Fix spelling typos.
[deliverable/binutils-gdb.git] / gold / powerpc.cc
1 // powerpc.cc -- powerpc target support for gold.
2
3 // Copyright (C) 2008-2017 Free Software Foundation, Inc.
4 // Written by David S. Miller <davem@davemloft.net>
5 // and David Edelsohn <edelsohn@gnu.org>
6
7 // This file is part of gold.
8
9 // This program is free software; you can redistribute it and/or modify
10 // it under the terms of the GNU General Public License as published by
11 // the Free Software Foundation; either version 3 of the License, or
12 // (at your option) any later version.
13
14 // This program is distributed in the hope that it will be useful,
15 // but WITHOUT ANY WARRANTY; without even the implied warranty of
16 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 // GNU General Public License for more details.
18
19 // You should have received a copy of the GNU General Public License
20 // along with this program; if not, write to the Free Software
21 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 // MA 02110-1301, USA.
23
24 #include "gold.h"
25
26 #include <set>
27 #include <algorithm>
28 #include "elfcpp.h"
29 #include "dwarf.h"
30 #include "parameters.h"
31 #include "reloc.h"
32 #include "powerpc.h"
33 #include "object.h"
34 #include "symtab.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "copy-relocs.h"
38 #include "target.h"
39 #include "target-reloc.h"
40 #include "target-select.h"
41 #include "tls.h"
42 #include "errors.h"
43 #include "gc.h"
44
45 namespace
46 {
47
48 using namespace gold;
49
50 template<int size, bool big_endian>
51 class Output_data_plt_powerpc;
52
53 template<int size, bool big_endian>
54 class Output_data_brlt_powerpc;
55
56 template<int size, bool big_endian>
57 class Output_data_got_powerpc;
58
59 template<int size, bool big_endian>
60 class Output_data_glink;
61
62 template<int size, bool big_endian>
63 class Stub_table;
64
65 template<int size, bool big_endian>
66 class Output_data_save_res;
67
68 template<int size, bool big_endian>
69 class Target_powerpc;
70
71 struct Stub_table_owner
72 {
73 Stub_table_owner()
74 : output_section(NULL), owner(NULL)
75 { }
76
77 Output_section* output_section;
78 const Output_section::Input_section* owner;
79 };
80
81 inline bool
82 is_branch_reloc(unsigned int r_type);
83
84 // Counter incremented on every Powerpc_relobj constructed.
85 static uint32_t object_id = 0;
86
87 template<int size, bool big_endian>
88 class Powerpc_relobj : public Sized_relobj_file<size, big_endian>
89 {
90 public:
91 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
92 typedef Unordered_set<Section_id, Section_id_hash> Section_refs;
93 typedef Unordered_map<Address, Section_refs> Access_from;
94
95 Powerpc_relobj(const std::string& name, Input_file* input_file, off_t offset,
96 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
97 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
98 uniq_(object_id++), special_(0), relatoc_(0), toc_(0),
99 has_small_toc_reloc_(false), opd_valid_(false),
100 e_flags_(ehdr.get_e_flags()), no_toc_opt_(), opd_ent_(),
101 access_from_map_(), has14_(), stub_table_index_(), st_other_()
102 {
103 this->set_abiversion(0);
104 }
105
106 ~Powerpc_relobj()
107 { }
108
109 // Read the symbols then set up st_other vector.
110 void
111 do_read_symbols(Read_symbols_data*);
112
113 // Arrange to always relocate .toc first.
114 virtual void
115 do_relocate_sections(
116 const Symbol_table* symtab, const Layout* layout,
117 const unsigned char* pshdrs, Output_file* of,
118 typename Sized_relobj_file<size, big_endian>::Views* pviews);
119
120 // The .toc section index.
121 unsigned int
122 toc_shndx() const
123 {
124 return this->toc_;
125 }
126
127 // Mark .toc entry at OFF as not optimizable.
128 void
129 set_no_toc_opt(Address off)
130 {
131 if (this->no_toc_opt_.empty())
132 this->no_toc_opt_.resize(this->section_size(this->toc_shndx())
133 / (size / 8));
134 off /= size / 8;
135 if (off < this->no_toc_opt_.size())
136 this->no_toc_opt_[off] = true;
137 }
138
139 // Mark the entire .toc as not optimizable.
140 void
141 set_no_toc_opt()
142 {
143 this->no_toc_opt_.resize(1);
144 this->no_toc_opt_[0] = true;
145 }
146
147 // Return true if code using the .toc entry at OFF should not be edited.
148 bool
149 no_toc_opt(Address off) const
150 {
151 if (this->no_toc_opt_.empty())
152 return false;
153 off /= size / 8;
154 if (off >= this->no_toc_opt_.size())
155 return true;
156 return this->no_toc_opt_[off];
157 }
158
159 // The .got2 section shndx.
160 unsigned int
161 got2_shndx() const
162 {
163 if (size == 32)
164 return this->special_;
165 else
166 return 0;
167 }
168
169 // The .opd section shndx.
170 unsigned int
171 opd_shndx() const
172 {
173 if (size == 32)
174 return 0;
175 else
176 return this->special_;
177 }
178
179 // Init OPD entry arrays.
180 void
181 init_opd(size_t opd_size)
182 {
183 size_t count = this->opd_ent_ndx(opd_size);
184 this->opd_ent_.resize(count);
185 }
186
187 // Return section and offset of function entry for .opd + R_OFF.
188 unsigned int
189 get_opd_ent(Address r_off, Address* value = NULL) const
190 {
191 size_t ndx = this->opd_ent_ndx(r_off);
192 gold_assert(ndx < this->opd_ent_.size());
193 gold_assert(this->opd_ent_[ndx].shndx != 0);
194 if (value != NULL)
195 *value = this->opd_ent_[ndx].off;
196 return this->opd_ent_[ndx].shndx;
197 }
198
199 // Set section and offset of function entry for .opd + R_OFF.
200 void
201 set_opd_ent(Address r_off, unsigned int shndx, Address value)
202 {
203 size_t ndx = this->opd_ent_ndx(r_off);
204 gold_assert(ndx < this->opd_ent_.size());
205 this->opd_ent_[ndx].shndx = shndx;
206 this->opd_ent_[ndx].off = value;
207 }
208
209 // Return discard flag for .opd + R_OFF.
210 bool
211 get_opd_discard(Address r_off) const
212 {
213 size_t ndx = this->opd_ent_ndx(r_off);
214 gold_assert(ndx < this->opd_ent_.size());
215 return this->opd_ent_[ndx].discard;
216 }
217
218 // Set discard flag for .opd + R_OFF.
219 void
220 set_opd_discard(Address r_off)
221 {
222 size_t ndx = this->opd_ent_ndx(r_off);
223 gold_assert(ndx < this->opd_ent_.size());
224 this->opd_ent_[ndx].discard = true;
225 }
226
227 bool
228 opd_valid() const
229 { return this->opd_valid_; }
230
231 void
232 set_opd_valid()
233 { this->opd_valid_ = true; }
234
235 // Examine .rela.opd to build info about function entry points.
236 void
237 scan_opd_relocs(size_t reloc_count,
238 const unsigned char* prelocs,
239 const unsigned char* plocal_syms);
240
241 // Returns true if a code sequence loading a TOC entry can be
242 // converted into code calculating a TOC pointer relative offset.
243 bool
244 make_toc_relative(Target_powerpc<size, big_endian>* target,
245 Address* value);
246
247 // Perform the Sized_relobj_file method, then set up opd info from
248 // .opd relocs.
249 void
250 do_read_relocs(Read_relocs_data*);
251
252 bool
253 do_find_special_sections(Read_symbols_data* sd);
254
255 // Adjust this local symbol value. Return false if the symbol
256 // should be discarded from the output file.
257 bool
258 do_adjust_local_symbol(Symbol_value<size>* lv) const
259 {
260 if (size == 64 && this->opd_shndx() != 0)
261 {
262 bool is_ordinary;
263 if (lv->input_shndx(&is_ordinary) != this->opd_shndx())
264 return true;
265 if (this->get_opd_discard(lv->input_value()))
266 return false;
267 }
268 return true;
269 }
270
271 Access_from*
272 access_from_map()
273 { return &this->access_from_map_; }
274
275 // Add a reference from SRC_OBJ, SRC_INDX to this object's .opd
276 // section at DST_OFF.
277 void
278 add_reference(Relobj* src_obj,
279 unsigned int src_indx,
280 typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
281 {
282 Section_id src_id(src_obj, src_indx);
283 this->access_from_map_[dst_off].insert(src_id);
284 }
285
286 // Add a reference to the code section specified by the .opd entry
287 // at DST_OFF
288 void
289 add_gc_mark(typename elfcpp::Elf_types<size>::Elf_Addr dst_off)
290 {
291 size_t ndx = this->opd_ent_ndx(dst_off);
292 if (ndx >= this->opd_ent_.size())
293 this->opd_ent_.resize(ndx + 1);
294 this->opd_ent_[ndx].gc_mark = true;
295 }
296
297 void
298 process_gc_mark(Symbol_table* symtab)
299 {
300 for (size_t i = 0; i < this->opd_ent_.size(); i++)
301 if (this->opd_ent_[i].gc_mark)
302 {
303 unsigned int shndx = this->opd_ent_[i].shndx;
304 symtab->gc()->worklist().push_back(Section_id(this, shndx));
305 }
306 }
307
308 // Return offset in output GOT section that this object will use
309 // as a TOC pointer. Won't be just a constant with multi-toc support.
310 Address
311 toc_base_offset() const
312 { return 0x8000; }
313
314 void
315 set_has_small_toc_reloc()
316 { has_small_toc_reloc_ = true; }
317
318 bool
319 has_small_toc_reloc() const
320 { return has_small_toc_reloc_; }
321
322 void
323 set_has_14bit_branch(unsigned int shndx)
324 {
325 if (shndx >= this->has14_.size())
326 this->has14_.resize(shndx + 1);
327 this->has14_[shndx] = true;
328 }
329
330 bool
331 has_14bit_branch(unsigned int shndx) const
332 { return shndx < this->has14_.size() && this->has14_[shndx]; }
333
334 void
335 set_stub_table(unsigned int shndx, unsigned int stub_index)
336 {
337 if (shndx >= this->stub_table_index_.size())
338 this->stub_table_index_.resize(shndx + 1, -1);
339 this->stub_table_index_[shndx] = stub_index;
340 }
341
342 Stub_table<size, big_endian>*
343 stub_table(unsigned int shndx)
344 {
345 if (shndx < this->stub_table_index_.size())
346 {
347 Target_powerpc<size, big_endian>* target
348 = static_cast<Target_powerpc<size, big_endian>*>(
349 parameters->sized_target<size, big_endian>());
350 unsigned int indx = this->stub_table_index_[shndx];
351 if (indx < target->stub_tables().size())
352 return target->stub_tables()[indx];
353 }
354 return NULL;
355 }
356
357 void
358 clear_stub_table()
359 {
360 this->stub_table_index_.clear();
361 }
362
363 uint32_t
364 uniq() const
365 { return this->uniq_; }
366
367 int
368 abiversion() const
369 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
370
371 // Set ABI version for input and output
372 void
373 set_abiversion(int ver);
374
375 unsigned int
376 st_other (unsigned int symndx) const
377 {
378 return this->st_other_[symndx];
379 }
380
381 unsigned int
382 ppc64_local_entry_offset(const Symbol* sym) const
383 { return elfcpp::ppc64_decode_local_entry(sym->nonvis() >> 3); }
384
385 unsigned int
386 ppc64_local_entry_offset(unsigned int symndx) const
387 { return elfcpp::ppc64_decode_local_entry(this->st_other_[symndx] >> 5); }
388
389 private:
390 struct Opd_ent
391 {
392 unsigned int shndx;
393 bool discard : 1;
394 bool gc_mark : 1;
395 Address off;
396 };
397
398 // Return index into opd_ent_ array for .opd entry at OFF.
399 // .opd entries are 24 bytes long, but they can be spaced 16 bytes
400 // apart when the language doesn't use the last 8-byte word, the
401 // environment pointer. Thus dividing the entry section offset by
402 // 16 will give an index into opd_ent_ that works for either layout
403 // of .opd. (It leaves some elements of the vector unused when .opd
404 // entries are spaced 24 bytes apart, but we don't know the spacing
405 // until relocations are processed, and in any case it is possible
406 // for an object to have some entries spaced 16 bytes apart and
407 // others 24 bytes apart.)
408 size_t
409 opd_ent_ndx(size_t off) const
410 { return off >> 4;}
411
412 // Per object unique identifier
413 uint32_t uniq_;
414
415 // For 32-bit the .got2 section shdnx, for 64-bit the .opd section shndx.
416 unsigned int special_;
417
418 // For 64-bit the .rela.toc and .toc section shdnx.
419 unsigned int relatoc_;
420 unsigned int toc_;
421
422 // For 64-bit, whether this object uses small model relocs to access
423 // the toc.
424 bool has_small_toc_reloc_;
425
426 // Set at the start of gc_process_relocs, when we know opd_ent_
427 // vector is valid. The flag could be made atomic and set in
428 // do_read_relocs with memory_order_release and then tested with
429 // memory_order_acquire, potentially resulting in fewer entries in
430 // access_from_map_.
431 bool opd_valid_;
432
433 // Header e_flags
434 elfcpp::Elf_Word e_flags_;
435
436 // For 64-bit, an array with one entry per 64-bit word in the .toc
437 // section, set if accesses using that word cannot be optimised.
438 std::vector<bool> no_toc_opt_;
439
440 // The first 8-byte word of an OPD entry gives the address of the
441 // entry point of the function. Relocatable object files have a
442 // relocation on this word. The following vector records the
443 // section and offset specified by these relocations.
444 std::vector<Opd_ent> opd_ent_;
445
446 // References made to this object's .opd section when running
447 // gc_process_relocs for another object, before the opd_ent_ vector
448 // is valid for this object.
449 Access_from access_from_map_;
450
451 // Whether input section has a 14-bit branch reloc.
452 std::vector<bool> has14_;
453
454 // The stub table to use for a given input section.
455 std::vector<unsigned int> stub_table_index_;
456
457 // ELF st_other field for local symbols.
458 std::vector<unsigned char> st_other_;
459 };
460
461 template<int size, bool big_endian>
462 class Powerpc_dynobj : public Sized_dynobj<size, big_endian>
463 {
464 public:
465 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
466
467 Powerpc_dynobj(const std::string& name, Input_file* input_file, off_t offset,
468 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
469 : Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr),
470 opd_shndx_(0), e_flags_(ehdr.get_e_flags()), opd_ent_()
471 {
472 this->set_abiversion(0);
473 }
474
475 ~Powerpc_dynobj()
476 { }
477
478 // Call Sized_dynobj::do_read_symbols to read the symbols then
479 // read .opd from a dynamic object, filling in opd_ent_ vector,
480 void
481 do_read_symbols(Read_symbols_data*);
482
483 // The .opd section shndx.
484 unsigned int
485 opd_shndx() const
486 {
487 return this->opd_shndx_;
488 }
489
490 // The .opd section address.
491 Address
492 opd_address() const
493 {
494 return this->opd_address_;
495 }
496
497 // Init OPD entry arrays.
498 void
499 init_opd(size_t opd_size)
500 {
501 size_t count = this->opd_ent_ndx(opd_size);
502 this->opd_ent_.resize(count);
503 }
504
505 // Return section and offset of function entry for .opd + R_OFF.
506 unsigned int
507 get_opd_ent(Address r_off, Address* value = NULL) const
508 {
509 size_t ndx = this->opd_ent_ndx(r_off);
510 gold_assert(ndx < this->opd_ent_.size());
511 gold_assert(this->opd_ent_[ndx].shndx != 0);
512 if (value != NULL)
513 *value = this->opd_ent_[ndx].off;
514 return this->opd_ent_[ndx].shndx;
515 }
516
517 // Set section and offset of function entry for .opd + R_OFF.
518 void
519 set_opd_ent(Address r_off, unsigned int shndx, Address value)
520 {
521 size_t ndx = this->opd_ent_ndx(r_off);
522 gold_assert(ndx < this->opd_ent_.size());
523 this->opd_ent_[ndx].shndx = shndx;
524 this->opd_ent_[ndx].off = value;
525 }
526
527 int
528 abiversion() const
529 { return this->e_flags_ & elfcpp::EF_PPC64_ABI; }
530
531 // Set ABI version for input and output.
532 void
533 set_abiversion(int ver);
534
535 private:
536 // Used to specify extent of executable sections.
537 struct Sec_info
538 {
539 Sec_info(Address start_, Address len_, unsigned int shndx_)
540 : start(start_), len(len_), shndx(shndx_)
541 { }
542
543 bool
544 operator<(const Sec_info& that) const
545 { return this->start < that.start; }
546
547 Address start;
548 Address len;
549 unsigned int shndx;
550 };
551
552 struct Opd_ent
553 {
554 unsigned int shndx;
555 Address off;
556 };
557
558 // Return index into opd_ent_ array for .opd entry at OFF.
559 size_t
560 opd_ent_ndx(size_t off) const
561 { return off >> 4;}
562
563 // For 64-bit the .opd section shndx and address.
564 unsigned int opd_shndx_;
565 Address opd_address_;
566
567 // Header e_flags
568 elfcpp::Elf_Word e_flags_;
569
570 // The first 8-byte word of an OPD entry gives the address of the
571 // entry point of the function. Records the section and offset
572 // corresponding to the address. Note that in dynamic objects,
573 // offset is *not* relative to the section.
574 std::vector<Opd_ent> opd_ent_;
575 };
576
577 // Powerpc_copy_relocs class. Needed to peek at dynamic relocs the
578 // base class will emit.
579
580 template<int sh_type, int size, bool big_endian>
581 class Powerpc_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
582 {
583 public:
584 Powerpc_copy_relocs()
585 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_POWERPC_COPY)
586 { }
587
588 // Emit any saved relocations which turn out to be needed. This is
589 // called after all the relocs have been scanned.
590 void
591 emit(Output_data_reloc<sh_type, true, size, big_endian>*);
592 };
593
594 template<int size, bool big_endian>
595 class Target_powerpc : public Sized_target<size, big_endian>
596 {
597 public:
598 typedef
599 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Reloc_section;
600 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
601 typedef typename elfcpp::Elf_types<size>::Elf_Swxword Signed_address;
602 typedef Unordered_set<Symbol_location, Symbol_location_hash> Tocsave_loc;
603 static const Address invalid_address = static_cast<Address>(0) - 1;
604 // Offset of tp and dtp pointers from start of TLS block.
605 static const Address tp_offset = 0x7000;
606 static const Address dtp_offset = 0x8000;
607
608 Target_powerpc()
609 : Sized_target<size, big_endian>(&powerpc_info),
610 got_(NULL), plt_(NULL), iplt_(NULL), brlt_section_(NULL),
611 glink_(NULL), rela_dyn_(NULL), copy_relocs_(),
612 tlsld_got_offset_(-1U),
613 stub_tables_(), branch_lookup_table_(), branch_info_(), tocsave_loc_(),
614 plt_thread_safe_(false), plt_localentry0_(false),
615 plt_localentry0_init_(false), has_localentry0_(false),
616 relax_failed_(false), relax_fail_count_(0),
617 stub_group_size_(0), savres_section_(0)
618 {
619 }
620
621 // Process the relocations to determine unreferenced sections for
622 // garbage collection.
623 void
624 gc_process_relocs(Symbol_table* symtab,
625 Layout* layout,
626 Sized_relobj_file<size, big_endian>* object,
627 unsigned int data_shndx,
628 unsigned int sh_type,
629 const unsigned char* prelocs,
630 size_t reloc_count,
631 Output_section* output_section,
632 bool needs_special_offset_handling,
633 size_t local_symbol_count,
634 const unsigned char* plocal_symbols);
635
636 // Scan the relocations to look for symbol adjustments.
637 void
638 scan_relocs(Symbol_table* symtab,
639 Layout* layout,
640 Sized_relobj_file<size, big_endian>* object,
641 unsigned int data_shndx,
642 unsigned int sh_type,
643 const unsigned char* prelocs,
644 size_t reloc_count,
645 Output_section* output_section,
646 bool needs_special_offset_handling,
647 size_t local_symbol_count,
648 const unsigned char* plocal_symbols);
649
650 // Map input .toc section to output .got section.
651 const char*
652 do_output_section_name(const Relobj*, const char* name, size_t* plen) const
653 {
654 if (size == 64 && strcmp(name, ".toc") == 0)
655 {
656 *plen = 4;
657 return ".got";
658 }
659 return NULL;
660 }
661
662 // Provide linker defined save/restore functions.
663 void
664 define_save_restore_funcs(Layout*, Symbol_table*);
665
666 // No stubs unless a final link.
667 bool
668 do_may_relax() const
669 { return !parameters->options().relocatable(); }
670
671 bool
672 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
673
674 void
675 do_plt_fde_location(const Output_data*, unsigned char*,
676 uint64_t*, off_t*) const;
677
678 // Stash info about branches, for stub generation.
679 void
680 push_branch(Powerpc_relobj<size, big_endian>* ppc_object,
681 unsigned int data_shndx, Address r_offset,
682 unsigned int r_type, unsigned int r_sym, Address addend)
683 {
684 Branch_info info(ppc_object, data_shndx, r_offset, r_type, r_sym, addend);
685 this->branch_info_.push_back(info);
686 if (r_type == elfcpp::R_POWERPC_REL14
687 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
688 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
689 ppc_object->set_has_14bit_branch(data_shndx);
690 }
691
692 // Return whether the last branch is a plt call, and if so, mark the
693 // branch as having an R_PPC64_TOCSAVE.
694 bool
695 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
696 unsigned int data_shndx, Address r_offset, Symbol_table* symtab)
697 {
698 return (size == 64
699 && !this->branch_info_.empty()
700 && this->branch_info_.back().mark_pltcall(ppc_object, data_shndx,
701 r_offset, this, symtab));
702 }
703
704 // Say the given location, that of a nop in a function prologue with
705 // an R_PPC64_TOCSAVE reloc, will be used to save r2.
706 // R_PPC64_TOCSAVE relocs on nops following calls point at this nop.
707 void
708 add_tocsave(Powerpc_relobj<size, big_endian>* ppc_object,
709 unsigned int shndx, Address offset)
710 {
711 Symbol_location loc;
712 loc.object = ppc_object;
713 loc.shndx = shndx;
714 loc.offset = offset;
715 this->tocsave_loc_.insert(loc);
716 }
717
718 // Accessor
719 const Tocsave_loc
720 tocsave_loc() const
721 {
722 return this->tocsave_loc_;
723 }
724
725 void
726 do_define_standard_symbols(Symbol_table*, Layout*);
727
728 // Finalize the sections.
729 void
730 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
731
732 // Return the value to use for a dynamic which requires special
733 // treatment.
734 uint64_t
735 do_dynsym_value(const Symbol*) const;
736
737 // Return the PLT address to use for a local symbol.
738 uint64_t
739 do_plt_address_for_local(const Relobj*, unsigned int) const;
740
741 // Return the PLT address to use for a global symbol.
742 uint64_t
743 do_plt_address_for_global(const Symbol*) const;
744
745 // Return the offset to use for the GOT_INDX'th got entry which is
746 // for a local tls symbol specified by OBJECT, SYMNDX.
747 int64_t
748 do_tls_offset_for_local(const Relobj* object,
749 unsigned int symndx,
750 unsigned int got_indx) const;
751
752 // Return the offset to use for the GOT_INDX'th got entry which is
753 // for global tls symbol GSYM.
754 int64_t
755 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
756
757 void
758 do_function_location(Symbol_location*) const;
759
760 bool
761 do_can_check_for_function_pointers() const
762 { return true; }
763
764 // Adjust -fsplit-stack code which calls non-split-stack code.
765 void
766 do_calls_non_split(Relobj* object, unsigned int shndx,
767 section_offset_type fnoffset, section_size_type fnsize,
768 const unsigned char* prelocs, size_t reloc_count,
769 unsigned char* view, section_size_type view_size,
770 std::string* from, std::string* to) const;
771
772 // Relocate a section.
773 void
774 relocate_section(const Relocate_info<size, big_endian>*,
775 unsigned int sh_type,
776 const unsigned char* prelocs,
777 size_t reloc_count,
778 Output_section* output_section,
779 bool needs_special_offset_handling,
780 unsigned char* view,
781 Address view_address,
782 section_size_type view_size,
783 const Reloc_symbol_changes*);
784
785 // Scan the relocs during a relocatable link.
786 void
787 scan_relocatable_relocs(Symbol_table* symtab,
788 Layout* layout,
789 Sized_relobj_file<size, big_endian>* object,
790 unsigned int data_shndx,
791 unsigned int sh_type,
792 const unsigned char* prelocs,
793 size_t reloc_count,
794 Output_section* output_section,
795 bool needs_special_offset_handling,
796 size_t local_symbol_count,
797 const unsigned char* plocal_symbols,
798 Relocatable_relocs*);
799
800 // Scan the relocs for --emit-relocs.
801 void
802 emit_relocs_scan(Symbol_table* symtab,
803 Layout* layout,
804 Sized_relobj_file<size, big_endian>* object,
805 unsigned int data_shndx,
806 unsigned int sh_type,
807 const unsigned char* prelocs,
808 size_t reloc_count,
809 Output_section* output_section,
810 bool needs_special_offset_handling,
811 size_t local_symbol_count,
812 const unsigned char* plocal_syms,
813 Relocatable_relocs* rr);
814
815 // Emit relocations for a section.
816 void
817 relocate_relocs(const Relocate_info<size, big_endian>*,
818 unsigned int sh_type,
819 const unsigned char* prelocs,
820 size_t reloc_count,
821 Output_section* output_section,
822 typename elfcpp::Elf_types<size>::Elf_Off
823 offset_in_output_section,
824 unsigned char*,
825 Address view_address,
826 section_size_type,
827 unsigned char* reloc_view,
828 section_size_type reloc_view_size);
829
830 // Return whether SYM is defined by the ABI.
831 bool
832 do_is_defined_by_abi(const Symbol* sym) const
833 {
834 return strcmp(sym->name(), "__tls_get_addr") == 0;
835 }
836
837 // Return the size of the GOT section.
838 section_size_type
839 got_size() const
840 {
841 gold_assert(this->got_ != NULL);
842 return this->got_->data_size();
843 }
844
845 // Get the PLT section.
846 const Output_data_plt_powerpc<size, big_endian>*
847 plt_section() const
848 {
849 gold_assert(this->plt_ != NULL);
850 return this->plt_;
851 }
852
853 // Get the IPLT section.
854 const Output_data_plt_powerpc<size, big_endian>*
855 iplt_section() const
856 {
857 gold_assert(this->iplt_ != NULL);
858 return this->iplt_;
859 }
860
861 // Get the .glink section.
862 const Output_data_glink<size, big_endian>*
863 glink_section() const
864 {
865 gold_assert(this->glink_ != NULL);
866 return this->glink_;
867 }
868
869 Output_data_glink<size, big_endian>*
870 glink_section()
871 {
872 gold_assert(this->glink_ != NULL);
873 return this->glink_;
874 }
875
876 bool has_glink() const
877 { return this->glink_ != NULL; }
878
879 // Get the GOT section.
