897 gold_assert(opd_size == static_cast<size_t>(opd_size));
1898 if (opd_size != 0)
1899 {
1900 this->init_opd(opd_size);
1901 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
1902 rd->local_symbols->data());
1903 }
1904 break;
1905 }
1906 }
1907 }
1908 }
1909
1910 // Read the symbols then set up st_other vector.
1911
1912 template<int size, bool big_endian>
1913 void
1914 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1915 {
1916 this->base_read_symbols(sd);
1917 if (size == 64)
1918 {
1919 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1920 const unsigned char* const pshdrs = sd->section_headers->data();
1921 const unsigned int loccount = this->do_local_symbol_count();
1922 if (loccount != 0)
1923 {
1924 this->st_other_.resize(loccount);
1925 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1926 off_t locsize = loccount * sym_size;
1927 const unsigned int symtab_shndx = this->symtab_shndx();
1928 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
1929 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
1930 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
1931 locsize, true, false);
1932 psyms += sym_size;
1933 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1934 {
1935 elfcpp::Sym<size, big_endian> sym(psyms);
1936 unsigned char st_other = sym.get_st_other();
1937 this->st_other_[i] = st_other;
1938 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
1939 {
1940 if (this->abiversion() == 0)
1941 this->set_abiversion(2);
1942 else if (this->abiversion() < 2)
1943 gold_error(_("%s: local symbol %d has invalid st_other"
1944 " for ABI version 1"),
1945 this->name().c_str(), i);
1946 }
1947 }
1948 }
1949 }
1950 }
1951
1952 template<int size, bool big_endian>
1953 void
1954 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
1955 {
1956 this->e_flags_ |= ver;
1957 if (this->abiversion() != 0)
1958 {
1959 Target_powerpc<size, big_endian>* target =
1960 static_cast<Target_powerpc<size, big_endian>*>(
1961 parameters->sized_target<size, big_endian>());
1962 if (target->abiversion() == 0)
1963 target->set_abiversion(this->abiversion());
1964 else if (target->abiversion() != this->abiversion())
1965 gold_error(_("%s: ABI version %d is not compatible "
1966 "with ABI version %d output"),
1967 this->name().c_str(),
1968 this->abiversion(), target->abiversion());
1969
1970 }
1971 }
1972
1973 // Call Sized_dynobj::base_read_symbols to read the symbols then
1974 // read .opd from a dynamic object, filling in opd_ent_ vector,
1975
1976 template<int size, bool big_endian>
1977 void
1978 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
1979 {
1980 this->base_read_symbols(sd);
1981 if (size == 64)
1982 {
1983 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
1984 const unsigned char* const pshdrs = sd->section_headers->data();
1985 const unsigned char* namesu = sd->section_names->data();
1986 const char* names = reinterpret_cast<const char*>(namesu);
1987 const unsigned char* s = NULL;
1988 const unsigned char* opd;
1989 section_size_type opd_size;
1990
1991 // Find and read .opd section.
1992 while (1)
1993 {
1994 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
1995 sd->section_names_size,
1996 s);
1997 if (s == NULL)
1998 return;
1999
2000 typename elfcpp::Shdr<size, big_endian> shdr(s);
2001 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2002 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2003 {
2004 if (this->abiversion() == 0)
2005 this->set_abiversion(1);
2006 else if (this->abiversion() > 1)
2007 gold_error(_("%s: .opd invalid in abiv%d"),
2008 this->name().c_str(), this->abiversion());
2009
2010 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2011 this->opd_address_ = shdr.get_sh_addr();
2012 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2013 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2014 true, false);
2015 break;
2016 }
2017 }
2018
2019 // Build set of executable sections.
2020 // Using a set is probably overkill. There is likely to be only
2021 // a few executable sections, typically .init, .text and .fini,
2022 // and they are generally grouped together.
2023 typedef std::set<Sec_info> Exec_sections;
2024 Exec_sections exec_sections;
2025 s = pshdrs;
2026 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2027 {
2028 typename elfcpp::Shdr<size, big_endian> shdr(s);
2029 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2030 && ((shdr.get_sh_flags()
2031 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2032 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2033 && shdr.get_sh_size() != 0)
2034 {
2035 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2036 shdr.get_sh_size(), i));
2037 }
2038 }
2039 if (exec_sections.empty())
2040 return;
2041
2042 // Look over the OPD entries. This is complicated by the fact
2043 // that some binaries will use two-word entries while others
2044 // will use the standard three-word entries. In most cases
2045 // the third word (the environment pointer for languages like
2046 // Pascal) is unused and will be zero. If the third word is
2047 // used it should not be pointing into executable sections,
2048 // I think.
2049 this->init_opd(opd_size);
2050 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2051 {
2052 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2053 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2054 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2055 if (val == 0)
2056 // Chances are that this is the third word of an OPD entry.
2057 continue;
2058 typename Exec_sections::const_iterator e
2059 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2060 if (e != exec_sections.begin())
2061 {
2062 --e;
2063 if (e->start <= val && val < e->start + e->len)
2064 {
2065 // We have an address in an executable section.
2066 // VAL ought to be the function entry, set it up.
2067 this->set_opd_ent(p - opd, e->shndx, val);
2068 // Skip second word of OPD entry, the TOC pointer.
2069 p += 8;
2070 }
2071 }
2072 // If we didn't match any executable sections, we likely
2073 // have a non-zero third word in the OPD entry.
2074 }
2075 }
2076 }
2077
2078 // Set up some symbols.
2079
2080 template<int size, bool big_endian>
2081 void
2082 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2083 Symbol_table* symtab,
2084 Layout* layout)
2085 {
2086 if (size == 32)
2087 {
2088 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2089 // undefined when scanning relocs (and thus requires
2090 // non-relative dynamic relocs). The proper value will be
2091 // updated later.
2092 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2093 if (gotsym != NULL && gotsym->is_undefined())
2094 {
2095 Target_powerpc<size, big_endian>* target =
2096 static_cast<Target_powerpc<size, big_endian>*>(
2097 parameters->sized_target<size, big_endian>());
2098 Output_data_got_powerpc<size, big_endian>* got
2099 = target->got_section(symtab, layout);
2100 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2101 Symbol_table::PREDEFINED,
2102 got, 0, 0,
2103 elfcpp::STT_OBJECT,
2104 elfcpp::STB_LOCAL,
2105 elfcpp::STV_HIDDEN, 0,
2106 false, false);
2107 }
2108
2109 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2110 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2111 if (sdasym != NULL && sdasym->is_undefined())
2112 {
2113 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2114 Output_section* os
2115 = layout->add_output_section_data(".sdata", 0,
2116 elfcpp::SHF_ALLOC
2117 | elfcpp::SHF_WRITE,
2118 sdata, ORDER_SMALL_DATA, false);
2119 symtab->define_in_output_data("_SDA_BASE_", NULL,
2120 Symbol_table::PREDEFINED,
2121 os, 32768, 0, elfcpp::STT_OBJECT,
2122 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2123 0, false, false);
2124 }
2125 }
2126 else
2127 {
2128 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2129 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2130 if (gotsym != NULL && gotsym->is_undefined())
2131 {
2132 Target_powerpc<size, big_endian>* target =
2133 static_cast<Target_powerpc<size, big_endian>*>(
2134 parameters->sized_target<size, big_endian>());
2135 Output_data_got_powerpc<size, big_endian>* got
2136 = target->got_section(symtab, layout);
2137 symtab->define_in_output_data(".TOC.", NULL,
2138 Symbol_table::PREDEFINED,
2139 got, 0x8000, 0,
2140 elfcpp::STT_OBJECT,
2141 elfcpp::STB_LOCAL,
2142 elfcpp::STV_HIDDEN, 0,
2143 false, false);
2144 }
2145 }
2146 }
2147
2148 // Set up PowerPC target specific relobj.
2149
2150 template<int size, bool big_endian>
2151 Object*
2152 Target_powerpc<size, big_endian>::do_make_elf_object(
2153 const std::string& name,
2154 Input_file* input_file,
2155 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2156 {
2157 int et = ehdr.get_e_type();
2158 // ET_EXEC files are valid input for --just-symbols/-R,
2159 // and we treat them as relocatable objects.
2160 if (et == elfcpp::ET_REL
2161 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2162 {
2163 Powerpc_relobj<size, big_endian>* obj =
2164 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2165 obj->setup();
2166 return obj;
2167 }
2168 else if (et == elfcpp::ET_DYN)
2169 {
2170 Powerpc_dynobj<size, big_endian>* obj =
2171 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2172 obj->setup();
2173 return obj;
2174 }
2175 else
2176 {
2177 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2178 return NULL;
2179 }
2180 }
2181
2182 template<int size, bool big_endian>
2183 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2184 {
2185 public:
2186 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2187 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2188
2189 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2190 : Output_data_got<size, big_endian>(),
2191 symtab_(symtab), layout_(layout),
2192 header_ent_cnt_(size == 32 ? 3 : 1),
2193 header_index_(size == 32 ? 0x2000 : 0)
2194 {
2195 if (size == 64)
2196 this->set_addralign(256);
2197 }
2198
2199 // Override all the Output_data_got methods we use so as to first call
2200 // reserve_ent().
2201 bool
2202 add_global(Symbol* gsym, unsigned int got_type)
2203 {
2204 this->reserve_ent();
2205 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2206 }
2207
2208 bool
2209 add_global_plt(Symbol* gsym, unsigned int got_type)
2210 {
2211 this->reserve_ent();
2212 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2213 }
2214
2215 bool
2216 add_global_tls(Symbol* gsym, unsigned int got_type)
2217 { return this->add_global_plt(gsym, got_type); }
2218
2219 void
2220 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2221 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2222 {
2223 this->reserve_ent();
2224 Output_data_got<size, big_endian>::
2225 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2226 }
2227
2228 void
2229 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2230 Output_data_reloc_generic* rel_dyn,
2231 unsigned int r_type_1, unsigned int r_type_2)
2232 {
2233 this->reserve_ent(2);
2234 Output_data_got<size, big_endian>::
2235 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2236 }
2237
2238 bool
2239 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2240 {
2241 this->reserve_ent();
2242 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2243 got_type);
2244 }
2245
2246 bool
2247 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2248 {
2249 this->reserve_ent();
2250 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2251 got_type);
2252 }
2253
2254 bool
2255 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2256 { return this->add_local_plt(object, sym_index, got_type); }
2257
2258 void
2259 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2260 unsigned int got_type,
2261 Output_data_reloc_generic* rel_dyn,
2262 unsigned int r_type)
2263 {
2264 this->reserve_ent(2);
2265 Output_data_got<size, big_endian>::
2266 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2267 }
2268
2269 unsigned int
2270 add_constant(Valtype constant)
2271 {
2272 this->reserve_ent();
2273 return Output_data_got<size, big_endian>::add_constant(constant);
2274 }
2275
2276 unsigned int
2277 add_constant_pair(Valtype c1, Valtype c2)
2278 {
2279 this->reserve_ent(2);
2280 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2281 }
2282
2283 // Offset of _GLOBAL_OFFSET_TABLE_.
2284 unsigned int
2285 g_o_t() const
2286 {
2287 return this->got_offset(this->header_index_);
2288 }
2289
2290 // Offset of base used to access the GOT/TOC.
2291 // The got/toc pointer reg will be set to this value.
2292 Valtype
2293 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2294 {
2295 if (size == 32)
2296 return this->g_o_t();
2297 else
2298 return (this->output_section()->address()
2299 + object->toc_base_offset()
2300 - this->address());
2301 }
2302
2303 // Ensure our GOT has a header.
2304 void
2305 set_final_data_size()
2306 {
2307 if (this->header_ent_cnt_ != 0)
2308 this->make_header();
2309 Output_data_got<size, big_endian>::set_final_data_size();
2310 }
2311
2312 // First word of GOT header needs some values that are not
2313 // handled by Output_data_got so poke them in here.
2314 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2315 void
2316 do_write(Output_file* of)
2317 {
2318 Valtype val = 0;
2319 if (size == 32 && this->layout_->dynamic_data() != NULL)
2320 val = this->layout_->dynamic_section()->address();
2321 if (size == 64)
2322 val = this->output_section()->address() + 0x8000;
2323 this->replace_constant(this->header_index_, val);
2324 Output_data_got<size, big_endian>::do_write(of);
2325 }
2326
2327 private:
2328 void
2329 reserve_ent(unsigned int cnt = 1)
2330 {
2331 if (this->header_ent_cnt_ == 0)
2332 return;
2333 if (this->num_entries() + cnt > this->header_index_)
2334 this->make_header();
2335 }
2336
2337 void
2338 make_header()
2339 {
2340 this->header_ent_cnt_ = 0;
2341 this->header_index_ = this->num_entries();
2342 if (size == 32)
2343 {
2344 Output_data_got<size, big_endian>::add_constant(0);
2345 Output_data_got<size, big_endian>::add_constant(0);
2346 Output_data_got<size, big_endian>::add_constant(0);
2347
2348 // Define _GLOBAL_OFFSET_TABLE_ at the header
2349 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2350 if (gotsym != NULL)
2351 {
2352 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2353 sym->set_value(this->g_o_t());
2354 }
2355 else
2356 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2357 Symbol_table::PREDEFINED,
2358 this, this->g_o_t(), 0,
2359 elfcpp::STT_OBJECT,
2360 elfcpp::STB_LOCAL,
2361 elfcpp::STV_HIDDEN, 0,
2362 false, false);
2363 }
2364 else
2365 Output_data_got<size, big_endian>::add_constant(0);
2366 }
2367
2368 // Stashed pointers.
2369 Symbol_table* symtab_;
2370 Layout* layout_;
2371
2372 // GOT header size.
2373 unsigned int header_ent_cnt_;
2374 // GOT header index.
2375 unsigned int header_index_;
2376 };
2377
2378 // Get the GOT section, creating it if necessary.
2379
2380 template<int size, bool big_endian>
2381 Output_data_got_powerpc<size, big_endian>*
2382 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2383 Layout* layout)
2384 {
2385 if (this->got_ == NULL)
2386 {
2387 gold_assert(symtab != NULL && layout != NULL);
2388
2389 this->got_
2390 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2391
2392 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2393 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2394 this->got_, ORDER_DATA, false);
2395 }
2396
2397 return this->got_;
2398 }
2399
2400 // Get the dynamic reloc section, creating it if necessary.
2401
2402 template<int size, bool big_endian>
2403 typename Target_powerpc<size, big_endian>::Reloc_section*
2404 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2405 {
2406 if (this->rela_dyn_ == NULL)
2407 {
2408 gold_assert(layout != NULL);
2409 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2410 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2411 elfcpp::SHF_ALLOC, this->rela_dyn_,
2412 ORDER_DYNAMIC_RELOCS, false);
2413 }
2414 return this->rela_dyn_;
2415 }
2416
2417 // Similarly, but for ifunc symbols get the one for ifunc.
2418
2419 template<int size, bool big_endian>
2420 typename Target_powerpc<size, big_endian>::Reloc_section*
2421 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2422 Layout* layout,
2423 bool for_ifunc)
2424 {
2425 if (!for_ifunc)
2426 return this->rela_dyn_section(layout);
2427
2428 if (this->iplt_ == NULL)
2429 this->make_iplt_section(symtab, layout);
2430 return this->iplt_->rel_plt();
2431 }
2432
2433 class Stub_control
2434 {
2435 public:
2436 // Determine the stub group size. The group size is the absolute
2437 // value of the parameter --stub-group-size. If --stub-group-size
2438 // is passed a negative value, we restrict stubs to be always before
2439 // the stubbed branches.
2440 Stub_control(int32_t size, bool no_size_errors)
2441 : state_(NO_GROUP), stub_group_size_(abs(size)),
2442 stubs_always_before_branch_(size < 0),
2443 suppress_size_errors_(no_size_errors), group_size_(0),
2444 group_end_addr_(0), owner_(NULL), output_section_(NULL)
2445 {
2446 }
2447
2448 // Return true iff input section can be handled by current stub
2449 // group.
2450 bool
2451 can_add_to_stub_group(Output_section* o,
2452 const Output_section::Input_section* i,
2453 bool has14);
2454
2455 const Output_section::Input_section*
2456 owner()
2457 { return owner_; }
2458
2459 Output_section*
2460 output_section()
2461 { return output_section_; }
2462
2463 void
2464 set_output_and_owner(Output_section* o,
2465 const Output_section::Input_section* i)
2466 {
2467 this->output_section_ = o;
2468 this->owner_ = i;
2469 }
2470
2471 private:
2472 typedef enum
2473 {
2474 NO_GROUP,
2475 FINDING_STUB_SECTION,
2476 HAS_STUB_SECTION
2477 } State;
2478
2479 State state_;
2480 uint32_t stub_group_size_;
2481 bool stubs_always_before_branch_;
2482 bool suppress_size_errors_;
2483 // Current max size of group. Starts at stub_group_size_ but is
2484 // reduced to stub_group_size_/1024 on seeing a section with
2485 // external conditional branches.
2486 uint32_t group_size_;
2487 uint64_t group_end_addr_;
2488 // owner_ and output_section_ specify the section to which stubs are
2489 // attached. The stubs are placed at the end of this section.
2490 const Output_section::Input_section* owner_;
2491 Output_section* output_section_;
2492 };
2493
2494 // Return true iff input section can be handled by current stub
2495 // group. Sections are presented to this function in reverse order,
2496 // so the first section is the tail of the group.
2497
2498 bool
2499 Stub_control::can_add_to_stub_group(Output_section* o,
2500 const Output_section::Input_section* i,
2501 bool has14)
2502 {
2503 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2504 uint64_t this_size;
2505 uint64_t start_addr = o->address();
2506
2507 if (whole_sec)
2508 // .init and .fini sections are pasted together to form a single
2509 // function. We can't be adding stubs in the middle of the function.
2510 this_size = o->data_size();
2511 else
2512 {
2513 start_addr += i->relobj()->output_section_offset(i->shndx());
2514 this_size = i->data_size();
2515 }
2516
2517 uint32_t group_size = this->stub_group_size_;
2518 if (has14)
2519 this->group_size_ = group_size = group_size >> 10;
2520
2521 if (this_size > group_size && !this->suppress_size_errors_)
2522 gold_warning(_("%s:%s exceeds group size"),
2523 i->relobj()->name().c_str(),
2524 i->relobj()->section_name(i->shndx()).c_str());
2525
2526 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2527 has14 ? " 14bit" : "",
2528 i->relobj()->name().c_str(),
2529 i->relobj()->section_name(i->shndx()).c_str(),
2530 (long long) this_size,
2531 (long long) this->group_end_addr_ - start_addr);
2532
2533 uint64_t end_addr = start_addr + this_size;
2534 if (this->state_ == HAS_STUB_SECTION)
2535 {
2536 // Can we add this section, which is before the stubs, to the
2537 // group?
2538 if (this->group_end_addr_ - start_addr <= this->group_size_)
2539 return true;
2540 }
2541 else
2542 {
2543 // Stubs are added at the end of "owner_".
2544 // The current section can always be the stub owner, except when
2545 // whole_sec is true and the current section isn't the last of
2546 // the pasted sections. (This restriction for the whole_sec
2547 // case is just to simplify the corner case mentioned in
2548 // group_sections.)
2549 // Note that "owner_" itself is not necessarily part of the
2550 // group of sections served by these stubs!
2551 if (!whole_sec || this->output_section_ != o)
2552 {
2553 this->owner_ = i;
2554 this->output_section_ = o;
2555 }
2556
2557 if (this->state_ == FINDING_STUB_SECTION)
2558 {
2559 if (this->group_end_addr_ - start_addr <= this->group_size_)
2560 return true;
2561 // The group after the stubs has reached maximum size.
2562 // Now see about adding sections before the stubs to the
2563 // group. If the current section has a 14-bit branch and
2564 // the group after the stubs exceeds group_size_ (because
2565 // they didn't have 14-bit branches), don't add sections
2566 // before the stubs: The size of stubs for such a large
2567 // group may exceed the reach of a 14-bit branch.
2568 if (!this->stubs_always_before_branch_
2569 && this_size <= this->group_size_
2570 && this->group_end_addr_ - end_addr <= this->group_size_)
2571 {
2572 gold_debug(DEBUG_TARGET, "adding before stubs");
2573 this->state_ = HAS_STUB_SECTION;
2574 this->group_end_addr_ = end_addr;
2575 return true;
2576 }
2577 }
2578 else if (this->state_ == NO_GROUP)
2579 {
2580 // Only here on very first use of Stub_control
2581 this->state_ = FINDING_STUB_SECTION;
2582 this->group_size_ = group_size;
2583 this->group_end_addr_ = end_addr;
2584 return true;
2585 }
2586 else
2587 gold_unreachable();
2588 }
2589
2590 gold_debug(DEBUG_TARGET, "nope, didn't fit\n");
2591
2592 // The section fails to fit in the current group. Set up a few
2593 // things for the next group. owner_ and output_section_ will be
2594 // set later after we've retrieved those values for the current
2595 // group.
2596 this->state_ = FINDING_STUB_SECTION;
2597 this->group_size_ = group_size;
2598 this->group_end_addr_ = end_addr;
2599 return false;
2600 }
2601
2602 // Look over all the input sections, deciding where to place stubs.
2603
2604 template<int size, bool big_endian>
2605 void
2606 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2607 const Task*,
2608 bool no_size_errors)
2609 {
2610 Stub_control stub_control(this->stub_group_size_, no_size_errors);
2611
2612 // Group input sections and insert stub table
2613 Stub_table_owner* table_owner = NULL;
2614 std::vector<Stub_table_owner*> tables;
2615 Layout::Section_list section_list;
2616 layout->get_executable_sections(&section_list);
2617 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2618 for (Layout::Section_list::reverse_iterator o = section_list.rbegin();
2619 o != section_list.rend();
2620 ++o)
2621 {
2622 typedef Output_section::Input_section_list Input_section_list;
2623 for (Input_section_list::const_reverse_iterator i
2624 = (*o)->input_sections().rbegin();
2625 i != (*o)->input_sections().rend();
2626 ++i)
2627 {
2628 if (i->is_input_section()
2629 || i->is_relaxed_input_section())
2630 {
2631 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2632 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2633 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2634 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2635 {
2636 table_owner->output_section = stub_control.output_section();
2637 table_owner->owner = stub_control.owner();
2638 stub_control.set_output_and_owner(*o, &*i);
2639 table_owner = NULL;
2640 }
2641 if (table_owner == NULL)
2642 {
2643 table_owner = new Stub_table_owner;
2644 tables.push_back(table_owner);
2645 }
2646 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2647 }
2648 }
2649 }
2650 if (table_owner != NULL)
2651 {
2652 const Output_section::Input_section* i = stub_control.owner();
2653
2654 if (tables.size() >= 2 && tables[tables.size() - 2]->owner == i)
2655 {
2656 // Corner case. A new stub group was made for the first
2657 // section (last one looked at here) for some reason, but
2658 // the first section is already being used as the owner for
2659 // a stub table for following sections. Force it into that
2660 // stub group.
2661 tables.pop_back();
2662 delete table_owner;
2663 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2664 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2665 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2666 }
2667 else
2668 {
2669 table_owner->output_section = stub_control.output_section();
2670 table_owner->owner = i;
2671 }
2672 }
2673 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2674 t != tables.end();
2675 ++t)
2676 {
2677 Stub_table<size, big_endian>* stub_table;
2678
2679 if ((*t)->owner->is_input_section())
2680 stub_table = new Stub_table<size, big_endian>(this,
2681 (*t)->output_section,
2682 (*t)->owner);
2683 else if ((*t)->owner->is_relaxed_input_section())
2684 stub_table = static_cast<Stub_table<size, big_endian>*>(
2685 (*t)->owner->relaxed_input_section());
2686 else
2687 gold_unreachable();
2688 this->stub_tables_.push_back(stub_table);
2689 delete *t;
2690 }
2691 }
2692
2693 static unsigned long
2694 max_branch_delta (unsigned int r_type)
2695 {
2696 if (r_type == elfcpp::R_POWERPC_REL14
2697 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2698 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2699 return 1L << 15;
2700 if (r_type == elfcpp::R_POWERPC_REL24
2701 || r_type == elfcpp::R_PPC_PLTREL24
2702 || r_type == elfcpp::R_PPC_LOCAL24PC)
2703 return 1L << 25;
2704 return 0;
2705 }
2706
2707 // If this branch needs a plt call stub, or a long branch stub, make one.
2708
2709 template<int size, bool big_endian>
2710 bool
2711 Target_powerpc<size, big_endian>::Branch_info::make_stub(
2712 Stub_table<size, big_endian>* stub_table,
2713 Stub_table<size, big_endian>* ifunc_stub_table,
2714 Symbol_table* symtab) const
2715 {
2716 Symbol* sym = this->object_->global_symbol(this->r_sym_);
2717 if (sym != NULL && sym->is_forwarder())
2718 sym = symtab->resolve_forwards(sym);
2719 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
2720 Target_powerpc<size, big_endian>* target =
2721 static_cast<Target_powerpc<size, big_endian>*>(
2722 parameters->sized_target<size, big_endian>());
2723 if (gsym != NULL
2724 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
2725 : this->object_->local_has_plt_offset(this->r_sym_))
2726 {
2727 if (size == 64
2728 && gsym != NULL
2729 && target->abiversion() >= 2
2730 && !parameters->options().output_is_position_independent()
2731 && !is_branch_reloc(this->r_type_))
2732 target->glink_section()->add_global_entry(gsym);
2733 else
2734 {
2735 if (stub_table == NULL)
2736 stub_table = this->object_->stub_table(this->shndx_);
2737 if (stub_table == NULL)
2738 {
2739 // This is a ref from a data section to an ifunc symbol.
2740 stub_table = ifunc_stub_table;
2741 }
2742 gold_assert(stub_table != NULL);
2743 Address from = this->object_->get_output_section_offset(this->shndx_);
2744 if (from != invalid_address)
2745 from += (this->object_->output_section(this->shndx_)->address()
2746 + this->offset_);
2747 if (gsym != NULL)
2748 return stub_table->add_plt_call_entry(from,
2749 this->object_, gsym,
2750 this->r_type_, this->addend_);
2751 else
2752 return stub_table->add_plt_call_entry(from,
2753 this->object_, this->r_sym_,
2754 this->r_type_, this->addend_);
2755 }
2756 }
2757 else
2758 {
2759 Address max_branch_offset = max_branch_delta(this->r_type_);
2760 if (max_branch_offset == 0)
2761 return true;
2762 Address from = this->object_->get_output_section_offset(this->shndx_);
2763 gold_assert(from != invalid_address);
2764 from += (this->object_->output_section(this->shndx_)->address()
2765 + this->offset_);
2766 Address to;
2767 if (gsym != NULL)
2768 {
2769 switch (gsym->source())
2770 {
2771 case Symbol::FROM_OBJECT:
2772 {
2773 Object* symobj = gsym->object();
2774 if (symobj->is_dynamic()
2775 || symobj->pluginobj() != NULL)
2776 return true;
2777 bool is_ordinary;
2778 unsigned int shndx = gsym->shndx(&is_ordinary);
2779 if (shndx == elfcpp::SHN_UNDEF)
2780 return true;
2781 }
2782 break;
2783
2784 case Symbol::IS_UNDEFINED:
2785 return true;
2786
2787 default:
2788 break;
2789 }
2790 Symbol_table::Compute_final_value_status status;
2791 to = symtab->compute_final_value<size>(gsym, &status);
2792 if (status != Symbol_table::CFVS_OK)
2793 return true;
2794 if (size == 64)
2795 to += this->object_->ppc64_local_entry_offset(gsym);
2796 }
2797 else
2798 {
2799 const Symbol_value<size>* psymval
2800 = this->object_->local_symbol(this->r_sym_);
2801 Symbol_value<size> symval;
2802 typedef Sized_relobj_file<size, big_endian> ObjType;
2803 typename ObjType::Compute_final_local_value_status status
2804 = this->object_->compute_final_local_value(this->r_sym_, psymval,
2805 &symval, symtab);
2806 if (status != ObjType::CFLV_OK
2807 || !symval.has_output_value())
2808 return true;
2809 to = symval.value(this->object_, 0);
2810 if (size == 64)
2811 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
2812 }
2813 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
2814 to += this->addend_;
2815 if (stub_table == NULL)
2816 stub_table = this->object_->stub_table(this->shndx_);
2817 if (size == 64 && target->abiversion() < 2)
2818 {
2819 unsigned int dest_shndx;
2820 if (!target->symval_for_branch(symtab, gsym, this->object_,
2821 &to, &dest_shndx))
2822 return true;
2823 }
2824 Address delta = to - from;
2825 if (delta + max_branch_offset >= 2 * max_branch_offset)
2826 {
2827 if (stub_table == NULL)
2828 {
2829 gold_warning(_("%s:%s: branch in non-executable section,"
2830 " no long branch stub for you"),
2831 this->object_->name().c_str(),
2832 this->object_->section_name(this->shndx_).c_str());
2833 return true;
2834 }
2835 bool save_res = (size == 64
2836 && gsym != NULL
2837 && gsym->source() == Symbol::IN_OUTPUT_DATA
2838 && gsym->output_data() == target->savres_section());
2839 return stub_table->add_long_branch_entry(this->object_,
2840 this->r_type_,
2841 from, to, save_res);
2842 }
2843 }
2844 return true;
2845 }
2846
2847 // Relaxation hook. This is where we do stub generation.
2848
2849 template<int size, bool big_endian>
2850 bool
2851 Target_powerpc<size, big_endian>::do_relax(int pass,
2852 const Input_objects*,
2853 Symbol_table* symtab,
2854 Layout* layout,
2855 const Task* task)
2856 {
2857 unsigned int prev_brlt_size = 0;
2858 if (pass == 1)
2859 {
2860 bool thread_safe
2861 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
2862 if (size == 64
2863 && this->abiversion() < 2
2864 && !thread_safe
2865 && !parameters->options().user_set_plt_thread_safe())
2866 {
2867 static const char* const thread_starter[] =
2868 {
2869 "pthread_create",
2870 /* libstdc++ */
2871 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
2872 /* librt */
2873 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
2874 "mq_notify", "create_timer",
2875 /* libanl */
2876 "getaddrinfo_a",
2877 /* libgomp */
2878 "GOMP_parallel",
2879 "GOMP_parallel_start",
2880 "GOMP_parallel_loop_static",
2881 "GOMP_parallel_loop_static_start",
2882 "GOMP_parallel_loop_dynamic",
2883 "GOMP_parallel_loop_dynamic_start",
2884 "GOMP_parallel_loop_guided",
2885 "GOMP_parallel_loop_guided_start",
2886 "GOMP_parallel_loop_runtime",
2887 "GOMP_parallel_loop_runtime_start",
2888 "GOMP_parallel_sections",
2889 "GOMP_parallel_sections_start",
2890 /* libgo */
2891 "__go_go",
2892 };
2893
2894 if (parameters->options().shared())
2895 thread_safe = true;
2896 else
2897 {
2898 for (unsigned int i = 0;
2899 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
2900 i++)
2901 {
2902 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
2903 thread_safe = (sym != NULL
2904 && sym->in_reg()
2905 && sym->in_real_elf());
2906 if (thread_safe)
2907 break;
2908 }
2909 }
2910 }
2911 this->plt_thread_safe_ = thread_safe;
2912 }
2913
2914 if (pass == 1)
2915 {
2916 this->stub_group_size_ = parameters->options().stub_group_size();
2917 bool no_size_errors = true;
2918 if (this->stub_group_size_ == 1)
2919 this->stub_group_size_ = 0x1c00000;
2920 else if (this->stub_group_size_ == -1)
2921 this->stub_group_size_ = -0x1e00000;
2922 else
2923 no_size_errors = false;
2924 this->group_sections(layout, task, no_size_errors);
2925 }
2926 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
2927 {
2928 this->branch_lookup_table_.clear();
2929 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2930 p != this->stub_tables_.end();
2931 ++p)
2932 {
2933 (*p)->clear_stubs(true);
2934 }
2935 this->stub_tables_.clear();
2936 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
2937 gold_info(_("%s: stub group size is too large; retrying with %#x"),
2938 program_name, this->stub_group_size_);
2939 this->group_sections(layout, task, true);
2940 }
2941
2942 // We need address of stub tables valid for make_stub.
2943 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2944 p != this->stub_tables_.end();
2945 ++p)
2946 {
2947 const Powerpc_relobj<size, big_endian>* object
2948 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
2949 Address off = object->get_output_section_offset((*p)->shndx());
2950 gold_assert(off != invalid_address);
2951 Output_section* os = (*p)->output_section();
2952 (*p)->set_address_and_size(os, off);
2953 }
2954
2955 if (pass != 1)
2956 {
2957 // Clear plt call stubs, long branch stubs and branch lookup table.
2958 prev_brlt_size = this->branch_lookup_table_.size();
2959 this->branch_lookup_table_.clear();
2960 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2961 p != this->stub_tables_.end();
2962 ++p)
2963 {
2964 (*p)->clear_stubs(false);
2965 }
2966 }
2967
2968 // Build all the stubs.
2969 this->relax_failed_ = false;
2970 Stub_table<size, big_endian>* ifunc_stub_table
2971 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
2972 Stub_table<size, big_endian>* one_stub_table
2973 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
2974 for (typename Branches::const_iterator b = this->branch_info_.begin();
2975 b != this->branch_info_.end();
2976 b++)
2977 {
2978 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
2979 && !this->relax_failed_)
2980 {
2981 this->relax_failed_ = true;
2982 this->relax_fail_count_++;
2983 if (this->relax_fail_count_ < 3)
2984 return true;
2985 }
2986 }
2987
2988 // Did anything change size?
2989 unsigned int num_huge_branches = this->branch_lookup_table_.size();
2990 bool again = num_huge_branches != prev_brlt_size;
2991 if (size == 64 && num_huge_branches != 0)
2992 this->make_brlt_section(layout);
2993 if (size == 64 && again)
2994 this->brlt_section_->set_current_size(num_huge_branches);
2995
2996 typedef Unordered_set<Output_section*> Output_sections;
2997 Output_sections os_need_update;
2998 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
2999 p != this->stub_tables_.end();
3000 ++p)
3001 {
3002 if ((*p)->size_update())
3003 {
3004 again = true;
3005 (*p)->add_eh_frame(layout);
3006 os_need_update.insert((*p)->output_section());
3007 }
3008 }
3009
3010 // Set output section offsets for all input sections in an output
3011 // section that just changed size. Anything past the stubs will
3012 // need updating.
3013 for (typename Output_sections::iterator p = os_need_update.begin();
3014 p != os_need_update.end();
3015 p++)
3016 {
3017 Output_section* os = *p;
3018 Address off = 0;
3019 typedef Output_section::Input_section_list Input_section_list;
3020 for (Input_section_list::const_iterator i = os->input_sections().begin();
3021 i != os->input_sections().end();
3022 ++i)
3023 {
3024 off = align_address(off, i->addralign());
3025 if (i->is_input_section() || i->is_relaxed_input_section())
3026 i->relobj()->set_section_offset(i->shndx(), off);
3027 if (i->is_relaxed_input_section())
3028 {
3029 Stub_table<size, big_endian>* stub_table
3030 = static_cast<Stub_table<size, big_endian>*>(
3031 i->relaxed_input_section());
3032 Address stub_table_size = stub_table->set_address_and_size(os, off);
3033 off += stub_table_size;
3034 // After a few iterations, set current stub table size
3035 // as min size threshold, so later stub tables can only
3036 // grow in size.
3037 if (pass >= 4)
3038 stub_table->set_min_size_threshold(stub_table_size);
3039 }
3040 else
3041 off += i->data_size();
3042 }
3043 // If .branch_lt is part of this output section, then we have
3044 // just done the offset adjustment.
3045 os->clear_section_offsets_need_adjustment();
3046 }
3047
3048 if (size == 64
3049 && !again
3050 && num_huge_branches != 0
3051 && parameters->options().output_is_position_independent())
3052 {
3053 // Fill in the BRLT relocs.
3054 this->brlt_section_->reset_brlt_sizes();
3055 for (typename Branch_lookup_table::const_iterator p
3056 = this->branch_lookup_table_.begin();
3057 p != this->branch_lookup_table_.end();
3058 ++p)
3059 {
3060 this->brlt_section_->add_reloc(p->first, p->second);
3061 }
3062 this->brlt_section_->finalize_brlt_sizes();
3063 }
3064 return again;
3065 }
3066
3067 template<int size, bool big_endian>
3068 void
3069 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3070 unsigned char* oview,
3071 uint64_t* paddress,
3072 off_t* plen) const
3073 {
3074 uint64_t address = plt->address();
3075 off_t len = plt->data_size();
3076
3077 if (plt == this->glink_)
3078 {
3079 // See Output_data_glink::do_write() for glink contents.
3080 if (len == 0)
3081 {
3082 gold_assert(parameters->doing_static_link());
3083 // Static linking may need stubs, to support ifunc and long
3084 // branches. We need to create an output section for
3085 // .eh_frame early in the link process, to have a place to
3086 // attach stub .eh_frame info. We also need to have
3087 // registered a CIE that matches the stub CIE. Both of
3088 // these requirements are satisfied by creating an FDE and
3089 // CIE for .glink, even though static linking will leave
3090 // .glink zero length.
3091 // ??? Hopefully generating an FDE with a zero address range
3092 // won't confuse anything that consumes .eh_frame info.
3093 }
3094 else if (size == 64)
3095 {
3096 // There is one word before __glink_PLTresolve
3097 address += 8;
3098 len -= 8;
3099 }
3100 else if (parameters->options().output_is_position_independent())
3101 {
3102 // There are two FDEs for a position independent glink.
3103 // The first covers the branch table, the second
3104 // __glink_PLTresolve at the end of glink.
3105 off_t resolve_size = this->glink_->pltresolve_size;
3106 if (oview[9] == elfcpp::DW_CFA_nop)
3107 len -= resolve_size;
3108 else
3109 {
3110 address += len - resolve_size;
3111 len = resolve_size;
3112 }
3113 }
3114 }
3115 else
3116 {
3117 // Must be a stub table.
3118 const Stub_table<size, big_endian>* stub_table
3119 = static_cast<const Stub_table<size, big_endian>*>(plt);
3120 uint64_t stub_address = stub_table->stub_address();
3121 len -= stub_address - address;
3122 address = stub_address;
3123 }
3124
3125 *paddress = address;
3126 *plen = len;
3127 }
3128
3129 // A class to handle the PLT data.
3130
3131 template<int size, bool big_endian>
3132 class Output_data_plt_powerpc : public Output_section_data_build
3133 {
3134 public:
3135 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3136 size, big_endian> Reloc_section;
3137
3138 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3139 Reloc_section* plt_rel,
3140 const char* name)
3141 : Output_section_data_build(size == 32 ? 4 : 8),
3142 rel_(plt_rel),
3143 targ_(targ),
3144 name_(name)
3145 { }
3146
3147 // Add an entry to the PLT.
3148 void
3149 add_entry(Symbol*);
3150
3151 void
3152 add_ifunc_entry(Symbol*);
3153
3154 void
3155 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3156
3157 // Return the .rela.plt section data.
3158 Reloc_section*
3159 rel_plt() const
3160 {
3161 return this->rel_;
3162 }
3163
3164 // Return the number of PLT entries.
3165 unsigned int
3166 entry_count() const
3167 {
3168 if (this->current_data_size() == 0)
3169 return 0;
3170 return ((this->current_data_size() - this->first_plt_entry_offset())
3171 / this->plt_entry_size());
3172 }
3173
3174 protected:
3175 void
3176 do_adjust_output_section(Output_section* os)
3177 {
3178 os->set_entsize(0);
3179 }
3180
3181 // Write to a map file.
3182 void
3183 do_print_to_mapfile(Mapfile* mapfile) const
3184 { mapfile->print_output_data(this, this->name_); }
3185
3186 private:
3187 // Return the offset of the first non-reserved PLT entry.
3188 unsigned int
3189 first_plt_entry_offset() const
3190 {
3191 // IPLT has no reserved entry.
3192 if (this->name_[3] == 'I')
3193 return 0;
3194 return this->targ_->first_plt_entry_offset();
3195 }
3196
3197 // Return the size of each PLT entry.
3198 unsigned int
3199 plt_entry_size() const
3200 {
3201 return this->targ_->plt_entry_size();
3202 }
3203
3204 // Write out the PLT data.
3205 void
3206 do_write(Output_file*);
3207
3208 // The reloc section.
3209 Reloc_section* rel_;
3210 // Allows access to .glink for do_write.
3211 Target_powerpc<size, big_endian>* targ_;
3212 // What to report in map file.
3213 const char *name_;
3214 };
3215
3216 // Add an entry to the PLT.
3217
3218 template<int size, bool big_endian>
3219 void
3220 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3221 {
3222 if (!gsym->has_plt_offset())
3223 {
3224 section_size_type off = this->current_data_size();
3225 if (off == 0)
3226 off += this->first_plt_entry_offset();
3227 gsym->set_plt_offset(off);
3228 gsym->set_needs_dynsym_entry();
3229 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3230 this->rel_->add_global(gsym, dynrel, this, off, 0);
3231 off += this->plt_entry_size();
3232 this->set_current_data_size(off);
3233 }
3234 }
3235
3236 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3237
3238 template<int size, bool big_endian>
3239 void
3240 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3241 {
3242 if (!gsym->has_plt_offset())
3243 {
3244 section_size_type off = this->current_data_size();
3245 gsym->set_plt_offset(off);
3246 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3247 if (size == 64 && this->targ_->abiversion() < 2)
3248 dynrel = elfcpp::R_PPC64_JMP_IREL;
3249 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3250 off += this->plt_entry_size();
3251 this->set_current_data_size(off);
3252 }
3253 }
3254
3255 // Add an entry for a local ifunc symbol to the IPLT.
3256
3257 template<int size, bool big_endian>
3258 void
3259 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3260 Sized_relobj_file<size, big_endian>* relobj,
3261 unsigned int local_sym_index)
3262 {
3263 if (!relobj->local_has_plt_offset(local_sym_index))
3264 {
3265 section_size_type off = this->current_data_size();
3266 relobj->set_local_plt_offset(local_sym_index, off);
3267 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3268 if (size == 64 && this->targ_->abiversion() < 2)
3269 dynrel = elfcpp::R_PPC64_JMP_IREL;
3270 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3271 this, off, 0);
3272 off += this->plt_entry_size();
3273 this->set_current_data_size(off);
3274 }
3275 }
3276
3277 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3278 static const uint32_t add_2_2_11 = 0x7c425a14;
3279 static const uint32_t add_2_2_12 = 0x7c426214;
3280 static const uint32_t add_3_3_2 = 0x7c631214;
3281 static const uint32_t add_3_3_13 = 0x7c636a14;
3282 static const uint32_t add_11_0_11 = 0x7d605a14;
3283 static const uint32_t add_11_2_11 = 0x7d625a14;
3284 static const uint32_t add_11_11_2 = 0x7d6b1214;
3285 static const uint32_t addi_0_12 = 0x380c0000;
3286 static const uint32_t addi_2_2 = 0x38420000;
3287 static const uint32_t addi_3_3 = 0x38630000;
3288 static const uint32_t addi_11_11 = 0x396b0000;
3289 static const uint32_t addi_12_1 = 0x39810000;
3290 static const uint32_t addi_12_12 = 0x398c0000;
3291 static const uint32_t addis_0_2 = 0x3c020000;
3292 static const uint32_t addis_0_13 = 0x3c0d0000;
3293 static const uint32_t addis_2_12 = 0x3c4c0000;
3294 static const uint32_t addis_11_2 = 0x3d620000;
3295 static const uint32_t addis_11_11 = 0x3d6b0000;
3296 static const uint32_t addis_11_30 = 0x3d7e0000;
3297 static const uint32_t addis_12_1 = 0x3d810000;
3298 static const uint32_t addis_12_2 = 0x3d820000;
3299 static const uint32_t addis_12_12 = 0x3d8c0000;
3300 static const uint32_t b = 0x48000000;
3301 static const uint32_t bcl_20_31 = 0x429f0005;
3302 static const uint32_t bctr = 0x4e800420;
3303 static const uint32_t blr = 0x4e800020;
3304 static const uint32_t bnectr_p4 = 0x4ce20420;
3305 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3306 static const uint32_t cmpldi_2_0 = 0x28220000;
3307 static const uint32_t cror_15_15_15 = 0x4def7b82;
3308 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3309 static const uint32_t ld_0_1 = 0xe8010000;
3310 static const uint32_t ld_0_12 = 0xe80c0000;
3311 static const uint32_t ld_2_1 = 0xe8410000;
3312 static const uint32_t ld_2_2 = 0xe8420000;
3313 static const uint32_t ld_2_11 = 0xe84b0000;
3314 static const uint32_t ld_2_12 = 0xe84c0000;
3315 static const uint32_t ld_11_2 = 0xe9620000;
3316 static const uint32_t ld_11_11 = 0xe96b0000;
3317 static const uint32_t ld_12_2 = 0xe9820000;
3318 static const uint32_t ld_12_11 = 0xe98b0000;
3319 static const uint32_t ld_12_12 = 0xe98c0000;
3320 static const uint32_t lfd_0_1 = 0xc8010000;
3321 static const uint32_t li_0_0 = 0x38000000;
3322 static const uint32_t li_12_0 = 0x39800000;
3323 static const uint32_t lis_0 = 0x3c000000;
3324 static const uint32_t lis_2 = 0x3c400000;
3325 static const uint32_t lis_11 = 0x3d600000;
3326 static const uint32_t lis_12 = 0x3d800000;
3327 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3328 static const uint32_t lwz_0_12 = 0x800c0000;
3329 static const uint32_t lwz_11_11 = 0x816b0000;
3330 static const uint32_t lwz_11_30 = 0x817e0000;
3331 static const uint32_t lwz_12_12 = 0x818c0000;
3332 static const uint32_t lwzu_0_12 = 0x840c0000;
3333 static const uint32_t mflr_0 = 0x7c0802a6;
3334 static const uint32_t mflr_11 = 0x7d6802a6;
3335 static const uint32_t mflr_12 = 0x7d8802a6;
3336 static const uint32_t mtctr_0 = 0x7c0903a6;
3337 static const uint32_t mtctr_11 = 0x7d6903a6;
3338 static const uint32_t mtctr_12 = 0x7d8903a6;
3339 static const uint32_t mtlr_0 = 0x7c0803a6;
3340 static const uint32_t mtlr_12 = 0x7d8803a6;
3341 static const uint32_t nop = 0x60000000;
3342 static const uint32_t ori_0_0_0 = 0x60000000;
3343 static const uint32_t srdi_0_0_2 = 0x7800f082;
3344 static const uint32_t std_0_1 = 0xf8010000;
3345 static const uint32_t std_0_12 = 0xf80c0000;
3346 static const uint32_t std_2_1 = 0xf8410000;
3347 static const uint32_t stfd_0_1 = 0xd8010000;
3348 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3349 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3350 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3351 static const uint32_t xor_2_12_12 = 0x7d826278;
3352 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3353
3354 // Write out the PLT.
3355
3356 template<int size, bool big_endian>
3357 void
3358 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3359 {
3360 if (size == 32 && this->name_[3] != 'I')
3361 {
3362 const section_size_type offset = this->offset();
3363 const section_size_type oview_size
3364 = convert_to_section_size_type(this->data_size());
3365 unsigned char* const oview = of->get_output_view(offset, oview_size);
3366 unsigned char* pov = oview;
3367 unsigned char* endpov = oview + oview_size;
3368
3369 // The address of the .glink branch table
3370 const Output_data_glink<size, big_endian>* glink
3371 = this->targ_->glink_section();
3372 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3373
3374 while (pov < endpov)
3375 {
3376 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3377 pov += 4;
3378 branch_tab += 4;
3379 }
3380
3381 of->write_output_view(offset, oview_size, oview);
3382 }
3383 }
3384
3385 // Create the PLT section.
3386
3387 template<int size, bool big_endian>
3388 void
3389 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3390 Layout* layout)
3391 {
3392 if (this->plt_ == NULL)
3393 {
3394 if (this->got_ == NULL)
3395 this->got_section(symtab, layout);
3396
3397 if (this->glink_ == NULL)
3398 make_glink_section(layout);
3399
3400 // Ensure that .rela.dyn always appears before .rela.plt This is
3401 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3402 // needs to include .rela.plt in its range.
3403 this->rela_dyn_section(layout);
3404
3405 Reloc_section* plt_rel = new Reloc_section(false);
3406 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3407 elfcpp::SHF_ALLOC, plt_rel,
3408 ORDER_DYNAMIC_PLT_RELOCS, false);
3409 this->plt_
3410 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3411 "** PLT");
3412 layout->add_output_section_data(".plt",
3413 (size == 32
3414 ? elfcpp::SHT_PROGBITS
3415 : elfcpp::SHT_NOBITS),
3416 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3417 this->plt_,
3418 (size == 32
3419 ? ORDER_SMALL_DATA
3420 : ORDER_SMALL_BSS),
3421 false);
3422 }
3423 }
3424
3425 // Create the IPLT section.
3426
3427 template<int size, bool big_endian>
3428 void
3429 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3430 Layout* layout)
3431 {
3432 if (this->iplt_ == NULL)
3433 {
3434 this->make_plt_section(symtab, layout);
3435
3436 Reloc_section* iplt_rel = new Reloc_section(false);
3437 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3438 this->iplt_
3439 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3440 "** IPLT");
3441 this->plt_->output_section()->add_output_section_data(this->iplt_);
3442 }
3443 }
3444
3445 // A section for huge long branch addresses, similar to plt section.
3446
3447 template<int size, bool big_endian>
3448 class Output_data_brlt_powerpc : public Output_section_data_build
3449 {
3450 public:
3451 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3452 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3453 size, big_endian> Reloc_section;
3454
3455 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3456 Reloc_section* brlt_rel)
3457 : Output_section_data_build(size == 32 ? 4 : 8),
3458 rel_(brlt_rel),
3459 targ_(targ)
3460 { }
3461
3462 void
3463 reset_brlt_sizes()
3464 {
3465 this->reset_data_size();
3466 this->rel_->reset_data_size();
3467 }
3468
3469 void
3470 finalize_brlt_sizes()
3471 {
3472 this->finalize_data_size();
3473 this->rel_->finalize_data_size();
3474 }
3475
3476 // Add a reloc for an entry in the BRLT.
3477 void
3478 add_reloc(Address to, unsigned int off)
3479 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3480
3481 // Update section and reloc section size.
3482 void
3483 set_current_size(unsigned int num_branches)
3484 {
3485 this->reset_address_and_file_offset();
3486 this->set_current_data_size(num_branches * 16);
3487 this->finalize_data_size();
3488 Output_section* os = this->output_section();
3489 os->set_section_offsets_need_adjustment();
3490 if (this->rel_ != NULL)
3491 {
3492 unsigned int reloc_size
3493 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
3494 this->rel_->reset_address_and_file_offset();
3495 this->rel_->set_current_data_size(num_branches * reloc_size);
3496 this->rel_->finalize_data_size();
3497 Output_section* os = this->rel_->output_section();
3498 os->set_section_offsets_need_adjustment();
3499 }
3500 }
3501
3502 protected:
3503 void
3504 do_adjust_output_section(Output_section* os)
3505 {
3506 os->set_entsize(0);
3507 }
3508
3509 // Write to a map file.
3510 void
3511 do_print_to_mapfile(Mapfile* mapfile) const
3512 { mapfile->print_output_data(this, "** BRLT"); }
3513
3514 private:
3515 // Write out the BRLT data.
3516 void
3517 do_write(Output_file*);
3518
3519 // The reloc section.
3520 Reloc_section* rel_;
3521 Target_powerpc<size, big_endian>* targ_;
3522 };
3523
3524 // Make the branch lookup table section.
3525
3526 template<int size, bool big_endian>
3527 void
3528 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3529 {
3530 if (size == 64 && this->brlt_section_ == NULL)
3531 {
3532 Reloc_section* brlt_rel = NULL;
3533 bool is_pic = parameters->options().output_is_position_independent();
3534 if (is_pic)
3535 {
3536 // When PIC we can't fill in .branch_lt (like .plt it can be
3537 // a bss style section) but must initialise at runtime via
3538 // dynamic relocats.
3539 this->rela_dyn_section(layout);
3540 brlt_rel = new Reloc_section(false);
3541 this->rela_dyn_->output_section()->add_output_section_data(brlt_rel);
3542 }
3543 this->brlt_section_
3544 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3545 if (this->plt_ && is_pic)
3546 this->plt_->output_section()
3547 ->add_output_section_data(this->brlt_section_);
3548 else
3549 layout->add_output_section_data(".branch_lt",
3550 (is_pic ? elfcpp::SHT_NOBITS
3551 : elfcpp::SHT_PROGBITS),
3552 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3553 this->brlt_section_,
3554 (is_pic ? ORDER_SMALL_BSS
3555 : ORDER_SMALL_DATA),
3556 false);
3557 }
3558 }
3559
3560 // Write out .branch_lt when non-PIC.
3561
3562 template<int size, bool big_endian>
3563 void
3564 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3565 {
3566 if (size == 64 && !parameters->options().output_is_position_independent())
3567 {
3568 const section_size_type offset = this->offset();
3569 const section_size_type oview_size
3570 = convert_to_section_size_type(this->data_size());
3571 unsigned char* const oview = of->get_output_view(offset, oview_size);
3572
3573 this->targ_->write_branch_lookup_table(oview);
3574 of->write_output_view(offset, oview_size, oview);
3575 }
3576 }
3577
3578 static inline uint32_t
3579 l(uint32_t a)
3580 {
3581 return a & 0xffff;
3582 }
3583
3584 static inline uint32_t
3585 hi(uint32_t a)
3586 {
3587 return l(a >> 16);
3588 }
3589
3590 static inline uint32_t
3591 ha(uint32_t a)
3592 {
3593 return hi(a + 0x8000);
3594 }
3595
3596 template<int size>
3597 struct Eh_cie
3598 {
3599 static const unsigned char eh_frame_cie[12];
3600 };
3601
3602 template<int size>
3603 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3604 {
3605 1, // CIE version.
3606 'z', 'R', 0, // Augmentation string.
3607 4, // Code alignment.
3608 0x80 - size / 8 , // Data alignment.
3609 65, // RA reg.
3610 1, // Augmentation size.
3611 (elfcpp::DW_EH_PE_pcrel
3612 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3613 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3614 };
3615
3616 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3617 static const unsigned char glink_eh_frame_fde_64v1[] =
3618 {
3619 0, 0, 0, 0, // Replaced with offset to .glink.
3620 0, 0, 0, 0, // Replaced with size of .glink.
3621 0, // Augmentation size.
3622 elfcpp::DW_CFA_advance_loc + 1,
3623 elfcpp::DW_CFA_register, 65, 12,
3624 elfcpp::DW_CFA_advance_loc + 4,
3625 elfcpp::DW_CFA_restore_extended, 65
3626 };
3627
3628 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3629 static const unsigned char glink_eh_frame_fde_64v2[] =
3630 {
3631 0, 0, 0, 0, // Replaced with offset to .glink.
3632 0, 0, 0, 0, // Replaced with size of .glink.
3633 0, // Augmentation size.
3634 elfcpp::DW_CFA_advance_loc + 1,
3635 elfcpp::DW_CFA_register, 65, 0,
3636 elfcpp::DW_CFA_advance_loc + 4,
3637 elfcpp::DW_CFA_restore_extended, 65
3638 };
3639
3640 // Describe __glink_PLTresolve use of LR, 32-bit version.
3641 static const unsigned char glink_eh_frame_fde_32[] =
3642 {
3643 0, 0, 0, 0, // Replaced with offset to .glink.
3644 0, 0, 0, 0, // Replaced with size of .glink.
3645 0, // Augmentation size.
3646 elfcpp::DW_CFA_advance_loc + 2,
3647 elfcpp::DW_CFA_register, 65, 0,
3648 elfcpp::DW_CFA_advance_loc + 4,
3649 elfcpp::DW_CFA_restore_extended, 65
3650 };
3651
3652 static const unsigned char default_fde[] =
3653 {
3654 0, 0, 0, 0, // Replaced with offset to stubs.
3655 0, 0, 0, 0, // Replaced with size of stubs.
3656 0, // Augmentation size.
3657 elfcpp::DW_CFA_nop, // Pad.
3658 elfcpp::DW_CFA_nop,
3659 elfcpp::DW_CFA_nop
3660 };
3661
3662 template<bool big_endian>
3663 static inline void
3664 write_insn(unsigned char* p, uint32_t v)
3665 {
3666 elfcpp::Swap<32, big_endian>::writeval(p, v);
3667 }
3668
3669 // Stub_table holds information about plt and long branch stubs.