880 const Output_data_got_powerpc<size, big_endian>*
881 got_section() const
882 {
883 gold_assert(this->got_ != NULL);
884 return this->got_;
885 }
886
887 // Get the GOT section, creating it if necessary.
888 Output_data_got_powerpc<size, big_endian>*
889 got_section(Symbol_table*, Layout*);
890
891 Object*
892 do_make_elf_object(const std::string&, Input_file*, off_t,
893 const elfcpp::Ehdr<size, big_endian>&);
894
895 // Return the number of entries in the GOT.
896 unsigned int
897 got_entry_count() const
898 {
899 if (this->got_ == NULL)
900 return 0;
901 return this->got_size() / (size / 8);
902 }
903
904 // Return the number of entries in the PLT.
905 unsigned int
906 plt_entry_count() const;
907
908 // Return the offset of the first non-reserved PLT entry.
909 unsigned int
910 first_plt_entry_offset() const
911 {
912 if (size == 32)
913 return 0;
914 if (this->abiversion() >= 2)
915 return 16;
916 return 24;
917 }
918
919 // Return the size of each PLT entry.
920 unsigned int
921 plt_entry_size() const
922 {
923 if (size == 32)
924 return 4;
925 if (this->abiversion() >= 2)
926 return 8;
927 return 24;
928 }
929
930 Output_data_save_res<size, big_endian>*
931 savres_section() const
932 {
933 return this->savres_section_;
934 }
935
936 // Add any special sections for this symbol to the gc work list.
937 // For powerpc64, this adds the code section of a function
938 // descriptor.
939 void
940 do_gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const;
941
942 // Handle target specific gc actions when adding a gc reference from
943 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
944 // and DST_OFF. For powerpc64, this adds a referenc to the code
945 // section of a function descriptor.
946 void
947 do_gc_add_reference(Symbol_table* symtab,
948 Relobj* src_obj,
949 unsigned int src_shndx,
950 Relobj* dst_obj,
951 unsigned int dst_shndx,
952 Address dst_off) const;
953
954 typedef std::vector<Stub_table<size, big_endian>*> Stub_tables;
955 const Stub_tables&
956 stub_tables() const
957 { return this->stub_tables_; }
958
959 const Output_data_brlt_powerpc<size, big_endian>*
960 brlt_section() const
961 { return this->brlt_section_; }
962
963 void
964 add_branch_lookup_table(Address to)
965 {
966 unsigned int off = this->branch_lookup_table_.size() * (size / 8);
967 this->branch_lookup_table_.insert(std::make_pair(to, off));
968 }
969
970 Address
971 find_branch_lookup_table(Address to)
972 {
973 typename Branch_lookup_table::const_iterator p
974 = this->branch_lookup_table_.find(to);
975 return p == this->branch_lookup_table_.end() ? invalid_address : p->second;
976 }
977
978 void
979 write_branch_lookup_table(unsigned char *oview)
980 {
981 for (typename Branch_lookup_table::const_iterator p
982 = this->branch_lookup_table_.begin();
983 p != this->branch_lookup_table_.end();
984 ++p)
985 {
986 elfcpp::Swap<size, big_endian>::writeval(oview + p->second, p->first);
987 }
988 }
989
990 // Wrapper used after relax to define a local symbol in output data,
991 // from the end if value < 0.
992 void
993 define_local(Symbol_table* symtab, const char* name,
994 Output_data* od, Address value, unsigned int symsize)
995 {
996 Symbol* sym
997 = symtab->define_in_output_data(name, NULL, Symbol_table::PREDEFINED,
998 od, value, symsize, elfcpp::STT_NOTYPE,
999 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN, 0,
1000 static_cast<Signed_address>(value) < 0,
1001 false);
1002 // We are creating this symbol late, so need to fix up things
1003 // done early in Layout::finalize.
1004 sym->set_dynsym_index(-1U);
1005 }
1006
1007 bool
1008 plt_thread_safe() const
1009 { return this->plt_thread_safe_; }
1010
1011 bool
1012 plt_localentry0() const
1013 { return this->plt_localentry0_; }
1014
1015 void
1016 set_has_localentry0()
1017 {
1018 this->has_localentry0_ = true;
1019 }
1020
1021 bool
1022 is_elfv2_localentry0(const Symbol* gsym) const
1023 {
1024 return (size == 64
1025 && this->abiversion() >= 2
1026 && this->plt_localentry0()
1027 && gsym->type() == elfcpp::STT_FUNC
1028 && gsym->is_defined()
1029 && gsym->nonvis() >> 3 == 0);
1030 }
1031
1032 bool
1033 is_elfv2_localentry0(const Sized_relobj_file<size, big_endian>* object,
1034 unsigned int r_sym) const
1035 {
1036 const Powerpc_relobj<size, big_endian>* ppc_object
1037 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
1038
1039 if (size == 64
1040 && this->abiversion() >= 2
1041 && this->plt_localentry0()
1042 && ppc_object->st_other(r_sym) >> 5 == 0)
1043 {
1044 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
1045 bool is_ordinary;
1046 if (!psymval->is_ifunc_symbol()
1047 && psymval->input_shndx(&is_ordinary) != elfcpp::SHN_UNDEF
1048 && is_ordinary)
1049 return true;
1050 }
1051 return false;
1052 }
1053
1054 int
1055 abiversion () const
1056 { return this->processor_specific_flags() & elfcpp::EF_PPC64_ABI; }
1057
1058 void
1059 set_abiversion (int ver)
1060 {
1061 elfcpp::Elf_Word flags = this->processor_specific_flags();
1062 flags &= ~elfcpp::EF_PPC64_ABI;
1063 flags |= ver & elfcpp::EF_PPC64_ABI;
1064 this->set_processor_specific_flags(flags);
1065 }
1066
1067 // Offset to save stack slot
1068 int
1069 stk_toc () const
1070 { return this->abiversion() < 2 ? 40 : 24; }
1071
1072 private:
1073
1074 class Track_tls
1075 {
1076 public:
1077 enum Tls_get_addr
1078 {
1079 NOT_EXPECTED = 0,
1080 EXPECTED = 1,
1081 SKIP = 2,
1082 NORMAL = 3
1083 };
1084
1085 Track_tls()
1086 : tls_get_addr_(NOT_EXPECTED),
1087 relinfo_(NULL), relnum_(0), r_offset_(0)
1088 { }
1089
1090 ~Track_tls()
1091 {
1092 if (this->tls_get_addr_ != NOT_EXPECTED)
1093 this->missing();
1094 }
1095
1096 void
1097 missing(void)
1098 {
1099 if (this->relinfo_ != NULL)
1100 gold_error_at_location(this->relinfo_, this->relnum_, this->r_offset_,
1101 _("missing expected __tls_get_addr call"));
1102 }
1103
1104 void
1105 expect_tls_get_addr_call(
1106 const Relocate_info<size, big_endian>* relinfo,
1107 size_t relnum,
1108 Address r_offset)
1109 {
1110 this->tls_get_addr_ = EXPECTED;
1111 this->relinfo_ = relinfo;
1112 this->relnum_ = relnum;
1113 this->r_offset_ = r_offset;
1114 }
1115
1116 void
1117 expect_tls_get_addr_call()
1118 { this->tls_get_addr_ = EXPECTED; }
1119
1120 void
1121 skip_next_tls_get_addr_call()
1122 {this->tls_get_addr_ = SKIP; }
1123
1124 Tls_get_addr
1125 maybe_skip_tls_get_addr_call(unsigned int r_type, const Symbol* gsym)
1126 {
1127 bool is_tls_call = ((r_type == elfcpp::R_POWERPC_REL24
1128 || r_type == elfcpp::R_PPC_PLTREL24)
1129 && gsym != NULL
1130 && strcmp(gsym->name(), "__tls_get_addr") == 0);
1131 Tls_get_addr last_tls = this->tls_get_addr_;
1132 this->tls_get_addr_ = NOT_EXPECTED;
1133 if (is_tls_call && last_tls != EXPECTED)
1134 return last_tls;
1135 else if (!is_tls_call && last_tls != NOT_EXPECTED)
1136 {
1137 this->missing();
1138 return EXPECTED;
1139 }
1140 return NORMAL;
1141 }
1142
1143 private:
1144 // What we're up to regarding calls to __tls_get_addr.
1145 // On powerpc, the branch and link insn making a call to
1146 // __tls_get_addr is marked with a relocation, R_PPC64_TLSGD,
1147 // R_PPC64_TLSLD, R_PPC_TLSGD or R_PPC_TLSLD, in addition to the
1148 // usual R_POWERPC_REL24 or R_PPC_PLTREL25 relocation on a call.
1149 // The marker relocation always comes first, and has the same
1150 // symbol as the reloc on the insn setting up the __tls_get_addr
1151 // argument. This ties the arg setup insn with the call insn,
1152 // allowing ld to safely optimize away the call. We check that
1153 // every call to __tls_get_addr has a marker relocation, and that
1154 // every marker relocation is on a call to __tls_get_addr.
1155 Tls_get_addr tls_get_addr_;
1156 // Info about the last reloc for error message.
1157 const Relocate_info<size, big_endian>* relinfo_;
1158 size_t relnum_;
1159 Address r_offset_;
1160 };
1161
1162 // The class which scans relocations.
1163 class Scan : protected Track_tls
1164 {
1165 public:
1166 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1167
1168 Scan()
1169 : Track_tls(), issued_non_pic_error_(false)
1170 { }
1171
1172 static inline int
1173 get_reference_flags(unsigned int r_type, const Target_powerpc* target);
1174
1175 inline void
1176 local(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1177 Sized_relobj_file<size, big_endian>* object,
1178 unsigned int data_shndx,
1179 Output_section* output_section,
1180 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1181 const elfcpp::Sym<size, big_endian>& lsym,
1182 bool is_discarded);
1183
1184 inline void
1185 global(Symbol_table* symtab, Layout* layout, Target_powerpc* target,
1186 Sized_relobj_file<size, big_endian>* object,
1187 unsigned int data_shndx,
1188 Output_section* output_section,
1189 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
1190 Symbol* gsym);
1191
1192 inline bool
1193 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1194 Target_powerpc* ,
1195 Sized_relobj_file<size, big_endian>* relobj,
1196 unsigned int ,
1197 Output_section* ,
1198 const elfcpp::Rela<size, big_endian>& ,
1199 unsigned int r_type,
1200 const elfcpp::Sym<size, big_endian>&)
1201 {
1202 // PowerPC64 .opd is not folded, so any identical function text
1203 // may be folded and we'll still keep function addresses distinct.
1204 // That means no reloc is of concern here.
1205 if (size == 64)
1206 {
1207 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1208 <Powerpc_relobj<size, big_endian>*>(relobj);
1209 if (ppcobj->abiversion() == 1)
1210 return false;
1211 }
1212 // For 32-bit and ELFv2, conservatively assume anything but calls to
1213 // function code might be taking the address of the function.
1214 return !is_branch_reloc(r_type);
1215 }
1216
1217 inline bool
1218 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
1219 Target_powerpc* ,
1220 Sized_relobj_file<size, big_endian>* relobj,
1221 unsigned int ,
1222 Output_section* ,
1223 const elfcpp::Rela<size, big_endian>& ,
1224 unsigned int r_type,
1225 Symbol*)
1226 {
1227 // As above.
1228 if (size == 64)
1229 {
1230 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
1231 <Powerpc_relobj<size, big_endian>*>(relobj);
1232 if (ppcobj->abiversion() == 1)
1233 return false;
1234 }
1235 return !is_branch_reloc(r_type);
1236 }
1237
1238 static bool
1239 reloc_needs_plt_for_ifunc(Target_powerpc<size, big_endian>* target,
1240 Sized_relobj_file<size, big_endian>* object,
1241 unsigned int r_type, bool report_err);
1242
1243 private:
1244 static void
1245 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
1246 unsigned int r_type);
1247
1248 static void
1249 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
1250 unsigned int r_type, Symbol*);
1251
1252 static void
1253 generate_tls_call(Symbol_table* symtab, Layout* layout,
1254 Target_powerpc* target);
1255
1256 void
1257 check_non_pic(Relobj*, unsigned int r_type);
1258
1259 // Whether we have issued an error about a non-PIC compilation.
1260 bool issued_non_pic_error_;
1261 };
1262
1263 bool
1264 symval_for_branch(const Symbol_table* symtab,
1265 const Sized_symbol<size>* gsym,
1266 Powerpc_relobj<size, big_endian>* object,
1267 Address *value, unsigned int *dest_shndx);
1268
1269 // The class which implements relocation.
1270 class Relocate : protected Track_tls
1271 {
1272 public:
1273 // Use 'at' branch hints when true, 'y' when false.
1274 // FIXME maybe: set this with an option.
1275 static const bool is_isa_v2 = true;
1276
1277 Relocate()
1278 : Track_tls()
1279 { }
1280
1281 // Do a relocation. Return false if the caller should not issue
1282 // any warnings about this relocation.
1283 inline bool
1284 relocate(const Relocate_info<size, big_endian>*, unsigned int,
1285 Target_powerpc*, Output_section*, size_t, const unsigned char*,
1286 const Sized_symbol<size>*, const Symbol_value<size>*,
1287 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
1288 section_size_type);
1289 };
1290
1291 class Relocate_comdat_behavior
1292 {
1293 public:
1294 // Decide what the linker should do for relocations that refer to
1295 // discarded comdat sections.
1296 inline Comdat_behavior
1297 get(const char* name)
1298 {
1299 gold::Default_comdat_behavior default_behavior;
1300 Comdat_behavior ret = default_behavior.get(name);
1301 if (ret == CB_WARNING)
1302 {
1303 if (size == 32
1304 && (strcmp(name, ".fixup") == 0
1305 || strcmp(name, ".got2") == 0))
1306 ret = CB_IGNORE;
1307 if (size == 64
1308 && (strcmp(name, ".opd") == 0
1309 || strcmp(name, ".toc") == 0
1310 || strcmp(name, ".toc1") == 0))
1311 ret = CB_IGNORE;
1312 }
1313 return ret;
1314 }
1315 };
1316
1317 // Optimize the TLS relocation type based on what we know about the
1318 // symbol. IS_FINAL is true if the final address of this symbol is
1319 // known at link time.
1320
1321 tls::Tls_optimization
1322 optimize_tls_gd(bool is_final)
1323 {
1324 // If we are generating a shared library, then we can't do anything
1325 // in the linker.
1326 if (parameters->options().shared())
1327 return tls::TLSOPT_NONE;
1328
1329 if (!is_final)
1330 return tls::TLSOPT_TO_IE;
1331 return tls::TLSOPT_TO_LE;
1332 }
1333
1334 tls::Tls_optimization
1335 optimize_tls_ld()
1336 {
1337 if (parameters->options().shared())
1338 return tls::TLSOPT_NONE;
1339
1340 return tls::TLSOPT_TO_LE;
1341 }
1342
1343 tls::Tls_optimization
1344 optimize_tls_ie(bool is_final)
1345 {
1346 if (!is_final || parameters->options().shared())
1347 return tls::TLSOPT_NONE;
1348
1349 return tls::TLSOPT_TO_LE;
1350 }
1351
1352 // Create glink.
1353 void
1354 make_glink_section(Layout*);
1355
1356 // Create the PLT section.
1357 void
1358 make_plt_section(Symbol_table*, Layout*);
1359
1360 void
1361 make_iplt_section(Symbol_table*, Layout*);
1362
1363 void
1364 make_brlt_section(Layout*);
1365
1366 // Create a PLT entry for a global symbol.
1367 void
1368 make_plt_entry(Symbol_table*, Layout*, Symbol*);
1369
1370 // Create a PLT entry for a local IFUNC symbol.
1371 void
1372 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
1373 Sized_relobj_file<size, big_endian>*,
1374 unsigned int);
1375
1376
1377 // Create a GOT entry for local dynamic __tls_get_addr.
1378 unsigned int
1379 tlsld_got_offset(Symbol_table* symtab, Layout* layout,
1380 Sized_relobj_file<size, big_endian>* object);
1381
1382 unsigned int
1383 tlsld_got_offset() const
1384 {
1385 return this->tlsld_got_offset_;
1386 }
1387
1388 // Get the dynamic reloc section, creating it if necessary.
1389 Reloc_section*
1390 rela_dyn_section(Layout*);
1391
1392 // Similarly, but for ifunc symbols get the one for ifunc.
1393 Reloc_section*
1394 rela_dyn_section(Symbol_table*, Layout*, bool for_ifunc);
1395
1396 // Copy a relocation against a global symbol.
1397 void
1398 copy_reloc(Symbol_table* symtab, Layout* layout,
1399 Sized_relobj_file<size, big_endian>* object,
1400 unsigned int shndx, Output_section* output_section,
1401 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
1402 {
1403 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
1404 this->copy_relocs_.copy_reloc(symtab, layout,
1405 symtab->get_sized_symbol<size>(sym),
1406 object, shndx, output_section,
1407 r_type, reloc.get_r_offset(),
1408 reloc.get_r_addend(),
1409 this->rela_dyn_section(layout));
1410 }
1411
1412 // Look over all the input sections, deciding where to place stubs.
1413 void
1414 group_sections(Layout*, const Task*, bool);
1415
1416 // Sort output sections by address.
1417 struct Sort_sections
1418 {
1419 bool
1420 operator()(const Output_section* sec1, const Output_section* sec2)
1421 { return sec1->address() < sec2->address(); }
1422 };
1423
1424 class Branch_info
1425 {
1426 public:
1427 Branch_info(Powerpc_relobj<size, big_endian>* ppc_object,
1428 unsigned int data_shndx,
1429 Address r_offset,
1430 unsigned int r_type,
1431 unsigned int r_sym,
1432 Address addend)
1433 : object_(ppc_object), shndx_(data_shndx), offset_(r_offset),
1434 r_type_(r_type), tocsave_ (0), r_sym_(r_sym), addend_(addend)
1435 { }
1436
1437 ~Branch_info()
1438 { }
1439
1440 // Return whether this branch is going via a plt call stub, and if
1441 // so, mark it as having an R_PPC64_TOCSAVE.
1442 bool
1443 mark_pltcall(Powerpc_relobj<size, big_endian>* ppc_object,
1444 unsigned int shndx, Address offset,
1445 Target_powerpc* target, Symbol_table* symtab);
1446
1447 // If this branch needs a plt call stub, or a long branch stub, make one.
1448 bool
1449 make_stub(Stub_table<size, big_endian>*,
1450 Stub_table<size, big_endian>*,
1451 Symbol_table*) const;
1452
1453 private:
1454 // The branch location..
1455 Powerpc_relobj<size, big_endian>* object_;
1456 unsigned int shndx_;
1457 Address offset_;
1458 // ..and the branch type and destination.
1459 unsigned int r_type_ : 31;
1460 unsigned int tocsave_ : 1;
1461 unsigned int r_sym_;
1462 Address addend_;
1463 };
1464
1465 // Information about this specific target which we pass to the
1466 // general Target structure.
1467 static Target::Target_info powerpc_info;
1468
1469 // The types of GOT entries needed for this platform.
1470 // These values are exposed to the ABI in an incremental link.
1471 // Do not renumber existing values without changing the version
1472 // number of the .gnu_incremental_inputs section.
1473 enum Got_type
1474 {
1475 GOT_TYPE_STANDARD,
1476 GOT_TYPE_TLSGD, // double entry for @got@tlsgd
1477 GOT_TYPE_DTPREL, // entry for @got@dtprel
1478 GOT_TYPE_TPREL // entry for @got@tprel
1479 };
1480
1481 // The GOT section.
1482 Output_data_got_powerpc<size, big_endian>* got_;
1483 // The PLT section. This is a container for a table of addresses,
1484 // and their relocations. Each address in the PLT has a dynamic
1485 // relocation (R_*_JMP_SLOT) and each address will have a
1486 // corresponding entry in .glink for lazy resolution of the PLT.
1487 // ppc32 initialises the PLT to point at the .glink entry, while
1488 // ppc64 leaves this to ld.so. To make a call via the PLT, the
1489 // linker adds a stub that loads the PLT entry into ctr then
1490 // branches to ctr. There may be more than one stub for each PLT
1491 // entry. DT_JMPREL points at the first PLT dynamic relocation and
1492 // DT_PLTRELSZ gives the total size of PLT dynamic relocations.
1493 Output_data_plt_powerpc<size, big_endian>* plt_;
1494 // The IPLT section. Like plt_, this is a container for a table of
1495 // addresses and their relocations, specifically for STT_GNU_IFUNC
1496 // functions that resolve locally (STT_GNU_IFUNC functions that
1497 // don't resolve locally go in PLT). Unlike plt_, these have no
1498 // entry in .glink for lazy resolution, and the relocation section
1499 // does not have a 1-1 correspondence with IPLT addresses. In fact,
1500 // the relocation section may contain relocations against
1501 // STT_GNU_IFUNC symbols at locations outside of IPLT. The
1502 // relocation section will appear at the end of other dynamic
1503 // relocations, so that ld.so applies these relocations after other
1504 // dynamic relocations. In a static executable, the relocation
1505 // section is emitted and marked with __rela_iplt_start and
1506 // __rela_iplt_end symbols.
1507 Output_data_plt_powerpc<size, big_endian>* iplt_;
1508 // Section holding long branch destinations.
1509 Output_data_brlt_powerpc<size, big_endian>* brlt_section_;
1510 // The .glink section.
1511 Output_data_glink<size, big_endian>* glink_;
1512 // The dynamic reloc section.
1513 Reloc_section* rela_dyn_;
1514 // Relocs saved to avoid a COPY reloc.
1515 Powerpc_copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
1516 // Offset of the GOT entry for local dynamic __tls_get_addr calls.
1517 unsigned int tlsld_got_offset_;
1518
1519 Stub_tables stub_tables_;
1520 typedef Unordered_map<Address, unsigned int> Branch_lookup_table;
1521 Branch_lookup_table branch_lookup_table_;
1522
1523 typedef std::vector<Branch_info> Branches;
1524 Branches branch_info_;
1525 Tocsave_loc tocsave_loc_;
1526
1527 bool plt_thread_safe_;
1528 bool plt_localentry0_;
1529 bool plt_localentry0_init_;
1530 bool has_localentry0_;
1531
1532 bool relax_failed_;
1533 int relax_fail_count_;
1534 int32_t stub_group_size_;
1535
1536 Output_data_save_res<size, big_endian> *savres_section_;
1537 };
1538
1539 template<>
1540 Target::Target_info Target_powerpc<32, true>::powerpc_info =
1541 {
1542 32, // size
1543 true, // is_big_endian
1544 elfcpp::EM_PPC, // machine_code
1545 false, // has_make_symbol
1546 false, // has_resolve
1547 false, // has_code_fill
1548 true, // is_default_stack_executable
1549 false, // can_icf_inline_merge_sections
1550 '\0', // wrap_char
1551 "/usr/lib/ld.so.1", // dynamic_linker
1552 0x10000000, // default_text_segment_address
1553 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1554 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1555 false, // isolate_execinstr
1556 0, // rosegment_gap
1557 elfcpp::SHN_UNDEF, // small_common_shndx
1558 elfcpp::SHN_UNDEF, // large_common_shndx
1559 0, // small_common_section_flags
1560 0, // large_common_section_flags
1561 NULL, // attributes_section
1562 NULL, // attributes_vendor
1563 "_start", // entry_symbol_name
1564 32, // hash_entry_size
1565 };
1566
1567 template<>
1568 Target::Target_info Target_powerpc<32, false>::powerpc_info =
1569 {
1570 32, // size
1571 false, // is_big_endian
1572 elfcpp::EM_PPC, // machine_code
1573 false, // has_make_symbol
1574 false, // has_resolve
1575 false, // has_code_fill
1576 true, // is_default_stack_executable
1577 false, // can_icf_inline_merge_sections
1578 '\0', // wrap_char
1579 "/usr/lib/ld.so.1", // dynamic_linker
1580 0x10000000, // default_text_segment_address
1581 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1582 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1583 false, // isolate_execinstr
1584 0, // rosegment_gap
1585 elfcpp::SHN_UNDEF, // small_common_shndx
1586 elfcpp::SHN_UNDEF, // large_common_shndx
1587 0, // small_common_section_flags
1588 0, // large_common_section_flags
1589 NULL, // attributes_section
1590 NULL, // attributes_vendor
1591 "_start", // entry_symbol_name
1592 32, // hash_entry_size
1593 };
1594
1595 template<>
1596 Target::Target_info Target_powerpc<64, true>::powerpc_info =
1597 {
1598 64, // size
1599 true, // is_big_endian
1600 elfcpp::EM_PPC64, // machine_code
1601 false, // has_make_symbol
1602 false, // has_resolve
1603 false, // has_code_fill
1604 true, // is_default_stack_executable
1605 false, // can_icf_inline_merge_sections
1606 '\0', // wrap_char
1607 "/usr/lib/ld.so.1", // dynamic_linker
1608 0x10000000, // default_text_segment_address
1609 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1610 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1611 false, // isolate_execinstr
1612 0, // rosegment_gap
1613 elfcpp::SHN_UNDEF, // small_common_shndx
1614 elfcpp::SHN_UNDEF, // large_common_shndx
1615 0, // small_common_section_flags
1616 0, // large_common_section_flags
1617 NULL, // attributes_section
1618 NULL, // attributes_vendor
1619 "_start", // entry_symbol_name
1620 32, // hash_entry_size
1621 };
1622
1623 template<>
1624 Target::Target_info Target_powerpc<64, false>::powerpc_info =
1625 {
1626 64, // size
1627 false, // is_big_endian
1628 elfcpp::EM_PPC64, // machine_code
1629 false, // has_make_symbol
1630 false, // has_resolve
1631 false, // has_code_fill
1632 true, // is_default_stack_executable
1633 false, // can_icf_inline_merge_sections
1634 '\0', // wrap_char
1635 "/usr/lib/ld.so.1", // dynamic_linker
1636 0x10000000, // default_text_segment_address
1637 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
1638 4 * 1024, // common_pagesize (overridable by -z common-page-size)
1639 false, // isolate_execinstr
1640 0, // rosegment_gap
1641 elfcpp::SHN_UNDEF, // small_common_shndx
1642 elfcpp::SHN_UNDEF, // large_common_shndx
1643 0, // small_common_section_flags
1644 0, // large_common_section_flags
1645 NULL, // attributes_section
1646 NULL, // attributes_vendor
1647 "_start", // entry_symbol_name
1648 32, // hash_entry_size
1649 };
1650
1651 inline bool
1652 is_branch_reloc(unsigned int r_type)
1653 {
1654 return (r_type == elfcpp::R_POWERPC_REL24
1655 || r_type == elfcpp::R_PPC_PLTREL24
1656 || r_type == elfcpp::R_PPC_LOCAL24PC
1657 || r_type == elfcpp::R_POWERPC_REL14
1658 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
1659 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN
1660 || r_type == elfcpp::R_POWERPC_ADDR24
1661 || r_type == elfcpp::R_POWERPC_ADDR14
1662 || r_type == elfcpp::R_POWERPC_ADDR14_BRTAKEN
1663 || r_type == elfcpp::R_POWERPC_ADDR14_BRNTAKEN);
1664 }
1665
1666 // If INSN is an opcode that may be used with an @tls operand, return
1667 // the transformed insn for TLS optimisation, otherwise return 0. If
1668 // REG is non-zero only match an insn with RB or RA equal to REG.