3670 // Stubs are built in an area following some input section determined
3671 // by group_sections(). This input section is converted to a relaxed
3672 // input section allowing it to be resized to accommodate the stubs
3673
3674 template<int size, bool big_endian>
3675 class Stub_table : public Output_relaxed_input_section
3676 {
3677 public:
3678 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3679 static const Address invalid_address = static_cast<Address>(0) - 1;
3680
3681 Stub_table(Target_powerpc<size, big_endian>* targ,
3682 Output_section* output_section,
3683 const Output_section::Input_section* owner)
3684 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
3685 owner->relobj()
3686 ->section_addralign(owner->shndx())),
3687 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
3688 orig_data_size_(owner->current_data_size()),
3689 plt_size_(0), last_plt_size_(0),
3690 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
3691 eh_frame_added_(false), need_save_res_(false)
3692 {
3693 this->set_output_section(output_section);
3694
3695 std::vector<Output_relaxed_input_section*> new_relaxed;
3696 new_relaxed.push_back(this);
3697 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
3698 }
3699
3700 // Add a plt call stub.
3701 bool
3702 add_plt_call_entry(Address,
3703 const Sized_relobj_file<size, big_endian>*,
3704 const Symbol*,
3705 unsigned int,
3706 Address);
3707
3708 bool
3709 add_plt_call_entry(Address,
3710 const Sized_relobj_file<size, big_endian>*,
3711 unsigned int,
3712 unsigned int,
3713 Address);
3714
3715 // Find a given plt call stub.
3716 Address
3717 find_plt_call_entry(const Symbol*) const;
3718
3719 Address
3720 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3721 unsigned int) const;
3722
3723 Address
3724 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3725 const Symbol*,
3726 unsigned int,
3727 Address) const;
3728
3729 Address
3730 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
3731 unsigned int,
3732 unsigned int,
3733 Address) const;
3734
3735 // Add a long branch stub.
3736 bool
3737 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3738 unsigned int, Address, Address, bool);
3739
3740 Address
3741 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
3742 Address) const;
3743
3744 bool
3745 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
3746 {
3747 Address max_branch_offset = max_branch_delta(r_type);
3748 if (max_branch_offset == 0)
3749 return true;
3750 gold_assert(from != invalid_address);
3751 Address loc = off + this->stub_address();
3752 return loc - from + max_branch_offset < 2 * max_branch_offset;
3753 }
3754
3755 void
3756 clear_stubs(bool all)
3757 {
3758 this->plt_call_stubs_.clear();
3759 this->plt_size_ = 0;
3760 this->long_branch_stubs_.clear();
3761 this->branch_size_ = 0;
3762 this->need_save_res_ = false;
3763 if (all)
3764 {
3765 this->last_plt_size_ = 0;
3766 this->last_branch_size_ = 0;
3767 }
3768 }
3769
3770 Address
3771 set_address_and_size(const Output_section* os, Address off)
3772 {
3773 Address start_off = off;
3774 off += this->orig_data_size_;
3775 Address my_size = this->plt_size_ + this->branch_size_;
3776 if (this->need_save_res_)
3777 my_size += this->targ_->savres_section()->data_size();
3778 if (my_size != 0)
3779 off = align_address(off, this->stub_align());
3780 // Include original section size and alignment padding in size
3781 my_size += off - start_off;
3782 // Ensure new size is always larger than min size
3783 // threshold. Alignment requirement is included in "my_size", so
3784 // increase "my_size" does not invalidate alignment.
3785 if (my_size < this->min_size_threshold_)
3786 my_size = this->min_size_threshold_;
3787 this->reset_address_and_file_offset();
3788 this->set_current_data_size(my_size);
3789 this->set_address_and_file_offset(os->address() + start_off,
3790 os->offset() + start_off);
3791 return my_size;
3792 }
3793
3794 Address
3795 stub_address() const
3796 {
3797 return align_address(this->address() + this->orig_data_size_,
3798 this->stub_align());
3799 }
3800
3801 Address
3802 stub_offset() const
3803 {
3804 return align_address(this->offset() + this->orig_data_size_,
3805 this->stub_align());
3806 }
3807
3808 section_size_type
3809 plt_size() const
3810 { return this->plt_size_; }
3811
3812 void set_min_size_threshold(Address min_size)
3813 { this->min_size_threshold_ = min_size; }
3814
3815 bool
3816 size_update()
3817 {
3818 Output_section* os = this->output_section();
3819 if (os->addralign() < this->stub_align())
3820 {
3821 os->set_addralign(this->stub_align());
3822 // FIXME: get rid of the insane checkpointing.
3823 // We can't increase alignment of the input section to which
3824 // stubs are attached; The input section may be .init which
3825 // is pasted together with other .init sections to form a
3826 // function. Aligning might insert zero padding resulting in
3827 // sigill. However we do need to increase alignment of the
3828 // output section so that the align_address() on offset in
3829 // set_address_and_size() adds the same padding as the
3830 // align_address() on address in stub_address().
3831 // What's more, we need this alignment for the layout done in
3832 // relaxation_loop_body() so that the output section starts at
3833 // a suitably aligned address.
3834 os->checkpoint_set_addralign(this->stub_align());
3835 }
3836 if (this->last_plt_size_ != this->plt_size_
3837 || this->last_branch_size_ != this->branch_size_)
3838 {
3839 this->last_plt_size_ = this->plt_size_;
3840 this->last_branch_size_ = this->branch_size_;
3841 return true;
3842 }
3843 return false;
3844 }
3845
3846 // Add .eh_frame info for this stub section. Unlike other linker
3847 // generated .eh_frame this is added late in the link, because we
3848 // only want the .eh_frame info if this particular stub section is
3849 // non-empty.
3850 void
3851 add_eh_frame(Layout* layout)
3852 {
3853 if (!this->eh_frame_added_)
3854 {
3855 if (!parameters->options().ld_generated_unwind_info())
3856 return;
3857
3858 // Since we add stub .eh_frame info late, it must be placed
3859 // after all other linker generated .eh_frame info so that
3860 // merge mapping need not be updated for input sections.
3861 // There is no provision to use a different CIE to that used
3862 // by .glink.
3863 if (!this->targ_->has_glink())
3864 return;
3865
3866 layout->add_eh_frame_for_plt(this,
3867 Eh_cie<size>::eh_frame_cie,
3868 sizeof (Eh_cie<size>::eh_frame_cie),
3869 default_fde,
3870 sizeof (default_fde));
3871 this->eh_frame_added_ = true;
3872 }
3873 }
3874
3875 Target_powerpc<size, big_endian>*
3876 targ() const
3877 { return targ_; }
3878
3879 private:
3880 class Plt_stub_ent;
3881 class Plt_stub_ent_hash;
3882 typedef Unordered_map<Plt_stub_ent, unsigned int,
3883 Plt_stub_ent_hash> Plt_stub_entries;
3884
3885 // Alignment of stub section.
3886 unsigned int
3887 stub_align() const
3888 {
3889 if (size == 32)
3890 return 16;
3891 unsigned int min_align = 32;
3892 unsigned int user_align = 1 << parameters->options().plt_align();
3893 return std::max(user_align, min_align);
3894 }
3895
3896 // Return the plt offset for the given call stub.
3897 Address
3898 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
3899 {
3900 const Symbol* gsym = p->first.sym_;
3901 if (gsym != NULL)
3902 {
3903 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
3904 && gsym->can_use_relative_reloc(false));
3905 return gsym->plt_offset();
3906 }
3907 else
3908 {
3909 *is_iplt = true;
3910 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
3911 unsigned int local_sym_index = p->first.locsym_;
3912 return relobj->local_plt_offset(local_sym_index);
3913 }
3914 }
3915
3916 // Size of a given plt call stub.
3917 unsigned int
3918 plt_call_size(typename Plt_stub_entries::const_iterator p) const
3919 {
3920 if (size == 32)
3921 return 16;
3922
3923 bool is_iplt;
3924 Address plt_addr = this->plt_off(p, &is_iplt);
3925 if (is_iplt)
3926 plt_addr += this->targ_->iplt_section()->address();
3927 else
3928 plt_addr += this->targ_->plt_section()->address();
3929 Address got_addr = this->targ_->got_section()->output_section()->address();
3930 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
3931 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
3932 got_addr += ppcobj->toc_base_offset();
3933 Address off = plt_addr - got_addr;
3934 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
3935 if (this->targ_->abiversion() < 2)
3936 {
3937 bool static_chain = parameters->options().plt_static_chain();
3938 bool thread_safe = this->targ_->plt_thread_safe();
3939 bytes += (4
3940 + 4 * static_chain
3941 + 8 * thread_safe
3942 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
3943 }
3944 unsigned int align = 1 << parameters->options().plt_align();
3945 if (align > 1)
3946 bytes = (bytes + align - 1) & -align;
3947 return bytes;
3948 }
3949
3950 // Return long branch stub size.
3951 unsigned int
3952 branch_stub_size(Address to)
3953 {
3954 Address loc
3955 = this->stub_address() + this->last_plt_size_ + this->branch_size_;
3956 if (to - loc + (1 << 25) < 2 << 25)
3957 return 4;
3958 if (size == 64 || !parameters->options().output_is_position_independent())
3959 return 16;
3960 return 32;
3961 }
3962
3963 // Write out stubs.
3964 void
3965 do_write(Output_file*);
3966
3967 // Plt call stub keys.
3968 class Plt_stub_ent
3969 {
3970 public:
3971 Plt_stub_ent(const Symbol* sym)
3972 : sym_(sym), object_(0), addend_(0), locsym_(0)
3973 { }
3974
3975 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3976 unsigned int locsym_index)
3977 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
3978 { }
3979
3980 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3981 const Symbol* sym,
3982 unsigned int r_type,
3983 Address addend)
3984 : sym_(sym), object_(0), addend_(0), locsym_(0)
3985 {
3986 if (size != 32)
3987 this->addend_ = addend;
3988 else if (parameters->options().output_is_position_independent()
3989 && r_type == elfcpp::R_PPC_PLTREL24)
3990 {
3991 this->addend_ = addend;
3992 if (this->addend_ >= 32768)
3993 this->object_ = object;
3994 }
3995 }
3996
3997 Plt_stub_ent(const Sized_relobj_file<size, big_endian>* object,
3998 unsigned int locsym_index,
3999 unsigned int r_type,
4000 Address addend)
4001 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4002 {
4003 if (size != 32)
4004 this->addend_ = addend;
4005 else if (parameters->options().output_is_position_independent()
4006 && r_type == elfcpp::R_PPC_PLTREL24)
4007 this->addend_ = addend;
4008 }
4009
4010 bool operator==(const Plt_stub_ent& that) const
4011 {
4012 return (this->sym_ == that.sym_
4013 && this->object_ == that.object_
4014 && this->addend_ == that.addend_
4015 && this->locsym_ == that.locsym_);
4016 }
4017
4018 const Symbol* sym_;
4019 const Sized_relobj_file<size, big_endian>* object_;
4020 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4021 unsigned int locsym_;
4022 };
4023
4024 class Plt_stub_ent_hash
4025 {
4026 public:
4027 size_t operator()(const Plt_stub_ent& ent) const
4028 {
4029 return (reinterpret_cast<uintptr_t>(ent.sym_)
4030 ^ reinterpret_cast<uintptr_t>(ent.object_)
4031 ^ ent.addend_
4032 ^ ent.locsym_);
4033 }
4034 };
4035
4036 // Long branch stub keys.
4037 class Branch_stub_ent
4038 {
4039 public:
4040 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4041 Address to, bool save_res)
4042 : dest_(to), toc_base_off_(0), save_res_(save_res)
4043 {
4044 if (size == 64)
4045 toc_base_off_ = obj->toc_base_offset();
4046 }
4047
4048 bool operator==(const Branch_stub_ent& that) const
4049 {
4050 return (this->dest_ == that.dest_
4051 && (size == 32
4052 || this->toc_base_off_ == that.toc_base_off_));
4053 }
4054
4055 Address dest_;
4056 unsigned int toc_base_off_;
4057 bool save_res_;
4058 };
4059
4060 class Branch_stub_ent_hash
4061 {
4062 public:
4063 size_t operator()(const Branch_stub_ent& ent) const
4064 { return ent.dest_ ^ ent.toc_base_off_; }
4065 };
4066
4067 // In a sane world this would be a global.
4068 Target_powerpc<size, big_endian>* targ_;
4069 // Map sym/object/addend to stub offset.
4070 Plt_stub_entries plt_call_stubs_;
4071 // Map destination address to stub offset.
4072 typedef Unordered_map<Branch_stub_ent, unsigned int,
4073 Branch_stub_ent_hash> Branch_stub_entries;
4074 Branch_stub_entries long_branch_stubs_;
4075 // size of input section
4076 section_size_type orig_data_size_;
4077 // size of stubs
4078 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4079 // Some rare cases cause (PR/20529) fluctuation in stub table
4080 // size, which leads to an endless relax loop. This is to be fixed
4081 // by, after the first few iterations, allowing only increase of
4082 // stub table size. This variable sets the minimal possible size of
4083 // a stub table, it is zero for the first few iterations, then
4084 // increases monotonically.
4085 Address min_size_threshold_;
4086 // Whether .eh_frame info has been created for this stub section.
4087 bool eh_frame_added_;
4088 // Set if this stub group needs a copy of out-of-line register
4089 // save/restore functions.
4090 bool need_save_res_;
4091 };
4092
4093 // Add a plt call stub, if we do not already have one for this
4094 // sym/object/addend combo.
4095
4096 template<int size, bool big_endian>
4097 bool
4098 Stub_table<size, big_endian>::add_plt_call_entry(
4099 Address from,
4100 const Sized_relobj_file<size, big_endian>* object,
4101 const Symbol* gsym,
4102 unsigned int r_type,
4103 Address addend)
4104 {
4105 Plt_stub_ent ent(object, gsym, r_type, addend);
4106 unsigned int off = this->plt_size_;
4107 std::pair<typename Plt_stub_entries::iterator, bool> p
4108 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4109 if (p.second)
4110 this->plt_size_ = off + this->plt_call_size(p.first);
4111 return this->can_reach_stub(from, off, r_type);
4112 }
4113
4114 template<int size, bool big_endian>
4115 bool
4116 Stub_table<size, big_endian>::add_plt_call_entry(
4117 Address from,
4118 const Sized_relobj_file<size, big_endian>* object,
4119 unsigned int locsym_index,
4120 unsigned int r_type,
4121 Address addend)
4122 {
4123 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4124 unsigned int off = this->plt_size_;
4125 std::pair<typename Plt_stub_entries::iterator, bool> p
4126 = this->plt_call_stubs_.insert(std::make_pair(ent, off));
4127 if (p.second)
4128 this->plt_size_ = off + this->plt_call_size(p.first);
4129 return this->can_reach_stub(from, off, r_type);
4130 }
4131
4132 // Find a plt call stub.
4133
4134 template<int size, bool big_endian>
4135 typename Stub_table<size, big_endian>::Address
4136 Stub_table<size, big_endian>::find_plt_call_entry(
4137 const Sized_relobj_file<size, big_endian>* object,
4138 const Symbol* gsym,
4139 unsigned int r_type,
4140 Address addend) const
4141 {
4142 Plt_stub_ent ent(object, gsym, r_type, addend);
4143 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4144 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4145 }
4146
4147 template<int size, bool big_endian>
4148 typename Stub_table<size, big_endian>::Address
4149 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4150 {
4151 Plt_stub_ent ent(gsym);
4152 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4153 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4154 }
4155
4156 template<int size, bool big_endian>
4157 typename Stub_table<size, big_endian>::Address
4158 Stub_table<size, big_endian>::find_plt_call_entry(
4159 const Sized_relobj_file<size, big_endian>* object,
4160 unsigned int locsym_index,
4161 unsigned int r_type,
4162 Address addend) const
4163 {
4164 Plt_stub_ent ent(object, locsym_index, r_type, addend);
4165 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4166 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4167 }
4168
4169 template<int size, bool big_endian>
4170 typename Stub_table<size, big_endian>::Address
4171 Stub_table<size, big_endian>::find_plt_call_entry(
4172 const Sized_relobj_file<size, big_endian>* object,
4173 unsigned int locsym_index) const
4174 {
4175 Plt_stub_ent ent(object, locsym_index);
4176 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(ent);
4177 return p == this->plt_call_stubs_.end() ? invalid_address : p->second;
4178 }
4179
4180 // Add a long branch stub if we don't already have one to given
4181 // destination.
4182
4183 template<int size, bool big_endian>
4184 bool
4185 Stub_table<size, big_endian>::add_long_branch_entry(
4186 const Powerpc_relobj<size, big_endian>* object,
4187 unsigned int r_type,
4188 Address from,
4189 Address to,
4190 bool save_res)
4191 {
4192 Branch_stub_ent ent(object, to, save_res);
4193 Address off = this->branch_size_;
4194 if (this->long_branch_stubs_.insert(std::make_pair(ent, off)).second)
4195 {
4196 if (save_res)
4197 this->need_save_res_ = true;
4198 else
4199 {
4200 unsigned int stub_size = this->branch_stub_size(to);
4201 this->branch_size_ = off + stub_size;
4202 if (size == 64 && stub_size != 4)
4203 this->targ_->add_branch_lookup_table(to);
4204 }
4205 }
4206 return this->can_reach_stub(from, off, r_type);
4207 }
4208
4209 // Find long branch stub offset.
4210
4211 template<int size, bool big_endian>
4212 typename Stub_table<size, big_endian>::Address
4213 Stub_table<size, big_endian>::find_long_branch_entry(
4214 const Powerpc_relobj<size, big_endian>* object,
4215 Address to) const
4216 {
4217 Branch_stub_ent ent(object, to, false);
4218 typename Branch_stub_entries::const_iterator p
4219 = this->long_branch_stubs_.find(ent);
4220 if (p == this->long_branch_stubs_.end())
4221 return invalid_address;
4222 if (p->first.save_res_)
4223 return to - this->targ_->savres_section()->address() + this->branch_size_;
4224 return p->second;
4225 }
4226
4227 // A class to handle .glink.
4228
4229 template<int size, bool big_endian>
4230 class Output_data_glink : public Output_section_data
4231 {
4232 public:
4233 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4234 static const Address invalid_address = static_cast<Address>(0) - 1;
4235 static const int pltresolve_size = 16*4;
4236
4237 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4238 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4239 end_branch_table_(), ge_size_(0)
4240 { }
4241
4242 void
4243 add_eh_frame(Layout* layout);
4244
4245 void
4246 add_global_entry(const Symbol*);
4247
4248 Address
4249 find_global_entry(const Symbol*) const;
4250
4251 Address
4252 global_entry_address() const
4253 {
4254 gold_assert(this->is_data_size_valid());
4255 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4256 return this->address() + global_entry_off;
4257 }
4258
4259 protected:
4260 // Write to a map file.
4261 void
4262 do_print_to_mapfile(Mapfile* mapfile) const
4263 { mapfile->print_output_data(this, _("** glink")); }
4264
4265 private:
4266 void
4267 set_final_data_size();
4268
4269 // Write out .glink
4270 void
4271 do_write(Output_file*);
4272
4273 // Allows access to .got and .plt for do_write.
4274 Target_powerpc<size, big_endian>* targ_;
4275
4276 // Map sym to stub offset.
4277 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4278 Global_entry_stub_entries global_entry_stubs_;
4279
4280 unsigned int end_branch_table_, ge_size_;
4281 };
4282
4283 template<int size, bool big_endian>
4284 void
4285 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4286 {
4287 if (!parameters->options().ld_generated_unwind_info())
4288 return;
4289
4290 if (size == 64)
4291 {
4292 if (this->targ_->abiversion() < 2)
4293 layout->add_eh_frame_for_plt(this,
4294 Eh_cie<64>::eh_frame_cie,
4295 sizeof (Eh_cie<64>::eh_frame_cie),
4296 glink_eh_frame_fde_64v1,
4297 sizeof (glink_eh_frame_fde_64v1));
4298 else
4299 layout->add_eh_frame_for_plt(this,
4300 Eh_cie<64>::eh_frame_cie,
4301 sizeof (Eh_cie<64>::eh_frame_cie),
4302 glink_eh_frame_fde_64v2,
4303 sizeof (glink_eh_frame_fde_64v2));
4304 }
4305 else
4306 {
4307 // 32-bit .glink can use the default since the CIE return
4308 // address reg, LR, is valid.
4309 layout->add_eh_frame_for_plt(this,
4310 Eh_cie<32>::eh_frame_cie,
4311 sizeof (Eh_cie<32>::eh_frame_cie),
4312 default_fde,
4313 sizeof (default_fde));
4314 // Except where LR is used in a PIC __glink_PLTresolve.
4315 if (parameters->options().output_is_position_independent())
4316 layout->add_eh_frame_for_plt(this,
4317 Eh_cie<32>::eh_frame_cie,
4318 sizeof (Eh_cie<32>::eh_frame_cie),
4319 glink_eh_frame_fde_32,
4320 sizeof (glink_eh_frame_fde_32));
4321 }
4322 }
4323
4324 template<int size, bool big_endian>
4325 void
4326 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4327 {
4328 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4329 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4330 if (p.second)
4331 this->ge_size_ += 16;
4332 }
4333
4334 template<int size, bool big_endian>
4335 typename Output_data_glink<size, big_endian>::Address
4336 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4337 {
4338 typename Global_entry_stub_entries::const_iterator p
4339 = this->global_entry_stubs_.find(gsym);
4340 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4341 }
4342
4343 template<int size, bool big_endian>
4344 void
4345 Output_data_glink<size, big_endian>::set_final_data_size()
4346 {
4347 unsigned int count = this->targ_->plt_entry_count();
4348 section_size_type total = 0;
4349
4350 if (count != 0)
4351 {
4352 if (size == 32)
4353 {
4354 // space for branch table
4355 total += 4 * (count - 1);
4356
4357 total += -total & 15;
4358 total += this->pltresolve_size;
4359 }
4360 else
4361 {
4362 total += this->pltresolve_size;
4363
4364 // space for branch table
4365 total += 4 * count;
4366 if (this->targ_->abiversion() < 2)
4367 {
4368 total += 4 * count;
4369 if (count > 0x8000)
4370 total += 4 * (count - 0x8000);
4371 }
4372 }
4373 }
4374 this->end_branch_table_ = total;
4375 total = (total + 15) & -16;
4376 total += this->ge_size_;
4377
4378 this->set_data_size(total);
4379 }
4380
4381 // Write out plt and long branch stub code.
4382
4383 template<int size, bool big_endian>
4384 void
4385 Stub_table<size, big_endian>::do_write(Output_file* of)
4386 {
4387 if (this->plt_call_stubs_.empty()
4388 && this->long_branch_stubs_.empty())
4389 return;
4390
4391 const section_size_type start_off = this->offset();
4392 const section_size_type off = this->stub_offset();
4393 const section_size_type oview_size =
4394 convert_to_section_size_type(this->data_size() - (off - start_off));
4395 unsigned char* const oview = of->get_output_view(off, oview_size);
4396 unsigned char* p;
4397
4398 if (size == 64)
4399 {
4400 const Output_data_got_powerpc<size, big_endian>* got
4401 = this->targ_->got_section();
4402 Address got_os_addr = got->output_section()->address();
4403
4404 if (!this->plt_call_stubs_.empty())
4405 {
4406 // The base address of the .plt section.
4407 Address plt_base = this->targ_->plt_section()->address();
4408 Address iplt_base = invalid_address;
4409
4410 // Write out plt call stubs.
4411 typename Plt_stub_entries::const_iterator cs;
4412 for (cs = this->plt_call_stubs_.begin();
4413 cs != this->plt_call_stubs_.end();
4414 ++cs)
4415 {
4416 bool is_iplt;
4417 Address pltoff = this->plt_off(cs, &is_iplt);
4418 Address plt_addr = pltoff;
4419 if (is_iplt)
4420 {
4421 if (iplt_base == invalid_address)
4422 iplt_base = this->targ_->iplt_section()->address();
4423 plt_addr += iplt_base;
4424 }
4425 else
4426 plt_addr += plt_base;
4427 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4428 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4429 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4430 Address off = plt_addr - got_addr;
4431
4432 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4433 gold_error(_("%s: linkage table error against `%s'"),
4434 cs->first.object_->name().c_str(),
4435 cs->first.sym_->demangled_name().c_str());
4436
4437 bool plt_load_toc = this->targ_->abiversion() < 2;
4438 bool static_chain
4439 = plt_load_toc && parameters->options().plt_static_chain();
4440 bool thread_safe
4441 = plt_load_toc && this->targ_->plt_thread_safe();
4442 bool use_fake_dep = false;
4443 Address cmp_branch_off = 0;
4444 if (thread_safe)
4445 {
4446 unsigned int pltindex
4447 = ((pltoff - this->targ_->first_plt_entry_offset())
4448 / this->targ_->plt_entry_size());
4449 Address glinkoff
4450 = (this->targ_->glink_section()->pltresolve_size
4451 + pltindex * 8);
4452 if (pltindex > 32768)
4453 glinkoff += (pltindex - 32768) * 4;
4454 Address to
4455 = this->targ_->glink_section()->address() + glinkoff;
4456 Address from
4457 = (this->stub_address() + cs->second + 24
4458 + 4 * (ha(off) != 0)
4459 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4460 + 4 * static_chain);
4461 cmp_branch_off = to - from;
4462 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4463 }
4464
4465 p = oview + cs->second;
4466 if (ha(off) != 0)
4467 {
4468 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4469 p += 4;
4470 if (plt_load_toc)
4471 {
4472 write_insn<big_endian>(p, addis_11_2 + ha(off));
4473 p += 4;
4474 write_insn<big_endian>(p, ld_12_11 + l(off));
4475 p += 4;
4476 }
4477 else
4478 {
4479 write_insn<big_endian>(p, addis_12_2 + ha(off));
4480 p += 4;
4481 write_insn<big_endian>(p, ld_12_12 + l(off));
4482 p += 4;
4483 }
4484 if (plt_load_toc
4485 && ha(off + 8 + 8 * static_chain) != ha(off))
4486 {
4487 write_insn<big_endian>(p, addi_11_11 + l(off));
4488 p += 4;
4489 off = 0;
4490 }
4491 write_insn<big_endian>(p, mtctr_12);
4492 p += 4;
4493 if (plt_load_toc)
4494 {
4495 if (use_fake_dep)
4496 {
4497 write_insn<big_endian>(p, xor_2_12_12);
4498 p += 4;
4499 write_insn<big_endian>(p, add_11_11_2);
4500 p += 4;
4501 }
4502 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
4503 p += 4;
4504 if (static_chain)
4505 {
4506 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
4507 p += 4;
4508 }
4509 }
4510 }
4511 else
4512 {
4513 write_insn<big_endian>(p, std_2_1 + this->targ_->stk_toc());
4514 p += 4;
4515 write_insn<big_endian>(p, ld_12_2 + l(off));
4516 p += 4;
4517 if (plt_load_toc
4518 && ha(off + 8 + 8 * static_chain) != ha(off))
4519 {
4520 write_insn<big_endian>(p, addi_2_2 + l(off));
4521 p += 4;
4522 off = 0;
4523 }
4524 write_insn<big_endian>(p, mtctr_12);
4525 p += 4;
4526 if (plt_load_toc)
4527 {
4528 if (use_fake_dep)
4529 {
4530 write_insn<big_endian>(p, xor_11_12_12);
4531 p += 4;
4532 write_insn<big_endian>(p, add_2_2_11);
4533 p += 4;
4534 }
4535 if (static_chain)
4536 {
4537 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
4538 p += 4;
4539 }
4540 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
4541 p += 4;
4542 }
4543 }
4544 if (thread_safe && !use_fake_dep)
4545 {
4546 write_insn<big_endian>(p, cmpldi_2_0);
4547 p += 4;
4548 write_insn<big_endian>(p, bnectr_p4);
4549 p += 4;
4550 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
4551 }
4552 else
4553 write_insn<big_endian>(p, bctr);
4554 }
4555 }
4556
4557 // Write out long branch stubs.
4558 typename Branch_stub_entries::const_iterator bs;
4559 for (bs = this->long_branch_stubs_.begin();
4560 bs != this->long_branch_stubs_.end();
4561 ++bs)
4562 {
4563 if (bs->first.save_res_)
4564 continue;
4565 p = oview + this->plt_size_ + bs->second;
4566 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4567 Address delta = bs->first.dest_ - loc;
4568 if (delta + (1 << 25) < 2 << 25)
4569 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4570 else
4571 {
4572 Address brlt_addr
4573 = this->targ_->find_branch_lookup_table(bs->first.dest_);
4574 gold_assert(brlt_addr != invalid_address);
4575 brlt_addr += this->targ_->brlt_section()->address();
4576 Address got_addr = got_os_addr + bs->first.toc_base_off_;
4577 Address brltoff = brlt_addr - got_addr;
4578 if (ha(brltoff) == 0)
4579 {
4580 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
4581 }
4582 else
4583 {
4584 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
4585 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
4586 }
4587 write_insn<big_endian>(p, mtctr_12), p += 4;
4588 write_insn<big_endian>(p, bctr);
4589 }
4590 }
4591 }
4592 else
4593 {
4594 if (!this->plt_call_stubs_.empty())
4595 {
4596 // The base address of the .plt section.
4597 Address plt_base = this->targ_->plt_section()->address();
4598 Address iplt_base = invalid_address;
4599 // The address of _GLOBAL_OFFSET_TABLE_.
4600 Address g_o_t = invalid_address;
4601
4602 // Write out plt call stubs.
4603 typename Plt_stub_entries::const_iterator cs;
4604 for (cs = this->plt_call_stubs_.begin();
4605 cs != this->plt_call_stubs_.end();
4606 ++cs)
4607 {
4608 bool is_iplt;
4609 Address plt_addr = this->plt_off(cs, &is_iplt);
4610 if (is_iplt)
4611 {
4612 if (iplt_base == invalid_address)
4613 iplt_base = this->targ_->iplt_section()->address();
4614 plt_addr += iplt_base;
4615 }
4616 else
4617 plt_addr += plt_base;
4618
4619 p = oview + cs->second;
4620 if (parameters->options().output_is_position_independent())
4621 {
4622 Address got_addr;
4623 const Powerpc_relobj<size, big_endian>* ppcobj
4624 = (static_cast<const Powerpc_relobj<size, big_endian>*>
4625 (cs->first.object_));
4626 if (ppcobj != NULL && cs->first.addend_ >= 32768)
4627 {
4628 unsigned int got2 = ppcobj->got2_shndx();
4629 got_addr = ppcobj->get_output_section_offset(got2);
4630 gold_assert(got_addr != invalid_address);
4631 got_addr += (ppcobj->output_section(got2)->address()
4632 + cs->first.addend_);
4633 }
4634 else
4635 {
4636 if (g_o_t == invalid_address)
4637 {
4638 const Output_data_got_powerpc<size, big_endian>* got
4639 = this->targ_->got_section();
4640 g_o_t = got->address() + got->g_o_t();
4641 }
4642 got_addr = g_o_t;
4643 }
4644
4645 Address off = plt_addr - got_addr;
4646 if (ha(off) == 0)
4647 {
4648 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
4649 write_insn<big_endian>(p + 4, mtctr_11);
4650 write_insn<big_endian>(p + 8, bctr);
4651 }
4652 else
4653 {
4654 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
4655 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
4656 write_insn<big_endian>(p + 8, mtctr_11);
4657 write_insn<big_endian>(p + 12, bctr);
4658 }
4659 }
4660 else
4661 {
4662 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
4663 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
4664 write_insn<big_endian>(p + 8, mtctr_11);
4665 write_insn<big_endian>(p + 12, bctr);
4666 }
4667 }
4668 }
4669
4670 // Write out long branch stubs.
4671 typename Branch_stub_entries::const_iterator bs;
4672 for (bs = this->long_branch_stubs_.begin();
4673 bs != this->long_branch_stubs_.end();
4674 ++bs)
4675 {
4676 if (bs->first.save_res_)
4677 continue;
4678 p = oview + this->plt_size_ + bs->second;
4679 Address loc = this->stub_address() + this->plt_size_ + bs->second;
4680 Address delta = bs->first.dest_ - loc;
4681 if (delta + (1 << 25) < 2 << 25)
4682 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
4683 else if (!parameters->options().output_is_position_independent())
4684 {
4685 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
4686 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
4687 write_insn<big_endian>(p + 8, mtctr_12);
4688 write_insn<big_endian>(p + 12, bctr);
4689 }
4690 else
4691 {
4692 delta -= 8;
4693 write_insn<big_endian>(p + 0, mflr_0);
4694 write_insn<big_endian>(p + 4, bcl_20_31);
4695 write_insn<big_endian>(p + 8, mflr_12);
4696 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
4697 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
4698 write_insn<big_endian>(p + 20, mtlr_0);
4699 write_insn<big_endian>(p + 24, mtctr_12);
4700 write_insn<big_endian>(p + 28, bctr);
4701 }
4702 }
4703 }
4704 if (this->need_save_res_)
4705 {
4706 p = oview + this->plt_size_ + this->branch_size_;
4707 memcpy (p, this->targ_->savres_section()->contents(),
4708 this->targ_->savres_section()->data_size());
4709 }
4710 }
4711
4712 // Write out .glink.
4713
4714 template<int size, bool big_endian>
4715 void
4716 Output_data_glink<size, big_endian>::do_write(Output_file* of)
4717 {
4718 const section_size_type off = this->offset();
4719 const section_size_type oview_size =
4720 convert_to_section_size_type(this->data_size());
4721 unsigned char* const oview = of->get_output_view(off, oview_size);
4722 unsigned char* p;
4723
4724 // The base address of the .plt section.
4725 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4726 Address plt_base = this->targ_->plt_section()->address();
4727
4728 if (size == 64)
4729 {
4730 if (this->end_branch_table_ != 0)
4731 {
4732 // Write pltresolve stub.
4733 p = oview;
4734 Address after_bcl = this->address() + 16;
4735 Address pltoff = plt_base - after_bcl;
4736
4737 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
4738
4739 if (this->targ_->abiversion() < 2)
4740 {
4741 write_insn<big_endian>(p, mflr_12), p += 4;
4742 write_insn<big_endian>(p, bcl_20_31), p += 4;
4743 write_insn<big_endian>(p, mflr_11), p += 4;
4744 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4745 write_insn<big_endian>(p, mtlr_12), p += 4;
4746 write_insn<big_endian>(p, add_11_2_11), p += 4;
4747 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4748 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
4749 write_insn<big_endian>(p, mtctr_12), p += 4;
4750 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
4751 }
4752 else
4753 {
4754 write_insn<big_endian>(p, mflr_0), p += 4;
4755 write_insn<big_endian>(p, bcl_20_31), p += 4;
4756 write_insn<big_endian>(p, mflr_11), p += 4;
4757 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
4758 write_insn<big_endian>(p, mtlr_0), p += 4;
4759 write_insn<big_endian>(p, sub_12_12_11), p += 4;
4760 write_insn<big_endian>(p, add_11_2_11), p += 4;
4761 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
4762 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
4763 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
4764 write_insn<big_endian>(p, mtctr_12), p += 4;
4765 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
4766 }
4767 write_insn<big_endian>(p, bctr), p += 4;
4768 while (p < oview + this->pltresolve_size)
4769 write_insn<big_endian>(p, nop), p += 4;
4770
4771 // Write lazy link call stubs.
4772 uint32_t indx = 0;
4773 while (p < oview + this->end_branch_table_)
4774 {
4775 if (this->targ_->abiversion() < 2)
4776 {
4777 if (indx < 0x8000)
4778 {
4779 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
4780 }
4781 else
4782 {
4783 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
4784 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
4785 }
4786 }
4787 uint32_t branch_off = 8 - (p - oview);
4788 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
4789 indx++;
4790 }
4791 }
4792
4793 Address plt_base = this->targ_->plt_section()->address();
4794 Address iplt_base = invalid_address;
4795 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4796 Address global_entry_base = this->address() + global_entry_off;
4797 typename Global_entry_stub_entries::const_iterator ge;
4798 for (ge = this->global_entry_stubs_.begin();
4799 ge != this->global_entry_stubs_.end();
4800 ++ge)
4801 {
4802 p = oview + global_entry_off + ge->second;
4803 Address plt_addr = ge->first->plt_offset();
4804 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
4805 && ge->first->can_use_relative_reloc(false))
4806 {
4807 if (iplt_base == invalid_address)
4808 iplt_base = this->targ_->iplt_section()->address();
4809 plt_addr += iplt_base;
4810 }
4811 else
4812 plt_addr += plt_base;
4813 Address my_addr = global_entry_base + ge->second;
4814 Address off = plt_addr - my_addr;
4815
4816 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
4817 gold_error(_("%s: linkage table error against `%s'"),
4818 ge->first->object()->name().c_str(),
4819 ge->first->demangled_name().c_str());
4820
4821 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
4822 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
4823 write_insn<big_endian>(p, mtctr_12), p += 4;
4824 write_insn<big_endian>(p, bctr);
4825 }
4826 }
4827 else
4828 {
4829 const Output_data_got_powerpc<size, big_endian>* got
4830 = this->targ_->got_section();
4831 // The address of _GLOBAL_OFFSET_TABLE_.
4832 Address g_o_t = got->address() + got->g_o_t();
4833
4834 // Write out pltresolve branch table.
4835 p = oview;
4836 unsigned int the_end = oview_size - this->pltresolve_size;
4837 unsigned char* end_p = oview + the_end;
4838 while (p < end_p - 8 * 4)
4839 write_insn<big_endian>(p, b + end_p - p), p += 4;
4840 while (p < end_p)
4841 write_insn<big_endian>(p, nop), p += 4;
4842
4843 // Write out pltresolve call stub.
4844 if (parameters->options().output_is_position_independent())
4845 {
4846 Address res0_off = 0;
4847 Address after_bcl_off = the_end + 12;
4848 Address bcl_res0 = after_bcl_off - res0_off;
4849
4850 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
4851 write_insn<big_endian>(p + 4, mflr_0);
4852 write_insn<big_endian>(p + 8, bcl_20_31);
4853 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
4854 write_insn<big_endian>(p + 16, mflr_12);
4855 write_insn<big_endian>(p + 20, mtlr_0);
4856 write_insn<big_endian>(p + 24, sub_11_11_12);
4857
4858 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
4859
4860 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
4861 if (ha(got_bcl) == ha(got_bcl + 4))
4862 {
4863 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
4864 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
4865 }
4866 else
4867 {
4868 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
4869 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
4870 }
4871 write_insn<big_endian>(p + 40, mtctr_0);
4872 write_insn<big_endian>(p + 44, add_0_11_11);
4873 write_insn<big_endian>(p + 48, add_11_0_11);
4874 write_insn<big_endian>(p + 52, bctr);
4875 write_insn<big_endian>(p + 56, nop);
4876 write_insn<big_endian>(p + 60, nop);
4877 }
4878 else
4879 {
4880 Address res0 = this->address();
4881
4882 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
4883 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
4884 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4885 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
4886 else
4887 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
4888 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
4889 write_insn<big_endian>(p + 16, mtctr_0);
4890 write_insn<big_endian>(p + 20, add_0_11_11);
4891 if (ha(g_o_t + 4) == ha(g_o_t + 8))
4892 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
4893 else
4894 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
4895 write_insn<big_endian>(p + 28, add_11_0_11);
4896 write_insn<big_endian>(p + 32, bctr);
4897 write_insn<big_endian>(p + 36, nop);
4898 write_insn<big_endian>(p + 40, nop);
4899 write_insn<big_endian>(p + 44, nop);
4900 write_insn<big_endian>(p + 48, nop);
4901 write_insn<big_endian>(p + 52, nop);
4902 write_insn<big_endian>(p + 56, nop);
4903 write_insn<big_endian>(p + 60, nop);
4904 }
4905 p += 64;
4906 }
4907
4908 of->write_output_view(off, oview_size, oview);
4909 }
4910
4911
4912 // A class to handle linker generated save/restore functions.
4913
4914 template<int size, bool big_endian>
4915 class Output_data_save_res : public Output_section_data_build
4916 {
4917 public:
4918 Output_data_save_res(Symbol_table* symtab);
4919
4920 const unsigned char*
4921 contents() const
4922 {
4923 return contents_;
4924 }
4925
4926 protected:
4927 // Write to a map file.
4928 void
4929 do_print_to_mapfile(Mapfile* mapfile) const
4930 { mapfile->print_output_data(this, _("** save/restore")); }
4931
4932 void
4933 do_write(Output_file*);
4934
4935 private:
4936 // The maximum size of save/restore contents.
4937 static const unsigned int savres_max = 218*4;
4938
4939 void
4940 savres_define(Symbol_table* symtab,
4941 const char *name,
4942 unsigned int lo, unsigned int hi,
4943 unsigned char* write_ent(unsigned char*, int),
4944 unsigned char* write_tail(unsigned char*, int));
4945
4946 unsigned char *contents_;
4947 };
4948
4949 template<bool big_endian>
4950 static unsigned char*
4951 savegpr0(unsigned char* p, int r)
4952 {
4953 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4954 write_insn<big_endian>(p, insn);
4955 return p + 4;
4956 }
4957
4958 template<bool big_endian>
4959 static unsigned char*
4960 savegpr0_tail(unsigned char* p, int r)
4961 {
4962 p = savegpr0<big_endian>(p, r);
4963 uint32_t insn = std_0_1 + 16;
4964 write_insn<big_endian>(p, insn);
4965 p = p + 4;
4966 write_insn<big_endian>(p, blr);
4967 return p + 4;
4968 }
4969
4970 template<bool big_endian>
4971 static unsigned char*
4972 restgpr0(unsigned char* p, int r)
4973 {
4974 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
4975 write_insn<big_endian>(p, insn);
4976 return p + 4;
4977 }
4978
4979 template<bool big_endian>
4980 static unsigned char*
4981 restgpr0_tail(unsigned char* p, int r)
4982 {
4983 uint32_t insn = ld_0_1 + 16;
4984 write_insn<big_endian>(p, insn);
4985 p = p + 4;
4986 p = restgpr0<big_endian>(p, r);
4987 write_insn<big_endian>(p, mtlr_0);
4988 p = p + 4;
4989 if (r == 29)
4990 {
4991 p = restgpr0<big_endian>(p, 30);
4992 p = restgpr0<big_endian>(p, 31);
4993 }
4994 write_insn<big_endian>(p, blr);
4995 return p + 4;
4996 }
4997
4998 template<bool big_endian>
4999 static unsigned char*
5000 savegpr1(unsigned char* p, int r)
5001 {
5002 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5003 write_insn<big_endian>(p, insn);
5004 return p + 4;
5005 }
5006
5007 template<bool big_endian>
5008 static unsigned char*
5009 savegpr1_tail(unsigned char* p, int r)
5010 {
5011 p = savegpr1<big_endian>(p, r);
5012 write_insn<big_endian>(p, blr);
5013 return p + 4;
5014 }
5015
5016 template<bool big_endian>
5017 static unsigned char*
5018 restgpr1(unsigned char* p, int r)
5019 {
5020 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5021 write_insn<big_endian>(p, insn);
5022 return p + 4;
5023 }
5024
5025 template<bool big_endian>
5026 static unsigned char*
5027 restgpr1_tail(unsigned char* p, int r)
5028 {
5029 p = restgpr1<big_endian>(p, r);
5030 write_insn<big_endian>(p, blr);
5031 return p + 4;
5032 }
5033
5034 template<bool big_endian>
5035 static unsigned char*
5036 savefpr(unsigned char* p, int r)
5037 {
5038 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5039 write_insn<big_endian>(p, insn);
5040 return p + 4;
5041 }
5042
5043 template<bool big_endian>
5044 static unsigned char*
5045 savefpr0_tail(unsigned char* p, int r)
5046 {
5047 p = savefpr<big_endian>(p, r);
5048 write_insn<big_endian>(p, std_0_1 + 16);
5049 p = p + 4;
5050 write_insn<big_endian>(p, blr);
5051 return p + 4;
5052 }
5053
5054 template<bool big_endian>
5055 static unsigned char*
5056 restfpr(unsigned char* p, int r)
5057 {
5058 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5059 write_insn<big_endian>(p, insn);
5060 return p + 4;
5061 }
5062
5063 template<bool big_endian>
5064 static unsigned char*
5065 restfpr0_tail(unsigned char* p, int r)
5066 {
5067 write_insn<big_endian>(p, ld_0_1 + 16);
5068 p = p + 4;
5069 p = restfpr<big_endian>(p, r);
5070 write_insn<big_endian>(p, mtlr_0);
5071 p = p + 4;
5072 if (r == 29)
5073 {
5074 p = restfpr<big_endian>(p, 30);
5075 p = restfpr<big_endian>(p, 31);
5076 }
5077 write_insn<big_endian>(p, blr);
5078 return p + 4;
5079 }
5080
5081 template<bool big_endian>
5082 static unsigned char*
5083 savefpr1_tail(unsigned char* p, int r)
5084 {
5085 p = savefpr<big_endian>(p, r);
5086 write_insn<big_endian>(p, blr);
5087 return p + 4;
5088 }
5089
5090 template<bool big_endian>
5091 static unsigned char*
5092 restfpr1_tail(unsigned char* p, int r)
5093 {
5094 p = restfpr<big_endian>(p, r);
5095 write_insn<big_endian>(p, blr);
5096 return p + 4;
5097 }
5098
5099 template<bool big_endian>
5100 static unsigned char*
5101 savevr(unsigned char* p, int r)
5102 {
5103 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5104 write_insn<big_endian>(p, insn);
5105 p = p + 4;
5106 insn = stvx_0_12_0 + (r << 21);
5107 write_insn<big_endian>(p, insn);
5108 return p + 4;
5109 }
5110
5111 template<bool big_endian>
5112 static unsigned char*
5113 savevr_tail(unsigned char* p, int r)
5114 {
5115 p = savevr<big_endian>(p, r);
5116 write_insn<big_endian>(p, blr);
5117 return p + 4;
5118 }
5119
5120 template<bool big_endian>
5121 static unsigned char*
5122 restvr(unsigned char* p, int r)
5123 {
5124 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5125 write_insn<big_endian>(p, insn);
5126 p = p + 4;
5127 insn = lvx_0_12_0 + (r << 21);
5128 write_insn<big_endian>(p, insn);
5129 return p + 4;
5130 }
5131
5132 template<bool big_endian>
5133 static unsigned char*
5134 restvr_tail(unsigned char* p, int r)
5135 {
5136 p = restvr<big_endian>(p, r);
5137 write_insn<big_endian>(p, blr);
5138 return p + 4;
5139 }
5140
5141
5142 template<int size, bool big_endian>
5143 Output_data_save_res<size, big_endian>::Output_data_save_res(
5144 Symbol_table* symtab)
5145 : Output_section_data_build(4),
5146 contents_(NULL)
5147 {
5148 this->savres_define(symtab,
5149 "_savegpr0_", 14, 31,
5150 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5151 this->savres_define(symtab,
5152 "_restgpr0_", 14, 29,
5153 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5154 this->savres_define(symtab,
5155 "_restgpr0_", 30, 31,
5156 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5157 this->savres_define(symtab,
5158 "_savegpr1_", 14, 31,
5159 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5160 this->savres_define(symtab,
5161 "_restgpr1_", 14, 31,
5162 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5163 this->savres_define(symtab,
5164 "_savefpr_", 14, 31,
5165 savefpr<big_endian>, savefpr0_tail<big_endian>);
5166 this->savres_define(symtab,
5167 "_restfpr_", 14, 29,
5168 restfpr<big_endian>, restfpr0_tail<big_endian>);
5169 this->savres_define(symtab,
5170 "_restfpr_", 30, 31,
5171 restfpr<big_endian>, restfpr0_tail<big_endian>);
5172 this->savres_define(symtab,
5173 "._savef", 14, 31,
5174 savefpr<big_endian>, savefpr1_tail<big_endian>);
5175 this->savres_define(symtab,
5176 "._restf", 14, 31,
5177 restfpr<big_endian>, restfpr1_tail<big_endian>);
5178 this->savres_define(symtab,
5179 "_savevr_", 20, 31,
5180 savevr<big_endian>, savevr_tail<big_endian>);
5181 this->savres_define(symtab,
5182 "_restvr_", 20, 31,
5183 restvr<big_endian>, restvr_tail<big_endian>);
5184 }
5185
5186 template<int size, bool big_endian>
5187 void
5188 Output_data_save_res<size, big_endian>::savres_define(
5189 Symbol_table* symtab,
5190 const char *name,
5191 unsigned int lo, unsigned int hi,
5192 unsigned char* write_ent(unsigned char*, int),
5193 unsigned char* write_tail(unsigned char*, int))
5194 {
5195 size_t len = strlen(name);
5196 bool writing = false;
5197 char sym[16];
5198
5199 memcpy(sym, name, len);
5200 sym[len + 2] = 0;
5201
5202 for (unsigned int i = lo; i <= hi; i++)
5203 {
5204 sym[len + 0] = i / 10 + '0';
5205 sym[len + 1] = i % 10 + '0';
5206 Symbol* gsym = symtab->lookup(sym);
5207 bool refd = gsym != NULL && gsym->is_undefined();
5208 writing = writing || refd;
5209 if (writing)
5210 {
5211 if (this->contents_ == NULL)
5212 this->contents_ = new unsigned char[this->savres_max];
5213
5214 section_size_type value = this->current_data_size();
5215 unsigned char* p = this->contents_ + value;
5216 if (i != hi)
5217 p = write_ent(p, i);
5218 else
5219 p = write_tail(p, i);
5220 section_size_type cur_size = p - this->contents_;
5221 this->set_current_data_size(cur_size);
5222 if (refd)
5223 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5224 this, value, cur_size - value,
5225 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5226 elfcpp::STV_HIDDEN, 0, false, false);
5227 }
5228 }
5229 }
5230
5231 // Write out save/restore.
5232
5233 template<int size, bool big_endian>
5234 void
5235 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5236 {
5237 const section_size_type off = this->offset();
5238 const section_size_type oview_size =
5239 convert_to_section_size_type(this->data_size());
5240 unsigned char* const oview = of->get_output_view(off, oview_size);
5241 memcpy(oview, this->contents_, oview_size);
5242 of->write_output_view(off, oview_size, oview);
5243 }
5244
5245
5246 // Create the glink section.
5247
5248 template<int size, bool big_endian>
5249 void
5250 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5251 {
5252 if (this->glink_ == NULL)
5253 {
5254 this->glink_ = new Output_data_glink<size, big_endian>(this);
5255 this->glink_->add_eh_frame(layout);
5256 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5257 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5258 this->glink_, ORDER_TEXT, false);
5259 }
5260 }
5261
5262 // Create a PLT entry for a global symbol.
5263
5264 template<int size, bool big_endian>
5265 void
5266 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5267 Layout* layout,
5268 Symbol* gsym)
5269 {
5270 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5271 && gsym->can_use_relative_reloc(false))
5272 {
5273 if (this->iplt_ == NULL)
5274 this->make_iplt_section(symtab, layout);
5275 this->iplt_->add_ifunc_entry(gsym);
5276 }
5277 else
5278 {
5279 if (this->plt_ == NULL)
5280 this->make_plt_section(symtab, layout);
5281 this->plt_->add_entry(gsym);
5282 }
5283 }
5284
5285 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5286
5287 template<int size, bool big_endian>
5288 void
5289 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5290 Symbol_table* symtab,
5291 Layout* layout,
5292 Sized_relobj_file<size, big_endian>* relobj,
5293 unsigned int r_sym)
5294 {
5295 if (this->iplt_ == NULL)
5296 this->make_iplt_section(symtab, layout);
5297 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5298 }
5299
5300 // Return the number of entries in the PLT.
5301
5302 template<int size, bool big_endian>
5303 unsigned int
5304 Target_powerpc<size, big_endian>::plt_entry_count() const
5305 {
5306 if (this->plt_ == NULL)
5307 return 0;
5308 return this->plt_->entry_count();
5309 }
5310
5311 // Create a GOT entry for local dynamic __tls_get_addr calls.
5312
5313 template<int size, bool big_endian>
5314 unsigned int
5315 Target_powerpc<size, big_endian>::tlsld_got_offset(
5316 Symbol_table* symtab,
5317 Layout* layout,
5318 Sized_relobj_file<size, big_endian>* object)
5319 {
5320 if (this->tlsld_got_offset_ == -1U)
5321 {
5322 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5323 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5324 Output_data_got_powerpc<size, big_endian>* got
5325 = this->got_section(symtab, layout);
5326 unsigned int got_offset = got->add_constant_pair(0, 0);
5327 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5328 got_offset, 0);
5329 this->tlsld_got_offset_ = got_offset;
5330 }
5331 return this->tlsld_got_offset_;
5332 }
5333
5334 // Get the Reference_flags for a particular relocation.
5335
5336 template<int size, bool big_endian>
5337 int
5338 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5339 unsigned int r_type,
5340 const Target_powerpc* target)
5341 {
5342 int ref = 0;
5343
5344 switch (r_type)
5345 {
5346 case elfcpp::R_POWERPC_NONE:
5347 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5348 case elfcpp::R_POWERPC_GNU_VTENTRY:
5349 case elfcpp::R_PPC64_TOC:
5350 // No symbol reference.
5351 break;
5352
5353 case elfcpp::R_PPC64_ADDR64:
5354 case elfcpp::R_PPC64_UADDR64:
5355 case elfcpp::R_POWERPC_ADDR32:
5356 case elfcpp::R_POWERPC_UADDR32:
5357 case elfcpp::R_POWERPC_ADDR16:
5358 case elfcpp::R_POWERPC_UADDR16:
5359 case elfcpp::R_POWERPC_ADDR16_LO:
5360 case elfcpp::R_POWERPC_ADDR16_HI:
5361 case elfcpp::R_POWERPC_ADDR16_HA:
5362 ref = Symbol::ABSOLUTE_REF;
5363 break;
5364
5365 case elfcpp::R_POWERPC_ADDR24:
5366 case elfcpp::R_POWERPC_ADDR14:
5367 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5368 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5369 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5370 break;
5371
5372 case elfcpp::R_PPC64_REL64:
5373 case elfcpp::R_POWERPC_REL32:
5374 case elfcpp::R_PPC_LOCAL24PC:
5375 case elfcpp::R_POWERPC_REL16:
5376 case elfcpp::R_POWERPC_REL16_LO:
5377 case elfcpp::R_POWERPC_REL16_HI:
5378 case elfcpp::R_POWERPC_REL16_HA:
5379 ref = Symbol::RELATIVE_REF;
5380 break;
5381
5382 case elfcpp::R_POWERPC_REL24:
5383 case elfcpp::R_PPC_PLTREL24:
5384 case elfcpp::R_POWERPC_REL14:
5385 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5386 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5387 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5388 break;
5389
5390 case elfcpp::R_POWERPC_GOT16:
5391 case elfcpp::R_POWERPC_GOT16_LO:
5392 case elfcpp::R_POWERPC_GOT16_HI:
5393 case elfcpp::R_POWERPC_GOT16_HA:
5394 case elfcpp::R_PPC64_GOT16_DS:
5395 case elfcpp::R_PPC64_GOT16_LO_DS:
5396 case elfcpp::R_PPC64_TOC16:
5397 case elfcpp::R_PPC64_TOC16_LO:
5398 case elfcpp::R_PPC64_TOC16_HI:
5399 case elfcpp::R_PPC64_TOC16_HA:
5400 case elfcpp::R_PPC64_TOC16_DS:
5401 case elfcpp::R_PPC64_TOC16_LO_DS:
5402 ref = Symbol::RELATIVE_REF;
5403 break;
5404
5405 case elfcpp::R_POWERPC_GOT_TPREL16:
5406 case elfcpp::R_POWERPC_TLS:
5407 ref = Symbol::TLS_REF;
5408 break;
5409
5410 case elfcpp::R_POWERPC_COPY:
5411 case elfcpp::R_POWERPC_GLOB_DAT:
5412 case elfcpp::R_POWERPC_JMP_SLOT:
5413 case elfcpp::R_POWERPC_RELATIVE:
5414 case elfcpp::R_POWERPC_DTPMOD:
5415 default:
5416 // Not expected. We will give an error later.
5417 break;
5418 }
5419
5420 if (size == 64 && target->abiversion() < 2)
5421 ref |= Symbol::FUNC_DESC_ABI;
5422 return ref;
5423 }
5424
5425 // Report an unsupported relocation against a local symbol.
5426
5427 template<int size, bool big_endian>
5428 void
5429 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5430 Sized_relobj_file<size, big_endian>* object,
5431 unsigned int r_type)
5432 {
5433 gold_error(_("%s: unsupported reloc %u against local symbol"),
5434 object->name().c_str(), r_type);
5435 }
5436
5437 // We are about to emit a dynamic relocation of type R_TYPE. If the
5438 // dynamic linker does not support it, issue an error.