1669 uint32_t
1670 at_tls_transform(uint32_t insn, unsigned int reg)
1671 {
1672 if ((insn & (0x3f << 26)) != 31 << 26)
1673 return 0;
1674
1675 unsigned int rtra;
1676 if (reg == 0 || ((insn >> 11) & 0x1f) == reg)
1677 rtra = insn & ((1 << 26) - (1 << 16));
1678 else if (((insn >> 16) & 0x1f) == reg)
1679 rtra = (insn & (0x1f << 21)) | ((insn & (0x1f << 11)) << 5);
1680 else
1681 return 0;
1682
1683 if ((insn & (0x3ff << 1)) == 266 << 1)
1684 // add -> addi
1685 insn = 14 << 26;
1686 else if ((insn & (0x1f << 1)) == 23 << 1
1687 && ((insn & (0x1f << 6)) < 14 << 6
1688 || ((insn & (0x1f << 6)) >= 16 << 6
1689 && (insn & (0x1f << 6)) < 24 << 6)))
1690 // load and store indexed -> dform
1691 insn = (32 | ((insn >> 6) & 0x1f)) << 26;
1692 else if ((insn & (((0x1a << 5) | 0x1f) << 1)) == 21 << 1)
1693 // ldx, ldux, stdx, stdux -> ld, ldu, std, stdu
1694 insn = ((58 | ((insn >> 6) & 4)) << 26) | ((insn >> 6) & 1);
1695 else if ((insn & (((0x1f << 5) | 0x1f) << 1)) == 341 << 1)
1696 // lwax -> lwa
1697 insn = (58 << 26) | 2;
1698 else
1699 return 0;
1700 insn |= rtra;
1701 return insn;
1702 }
1703
1704
1705 template<int size, bool big_endian>
1706 class Powerpc_relocate_functions
1707 {
1708 public:
1709 enum Overflow_check
1710 {
1711 CHECK_NONE,
1712 CHECK_SIGNED,
1713 CHECK_UNSIGNED,
1714 CHECK_BITFIELD,
1715 CHECK_LOW_INSN,
1716 CHECK_HIGH_INSN
1717 };
1718
1719 enum Status
1720 {
1721 STATUS_OK,
1722 STATUS_OVERFLOW
1723 };
1724
1725 private:
1726 typedef Powerpc_relocate_functions<size, big_endian> This;
1727 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
1728 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedAddress;
1729
1730 template<int valsize>
1731 static inline bool
1732 has_overflow_signed(Address value)
1733 {
1734 // limit = 1 << (valsize - 1) without shift count exceeding size of type
1735 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1736 limit <<= ((valsize - 1) >> 1);
1737 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1738 return value + limit > (limit << 1) - 1;
1739 }
1740
1741 template<int valsize>
1742 static inline bool
1743 has_overflow_unsigned(Address value)
1744 {
1745 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
1746 limit <<= ((valsize - 1) >> 1);
1747 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
1748 return value > (limit << 1) - 1;
1749 }
1750
1751 template<int valsize>
1752 static inline bool
1753 has_overflow_bitfield(Address value)
1754 {
1755 return (has_overflow_unsigned<valsize>(value)
1756 && has_overflow_signed<valsize>(value));
1757 }
1758
1759 template<int valsize>
1760 static inline Status
1761 overflowed(Address value, Overflow_check overflow)
1762 {
1763 if (overflow == CHECK_SIGNED)
1764 {
1765 if (has_overflow_signed<valsize>(value))
1766 return STATUS_OVERFLOW;
1767 }
1768 else if (overflow == CHECK_UNSIGNED)
1769 {
1770 if (has_overflow_unsigned<valsize>(value))
1771 return STATUS_OVERFLOW;
1772 }
1773 else if (overflow == CHECK_BITFIELD)
1774 {
1775 if (has_overflow_bitfield<valsize>(value))
1776 return STATUS_OVERFLOW;
1777 }
1778 return STATUS_OK;
1779 }
1780
1781 // Do a simple RELA relocation
1782 template<int fieldsize, int valsize>
1783 static inline Status
1784 rela(unsigned char* view, Address value, Overflow_check overflow)
1785 {
1786 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1787 Valtype* wv = reinterpret_cast<Valtype*>(view);
1788 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, value);
1789 return overflowed<valsize>(value, overflow);
1790 }
1791
1792 template<int fieldsize, int valsize>
1793 static inline Status
1794 rela(unsigned char* view,
1795 unsigned int right_shift,
1796 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1797 Address value,
1798 Overflow_check overflow)
1799 {
1800 typedef typename elfcpp::Swap<fieldsize, big_endian>::Valtype Valtype;
1801 Valtype* wv = reinterpret_cast<Valtype*>(view);
1802 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(wv);
1803 Valtype reloc = value >> right_shift;
1804 val &= ~dst_mask;
1805 reloc &= dst_mask;
1806 elfcpp::Swap<fieldsize, big_endian>::writeval(wv, val | reloc);
1807 return overflowed<valsize>(value >> right_shift, overflow);
1808 }
1809
1810 // Do a simple RELA relocation, unaligned.
1811 template<int fieldsize, int valsize>
1812 static inline Status
1813 rela_ua(unsigned char* view, Address value, Overflow_check overflow)
1814 {
1815 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, value);
1816 return overflowed<valsize>(value, overflow);
1817 }
1818
1819 template<int fieldsize, int valsize>
1820 static inline Status
1821 rela_ua(unsigned char* view,
1822 unsigned int right_shift,
1823 typename elfcpp::Valtype_base<fieldsize>::Valtype dst_mask,
1824 Address value,
1825 Overflow_check overflow)
1826 {
1827 typedef typename elfcpp::Swap_unaligned<fieldsize, big_endian>::Valtype
1828 Valtype;
1829 Valtype val = elfcpp::Swap<fieldsize, big_endian>::readval(view);
1830 Valtype reloc = value >> right_shift;
1831 val &= ~dst_mask;
1832 reloc &= dst_mask;
1833 elfcpp::Swap_unaligned<fieldsize, big_endian>::writeval(view, val | reloc);
1834 return overflowed<valsize>(value >> right_shift, overflow);
1835 }
1836
1837 public:
1838 // R_PPC64_ADDR64: (Symbol + Addend)
1839 static inline void
1840 addr64(unsigned char* view, Address value)
1841 { This::template rela<64,64>(view, value, CHECK_NONE); }
1842
1843 // R_PPC64_UADDR64: (Symbol + Addend) unaligned
1844 static inline void
1845 addr64_u(unsigned char* view, Address value)
1846 { This::template rela_ua<64,64>(view, value, CHECK_NONE); }
1847
1848 // R_POWERPC_ADDR32: (Symbol + Addend)
1849 static inline Status
1850 addr32(unsigned char* view, Address value, Overflow_check overflow)
1851 { return This::template rela<32,32>(view, value, overflow); }
1852
1853 // R_POWERPC_UADDR32: (Symbol + Addend) unaligned
1854 static inline Status
1855 addr32_u(unsigned char* view, Address value, Overflow_check overflow)
1856 { return This::template rela_ua<32,32>(view, value, overflow); }
1857
1858 // R_POWERPC_ADDR24: (Symbol + Addend) & 0x3fffffc
1859 static inline Status
1860 addr24(unsigned char* view, Address value, Overflow_check overflow)
1861 {
1862 Status stat = This::template rela<32,26>(view, 0, 0x03fffffc,
1863 value, overflow);
1864 if (overflow != CHECK_NONE && (value & 3) != 0)
1865 stat = STATUS_OVERFLOW;
1866 return stat;
1867 }
1868
1869 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff
1870 static inline Status
1871 addr16(unsigned char* view, Address value, Overflow_check overflow)
1872 { return This::template rela<16,16>(view, value, overflow); }
1873
1874 // R_POWERPC_ADDR16: (Symbol + Addend) & 0xffff, unaligned
1875 static inline Status
1876 addr16_u(unsigned char* view, Address value, Overflow_check overflow)
1877 { return This::template rela_ua<16,16>(view, value, overflow); }
1878
1879 // R_POWERPC_ADDR16_DS: (Symbol + Addend) & 0xfffc
1880 static inline Status
1881 addr16_ds(unsigned char* view, Address value, Overflow_check overflow)
1882 {
1883 Status stat = This::template rela<16,16>(view, 0, 0xfffc, value, overflow);
1884 if ((value & 3) != 0)
1885 stat = STATUS_OVERFLOW;
1886 return stat;
1887 }
1888
1889 // R_POWERPC_ADDR16_DQ: (Symbol + Addend) & 0xfff0
1890 static inline Status
1891 addr16_dq(unsigned char* view, Address value, Overflow_check overflow)
1892 {
1893 Status stat = This::template rela<16,16>(view, 0, 0xfff0, value, overflow);
1894 if ((value & 15) != 0)
1895 stat = STATUS_OVERFLOW;
1896 return stat;
1897 }
1898
1899 // R_POWERPC_ADDR16_HI: ((Symbol + Addend) >> 16) & 0xffff
1900 static inline void
1901 addr16_hi(unsigned char* view, Address value)
1902 { This::template rela<16,16>(view, 16, 0xffff, value, CHECK_NONE); }
1903
1904 // R_POWERPC_ADDR16_HA: ((Symbol + Addend + 0x8000) >> 16) & 0xffff
1905 static inline void
1906 addr16_ha(unsigned char* view, Address value)
1907 { This::addr16_hi(view, value + 0x8000); }
1908
1909 // R_POWERPC_ADDR16_HIGHER: ((Symbol + Addend) >> 32) & 0xffff
1910 static inline void
1911 addr16_hi2(unsigned char* view, Address value)
1912 { This::template rela<16,16>(view, 32, 0xffff, value, CHECK_NONE); }
1913
1914 // R_POWERPC_ADDR16_HIGHERA: ((Symbol + Addend + 0x8000) >> 32) & 0xffff
1915 static inline void
1916 addr16_ha2(unsigned char* view, Address value)
1917 { This::addr16_hi2(view, value + 0x8000); }
1918
1919 // R_POWERPC_ADDR16_HIGHEST: ((Symbol + Addend) >> 48) & 0xffff
1920 static inline void
1921 addr16_hi3(unsigned char* view, Address value)
1922 { This::template rela<16,16>(view, 48, 0xffff, value, CHECK_NONE); }
1923
1924 // R_POWERPC_ADDR16_HIGHESTA: ((Symbol + Addend + 0x8000) >> 48) & 0xffff
1925 static inline void
1926 addr16_ha3(unsigned char* view, Address value)
1927 { This::addr16_hi3(view, value + 0x8000); }
1928
1929 // R_POWERPC_ADDR14: (Symbol + Addend) & 0xfffc
1930 static inline Status
1931 addr14(unsigned char* view, Address value, Overflow_check overflow)
1932 {
1933 Status stat = This::template rela<32,16>(view, 0, 0xfffc, value, overflow);
1934 if (overflow != CHECK_NONE && (value & 3) != 0)
1935 stat = STATUS_OVERFLOW;
1936 return stat;
1937 }
1938
1939 // R_POWERPC_REL16DX_HA
1940 static inline Status
1941 addr16dx_ha(unsigned char *view, Address value, Overflow_check overflow)
1942 {
1943 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
1944 Valtype* wv = reinterpret_cast<Valtype*>(view);
1945 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
1946 value += 0x8000;
1947 value = static_cast<SignedAddress>(value) >> 16;
1948 val |= (value & 0xffc1) | ((value & 0x3e) << 15);
1949 elfcpp::Swap<32, big_endian>::writeval(wv, val);
1950 return overflowed<16>(value, overflow);
1951 }
1952 };
1953
1954 // Set ABI version for input and output.
1955
1956 template<int size, bool big_endian>
1957 void
1958 Powerpc_relobj<size, big_endian>::set_abiversion(int ver)
1959 {
1960 this->e_flags_ |= ver;
1961 if (this->abiversion() != 0)
1962 {
1963 Target_powerpc<size, big_endian>* target =
1964 static_cast<Target_powerpc<size, big_endian>*>(
1965 parameters->sized_target<size, big_endian>());
1966 if (target->abiversion() == 0)
1967 target->set_abiversion(this->abiversion());
1968 else if (target->abiversion() != this->abiversion())
1969 gold_error(_("%s: ABI version %d is not compatible "
1970 "with ABI version %d output"),
1971 this->name().c_str(),
1972 this->abiversion(), target->abiversion());
1973
1974 }
1975 }
1976
1977 // Stash away the index of .got2, .opd, .rela.toc, and .toc in a
1978 // relocatable object, if such sections exists.
1979
1980 template<int size, bool big_endian>
1981 bool
1982 Powerpc_relobj<size, big_endian>::do_find_special_sections(
1983 Read_symbols_data* sd)
1984 {
1985 const unsigned char* const pshdrs = sd->section_headers->data();
1986 const unsigned char* namesu = sd->section_names->data();
1987 const char* names = reinterpret_cast<const char*>(namesu);
1988 section_size_type names_size = sd->section_names_size;
1989 const unsigned char* s;
1990
1991 s = this->template find_shdr<size, big_endian>(pshdrs,
1992 size == 32 ? ".got2" : ".opd",
1993 names, names_size, NULL);
1994 if (s != NULL)
1995 {
1996 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
1997 this->special_ = ndx;
1998 if (size == 64)
1999 {
2000 if (this->abiversion() == 0)
2001 this->set_abiversion(1);
2002 else if (this->abiversion() > 1)
2003 gold_error(_("%s: .opd invalid in abiv%d"),
2004 this->name().c_str(), this->abiversion());
2005 }
2006 }
2007 if (size == 64)
2008 {
2009 s = this->template find_shdr<size, big_endian>(pshdrs, ".rela.toc",
2010 names, names_size, NULL);
2011 if (s != NULL)
2012 {
2013 unsigned int ndx = (s - pshdrs) / elfcpp::Elf_sizes<size>::shdr_size;
2014 this->relatoc_ = ndx;
2015 typename elfcpp::Shdr<size, big_endian> shdr(s);
2016 this->toc_ = this->adjust_shndx(shdr.get_sh_info());
2017 }
2018 }
2019 return Sized_relobj_file<size, big_endian>::do_find_special_sections(sd);
2020 }
2021
2022 // Examine .rela.opd to build info about function entry points.
2023
2024 template<int size, bool big_endian>
2025 void
2026 Powerpc_relobj<size, big_endian>::scan_opd_relocs(
2027 size_t reloc_count,
2028 const unsigned char* prelocs,
2029 const unsigned char* plocal_syms)
2030 {
2031 if (size == 64)
2032 {
2033 typedef typename elfcpp::Rela<size, big_endian> Reltype;
2034 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2035 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2036 Address expected_off = 0;
2037 bool regular = true;
2038 unsigned int opd_ent_size = 0;
2039
2040 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
2041 {
2042 Reltype reloc(prelocs);
2043 typename elfcpp::Elf_types<size>::Elf_WXword r_info
2044 = reloc.get_r_info();
2045 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
2046 if (r_type == elfcpp::R_PPC64_ADDR64)
2047 {
2048 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
2049 typename elfcpp::Elf_types<size>::Elf_Addr value;
2050 bool is_ordinary;
2051 unsigned int shndx;
2052 if (r_sym < this->local_symbol_count())
2053 {
2054 typename elfcpp::Sym<size, big_endian>
2055 lsym(plocal_syms + r_sym * sym_size);
2056 shndx = lsym.get_st_shndx();
2057 shndx = this->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2058 value = lsym.get_st_value();
2059 }
2060 else
2061 shndx = this->symbol_section_and_value(r_sym, &value,
2062 &is_ordinary);
2063 this->set_opd_ent(reloc.get_r_offset(), shndx,
2064 value + reloc.get_r_addend());
2065 if (i == 2)
2066 {
2067 expected_off = reloc.get_r_offset();
2068 opd_ent_size = expected_off;
2069 }
2070 else if (expected_off != reloc.get_r_offset())
2071 regular = false;
2072 expected_off += opd_ent_size;
2073 }
2074 else if (r_type == elfcpp::R_PPC64_TOC)
2075 {
2076 if (expected_off - opd_ent_size + 8 != reloc.get_r_offset())
2077 regular = false;
2078 }
2079 else
2080 {
2081 gold_warning(_("%s: unexpected reloc type %u in .opd section"),
2082 this->name().c_str(), r_type);
2083 regular = false;
2084 }
2085 }
2086 if (reloc_count <= 2)
2087 opd_ent_size = this->section_size(this->opd_shndx());
2088 if (opd_ent_size != 24 && opd_ent_size != 16)
2089 regular = false;
2090 if (!regular)
2091 {
2092 gold_warning(_("%s: .opd is not a regular array of opd entries"),
2093 this->name().c_str());
2094 opd_ent_size = 0;
2095 }
2096 }
2097 }
2098
2099 // Returns true if a code sequence loading the TOC entry at VALUE
2100 // relative to the TOC pointer can be converted into code calculating
2101 // a TOC pointer relative offset.
2102 // If so, the TOC pointer relative offset is stored to VALUE.
2103
2104 template<int size, bool big_endian>
2105 bool
2106 Powerpc_relobj<size, big_endian>::make_toc_relative(
2107 Target_powerpc<size, big_endian>* target,
2108 Address* value)
2109 {
2110 if (size != 64)
2111 return false;
2112
2113 // With -mcmodel=medium code it is quite possible to have
2114 // toc-relative relocs referring to objects outside the TOC.
2115 // Don't try to look at a non-existent TOC.
2116 if (this->toc_shndx() == 0)
2117 return false;
2118
2119 // Convert VALUE back to an address by adding got_base (see below),
2120 // then to an offset in the TOC by subtracting the TOC output
2121 // section address and the TOC output offset. Since this TOC output
2122 // section and the got output section are one and the same, we can
2123 // omit adding and subtracting the output section address.
2124 Address off = (*value + this->toc_base_offset()
2125 - this->output_section_offset(this->toc_shndx()));
2126 // Is this offset in the TOC? -mcmodel=medium code may be using
2127 // TOC relative access to variables outside the TOC. Those of
2128 // course can't be optimized. We also don't try to optimize code
2129 // that is using a different object's TOC.
2130 if (off >= this->section_size(this->toc_shndx()))
2131 return false;
2132
2133 if (this->no_toc_opt(off))
2134 return false;
2135
2136 section_size_type vlen;
2137 unsigned char* view = this->get_output_view(this->toc_shndx(), &vlen);
2138 Address addr = elfcpp::Swap<size, big_endian>::readval(view + off);
2139 // The TOC pointer
2140 Address got_base = (target->got_section()->output_section()->address()
2141 + this->toc_base_offset());
2142 addr -= got_base;
2143 if (addr + (uint64_t) 0x80008000 >= (uint64_t) 1 << 32)
2144 return false;
2145
2146 *value = addr;
2147 return true;
2148 }
2149
2150 // Perform the Sized_relobj_file method, then set up opd info from
2151 // .opd relocs.
2152
2153 template<int size, bool big_endian>
2154 void
2155 Powerpc_relobj<size, big_endian>::do_read_relocs(Read_relocs_data* rd)
2156 {
2157 Sized_relobj_file<size, big_endian>::do_read_relocs(rd);
2158 if (size == 64)
2159 {
2160 for (Read_relocs_data::Relocs_list::iterator p = rd->relocs.begin();
2161 p != rd->relocs.end();
2162 ++p)
2163 {
2164 if (p->data_shndx == this->opd_shndx())
2165 {
2166 uint64_t opd_size = this->section_size(this->opd_shndx());
2167 gold_assert(opd_size == static_cast<size_t>(opd_size));
2168 if (opd_size != 0)
2169 {
2170 this->init_opd(opd_size);
2171 this->scan_opd_relocs(p->reloc_count, p->contents->data(),
2172 rd->local_symbols->data());
2173 }
2174 break;
2175 }
2176 }
2177 }
2178 }
2179
2180 // Read the symbols then set up st_other vector.
2181
2182 template<int size, bool big_endian>
2183 void
2184 Powerpc_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2185 {
2186 this->base_read_symbols(sd);
2187 if (size == 64)
2188 {
2189 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2190 const unsigned char* const pshdrs = sd->section_headers->data();
2191 const unsigned int loccount = this->do_local_symbol_count();
2192 if (loccount != 0)
2193 {
2194 this->st_other_.resize(loccount);
2195 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2196 off_t locsize = loccount * sym_size;
2197 const unsigned int symtab_shndx = this->symtab_shndx();
2198 const unsigned char *psymtab = pshdrs + symtab_shndx * shdr_size;
2199 typename elfcpp::Shdr<size, big_endian> shdr(psymtab);
2200 const unsigned char* psyms = this->get_view(shdr.get_sh_offset(),
2201 locsize, true, false);
2202 psyms += sym_size;
2203 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
2204 {
2205 elfcpp::Sym<size, big_endian> sym(psyms);
2206 unsigned char st_other = sym.get_st_other();
2207 this->st_other_[i] = st_other;
2208 if ((st_other & elfcpp::STO_PPC64_LOCAL_MASK) != 0)
2209 {
2210 if (this->abiversion() == 0)
2211 this->set_abiversion(2);
2212 else if (this->abiversion() < 2)
2213 gold_error(_("%s: local symbol %d has invalid st_other"
2214 " for ABI version 1"),
2215 this->name().c_str(), i);
2216 }
2217 }
2218 }
2219 }
2220 }
2221
2222 template<int size, bool big_endian>
2223 void
2224 Powerpc_dynobj<size, big_endian>::set_abiversion(int ver)
2225 {
2226 this->e_flags_ |= ver;
2227 if (this->abiversion() != 0)
2228 {
2229 Target_powerpc<size, big_endian>* target =
2230 static_cast<Target_powerpc<size, big_endian>*>(
2231 parameters->sized_target<size, big_endian>());
2232 if (target->abiversion() == 0)
2233 target->set_abiversion(this->abiversion());
2234 else if (target->abiversion() != this->abiversion())
2235 gold_error(_("%s: ABI version %d is not compatible "
2236 "with ABI version %d output"),
2237 this->name().c_str(),
2238 this->abiversion(), target->abiversion());
2239
2240 }
2241 }
2242
2243 // Call Sized_dynobj::base_read_symbols to read the symbols then
2244 // read .opd from a dynamic object, filling in opd_ent_ vector,
2245
2246 template<int size, bool big_endian>
2247 void
2248 Powerpc_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
2249 {
2250 this->base_read_symbols(sd);
2251 if (size == 64)
2252 {
2253 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2254 const unsigned char* const pshdrs = sd->section_headers->data();
2255 const unsigned char* namesu = sd->section_names->data();
2256 const char* names = reinterpret_cast<const char*>(namesu);
2257 const unsigned char* s = NULL;
2258 const unsigned char* opd;
2259 section_size_type opd_size;
2260
2261 // Find and read .opd section.
2262 while (1)
2263 {
2264 s = this->template find_shdr<size, big_endian>(pshdrs, ".opd", names,
2265 sd->section_names_size,
2266 s);
2267 if (s == NULL)
2268 return;
2269
2270 typename elfcpp::Shdr<size, big_endian> shdr(s);
2271 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2272 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
2273 {
2274 if (this->abiversion() == 0)
2275 this->set_abiversion(1);
2276 else if (this->abiversion() > 1)
2277 gold_error(_("%s: .opd invalid in abiv%d"),
2278 this->name().c_str(), this->abiversion());
2279
2280 this->opd_shndx_ = (s - pshdrs) / shdr_size;
2281 this->opd_address_ = shdr.get_sh_addr();
2282 opd_size = convert_to_section_size_type(shdr.get_sh_size());
2283 opd = this->get_view(shdr.get_sh_offset(), opd_size,
2284 true, false);
2285 break;
2286 }
2287 }
2288
2289 // Build set of executable sections.
2290 // Using a set is probably overkill. There is likely to be only
2291 // a few executable sections, typically .init, .text and .fini,
2292 // and they are generally grouped together.
2293 typedef std::set<Sec_info> Exec_sections;
2294 Exec_sections exec_sections;
2295 s = pshdrs;
2296 for (unsigned int i = 1; i < this->shnum(); ++i, s += shdr_size)
2297 {
2298 typename elfcpp::Shdr<size, big_endian> shdr(s);
2299 if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
2300 && ((shdr.get_sh_flags()
2301 & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2302 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
2303 && shdr.get_sh_size() != 0)
2304 {
2305 exec_sections.insert(Sec_info(shdr.get_sh_addr(),
2306 shdr.get_sh_size(), i));
2307 }
2308 }
2309 if (exec_sections.empty())
2310 return;
2311
2312 // Look over the OPD entries. This is complicated by the fact
2313 // that some binaries will use two-word entries while others
2314 // will use the standard three-word entries. In most cases
2315 // the third word (the environment pointer for languages like
2316 // Pascal) is unused and will be zero. If the third word is
2317 // used it should not be pointing into executable sections,
2318 // I think.
2319 this->init_opd(opd_size);
2320 for (const unsigned char* p = opd; p < opd + opd_size; p += 8)
2321 {
2322 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
2323 const Valtype* valp = reinterpret_cast<const Valtype*>(p);
2324 Valtype val = elfcpp::Swap<64, big_endian>::readval(valp);
2325 if (val == 0)
2326 // Chances are that this is the third word of an OPD entry.
2327 continue;
2328 typename Exec_sections::const_iterator e
2329 = exec_sections.upper_bound(Sec_info(val, 0, 0));
2330 if (e != exec_sections.begin())
2331 {
2332 --e;
2333 if (e->start <= val && val < e->start + e->len)
2334 {
2335 // We have an address in an executable section.
2336 // VAL ought to be the function entry, set it up.
2337 this->set_opd_ent(p - opd, e->shndx, val);
2338 // Skip second word of OPD entry, the TOC pointer.
2339 p += 8;
2340 }
2341 }
2342 // If we didn't match any executable sections, we likely
2343 // have a non-zero third word in the OPD entry.
2344 }
2345 }
2346 }
2347
2348 // Relocate sections.
2349
2350 template<int size, bool big_endian>
2351 void
2352 Powerpc_relobj<size, big_endian>::do_relocate_sections(
2353 const Symbol_table* symtab, const Layout* layout,
2354 const unsigned char* pshdrs, Output_file* of,
2355 typename Sized_relobj_file<size, big_endian>::Views* pviews)
2356 {
2357 unsigned int start = 1;
2358 if (size == 64
2359 && this->relatoc_ != 0
2360 && !parameters->options().relocatable())
2361 {
2362 // Relocate .toc first.
2363 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2364 this->relatoc_, this->relatoc_);
2365 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2366 1, this->relatoc_ - 1);
2367 start = this->relatoc_ + 1;
2368 }
2369 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
2370 start, this->shnum() - 1);
2371 }
2372
2373 // Set up some symbols.
2374
2375 template<int size, bool big_endian>
2376 void
2377 Target_powerpc<size, big_endian>::do_define_standard_symbols(
2378 Symbol_table* symtab,
2379 Layout* layout)
2380 {
2381 if (size == 32)
2382 {
2383 // Define _GLOBAL_OFFSET_TABLE_ to ensure it isn't seen as
2384 // undefined when scanning relocs (and thus requires
2385 // non-relative dynamic relocs). The proper value will be
2386 // updated later.