5439
5440 template<int size, bool big_endian>
5441 void
5442 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5443 unsigned int r_type)
5444 {
5445 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5446
5447 // These are the relocation types supported by glibc for both 32-bit
5448 // and 64-bit powerpc.
5449 switch (r_type)
5450 {
5451 case elfcpp::R_POWERPC_NONE:
5452 case elfcpp::R_POWERPC_RELATIVE:
5453 case elfcpp::R_POWERPC_GLOB_DAT:
5454 case elfcpp::R_POWERPC_DTPMOD:
5455 case elfcpp::R_POWERPC_DTPREL:
5456 case elfcpp::R_POWERPC_TPREL:
5457 case elfcpp::R_POWERPC_JMP_SLOT:
5458 case elfcpp::R_POWERPC_COPY:
5459 case elfcpp::R_POWERPC_IRELATIVE:
5460 case elfcpp::R_POWERPC_ADDR32:
5461 case elfcpp::R_POWERPC_UADDR32:
5462 case elfcpp::R_POWERPC_ADDR24:
5463 case elfcpp::R_POWERPC_ADDR16:
5464 case elfcpp::R_POWERPC_UADDR16:
5465 case elfcpp::R_POWERPC_ADDR16_LO:
5466 case elfcpp::R_POWERPC_ADDR16_HI:
5467 case elfcpp::R_POWERPC_ADDR16_HA:
5468 case elfcpp::R_POWERPC_ADDR14:
5469 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5470 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5471 case elfcpp::R_POWERPC_REL32:
5472 case elfcpp::R_POWERPC_REL24:
5473 case elfcpp::R_POWERPC_TPREL16:
5474 case elfcpp::R_POWERPC_TPREL16_LO:
5475 case elfcpp::R_POWERPC_TPREL16_HI:
5476 case elfcpp::R_POWERPC_TPREL16_HA:
5477 return;
5478
5479 default:
5480 break;
5481 }
5482
5483 if (size == 64)
5484 {
5485 switch (r_type)
5486 {
5487 // These are the relocation types supported only on 64-bit.
5488 case elfcpp::R_PPC64_ADDR64:
5489 case elfcpp::R_PPC64_UADDR64:
5490 case elfcpp::R_PPC64_JMP_IREL:
5491 case elfcpp::R_PPC64_ADDR16_DS:
5492 case elfcpp::R_PPC64_ADDR16_LO_DS:
5493 case elfcpp::R_PPC64_ADDR16_HIGH:
5494 case elfcpp::R_PPC64_ADDR16_HIGHA:
5495 case elfcpp::R_PPC64_ADDR16_HIGHER:
5496 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5497 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5498 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5499 case elfcpp::R_PPC64_REL64:
5500 case elfcpp::R_POWERPC_ADDR30:
5501 case elfcpp::R_PPC64_TPREL16_DS:
5502 case elfcpp::R_PPC64_TPREL16_LO_DS:
5503 case elfcpp::R_PPC64_TPREL16_HIGH:
5504 case elfcpp::R_PPC64_TPREL16_HIGHA:
5505 case elfcpp::R_PPC64_TPREL16_HIGHER:
5506 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5507 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5508 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5509 return;
5510
5511 default:
5512 break;
5513 }
5514 }
5515 else
5516 {
5517 switch (r_type)
5518 {
5519 // These are the relocation types supported only on 32-bit.
5520 // ??? glibc ld.so doesn't need to support these.
5521 case elfcpp::R_POWERPC_DTPREL16:
5522 case elfcpp::R_POWERPC_DTPREL16_LO:
5523 case elfcpp::R_POWERPC_DTPREL16_HI:
5524 case elfcpp::R_POWERPC_DTPREL16_HA:
5525 return;
5526
5527 default:
5528 break;
5529 }
5530 }
5531
5532 // This prevents us from issuing more than one error per reloc
5533 // section. But we can still wind up issuing more than one
5534 // error per object file.
5535 if (this->issued_non_pic_error_)
5536 return;
5537 gold_assert(parameters->options().output_is_position_independent());
5538 object->error(_("requires unsupported dynamic reloc; "
5539 "recompile with -fPIC"));
5540 this->issued_non_pic_error_ = true;
5541 return;
5542 }
5543
5544 // Return whether we need to make a PLT entry for a relocation of the
5545 // given type against a STT_GNU_IFUNC symbol.
5546
5547 template<int size, bool big_endian>
5548 bool
5549 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5550 Target_powerpc<size, big_endian>* target,
5551 Sized_relobj_file<size, big_endian>* object,
5552 unsigned int r_type,
5553 bool report_err)
5554 {
5555 // In non-pic code any reference will resolve to the plt call stub
5556 // for the ifunc symbol.
5557 if ((size == 32 || target->abiversion() >= 2)
5558 && !parameters->options().output_is_position_independent())
5559 return true;
5560
5561 switch (r_type)
5562 {
5563 // Word size refs from data sections are OK, but don't need a PLT entry.
5564 case elfcpp::R_POWERPC_ADDR32:
5565 case elfcpp::R_POWERPC_UADDR32:
5566 if (size == 32)
5567 return false;
5568 break;
5569
5570 case elfcpp::R_PPC64_ADDR64:
5571 case elfcpp::R_PPC64_UADDR64:
5572 if (size == 64)
5573 return false;
5574 break;
5575
5576 // GOT refs are good, but also don't need a PLT entry.
5577 case elfcpp::R_POWERPC_GOT16:
5578 case elfcpp::R_POWERPC_GOT16_LO:
5579 case elfcpp::R_POWERPC_GOT16_HI:
5580 case elfcpp::R_POWERPC_GOT16_HA:
5581 case elfcpp::R_PPC64_GOT16_DS:
5582 case elfcpp::R_PPC64_GOT16_LO_DS:
5583 return false;
5584
5585 // Function calls are good, and these do need a PLT entry.
5586 case elfcpp::R_POWERPC_ADDR24:
5587 case elfcpp::R_POWERPC_ADDR14:
5588 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5589 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5590 case elfcpp::R_POWERPC_REL24:
5591 case elfcpp::R_PPC_PLTREL24:
5592 case elfcpp::R_POWERPC_REL14:
5593 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5594 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5595 return true;
5596
5597 default:
5598 break;
5599 }
5600
5601 // Anything else is a problem.
5602 // If we are building a static executable, the libc startup function
5603 // responsible for applying indirect function relocations is going
5604 // to complain about the reloc type.
5605 // If we are building a dynamic executable, we will have a text
5606 // relocation. The dynamic loader will set the text segment
5607 // writable and non-executable to apply text relocations. So we'll
5608 // segfault when trying to run the indirection function to resolve
5609 // the reloc.
5610 if (report_err)
5611 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
5612 object->name().c_str(), r_type);
5613 return false;
5614 }
5615
5616 // Scan a relocation for a local symbol.
5617
5618 template<int size, bool big_endian>
5619 inline void
5620 Target_powerpc<size, big_endian>::Scan::local(
5621 Symbol_table* symtab,
5622 Layout* layout,
5623 Target_powerpc<size, big_endian>* target,
5624 Sized_relobj_file<size, big_endian>* object,
5625 unsigned int data_shndx,
5626 Output_section* output_section,
5627 const elfcpp::Rela<size, big_endian>& reloc,
5628 unsigned int r_type,
5629 const elfcpp::Sym<size, big_endian>& lsym,
5630 bool is_discarded)
5631 {
5632 this->maybe_skip_tls_get_addr_call(r_type, NULL);
5633
5634 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
5635 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
5636 {
5637 this->expect_tls_get_addr_call();
5638 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5639 if (tls_type != tls::TLSOPT_NONE)
5640 this->skip_next_tls_get_addr_call();
5641 }
5642 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
5643 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
5644 {
5645 this->expect_tls_get_addr_call();
5646 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5647 if (tls_type != tls::TLSOPT_NONE)
5648 this->skip_next_tls_get_addr_call();
5649 }
5650
5651 Powerpc_relobj<size, big_endian>* ppc_object
5652 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
5653
5654 if (is_discarded)
5655 {
5656 if (size == 64
5657 && data_shndx == ppc_object->opd_shndx()
5658 && r_type == elfcpp::R_PPC64_ADDR64)
5659 ppc_object->set_opd_discard(reloc.get_r_offset());
5660 return;
5661 }
5662
5663 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5664 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5665 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
5666 {
5667 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5668 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5669 r_type, r_sym, reloc.get_r_addend());
5670 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5671 }
5672
5673 switch (r_type)
5674 {
5675 case elfcpp::R_POWERPC_NONE:
5676 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5677 case elfcpp::R_POWERPC_GNU_VTENTRY:
5678 case elfcpp::R_PPC64_TOCSAVE:
5679 case elfcpp::R_POWERPC_TLS:
5680 case elfcpp::R_PPC64_ENTRY:
5681 break;
5682
5683 case elfcpp::R_PPC64_TOC:
5684 {
5685 Output_data_got_powerpc<size, big_endian>* got
5686 = target->got_section(symtab, layout);
5687 if (parameters->options().output_is_position_independent())
5688 {
5689 Address off = reloc.get_r_offset();
5690 if (size == 64
5691 && target->abiversion() < 2
5692 && data_shndx == ppc_object->opd_shndx()
5693 && ppc_object->get_opd_discard(off - 8))
5694 break;
5695
5696 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5697 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
5698 rela_dyn->add_output_section_relative(got->output_section(),
5699 elfcpp::R_POWERPC_RELATIVE,
5700 output_section,
5701 object, data_shndx, off,
5702 symobj->toc_base_offset());
5703 }
5704 }
5705 break;
5706
5707 case elfcpp::R_PPC64_ADDR64:
5708 case elfcpp::R_PPC64_UADDR64:
5709 case elfcpp::R_POWERPC_ADDR32:
5710 case elfcpp::R_POWERPC_UADDR32:
5711 case elfcpp::R_POWERPC_ADDR24:
5712 case elfcpp::R_POWERPC_ADDR16:
5713 case elfcpp::R_POWERPC_ADDR16_LO:
5714 case elfcpp::R_POWERPC_ADDR16_HI:
5715 case elfcpp::R_POWERPC_ADDR16_HA:
5716 case elfcpp::R_POWERPC_UADDR16:
5717 case elfcpp::R_PPC64_ADDR16_HIGH:
5718 case elfcpp::R_PPC64_ADDR16_HIGHA:
5719 case elfcpp::R_PPC64_ADDR16_HIGHER:
5720 case elfcpp::R_PPC64_ADDR16_HIGHERA:
5721 case elfcpp::R_PPC64_ADDR16_HIGHEST:
5722 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
5723 case elfcpp::R_PPC64_ADDR16_DS:
5724 case elfcpp::R_PPC64_ADDR16_LO_DS:
5725 case elfcpp::R_POWERPC_ADDR14:
5726 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5727 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5728 // If building a shared library (or a position-independent
5729 // executable), we need to create a dynamic relocation for
5730 // this location.
5731 if (parameters->options().output_is_position_independent()
5732 || (size == 64 && is_ifunc && target->abiversion() < 2))
5733 {
5734 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5735 is_ifunc);
5736 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5737 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
5738 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
5739 {
5740 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5741 : elfcpp::R_POWERPC_RELATIVE);
5742 rela_dyn->add_local_relative(object, r_sym, dynrel,
5743 output_section, data_shndx,
5744 reloc.get_r_offset(),
5745 reloc.get_r_addend(), false);
5746 }
5747 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
5748 {
5749 check_non_pic(object, r_type);
5750 rela_dyn->add_local(object, r_sym, r_type, output_section,
5751 data_shndx, reloc.get_r_offset(),
5752 reloc.get_r_addend());
5753 }
5754 else
5755 {
5756 gold_assert(lsym.get_st_value() == 0);
5757 unsigned int shndx = lsym.get_st_shndx();
5758 bool is_ordinary;
5759 shndx = object->adjust_sym_shndx(r_sym, shndx,
5760 &is_ordinary);
5761 if (!is_ordinary)
5762 object->error(_("section symbol %u has bad shndx %u"),
5763 r_sym, shndx);
5764 else
5765 rela_dyn->add_local_section(object, shndx, r_type,
5766 output_section, data_shndx,
5767 reloc.get_r_offset());
5768 }
5769 }
5770 break;
5771
5772 case elfcpp::R_POWERPC_REL24:
5773 case elfcpp::R_PPC_PLTREL24:
5774 case elfcpp::R_PPC_LOCAL24PC:
5775 case elfcpp::R_POWERPC_REL14:
5776 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5777 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5778 if (!is_ifunc)
5779 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
5780 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
5781 reloc.get_r_addend());
5782 break;
5783
5784 case elfcpp::R_PPC64_REL64:
5785 case elfcpp::R_POWERPC_REL32:
5786 case elfcpp::R_POWERPC_REL16:
5787 case elfcpp::R_POWERPC_REL16_LO:
5788 case elfcpp::R_POWERPC_REL16_HI:
5789 case elfcpp::R_POWERPC_REL16_HA:
5790 case elfcpp::R_POWERPC_REL16DX_HA:
5791 case elfcpp::R_POWERPC_SECTOFF:
5792 case elfcpp::R_POWERPC_SECTOFF_LO:
5793 case elfcpp::R_POWERPC_SECTOFF_HI:
5794 case elfcpp::R_POWERPC_SECTOFF_HA:
5795 case elfcpp::R_PPC64_SECTOFF_DS:
5796 case elfcpp::R_PPC64_SECTOFF_LO_DS:
5797 case elfcpp::R_POWERPC_TPREL16:
5798 case elfcpp::R_POWERPC_TPREL16_LO:
5799 case elfcpp::R_POWERPC_TPREL16_HI:
5800 case elfcpp::R_POWERPC_TPREL16_HA:
5801 case elfcpp::R_PPC64_TPREL16_DS:
5802 case elfcpp::R_PPC64_TPREL16_LO_DS:
5803 case elfcpp::R_PPC64_TPREL16_HIGH:
5804 case elfcpp::R_PPC64_TPREL16_HIGHA:
5805 case elfcpp::R_PPC64_TPREL16_HIGHER:
5806 case elfcpp::R_PPC64_TPREL16_HIGHERA:
5807 case elfcpp::R_PPC64_TPREL16_HIGHEST:
5808 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
5809 case elfcpp::R_POWERPC_DTPREL16:
5810 case elfcpp::R_POWERPC_DTPREL16_LO:
5811 case elfcpp::R_POWERPC_DTPREL16_HI:
5812 case elfcpp::R_POWERPC_DTPREL16_HA:
5813 case elfcpp::R_PPC64_DTPREL16_DS:
5814 case elfcpp::R_PPC64_DTPREL16_LO_DS:
5815 case elfcpp::R_PPC64_DTPREL16_HIGH:
5816 case elfcpp::R_PPC64_DTPREL16_HIGHA:
5817 case elfcpp::R_PPC64_DTPREL16_HIGHER:
5818 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
5819 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
5820 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
5821 case elfcpp::R_PPC64_TLSGD:
5822 case elfcpp::R_PPC64_TLSLD:
5823 case elfcpp::R_PPC64_ADDR64_LOCAL:
5824 break;
5825
5826 case elfcpp::R_POWERPC_GOT16:
5827 case elfcpp::R_POWERPC_GOT16_LO:
5828 case elfcpp::R_POWERPC_GOT16_HI:
5829 case elfcpp::R_POWERPC_GOT16_HA:
5830 case elfcpp::R_PPC64_GOT16_DS:
5831 case elfcpp::R_PPC64_GOT16_LO_DS:
5832 {
5833 // The symbol requires a GOT entry.
5834 Output_data_got_powerpc<size, big_endian>* got
5835 = target->got_section(symtab, layout);
5836 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5837
5838 if (!parameters->options().output_is_position_independent())
5839 {
5840 if (is_ifunc
5841 && (size == 32 || target->abiversion() >= 2))
5842 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
5843 else
5844 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
5845 }
5846 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
5847 {
5848 // If we are generating a shared object or a pie, this
5849 // symbol's GOT entry will be set by a dynamic relocation.
5850 unsigned int off;
5851 off = got->add_constant(0);
5852 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
5853
5854 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
5855 is_ifunc);
5856 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
5857 : elfcpp::R_POWERPC_RELATIVE);
5858 rela_dyn->add_local_relative(object, r_sym, dynrel,
5859 got, off, 0, false);
5860 }
5861 }
5862 break;
5863
5864 case elfcpp::R_PPC64_TOC16:
5865 case elfcpp::R_PPC64_TOC16_LO:
5866 case elfcpp::R_PPC64_TOC16_HI:
5867 case elfcpp::R_PPC64_TOC16_HA:
5868 case elfcpp::R_PPC64_TOC16_DS:
5869 case elfcpp::R_PPC64_TOC16_LO_DS:
5870 // We need a GOT section.
5871 target->got_section(symtab, layout);
5872 break;
5873
5874 case elfcpp::R_POWERPC_GOT_TLSGD16:
5875 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
5876 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
5877 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
5878 {
5879 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
5880 if (tls_type == tls::TLSOPT_NONE)
5881 {
5882 Output_data_got_powerpc<size, big_endian>* got
5883 = target->got_section(symtab, layout);
5884 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5885 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5886 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
5887 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
5888 }
5889 else if (tls_type == tls::TLSOPT_TO_LE)
5890 {
5891 // no GOT relocs needed for Local Exec.
5892 }
5893 else
5894 gold_unreachable();
5895 }
5896 break;
5897
5898 case elfcpp::R_POWERPC_GOT_TLSLD16:
5899 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
5900 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
5901 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
5902 {
5903 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
5904 if (tls_type == tls::TLSOPT_NONE)
5905 target->tlsld_got_offset(symtab, layout, object);
5906 else if (tls_type == tls::TLSOPT_TO_LE)
5907 {
5908 // no GOT relocs needed for Local Exec.
5909 if (parameters->options().emit_relocs())
5910 {
5911 Output_section* os = layout->tls_segment()->first_section();
5912 gold_assert(os != NULL);
5913 os->set_needs_symtab_index();
5914 }
5915 }
5916 else
5917 gold_unreachable();
5918 }
5919 break;
5920
5921 case elfcpp::R_POWERPC_GOT_DTPREL16:
5922 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
5923 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
5924 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
5925 {
5926 Output_data_got_powerpc<size, big_endian>* got
5927 = target->got_section(symtab, layout);
5928 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5929 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
5930 }
5931 break;
5932
5933 case elfcpp::R_POWERPC_GOT_TPREL16:
5934 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
5935 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
5936 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
5937 {
5938 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
5939 if (tls_type == tls::TLSOPT_NONE)
5940 {
5941 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
5942 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
5943 {
5944 Output_data_got_powerpc<size, big_endian>* got
5945 = target->got_section(symtab, layout);
5946 unsigned int off = got->add_constant(0);
5947 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
5948
5949 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5950 rela_dyn->add_symbolless_local_addend(object, r_sym,
5951 elfcpp::R_POWERPC_TPREL,
5952 got, off, 0);
5953 }
5954 }
5955 else if (tls_type == tls::TLSOPT_TO_LE)
5956 {
5957 // no GOT relocs needed for Local Exec.
5958 }
5959 else
5960 gold_unreachable();
5961 }
5962 break;
5963
5964 default:
5965 unsupported_reloc_local(object, r_type);
5966 break;
5967 }
5968
5969 switch (r_type)
5970 {
5971 case elfcpp::R_POWERPC_GOT_TLSLD16:
5972 case elfcpp::R_POWERPC_GOT_TLSGD16:
5973 case elfcpp::R_POWERPC_GOT_TPREL16:
5974 case elfcpp::R_POWERPC_GOT_DTPREL16:
5975 case elfcpp::R_POWERPC_GOT16:
5976 case elfcpp::R_PPC64_GOT16_DS:
5977 case elfcpp::R_PPC64_TOC16:
5978 case elfcpp::R_PPC64_TOC16_DS:
5979 ppc_object->set_has_small_toc_reloc();
5980 default:
5981 break;
5982 }
5983 }
5984
5985 // Report an unsupported relocation against a global symbol.
5986
5987 template<int size, bool big_endian>
5988 void
5989 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
5990 Sized_relobj_file<size, big_endian>* object,
5991 unsigned int r_type,
5992 Symbol* gsym)
5993 {
5994 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
5995 object->name().c_str(), r_type, gsym->demangled_name().c_str());
5996 }
5997
5998 // Scan a relocation for a global symbol.
5999
6000 template<int size, bool big_endian>
6001 inline void
6002 Target_powerpc<size, big_endian>::Scan::global(
6003 Symbol_table* symtab,
6004 Layout* layout,
6005 Target_powerpc<size, big_endian>* target,
6006 Sized_relobj_file<size, big_endian>* object,
6007 unsigned int data_shndx,
6008 Output_section* output_section,
6009 const elfcpp::Rela<size, big_endian>& reloc,
6010 unsigned int r_type,
6011 Symbol* gsym)
6012 {
6013 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6014 return;
6015
6016 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6017 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6018 {
6019 this->expect_tls_get_addr_call();
6020 const bool final = gsym->final_value_is_known();
6021 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6022 if (tls_type != tls::TLSOPT_NONE)
6023 this->skip_next_tls_get_addr_call();
6024 }
6025 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6026 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6027 {
6028 this->expect_tls_get_addr_call();
6029 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6030 if (tls_type != tls::TLSOPT_NONE)
6031 this->skip_next_tls_get_addr_call();
6032 }
6033
6034 Powerpc_relobj<size, big_endian>* ppc_object
6035 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6036
6037 // A STT_GNU_IFUNC symbol may require a PLT entry.
6038 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6039 bool pushed_ifunc = false;
6040 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6041 {
6042 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6043 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6044 reloc.get_r_addend());
6045 target->make_plt_entry(symtab, layout, gsym);
6046 pushed_ifunc = true;
6047 }
6048
6049 switch (r_type)
6050 {
6051 case elfcpp::R_POWERPC_NONE:
6052 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6053 case elfcpp::R_POWERPC_GNU_VTENTRY:
6054 case elfcpp::R_PPC_LOCAL24PC:
6055 case elfcpp::R_POWERPC_TLS:
6056 case elfcpp::R_PPC64_ENTRY:
6057 break;
6058
6059 case elfcpp::R_PPC64_TOC:
6060 {
6061 Output_data_got_powerpc<size, big_endian>* got
6062 = target->got_section(symtab, layout);
6063 if (parameters->options().output_is_position_independent())
6064 {
6065 Address off = reloc.get_r_offset();
6066 if (size == 64
6067 && data_shndx == ppc_object->opd_shndx()
6068 && ppc_object->get_opd_discard(off - 8))
6069 break;
6070
6071 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6072 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6073 if (data_shndx != ppc_object->opd_shndx())
6074 symobj = static_cast
6075 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6076 rela_dyn->add_output_section_relative(got->output_section(),
6077 elfcpp::R_POWERPC_RELATIVE,
6078 output_section,
6079 object, data_shndx, off,
6080 symobj->toc_base_offset());
6081 }
6082 }
6083 break;
6084
6085 case elfcpp::R_PPC64_ADDR64:
6086 if (size == 64
6087 && target->abiversion() < 2
6088 && data_shndx == ppc_object->opd_shndx()
6089 && (gsym->is_defined_in_discarded_section()
6090 || gsym->object() != object))
6091 {
6092 ppc_object->set_opd_discard(reloc.get_r_offset());
6093 break;
6094 }
6095 // Fall through.
6096 case elfcpp::R_PPC64_UADDR64:
6097 case elfcpp::R_POWERPC_ADDR32:
6098 case elfcpp::R_POWERPC_UADDR32:
6099 case elfcpp::R_POWERPC_ADDR24:
6100 case elfcpp::R_POWERPC_ADDR16:
6101 case elfcpp::R_POWERPC_ADDR16_LO:
6102 case elfcpp::R_POWERPC_ADDR16_HI:
6103 case elfcpp::R_POWERPC_ADDR16_HA:
6104 case elfcpp::R_POWERPC_UADDR16:
6105 case elfcpp::R_PPC64_ADDR16_HIGH:
6106 case elfcpp::R_PPC64_ADDR16_HIGHA:
6107 case elfcpp::R_PPC64_ADDR16_HIGHER:
6108 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6109 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6110 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6111 case elfcpp::R_PPC64_ADDR16_DS:
6112 case elfcpp::R_PPC64_ADDR16_LO_DS:
6113 case elfcpp::R_POWERPC_ADDR14:
6114 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6115 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6116 {
6117 // Make a PLT entry if necessary.
6118 if (gsym->needs_plt_entry())
6119 {
6120 // Since this is not a PC-relative relocation, we may be
6121 // taking the address of a function. In that case we need to
6122 // set the entry in the dynamic symbol table to the address of
6123 // the PLT call stub.
6124 bool need_ifunc_plt = false;
6125 if ((size == 32 || target->abiversion() >= 2)
6126 && gsym->is_from_dynobj()
6127 && !parameters->options().output_is_position_independent())
6128 {
6129 gsym->set_needs_dynsym_value();
6130 need_ifunc_plt = true;
6131 }
6132 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6133 {
6134 target->push_branch(ppc_object, data_shndx,
6135 reloc.get_r_offset(), r_type,
6136 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6137 reloc.get_r_addend());
6138 target->make_plt_entry(symtab, layout, gsym);
6139 }
6140 }
6141 // Make a dynamic relocation if necessary.
6142 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6143 || (size == 64 && is_ifunc && target->abiversion() < 2))
6144 {
6145 if (!parameters->options().output_is_position_independent()
6146 && gsym->may_need_copy_reloc())
6147 {
6148 target->copy_reloc(symtab, layout, object,
6149 data_shndx, output_section, gsym, reloc);
6150 }
6151 else if ((((size == 32
6152 && r_type == elfcpp::R_POWERPC_ADDR32)
6153 || (size == 64
6154 && r_type == elfcpp::R_PPC64_ADDR64
6155 && target->abiversion() >= 2))
6156 && gsym->can_use_relative_reloc(false)
6157 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6158 && parameters->options().shared()))
6159 || (size == 64
6160 && r_type == elfcpp::R_PPC64_ADDR64
6161 && target->abiversion() < 2
6162 && (gsym->can_use_relative_reloc(false)
6163 || data_shndx == ppc_object->opd_shndx())))
6164 {
6165 Reloc_section* rela_dyn
6166 = target->rela_dyn_section(symtab, layout, is_ifunc);
6167 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6168 : elfcpp::R_POWERPC_RELATIVE);
6169 rela_dyn->add_symbolless_global_addend(
6170 gsym, dynrel, output_section, object, data_shndx,
6171 reloc.get_r_offset(), reloc.get_r_addend());
6172 }
6173 else
6174 {
6175 Reloc_section* rela_dyn
6176 = target->rela_dyn_section(symtab, layout, is_ifunc);
6177 check_non_pic(object, r_type);
6178 rela_dyn->add_global(gsym, r_type, output_section,
6179 object, data_shndx,
6180 reloc.get_r_offset(),
6181 reloc.get_r_addend());
6182 }
6183 }
6184 }
6185 break;
6186
6187 case elfcpp::R_PPC_PLTREL24:
6188 case elfcpp::R_POWERPC_REL24:
6189 if (!is_ifunc)
6190 {
6191 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6192 r_type,
6193 elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6194 reloc.get_r_addend());
6195 if (gsym->needs_plt_entry()
6196 || (!gsym->final_value_is_known()
6197 && (gsym->is_undefined()
6198 || gsym->is_from_dynobj()
6199 || gsym->is_preemptible())))
6200 target->make_plt_entry(symtab, layout, gsym);
6201 }
6202 // Fall through.
6203
6204 case elfcpp::R_PPC64_REL64:
6205 case elfcpp::R_POWERPC_REL32:
6206 // Make a dynamic relocation if necessary.
6207 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6208 {
6209 if (!parameters->options().output_is_position_independent()
6210 && gsym->may_need_copy_reloc())
6211 {
6212 target->copy_reloc(symtab, layout, object,
6213 data_shndx, output_section, gsym,
6214 reloc);
6215 }
6216 else
6217 {
6218 Reloc_section* rela_dyn
6219 = target->rela_dyn_section(symtab, layout, is_ifunc);
6220 check_non_pic(object, r_type);
6221 rela_dyn->add_global(gsym, r_type, output_section, object,
6222 data_shndx, reloc.get_r_offset(),
6223 reloc.get_r_addend());
6224 }
6225 }
6226 break;
6227
6228 case elfcpp::R_POWERPC_REL14:
6229 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6230 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6231 if (!is_ifunc)
6232 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6233 r_type, elfcpp::elf_r_sym<size>(reloc.get_r_info()),
6234 reloc.get_r_addend());
6235 break;
6236
6237 case elfcpp::R_POWERPC_REL16:
6238 case elfcpp::R_POWERPC_REL16_LO:
6239 case elfcpp::R_POWERPC_REL16_HI:
6240 case elfcpp::R_POWERPC_REL16_HA:
6241 case elfcpp::R_POWERPC_REL16DX_HA:
6242 case elfcpp::R_POWERPC_SECTOFF:
6243 case elfcpp::R_POWERPC_SECTOFF_LO:
6244 case elfcpp::R_POWERPC_SECTOFF_HI:
6245 case elfcpp::R_POWERPC_SECTOFF_HA:
6246 case elfcpp::R_PPC64_SECTOFF_DS:
6247 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6248 case elfcpp::R_POWERPC_TPREL16:
6249 case elfcpp::R_POWERPC_TPREL16_LO:
6250 case elfcpp::R_POWERPC_TPREL16_HI:
6251 case elfcpp::R_POWERPC_TPREL16_HA:
6252 case elfcpp::R_PPC64_TPREL16_DS:
6253 case elfcpp::R_PPC64_TPREL16_LO_DS:
6254 case elfcpp::R_PPC64_TPREL16_HIGH:
6255 case elfcpp::R_PPC64_TPREL16_HIGHA:
6256 case elfcpp::R_PPC64_TPREL16_HIGHER:
6257 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6258 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6259 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6260 case elfcpp::R_POWERPC_DTPREL16:
6261 case elfcpp::R_POWERPC_DTPREL16_LO:
6262 case elfcpp::R_POWERPC_DTPREL16_HI:
6263 case elfcpp::R_POWERPC_DTPREL16_HA:
6264 case elfcpp::R_PPC64_DTPREL16_DS:
6265 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6266 case elfcpp::R_PPC64_DTPREL16_HIGH:
6267 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6268 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6269 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6270 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6271 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6272 case elfcpp::R_PPC64_TLSGD:
6273 case elfcpp::R_PPC64_TLSLD:
6274 case elfcpp::R_PPC64_ADDR64_LOCAL:
6275 break;
6276
6277 case elfcpp::R_POWERPC_GOT16:
6278 case elfcpp::R_POWERPC_GOT16_LO:
6279 case elfcpp::R_POWERPC_GOT16_HI:
6280 case elfcpp::R_POWERPC_GOT16_HA:
6281 case elfcpp::R_PPC64_GOT16_DS:
6282 case elfcpp::R_PPC64_GOT16_LO_DS:
6283 {
6284 // The symbol requires a GOT entry.
6285 Output_data_got_powerpc<size, big_endian>* got;
6286
6287 got = target->got_section(symtab, layout);
6288 if (gsym->final_value_is_known())
6289 {
6290 if (is_ifunc
6291 && (size == 32 || target->abiversion() >= 2))
6292 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6293 else
6294 got->add_global(gsym, GOT_TYPE_STANDARD);
6295 }
6296 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
6297 {
6298 // If we are generating a shared object or a pie, this
6299 // symbol's GOT entry will be set by a dynamic relocation.
6300 unsigned int off = got->add_constant(0);
6301 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
6302
6303 Reloc_section* rela_dyn
6304 = target->rela_dyn_section(symtab, layout, is_ifunc);
6305
6306 if (gsym->can_use_relative_reloc(false)
6307 && !((size == 32
6308 || target->abiversion() >= 2)
6309 && gsym->visibility() == elfcpp::STV_PROTECTED
6310 && parameters->options().shared()))
6311 {
6312 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6313 : elfcpp::R_POWERPC_RELATIVE);
6314 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
6315 }
6316 else
6317 {
6318 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
6319 rela_dyn->add_global(gsym, dynrel, got, off, 0);
6320 }
6321 }
6322 }
6323 break;
6324
6325 case elfcpp::R_PPC64_TOC16:
6326 case elfcpp::R_PPC64_TOC16_LO:
6327 case elfcpp::R_PPC64_TOC16_HI:
6328 case elfcpp::R_PPC64_TOC16_HA:
6329 case elfcpp::R_PPC64_TOC16_DS:
6330 case elfcpp::R_PPC64_TOC16_LO_DS:
6331 // We need a GOT section.
6332 target->got_section(symtab, layout);
6333 break;
6334
6335 case elfcpp::R_POWERPC_GOT_TLSGD16:
6336 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6337 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6338 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6339 {
6340 const bool final = gsym->final_value_is_known();
6341 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6342 if (tls_type == tls::TLSOPT_NONE)
6343 {
6344 Output_data_got_powerpc<size, big_endian>* got
6345 = target->got_section(symtab, layout);
6346 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6347 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
6348 elfcpp::R_POWERPC_DTPMOD,
6349 elfcpp::R_POWERPC_DTPREL);
6350 }
6351 else if (tls_type == tls::TLSOPT_TO_IE)
6352 {
6353 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6354 {
6355 Output_data_got_powerpc<size, big_endian>* got
6356 = target->got_section(symtab, layout);
6357 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6358 if (gsym->is_undefined()
6359 || gsym->is_from_dynobj())
6360 {
6361 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6362 elfcpp::R_POWERPC_TPREL);
6363 }
6364 else
6365 {
6366 unsigned int off = got->add_constant(0);
6367 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6368 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6369 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6370 got, off, 0);
6371 }
6372 }
6373 }
6374 else if (tls_type == tls::TLSOPT_TO_LE)
6375 {
6376 // no GOT relocs needed for Local Exec.
6377 }
6378 else
6379 gold_unreachable();
6380 }
6381 break;
6382
6383 case elfcpp::R_POWERPC_GOT_TLSLD16:
6384 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6385 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6386 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6387 {
6388 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6389 if (tls_type == tls::TLSOPT_NONE)
6390 target->tlsld_got_offset(symtab, layout, object);
6391 else if (tls_type == tls::TLSOPT_TO_LE)
6392 {
6393 // no GOT relocs needed for Local Exec.
6394 if (parameters->options().emit_relocs())
6395 {
6396 Output_section* os = layout->tls_segment()->first_section();
6397 gold_assert(os != NULL);
6398 os->set_needs_symtab_index();
6399 }
6400 }
6401 else
6402 gold_unreachable();
6403 }
6404 break;
6405
6406 case elfcpp::R_POWERPC_GOT_DTPREL16:
6407 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6408 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6409 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6410 {
6411 Output_data_got_powerpc<size, big_endian>* got
6412 = target->got_section(symtab, layout);
6413 if (!gsym->final_value_is_known()
6414 && (gsym->is_from_dynobj()
6415 || gsym->is_undefined()
6416 || gsym->is_preemptible()))
6417 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
6418 target->rela_dyn_section(layout),
6419 elfcpp::R_POWERPC_DTPREL);
6420 else
6421 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
6422 }
6423 break;
6424
6425 case elfcpp::R_POWERPC_GOT_TPREL16:
6426 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6427 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6428 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6429 {
6430 const bool final = gsym->final_value_is_known();
6431 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
6432 if (tls_type == tls::TLSOPT_NONE)
6433 {
6434 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
6435 {
6436 Output_data_got_powerpc<size, big_endian>* got
6437 = target->got_section(symtab, layout);
6438 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6439 if (gsym->is_undefined()
6440 || gsym->is_from_dynobj())
6441 {
6442 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
6443 elfcpp::R_POWERPC_TPREL);
6444 }
6445 else
6446 {
6447 unsigned int off = got->add_constant(0);
6448 gsym->set_got_offset(GOT_TYPE_TPREL, off);
6449 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
6450 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
6451 got, off, 0);
6452 }
6453 }
6454 }
6455 else if (tls_type == tls::TLSOPT_TO_LE)
6456 {
6457 // no GOT relocs needed for Local Exec.
6458 }
6459 else
6460 gold_unreachable();
6461 }
6462 break;
6463
6464 default:
6465 unsupported_reloc_global(object, r_type, gsym);
6466 break;
6467 }
6468
6469 switch (r_type)
6470 {
6471 case elfcpp::R_POWERPC_GOT_TLSLD16:
6472 case elfcpp::R_POWERPC_GOT_TLSGD16:
6473 case elfcpp::R_POWERPC_GOT_TPREL16:
6474 case elfcpp::R_POWERPC_GOT_DTPREL16:
6475 case elfcpp::R_POWERPC_GOT16:
6476 case elfcpp::R_PPC64_GOT16_DS:
6477 case elfcpp::R_PPC64_TOC16:
6478 case elfcpp::R_PPC64_TOC16_DS:
6479 ppc_object->set_has_small_toc_reloc();
6480 default:
6481 break;
6482 }
6483 }
6484
6485 // Process relocations for gc.
6486
6487 template<int size, bool big_endian>
6488 void
6489 Target_powerpc<size, big_endian>::gc_process_relocs(
6490 Symbol_table* symtab,
6491 Layout* layout,
6492 Sized_relobj_file<size, big_endian>* object,
6493 unsigned int data_shndx,
6494 unsigned int,
6495 const unsigned char* prelocs,
6496 size_t reloc_count,
6497 Output_section* output_section,
6498 bool needs_special_offset_handling,
6499 size_t local_symbol_count,
6500 const unsigned char* plocal_symbols)
6501 {
6502 typedef Target_powerpc<size, big_endian> Powerpc;
6503 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6504 Classify_reloc;
6505
6506 Powerpc_relobj<size, big_endian>* ppc_object
6507 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6508 if (size == 64)
6509 ppc_object->set_opd_valid();
6510 if (size == 64 && data_shndx == ppc_object->opd_shndx())
6511 {
6512 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
6513 for (p = ppc_object->access_from_map()->begin();
6514 p != ppc_object->access_from_map()->end();
6515 ++p)
6516 {
6517 Address dst_off = p->first;
6518 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6519 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
6520 for (s = p->second.begin(); s != p->second.end(); ++s)
6521 {
6522 Relobj* src_obj = s->first;
6523 unsigned int src_indx = s->second;
6524 symtab->gc()->add_reference(src_obj, src_indx,
6525 ppc_object, dst_indx);
6526 }
6527 p->second.clear();
6528 }
6529 ppc_object->access_from_map()->clear();
6530 ppc_object->process_gc_mark(symtab);
6531 // Don't look at .opd relocs as .opd will reference everything.
6532 return;
6533 }
6534
6535 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6536 symtab,
6537 layout,
6538 this,
6539 object,
6540 data_shndx,
6541 prelocs,
6542 reloc_count,
6543 output_section,
6544 needs_special_offset_handling,
6545 local_symbol_count,
6546 plocal_symbols);
6547 }
6548
6549 // Handle target specific gc actions when adding a gc reference from
6550 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
6551 // and DST_OFF. For powerpc64, this adds a referenc to the code
6552 // section of a function descriptor.
6553
6554 template<int size, bool big_endian>
6555 void
6556 Target_powerpc<size, big_endian>::do_gc_add_reference(
6557 Symbol_table* symtab,
6558 Relobj* src_obj,
6559 unsigned int src_shndx,
6560 Relobj* dst_obj,
6561 unsigned int dst_shndx,
6562 Address dst_off) const
6563 {
6564 if (size != 64 || dst_obj->is_dynamic())
6565 return;
6566
6567 Powerpc_relobj<size, big_endian>* ppc_object
6568 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
6569 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
6570 {
6571 if (ppc_object->opd_valid())
6572 {
6573 dst_shndx = ppc_object->get_opd_ent(dst_off);
6574 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
6575 }
6576 else
6577 {
6578 // If we haven't run scan_opd_relocs, we must delay
6579 // processing this function descriptor reference.
6580 ppc_object->add_reference(src_obj, src_shndx, dst_off);
6581 }
6582 }
6583 }
6584
6585 // Add any special sections for this symbol to the gc work list.
6586 // For powerpc64, this adds the code section of a function
6587 // descriptor.
6588
6589 template<int size, bool big_endian>
6590 void
6591 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
6592 Symbol_table* symtab,
6593 Symbol* sym) const
6594 {
6595 if (size == 64)
6596 {
6597 Powerpc_relobj<size, big_endian>* ppc_object
6598 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
6599 bool is_ordinary;
6600 unsigned int shndx = sym->shndx(&is_ordinary);
6601 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
6602 {
6603 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
6604 Address dst_off = gsym->value();
6605 if (ppc_object->opd_valid())
6606 {
6607 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
6608 symtab->gc()->worklist().push_back(Section_id(ppc_object,
6609 dst_indx));
6610 }
6611 else
6612 ppc_object->add_gc_mark(dst_off);
6613 }
6614 }
6615 }
6616
6617 // For a symbol location in .opd, set LOC to the location of the
6618 // function entry.
6619
6620 template<int size, bool big_endian>
6621 void
6622 Target_powerpc<size, big_endian>::do_function_location(
6623 Symbol_location* loc) const
6624 {
6625 if (size == 64 && loc->shndx != 0)
6626 {
6627 if (loc->object->is_dynamic())
6628 {
6629 Powerpc_dynobj<size, big_endian>* ppc_object
6630 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
6631 if (loc->shndx == ppc_object->opd_shndx())
6632 {
6633 Address dest_off;
6634 Address off = loc->offset - ppc_object->opd_address();
6635 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
6636 loc->offset = dest_off;
6637 }
6638 }
6639 else
6640 {
6641 const Powerpc_relobj<size, big_endian>* ppc_object
6642 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
6643 if (loc->shndx == ppc_object->opd_shndx())
6644 {
6645 Address dest_off;
6646 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
6647 loc->offset = dest_off;
6648 }
6649 }
6650 }
6651 }
6652
6653 // FNOFFSET in section SHNDX in OBJECT is the start of a function
6654 // compiled with -fsplit-stack. The function calls non-split-stack
6655 // code. Change the function to ensure it has enough stack space to
6656 // call some random function.
6657
6658 template<int size, bool big_endian>
6659 void
6660 Target_powerpc<size, big_endian>::do_calls_non_split(
6661 Relobj* object,
6662 unsigned int shndx,
6663 section_offset_type fnoffset,
6664 section_size_type fnsize,
6665 const unsigned char* prelocs,
6666 size_t reloc_count,
6667 unsigned char* view,
6668 section_size_type view_size,
6669 std::string* from,
6670 std::string* to) const
6671 {
6672 // 32-bit not supported.
6673 if (size == 32)
6674 {
6675 // warn
6676 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
6677 prelocs, reloc_count, view, view_size,
6678 from, to);
6679 return;
6680 }
6681
6682 // The function always starts with
6683 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
6684 // addis %r12,%r1,-allocate@ha
6685 // addi %r12,%r12,-allocate@l
6686 // cmpld %r12,%r0
6687 // but note that the addis or addi may be replaced with a nop
6688
6689 unsigned char *entry = view + fnoffset;
6690 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
6691
6692 if ((insn & 0xffff0000) == addis_2_12)
6693 {
6694 /* Skip ELFv2 global entry code. */
6695 entry += 8;
6696 insn = elfcpp::Swap<32, big_endian>::readval(entry);
6697 }
6698
6699 unsigned char *pinsn = entry;
6700 bool ok = false;
6701 const uint32_t ld_private_ss = 0xe80d8fc0;
6702 if (insn == ld_private_ss)
6703 {
6704 int32_t allocate = 0;
6705 while (1)
6706 {
6707 pinsn += 4;
6708 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
6709 if ((insn & 0xffff0000) == addis_12_1)
6710 allocate += (insn & 0xffff) << 16;
6711 else if ((insn & 0xffff0000) == addi_12_1
6712 || (insn & 0xffff0000) == addi_12_12)
6713 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
6714 else if (insn != nop)
6715 break;
6716 }
6717 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
6718 {
6719 int extra = parameters->options().split_stack_adjust_size();
6720 allocate -= extra;
6721 if (allocate >= 0 || extra < 0)
6722 {
6723 object->error(_("split-stack stack size overflow at "
6724 "section %u offset %0zx"),
6725 shndx, static_cast<size_t>(fnoffset));
6726 return;
6727 }
6728 pinsn = entry + 4;
6729 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
6730 if (insn != addis_12_1)
6731 {
6732 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6733 pinsn += 4;
6734 insn = addi_12_12 | (allocate & 0xffff);
6735 if (insn != addi_12_12)
6736 {
6737 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6738 pinsn += 4;
6739 }
6740 }
6741 else
6742 {
6743 insn = addi_12_1 | (allocate & 0xffff);
6744 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
6745 pinsn += 4;
6746 }
6747 if (pinsn != entry + 12)
6748 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
6749
6750 ok = true;
6751 }
6752 }
6753
6754 if (!ok)
6755 {
6756 if (!object->has_no_split_stack())
6757 object->error(_("failed to match split-stack sequence at "
6758 "section %u offset %0zx"),
6759 shndx, static_cast<size_t>(fnoffset));
6760 }
6761 }
6762
6763 // Scan relocations for a section.
6764
6765 template<int size, bool big_endian>
6766 void
6767 Target_powerpc<size, big_endian>::scan_relocs(
6768 Symbol_table* symtab,
6769 Layout* layout,
6770 Sized_relobj_file<size, big_endian>* object,
6771 unsigned int data_shndx,
6772 unsigned int sh_type,
6773 const unsigned char* prelocs,
6774 size_t reloc_count,
6775 Output_section* output_section,
6776 bool needs_special_offset_handling,
6777 size_t local_symbol_count,
6778 const unsigned char* plocal_symbols)
6779 {
6780 typedef Target_powerpc<size, big_endian> Powerpc;
6781 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
6782 Classify_reloc;
6783
6784 if (sh_type == elfcpp::SHT_REL)
6785 {
6786 gold_error(_("%s: unsupported REL reloc section"),
6787 object->name().c_str());
6788 return;
6789 }
6790
6791 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
6792 symtab,
6793 layout,
6794 this,
6795 object,
6796 data_shndx,
6797 prelocs,
6798 reloc_count,
6799 output_section,
6800 needs_special_offset_handling,
6801 local_symbol_count,
6802 plocal_symbols);
6803 }
6804
6805 // Functor class for processing the global symbol table.
6806 // Removes symbols defined on discarded opd entries.
6807
6808 template<bool big_endian>
6809 class Global_symbol_visitor_opd
6810 {
6811 public:
6812 Global_symbol_visitor_opd()
6813 { }
6814
6815 void
6816 operator()(Sized_symbol<64>* sym)
6817 {
6818 if (sym->has_symtab_index()
6819 || sym->source() != Symbol::FROM_OBJECT
6820 || !sym->in_real_elf())
6821 return;
6822
6823 if (sym->object()->is_dynamic())
6824 return;
6825
6826 Powerpc_relobj<64, big_endian>* symobj
6827 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
6828 if (symobj->opd_shndx() == 0)
6829 return;
6830
6831 bool is_ordinary;
6832 unsigned int shndx = sym->shndx(&is_ordinary);
6833 if (shndx == symobj->opd_shndx()
6834 && symobj->get_opd_discard(sym->value()))
6835 {
6836 sym->set_undefined();
6837 sym->set_visibility(elfcpp::STV_DEFAULT);
6838 sym->set_is_defined_in_discarded_section();
6839 sym->set_symtab_index(-1U);
6840 }
6841 }
6842 };
6843
6844 template<int size, bool big_endian>
6845 void
6846 Target_powerpc<size, big_endian>::define_save_restore_funcs(
6847 Layout* layout,
6848 Symbol_table* symtab)
6849 {
6850 if (size == 64)
6851 {
6852 Output_data_save_res<size, big_endian>* savres
6853 = new Output_data_save_res<size, big_endian>(symtab);
6854 this->savres_section_ = savres;
6855 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
6856 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
6857 savres, ORDER_TEXT, false);
6858 }
6859 }
6860
6861 // Sort linker created .got section first (for the header), then input
6862 // sections belonging to files using small model code.
6863
6864 template<bool big_endian>
6865 class Sort_toc_sections
6866 {
6867 public:
6868 bool
6869 operator()(const Output_section::Input_section& is1,
6870 const Output_section::Input_section& is2) const
6871 {
6872 if (!is1.is_input_section() && is2.is_input_section())
6873 return true;
6874 bool small1
6875 = (is1.is_input_section()
6876 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
6877 ->has_small_toc_reloc()));
6878 bool small2
6879 = (is2.is_input_section()
6880 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
6881 ->has_small_toc_reloc()));
6882 return small1 && !small2;
6883 }
6884 };
6885
6886 // Finalize the sections.
6887
6888 template<int size, bool big_endian>
6889 void
6890 Target_powerpc<size, big_endian>::do_finalize_sections(
6891 Layout* layout,
6892 const Input_objects*,
6893 Symbol_table* symtab)
6894 {
6895 if (parameters->doing_static_link())
6896 {
6897 // At least some versions of glibc elf-init.o have a strong
6898 // reference to __rela_iplt marker syms. A weak ref would be
6899 // better..
6900 if (this->iplt_ != NULL)
6901 {
6902 Reloc_section* rel = this->iplt_->rel_plt();
6903 symtab->define_in_output_data("__rela_iplt_start", NULL,
6904 Symbol_table::PREDEFINED, rel, 0, 0,
6905 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6906 elfcpp::STV_HIDDEN, 0, false, true);
6907 symtab->define_in_output_data("__rela_iplt_end", NULL,
6908 Symbol_table::PREDEFINED, rel, 0, 0,
6909 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6910 elfcpp::STV_HIDDEN, 0, true, true);
6911 }
6912 else
6913 {
6914 symtab->define_as_constant("__rela_iplt_start", NULL,
6915 Symbol_table::PREDEFINED, 0, 0,
6916 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6917 elfcpp::STV_HIDDEN, 0, true, false);
6918 symtab->define_as_constant("__rela_iplt_end", NULL,
6919 Symbol_table::PREDEFINED, 0, 0,
6920 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
6921 elfcpp::STV_HIDDEN, 0, true, false);
6922 }
6923 }
6924
6925 if (size == 64)
6926 {
6927 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
6928 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
6929
6930 if (!parameters->options().relocatable())
6931 {
6932 this->define_save_restore_funcs(layout, symtab);
6933
6934 // Annoyingly, we need to make these sections now whether or
6935 // not we need them. If we delay until do_relax then we
6936 // need to mess with the relaxation machinery checkpointing.
6937 this->got_section(symtab, layout);
6938 this->make_brlt_section(layout);
6939
6940 if (parameters->options().toc_sort())
6941 {
6942 Output_section* os = this->got_->output_section();
6943 if (os != NULL && os->input_sections().size() > 1)
6944 std::stable_sort(os->input_sections().begin(),
6945 os->input_sections().end(),
6946 Sort_toc_sections<big_endian>());
6947 }
6948 }
6949 }
6950
6951 // Fill in some more dynamic tags.
6952 Output_data_dynamic* odyn = layout->dynamic_data();
6953 if (odyn != NULL)
6954 {
6955 const Reloc_section* rel_plt = (this->plt_ == NULL
6956 ? NULL
6957 : this->plt_->rel_plt());
6958 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
6959 this->rela_dyn_, true, size == 32);
6960
6961 if (size == 32)
6962 {
6963 if (this->got_ != NULL)
6964 {
6965 this->got_->finalize_data_size();
6966 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
6967 this->got_, this->got_->g_o_t());
6968 }
6969 }
6970 else
6971 {
6972 if (this->glink_ != NULL)
6973 {
6974 this->glink_->finalize_data_size();
6975 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
6976 this->glink_,
6977 (this->glink_->pltresolve_size
6978 - 32));
6979 }
6980 }
6981 }
6982
6983 // Emit any relocs we saved in an attempt to avoid generating COPY
6984 // relocs.
6985 if (this->copy_relocs_.any_saved_relocs())
6986 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6987 }
6988
6989 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6990 // reloc.
6991
6992 static bool
6993 ok_lo_toc_insn(uint32_t insn)
6994 {
6995 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
6996 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6997 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6998 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6999 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
7000 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
7001 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
7002 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
7003 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
7004 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
7005 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
7006 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
7007 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
7008 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
7009 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
7010 && (insn & 3) != 1)
7011 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
7012 && ((insn & 3) == 0 || (insn & 3) == 3))
7013 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
7014 }
7015
7016 // Return the value to use for a branch relocation.
7017
7018 template<int size, bool big_endian>
7019 bool
7020 Target_powerpc<size, big_endian>::symval_for_branch(
7021 const Symbol_table* symtab,
7022 const Sized_symbol<size>* gsym,
7023 Powerpc_relobj<size, big_endian>* object,
7024 Address *value,
7025 unsigned int *dest_shndx)
7026 {
7027 if (size == 32 || this->abiversion() >= 2)
7028 gold_unreachable();
7029 *dest_shndx = 0;
7030
7031 // If the symbol is defined in an opd section, ie. is a function
7032 // descriptor, use the function descriptor code entry address
7033 Powerpc_relobj<size, big_endian>* symobj = object;
7034 if (gsym != NULL
7035 && gsym->source() != Symbol::FROM_OBJECT)
7036 return true;
7037 if (gsym != NULL)
7038 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7039 unsigned int shndx = symobj->opd_shndx();
7040 if (shndx == 0)
7041 return true;
7042 Address opd_addr = symobj->get_output_section_offset(shndx);
7043 if (opd_addr == invalid_address)
7044 return true;
7045 opd_addr += symobj->output_section_address(shndx);
7046 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7047 {
7048 Address sec_off;
7049 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7050 if (symtab->is_section_folded(symobj, *dest_shndx))
7051 {
7052 Section_id folded
7053 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7054 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7055 *dest_shndx = folded.second;
7056 }
7057 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7058 if (sec_addr == invalid_address)
7059 return false;
7060
7061 sec_addr += symobj->output_section(*dest_shndx)->address();
7062 *value = sec_addr + sec_off;
7063 }
7064 return true;
7065 }
7066
7067 // Perform a relocation.
7068
7069 template<int size, bool big_endian>
7070 inline bool
7071 Target_powerpc<size, big_endian>::Relocate::relocate(
7072 const Relocate_info<size, big_endian>* relinfo,
7073 unsigned int,
7074 Target_powerpc* target,
7075 Output_section* os,
7076 size_t relnum,
7077 const unsigned char* preloc,
7078 const Sized_symbol<size>* gsym,
7079 const Symbol_value<size>* psymval,
7080 unsigned char* view,
7081 Address address,
7082 section_size_type view_size)
7083 {
7084 if (view == NULL)
7085 return true;
7086
7087 const elfcpp::Rela<size, big_endian> rela(preloc);
7088 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7089 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7090 {
7091 case Track_tls::NOT_EXPECTED:
7092 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7093 _("__tls_get_addr call lacks marker reloc"));
7094 break;
7095 case Track_tls::EXPECTED:
7096 // We have already complained.
7097 break;
7098 case Track_tls::SKIP:
7099 return true;
7100 case Track_tls::NORMAL:
7101 break;
7102 }
7103
7104 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
7105 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
7106 typedef typename Reloc_types<elfcpp::SHT_RELA,
7107 size, big_endian>::Reloc Reltype;
7108 // Offset from start of insn to d-field reloc.
7109 const int d_offset = big_endian ? 2 : 0;
7110
7111 Powerpc_relobj<size, big_endian>* const object
7112 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
7113 Address value = 0;
7114 bool has_stub_value = false;
7115 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7116 if ((gsym != NULL
7117 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
7118 : object->local_has_plt_offset(r_sym))
7119 && (!psymval->is_ifunc_symbol()
7120 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
7121 {
7122 if (size == 64
7123 && gsym != NULL
7124 && target->abiversion() >= 2
7125 && !parameters->options().output_is_position_independent()
7126 && !is_branch_reloc(r_type))
7127 {
7128 Address off = target->glink_section()->find_global_entry(gsym);
7129 if (off != invalid_address)
7130 {
7131 value = target->glink_section()->global_entry_address() + off;
7132 has_stub_value = true;
7133 }
7134 }
7135 else
7136 {
7137 Stub_table<size, big_endian>* stub_table
7138 = object->stub_table(relinfo->data_shndx);
7139 if (stub_table == NULL)
7140 {
7141 // This is a ref from a data section to an ifunc symbol.
7142 if (target->stub_tables().size() != 0)
7143 stub_table = target->stub_tables()[0];
7144 }
7145 if (stub_table != NULL)
7146 {
7147 Address off;
7148 if (gsym != NULL)
7149 off = stub_table->find_plt_call_entry(object, gsym, r_type,
7150 rela.get_r_addend());
7151 else
7152 off = stub_table->find_plt_call_entry(object, r_sym, r_type,
7153 rela.get_r_addend());
7154 if (off != invalid_address)
7155 {
7156 value = stub_table->stub_address() + off;
7157 has_stub_value = true;
7158 }
7159 }
7160 }
7161 // We don't care too much about bogus debug references to
7162 // non-local functions, but otherwise there had better be a plt
7163 // call stub or global entry stub as appropriate.