2387 Symbol *gotsym = symtab->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2388 if (gotsym != NULL && gotsym->is_undefined())
2389 {
2390 Target_powerpc<size, big_endian>* target =
2391 static_cast<Target_powerpc<size, big_endian>*>(
2392 parameters->sized_target<size, big_endian>());
2393 Output_data_got_powerpc<size, big_endian>* got
2394 = target->got_section(symtab, layout);
2395 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2396 Symbol_table::PREDEFINED,
2397 got, 0, 0,
2398 elfcpp::STT_OBJECT,
2399 elfcpp::STB_LOCAL,
2400 elfcpp::STV_HIDDEN, 0,
2401 false, false);
2402 }
2403
2404 // Define _SDA_BASE_ at the start of the .sdata section + 32768.
2405 Symbol *sdasym = symtab->lookup("_SDA_BASE_", NULL);
2406 if (sdasym != NULL && sdasym->is_undefined())
2407 {
2408 Output_data_space* sdata = new Output_data_space(4, "** sdata");
2409 Output_section* os
2410 = layout->add_output_section_data(".sdata", 0,
2411 elfcpp::SHF_ALLOC
2412 | elfcpp::SHF_WRITE,
2413 sdata, ORDER_SMALL_DATA, false);
2414 symtab->define_in_output_data("_SDA_BASE_", NULL,
2415 Symbol_table::PREDEFINED,
2416 os, 32768, 0, elfcpp::STT_OBJECT,
2417 elfcpp::STB_LOCAL, elfcpp::STV_HIDDEN,
2418 0, false, false);
2419 }
2420 }
2421 else
2422 {
2423 // Define .TOC. as for 32-bit _GLOBAL_OFFSET_TABLE_
2424 Symbol *gotsym = symtab->lookup(".TOC.", NULL);
2425 if (gotsym != NULL && gotsym->is_undefined())
2426 {
2427 Target_powerpc<size, big_endian>* target =
2428 static_cast<Target_powerpc<size, big_endian>*>(
2429 parameters->sized_target<size, big_endian>());
2430 Output_data_got_powerpc<size, big_endian>* got
2431 = target->got_section(symtab, layout);
2432 symtab->define_in_output_data(".TOC.", NULL,
2433 Symbol_table::PREDEFINED,
2434 got, 0x8000, 0,
2435 elfcpp::STT_OBJECT,
2436 elfcpp::STB_LOCAL,
2437 elfcpp::STV_HIDDEN, 0,
2438 false, false);
2439 }
2440 }
2441 }
2442
2443 // Set up PowerPC target specific relobj.
2444
2445 template<int size, bool big_endian>
2446 Object*
2447 Target_powerpc<size, big_endian>::do_make_elf_object(
2448 const std::string& name,
2449 Input_file* input_file,
2450 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
2451 {
2452 int et = ehdr.get_e_type();
2453 // ET_EXEC files are valid input for --just-symbols/-R,
2454 // and we treat them as relocatable objects.
2455 if (et == elfcpp::ET_REL
2456 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
2457 {
2458 Powerpc_relobj<size, big_endian>* obj =
2459 new Powerpc_relobj<size, big_endian>(name, input_file, offset, ehdr);
2460 obj->setup();
2461 return obj;
2462 }
2463 else if (et == elfcpp::ET_DYN)
2464 {
2465 Powerpc_dynobj<size, big_endian>* obj =
2466 new Powerpc_dynobj<size, big_endian>(name, input_file, offset, ehdr);
2467 obj->setup();
2468 return obj;
2469 }
2470 else
2471 {
2472 gold_error(_("%s: unsupported ELF file type %d"), name.c_str(), et);
2473 return NULL;
2474 }
2475 }
2476
2477 template<int size, bool big_endian>
2478 class Output_data_got_powerpc : public Output_data_got<size, big_endian>
2479 {
2480 public:
2481 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
2482 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian> Rela_dyn;
2483
2484 Output_data_got_powerpc(Symbol_table* symtab, Layout* layout)
2485 : Output_data_got<size, big_endian>(),
2486 symtab_(symtab), layout_(layout),
2487 header_ent_cnt_(size == 32 ? 3 : 1),
2488 header_index_(size == 32 ? 0x2000 : 0)
2489 {
2490 if (size == 64)
2491 this->set_addralign(256);
2492 }
2493
2494 // Override all the Output_data_got methods we use so as to first call
2495 // reserve_ent().
2496 bool
2497 add_global(Symbol* gsym, unsigned int got_type)
2498 {
2499 this->reserve_ent();
2500 return Output_data_got<size, big_endian>::add_global(gsym, got_type);
2501 }
2502
2503 bool
2504 add_global_plt(Symbol* gsym, unsigned int got_type)
2505 {
2506 this->reserve_ent();
2507 return Output_data_got<size, big_endian>::add_global_plt(gsym, got_type);
2508 }
2509
2510 bool
2511 add_global_tls(Symbol* gsym, unsigned int got_type)
2512 { return this->add_global_plt(gsym, got_type); }
2513
2514 void
2515 add_global_with_rel(Symbol* gsym, unsigned int got_type,
2516 Output_data_reloc_generic* rel_dyn, unsigned int r_type)
2517 {
2518 this->reserve_ent();
2519 Output_data_got<size, big_endian>::
2520 add_global_with_rel(gsym, got_type, rel_dyn, r_type);
2521 }
2522
2523 void
2524 add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
2525 Output_data_reloc_generic* rel_dyn,
2526 unsigned int r_type_1, unsigned int r_type_2)
2527 {
2528 this->reserve_ent(2);
2529 Output_data_got<size, big_endian>::
2530 add_global_pair_with_rel(gsym, got_type, rel_dyn, r_type_1, r_type_2);
2531 }
2532
2533 bool
2534 add_local(Relobj* object, unsigned int sym_index, unsigned int got_type)
2535 {
2536 this->reserve_ent();
2537 return Output_data_got<size, big_endian>::add_local(object, sym_index,
2538 got_type);
2539 }
2540
2541 bool
2542 add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type)
2543 {
2544 this->reserve_ent();
2545 return Output_data_got<size, big_endian>::add_local_plt(object, sym_index,
2546 got_type);
2547 }
2548
2549 bool
2550 add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
2551 { return this->add_local_plt(object, sym_index, got_type); }
2552
2553 void
2554 add_local_tls_pair(Relobj* object, unsigned int sym_index,
2555 unsigned int got_type,
2556 Output_data_reloc_generic* rel_dyn,
2557 unsigned int r_type)
2558 {
2559 this->reserve_ent(2);
2560 Output_data_got<size, big_endian>::
2561 add_local_tls_pair(object, sym_index, got_type, rel_dyn, r_type);
2562 }
2563
2564 unsigned int
2565 add_constant(Valtype constant)
2566 {
2567 this->reserve_ent();
2568 return Output_data_got<size, big_endian>::add_constant(constant);
2569 }
2570
2571 unsigned int
2572 add_constant_pair(Valtype c1, Valtype c2)
2573 {
2574 this->reserve_ent(2);
2575 return Output_data_got<size, big_endian>::add_constant_pair(c1, c2);
2576 }
2577
2578 // Offset of _GLOBAL_OFFSET_TABLE_.
2579 unsigned int
2580 g_o_t() const
2581 {
2582 return this->got_offset(this->header_index_);
2583 }
2584
2585 // Offset of base used to access the GOT/TOC.
2586 // The got/toc pointer reg will be set to this value.
2587 Valtype
2588 got_base_offset(const Powerpc_relobj<size, big_endian>* object) const
2589 {
2590 if (size == 32)
2591 return this->g_o_t();
2592 else
2593 return (this->output_section()->address()
2594 + object->toc_base_offset()
2595 - this->address());
2596 }
2597
2598 // Ensure our GOT has a header.
2599 void
2600 set_final_data_size()
2601 {
2602 if (this->header_ent_cnt_ != 0)
2603 this->make_header();
2604 Output_data_got<size, big_endian>::set_final_data_size();
2605 }
2606
2607 // First word of GOT header needs some values that are not
2608 // handled by Output_data_got so poke them in here.
2609 // For 32-bit, address of .dynamic, for 64-bit, address of TOCbase.
2610 void
2611 do_write(Output_file* of)
2612 {
2613 Valtype val = 0;
2614 if (size == 32 && this->layout_->dynamic_data() != NULL)
2615 val = this->layout_->dynamic_section()->address();
2616 if (size == 64)
2617 val = this->output_section()->address() + 0x8000;
2618 this->replace_constant(this->header_index_, val);
2619 Output_data_got<size, big_endian>::do_write(of);
2620 }
2621
2622 private:
2623 void
2624 reserve_ent(unsigned int cnt = 1)
2625 {
2626 if (this->header_ent_cnt_ == 0)
2627 return;
2628 if (this->num_entries() + cnt > this->header_index_)
2629 this->make_header();
2630 }
2631
2632 void
2633 make_header()
2634 {
2635 this->header_ent_cnt_ = 0;
2636 this->header_index_ = this->num_entries();
2637 if (size == 32)
2638 {
2639 Output_data_got<size, big_endian>::add_constant(0);
2640 Output_data_got<size, big_endian>::add_constant(0);
2641 Output_data_got<size, big_endian>::add_constant(0);
2642
2643 // Define _GLOBAL_OFFSET_TABLE_ at the header
2644 Symbol *gotsym = this->symtab_->lookup("_GLOBAL_OFFSET_TABLE_", NULL);
2645 if (gotsym != NULL)
2646 {
2647 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(gotsym);
2648 sym->set_value(this->g_o_t());
2649 }
2650 else
2651 this->symtab_->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2652 Symbol_table::PREDEFINED,
2653 this, this->g_o_t(), 0,
2654 elfcpp::STT_OBJECT,
2655 elfcpp::STB_LOCAL,
2656 elfcpp::STV_HIDDEN, 0,
2657 false, false);
2658 }
2659 else
2660 Output_data_got<size, big_endian>::add_constant(0);
2661 }
2662
2663 // Stashed pointers.
2664 Symbol_table* symtab_;
2665 Layout* layout_;
2666
2667 // GOT header size.
2668 unsigned int header_ent_cnt_;
2669 // GOT header index.
2670 unsigned int header_index_;
2671 };
2672
2673 // Get the GOT section, creating it if necessary.
2674
2675 template<int size, bool big_endian>
2676 Output_data_got_powerpc<size, big_endian>*
2677 Target_powerpc<size, big_endian>::got_section(Symbol_table* symtab,
2678 Layout* layout)
2679 {
2680 if (this->got_ == NULL)
2681 {
2682 gold_assert(symtab != NULL && layout != NULL);
2683
2684 this->got_
2685 = new Output_data_got_powerpc<size, big_endian>(symtab, layout);
2686
2687 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2688 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2689 this->got_, ORDER_DATA, false);
2690 }
2691
2692 return this->got_;
2693 }
2694
2695 // Get the dynamic reloc section, creating it if necessary.
2696
2697 template<int size, bool big_endian>
2698 typename Target_powerpc<size, big_endian>::Reloc_section*
2699 Target_powerpc<size, big_endian>::rela_dyn_section(Layout* layout)
2700 {
2701 if (this->rela_dyn_ == NULL)
2702 {
2703 gold_assert(layout != NULL);
2704 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
2705 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
2706 elfcpp::SHF_ALLOC, this->rela_dyn_,
2707 ORDER_DYNAMIC_RELOCS, false);
2708 }
2709 return this->rela_dyn_;
2710 }
2711
2712 // Similarly, but for ifunc symbols get the one for ifunc.
2713
2714 template<int size, bool big_endian>
2715 typename Target_powerpc<size, big_endian>::Reloc_section*
2716 Target_powerpc<size, big_endian>::rela_dyn_section(Symbol_table* symtab,
2717 Layout* layout,
2718 bool for_ifunc)
2719 {
2720 if (!for_ifunc)
2721 return this->rela_dyn_section(layout);
2722
2723 if (this->iplt_ == NULL)
2724 this->make_iplt_section(symtab, layout);
2725 return this->iplt_->rel_plt();
2726 }
2727
2728 class Stub_control
2729 {
2730 public:
2731 // Determine the stub group size. The group size is the absolute
2732 // value of the parameter --stub-group-size. If --stub-group-size
2733 // is passed a negative value, we restrict stubs to be always after
2734 // the stubbed branches.
2735 Stub_control(int32_t size, bool no_size_errors, bool multi_os)
2736 : stub_group_size_(abs(size)), stubs_always_after_branch_(size < 0),
2737 suppress_size_errors_(no_size_errors), multi_os_(multi_os),
2738 state_(NO_GROUP), group_size_(0), group_start_addr_(0),
2739 owner_(NULL), output_section_(NULL)
2740 {
2741 }
2742
2743 // Return true iff input section can be handled by current stub
2744 // group.
2745 bool
2746 can_add_to_stub_group(Output_section* o,
2747 const Output_section::Input_section* i,
2748 bool has14);
2749
2750 const Output_section::Input_section*
2751 owner()
2752 { return owner_; }
2753
2754 Output_section*
2755 output_section()
2756 { return output_section_; }
2757
2758 void
2759 set_output_and_owner(Output_section* o,
2760 const Output_section::Input_section* i)
2761 {
2762 this->output_section_ = o;
2763 this->owner_ = i;
2764 }
2765
2766 private:
2767 typedef enum
2768 {
2769 // Initial state.
2770 NO_GROUP,
2771 // Adding group sections before the stubs.
2772 FINDING_STUB_SECTION,
2773 // Adding group sections after the stubs.
2774 HAS_STUB_SECTION
2775 } State;
2776
2777 uint32_t stub_group_size_;
2778 bool stubs_always_after_branch_;
2779 bool suppress_size_errors_;
2780 // True if a stub group can serve multiple output sections.
2781 bool multi_os_;
2782 State state_;
2783 // Current max size of group. Starts at stub_group_size_ but is
2784 // reduced to stub_group_size_/1024 on seeing a section with
2785 // external conditional branches.
2786 uint32_t group_size_;
2787 uint64_t group_start_addr_;
2788 // owner_ and output_section_ specify the section to which stubs are
2789 // attached. The stubs are placed at the end of this section.
2790 const Output_section::Input_section* owner_;
2791 Output_section* output_section_;
2792 };
2793
2794 // Return true iff input section can be handled by current stub
2795 // group. Sections are presented to this function in order,
2796 // so the first section is the head of the group.
2797
2798 bool
2799 Stub_control::can_add_to_stub_group(Output_section* o,
2800 const Output_section::Input_section* i,
2801 bool has14)
2802 {
2803 bool whole_sec = o->order() == ORDER_INIT || o->order() == ORDER_FINI;
2804 uint64_t this_size;
2805 uint64_t start_addr = o->address();
2806
2807 if (whole_sec)
2808 // .init and .fini sections are pasted together to form a single
2809 // function. We can't be adding stubs in the middle of the function.
2810 this_size = o->data_size();
2811 else
2812 {
2813 start_addr += i->relobj()->output_section_offset(i->shndx());
2814 this_size = i->data_size();
2815 }
2816
2817 uint64_t end_addr = start_addr + this_size;
2818 uint32_t group_size = this->stub_group_size_;
2819 if (has14)
2820 this->group_size_ = group_size = group_size >> 10;
2821
2822 if (this_size > group_size && !this->suppress_size_errors_)
2823 gold_warning(_("%s:%s exceeds group size"),
2824 i->relobj()->name().c_str(),
2825 i->relobj()->section_name(i->shndx()).c_str());
2826
2827 gold_debug(DEBUG_TARGET, "maybe add%s %s:%s size=%#llx total=%#llx",
2828 has14 ? " 14bit" : "",
2829 i->relobj()->name().c_str(),
2830 i->relobj()->section_name(i->shndx()).c_str(),
2831 (long long) this_size,
2832 (this->state_ == NO_GROUP
2833 ? this_size
2834 : (long long) end_addr - this->group_start_addr_));
2835
2836 if (this->state_ == NO_GROUP)
2837 {
2838 // Only here on very first use of Stub_control
2839 this->owner_ = i;
2840 this->output_section_ = o;
2841 this->state_ = FINDING_STUB_SECTION;
2842 this->group_size_ = group_size;
2843 this->group_start_addr_ = start_addr;
2844 return true;
2845 }
2846 else if (!this->multi_os_ && this->output_section_ != o)
2847 ;
2848 else if (this->state_ == HAS_STUB_SECTION)
2849 {
2850 // Can we add this section, which is after the stubs, to the
2851 // group?
2852 if (end_addr - this->group_start_addr_ <= this->group_size_)
2853 return true;
2854 }
2855 else if (this->state_ == FINDING_STUB_SECTION)
2856 {
2857 if ((whole_sec && this->output_section_ == o)
2858 || end_addr - this->group_start_addr_ <= this->group_size_)
2859 {
2860 // Stubs are added at the end of "owner_".
2861 this->owner_ = i;
2862 this->output_section_ = o;
2863 return true;
2864 }
2865 // The group before the stubs has reached maximum size.
2866 // Now see about adding sections after the stubs to the
2867 // group. If the current section has a 14-bit branch and
2868 // the group before the stubs exceeds group_size_ (because
2869 // they didn't have 14-bit branches), don't add sections
2870 // after the stubs: The size of stubs for such a large
2871 // group may exceed the reach of a 14-bit branch.
2872 if (!this->stubs_always_after_branch_
2873 && this_size <= this->group_size_
2874 && start_addr - this->group_start_addr_ <= this->group_size_)
2875 {
2876 gold_debug(DEBUG_TARGET, "adding after stubs");
2877 this->state_ = HAS_STUB_SECTION;
2878 this->group_start_addr_ = start_addr;
2879 return true;
2880 }
2881 }
2882 else
2883 gold_unreachable();
2884
2885 gold_debug(DEBUG_TARGET,
2886 !this->multi_os_ && this->output_section_ != o
2887 ? "nope, new output section\n"
2888 : "nope, didn't fit\n");
2889
2890 // The section fails to fit in the current group. Set up a few
2891 // things for the next group. owner_ and output_section_ will be
2892 // set later after we've retrieved those values for the current
2893 // group.
2894 this->state_ = FINDING_STUB_SECTION;
2895 this->group_size_ = group_size;
2896 this->group_start_addr_ = start_addr;
2897 return false;
2898 }
2899
2900 // Look over all the input sections, deciding where to place stubs.
2901
2902 template<int size, bool big_endian>
2903 void
2904 Target_powerpc<size, big_endian>::group_sections(Layout* layout,
2905 const Task*,
2906 bool no_size_errors)
2907 {
2908 Stub_control stub_control(this->stub_group_size_, no_size_errors,
2909 parameters->options().stub_group_multi());
2910
2911 // Group input sections and insert stub table
2912 Stub_table_owner* table_owner = NULL;
2913 std::vector<Stub_table_owner*> tables;
2914 Layout::Section_list section_list;
2915 layout->get_executable_sections(&section_list);
2916 std::stable_sort(section_list.begin(), section_list.end(), Sort_sections());
2917 for (Layout::Section_list::iterator o = section_list.begin();
2918 o != section_list.end();
2919 ++o)
2920 {
2921 typedef Output_section::Input_section_list Input_section_list;
2922 for (Input_section_list::const_iterator i
2923 = (*o)->input_sections().begin();
2924 i != (*o)->input_sections().end();
2925 ++i)
2926 {
2927 if (i->is_input_section()
2928 || i->is_relaxed_input_section())
2929 {
2930 Powerpc_relobj<size, big_endian>* ppcobj = static_cast
2931 <Powerpc_relobj<size, big_endian>*>(i->relobj());
2932 bool has14 = ppcobj->has_14bit_branch(i->shndx());
2933 if (!stub_control.can_add_to_stub_group(*o, &*i, has14))
2934 {
2935 table_owner->output_section = stub_control.output_section();
2936 table_owner->owner = stub_control.owner();
2937 stub_control.set_output_and_owner(*o, &*i);
2938 table_owner = NULL;
2939 }
2940 if (table_owner == NULL)
2941 {
2942 table_owner = new Stub_table_owner;
2943 tables.push_back(table_owner);
2944 }
2945 ppcobj->set_stub_table(i->shndx(), tables.size() - 1);
2946 }
2947 }
2948 }
2949 if (table_owner != NULL)
2950 {
2951 table_owner->output_section = stub_control.output_section();
2952 table_owner->owner = stub_control.owner();;
2953 }
2954 for (typename std::vector<Stub_table_owner*>::iterator t = tables.begin();
2955 t != tables.end();
2956 ++t)
2957 {
2958 Stub_table<size, big_endian>* stub_table;
2959
2960 if ((*t)->owner->is_input_section())
2961 stub_table = new Stub_table<size, big_endian>(this,
2962 (*t)->output_section,
2963 (*t)->owner,
2964 this->stub_tables_.size());
2965 else if ((*t)->owner->is_relaxed_input_section())
2966 stub_table = static_cast<Stub_table<size, big_endian>*>(
2967 (*t)->owner->relaxed_input_section());
2968 else
2969 gold_unreachable();
2970 this->stub_tables_.push_back(stub_table);
2971 delete *t;
2972 }
2973 }
2974
2975 static unsigned long
2976 max_branch_delta (unsigned int r_type)
2977 {
2978 if (r_type == elfcpp::R_POWERPC_REL14
2979 || r_type == elfcpp::R_POWERPC_REL14_BRTAKEN
2980 || r_type == elfcpp::R_POWERPC_REL14_BRNTAKEN)
2981 return 1L << 15;
2982 if (r_type == elfcpp::R_POWERPC_REL24
2983 || r_type == elfcpp::R_PPC_PLTREL24
2984 || r_type == elfcpp::R_PPC_LOCAL24PC)
2985 return 1L << 25;
2986 return 0;
2987 }
2988
2989 // Return whether this branch is going via a plt call stub.
2990
2991 template<int size, bool big_endian>
2992 bool
2993 Target_powerpc<size, big_endian>::Branch_info::mark_pltcall(
2994 Powerpc_relobj<size, big_endian>* ppc_object,
2995 unsigned int shndx,
2996 Address offset,
2997 Target_powerpc* target,
2998 Symbol_table* symtab)
2999 {
3000 if (this->object_ != ppc_object
3001 || this->shndx_ != shndx
3002 || this->offset_ != offset)
3003 return false;
3004
3005 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3006 if (sym != NULL && sym->is_forwarder())
3007 sym = symtab->resolve_forwards(sym);
3008 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3009 if (gsym != NULL
3010 ? (gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3011 && !target->is_elfv2_localentry0(gsym))
3012 : (this->object_->local_has_plt_offset(this->r_sym_)
3013 && !target->is_elfv2_localentry0(this->object_, this->r_sym_)))
3014 {
3015 this->tocsave_ = 1;
3016 return true;
3017 }
3018 return false;
3019 }
3020
3021 // If this branch needs a plt call stub, or a long branch stub, make one.
3022
3023 template<int size, bool big_endian>
3024 bool
3025 Target_powerpc<size, big_endian>::Branch_info::make_stub(
3026 Stub_table<size, big_endian>* stub_table,
3027 Stub_table<size, big_endian>* ifunc_stub_table,
3028 Symbol_table* symtab) const
3029 {
3030 Symbol* sym = this->object_->global_symbol(this->r_sym_);
3031 if (sym != NULL && sym->is_forwarder())
3032 sym = symtab->resolve_forwards(sym);
3033 const Sized_symbol<size>* gsym = static_cast<const Sized_symbol<size>*>(sym);
3034 Target_powerpc<size, big_endian>* target =
3035 static_cast<Target_powerpc<size, big_endian>*>(
3036 parameters->sized_target<size, big_endian>());
3037 bool ok = true;
3038
3039 if (gsym != NULL
3040 ? gsym->use_plt_offset(Scan::get_reference_flags(this->r_type_, target))
3041 : this->object_->local_has_plt_offset(this->r_sym_))
3042 {
3043 if (size == 64
3044 && gsym != NULL
3045 && target->abiversion() >= 2
3046 && !parameters->options().output_is_position_independent()
3047 && !is_branch_reloc(this->r_type_))
3048 target->glink_section()->add_global_entry(gsym);
3049 else
3050 {
3051 if (stub_table == NULL)
3052 stub_table = this->object_->stub_table(this->shndx_);
3053 if (stub_table == NULL)
3054 {
3055 // This is a ref from a data section to an ifunc symbol.
3056 stub_table = ifunc_stub_table;
3057 }
3058 gold_assert(stub_table != NULL);
3059 Address from = this->object_->get_output_section_offset(this->shndx_);
3060 if (from != invalid_address)
3061 from += (this->object_->output_section(this->shndx_)->address()
3062 + this->offset_);
3063 if (gsym != NULL)
3064 ok = stub_table->add_plt_call_entry(from,
3065 this->object_, gsym,
3066 this->r_type_, this->addend_,
3067 this->tocsave_);
3068 else
3069 ok = stub_table->add_plt_call_entry(from,
3070 this->object_, this->r_sym_,
3071 this->r_type_, this->addend_,
3072 this->tocsave_);
3073 }
3074 }
3075 else
3076 {
3077 Address max_branch_offset = max_branch_delta(this->r_type_);
3078 if (max_branch_offset == 0)
3079 return true;
3080 Address from = this->object_->get_output_section_offset(this->shndx_);
3081 gold_assert(from != invalid_address);
3082 from += (this->object_->output_section(this->shndx_)->address()
3083 + this->offset_);
3084 Address to;
3085 if (gsym != NULL)
3086 {
3087 switch (gsym->source())
3088 {
3089 case Symbol::FROM_OBJECT:
3090 {
3091 Object* symobj = gsym->object();
3092 if (symobj->is_dynamic()
3093 || symobj->pluginobj() != NULL)
3094 return true;
3095 bool is_ordinary;
3096 unsigned int shndx = gsym->shndx(&is_ordinary);
3097 if (shndx == elfcpp::SHN_UNDEF)
3098 return true;
3099 }
3100 break;
3101
3102 case Symbol::IS_UNDEFINED:
3103 return true;
3104
3105 default:
3106 break;
3107 }
3108 Symbol_table::Compute_final_value_status status;
3109 to = symtab->compute_final_value<size>(gsym, &status);
3110 if (status != Symbol_table::CFVS_OK)
3111 return true;
3112 if (size == 64)
3113 to += this->object_->ppc64_local_entry_offset(gsym);
3114 }
3115 else
3116 {
3117 const Symbol_value<size>* psymval
3118 = this->object_->local_symbol(this->r_sym_);
3119 Symbol_value<size> symval;
3120 if (psymval->is_section_symbol())
3121 symval.set_is_section_symbol();
3122 typedef Sized_relobj_file<size, big_endian> ObjType;
3123 typename ObjType::Compute_final_local_value_status status
3124 = this->object_->compute_final_local_value(this->r_sym_, psymval,
3125 &symval, symtab);
3126 if (status != ObjType::CFLV_OK
3127 || !symval.has_output_value())
3128 return true;
3129 to = symval.value(this->object_, 0);
3130 if (size == 64)
3131 to += this->object_->ppc64_local_entry_offset(this->r_sym_);
3132 }
3133 if (!(size == 32 && this->r_type_ == elfcpp::R_PPC_PLTREL24))
3134 to += this->addend_;
3135 if (stub_table == NULL)
3136 stub_table = this->object_->stub_table(this->shndx_);
3137 if (size == 64 && target->abiversion() < 2)
3138 {
3139 unsigned int dest_shndx;
3140 if (!target->symval_for_branch(symtab, gsym, this->object_,
3141 &to, &dest_shndx))
3142 return true;
3143 }
3144 Address delta = to - from;
3145 if (delta + max_branch_offset >= 2 * max_branch_offset)
3146 {
3147 if (stub_table == NULL)
3148 {
3149 gold_warning(_("%s:%s: branch in non-executable section,"
3150 " no long branch stub for you"),
3151 this->object_->name().c_str(),
3152 this->object_->section_name(this->shndx_).c_str());
3153 return true;
3154 }
3155 bool save_res = (size == 64
3156 && gsym != NULL
3157 && gsym->source() == Symbol::IN_OUTPUT_DATA
3158 && gsym->output_data() == target->savres_section());
3159 ok = stub_table->add_long_branch_entry(this->object_,
3160 this->r_type_,
3161 from, to, save_res);
3162 }
3163 }
3164 if (!ok)
3165 gold_debug(DEBUG_TARGET,
3166 "branch at %s:%s+%#lx\n"
3167 "can't reach stub attached to %s:%s",
3168 this->object_->name().c_str(),
3169 this->object_->section_name(this->shndx_).c_str(),
3170 (unsigned long) this->offset_,
3171 stub_table->relobj()->name().c_str(),
3172 stub_table->relobj()->section_name(stub_table->shndx()).c_str());
3173
3174 return ok;
3175 }
3176
3177 // Relaxation hook. This is where we do stub generation.
3178
3179 template<int size, bool big_endian>
3180 bool
3181 Target_powerpc<size, big_endian>::do_relax(int pass,
3182 const Input_objects*,
3183 Symbol_table* symtab,
3184 Layout* layout,
3185 const Task* task)
3186 {
3187 unsigned int prev_brlt_size = 0;
3188 if (pass == 1)
3189 {
3190 bool thread_safe
3191 = this->abiversion() < 2 && parameters->options().plt_thread_safe();
3192 if (size == 64
3193 && this->abiversion() < 2
3194 && !thread_safe
3195 && !parameters->options().user_set_plt_thread_safe())
3196 {
3197 static const char* const thread_starter[] =
3198 {
3199 "pthread_create",
3200 /* libstdc++ */
3201 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
3202 /* librt */
3203 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
3204 "mq_notify", "create_timer",
3205 /* libanl */
3206 "getaddrinfo_a",
3207 /* libgomp */
3208 "GOMP_parallel",
3209 "GOMP_parallel_start",
3210 "GOMP_parallel_loop_static",
3211 "GOMP_parallel_loop_static_start",
3212 "GOMP_parallel_loop_dynamic",
3213 "GOMP_parallel_loop_dynamic_start",
3214 "GOMP_parallel_loop_guided",
3215 "GOMP_parallel_loop_guided_start",
3216 "GOMP_parallel_loop_runtime",
3217 "GOMP_parallel_loop_runtime_start",
3218 "GOMP_parallel_sections",
3219 "GOMP_parallel_sections_start",
3220 /* libgo */
3221 "__go_go",
3222 };
3223
3224 if (parameters->options().shared())
3225 thread_safe = true;
3226 else
3227 {
3228 for (unsigned int i = 0;
3229 i < sizeof(thread_starter) / sizeof(thread_starter[0]);
3230 i++)
3231 {
3232 Symbol* sym = symtab->lookup(thread_starter[i], NULL);
3233 thread_safe = (sym != NULL
3234 && sym->in_reg()
3235 && sym->in_real_elf());
3236 if (thread_safe)
3237 break;
3238 }
3239 }
3240 }
3241 this->plt_thread_safe_ = thread_safe;
3242 }
3243
3244 if (pass == 1)
3245 {
3246 this->stub_group_size_ = parameters->options().stub_group_size();
3247 bool no_size_errors = true;
3248 if (this->stub_group_size_ == 1)
3249 this->stub_group_size_ = 0x1c00000;
3250 else if (this->stub_group_size_ == -1)
3251 this->stub_group_size_ = -0x1e00000;
3252 else
3253 no_size_errors = false;
3254 this->group_sections(layout, task, no_size_errors);
3255 }
3256 else if (this->relax_failed_ && this->relax_fail_count_ < 3)
3257 {
3258 this->branch_lookup_table_.clear();
3259 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3260 p != this->stub_tables_.end();
3261 ++p)
3262 {
3263 (*p)->clear_stubs(true);
3264 }
3265 this->stub_tables_.clear();
3266 this->stub_group_size_ = this->stub_group_size_ / 4 * 3;
3267 gold_info(_("%s: stub group size is too large; retrying with %#x"),
3268 program_name, this->stub_group_size_);
3269 this->group_sections(layout, task, true);
3270 }
3271
3272 // We need address of stub tables valid for make_stub.
3273 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3274 p != this->stub_tables_.end();
3275 ++p)
3276 {
3277 const Powerpc_relobj<size, big_endian>* object
3278 = static_cast<const Powerpc_relobj<size, big_endian>*>((*p)->relobj());
3279 Address off = object->get_output_section_offset((*p)->shndx());
3280 gold_assert(off != invalid_address);
3281 Output_section* os = (*p)->output_section();
3282 (*p)->set_address_and_size(os, off);
3283 }
3284
3285 if (pass != 1)
3286 {
3287 // Clear plt call stubs, long branch stubs and branch lookup table.
3288 prev_brlt_size = this->branch_lookup_table_.size();
3289 this->branch_lookup_table_.clear();
3290 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3291 p != this->stub_tables_.end();
3292 ++p)
3293 {
3294 (*p)->clear_stubs(false);
3295 }
3296 }
3297
3298 // Build all the stubs.
3299 this->relax_failed_ = false;
3300 Stub_table<size, big_endian>* ifunc_stub_table
3301 = this->stub_tables_.size() == 0 ? NULL : this->stub_tables_[0];
3302 Stub_table<size, big_endian>* one_stub_table
3303 = this->stub_tables_.size() != 1 ? NULL : ifunc_stub_table;
3304 for (typename Branches::const_iterator b = this->branch_info_.begin();
3305 b != this->branch_info_.end();
3306 b++)
3307 {
3308 if (!b->make_stub(one_stub_table, ifunc_stub_table, symtab)
3309 && !this->relax_failed_)
3310 {
3311 this->relax_failed_ = true;
3312 this->relax_fail_count_++;
3313 if (this->relax_fail_count_ < 3)
3314 return true;
3315 }
3316 }
3317
3318 // Did anything change size?
3319 unsigned int num_huge_branches = this->branch_lookup_table_.size();
3320 bool again = num_huge_branches != prev_brlt_size;
3321 if (size == 64 && num_huge_branches != 0)
3322 this->make_brlt_section(layout);
3323 if (size == 64 && again)
3324 this->brlt_section_->set_current_size(num_huge_branches);
3325
3326 typedef Unordered_set<Output_section*> Output_sections;
3327 Output_sections os_need_update;
3328 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3329 p != this->stub_tables_.end();
3330 ++p)
3331 {
3332 if ((*p)->size_update())
3333 {
3334 again = true;
3335 (*p)->add_eh_frame(layout);
3336 os_need_update.insert((*p)->output_section());
3337 }
3338 }
3339
3340 // Set output section offsets for all input sections in an output
3341 // section that just changed size. Anything past the stubs will
3342 // need updating.
3343 for (typename Output_sections::iterator p = os_need_update.begin();
3344 p != os_need_update.end();
3345 p++)
3346 {
3347 Output_section* os = *p;
3348 Address off = 0;
3349 typedef Output_section::Input_section_list Input_section_list;
3350 for (Input_section_list::const_iterator i = os->input_sections().begin();
3351 i != os->input_sections().end();
3352 ++i)
3353 {
3354 off = align_address(off, i->addralign());
3355 if (i->is_input_section() || i->is_relaxed_input_section())
3356 i->relobj()->set_section_offset(i->shndx(), off);
3357 if (i->is_relaxed_input_section())
3358 {
3359 Stub_table<size, big_endian>* stub_table
3360 = static_cast<Stub_table<size, big_endian>*>(
3361 i->relaxed_input_section());
3362 Address stub_table_size = stub_table->set_address_and_size(os, off);
3363 off += stub_table_size;
3364 // After a few iterations, set current stub table size
3365 // as min size threshold, so later stub tables can only
3366 // grow in size.
3367 if (pass >= 4)
3368 stub_table->set_min_size_threshold(stub_table_size);
3369 }
3370 else
3371 off += i->data_size();
3372 }
3373 // If .branch_lt is part of this output section, then we have
3374 // just done the offset adjustment.
3375 os->clear_section_offsets_need_adjustment();
3376 }
3377
3378 if (size == 64
3379 && !again
3380 && num_huge_branches != 0
3381 && parameters->options().output_is_position_independent())
3382 {
3383 // Fill in the BRLT relocs.
3384 this->brlt_section_->reset_brlt_sizes();
3385 for (typename Branch_lookup_table::const_iterator p
3386 = this->branch_lookup_table_.begin();
3387 p != this->branch_lookup_table_.end();
3388 ++p)
3389 {
3390 this->brlt_section_->add_reloc(p->first, p->second);
3391 }
3392 this->brlt_section_->finalize_brlt_sizes();
3393 }
3394
3395 if (!again
3396 && (parameters->options().user_set_emit_stub_syms()
3397 ? parameters->options().emit_stub_syms()
3398 : (size == 64
3399 || parameters->options().output_is_position_independent()
3400 || parameters->options().emit_relocs())))
3401 {
3402 for (typename Stub_tables::iterator p = this->stub_tables_.begin();
3403 p != this->stub_tables_.end();
3404 ++p)
3405 (*p)->define_stub_syms(symtab);
3406
3407 if (this->glink_ != NULL)
3408 {
3409 int stub_size = this->glink_->pltresolve_size;
3410 Address value = -stub_size;
3411 if (size == 64)
3412 {
3413 value = 8;
3414 stub_size -= 8;
3415 }
3416 this->define_local(symtab, "__glink_PLTresolve",
3417 this->glink_, value, stub_size);
3418
3419 if (size != 64)
3420 this->define_local(symtab, "__glink", this->glink_, 0, 0);
3421 }
3422 }
3423
3424 return again;
3425 }
3426
3427 template<int size, bool big_endian>
3428 void
3429 Target_powerpc<size, big_endian>::do_plt_fde_location(const Output_data* plt,
3430 unsigned char* oview,
3431 uint64_t* paddress,
3432 off_t* plen) const
3433 {
3434 uint64_t address = plt->address();
3435 off_t len = plt->data_size();
3436
3437 if (plt == this->glink_)
3438 {
3439 // See Output_data_glink::do_write() for glink contents.
3440 if (len == 0)
3441 {
3442 gold_assert(parameters->doing_static_link());
3443 // Static linking may need stubs, to support ifunc and long
3444 // branches. We need to create an output section for
3445 // .eh_frame early in the link process, to have a place to
3446 // attach stub .eh_frame info. We also need to have
3447 // registered a CIE that matches the stub CIE. Both of
3448 // these requirements are satisfied by creating an FDE and
3449 // CIE for .glink, even though static linking will leave
3450 // .glink zero length.
3451 // ??? Hopefully generating an FDE with a zero address range
3452 // won't confuse anything that consumes .eh_frame info.
3453 }
3454 else if (size == 64)
3455 {
3456 // There is one word before __glink_PLTresolve
3457 address += 8;
3458 len -= 8;
3459 }
3460 else if (parameters->options().output_is_position_independent())
3461 {
3462 // There are two FDEs for a position independent glink.
3463 // The first covers the branch table, the second
3464 // __glink_PLTresolve at the end of glink.
3465 off_t resolve_size = this->glink_->pltresolve_size;
3466 if (oview[9] == elfcpp::DW_CFA_nop)
3467 len -= resolve_size;
3468 else
3469 {
3470 address += len - resolve_size;
3471 len = resolve_size;
3472 }
3473 }
3474 }
3475 else
3476 {
3477 // Must be a stub table.
3478 const Stub_table<size, big_endian>* stub_table
3479 = static_cast<const Stub_table<size, big_endian>*>(plt);
3480 uint64_t stub_address = stub_table->stub_address();
3481 len -= stub_address - address;
3482 address = stub_address;
3483 }
3484
3485 *paddress = address;
3486 *plen = len;
3487 }
3488
3489 // A class to handle the PLT data.
3490
3491 template<int size, bool big_endian>
3492 class Output_data_plt_powerpc : public Output_section_data_build
3493 {
3494 public:
3495 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3496 size, big_endian> Reloc_section;
3497
3498 Output_data_plt_powerpc(Target_powerpc<size, big_endian>* targ,
3499 Reloc_section* plt_rel,
3500 const char* name)
3501 : Output_section_data_build(size == 32 ? 4 : 8),
3502 rel_(plt_rel),
3503 targ_(targ),
3504 name_(name)
3505 { }
3506
3507 // Add an entry to the PLT.
3508 void
3509 add_entry(Symbol*);
3510
3511 void
3512 add_ifunc_entry(Symbol*);
3513
3514 void
3515 add_local_ifunc_entry(Sized_relobj_file<size, big_endian>*, unsigned int);
3516
3517 // Return the .rela.plt section data.
3518 Reloc_section*
3519 rel_plt() const
3520 {
3521 return this->rel_;
3522 }
3523
3524 // Return the number of PLT entries.
3525 unsigned int
3526 entry_count() const
3527 {
3528 if (this->current_data_size() == 0)
3529 return 0;
3530 return ((this->current_data_size() - this->first_plt_entry_offset())
3531 / this->plt_entry_size());
3532 }
3533
3534 protected:
3535 void
3536 do_adjust_output_section(Output_section* os)
3537 {
3538 os->set_entsize(0);
3539 }
3540
3541 // Write to a map file.
3542 void
3543 do_print_to_mapfile(Mapfile* mapfile) const
3544 { mapfile->print_output_data(this, this->name_); }
3545
3546 private:
3547 // Return the offset of the first non-reserved PLT entry.
3548 unsigned int
3549 first_plt_entry_offset() const
3550 {
3551 // IPLT has no reserved entry.
3552 if (this->name_[3] == 'I')
3553 return 0;
3554 return this->targ_->first_plt_entry_offset();
3555 }
3556
3557 // Return the size of each PLT entry.
3558 unsigned int
3559 plt_entry_size() const
3560 {
3561 return this->targ_->plt_entry_size();
3562 }
3563
3564 // Write out the PLT data.
3565 void
3566 do_write(Output_file*);
3567
3568 // The reloc section.
3569 Reloc_section* rel_;
3570 // Allows access to .glink for do_write.
3571 Target_powerpc<size, big_endian>* targ_;
3572 // What to report in map file.
3573 const char *name_;
3574 };
3575
3576 // Add an entry to the PLT.
3577
3578 template<int size, bool big_endian>
3579 void
3580 Output_data_plt_powerpc<size, big_endian>::add_entry(Symbol* gsym)
3581 {
3582 if (!gsym->has_plt_offset())
3583 {
3584 section_size_type off = this->current_data_size();
3585 if (off == 0)
3586 off += this->first_plt_entry_offset();
3587 gsym->set_plt_offset(off);
3588 gsym->set_needs_dynsym_entry();
3589 unsigned int dynrel = elfcpp::R_POWERPC_JMP_SLOT;
3590 this->rel_->add_global(gsym, dynrel, this, off, 0);
3591 off += this->plt_entry_size();
3592 this->set_current_data_size(off);
3593 }
3594 }
3595
3596 // Add an entry for a global ifunc symbol that resolves locally, to the IPLT.
3597
3598 template<int size, bool big_endian>
3599 void
3600 Output_data_plt_powerpc<size, big_endian>::add_ifunc_entry(Symbol* gsym)
3601 {
3602 if (!gsym->has_plt_offset())
3603 {
3604 section_size_type off = this->current_data_size();
3605 gsym->set_plt_offset(off);
3606 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3607 if (size == 64 && this->targ_->abiversion() < 2)
3608 dynrel = elfcpp::R_PPC64_JMP_IREL;
3609 this->rel_->add_symbolless_global_addend(gsym, dynrel, this, off, 0);
3610 off += this->plt_entry_size();
3611 this->set_current_data_size(off);
3612 }
3613 }
3614
3615 // Add an entry for a local ifunc symbol to the IPLT.
3616
3617 template<int size, bool big_endian>
3618 void
3619 Output_data_plt_powerpc<size, big_endian>::add_local_ifunc_entry(
3620 Sized_relobj_file<size, big_endian>* relobj,
3621 unsigned int local_sym_index)
3622 {
3623 if (!relobj->local_has_plt_offset(local_sym_index))
3624 {
3625 section_size_type off = this->current_data_size();
3626 relobj->set_local_plt_offset(local_sym_index, off);
3627 unsigned int dynrel = elfcpp::R_POWERPC_IRELATIVE;
3628 if (size == 64 && this->targ_->abiversion() < 2)
3629 dynrel = elfcpp::R_PPC64_JMP_IREL;
3630 this->rel_->add_symbolless_local_addend(relobj, local_sym_index, dynrel,
3631 this, off, 0);
3632 off += this->plt_entry_size();
3633 this->set_current_data_size(off);
3634 }
3635 }
3636
3637 static const uint32_t add_0_11_11 = 0x7c0b5a14;
3638 static const uint32_t add_2_2_11 = 0x7c425a14;
3639 static const uint32_t add_2_2_12 = 0x7c426214;
3640 static const uint32_t add_3_3_2 = 0x7c631214;
3641 static const uint32_t add_3_3_13 = 0x7c636a14;
3642 static const uint32_t add_11_0_11 = 0x7d605a14;
3643 static const uint32_t add_11_2_11 = 0x7d625a14;
3644 static const uint32_t add_11_11_2 = 0x7d6b1214;
3645 static const uint32_t addi_0_12 = 0x380c0000;
3646 static const uint32_t addi_2_2 = 0x38420000;
3647 static const uint32_t addi_3_3 = 0x38630000;
3648 static const uint32_t addi_11_11 = 0x396b0000;
3649 static const uint32_t addi_12_1 = 0x39810000;
3650 static const uint32_t addi_12_12 = 0x398c0000;
3651 static const uint32_t addis_0_2 = 0x3c020000;
3652 static const uint32_t addis_0_13 = 0x3c0d0000;
3653 static const uint32_t addis_2_12 = 0x3c4c0000;
3654 static const uint32_t addis_11_2 = 0x3d620000;
3655 static const uint32_t addis_11_11 = 0x3d6b0000;
3656 static const uint32_t addis_11_30 = 0x3d7e0000;
3657 static const uint32_t addis_12_1 = 0x3d810000;
3658 static const uint32_t addis_12_2 = 0x3d820000;
3659 static const uint32_t addis_12_12 = 0x3d8c0000;
3660 static const uint32_t b = 0x48000000;
3661 static const uint32_t bcl_20_31 = 0x429f0005;
3662 static const uint32_t bctr = 0x4e800420;
3663 static const uint32_t blr = 0x4e800020;
3664 static const uint32_t bnectr_p4 = 0x4ce20420;
3665 static const uint32_t cmpld_7_12_0 = 0x7fac0040;
3666 static const uint32_t cmpldi_2_0 = 0x28220000;
3667 static const uint32_t cror_15_15_15 = 0x4def7b82;
3668 static const uint32_t cror_31_31_31 = 0x4ffffb82;
3669 static const uint32_t ld_0_1 = 0xe8010000;
3670 static const uint32_t ld_0_12 = 0xe80c0000;
3671 static const uint32_t ld_2_1 = 0xe8410000;
3672 static const uint32_t ld_2_2 = 0xe8420000;
3673 static const uint32_t ld_2_11 = 0xe84b0000;
3674 static const uint32_t ld_2_12 = 0xe84c0000;
3675 static const uint32_t ld_11_2 = 0xe9620000;
3676 static const uint32_t ld_11_11 = 0xe96b0000;
3677 static const uint32_t ld_12_2 = 0xe9820000;
3678 static const uint32_t ld_12_11 = 0xe98b0000;
3679 static const uint32_t ld_12_12 = 0xe98c0000;
3680 static const uint32_t lfd_0_1 = 0xc8010000;
3681 static const uint32_t li_0_0 = 0x38000000;
3682 static const uint32_t li_12_0 = 0x39800000;
3683 static const uint32_t lis_0 = 0x3c000000;
3684 static const uint32_t lis_2 = 0x3c400000;
3685 static const uint32_t lis_11 = 0x3d600000;
3686 static const uint32_t lis_12 = 0x3d800000;
3687 static const uint32_t lvx_0_12_0 = 0x7c0c00ce;
3688 static const uint32_t lwz_0_12 = 0x800c0000;
3689 static const uint32_t lwz_11_11 = 0x816b0000;
3690 static const uint32_t lwz_11_30 = 0x817e0000;
3691 static const uint32_t lwz_12_12 = 0x818c0000;
3692 static const uint32_t lwzu_0_12 = 0x840c0000;
3693 static const uint32_t mflr_0 = 0x7c0802a6;
3694 static const uint32_t mflr_11 = 0x7d6802a6;
3695 static const uint32_t mflr_12 = 0x7d8802a6;
3696 static const uint32_t mtctr_0 = 0x7c0903a6;
3697 static const uint32_t mtctr_11 = 0x7d6903a6;
3698 static const uint32_t mtctr_12 = 0x7d8903a6;
3699 static const uint32_t mtlr_0 = 0x7c0803a6;
3700 static const uint32_t mtlr_12 = 0x7d8803a6;
3701 static const uint32_t nop = 0x60000000;
3702 static const uint32_t ori_0_0_0 = 0x60000000;
3703 static const uint32_t srdi_0_0_2 = 0x7800f082;
3704 static const uint32_t std_0_1 = 0xf8010000;
3705 static const uint32_t std_0_12 = 0xf80c0000;
3706 static const uint32_t std_2_1 = 0xf8410000;
3707 static const uint32_t stfd_0_1 = 0xd8010000;
3708 static const uint32_t stvx_0_12_0 = 0x7c0c01ce;
3709 static const uint32_t sub_11_11_12 = 0x7d6c5850;
3710 static const uint32_t sub_12_12_11 = 0x7d8b6050;
3711 static const uint32_t xor_2_12_12 = 0x7d826278;
3712 static const uint32_t xor_11_12_12 = 0x7d8b6278;
3713
3714 // Write out the PLT.
3715
3716 template<int size, bool big_endian>
3717 void
3718 Output_data_plt_powerpc<size, big_endian>::do_write(Output_file* of)
3719 {
3720 if (size == 32 && this->name_[3] != 'I')
3721 {
3722 const section_size_type offset = this->offset();
3723 const section_size_type oview_size
3724 = convert_to_section_size_type(this->data_size());
3725 unsigned char* const oview = of->get_output_view(offset, oview_size);
3726 unsigned char* pov = oview;
3727 unsigned char* endpov = oview + oview_size;
3728
3729 // The address of the .glink branch table
3730 const Output_data_glink<size, big_endian>* glink
3731 = this->targ_->glink_section();
3732 elfcpp::Elf_types<32>::Elf_Addr branch_tab = glink->address();
3733
3734 while (pov < endpov)
3735 {
3736 elfcpp::Swap<32, big_endian>::writeval(pov, branch_tab);
3737 pov += 4;
3738 branch_tab += 4;
3739 }
3740
3741 of->write_output_view(offset, oview_size, oview);
3742 }
3743 }
3744
3745 // Create the PLT section.
3746
3747 template<int size, bool big_endian>
3748 void
3749 Target_powerpc<size, big_endian>::make_plt_section(Symbol_table* symtab,
3750 Layout* layout)
3751 {
3752 if (this->plt_ == NULL)
3753 {
3754 if (this->got_ == NULL)
3755 this->got_section(symtab, layout);
3756
3757 if (this->glink_ == NULL)
3758 make_glink_section(layout);
3759
3760 // Ensure that .rela.dyn always appears before .rela.plt This is
3761 // necessary due to how, on PowerPC and some other targets, .rela.dyn
3762 // needs to include .rela.plt in its range.
3763 this->rela_dyn_section(layout);
3764
3765 Reloc_section* plt_rel = new Reloc_section(false);
3766 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
3767 elfcpp::SHF_ALLOC, plt_rel,
3768 ORDER_DYNAMIC_PLT_RELOCS, false);
3769 this->plt_
3770 = new Output_data_plt_powerpc<size, big_endian>(this, plt_rel,
3771 "** PLT");
3772 layout->add_output_section_data(".plt",
3773 (size == 32
3774 ? elfcpp::SHT_PROGBITS
3775 : elfcpp::SHT_NOBITS),
3776 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3777 this->plt_,
3778 (size == 32
3779 ? ORDER_SMALL_DATA
3780 : ORDER_SMALL_BSS),
3781 false);
3782
3783 Output_section* rela_plt_os = plt_rel->output_section();
3784 rela_plt_os->set_info_section(this->plt_->output_section());
3785 }
3786 }
3787
3788 // Create the IPLT section.
3789
3790 template<int size, bool big_endian>
3791 void
3792 Target_powerpc<size, big_endian>::make_iplt_section(Symbol_table* symtab,
3793 Layout* layout)
3794 {
3795 if (this->iplt_ == NULL)
3796 {
3797 this->make_plt_section(symtab, layout);
3798
3799 Reloc_section* iplt_rel = new Reloc_section(false);
3800 if (this->rela_dyn_->output_section())
3801 this->rela_dyn_->output_section()->add_output_section_data(iplt_rel);
3802 this->iplt_
3803 = new Output_data_plt_powerpc<size, big_endian>(this, iplt_rel,
3804 "** IPLT");
3805 if (this->plt_->output_section())
3806 this->plt_->output_section()->add_output_section_data(this->iplt_);
3807 }
3808 }
3809
3810 // A section for huge long branch addresses, similar to plt section.
3811
3812 template<int size, bool big_endian>
3813 class Output_data_brlt_powerpc : public Output_section_data_build
3814 {
3815 public:
3816 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3817 typedef Output_data_reloc<elfcpp::SHT_RELA, true,
3818 size, big_endian> Reloc_section;
3819
3820 Output_data_brlt_powerpc(Target_powerpc<size, big_endian>* targ,
3821 Reloc_section* brlt_rel)
3822 : Output_section_data_build(size == 32 ? 4 : 8),
3823 rel_(brlt_rel),
3824 targ_(targ)
3825 { }
3826
3827 void
3828 reset_brlt_sizes()
3829 {
3830 this->reset_data_size();
3831 this->rel_->reset_data_size();
3832 }
3833
3834 void
3835 finalize_brlt_sizes()
3836 {
3837 this->finalize_data_size();
3838 this->rel_->finalize_data_size();
3839 }
3840
3841 // Add a reloc for an entry in the BRLT.
3842 void
3843 add_reloc(Address to, unsigned int off)
3844 { this->rel_->add_relative(elfcpp::R_POWERPC_RELATIVE, this, off, to); }
3845
3846 // Update section and reloc section size.
3847 void
3848 set_current_size(unsigned int num_branches)
3849 {
3850 this->reset_address_and_file_offset();
3851 this->set_current_data_size(num_branches * 16);
3852 this->finalize_data_size();
3853 Output_section* os = this->output_section();
3854 os->set_section_offsets_need_adjustment();
3855 if (this->rel_ != NULL)
3856 {
3857 const unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
3858 this->rel_->reset_address_and_file_offset();
3859 this->rel_->set_current_data_size(num_branches * reloc_size);
3860 this->rel_->finalize_data_size();
3861 Output_section* os = this->rel_->output_section();
3862 os->set_section_offsets_need_adjustment();
3863 }
3864 }
3865
3866 protected:
3867 void
3868 do_adjust_output_section(Output_section* os)
3869 {
3870 os->set_entsize(0);
3871 }
3872
3873 // Write to a map file.