7164 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
7165 }
7166
7167 if (r_type == elfcpp::R_POWERPC_GOT16
7168 || r_type == elfcpp::R_POWERPC_GOT16_LO
7169 || r_type == elfcpp::R_POWERPC_GOT16_HI
7170 || r_type == elfcpp::R_POWERPC_GOT16_HA
7171 || r_type == elfcpp::R_PPC64_GOT16_DS
7172 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
7173 {
7174 if (gsym != NULL)
7175 {
7176 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
7177 value = gsym->got_offset(GOT_TYPE_STANDARD);
7178 }
7179 else
7180 {
7181 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7182 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
7183 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
7184 }
7185 value -= target->got_section()->got_base_offset(object);
7186 }
7187 else if (r_type == elfcpp::R_PPC64_TOC)
7188 {
7189 value = (target->got_section()->output_section()->address()
7190 + object->toc_base_offset());
7191 }
7192 else if (gsym != NULL
7193 && (r_type == elfcpp::R_POWERPC_REL24
7194 || r_type == elfcpp::R_PPC_PLTREL24)
7195 && has_stub_value)
7196 {
7197 if (size == 64)
7198 {
7199 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
7200 Valtype* wv = reinterpret_cast<Valtype*>(view);
7201 bool can_plt_call = false;
7202 if (rela.get_r_offset() + 8 <= view_size)
7203 {
7204 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
7205 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
7206 if ((insn & 1) != 0
7207 && (insn2 == nop
7208 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
7209 {
7210 elfcpp::Swap<32, big_endian>::
7211 writeval(wv + 1, ld_2_1 + target->stk_toc());
7212 can_plt_call = true;
7213 }
7214 }
7215 if (!can_plt_call)
7216 {
7217 // If we don't have a branch and link followed by a nop,
7218 // we can't go via the plt because there is no place to
7219 // put a toc restoring instruction.
7220 // Unless we know we won't be returning.
7221 if (strcmp(gsym->name(), "__libc_start_main") == 0)
7222 can_plt_call = true;
7223 }
7224 if (!can_plt_call)
7225 {
7226 // g++ as of 20130507 emits self-calls without a
7227 // following nop. This is arguably wrong since we have
7228 // conflicting information. On the one hand a global
7229 // symbol and on the other a local call sequence, but
7230 // don't error for this special case.
7231 // It isn't possible to cheaply verify we have exactly
7232 // such a call. Allow all calls to the same section.
7233 bool ok = false;
7234 Address code = value;
7235 if (gsym->source() == Symbol::FROM_OBJECT
7236 && gsym->object() == object)
7237 {
7238 unsigned int dest_shndx = 0;
7239 if (target->abiversion() < 2)
7240 {
7241 Address addend = rela.get_r_addend();
7242 code = psymval->value(object, addend);
7243 target->symval_for_branch(relinfo->symtab, gsym, object,
7244 &code, &dest_shndx);
7245 }
7246 bool is_ordinary;
7247 if (dest_shndx == 0)
7248 dest_shndx = gsym->shndx(&is_ordinary);
7249 ok = dest_shndx == relinfo->data_shndx;
7250 }
7251 if (!ok)
7252 {
7253 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7254 _("call lacks nop, can't restore toc; "
7255 "recompile with -fPIC"));
7256 value = code;
7257 }
7258 }
7259 }
7260 }
7261 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7262 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
7263 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
7264 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
7265 {
7266 // First instruction of a global dynamic sequence, arg setup insn.
7267 const bool final = gsym == NULL || gsym->final_value_is_known();
7268 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7269 enum Got_type got_type = GOT_TYPE_STANDARD;
7270 if (tls_type == tls::TLSOPT_NONE)
7271 got_type = GOT_TYPE_TLSGD;
7272 else if (tls_type == tls::TLSOPT_TO_IE)
7273 got_type = GOT_TYPE_TPREL;
7274 if (got_type != GOT_TYPE_STANDARD)
7275 {
7276 if (gsym != NULL)
7277 {
7278 gold_assert(gsym->has_got_offset(got_type));
7279 value = gsym->got_offset(got_type);
7280 }
7281 else
7282 {
7283 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7284 gold_assert(object->local_has_got_offset(r_sym, got_type));
7285 value = object->local_got_offset(r_sym, got_type);
7286 }
7287 value -= target->got_section()->got_base_offset(object);
7288 }
7289 if (tls_type == tls::TLSOPT_TO_IE)
7290 {
7291 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7292 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7293 {
7294 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7295 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7296 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
7297 if (size == 32)
7298 insn |= 32 << 26; // lwz
7299 else
7300 insn |= 58 << 26; // ld
7301 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7302 }
7303 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
7304 - elfcpp::R_POWERPC_GOT_TLSGD16);
7305 }
7306 else if (tls_type == tls::TLSOPT_TO_LE)
7307 {
7308 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
7309 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
7310 {
7311 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7312 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7313 insn &= (1 << 26) - (1 << 21); // extract rt
7314 if (size == 32)
7315 insn |= addis_0_2;
7316 else
7317 insn |= addis_0_13;
7318 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7319 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7320 value = psymval->value(object, rela.get_r_addend());
7321 }
7322 else
7323 {
7324 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7325 Insn insn = nop;
7326 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7327 r_type = elfcpp::R_POWERPC_NONE;
7328 }
7329 }
7330 }
7331 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7332 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
7333 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
7334 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
7335 {
7336 // First instruction of a local dynamic sequence, arg setup insn.
7337 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7338 if (tls_type == tls::TLSOPT_NONE)
7339 {
7340 value = target->tlsld_got_offset();
7341 value -= target->got_section()->got_base_offset(object);
7342 }
7343 else
7344 {
7345 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7346 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
7347 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
7348 {
7349 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7350 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7351 insn &= (1 << 26) - (1 << 21); // extract rt
7352 if (size == 32)
7353 insn |= addis_0_2;
7354 else
7355 insn |= addis_0_13;
7356 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7357 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7358 value = dtp_offset;
7359 }
7360 else
7361 {
7362 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7363 Insn insn = nop;
7364 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7365 r_type = elfcpp::R_POWERPC_NONE;
7366 }
7367 }
7368 }
7369 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
7370 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
7371 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
7372 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
7373 {
7374 // Accesses relative to a local dynamic sequence address,
7375 // no optimisation here.
7376 if (gsym != NULL)
7377 {
7378 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
7379 value = gsym->got_offset(GOT_TYPE_DTPREL);
7380 }
7381 else
7382 {
7383 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7384 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
7385 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
7386 }
7387 value -= target->got_section()->got_base_offset(object);
7388 }
7389 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7390 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
7391 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
7392 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
7393 {
7394 // First instruction of initial exec sequence.
7395 const bool final = gsym == NULL || gsym->final_value_is_known();
7396 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7397 if (tls_type == tls::TLSOPT_NONE)
7398 {
7399 if (gsym != NULL)
7400 {
7401 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
7402 value = gsym->got_offset(GOT_TYPE_TPREL);
7403 }
7404 else
7405 {
7406 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7407 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
7408 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
7409 }
7410 value -= target->got_section()->got_base_offset(object);
7411 }
7412 else
7413 {
7414 gold_assert(tls_type == tls::TLSOPT_TO_LE);
7415 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
7416 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
7417 {
7418 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7419 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7420 insn &= (1 << 26) - (1 << 21); // extract rt from ld
7421 if (size == 32)
7422 insn |= addis_0_2;
7423 else
7424 insn |= addis_0_13;
7425 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7426 r_type = elfcpp::R_POWERPC_TPREL16_HA;
7427 value = psymval->value(object, rela.get_r_addend());
7428 }
7429 else
7430 {
7431 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7432 Insn insn = nop;
7433 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7434 r_type = elfcpp::R_POWERPC_NONE;
7435 }
7436 }
7437 }
7438 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
7439 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
7440 {
7441 // Second instruction of a global dynamic sequence,
7442 // the __tls_get_addr call
7443 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7444 const bool final = gsym == NULL || gsym->final_value_is_known();
7445 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7446 if (tls_type != tls::TLSOPT_NONE)
7447 {
7448 if (tls_type == tls::TLSOPT_TO_IE)
7449 {
7450 Insn* iview = reinterpret_cast<Insn*>(view);
7451 Insn insn = add_3_3_13;
7452 if (size == 32)
7453 insn = add_3_3_2;
7454 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7455 r_type = elfcpp::R_POWERPC_NONE;
7456 }
7457 else
7458 {
7459 Insn* iview = reinterpret_cast<Insn*>(view);
7460 Insn insn = addi_3_3;
7461 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7462 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7463 view += d_offset;
7464 value = psymval->value(object, rela.get_r_addend());
7465 }
7466 this->skip_next_tls_get_addr_call();
7467 }
7468 }
7469 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
7470 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
7471 {
7472 // Second instruction of a local dynamic sequence,
7473 // the __tls_get_addr call
7474 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
7475 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7476 if (tls_type == tls::TLSOPT_TO_LE)
7477 {
7478 Insn* iview = reinterpret_cast<Insn*>(view);
7479 Insn insn = addi_3_3;
7480 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7481 this->skip_next_tls_get_addr_call();
7482 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7483 view += d_offset;
7484 value = dtp_offset;
7485 }
7486 }
7487 else if (r_type == elfcpp::R_POWERPC_TLS)
7488 {
7489 // Second instruction of an initial exec sequence
7490 const bool final = gsym == NULL || gsym->final_value_is_known();
7491 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7492 if (tls_type == tls::TLSOPT_TO_LE)
7493 {
7494 Insn* iview = reinterpret_cast<Insn*>(view);
7495 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7496 unsigned int reg = size == 32 ? 2 : 13;
7497 insn = at_tls_transform(insn, reg);
7498 gold_assert(insn != 0);
7499 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7500 r_type = elfcpp::R_POWERPC_TPREL16_LO;
7501 view += d_offset;
7502 value = psymval->value(object, rela.get_r_addend());
7503 }
7504 }
7505 else if (!has_stub_value)
7506 {
7507 Address addend = 0;
7508 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
7509 addend = rela.get_r_addend();
7510 value = psymval->value(object, addend);
7511 if (size == 64 && is_branch_reloc(r_type))
7512 {
7513 if (target->abiversion() >= 2)
7514 {
7515 if (gsym != NULL)
7516 value += object->ppc64_local_entry_offset(gsym);
7517 else
7518 value += object->ppc64_local_entry_offset(r_sym);
7519 }
7520 else
7521 {
7522 unsigned int dest_shndx;
7523 target->symval_for_branch(relinfo->symtab, gsym, object,
7524 &value, &dest_shndx);
7525 }
7526 }
7527 Address max_branch_offset = max_branch_delta(r_type);
7528 if (max_branch_offset != 0
7529 && value - address + max_branch_offset >= 2 * max_branch_offset)
7530 {
7531 Stub_table<size, big_endian>* stub_table
7532 = object->stub_table(relinfo->data_shndx);
7533 if (stub_table != NULL)
7534 {
7535 Address off = stub_table->find_long_branch_entry(object, value);
7536 if (off != invalid_address)
7537 {
7538 value = (stub_table->stub_address() + stub_table->plt_size()
7539 + off);
7540 has_stub_value = true;
7541 }
7542 }
7543 }
7544 }
7545
7546 switch (r_type)
7547 {
7548 case elfcpp::R_PPC64_REL64:
7549 case elfcpp::R_POWERPC_REL32:
7550 case elfcpp::R_POWERPC_REL24:
7551 case elfcpp::R_PPC_PLTREL24:
7552 case elfcpp::R_PPC_LOCAL24PC:
7553 case elfcpp::R_POWERPC_REL16:
7554 case elfcpp::R_POWERPC_REL16_LO:
7555 case elfcpp::R_POWERPC_REL16_HI:
7556 case elfcpp::R_POWERPC_REL16_HA:
7557 case elfcpp::R_POWERPC_REL16DX_HA:
7558 case elfcpp::R_POWERPC_REL14:
7559 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7560 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7561 value -= address;
7562 break;
7563
7564 case elfcpp::R_PPC64_TOC16:
7565 case elfcpp::R_PPC64_TOC16_LO:
7566 case elfcpp::R_PPC64_TOC16_HI:
7567 case elfcpp::R_PPC64_TOC16_HA:
7568 case elfcpp::R_PPC64_TOC16_DS:
7569 case elfcpp::R_PPC64_TOC16_LO_DS:
7570 // Subtract the TOC base address.
7571 value -= (target->got_section()->output_section()->address()
7572 + object->toc_base_offset());
7573 break;
7574
7575 case elfcpp::R_POWERPC_SECTOFF:
7576 case elfcpp::R_POWERPC_SECTOFF_LO:
7577 case elfcpp::R_POWERPC_SECTOFF_HI:
7578 case elfcpp::R_POWERPC_SECTOFF_HA:
7579 case elfcpp::R_PPC64_SECTOFF_DS:
7580 case elfcpp::R_PPC64_SECTOFF_LO_DS:
7581 if (os != NULL)
7582 value -= os->address();
7583 break;
7584
7585 case elfcpp::R_PPC64_TPREL16_DS:
7586 case elfcpp::R_PPC64_TPREL16_LO_DS:
7587 case elfcpp::R_PPC64_TPREL16_HIGH:
7588 case elfcpp::R_PPC64_TPREL16_HIGHA:
7589 if (size != 64)
7590 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
7591 break;
7592 // Fall through.
7593 case elfcpp::R_POWERPC_TPREL16:
7594 case elfcpp::R_POWERPC_TPREL16_LO:
7595 case elfcpp::R_POWERPC_TPREL16_HI:
7596 case elfcpp::R_POWERPC_TPREL16_HA:
7597 case elfcpp::R_POWERPC_TPREL:
7598 case elfcpp::R_PPC64_TPREL16_HIGHER:
7599 case elfcpp::R_PPC64_TPREL16_HIGHERA:
7600 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7601 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7602 // tls symbol values are relative to tls_segment()->vaddr()
7603 value -= tp_offset;
7604 break;
7605
7606 case elfcpp::R_PPC64_DTPREL16_DS:
7607 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7608 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7609 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7610 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7611 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7612 if (size != 64)
7613 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
7614 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
7615 break;
7616 // Fall through.
7617 case elfcpp::R_POWERPC_DTPREL16:
7618 case elfcpp::R_POWERPC_DTPREL16_LO:
7619 case elfcpp::R_POWERPC_DTPREL16_HI:
7620 case elfcpp::R_POWERPC_DTPREL16_HA:
7621 case elfcpp::R_POWERPC_DTPREL:
7622 case elfcpp::R_PPC64_DTPREL16_HIGH:
7623 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7624 // tls symbol values are relative to tls_segment()->vaddr()
7625 value -= dtp_offset;
7626 break;
7627
7628 case elfcpp::R_PPC64_ADDR64_LOCAL:
7629 if (gsym != NULL)
7630 value += object->ppc64_local_entry_offset(gsym);
7631 else
7632 value += object->ppc64_local_entry_offset(r_sym);
7633 break;
7634
7635 default:
7636 break;
7637 }
7638
7639 Insn branch_bit = 0;
7640 switch (r_type)
7641 {
7642 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7643 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7644 branch_bit = 1 << 21;
7645 // Fall through.
7646 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7647 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7648 {
7649 Insn* iview = reinterpret_cast<Insn*>(view);
7650 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7651 insn &= ~(1 << 21);
7652 insn |= branch_bit;
7653 if (this->is_isa_v2)
7654 {
7655 // Set 'a' bit. This is 0b00010 in BO field for branch
7656 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
7657 // for branch on CTR insns (BO == 1a00t or 1a01t).
7658 if ((insn & (0x14 << 21)) == (0x04 << 21))
7659 insn |= 0x02 << 21;
7660 else if ((insn & (0x14 << 21)) == (0x10 << 21))
7661 insn |= 0x08 << 21;
7662 else
7663 break;
7664 }
7665 else
7666 {
7667 // Invert 'y' bit if not the default.
7668 if (static_cast<Signed_address>(value) < 0)
7669 insn ^= 1 << 21;
7670 }
7671 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7672 }
7673 break;
7674
7675 default:
7676 break;
7677 }
7678
7679 if (size == 64)
7680 {
7681 // Multi-instruction sequences that access the TOC can be
7682 // optimized, eg. addis ra,r2,0; addi rb,ra,x;
7683 // to nop; addi rb,r2,x;
7684 switch (r_type)
7685 {
7686 default:
7687 break;
7688
7689 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7690 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7691 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7692 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7693 case elfcpp::R_POWERPC_GOT16_HA:
7694 case elfcpp::R_PPC64_TOC16_HA:
7695 if (parameters->options().toc_optimize())
7696 {
7697 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7698 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7699 if ((insn & ((0x3f << 26) | 0x1f << 16))
7700 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
7701 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7702 _("toc optimization is not supported "
7703 "for %#08x instruction"), insn);
7704 else if (value + 0x8000 < 0x10000)
7705 {
7706 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
7707 return true;
7708 }
7709 }
7710 break;
7711
7712 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7713 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7714 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7715 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7716 case elfcpp::R_POWERPC_GOT16_LO:
7717 case elfcpp::R_PPC64_GOT16_LO_DS:
7718 case elfcpp::R_PPC64_TOC16_LO:
7719 case elfcpp::R_PPC64_TOC16_LO_DS:
7720 if (parameters->options().toc_optimize())
7721 {
7722 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7723 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
7724 if (!ok_lo_toc_insn(insn))
7725 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7726 _("toc optimization is not supported "
7727 "for %#08x instruction"), insn);
7728 else if (value + 0x8000 < 0x10000)
7729 {
7730 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
7731 {
7732 // Transform addic to addi when we change reg.
7733 insn &= ~((0x3f << 26) | (0x1f << 16));
7734 insn |= (14u << 26) | (2 << 16);
7735 }
7736 else
7737 {
7738 insn &= ~(0x1f << 16);
7739 insn |= 2 << 16;
7740 }
7741 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
7742 }
7743 }
7744 break;
7745
7746 case elfcpp::R_PPC64_ENTRY:
7747 value = (target->got_section()->output_section()->address()
7748 + object->toc_base_offset());
7749 if (value + 0x80008000 <= 0xffffffff
7750 && !parameters->options().output_is_position_independent())
7751 {
7752 Insn* iview = reinterpret_cast<Insn*>(view);
7753 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7754 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7755
7756 if ((insn1 & ~0xfffc) == ld_2_12
7757 && insn2 == add_2_2_12)
7758 {
7759 insn1 = lis_2 + ha(value);
7760 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7761 insn2 = addi_2_2 + l(value);
7762 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7763 return true;
7764 }
7765 }
7766 else
7767 {
7768 value -= address;
7769 if (value + 0x80008000 <= 0xffffffff)
7770 {
7771 Insn* iview = reinterpret_cast<Insn*>(view);
7772 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
7773 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
7774
7775 if ((insn1 & ~0xfffc) == ld_2_12
7776 && insn2 == add_2_2_12)
7777 {
7778 insn1 = addis_2_12 + ha(value);
7779 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
7780 insn2 = addi_2_2 + l(value);
7781 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
7782 return true;
7783 }
7784 }
7785 }
7786 break;
7787
7788 case elfcpp::R_POWERPC_REL16_LO:
7789 // If we are generating a non-PIC executable, edit
7790 // 0: addis 2,12,.TOC.-0b@ha
7791 // addi 2,2,.TOC.-0b@l
7792 // used by ELFv2 global entry points to set up r2, to
7793 // lis 2,.TOC.@ha
7794 // addi 2,2,.TOC.@l
7795 // if .TOC. is in range. */
7796 if (value + address - 4 + 0x80008000 <= 0xffffffff
7797 && relnum != 0
7798 && preloc != NULL
7799 && target->abiversion() >= 2
7800 && !parameters->options().output_is_position_independent()
7801 && rela.get_r_addend() == d_offset + 4
7802 && gsym != NULL
7803 && strcmp(gsym->name(), ".TOC.") == 0)
7804 {
7805 const int reloc_size
7806 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
7807 Reltype prev_rela(preloc - reloc_size);
7808 if ((prev_rela.get_r_info()
7809 == elfcpp::elf_r_info<size>(r_sym,
7810 elfcpp::R_POWERPC_REL16_HA))
7811 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
7812 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
7813 {
7814 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7815 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
7816 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
7817
7818 if ((insn1 & 0xffff0000) == addis_2_12
7819 && (insn2 & 0xffff0000) == addi_2_2)
7820 {
7821 insn1 = lis_2 + ha(value + address - 4);
7822 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
7823 insn2 = addi_2_2 + l(value + address - 4);
7824 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
7825 if (relinfo->rr)
7826 {
7827 relinfo->rr->set_strategy(relnum - 1,
7828 Relocatable_relocs::RELOC_SPECIAL);
7829 relinfo->rr->set_strategy(relnum,
7830 Relocatable_relocs::RELOC_SPECIAL);
7831 }
7832 return true;
7833 }
7834 }
7835 }
7836 break;
7837 }
7838 }
7839
7840 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
7841 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
7842 switch (r_type)
7843 {
7844 case elfcpp::R_POWERPC_ADDR32:
7845 case elfcpp::R_POWERPC_UADDR32:
7846 if (size == 64)
7847 overflow = Reloc::CHECK_BITFIELD;
7848 break;
7849
7850 case elfcpp::R_POWERPC_REL32:
7851 case elfcpp::R_POWERPC_REL16DX_HA:
7852 if (size == 64)
7853 overflow = Reloc::CHECK_SIGNED;
7854 break;
7855
7856 case elfcpp::R_POWERPC_UADDR16:
7857 overflow = Reloc::CHECK_BITFIELD;
7858 break;
7859
7860 case elfcpp::R_POWERPC_ADDR16:
7861 // We really should have three separate relocations,
7862 // one for 16-bit data, one for insns with 16-bit signed fields,
7863 // and one for insns with 16-bit unsigned fields.
7864 overflow = Reloc::CHECK_BITFIELD;
7865 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
7866 overflow = Reloc::CHECK_LOW_INSN;
7867 break;
7868
7869 case elfcpp::R_POWERPC_ADDR16_HI:
7870 case elfcpp::R_POWERPC_ADDR16_HA:
7871 case elfcpp::R_POWERPC_GOT16_HI:
7872 case elfcpp::R_POWERPC_GOT16_HA:
7873 case elfcpp::R_POWERPC_PLT16_HI:
7874 case elfcpp::R_POWERPC_PLT16_HA:
7875 case elfcpp::R_POWERPC_SECTOFF_HI:
7876 case elfcpp::R_POWERPC_SECTOFF_HA:
7877 case elfcpp::R_PPC64_TOC16_HI:
7878 case elfcpp::R_PPC64_TOC16_HA:
7879 case elfcpp::R_PPC64_PLTGOT16_HI:
7880 case elfcpp::R_PPC64_PLTGOT16_HA:
7881 case elfcpp::R_POWERPC_TPREL16_HI:
7882 case elfcpp::R_POWERPC_TPREL16_HA:
7883 case elfcpp::R_POWERPC_DTPREL16_HI:
7884 case elfcpp::R_POWERPC_DTPREL16_HA:
7885 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7886 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7887 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7888 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7889 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7890 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7891 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7892 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7893 case elfcpp::R_POWERPC_REL16_HI:
7894 case elfcpp::R_POWERPC_REL16_HA:
7895 if (size != 32)
7896 overflow = Reloc::CHECK_HIGH_INSN;
7897 break;
7898
7899 case elfcpp::R_POWERPC_REL16:
7900 case elfcpp::R_PPC64_TOC16:
7901 case elfcpp::R_POWERPC_GOT16:
7902 case elfcpp::R_POWERPC_SECTOFF:
7903 case elfcpp::R_POWERPC_TPREL16:
7904 case elfcpp::R_POWERPC_DTPREL16:
7905 case elfcpp::R_POWERPC_GOT_TLSGD16:
7906 case elfcpp::R_POWERPC_GOT_TLSLD16:
7907 case elfcpp::R_POWERPC_GOT_TPREL16:
7908 case elfcpp::R_POWERPC_GOT_DTPREL16:
7909 overflow = Reloc::CHECK_LOW_INSN;
7910 break;
7911
7912 case elfcpp::R_POWERPC_ADDR24:
7913 case elfcpp::R_POWERPC_ADDR14:
7914 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
7915 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
7916 case elfcpp::R_PPC64_ADDR16_DS:
7917 case elfcpp::R_POWERPC_REL24:
7918 case elfcpp::R_PPC_PLTREL24:
7919 case elfcpp::R_PPC_LOCAL24PC:
7920 case elfcpp::R_PPC64_TPREL16_DS:
7921 case elfcpp::R_PPC64_DTPREL16_DS:
7922 case elfcpp::R_PPC64_TOC16_DS:
7923 case elfcpp::R_PPC64_GOT16_DS:
7924 case elfcpp::R_PPC64_SECTOFF_DS:
7925 case elfcpp::R_POWERPC_REL14:
7926 case elfcpp::R_POWERPC_REL14_BRTAKEN:
7927 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
7928 overflow = Reloc::CHECK_SIGNED;
7929 break;
7930 }
7931
7932 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
7933 Insn insn = 0;
7934
7935 if (overflow == Reloc::CHECK_LOW_INSN
7936 || overflow == Reloc::CHECK_HIGH_INSN)
7937 {
7938 insn = elfcpp::Swap<32, big_endian>::readval(iview);
7939
7940 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
7941 overflow = Reloc::CHECK_BITFIELD;
7942 else if (overflow == Reloc::CHECK_LOW_INSN
7943 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
7944 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
7945 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
7946 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
7947 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
7948 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
7949 overflow = Reloc::CHECK_UNSIGNED;
7950 else
7951 overflow = Reloc::CHECK_SIGNED;
7952 }
7953
7954 bool maybe_dq_reloc = false;
7955 typename Powerpc_relocate_functions<size, big_endian>::Status status
7956 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
7957 switch (r_type)
7958 {
7959 case elfcpp::R_POWERPC_NONE:
7960 case elfcpp::R_POWERPC_TLS:
7961 case elfcpp::R_POWERPC_GNU_VTINHERIT:
7962 case elfcpp::R_POWERPC_GNU_VTENTRY:
7963 break;
7964
7965 case elfcpp::R_PPC64_ADDR64:
7966 case elfcpp::R_PPC64_REL64:
7967 case elfcpp::R_PPC64_TOC:
7968 case elfcpp::R_PPC64_ADDR64_LOCAL:
7969 Reloc::addr64(view, value);
7970 break;
7971
7972 case elfcpp::R_POWERPC_TPREL:
7973 case elfcpp::R_POWERPC_DTPREL:
7974 if (size == 64)
7975 Reloc::addr64(view, value);
7976 else
7977 status = Reloc::addr32(view, value, overflow);
7978 break;
7979
7980 case elfcpp::R_PPC64_UADDR64:
7981 Reloc::addr64_u(view, value);
7982 break;
7983
7984 case elfcpp::R_POWERPC_ADDR32:
7985 status = Reloc::addr32(view, value, overflow);
7986 break;
7987
7988 case elfcpp::R_POWERPC_REL32:
7989 case elfcpp::R_POWERPC_UADDR32:
7990 status = Reloc::addr32_u(view, value, overflow);
7991 break;
7992
7993 case elfcpp::R_POWERPC_ADDR24:
7994 case elfcpp::R_POWERPC_REL24:
7995 case elfcpp::R_PPC_PLTREL24:
7996 case elfcpp::R_PPC_LOCAL24PC:
7997 status = Reloc::addr24(view, value, overflow);
7998 break;
7999
8000 case elfcpp::R_POWERPC_GOT_DTPREL16:
8001 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8002 case elfcpp::R_POWERPC_GOT_TPREL16:
8003 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8004 if (size == 64)
8005 {
8006 // On ppc64 these are all ds form
8007 maybe_dq_reloc = true;
8008 break;
8009 }
8010 case elfcpp::R_POWERPC_ADDR16:
8011 case elfcpp::R_POWERPC_REL16:
8012 case elfcpp::R_PPC64_TOC16:
8013 case elfcpp::R_POWERPC_GOT16:
8014 case elfcpp::R_POWERPC_SECTOFF:
8015 case elfcpp::R_POWERPC_TPREL16:
8016 case elfcpp::R_POWERPC_DTPREL16:
8017 case elfcpp::R_POWERPC_GOT_TLSGD16:
8018 case elfcpp::R_POWERPC_GOT_TLSLD16:
8019 case elfcpp::R_POWERPC_ADDR16_LO:
8020 case elfcpp::R_POWERPC_REL16_LO:
8021 case elfcpp::R_PPC64_TOC16_LO:
8022 case elfcpp::R_POWERPC_GOT16_LO:
8023 case elfcpp::R_POWERPC_SECTOFF_LO:
8024 case elfcpp::R_POWERPC_TPREL16_LO:
8025 case elfcpp::R_POWERPC_DTPREL16_LO:
8026 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8027 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8028 if (size == 64)
8029 status = Reloc::addr16(view, value, overflow);
8030 else
8031 maybe_dq_reloc = true;
8032 break;
8033
8034 case elfcpp::R_POWERPC_UADDR16:
8035 status = Reloc::addr16_u(view, value, overflow);
8036 break;
8037
8038 case elfcpp::R_PPC64_ADDR16_HIGH:
8039 case elfcpp::R_PPC64_TPREL16_HIGH:
8040 case elfcpp::R_PPC64_DTPREL16_HIGH:
8041 if (size == 32)
8042 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8043 goto unsupp;
8044 // Fall through.