3874 void
3875 do_print_to_mapfile(Mapfile* mapfile) const
3876 { mapfile->print_output_data(this, "** BRLT"); }
3877
3878 private:
3879 // Write out the BRLT data.
3880 void
3881 do_write(Output_file*);
3882
3883 // The reloc section.
3884 Reloc_section* rel_;
3885 Target_powerpc<size, big_endian>* targ_;
3886 };
3887
3888 // Make the branch lookup table section.
3889
3890 template<int size, bool big_endian>
3891 void
3892 Target_powerpc<size, big_endian>::make_brlt_section(Layout* layout)
3893 {
3894 if (size == 64 && this->brlt_section_ == NULL)
3895 {
3896 Reloc_section* brlt_rel = NULL;
3897 bool is_pic = parameters->options().output_is_position_independent();
3898 if (is_pic)
3899 {
3900 // When PIC we can't fill in .branch_lt (like .plt it can be
3901 // a bss style section) but must initialise at runtime via
3902 // dynamic relocations.
3903 this->rela_dyn_section(layout);
3904 brlt_rel = new Reloc_section(false);
3905 if (this->rela_dyn_->output_section())
3906 this->rela_dyn_->output_section()
3907 ->add_output_section_data(brlt_rel);
3908 }
3909 this->brlt_section_
3910 = new Output_data_brlt_powerpc<size, big_endian>(this, brlt_rel);
3911 if (this->plt_ && is_pic && this->plt_->output_section())
3912 this->plt_->output_section()
3913 ->add_output_section_data(this->brlt_section_);
3914 else
3915 layout->add_output_section_data(".branch_lt",
3916 (is_pic ? elfcpp::SHT_NOBITS
3917 : elfcpp::SHT_PROGBITS),
3918 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
3919 this->brlt_section_,
3920 (is_pic ? ORDER_SMALL_BSS
3921 : ORDER_SMALL_DATA),
3922 false);
3923 }
3924 }
3925
3926 // Write out .branch_lt when non-PIC.
3927
3928 template<int size, bool big_endian>
3929 void
3930 Output_data_brlt_powerpc<size, big_endian>::do_write(Output_file* of)
3931 {
3932 if (size == 64 && !parameters->options().output_is_position_independent())
3933 {
3934 const section_size_type offset = this->offset();
3935 const section_size_type oview_size
3936 = convert_to_section_size_type(this->data_size());
3937 unsigned char* const oview = of->get_output_view(offset, oview_size);
3938
3939 this->targ_->write_branch_lookup_table(oview);
3940 of->write_output_view(offset, oview_size, oview);
3941 }
3942 }
3943
3944 static inline uint32_t
3945 l(uint32_t a)
3946 {
3947 return a & 0xffff;
3948 }
3949
3950 static inline uint32_t
3951 hi(uint32_t a)
3952 {
3953 return l(a >> 16);
3954 }
3955
3956 static inline uint32_t
3957 ha(uint32_t a)
3958 {
3959 return hi(a + 0x8000);
3960 }
3961
3962 template<int size>
3963 struct Eh_cie
3964 {
3965 static const unsigned char eh_frame_cie[12];
3966 };
3967
3968 template<int size>
3969 const unsigned char Eh_cie<size>::eh_frame_cie[] =
3970 {
3971 1, // CIE version.
3972 'z', 'R', 0, // Augmentation string.
3973 4, // Code alignment.
3974 0x80 - size / 8 , // Data alignment.
3975 65, // RA reg.
3976 1, // Augmentation size.
3977 (elfcpp::DW_EH_PE_pcrel
3978 | elfcpp::DW_EH_PE_sdata4), // FDE encoding.
3979 elfcpp::DW_CFA_def_cfa, 1, 0 // def_cfa: r1 offset 0.
3980 };
3981
3982 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv1.
3983 static const unsigned char glink_eh_frame_fde_64v1[] =
3984 {
3985 0, 0, 0, 0, // Replaced with offset to .glink.
3986 0, 0, 0, 0, // Replaced with size of .glink.
3987 0, // Augmentation size.
3988 elfcpp::DW_CFA_advance_loc + 1,
3989 elfcpp::DW_CFA_register, 65, 12,
3990 elfcpp::DW_CFA_advance_loc + 4,
3991 elfcpp::DW_CFA_restore_extended, 65
3992 };
3993
3994 // Describe __glink_PLTresolve use of LR, 64-bit version ABIv2.
3995 static const unsigned char glink_eh_frame_fde_64v2[] =
3996 {
3997 0, 0, 0, 0, // Replaced with offset to .glink.
3998 0, 0, 0, 0, // Replaced with size of .glink.
3999 0, // Augmentation size.
4000 elfcpp::DW_CFA_advance_loc + 1,
4001 elfcpp::DW_CFA_register, 65, 0,
4002 elfcpp::DW_CFA_advance_loc + 4,
4003 elfcpp::DW_CFA_restore_extended, 65
4004 };
4005
4006 // Describe __glink_PLTresolve use of LR, 32-bit version.
4007 static const unsigned char glink_eh_frame_fde_32[] =
4008 {
4009 0, 0, 0, 0, // Replaced with offset to .glink.
4010 0, 0, 0, 0, // Replaced with size of .glink.
4011 0, // Augmentation size.
4012 elfcpp::DW_CFA_advance_loc + 2,
4013 elfcpp::DW_CFA_register, 65, 0,
4014 elfcpp::DW_CFA_advance_loc + 4,
4015 elfcpp::DW_CFA_restore_extended, 65
4016 };
4017
4018 static const unsigned char default_fde[] =
4019 {
4020 0, 0, 0, 0, // Replaced with offset to stubs.
4021 0, 0, 0, 0, // Replaced with size of stubs.
4022 0, // Augmentation size.
4023 elfcpp::DW_CFA_nop, // Pad.
4024 elfcpp::DW_CFA_nop,
4025 elfcpp::DW_CFA_nop
4026 };
4027
4028 template<bool big_endian>
4029 static inline void
4030 write_insn(unsigned char* p, uint32_t v)
4031 {
4032 elfcpp::Swap<32, big_endian>::writeval(p, v);
4033 }
4034
4035 // Stub_table holds information about plt and long branch stubs.
4036 // Stubs are built in an area following some input section determined
4037 // by group_sections(). This input section is converted to a relaxed
4038 // input section allowing it to be resized to accommodate the stubs
4039
4040 template<int size, bool big_endian>
4041 class Stub_table : public Output_relaxed_input_section
4042 {
4043 public:
4044 struct Plt_stub_ent
4045 {
4046 Plt_stub_ent(unsigned int off, unsigned int indx)
4047 : off_(off), indx_(indx), r2save_(0), localentry0_(0)
4048 { }
4049
4050 unsigned int off_;
4051 unsigned int indx_ : 30;
4052 unsigned int r2save_ : 1;
4053 unsigned int localentry0_ : 1;
4054 };
4055 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4056 static const Address invalid_address = static_cast<Address>(0) - 1;
4057
4058 Stub_table(Target_powerpc<size, big_endian>* targ,
4059 Output_section* output_section,
4060 const Output_section::Input_section* owner,
4061 uint32_t id)
4062 : Output_relaxed_input_section(owner->relobj(), owner->shndx(),
4063 owner->relobj()
4064 ->section_addralign(owner->shndx())),
4065 targ_(targ), plt_call_stubs_(), long_branch_stubs_(),
4066 orig_data_size_(owner->current_data_size()),
4067 plt_size_(0), last_plt_size_(0),
4068 branch_size_(0), last_branch_size_(0), min_size_threshold_(0),
4069 eh_frame_added_(false), need_save_res_(false), uniq_(id)
4070 {
4071 this->set_output_section(output_section);
4072
4073 std::vector<Output_relaxed_input_section*> new_relaxed;
4074 new_relaxed.push_back(this);
4075 output_section->convert_input_sections_to_relaxed_sections(new_relaxed);
4076 }
4077
4078 // Add a plt call stub.
4079 bool
4080 add_plt_call_entry(Address,
4081 const Sized_relobj_file<size, big_endian>*,
4082 const Symbol*,
4083 unsigned int,
4084 Address,
4085 bool);
4086
4087 bool
4088 add_plt_call_entry(Address,
4089 const Sized_relobj_file<size, big_endian>*,
4090 unsigned int,
4091 unsigned int,
4092 Address,
4093 bool);
4094
4095 // Find a given plt call stub.
4096 const Plt_stub_ent*
4097 find_plt_call_entry(const Symbol*) const;
4098
4099 const Plt_stub_ent*
4100 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4101 unsigned int) const;
4102
4103 const Plt_stub_ent*
4104 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4105 const Symbol*,
4106 unsigned int,
4107 Address) const;
4108
4109 const Plt_stub_ent*
4110 find_plt_call_entry(const Sized_relobj_file<size, big_endian>*,
4111 unsigned int,
4112 unsigned int,
4113 Address) const;
4114
4115 // Add a long branch stub.
4116 bool
4117 add_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4118 unsigned int, Address, Address, bool);
4119
4120 Address
4121 find_long_branch_entry(const Powerpc_relobj<size, big_endian>*,
4122 Address) const;
4123
4124 bool
4125 can_reach_stub(Address from, unsigned int off, unsigned int r_type)
4126 {
4127 Address max_branch_offset = max_branch_delta(r_type);
4128 if (max_branch_offset == 0)
4129 return true;
4130 gold_assert(from != invalid_address);
4131 Address loc = off + this->stub_address();
4132 return loc - from + max_branch_offset < 2 * max_branch_offset;
4133 }
4134
4135 void
4136 clear_stubs(bool all)
4137 {
4138 this->plt_call_stubs_.clear();
4139 this->plt_size_ = 0;
4140 this->long_branch_stubs_.clear();
4141 this->branch_size_ = 0;
4142 this->need_save_res_ = false;
4143 if (all)
4144 {
4145 this->last_plt_size_ = 0;
4146 this->last_branch_size_ = 0;
4147 }
4148 }
4149
4150 Address
4151 set_address_and_size(const Output_section* os, Address off)
4152 {
4153 Address start_off = off;
4154 off += this->orig_data_size_;
4155 Address my_size = this->plt_size_ + this->branch_size_;
4156 if (this->need_save_res_)
4157 my_size += this->targ_->savres_section()->data_size();
4158 if (my_size != 0)
4159 off = align_address(off, this->stub_align());
4160 // Include original section size and alignment padding in size
4161 my_size += off - start_off;
4162 // Ensure new size is always larger than min size
4163 // threshold. Alignment requirement is included in "my_size", so
4164 // increase "my_size" does not invalidate alignment.
4165 if (my_size < this->min_size_threshold_)
4166 my_size = this->min_size_threshold_;
4167 this->reset_address_and_file_offset();
4168 this->set_current_data_size(my_size);
4169 this->set_address_and_file_offset(os->address() + start_off,
4170 os->offset() + start_off);
4171 return my_size;
4172 }
4173
4174 Address
4175 stub_address() const
4176 {
4177 return align_address(this->address() + this->orig_data_size_,
4178 this->stub_align());
4179 }
4180
4181 Address
4182 stub_offset() const
4183 {
4184 return align_address(this->offset() + this->orig_data_size_,
4185 this->stub_align());
4186 }
4187
4188 section_size_type
4189 plt_size() const
4190 { return this->plt_size_; }
4191
4192 void
4193 set_min_size_threshold(Address min_size)
4194 { this->min_size_threshold_ = min_size; }
4195
4196 void
4197 define_stub_syms(Symbol_table*);
4198
4199 bool
4200 size_update()
4201 {
4202 Output_section* os = this->output_section();
4203 if (os->addralign() < this->stub_align())
4204 {
4205 os->set_addralign(this->stub_align());
4206 // FIXME: get rid of the insane checkpointing.
4207 // We can't increase alignment of the input section to which
4208 // stubs are attached; The input section may be .init which
4209 // is pasted together with other .init sections to form a
4210 // function. Aligning might insert zero padding resulting in
4211 // sigill. However we do need to increase alignment of the
4212 // output section so that the align_address() on offset in
4213 // set_address_and_size() adds the same padding as the
4214 // align_address() on address in stub_address().
4215 // What's more, we need this alignment for the layout done in
4216 // relaxation_loop_body() so that the output section starts at
4217 // a suitably aligned address.
4218 os->checkpoint_set_addralign(this->stub_align());
4219 }
4220 if (this->last_plt_size_ != this->plt_size_
4221 || this->last_branch_size_ != this->branch_size_)
4222 {
4223 this->last_plt_size_ = this->plt_size_;
4224 this->last_branch_size_ = this->branch_size_;
4225 return true;
4226 }
4227 return false;
4228 }
4229
4230 // Add .eh_frame info for this stub section. Unlike other linker
4231 // generated .eh_frame this is added late in the link, because we
4232 // only want the .eh_frame info if this particular stub section is
4233 // non-empty.
4234 void
4235 add_eh_frame(Layout* layout)
4236 {
4237 if (!this->eh_frame_added_)
4238 {
4239 if (!parameters->options().ld_generated_unwind_info())
4240 return;
4241
4242 // Since we add stub .eh_frame info late, it must be placed
4243 // after all other linker generated .eh_frame info so that
4244 // merge mapping need not be updated for input sections.
4245 // There is no provision to use a different CIE to that used
4246 // by .glink.
4247 if (!this->targ_->has_glink())
4248 return;
4249
4250 layout->add_eh_frame_for_plt(this,
4251 Eh_cie<size>::eh_frame_cie,
4252 sizeof (Eh_cie<size>::eh_frame_cie),
4253 default_fde,
4254 sizeof (default_fde));
4255 this->eh_frame_added_ = true;
4256 }
4257 }
4258
4259 Target_powerpc<size, big_endian>*
4260 targ() const
4261 { return targ_; }
4262
4263 private:
4264 class Plt_stub_key;
4265 class Plt_stub_key_hash;
4266 typedef Unordered_map<Plt_stub_key, Plt_stub_ent,
4267 Plt_stub_key_hash> Plt_stub_entries;
4268 class Branch_stub_ent;
4269 class Branch_stub_ent_hash;
4270 typedef Unordered_map<Branch_stub_ent, unsigned int,
4271 Branch_stub_ent_hash> Branch_stub_entries;
4272
4273 // Alignment of stub section.
4274 unsigned int
4275 stub_align() const
4276 {
4277 if (size == 32)
4278 return 16;
4279 unsigned int min_align = 32;
4280 unsigned int user_align = 1 << parameters->options().plt_align();
4281 return std::max(user_align, min_align);
4282 }
4283
4284 // Return the plt offset for the given call stub.
4285 Address
4286 plt_off(typename Plt_stub_entries::const_iterator p, bool* is_iplt) const
4287 {
4288 const Symbol* gsym = p->first.sym_;
4289 if (gsym != NULL)
4290 {
4291 *is_iplt = (gsym->type() == elfcpp::STT_GNU_IFUNC
4292 && gsym->can_use_relative_reloc(false));
4293 return gsym->plt_offset();
4294 }
4295 else
4296 {
4297 *is_iplt = true;
4298 const Sized_relobj_file<size, big_endian>* relobj = p->first.object_;
4299 unsigned int local_sym_index = p->first.locsym_;
4300 return relobj->local_plt_offset(local_sym_index);
4301 }
4302 }
4303
4304 // Size of a given plt call stub.
4305 unsigned int
4306 plt_call_size(typename Plt_stub_entries::const_iterator p) const
4307 {
4308 if (size == 32)
4309 return 16;
4310
4311 bool is_iplt;
4312 Address plt_addr = this->plt_off(p, &is_iplt);
4313 if (is_iplt)
4314 plt_addr += this->targ_->iplt_section()->address();
4315 else
4316 plt_addr += this->targ_->plt_section()->address();
4317 Address got_addr = this->targ_->got_section()->output_section()->address();
4318 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4319 <const Powerpc_relobj<size, big_endian>*>(p->first.object_);
4320 got_addr += ppcobj->toc_base_offset();
4321 Address off = plt_addr - got_addr;
4322 unsigned int bytes = 4 * 4 + 4 * (ha(off) != 0);
4323 if (this->targ_->abiversion() < 2)
4324 {
4325 bool static_chain = parameters->options().plt_static_chain();
4326 bool thread_safe = this->targ_->plt_thread_safe();
4327 bytes += (4
4328 + 4 * static_chain
4329 + 8 * thread_safe
4330 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off)));
4331 }
4332 unsigned int align = 1 << parameters->options().plt_align();
4333 if (align > 1)
4334 bytes = (bytes + align - 1) & -align;
4335 return bytes;
4336 }
4337
4338 // Return long branch stub size.
4339 unsigned int
4340 branch_stub_size(typename Branch_stub_entries::const_iterator p)
4341 {
4342 Address loc = this->stub_address() + this->last_plt_size_ + p->second;
4343 if (p->first.dest_ - loc + (1 << 25) < 2 << 25)
4344 return 4;
4345 if (size == 64 || !parameters->options().output_is_position_independent())
4346 return 16;
4347 return 32;
4348 }
4349
4350 // Write out stubs.
4351 void
4352 do_write(Output_file*);
4353
4354 // Plt call stub keys.
4355 class Plt_stub_key
4356 {
4357 public:
4358 Plt_stub_key(const Symbol* sym)
4359 : sym_(sym), object_(0), addend_(0), locsym_(0)
4360 { }
4361
4362 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4363 unsigned int locsym_index)
4364 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4365 { }
4366
4367 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4368 const Symbol* sym,
4369 unsigned int r_type,
4370 Address addend)
4371 : sym_(sym), object_(0), addend_(0), locsym_(0)
4372 {
4373 if (size != 32)
4374 this->addend_ = addend;
4375 else if (parameters->options().output_is_position_independent()
4376 && r_type == elfcpp::R_PPC_PLTREL24)
4377 {
4378 this->addend_ = addend;
4379 if (this->addend_ >= 32768)
4380 this->object_ = object;
4381 }
4382 }
4383
4384 Plt_stub_key(const Sized_relobj_file<size, big_endian>* object,
4385 unsigned int locsym_index,
4386 unsigned int r_type,
4387 Address addend)
4388 : sym_(NULL), object_(object), addend_(0), locsym_(locsym_index)
4389 {
4390 if (size != 32)
4391 this->addend_ = addend;
4392 else if (parameters->options().output_is_position_independent()
4393 && r_type == elfcpp::R_PPC_PLTREL24)
4394 this->addend_ = addend;
4395 }
4396
4397 bool operator==(const Plt_stub_key& that) const
4398 {
4399 return (this->sym_ == that.sym_
4400 && this->object_ == that.object_
4401 && this->addend_ == that.addend_
4402 && this->locsym_ == that.locsym_);
4403 }
4404
4405 const Symbol* sym_;
4406 const Sized_relobj_file<size, big_endian>* object_;
4407 typename elfcpp::Elf_types<size>::Elf_Addr addend_;
4408 unsigned int locsym_;
4409 };
4410
4411 class Plt_stub_key_hash
4412 {
4413 public:
4414 size_t operator()(const Plt_stub_key& ent) const
4415 {
4416 return (reinterpret_cast<uintptr_t>(ent.sym_)
4417 ^ reinterpret_cast<uintptr_t>(ent.object_)
4418 ^ ent.addend_
4419 ^ ent.locsym_);
4420 }
4421 };
4422
4423 // Long branch stub keys.
4424 class Branch_stub_ent
4425 {
4426 public:
4427 Branch_stub_ent(const Powerpc_relobj<size, big_endian>* obj,
4428 Address to, bool save_res)
4429 : dest_(to), toc_base_off_(0), save_res_(save_res)
4430 {
4431 if (size == 64)
4432 toc_base_off_ = obj->toc_base_offset();
4433 }
4434
4435 bool operator==(const Branch_stub_ent& that) const
4436 {
4437 return (this->dest_ == that.dest_
4438 && (size == 32
4439 || this->toc_base_off_ == that.toc_base_off_));
4440 }
4441
4442 Address dest_;
4443 unsigned int toc_base_off_;
4444 bool save_res_;
4445 };
4446
4447 class Branch_stub_ent_hash
4448 {
4449 public:
4450 size_t operator()(const Branch_stub_ent& ent) const
4451 { return ent.dest_ ^ ent.toc_base_off_; }
4452 };
4453
4454 // In a sane world this would be a global.
4455 Target_powerpc<size, big_endian>* targ_;
4456 // Map sym/object/addend to stub offset.
4457 Plt_stub_entries plt_call_stubs_;
4458 // Map destination address to stub offset.
4459 Branch_stub_entries long_branch_stubs_;
4460 // size of input section
4461 section_size_type orig_data_size_;
4462 // size of stubs
4463 section_size_type plt_size_, last_plt_size_, branch_size_, last_branch_size_;
4464 // Some rare cases cause (PR/20529) fluctuation in stub table
4465 // size, which leads to an endless relax loop. This is to be fixed
4466 // by, after the first few iterations, allowing only increase of
4467 // stub table size. This variable sets the minimal possible size of
4468 // a stub table, it is zero for the first few iterations, then
4469 // increases monotonically.
4470 Address min_size_threshold_;
4471 // Whether .eh_frame info has been created for this stub section.
4472 bool eh_frame_added_;
4473 // Set if this stub group needs a copy of out-of-line register
4474 // save/restore functions.
4475 bool need_save_res_;
4476 // Per stub table unique identifier.
4477 uint32_t uniq_;
4478 };
4479
4480 // Add a plt call stub, if we do not already have one for this
4481 // sym/object/addend combo.
4482
4483 template<int size, bool big_endian>
4484 bool
4485 Stub_table<size, big_endian>::add_plt_call_entry(
4486 Address from,
4487 const Sized_relobj_file<size, big_endian>* object,
4488 const Symbol* gsym,
4489 unsigned int r_type,
4490 Address addend,
4491 bool tocsave)
4492 {
4493 Plt_stub_key key(object, gsym, r_type, addend);
4494 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4495 std::pair<typename Plt_stub_entries::iterator, bool> p
4496 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4497 if (p.second)
4498 {
4499 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4500 if (size == 64
4501 && this->targ_->is_elfv2_localentry0(gsym))
4502 {
4503 p.first->second.localentry0_ = 1;
4504 this->targ_->set_has_localentry0();
4505 }
4506 }
4507 if (size == 64
4508 && !tocsave
4509 && !p.first->second.localentry0_)
4510 p.first->second.r2save_ = 1;
4511 return this->can_reach_stub(from, ent.off_, r_type);
4512 }
4513
4514 template<int size, bool big_endian>
4515 bool
4516 Stub_table<size, big_endian>::add_plt_call_entry(
4517 Address from,
4518 const Sized_relobj_file<size, big_endian>* object,
4519 unsigned int locsym_index,
4520 unsigned int r_type,
4521 Address addend,
4522 bool tocsave)
4523 {
4524 Plt_stub_key key(object, locsym_index, r_type, addend);
4525 Plt_stub_ent ent(this->plt_size_, this->plt_call_stubs_.size());
4526 std::pair<typename Plt_stub_entries::iterator, bool> p
4527 = this->plt_call_stubs_.insert(std::make_pair(key, ent));
4528 if (p.second)
4529 {
4530 this->plt_size_ = ent.off_ + this->plt_call_size(p.first);
4531 if (size == 64
4532 && this->targ_->is_elfv2_localentry0(object, locsym_index))
4533 {
4534 p.first->second.localentry0_ = 1;
4535 this->targ_->set_has_localentry0();
4536 }
4537 }
4538 if (size == 64
4539 && !tocsave
4540 && !p.first->second.localentry0_)
4541 p.first->second.r2save_ = 1;
4542 return this->can_reach_stub(from, ent.off_, r_type);
4543 }
4544
4545 // Find a plt call stub.
4546
4547 template<int size, bool big_endian>
4548 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4549 Stub_table<size, big_endian>::find_plt_call_entry(
4550 const Sized_relobj_file<size, big_endian>* object,
4551 const Symbol* gsym,
4552 unsigned int r_type,
4553 Address addend) const
4554 {
4555 Plt_stub_key key(object, gsym, r_type, addend);
4556 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4557 if (p == this->plt_call_stubs_.end())
4558 return NULL;
4559 return &p->second;
4560 }
4561
4562 template<int size, bool big_endian>
4563 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4564 Stub_table<size, big_endian>::find_plt_call_entry(const Symbol* gsym) const
4565 {
4566 Plt_stub_key key(gsym);
4567 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4568 if (p == this->plt_call_stubs_.end())
4569 return NULL;
4570 return &p->second;
4571 }
4572
4573 template<int size, bool big_endian>
4574 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4575 Stub_table<size, big_endian>::find_plt_call_entry(
4576 const Sized_relobj_file<size, big_endian>* object,
4577 unsigned int locsym_index,
4578 unsigned int r_type,
4579 Address addend) const
4580 {
4581 Plt_stub_key key(object, locsym_index, r_type, addend);
4582 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4583 if (p == this->plt_call_stubs_.end())
4584 return NULL;
4585 return &p->second;
4586 }
4587
4588 template<int size, bool big_endian>
4589 const typename Stub_table<size, big_endian>::Plt_stub_ent*
4590 Stub_table<size, big_endian>::find_plt_call_entry(
4591 const Sized_relobj_file<size, big_endian>* object,
4592 unsigned int locsym_index) const
4593 {
4594 Plt_stub_key key(object, locsym_index);
4595 typename Plt_stub_entries::const_iterator p = this->plt_call_stubs_.find(key);
4596 if (p == this->plt_call_stubs_.end())
4597 return NULL;
4598 return &p->second;
4599 }
4600
4601 // Add a long branch stub if we don't already have one to given
4602 // destination.
4603
4604 template<int size, bool big_endian>
4605 bool
4606 Stub_table<size, big_endian>::add_long_branch_entry(
4607 const Powerpc_relobj<size, big_endian>* object,
4608 unsigned int r_type,
4609 Address from,
4610 Address to,
4611 bool save_res)
4612 {
4613 Branch_stub_ent ent(object, to, save_res);
4614 Address off = this->branch_size_;
4615 std::pair<typename Branch_stub_entries::iterator, bool> p
4616 = this->long_branch_stubs_.insert(std::make_pair(ent, off));
4617 if (p.second)
4618 {
4619 if (save_res)
4620 this->need_save_res_ = true;
4621 else
4622 {
4623 unsigned int stub_size = this->branch_stub_size(p.first);
4624 this->branch_size_ = off + stub_size;
4625 if (size == 64 && stub_size != 4)
4626 this->targ_->add_branch_lookup_table(to);
4627 }
4628 }
4629 return this->can_reach_stub(from, off, r_type);
4630 }
4631
4632 // Find long branch stub offset.
4633
4634 template<int size, bool big_endian>
4635 typename Stub_table<size, big_endian>::Address
4636 Stub_table<size, big_endian>::find_long_branch_entry(
4637 const Powerpc_relobj<size, big_endian>* object,
4638 Address to) const
4639 {
4640 Branch_stub_ent ent(object, to, false);
4641 typename Branch_stub_entries::const_iterator p
4642 = this->long_branch_stubs_.find(ent);
4643 if (p == this->long_branch_stubs_.end())
4644 return invalid_address;
4645 if (p->first.save_res_)
4646 return to - this->targ_->savres_section()->address() + this->branch_size_;
4647 return p->second;
4648 }
4649
4650 // A class to handle .glink.
4651
4652 template<int size, bool big_endian>
4653 class Output_data_glink : public Output_section_data
4654 {
4655 public:
4656 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4657 static const Address invalid_address = static_cast<Address>(0) - 1;
4658 static const int pltresolve_size = 16*4;
4659
4660 Output_data_glink(Target_powerpc<size, big_endian>* targ)
4661 : Output_section_data(16), targ_(targ), global_entry_stubs_(),
4662 end_branch_table_(), ge_size_(0)
4663 { }
4664
4665 void
4666 add_eh_frame(Layout* layout);
4667
4668 void
4669 add_global_entry(const Symbol*);
4670
4671 Address
4672 find_global_entry(const Symbol*) const;
4673
4674 Address
4675 global_entry_address() const
4676 {
4677 gold_assert(this->is_data_size_valid());
4678 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
4679 return this->address() + global_entry_off;
4680 }
4681
4682 protected:
4683 // Write to a map file.
4684 void
4685 do_print_to_mapfile(Mapfile* mapfile) const
4686 { mapfile->print_output_data(this, _("** glink")); }
4687
4688 private:
4689 void
4690 set_final_data_size();
4691
4692 // Write out .glink
4693 void
4694 do_write(Output_file*);
4695
4696 // Allows access to .got and .plt for do_write.
4697 Target_powerpc<size, big_endian>* targ_;
4698
4699 // Map sym to stub offset.
4700 typedef Unordered_map<const Symbol*, unsigned int> Global_entry_stub_entries;
4701 Global_entry_stub_entries global_entry_stubs_;
4702
4703 unsigned int end_branch_table_, ge_size_;
4704 };
4705
4706 template<int size, bool big_endian>
4707 void
4708 Output_data_glink<size, big_endian>::add_eh_frame(Layout* layout)
4709 {
4710 if (!parameters->options().ld_generated_unwind_info())
4711 return;
4712
4713 if (size == 64)
4714 {
4715 if (this->targ_->abiversion() < 2)
4716 layout->add_eh_frame_for_plt(this,
4717 Eh_cie<64>::eh_frame_cie,
4718 sizeof (Eh_cie<64>::eh_frame_cie),
4719 glink_eh_frame_fde_64v1,
4720 sizeof (glink_eh_frame_fde_64v1));
4721 else
4722 layout->add_eh_frame_for_plt(this,
4723 Eh_cie<64>::eh_frame_cie,
4724 sizeof (Eh_cie<64>::eh_frame_cie),
4725 glink_eh_frame_fde_64v2,
4726 sizeof (glink_eh_frame_fde_64v2));
4727 }
4728 else
4729 {
4730 // 32-bit .glink can use the default since the CIE return
4731 // address reg, LR, is valid.
4732 layout->add_eh_frame_for_plt(this,
4733 Eh_cie<32>::eh_frame_cie,
4734 sizeof (Eh_cie<32>::eh_frame_cie),
4735 default_fde,
4736 sizeof (default_fde));
4737 // Except where LR is used in a PIC __glink_PLTresolve.
4738 if (parameters->options().output_is_position_independent())
4739 layout->add_eh_frame_for_plt(this,
4740 Eh_cie<32>::eh_frame_cie,
4741 sizeof (Eh_cie<32>::eh_frame_cie),
4742 glink_eh_frame_fde_32,
4743 sizeof (glink_eh_frame_fde_32));
4744 }
4745 }
4746
4747 template<int size, bool big_endian>
4748 void
4749 Output_data_glink<size, big_endian>::add_global_entry(const Symbol* gsym)
4750 {
4751 std::pair<typename Global_entry_stub_entries::iterator, bool> p
4752 = this->global_entry_stubs_.insert(std::make_pair(gsym, this->ge_size_));
4753 if (p.second)
4754 this->ge_size_ += 16;
4755 }
4756
4757 template<int size, bool big_endian>
4758 typename Output_data_glink<size, big_endian>::Address
4759 Output_data_glink<size, big_endian>::find_global_entry(const Symbol* gsym) const
4760 {
4761 typename Global_entry_stub_entries::const_iterator p
4762 = this->global_entry_stubs_.find(gsym);
4763 return p == this->global_entry_stubs_.end() ? invalid_address : p->second;
4764 }
4765
4766 template<int size, bool big_endian>
4767 void
4768 Output_data_glink<size, big_endian>::set_final_data_size()
4769 {
4770 unsigned int count = this->targ_->plt_entry_count();
4771 section_size_type total = 0;
4772
4773 if (count != 0)
4774 {
4775 if (size == 32)
4776 {
4777 // space for branch table
4778 total += 4 * (count - 1);
4779
4780 total += -total & 15;
4781 total += this->pltresolve_size;
4782 }
4783 else
4784 {
4785 total += this->pltresolve_size;
4786
4787 // space for branch table
4788 total += 4 * count;
4789 if (this->targ_->abiversion() < 2)
4790 {
4791 total += 4 * count;
4792 if (count > 0x8000)
4793 total += 4 * (count - 0x8000);
4794 }
4795 }
4796 }
4797 this->end_branch_table_ = total;
4798 total = (total + 15) & -16;
4799 total += this->ge_size_;
4800
4801 this->set_data_size(total);
4802 }
4803
4804 // Define symbols on stubs, identifying the stub.
4805
4806 template<int size, bool big_endian>
4807 void
4808 Stub_table<size, big_endian>::define_stub_syms(Symbol_table* symtab)
4809 {
4810 if (!this->plt_call_stubs_.empty())
4811 {
4812 // The key for the plt call stub hash table includes addresses,
4813 // therefore traversal order depends on those addresses, which
4814 // can change between runs if gold is a PIE. Unfortunately the
4815 // output .symtab ordering depends on the order in which symbols
4816 // are added to the linker symtab. We want reproducible output
4817 // so must sort the call stub symbols.
4818 typedef typename Plt_stub_entries::const_iterator plt_iter;
4819 std::vector<plt_iter> sorted;
4820 sorted.resize(this->plt_call_stubs_.size());
4821
4822 for (plt_iter cs = this->plt_call_stubs_.begin();
4823 cs != this->plt_call_stubs_.end();
4824 ++cs)
4825 sorted[cs->second.indx_] = cs;
4826
4827 for (unsigned int i = 0; i < this->plt_call_stubs_.size(); ++i)
4828 {
4829 plt_iter cs = sorted[i];
4830 char add[10];
4831 add[0] = 0;
4832 if (cs->first.addend_ != 0)
4833 sprintf(add, "+%x", static_cast<uint32_t>(cs->first.addend_));
4834 char obj[10];
4835 obj[0] = 0;
4836 if (cs->first.object_)
4837 {
4838 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4839 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4840 sprintf(obj, "%x:", ppcobj->uniq());
4841 }
4842 char localname[9];
4843 const char *symname;
4844 if (cs->first.sym_ == NULL)
4845 {
4846 sprintf(localname, "%x", cs->first.locsym_);
4847 symname = localname;
4848 }
4849 else
4850 symname = cs->first.sym_->name();
4851 char* name = new char[8 + 10 + strlen(obj) + strlen(symname) + strlen(add) + 1];
4852 sprintf(name, "%08x.plt_call.%s%s%s", this->uniq_, obj, symname, add);
4853 Address value
4854 = this->stub_address() - this->address() + cs->second.off_;
4855 unsigned int stub_size = this->plt_call_size(cs);
4856 this->targ_->define_local(symtab, name, this, value, stub_size);
4857 }
4858 }
4859
4860 typedef typename Branch_stub_entries::const_iterator branch_iter;
4861 for (branch_iter bs = this->long_branch_stubs_.begin();
4862 bs != this->long_branch_stubs_.end();
4863 ++bs)
4864 {
4865 if (bs->first.save_res_)
4866 continue;
4867
4868 char* name = new char[8 + 13 + 16 + 1];
4869 sprintf(name, "%08x.long_branch.%llx", this->uniq_,
4870 static_cast<unsigned long long>(bs->first.dest_));
4871 Address value = (this->stub_address() - this->address()
4872 + this->plt_size_ + bs->second);
4873 unsigned int stub_size = this->branch_stub_size(bs);
4874 this->targ_->define_local(symtab, name, this, value, stub_size);
4875 }
4876 }
4877
4878 // Write out plt and long branch stub code.
4879
4880 template<int size, bool big_endian>
4881 void
4882 Stub_table<size, big_endian>::do_write(Output_file* of)
4883 {
4884 if (this->plt_call_stubs_.empty()
4885 && this->long_branch_stubs_.empty())
4886 return;
4887
4888 const section_size_type start_off = this->offset();
4889 const section_size_type off = this->stub_offset();
4890 const section_size_type oview_size =
4891 convert_to_section_size_type(this->data_size() - (off - start_off));
4892 unsigned char* const oview = of->get_output_view(off, oview_size);
4893 unsigned char* p;
4894
4895 if (size == 64)
4896 {
4897 const Output_data_got_powerpc<size, big_endian>* got
4898 = this->targ_->got_section();
4899 Address got_os_addr = got->output_section()->address();
4900
4901 if (!this->plt_call_stubs_.empty())
4902 {
4903 // The base address of the .plt section.
4904 Address plt_base = this->targ_->plt_section()->address();
4905 Address iplt_base = invalid_address;
4906
4907 // Write out plt call stubs.
4908 typename Plt_stub_entries::const_iterator cs;
4909 for (cs = this->plt_call_stubs_.begin();
4910 cs != this->plt_call_stubs_.end();
4911 ++cs)
4912 {
4913 bool is_iplt;
4914 Address pltoff = this->plt_off(cs, &is_iplt);
4915 Address plt_addr = pltoff;
4916 if (is_iplt)
4917 {
4918 if (iplt_base == invalid_address)
4919 iplt_base = this->targ_->iplt_section()->address();
4920 plt_addr += iplt_base;
4921 }
4922 else
4923 plt_addr += plt_base;
4924 const Powerpc_relobj<size, big_endian>* ppcobj = static_cast
4925 <const Powerpc_relobj<size, big_endian>*>(cs->first.object_);
4926 Address got_addr = got_os_addr + ppcobj->toc_base_offset();
4927 Address off = plt_addr - got_addr;
4928
4929 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
4930 gold_error(_("%s: linkage table error against `%s'"),
4931 cs->first.object_->name().c_str(),
4932 cs->first.sym_->demangled_name().c_str());
4933
4934 bool plt_load_toc = this->targ_->abiversion() < 2;
4935 bool static_chain
4936 = plt_load_toc && parameters->options().plt_static_chain();
4937 bool thread_safe
4938 = plt_load_toc && this->targ_->plt_thread_safe();
4939 bool use_fake_dep = false;
4940 Address cmp_branch_off = 0;
4941 if (thread_safe)
4942 {
4943 unsigned int pltindex
4944 = ((pltoff - this->targ_->first_plt_entry_offset())
4945 / this->targ_->plt_entry_size());
4946 Address glinkoff
4947 = (this->targ_->glink_section()->pltresolve_size
4948 + pltindex * 8);
4949 if (pltindex > 32768)
4950 glinkoff += (pltindex - 32768) * 4;
4951 Address to
4952 = this->targ_->glink_section()->address() + glinkoff;
4953 Address from
4954 = (this->stub_address() + cs->second.off_ + 20
4955 + 4 * cs->second.r2save_
4956 + 4 * (ha(off) != 0)
4957 + 4 * (ha(off + 8 + 8 * static_chain) != ha(off))
4958 + 4 * static_chain);
4959 cmp_branch_off = to - from;
4960 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
4961 }
4962
4963 p = oview + cs->second.off_;
4964 if (ha(off) != 0)
4965 {
4966 if (cs->second.r2save_)
4967 {
4968 write_insn<big_endian>(p,
4969 std_2_1 + this->targ_->stk_toc());
4970 p += 4;
4971 }
4972 if (plt_load_toc)
4973 {
4974 write_insn<big_endian>(p, addis_11_2 + ha(off));
4975 p += 4;
4976 write_insn<big_endian>(p, ld_12_11 + l(off));
4977 p += 4;
4978 }
4979 else
4980 {
4981 write_insn<big_endian>(p, addis_12_2 + ha(off));
4982 p += 4;
4983 write_insn<big_endian>(p, ld_12_12 + l(off));
4984 p += 4;
4985 }
4986 if (plt_load_toc
4987 && ha(off + 8 + 8 * static_chain) != ha(off))
4988 {
4989 write_insn<big_endian>(p, addi_11_11 + l(off));
4990 p += 4;
4991 off = 0;
4992 }
4993 write_insn<big_endian>(p, mtctr_12);
4994 p += 4;
4995 if (plt_load_toc)
4996 {
4997 if (use_fake_dep)
4998 {
4999 write_insn<big_endian>(p, xor_2_12_12);
5000 p += 4;
5001 write_insn<big_endian>(p, add_11_11_2);
5002 p += 4;
5003 }
5004 write_insn<big_endian>(p, ld_2_11 + l(off + 8));
5005 p += 4;
5006 if (static_chain)
5007 {
5008 write_insn<big_endian>(p, ld_11_11 + l(off + 16));
5009 p += 4;
5010 }
5011 }
5012 }
5013 else
5014 {
5015 if (cs->second.r2save_)
5016 {
5017 write_insn<big_endian>(p,
5018 std_2_1 + this->targ_->stk_toc());
5019 p += 4;
5020 }
5021 write_insn<big_endian>(p, ld_12_2 + l(off));
5022 p += 4;
5023 if (plt_load_toc
5024 && ha(off + 8 + 8 * static_chain) != ha(off))
5025 {
5026 write_insn<big_endian>(p, addi_2_2 + l(off));
5027 p += 4;
5028 off = 0;
5029 }
5030 write_insn<big_endian>(p, mtctr_12);
5031 p += 4;
5032 if (plt_load_toc)
5033 {
5034 if (use_fake_dep)
5035 {
5036 write_insn<big_endian>(p, xor_11_12_12);
5037 p += 4;
5038 write_insn<big_endian>(p, add_2_2_11);
5039 p += 4;
5040 }
5041 if (static_chain)
5042 {
5043 write_insn<big_endian>(p, ld_11_2 + l(off + 16));
5044 p += 4;
5045 }
5046 write_insn<big_endian>(p, ld_2_2 + l(off + 8));
5047 p += 4;
5048 }
5049 }
5050 if (thread_safe && !use_fake_dep)
5051 {
5052 write_insn<big_endian>(p, cmpldi_2_0);
5053 p += 4;
5054 write_insn<big_endian>(p, bnectr_p4);
5055 p += 4;
5056 write_insn<big_endian>(p, b | (cmp_branch_off & 0x3fffffc));
5057 }
5058 else
5059 write_insn<big_endian>(p, bctr);
5060 }
5061 }
5062
5063 // Write out long branch stubs.
5064 typename Branch_stub_entries::const_iterator bs;
5065 for (bs = this->long_branch_stubs_.begin();
5066 bs != this->long_branch_stubs_.end();
5067 ++bs)
5068 {
5069 if (bs->first.save_res_)
5070 continue;
5071 p = oview + this->plt_size_ + bs->second;
5072 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5073 Address delta = bs->first.dest_ - loc;
5074 if (delta + (1 << 25) < 2 << 25)
5075 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5076 else
5077 {
5078 Address brlt_addr
5079 = this->targ_->find_branch_lookup_table(bs->first.dest_);
5080 gold_assert(brlt_addr != invalid_address);
5081 brlt_addr += this->targ_->brlt_section()->address();
5082 Address got_addr = got_os_addr + bs->first.toc_base_off_;
5083 Address brltoff = brlt_addr - got_addr;
5084 if (ha(brltoff) == 0)
5085 {
5086 write_insn<big_endian>(p, ld_12_2 + l(brltoff)), p += 4;
5087 }
5088 else
5089 {
5090 write_insn<big_endian>(p, addis_12_2 + ha(brltoff)), p += 4;
5091 write_insn<big_endian>(p, ld_12_12 + l(brltoff)), p += 4;
5092 }
5093 write_insn<big_endian>(p, mtctr_12), p += 4;
5094 write_insn<big_endian>(p, bctr);
5095 }
5096 }
5097 }
5098 else
5099 {
5100 if (!this->plt_call_stubs_.empty())
5101 {
5102 // The base address of the .plt section.
5103 Address plt_base = this->targ_->plt_section()->address();
5104 Address iplt_base = invalid_address;
5105 // The address of _GLOBAL_OFFSET_TABLE_.
5106 Address g_o_t = invalid_address;
5107
5108 // Write out plt call stubs.
5109 typename Plt_stub_entries::const_iterator cs;
5110 for (cs = this->plt_call_stubs_.begin();
5111 cs != this->plt_call_stubs_.end();
5112 ++cs)
5113 {
5114 bool is_iplt;
5115 Address plt_addr = this->plt_off(cs, &is_iplt);
5116 if (is_iplt)
5117 {
5118 if (iplt_base == invalid_address)
5119 iplt_base = this->targ_->iplt_section()->address();
5120 plt_addr += iplt_base;
5121 }
5122 else
5123 plt_addr += plt_base;
5124
5125 p = oview + cs->second.off_;
5126 if (parameters->options().output_is_position_independent())
5127 {
5128 Address got_addr;
5129 const Powerpc_relobj<size, big_endian>* ppcobj
5130 = (static_cast<const Powerpc_relobj<size, big_endian>*>
5131 (cs->first.object_));
5132 if (ppcobj != NULL && cs->first.addend_ >= 32768)
5133 {
5134 unsigned int got2 = ppcobj->got2_shndx();
5135 got_addr = ppcobj->get_output_section_offset(got2);
5136 gold_assert(got_addr != invalid_address);
5137 got_addr += (ppcobj->output_section(got2)->address()
5138 + cs->first.addend_);
5139 }
5140 else
5141 {
5142 if (g_o_t == invalid_address)
5143 {
5144 const Output_data_got_powerpc<size, big_endian>* got
5145 = this->targ_->got_section();
5146 g_o_t = got->address() + got->g_o_t();
5147 }
5148 got_addr = g_o_t;
5149 }
5150
5151 Address off = plt_addr - got_addr;
5152 if (ha(off) == 0)
5153 {
5154 write_insn<big_endian>(p + 0, lwz_11_30 + l(off));
5155 write_insn<big_endian>(p + 4, mtctr_11);
5156 write_insn<big_endian>(p + 8, bctr);
5157 }
5158 else
5159 {
5160 write_insn<big_endian>(p + 0, addis_11_30 + ha(off));
5161 write_insn<big_endian>(p + 4, lwz_11_11 + l(off));
5162 write_insn<big_endian>(p + 8, mtctr_11);
5163 write_insn<big_endian>(p + 12, bctr);
5164 }
5165 }
5166 else
5167 {
5168 write_insn<big_endian>(p + 0, lis_11 + ha(plt_addr));
5169 write_insn<big_endian>(p + 4, lwz_11_11 + l(plt_addr));
5170 write_insn<big_endian>(p + 8, mtctr_11);
5171 write_insn<big_endian>(p + 12, bctr);
5172 }
5173 }
5174 }
5175
5176 // Write out long branch stubs.
5177 typename Branch_stub_entries::const_iterator bs;
5178 for (bs = this->long_branch_stubs_.begin();
5179 bs != this->long_branch_stubs_.end();
5180 ++bs)
5181 {
5182 if (bs->first.save_res_)
5183 continue;
5184 p = oview + this->plt_size_ + bs->second;
5185 Address loc = this->stub_address() + this->plt_size_ + bs->second;
5186 Address delta = bs->first.dest_ - loc;
5187 if (delta + (1 << 25) < 2 << 25)
5188 write_insn<big_endian>(p, b | (delta & 0x3fffffc));
5189 else if (!parameters->options().output_is_position_independent())
5190 {
5191 write_insn<big_endian>(p + 0, lis_12 + ha(bs->first.dest_));
5192 write_insn<big_endian>(p + 4, addi_12_12 + l(bs->first.dest_));
5193 write_insn<big_endian>(p + 8, mtctr_12);
5194 write_insn<big_endian>(p + 12, bctr);
5195 }
5196 else
5197 {
5198 delta -= 8;
5199 write_insn<big_endian>(p + 0, mflr_0);
5200 write_insn<big_endian>(p + 4, bcl_20_31);
5201 write_insn<big_endian>(p + 8, mflr_12);
5202 write_insn<big_endian>(p + 12, addis_12_12 + ha(delta));
5203 write_insn<big_endian>(p + 16, addi_12_12 + l(delta));
5204 write_insn<big_endian>(p + 20, mtlr_0);
5205 write_insn<big_endian>(p + 24, mtctr_12);
5206 write_insn<big_endian>(p + 28, bctr);
5207 }
5208 }
5209 }
5210 if (this->need_save_res_)
5211 {
5212 p = oview + this->plt_size_ + this->branch_size_;
5213 memcpy (p, this->targ_->savres_section()->contents(),
5214 this->targ_->savres_section()->data_size());
5215 }
5216 }
5217
5218 // Write out .glink.
5219
5220 template<int size, bool big_endian>
5221 void
5222 Output_data_glink<size, big_endian>::do_write(Output_file* of)
5223 {
5224 const section_size_type off = this->offset();
5225 const section_size_type oview_size =
5226 convert_to_section_size_type(this->data_size());
5227 unsigned char* const oview = of->get_output_view(off, oview_size);
5228 unsigned char* p;
5229
5230 // The base address of the .plt section.
5231 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
5232 Address plt_base = this->targ_->plt_section()->address();
5233
5234 if (size == 64)
5235 {
5236 if (this->end_branch_table_ != 0)
5237 {
5238 // Write pltresolve stub.
5239 p = oview;
5240 Address after_bcl = this->address() + 16;
5241 Address pltoff = plt_base - after_bcl;
5242
5243 elfcpp::Swap<64, big_endian>::writeval(p, pltoff), p += 8;
5244
5245 if (this->targ_->abiversion() < 2)
5246 {
5247 write_insn<big_endian>(p, mflr_12), p += 4;
5248 write_insn<big_endian>(p, bcl_20_31), p += 4;
5249 write_insn<big_endian>(p, mflr_11), p += 4;
5250 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5251 write_insn<big_endian>(p, mtlr_12), p += 4;
5252 write_insn<big_endian>(p, add_11_2_11), p += 4;
5253 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5254 write_insn<big_endian>(p, ld_2_11 + 8), p += 4;
5255 write_insn<big_endian>(p, mtctr_12), p += 4;
5256 write_insn<big_endian>(p, ld_11_11 + 16), p += 4;
5257 }
5258 else
5259 {
5260 write_insn<big_endian>(p, mflr_0), p += 4;
5261 write_insn<big_endian>(p, bcl_20_31), p += 4;
5262 write_insn<big_endian>(p, mflr_11), p += 4;
5263 write_insn<big_endian>(p, std_2_1 + 24), p += 4;
5264 write_insn<big_endian>(p, ld_2_11 + l(-16)), p += 4;
5265 write_insn<big_endian>(p, mtlr_0), p += 4;
5266 write_insn<big_endian>(p, sub_12_12_11), p += 4;
5267 write_insn<big_endian>(p, add_11_2_11), p += 4;
5268 write_insn<big_endian>(p, addi_0_12 + l(-48)), p += 4;
5269 write_insn<big_endian>(p, ld_12_11 + 0), p += 4;
5270 write_insn<big_endian>(p, srdi_0_0_2), p += 4;
5271 write_insn<big_endian>(p, mtctr_12), p += 4;
5272 write_insn<big_endian>(p, ld_11_11 + 8), p += 4;
5273 }
5274 write_insn<big_endian>(p, bctr), p += 4;
5275 while (p < oview + this->pltresolve_size)
5276 write_insn<big_endian>(p, nop), p += 4;
5277
5278 // Write lazy link call stubs.
5279 uint32_t indx = 0;
5280 while (p < oview + this->end_branch_table_)
5281 {
5282 if (this->targ_->abiversion() < 2)
5283 {
5284 if (indx < 0x8000)
5285 {
5286 write_insn<big_endian>(p, li_0_0 + indx), p += 4;
5287 }
5288 else
5289 {
5290 write_insn<big_endian>(p, lis_0 + hi(indx)), p += 4;
5291 write_insn<big_endian>(p, ori_0_0_0 + l(indx)), p += 4;
5292 }
5293 }
5294 uint32_t branch_off = 8 - (p - oview);
5295 write_insn<big_endian>(p, b + (branch_off & 0x3fffffc)), p += 4;
5296 indx++;
5297 }
5298 }
5299
5300 Address plt_base = this->targ_->plt_section()->address();
5301 Address iplt_base = invalid_address;
5302 unsigned int global_entry_off = (this->end_branch_table_ + 15) & -16;
5303 Address global_entry_base = this->address() + global_entry_off;
5304 typename Global_entry_stub_entries::const_iterator ge;
5305 for (ge = this->global_entry_stubs_.begin();
5306 ge != this->global_entry_stubs_.end();
5307 ++ge)
5308 {
5309 p = oview + global_entry_off + ge->second;
5310 Address plt_addr = ge->first->plt_offset();
5311 if (ge->first->type() == elfcpp::STT_GNU_IFUNC
5312 && ge->first->can_use_relative_reloc(false))
5313 {
5314 if (iplt_base == invalid_address)
5315 iplt_base = this->targ_->iplt_section()->address();
5316 plt_addr += iplt_base;
5317 }
5318 else
5319 plt_addr += plt_base;
5320 Address my_addr = global_entry_base + ge->second;
5321 Address off = plt_addr - my_addr;
5322
5323 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
5324 gold_error(_("%s: linkage table error against `%s'"),
5325 ge->first->object()->name().c_str(),
5326 ge->first->demangled_name().c_str());
5327
5328 write_insn<big_endian>(p, addis_12_12 + ha(off)), p += 4;
5329 write_insn<big_endian>(p, ld_12_12 + l(off)), p += 4;
5330 write_insn<big_endian>(p, mtctr_12), p += 4;
5331 write_insn<big_endian>(p, bctr);
5332 }
5333 }
5334 else
5335 {
5336 const Output_data_got_powerpc<size, big_endian>* got
5337 = this->targ_->got_section();
5338 // The address of _GLOBAL_OFFSET_TABLE_.
5339 Address g_o_t = got->address() + got->g_o_t();
5340
5341 // Write out pltresolve branch table.
5342 p = oview;
5343 unsigned int the_end = oview_size - this->pltresolve_size;
5344 unsigned char* end_p = oview + the_end;
5345 while (p < end_p - 8 * 4)
5346 write_insn<big_endian>(p, b + end_p - p), p += 4;
5347 while (p < end_p)
5348 write_insn<big_endian>(p, nop), p += 4;
5349
5350 // Write out pltresolve call stub.