8045 case elfcpp::R_POWERPC_ADDR16_HI:
8046 case elfcpp::R_POWERPC_REL16_HI:
8047 case elfcpp::R_PPC64_TOC16_HI:
8048 case elfcpp::R_POWERPC_GOT16_HI:
8049 case elfcpp::R_POWERPC_SECTOFF_HI:
8050 case elfcpp::R_POWERPC_TPREL16_HI:
8051 case elfcpp::R_POWERPC_DTPREL16_HI:
8052 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8053 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8054 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8055 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8056 Reloc::addr16_hi(view, value);
8057 break;
8058
8059 case elfcpp::R_PPC64_ADDR16_HIGHA:
8060 case elfcpp::R_PPC64_TPREL16_HIGHA:
8061 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8062 if (size == 32)
8063 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8064 goto unsupp;
8065 // Fall through.
8066 case elfcpp::R_POWERPC_ADDR16_HA:
8067 case elfcpp::R_POWERPC_REL16_HA:
8068 case elfcpp::R_PPC64_TOC16_HA:
8069 case elfcpp::R_POWERPC_GOT16_HA:
8070 case elfcpp::R_POWERPC_SECTOFF_HA:
8071 case elfcpp::R_POWERPC_TPREL16_HA:
8072 case elfcpp::R_POWERPC_DTPREL16_HA:
8073 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8074 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8075 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8076 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8077 Reloc::addr16_ha(view, value);
8078 break;
8079
8080 case elfcpp::R_POWERPC_REL16DX_HA:
8081 status = Reloc::addr16dx_ha(view, value, overflow);
8082 break;
8083
8084 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8085 if (size == 32)
8086 // R_PPC_EMB_NADDR16_LO
8087 goto unsupp;
8088 // Fall through.
8089 case elfcpp::R_PPC64_ADDR16_HIGHER:
8090 case elfcpp::R_PPC64_TPREL16_HIGHER:
8091 Reloc::addr16_hi2(view, value);
8092 break;
8093
8094 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8095 if (size == 32)
8096 // R_PPC_EMB_NADDR16_HI
8097 goto unsupp;
8098 // Fall through.
8099 case elfcpp::R_PPC64_ADDR16_HIGHERA:
8100 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8101 Reloc::addr16_ha2(view, value);
8102 break;
8103
8104 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8105 if (size == 32)
8106 // R_PPC_EMB_NADDR16_HA
8107 goto unsupp;
8108 // Fall through.
8109 case elfcpp::R_PPC64_ADDR16_HIGHEST:
8110 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8111 Reloc::addr16_hi3(view, value);
8112 break;
8113
8114 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8115 if (size == 32)
8116 // R_PPC_EMB_SDAI16
8117 goto unsupp;
8118 // Fall through.
8119 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
8120 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8121 Reloc::addr16_ha3(view, value);
8122 break;
8123
8124 case elfcpp::R_PPC64_DTPREL16_DS:
8125 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8126 if (size == 32)
8127 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
8128 goto unsupp;
8129 // Fall through.
8130 case elfcpp::R_PPC64_TPREL16_DS:
8131 case elfcpp::R_PPC64_TPREL16_LO_DS:
8132 if (size == 32)
8133 // R_PPC_TLSGD, R_PPC_TLSLD
8134 break;
8135 // Fall through.
8136 case elfcpp::R_PPC64_ADDR16_DS:
8137 case elfcpp::R_PPC64_ADDR16_LO_DS:
8138 case elfcpp::R_PPC64_TOC16_DS:
8139 case elfcpp::R_PPC64_TOC16_LO_DS:
8140 case elfcpp::R_PPC64_GOT16_DS:
8141 case elfcpp::R_PPC64_GOT16_LO_DS:
8142 case elfcpp::R_PPC64_SECTOFF_DS:
8143 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8144 maybe_dq_reloc = true;
8145 break;
8146
8147 case elfcpp::R_POWERPC_ADDR14:
8148 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8149 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8150 case elfcpp::R_POWERPC_REL14:
8151 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8152 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8153 status = Reloc::addr14(view, value, overflow);
8154 break;
8155
8156 case elfcpp::R_POWERPC_COPY:
8157 case elfcpp::R_POWERPC_GLOB_DAT:
8158 case elfcpp::R_POWERPC_JMP_SLOT:
8159 case elfcpp::R_POWERPC_RELATIVE:
8160 case elfcpp::R_POWERPC_DTPMOD:
8161 case elfcpp::R_PPC64_JMP_IREL:
8162 case elfcpp::R_POWERPC_IRELATIVE:
8163 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8164 _("unexpected reloc %u in object file"),
8165 r_type);
8166 break;
8167
8168 case elfcpp::R_PPC_EMB_SDA21:
8169 if (size == 32)
8170 goto unsupp;
8171 else
8172 {
8173 // R_PPC64_TOCSAVE. For the time being this can be ignored.
8174 }
8175 break;
8176
8177 case elfcpp::R_PPC_EMB_SDA2I16:
8178 case elfcpp::R_PPC_EMB_SDA2REL:
8179 if (size == 32)
8180 goto unsupp;
8181 // R_PPC64_TLSGD, R_PPC64_TLSLD
8182 break;
8183
8184 case elfcpp::R_POWERPC_PLT32:
8185 case elfcpp::R_POWERPC_PLTREL32:
8186 case elfcpp::R_POWERPC_PLT16_LO:
8187 case elfcpp::R_POWERPC_PLT16_HI:
8188 case elfcpp::R_POWERPC_PLT16_HA:
8189 case elfcpp::R_PPC_SDAREL16:
8190 case elfcpp::R_POWERPC_ADDR30:
8191 case elfcpp::R_PPC64_PLT64:
8192 case elfcpp::R_PPC64_PLTREL64:
8193 case elfcpp::R_PPC64_PLTGOT16:
8194 case elfcpp::R_PPC64_PLTGOT16_LO:
8195 case elfcpp::R_PPC64_PLTGOT16_HI:
8196 case elfcpp::R_PPC64_PLTGOT16_HA:
8197 case elfcpp::R_PPC64_PLT16_LO_DS:
8198 case elfcpp::R_PPC64_PLTGOT16_DS:
8199 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
8200 case elfcpp::R_PPC_EMB_RELSDA:
8201 case elfcpp::R_PPC_TOC16:
8202 default:
8203 unsupp:
8204 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8205 _("unsupported reloc %u"),
8206 r_type);
8207 break;
8208 }
8209
8210 if (maybe_dq_reloc)
8211 {
8212 if (insn == 0)
8213 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8214
8215 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
8216 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
8217 && (insn & 3) == 1))
8218 status = Reloc::addr16_dq(view, value, overflow);
8219 else if (size == 64
8220 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
8221 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
8222 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
8223 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
8224 status = Reloc::addr16_ds(view, value, overflow);
8225 else
8226 status = Reloc::addr16(view, value, overflow);
8227 }
8228
8229 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
8230 && (has_stub_value
8231 || !(gsym != NULL
8232 && gsym->is_undefined()
8233 && is_branch_reloc(r_type))))
8234 {
8235 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8236 _("relocation overflow"));
8237 if (has_stub_value)
8238 gold_info(_("try relinking with a smaller --stub-group-size"));
8239 }
8240
8241 return true;
8242 }
8243
8244 // Relocate section data.
8245
8246 template<int size, bool big_endian>
8247 void
8248 Target_powerpc<size, big_endian>::relocate_section(
8249 const Relocate_info<size, big_endian>* relinfo,
8250 unsigned int sh_type,
8251 const unsigned char* prelocs,
8252 size_t reloc_count,
8253 Output_section* output_section,
8254 bool needs_special_offset_handling,
8255 unsigned char* view,
8256 Address address,
8257 section_size_type view_size,
8258 const Reloc_symbol_changes* reloc_symbol_changes)
8259 {
8260 typedef Target_powerpc<size, big_endian> Powerpc;
8261 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
8262 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
8263 Powerpc_comdat_behavior;
8264 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8265 Classify_reloc;
8266
8267 gold_assert(sh_type == elfcpp::SHT_RELA);
8268
8269 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
8270 Powerpc_comdat_behavior, Classify_reloc>(
8271 relinfo,
8272 this,
8273 prelocs,
8274 reloc_count,
8275 output_section,
8276 needs_special_offset_handling,
8277 view,
8278 address,
8279 view_size,
8280 reloc_symbol_changes);
8281 }
8282
8283 template<int size, bool big_endian>
8284 class Powerpc_scan_relocatable_reloc
8285 {
8286 public:
8287 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8288 Reltype;
8289 static const int reloc_size =
8290 Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8291 static const int sh_type = elfcpp::SHT_RELA;
8292
8293 // Return the symbol referred to by the relocation.
8294 static inline unsigned int
8295 get_r_sym(const Reltype* reloc)
8296 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
8297
8298 // Return the type of the relocation.
8299 static inline unsigned int
8300 get_r_type(const Reltype* reloc)
8301 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
8302
8303 // Return the strategy to use for a local symbol which is not a
8304 // section symbol, given the relocation type.
8305 inline Relocatable_relocs::Reloc_strategy
8306 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
8307 {
8308 if (r_type == 0 && r_sym == 0)
8309 return Relocatable_relocs::RELOC_DISCARD;
8310 return Relocatable_relocs::RELOC_COPY;
8311 }
8312
8313 // Return the strategy to use for a local symbol which is a section
8314 // symbol, given the relocation type.
8315 inline Relocatable_relocs::Reloc_strategy
8316 local_section_strategy(unsigned int, Relobj*)
8317 {
8318 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
8319 }
8320
8321 // Return the strategy to use for a global symbol, given the
8322 // relocation type, the object, and the symbol index.
8323 inline Relocatable_relocs::Reloc_strategy
8324 global_strategy(unsigned int r_type, Relobj*, unsigned int)
8325 {
8326 if (r_type == elfcpp::R_PPC_PLTREL24)
8327 return Relocatable_relocs::RELOC_SPECIAL;
8328 return Relocatable_relocs::RELOC_COPY;
8329 }
8330 };
8331
8332 // Scan the relocs during a relocatable link.
8333
8334 template<int size, bool big_endian>
8335 void
8336 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
8337 Symbol_table* symtab,
8338 Layout* layout,
8339 Sized_relobj_file<size, big_endian>* object,
8340 unsigned int data_shndx,
8341 unsigned int sh_type,
8342 const unsigned char* prelocs,
8343 size_t reloc_count,
8344 Output_section* output_section,
8345 bool needs_special_offset_handling,
8346 size_t local_symbol_count,
8347 const unsigned char* plocal_symbols,
8348 Relocatable_relocs* rr)
8349 {
8350 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
8351
8352 gold_assert(sh_type == elfcpp::SHT_RELA);
8353
8354 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
8355 symtab,
8356 layout,
8357 object,
8358 data_shndx,
8359 prelocs,
8360 reloc_count,
8361 output_section,
8362 needs_special_offset_handling,
8363 local_symbol_count,
8364 plocal_symbols,
8365 rr);
8366 }
8367
8368 // Scan the relocs for --emit-relocs.
8369
8370 template<int size, bool big_endian>
8371 void
8372 Target_powerpc<size, big_endian>::emit_relocs_scan(
8373 Symbol_table* symtab,
8374 Layout* layout,
8375 Sized_relobj_file<size, big_endian>* object,
8376 unsigned int data_shndx,
8377 unsigned int sh_type,
8378 const unsigned char* prelocs,
8379 size_t reloc_count,
8380 Output_section* output_section,
8381 bool needs_special_offset_handling,
8382 size_t local_symbol_count,
8383 const unsigned char* plocal_syms,
8384 Relocatable_relocs* rr)
8385 {
8386 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
8387 Classify_reloc;
8388 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
8389 Emit_relocs_strategy;
8390
8391 gold_assert(sh_type == elfcpp::SHT_RELA);
8392
8393 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
8394 symtab,
8395 layout,
8396 object,
8397 data_shndx,
8398 prelocs,
8399 reloc_count,
8400 output_section,
8401 needs_special_offset_handling,
8402 local_symbol_count,
8403 plocal_syms,
8404 rr);
8405 }
8406
8407 // Emit relocations for a section.
8408 // This is a modified version of the function by the same name in
8409 // target-reloc.h. Using relocate_special_relocatable for
8410 // R_PPC_PLTREL24 would require duplication of the entire body of the
8411 // loop, so we may as well duplicate the whole thing.
8412
8413 template<int size, bool big_endian>
8414 void
8415 Target_powerpc<size, big_endian>::relocate_relocs(
8416 const Relocate_info<size, big_endian>* relinfo,
8417 unsigned int sh_type,
8418 const unsigned char* prelocs,
8419 size_t reloc_count,
8420 Output_section* output_section,
8421 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8422 unsigned char*,
8423 Address view_address,
8424 section_size_type,
8425 unsigned char* reloc_view,
8426 section_size_type reloc_view_size)
8427 {
8428 gold_assert(sh_type == elfcpp::SHT_RELA);
8429
8430 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc
8431 Reltype;
8432 typedef typename Reloc_types<elfcpp::SHT_RELA, size, big_endian>::Reloc_write
8433 Reltype_write;
8434 const int reloc_size
8435 = Reloc_types<elfcpp::SHT_RELA, size, big_endian>::reloc_size;
8436 // Offset from start of insn to d-field reloc.
8437 const int d_offset = big_endian ? 2 : 0;
8438
8439 Powerpc_relobj<size, big_endian>* const object
8440 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8441 const unsigned int local_count = object->local_symbol_count();
8442 unsigned int got2_shndx = object->got2_shndx();
8443 Address got2_addend = 0;
8444 if (got2_shndx != 0)
8445 {
8446 got2_addend = object->get_output_section_offset(got2_shndx);
8447 gold_assert(got2_addend != invalid_address);
8448 }
8449
8450 unsigned char* pwrite = reloc_view;
8451 bool zap_next = false;
8452 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
8453 {
8454 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
8455 if (strategy == Relocatable_relocs::RELOC_DISCARD)
8456 continue;
8457
8458 Reltype reloc(prelocs);
8459 Reltype_write reloc_write(pwrite);
8460
8461 Address offset = reloc.get_r_offset();
8462 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
8463 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8464 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8465 const unsigned int orig_r_sym = r_sym;
8466 typename elfcpp::Elf_types<size>::Elf_Swxword addend
8467 = reloc.get_r_addend();
8468 const Symbol* gsym = NULL;
8469
8470 if (zap_next)
8471 {
8472 // We could arrange to discard these and other relocs for
8473 // tls optimised sequences in the strategy methods, but for
8474 // now do as BFD ld does.
8475 r_type = elfcpp::R_POWERPC_NONE;
8476 zap_next = false;
8477 }
8478
8479 // Get the new symbol index.
8480 Output_section* os = NULL;
8481 if (r_sym < local_count)
8482 {
8483 switch (strategy)
8484 {
8485 case Relocatable_relocs::RELOC_COPY:
8486 case Relocatable_relocs::RELOC_SPECIAL:
8487 if (r_sym != 0)
8488 {
8489 r_sym = object->symtab_index(r_sym);
8490 gold_assert(r_sym != -1U);
8491 }
8492 break;
8493
8494 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
8495 {
8496 // We are adjusting a section symbol. We need to find
8497 // the symbol table index of the section symbol for
8498 // the output section corresponding to input section
8499 // in which this symbol is defined.
8500 gold_assert(r_sym < local_count);
8501 bool is_ordinary;
8502 unsigned int shndx =
8503 object->local_symbol_input_shndx(r_sym, &is_ordinary);
8504 gold_assert(is_ordinary);
8505 os = object->output_section(shndx);
8506 gold_assert(os != NULL);
8507 gold_assert(os->needs_symtab_index());
8508 r_sym = os->symtab_index();
8509 }
8510 break;
8511
8512 default:
8513 gold_unreachable();
8514 }
8515 }
8516 else
8517 {
8518 gsym = object->global_symbol(r_sym);
8519 gold_assert(gsym != NULL);
8520 if (gsym->is_forwarder())
8521 gsym = relinfo->symtab->resolve_forwards(gsym);
8522
8523 gold_assert(gsym->has_symtab_index());
8524 r_sym = gsym->symtab_index();
8525 }
8526
8527 // Get the new offset--the location in the output section where
8528 // this relocation should be applied.
8529 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8530 offset += offset_in_output_section;
8531 else
8532 {
8533 section_offset_type sot_offset =
8534 convert_types<section_offset_type, Address>(offset);
8535 section_offset_type new_sot_offset =
8536 output_section->output_offset(object, relinfo->data_shndx,
8537 sot_offset);
8538 gold_assert(new_sot_offset != -1);
8539 offset = new_sot_offset;
8540 }
8541
8542 // In an object file, r_offset is an offset within the section.
8543 // In an executable or dynamic object, generated by
8544 // --emit-relocs, r_offset is an absolute address.
8545 if (!parameters->options().relocatable())
8546 {
8547 offset += view_address;
8548 if (static_cast<Address>(offset_in_output_section) != invalid_address)
8549 offset -= offset_in_output_section;
8550 }
8551
8552 // Handle the reloc addend based on the strategy.
8553 if (strategy == Relocatable_relocs::RELOC_COPY)
8554 ;
8555 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
8556 {
8557 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
8558 gold_assert(os != NULL);
8559 addend = psymval->value(object, addend) - os->address();
8560 }
8561 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
8562 {
8563 if (size == 32)
8564 {
8565 if (addend >= 32768)
8566 addend += got2_addend;
8567 }
8568 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
8569 {
8570 r_type = elfcpp::R_POWERPC_ADDR16_HA;
8571 addend -= d_offset;
8572 }
8573 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
8574 {
8575 r_type = elfcpp::R_POWERPC_ADDR16_LO;
8576 addend -= d_offset + 4;
8577 }
8578 }
8579 else
8580 gold_unreachable();
8581
8582 if (!parameters->options().relocatable())
8583 {
8584 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8585 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8586 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8587 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8588 {
8589 // First instruction of a global dynamic sequence,
8590 // arg setup insn.
8591 const bool final = gsym == NULL || gsym->final_value_is_known();
8592 switch (this->optimize_tls_gd(final))
8593 {
8594 case tls::TLSOPT_TO_IE:
8595 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8596 - elfcpp::R_POWERPC_GOT_TLSGD16);
8597 break;
8598 case tls::TLSOPT_TO_LE:
8599 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8600 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8601 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8602 else
8603 {
8604 r_type = elfcpp::R_POWERPC_NONE;
8605 offset -= d_offset;
8606 }
8607 break;
8608 default:
8609 break;
8610 }
8611 }
8612 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8613 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8614 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8615 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8616 {
8617 // First instruction of a local dynamic sequence,
8618 // arg setup insn.
8619 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8620 {
8621 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8622 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8623 {
8624 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8625 const Output_section* os = relinfo->layout->tls_segment()
8626 ->first_section();
8627 gold_assert(os != NULL);
8628 gold_assert(os->needs_symtab_index());
8629 r_sym = os->symtab_index();
8630 addend = dtp_offset;
8631 }
8632 else
8633 {
8634 r_type = elfcpp::R_POWERPC_NONE;
8635 offset -= d_offset;
8636 }
8637 }
8638 }
8639 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8640 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8641 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8642 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8643 {
8644 // First instruction of initial exec sequence.
8645 const bool final = gsym == NULL || gsym->final_value_is_known();
8646 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8647 {
8648 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8649 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8650 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8651 else
8652 {
8653 r_type = elfcpp::R_POWERPC_NONE;
8654 offset -= d_offset;
8655 }
8656 }
8657 }
8658 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8659 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8660 {
8661 // Second instruction of a global dynamic sequence,
8662 // the __tls_get_addr call
8663 const bool final = gsym == NULL || gsym->final_value_is_known();
8664 switch (this->optimize_tls_gd(final))
8665 {
8666 case tls::TLSOPT_TO_IE:
8667 r_type = elfcpp::R_POWERPC_NONE;
8668 zap_next = true;
8669 break;
8670 case tls::TLSOPT_TO_LE:
8671 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8672 offset += d_offset;
8673 zap_next = true;
8674 break;
8675 default:
8676 break;
8677 }
8678 }
8679 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8680 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8681 {
8682 // Second instruction of a local dynamic sequence,
8683 // the __tls_get_addr call
8684 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
8685 {
8686 const Output_section* os = relinfo->layout->tls_segment()
8687 ->first_section();
8688 gold_assert(os != NULL);
8689 gold_assert(os->needs_symtab_index());
8690 r_sym = os->symtab_index();
8691 addend = dtp_offset;
8692 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8693 offset += d_offset;
8694 zap_next = true;
8695 }
8696 }
8697 else if (r_type == elfcpp::R_POWERPC_TLS)
8698 {
8699 // Second instruction of an initial exec sequence
8700 const bool final = gsym == NULL || gsym->final_value_is_known();
8701 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
8702 {
8703 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8704 offset += d_offset;
8705 }
8706 }
8707 }
8708
8709 reloc_write.put_r_offset(offset);
8710 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
8711 reloc_write.put_r_addend(addend);
8712
8713 pwrite += reloc_size;
8714 }
8715
8716 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
8717 == reloc_view_size);
8718 }
8719
8720 // Return the value to use for a dynamic symbol which requires special
8721 // treatment. This is how we support equality comparisons of function
8722 // pointers across shared library boundaries, as described in the
8723 // processor specific ABI supplement.
8724
8725 template<int size, bool big_endian>
8726 uint64_t
8727 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
8728 {
8729 if (size == 32)
8730 {
8731 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
8732 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8733 p != this->stub_tables_.end();
8734 ++p)
8735 {
8736 Address off = (*p)->find_plt_call_entry(gsym);
8737 if (off != invalid_address)
8738 return (*p)->stub_address() + off;
8739 }
8740 }
8741 else if (this->abiversion() >= 2)
8742 {
8743 Address off = this->glink_section()->find_global_entry(gsym);
8744 if (off != invalid_address)
8745 return this->glink_section()->global_entry_address() + off;
8746 }
8747 gold_unreachable();
8748 }
8749
8750 // Return the PLT address to use for a local symbol.
8751 template<int size, bool big_endian>
8752 uint64_t
8753 Target_powerpc<size, big_endian>::do_plt_address_for_local(
8754 const Relobj* object,
8755 unsigned int symndx) const
8756 {
8757 if (size == 32)
8758 {
8759 const Sized_relobj<size, big_endian>* relobj
8760 = static_cast<const Sized_relobj<size, big_endian>*>(object);
8761 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8762 p != this->stub_tables_.end();
8763 ++p)
8764 {
8765 Address off = (*p)->find_plt_call_entry(relobj->sized_relobj(),
8766 symndx);
8767 if (off != invalid_address)
8768 return (*p)->stub_address() + off;
8769 }
8770 }
8771 gold_unreachable();
8772 }
8773
8774 // Return the PLT address to use for a global symbol.
8775 template<int size, bool big_endian>
8776 uint64_t
8777 Target_powerpc<size, big_endian>::do_plt_address_for_global(
8778 const Symbol* gsym) const
8779 {
8780 if (size == 32)
8781 {
8782 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
8783 p != this->stub_tables_.end();
8784 ++p)
8785 {
8786 Address off = (*p)->find_plt_call_entry(gsym);
8787 if (off != invalid_address)
8788 return (*p)->stub_address() + off;
8789 }
8790 }
8791 else if (this->abiversion() >= 2)
8792 {
8793 Address off = this->glink_section()->find_global_entry(gsym);
8794 if (off != invalid_address)
8795 return this->glink_section()->global_entry_address() + off;
8796 }
8797 gold_unreachable();
8798 }
8799
8800 // Return the offset to use for the GOT_INDX'th got entry which is
8801 // for a local tls symbol specified by OBJECT, SYMNDX.
8802 template<int size, bool big_endian>
8803 int64_t
8804 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
8805 const Relobj* object,
8806 unsigned int symndx,
8807 unsigned int got_indx) const
8808 {
8809 const Powerpc_relobj<size, big_endian>* ppc_object
8810 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
8811 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
8812 {
8813 for (Got_type got_type = GOT_TYPE_TLSGD;
8814 got_type <= GOT_TYPE_TPREL;
8815 got_type = Got_type(got_type + 1))
8816 if (ppc_object->local_has_got_offset(symndx, got_type))
8817 {
8818 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
8819 if (got_type == GOT_TYPE_TLSGD)
8820 off += size / 8;
8821 if (off == got_indx * (size / 8))
8822 {
8823 if (got_type == GOT_TYPE_TPREL)
8824 return -tp_offset;
8825 else
8826 return -dtp_offset;
8827 }
8828 }
8829 }
8830 gold_unreachable();
8831 }
8832
8833 // Return the offset to use for the GOT_INDX'th got entry which is
8834 // for global tls symbol GSYM.
8835 template<int size, bool big_endian>
8836 int64_t
8837 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
8838 Symbol* gsym,
8839 unsigned int got_indx) const
8840 {
8841 if (gsym->type() == elfcpp::STT_TLS)
8842 {
8843 for (Got_type got_type = GOT_TYPE_TLSGD;
8844 got_type <= GOT_TYPE_TPREL;
8845 got_type = Got_type(got_type + 1))
8846 if (gsym->has_got_offset(got_type))
8847 {
8848 unsigned int off = gsym->got_offset(got_type);
8849 if (got_type == GOT_TYPE_TLSGD)
8850 off += size / 8;
8851 if (off == got_indx * (size / 8))
8852 {
8853 if (got_type == GOT_TYPE_TPREL)
8854 return -tp_offset;
8855 else
8856 return -dtp_offset;
8857 }
8858 }
8859 }
8860 gold_unreachable();
8861 }
8862
8863 // The selector for powerpc object files.
8864
8865 template<int size, bool big_endian>
8866 class Target_selector_powerpc : public Target_selector
8867 {
8868 public:
8869 Target_selector_powerpc()
8870 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
8871 size, big_endian,
8872 (size == 64
8873 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
8874 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
8875 (size == 64
8876 ? (big_endian ? "elf64ppc" : "elf64lppc")
8877 : (big_endian ? "elf32ppc" : "elf32lppc")))
8878 { }
8879
8880 virtual Target*
8881 do_instantiate_target()
8882 { return new Target_powerpc<size, big_endian>(); }
8883 };
8884
8885 Target_selector_powerpc<32, true> target_selector_ppc32;
8886 Target_selector_powerpc<32, false> target_selector_ppc32le;
8887 Target_selector_powerpc<64, true> target_selector_ppc64;
8888 Target_selector_powerpc<64, false> target_selector_ppc64le;
8889
8890 // Instantiate these constants for -O0
8891 template<int size, bool big_endian>
8892 const int Output_data_glink<size, big_endian>::pltresolve_size;
8893 template<int size, bool big_endian>
8894 const typename Output_data_glink<size, big_endian>::Address
8895 Output_data_glink<size, big_endian>::invalid_address;
8896 template<int size, bool big_endian>
8897 const typename Stub_table<size, big_endian>::Address
8898 Stub_table<size, big_endian>::invalid_address;
8899 template<int size, bool big_endian>
8900 const typename Target_powerpc<size, big_endian>::Address
8901 Target_powerpc<size, big_endian>::invalid_address;
8902
8903 } // End anonymous namespace.
This page took 0.279696 seconds and 5 git commands to generate.