5351 if (parameters->options().output_is_position_independent())
5352 {
5353 Address res0_off = 0;
5354 Address after_bcl_off = the_end + 12;
5355 Address bcl_res0 = after_bcl_off - res0_off;
5356
5357 write_insn<big_endian>(p + 0, addis_11_11 + ha(bcl_res0));
5358 write_insn<big_endian>(p + 4, mflr_0);
5359 write_insn<big_endian>(p + 8, bcl_20_31);
5360 write_insn<big_endian>(p + 12, addi_11_11 + l(bcl_res0));
5361 write_insn<big_endian>(p + 16, mflr_12);
5362 write_insn<big_endian>(p + 20, mtlr_0);
5363 write_insn<big_endian>(p + 24, sub_11_11_12);
5364
5365 Address got_bcl = g_o_t + 4 - (after_bcl_off + this->address());
5366
5367 write_insn<big_endian>(p + 28, addis_12_12 + ha(got_bcl));
5368 if (ha(got_bcl) == ha(got_bcl + 4))
5369 {
5370 write_insn<big_endian>(p + 32, lwz_0_12 + l(got_bcl));
5371 write_insn<big_endian>(p + 36, lwz_12_12 + l(got_bcl + 4));
5372 }
5373 else
5374 {
5375 write_insn<big_endian>(p + 32, lwzu_0_12 + l(got_bcl));
5376 write_insn<big_endian>(p + 36, lwz_12_12 + 4);
5377 }
5378 write_insn<big_endian>(p + 40, mtctr_0);
5379 write_insn<big_endian>(p + 44, add_0_11_11);
5380 write_insn<big_endian>(p + 48, add_11_0_11);
5381 write_insn<big_endian>(p + 52, bctr);
5382 write_insn<big_endian>(p + 56, nop);
5383 write_insn<big_endian>(p + 60, nop);
5384 }
5385 else
5386 {
5387 Address res0 = this->address();
5388
5389 write_insn<big_endian>(p + 0, lis_12 + ha(g_o_t + 4));
5390 write_insn<big_endian>(p + 4, addis_11_11 + ha(-res0));
5391 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5392 write_insn<big_endian>(p + 8, lwz_0_12 + l(g_o_t + 4));
5393 else
5394 write_insn<big_endian>(p + 8, lwzu_0_12 + l(g_o_t + 4));
5395 write_insn<big_endian>(p + 12, addi_11_11 + l(-res0));
5396 write_insn<big_endian>(p + 16, mtctr_0);
5397 write_insn<big_endian>(p + 20, add_0_11_11);
5398 if (ha(g_o_t + 4) == ha(g_o_t + 8))
5399 write_insn<big_endian>(p + 24, lwz_12_12 + l(g_o_t + 8));
5400 else
5401 write_insn<big_endian>(p + 24, lwz_12_12 + 4);
5402 write_insn<big_endian>(p + 28, add_11_0_11);
5403 write_insn<big_endian>(p + 32, bctr);
5404 write_insn<big_endian>(p + 36, nop);
5405 write_insn<big_endian>(p + 40, nop);
5406 write_insn<big_endian>(p + 44, nop);
5407 write_insn<big_endian>(p + 48, nop);
5408 write_insn<big_endian>(p + 52, nop);
5409 write_insn<big_endian>(p + 56, nop);
5410 write_insn<big_endian>(p + 60, nop);
5411 }
5412 p += 64;
5413 }
5414
5415 of->write_output_view(off, oview_size, oview);
5416 }
5417
5418
5419 // A class to handle linker generated save/restore functions.
5420
5421 template<int size, bool big_endian>
5422 class Output_data_save_res : public Output_section_data_build
5423 {
5424 public:
5425 Output_data_save_res(Symbol_table* symtab);
5426
5427 const unsigned char*
5428 contents() const
5429 {
5430 return contents_;
5431 }
5432
5433 protected:
5434 // Write to a map file.
5435 void
5436 do_print_to_mapfile(Mapfile* mapfile) const
5437 { mapfile->print_output_data(this, _("** save/restore")); }
5438
5439 void
5440 do_write(Output_file*);
5441
5442 private:
5443 // The maximum size of save/restore contents.
5444 static const unsigned int savres_max = 218*4;
5445
5446 void
5447 savres_define(Symbol_table* symtab,
5448 const char *name,
5449 unsigned int lo, unsigned int hi,
5450 unsigned char* write_ent(unsigned char*, int),
5451 unsigned char* write_tail(unsigned char*, int));
5452
5453 unsigned char *contents_;
5454 };
5455
5456 template<bool big_endian>
5457 static unsigned char*
5458 savegpr0(unsigned char* p, int r)
5459 {
5460 uint32_t insn = std_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5461 write_insn<big_endian>(p, insn);
5462 return p + 4;
5463 }
5464
5465 template<bool big_endian>
5466 static unsigned char*
5467 savegpr0_tail(unsigned char* p, int r)
5468 {
5469 p = savegpr0<big_endian>(p, r);
5470 uint32_t insn = std_0_1 + 16;
5471 write_insn<big_endian>(p, insn);
5472 p = p + 4;
5473 write_insn<big_endian>(p, blr);
5474 return p + 4;
5475 }
5476
5477 template<bool big_endian>
5478 static unsigned char*
5479 restgpr0(unsigned char* p, int r)
5480 {
5481 uint32_t insn = ld_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5482 write_insn<big_endian>(p, insn);
5483 return p + 4;
5484 }
5485
5486 template<bool big_endian>
5487 static unsigned char*
5488 restgpr0_tail(unsigned char* p, int r)
5489 {
5490 uint32_t insn = ld_0_1 + 16;
5491 write_insn<big_endian>(p, insn);
5492 p = p + 4;
5493 p = restgpr0<big_endian>(p, r);
5494 write_insn<big_endian>(p, mtlr_0);
5495 p = p + 4;
5496 if (r == 29)
5497 {
5498 p = restgpr0<big_endian>(p, 30);
5499 p = restgpr0<big_endian>(p, 31);
5500 }
5501 write_insn<big_endian>(p, blr);
5502 return p + 4;
5503 }
5504
5505 template<bool big_endian>
5506 static unsigned char*
5507 savegpr1(unsigned char* p, int r)
5508 {
5509 uint32_t insn = std_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5510 write_insn<big_endian>(p, insn);
5511 return p + 4;
5512 }
5513
5514 template<bool big_endian>
5515 static unsigned char*
5516 savegpr1_tail(unsigned char* p, int r)
5517 {
5518 p = savegpr1<big_endian>(p, r);
5519 write_insn<big_endian>(p, blr);
5520 return p + 4;
5521 }
5522
5523 template<bool big_endian>
5524 static unsigned char*
5525 restgpr1(unsigned char* p, int r)
5526 {
5527 uint32_t insn = ld_0_12 + (r << 21) + (1 << 16) - (32 - r) * 8;
5528 write_insn<big_endian>(p, insn);
5529 return p + 4;
5530 }
5531
5532 template<bool big_endian>
5533 static unsigned char*
5534 restgpr1_tail(unsigned char* p, int r)
5535 {
5536 p = restgpr1<big_endian>(p, r);
5537 write_insn<big_endian>(p, blr);
5538 return p + 4;
5539 }
5540
5541 template<bool big_endian>
5542 static unsigned char*
5543 savefpr(unsigned char* p, int r)
5544 {
5545 uint32_t insn = stfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5546 write_insn<big_endian>(p, insn);
5547 return p + 4;
5548 }
5549
5550 template<bool big_endian>
5551 static unsigned char*
5552 savefpr0_tail(unsigned char* p, int r)
5553 {
5554 p = savefpr<big_endian>(p, r);
5555 write_insn<big_endian>(p, std_0_1 + 16);
5556 p = p + 4;
5557 write_insn<big_endian>(p, blr);
5558 return p + 4;
5559 }
5560
5561 template<bool big_endian>
5562 static unsigned char*
5563 restfpr(unsigned char* p, int r)
5564 {
5565 uint32_t insn = lfd_0_1 + (r << 21) + (1 << 16) - (32 - r) * 8;
5566 write_insn<big_endian>(p, insn);
5567 return p + 4;
5568 }
5569
5570 template<bool big_endian>
5571 static unsigned char*
5572 restfpr0_tail(unsigned char* p, int r)
5573 {
5574 write_insn<big_endian>(p, ld_0_1 + 16);
5575 p = p + 4;
5576 p = restfpr<big_endian>(p, r);
5577 write_insn<big_endian>(p, mtlr_0);
5578 p = p + 4;
5579 if (r == 29)
5580 {
5581 p = restfpr<big_endian>(p, 30);
5582 p = restfpr<big_endian>(p, 31);
5583 }
5584 write_insn<big_endian>(p, blr);
5585 return p + 4;
5586 }
5587
5588 template<bool big_endian>
5589 static unsigned char*
5590 savefpr1_tail(unsigned char* p, int r)
5591 {
5592 p = savefpr<big_endian>(p, r);
5593 write_insn<big_endian>(p, blr);
5594 return p + 4;
5595 }
5596
5597 template<bool big_endian>
5598 static unsigned char*
5599 restfpr1_tail(unsigned char* p, int r)
5600 {
5601 p = restfpr<big_endian>(p, r);
5602 write_insn<big_endian>(p, blr);
5603 return p + 4;
5604 }
5605
5606 template<bool big_endian>
5607 static unsigned char*
5608 savevr(unsigned char* p, int r)
5609 {
5610 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5611 write_insn<big_endian>(p, insn);
5612 p = p + 4;
5613 insn = stvx_0_12_0 + (r << 21);
5614 write_insn<big_endian>(p, insn);
5615 return p + 4;
5616 }
5617
5618 template<bool big_endian>
5619 static unsigned char*
5620 savevr_tail(unsigned char* p, int r)
5621 {
5622 p = savevr<big_endian>(p, r);
5623 write_insn<big_endian>(p, blr);
5624 return p + 4;
5625 }
5626
5627 template<bool big_endian>
5628 static unsigned char*
5629 restvr(unsigned char* p, int r)
5630 {
5631 uint32_t insn = li_12_0 + (1 << 16) - (32 - r) * 16;
5632 write_insn<big_endian>(p, insn);
5633 p = p + 4;
5634 insn = lvx_0_12_0 + (r << 21);
5635 write_insn<big_endian>(p, insn);
5636 return p + 4;
5637 }
5638
5639 template<bool big_endian>
5640 static unsigned char*
5641 restvr_tail(unsigned char* p, int r)
5642 {
5643 p = restvr<big_endian>(p, r);
5644 write_insn<big_endian>(p, blr);
5645 return p + 4;
5646 }
5647
5648
5649 template<int size, bool big_endian>
5650 Output_data_save_res<size, big_endian>::Output_data_save_res(
5651 Symbol_table* symtab)
5652 : Output_section_data_build(4),
5653 contents_(NULL)
5654 {
5655 this->savres_define(symtab,
5656 "_savegpr0_", 14, 31,
5657 savegpr0<big_endian>, savegpr0_tail<big_endian>);
5658 this->savres_define(symtab,
5659 "_restgpr0_", 14, 29,
5660 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5661 this->savres_define(symtab,
5662 "_restgpr0_", 30, 31,
5663 restgpr0<big_endian>, restgpr0_tail<big_endian>);
5664 this->savres_define(symtab,
5665 "_savegpr1_", 14, 31,
5666 savegpr1<big_endian>, savegpr1_tail<big_endian>);
5667 this->savres_define(symtab,
5668 "_restgpr1_", 14, 31,
5669 restgpr1<big_endian>, restgpr1_tail<big_endian>);
5670 this->savres_define(symtab,
5671 "_savefpr_", 14, 31,
5672 savefpr<big_endian>, savefpr0_tail<big_endian>);
5673 this->savres_define(symtab,
5674 "_restfpr_", 14, 29,
5675 restfpr<big_endian>, restfpr0_tail<big_endian>);
5676 this->savres_define(symtab,
5677 "_restfpr_", 30, 31,
5678 restfpr<big_endian>, restfpr0_tail<big_endian>);
5679 this->savres_define(symtab,
5680 "._savef", 14, 31,
5681 savefpr<big_endian>, savefpr1_tail<big_endian>);
5682 this->savres_define(symtab,
5683 "._restf", 14, 31,
5684 restfpr<big_endian>, restfpr1_tail<big_endian>);
5685 this->savres_define(symtab,
5686 "_savevr_", 20, 31,
5687 savevr<big_endian>, savevr_tail<big_endian>);
5688 this->savres_define(symtab,
5689 "_restvr_", 20, 31,
5690 restvr<big_endian>, restvr_tail<big_endian>);
5691 }
5692
5693 template<int size, bool big_endian>
5694 void
5695 Output_data_save_res<size, big_endian>::savres_define(
5696 Symbol_table* symtab,
5697 const char *name,
5698 unsigned int lo, unsigned int hi,
5699 unsigned char* write_ent(unsigned char*, int),
5700 unsigned char* write_tail(unsigned char*, int))
5701 {
5702 size_t len = strlen(name);
5703 bool writing = false;
5704 char sym[16];
5705
5706 memcpy(sym, name, len);
5707 sym[len + 2] = 0;
5708
5709 for (unsigned int i = lo; i <= hi; i++)
5710 {
5711 sym[len + 0] = i / 10 + '0';
5712 sym[len + 1] = i % 10 + '0';
5713 Symbol* gsym = symtab->lookup(sym);
5714 bool refd = gsym != NULL && gsym->is_undefined();
5715 writing = writing || refd;
5716 if (writing)
5717 {
5718 if (this->contents_ == NULL)
5719 this->contents_ = new unsigned char[this->savres_max];
5720
5721 section_size_type value = this->current_data_size();
5722 unsigned char* p = this->contents_ + value;
5723 if (i != hi)
5724 p = write_ent(p, i);
5725 else
5726 p = write_tail(p, i);
5727 section_size_type cur_size = p - this->contents_;
5728 this->set_current_data_size(cur_size);
5729 if (refd)
5730 symtab->define_in_output_data(sym, NULL, Symbol_table::PREDEFINED,
5731 this, value, cur_size - value,
5732 elfcpp::STT_FUNC, elfcpp::STB_GLOBAL,
5733 elfcpp::STV_HIDDEN, 0, false, false);
5734 }
5735 }
5736 }
5737
5738 // Write out save/restore.
5739
5740 template<int size, bool big_endian>
5741 void
5742 Output_data_save_res<size, big_endian>::do_write(Output_file* of)
5743 {
5744 const section_size_type off = this->offset();
5745 const section_size_type oview_size =
5746 convert_to_section_size_type(this->data_size());
5747 unsigned char* const oview = of->get_output_view(off, oview_size);
5748 memcpy(oview, this->contents_, oview_size);
5749 of->write_output_view(off, oview_size, oview);
5750 }
5751
5752
5753 // Create the glink section.
5754
5755 template<int size, bool big_endian>
5756 void
5757 Target_powerpc<size, big_endian>::make_glink_section(Layout* layout)
5758 {
5759 if (this->glink_ == NULL)
5760 {
5761 this->glink_ = new Output_data_glink<size, big_endian>(this);
5762 this->glink_->add_eh_frame(layout);
5763 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
5764 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
5765 this->glink_, ORDER_TEXT, false);
5766 }
5767 }
5768
5769 // Create a PLT entry for a global symbol.
5770
5771 template<int size, bool big_endian>
5772 void
5773 Target_powerpc<size, big_endian>::make_plt_entry(Symbol_table* symtab,
5774 Layout* layout,
5775 Symbol* gsym)
5776 {
5777 if (gsym->type() == elfcpp::STT_GNU_IFUNC
5778 && gsym->can_use_relative_reloc(false))
5779 {
5780 if (this->iplt_ == NULL)
5781 this->make_iplt_section(symtab, layout);
5782 this->iplt_->add_ifunc_entry(gsym);
5783 }
5784 else
5785 {
5786 if (this->plt_ == NULL)
5787 this->make_plt_section(symtab, layout);
5788 this->plt_->add_entry(gsym);
5789 }
5790 }
5791
5792 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
5793
5794 template<int size, bool big_endian>
5795 void
5796 Target_powerpc<size, big_endian>::make_local_ifunc_plt_entry(
5797 Symbol_table* symtab,
5798 Layout* layout,
5799 Sized_relobj_file<size, big_endian>* relobj,
5800 unsigned int r_sym)
5801 {
5802 if (this->iplt_ == NULL)
5803 this->make_iplt_section(symtab, layout);
5804 this->iplt_->add_local_ifunc_entry(relobj, r_sym);
5805 }
5806
5807 // Return the number of entries in the PLT.
5808
5809 template<int size, bool big_endian>
5810 unsigned int
5811 Target_powerpc<size, big_endian>::plt_entry_count() const
5812 {
5813 if (this->plt_ == NULL)
5814 return 0;
5815 return this->plt_->entry_count();
5816 }
5817
5818 // Create a GOT entry for local dynamic __tls_get_addr calls.
5819
5820 template<int size, bool big_endian>
5821 unsigned int
5822 Target_powerpc<size, big_endian>::tlsld_got_offset(
5823 Symbol_table* symtab,
5824 Layout* layout,
5825 Sized_relobj_file<size, big_endian>* object)
5826 {
5827 if (this->tlsld_got_offset_ == -1U)
5828 {
5829 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5830 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5831 Output_data_got_powerpc<size, big_endian>* got
5832 = this->got_section(symtab, layout);
5833 unsigned int got_offset = got->add_constant_pair(0, 0);
5834 rela_dyn->add_local(object, 0, elfcpp::R_POWERPC_DTPMOD, got,
5835 got_offset, 0);
5836 this->tlsld_got_offset_ = got_offset;
5837 }
5838 return this->tlsld_got_offset_;
5839 }
5840
5841 // Get the Reference_flags for a particular relocation.
5842
5843 template<int size, bool big_endian>
5844 int
5845 Target_powerpc<size, big_endian>::Scan::get_reference_flags(
5846 unsigned int r_type,
5847 const Target_powerpc* target)
5848 {
5849 int ref = 0;
5850
5851 switch (r_type)
5852 {
5853 case elfcpp::R_POWERPC_NONE:
5854 case elfcpp::R_POWERPC_GNU_VTINHERIT:
5855 case elfcpp::R_POWERPC_GNU_VTENTRY:
5856 case elfcpp::R_PPC64_TOC:
5857 // No symbol reference.
5858 break;
5859
5860 case elfcpp::R_PPC64_ADDR64:
5861 case elfcpp::R_PPC64_UADDR64:
5862 case elfcpp::R_POWERPC_ADDR32:
5863 case elfcpp::R_POWERPC_UADDR32:
5864 case elfcpp::R_POWERPC_ADDR16:
5865 case elfcpp::R_POWERPC_UADDR16:
5866 case elfcpp::R_POWERPC_ADDR16_LO:
5867 case elfcpp::R_POWERPC_ADDR16_HI:
5868 case elfcpp::R_POWERPC_ADDR16_HA:
5869 ref = Symbol::ABSOLUTE_REF;
5870 break;
5871
5872 case elfcpp::R_POWERPC_ADDR24:
5873 case elfcpp::R_POWERPC_ADDR14:
5874 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5875 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5876 ref = Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
5877 break;
5878
5879 case elfcpp::R_PPC64_REL64:
5880 case elfcpp::R_POWERPC_REL32:
5881 case elfcpp::R_PPC_LOCAL24PC:
5882 case elfcpp::R_POWERPC_REL16:
5883 case elfcpp::R_POWERPC_REL16_LO:
5884 case elfcpp::R_POWERPC_REL16_HI:
5885 case elfcpp::R_POWERPC_REL16_HA:
5886 ref = Symbol::RELATIVE_REF;
5887 break;
5888
5889 case elfcpp::R_POWERPC_REL24:
5890 case elfcpp::R_PPC_PLTREL24:
5891 case elfcpp::R_POWERPC_REL14:
5892 case elfcpp::R_POWERPC_REL14_BRTAKEN:
5893 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
5894 ref = Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
5895 break;
5896
5897 case elfcpp::R_POWERPC_GOT16:
5898 case elfcpp::R_POWERPC_GOT16_LO:
5899 case elfcpp::R_POWERPC_GOT16_HI:
5900 case elfcpp::R_POWERPC_GOT16_HA:
5901 case elfcpp::R_PPC64_GOT16_DS:
5902 case elfcpp::R_PPC64_GOT16_LO_DS:
5903 case elfcpp::R_PPC64_TOC16:
5904 case elfcpp::R_PPC64_TOC16_LO:
5905 case elfcpp::R_PPC64_TOC16_HI:
5906 case elfcpp::R_PPC64_TOC16_HA:
5907 case elfcpp::R_PPC64_TOC16_DS:
5908 case elfcpp::R_PPC64_TOC16_LO_DS:
5909 ref = Symbol::RELATIVE_REF;
5910 break;
5911
5912 case elfcpp::R_POWERPC_GOT_TPREL16:
5913 case elfcpp::R_POWERPC_TLS:
5914 ref = Symbol::TLS_REF;
5915 break;
5916
5917 case elfcpp::R_POWERPC_COPY:
5918 case elfcpp::R_POWERPC_GLOB_DAT:
5919 case elfcpp::R_POWERPC_JMP_SLOT:
5920 case elfcpp::R_POWERPC_RELATIVE:
5921 case elfcpp::R_POWERPC_DTPMOD:
5922 default:
5923 // Not expected. We will give an error later.
5924 break;
5925 }
5926
5927 if (size == 64 && target->abiversion() < 2)
5928 ref |= Symbol::FUNC_DESC_ABI;
5929 return ref;
5930 }
5931
5932 // Report an unsupported relocation against a local symbol.
5933
5934 template<int size, bool big_endian>
5935 void
5936 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_local(
5937 Sized_relobj_file<size, big_endian>* object,
5938 unsigned int r_type)
5939 {
5940 gold_error(_("%s: unsupported reloc %u against local symbol"),
5941 object->name().c_str(), r_type);
5942 }
5943
5944 // We are about to emit a dynamic relocation of type R_TYPE. If the
5945 // dynamic linker does not support it, issue an error.
5946
5947 template<int size, bool big_endian>
5948 void
5949 Target_powerpc<size, big_endian>::Scan::check_non_pic(Relobj* object,
5950 unsigned int r_type)
5951 {
5952 gold_assert(r_type != elfcpp::R_POWERPC_NONE);
5953
5954 // These are the relocation types supported by glibc for both 32-bit
5955 // and 64-bit powerpc.
5956 switch (r_type)
5957 {
5958 case elfcpp::R_POWERPC_NONE:
5959 case elfcpp::R_POWERPC_RELATIVE:
5960 case elfcpp::R_POWERPC_GLOB_DAT:
5961 case elfcpp::R_POWERPC_DTPMOD:
5962 case elfcpp::R_POWERPC_DTPREL:
5963 case elfcpp::R_POWERPC_TPREL:
5964 case elfcpp::R_POWERPC_JMP_SLOT:
5965 case elfcpp::R_POWERPC_COPY:
5966 case elfcpp::R_POWERPC_IRELATIVE:
5967 case elfcpp::R_POWERPC_ADDR32:
5968 case elfcpp::R_POWERPC_UADDR32:
5969 case elfcpp::R_POWERPC_ADDR24:
5970 case elfcpp::R_POWERPC_ADDR16:
5971 case elfcpp::R_POWERPC_UADDR16:
5972 case elfcpp::R_POWERPC_ADDR16_LO:
5973 case elfcpp::R_POWERPC_ADDR16_HI:
5974 case elfcpp::R_POWERPC_ADDR16_HA:
5975 case elfcpp::R_POWERPC_ADDR14:
5976 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
5977 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
5978 case elfcpp::R_POWERPC_REL32:
5979 case elfcpp::R_POWERPC_REL24:
5980 case elfcpp::R_POWERPC_TPREL16:
5981 case elfcpp::R_POWERPC_TPREL16_LO:
5982 case elfcpp::R_POWERPC_TPREL16_HI:
5983 case elfcpp::R_POWERPC_TPREL16_HA:
5984 return;
5985
5986 default:
5987 break;
5988 }
5989
5990 if (size == 64)
5991 {
5992 switch (r_type)
5993 {
5994 // These are the relocation types supported only on 64-bit.
5995 case elfcpp::R_PPC64_ADDR64:
5996 case elfcpp::R_PPC64_UADDR64:
5997 case elfcpp::R_PPC64_JMP_IREL:
5998 case elfcpp::R_PPC64_ADDR16_DS:
5999 case elfcpp::R_PPC64_ADDR16_LO_DS:
6000 case elfcpp::R_PPC64_ADDR16_HIGH:
6001 case elfcpp::R_PPC64_ADDR16_HIGHA:
6002 case elfcpp::R_PPC64_ADDR16_HIGHER:
6003 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6004 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6005 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6006 case elfcpp::R_PPC64_REL64:
6007 case elfcpp::R_POWERPC_ADDR30:
6008 case elfcpp::R_PPC64_TPREL16_DS:
6009 case elfcpp::R_PPC64_TPREL16_LO_DS:
6010 case elfcpp::R_PPC64_TPREL16_HIGH:
6011 case elfcpp::R_PPC64_TPREL16_HIGHA:
6012 case elfcpp::R_PPC64_TPREL16_HIGHER:
6013 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6014 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6015 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6016 return;
6017
6018 default:
6019 break;
6020 }
6021 }
6022 else
6023 {
6024 switch (r_type)
6025 {
6026 // These are the relocation types supported only on 32-bit.
6027 // ??? glibc ld.so doesn't need to support these.
6028 case elfcpp::R_POWERPC_DTPREL16:
6029 case elfcpp::R_POWERPC_DTPREL16_LO:
6030 case elfcpp::R_POWERPC_DTPREL16_HI:
6031 case elfcpp::R_POWERPC_DTPREL16_HA:
6032 return;
6033
6034 default:
6035 break;
6036 }
6037 }
6038
6039 // This prevents us from issuing more than one error per reloc
6040 // section. But we can still wind up issuing more than one
6041 // error per object file.
6042 if (this->issued_non_pic_error_)
6043 return;
6044 gold_assert(parameters->options().output_is_position_independent());
6045 object->error(_("requires unsupported dynamic reloc; "
6046 "recompile with -fPIC"));
6047 this->issued_non_pic_error_ = true;
6048 return;
6049 }
6050
6051 // Return whether we need to make a PLT entry for a relocation of the
6052 // given type against a STT_GNU_IFUNC symbol.
6053
6054 template<int size, bool big_endian>
6055 bool
6056 Target_powerpc<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
6057 Target_powerpc<size, big_endian>* target,
6058 Sized_relobj_file<size, big_endian>* object,
6059 unsigned int r_type,
6060 bool report_err)
6061 {
6062 // In non-pic code any reference will resolve to the plt call stub
6063 // for the ifunc symbol.
6064 if ((size == 32 || target->abiversion() >= 2)
6065 && !parameters->options().output_is_position_independent())
6066 return true;
6067
6068 switch (r_type)
6069 {
6070 // Word size refs from data sections are OK, but don't need a PLT entry.
6071 case elfcpp::R_POWERPC_ADDR32:
6072 case elfcpp::R_POWERPC_UADDR32:
6073 if (size == 32)
6074 return false;
6075 break;
6076
6077 case elfcpp::R_PPC64_ADDR64:
6078 case elfcpp::R_PPC64_UADDR64:
6079 if (size == 64)
6080 return false;
6081 break;
6082
6083 // GOT refs are good, but also don't need a PLT entry.
6084 case elfcpp::R_POWERPC_GOT16:
6085 case elfcpp::R_POWERPC_GOT16_LO:
6086 case elfcpp::R_POWERPC_GOT16_HI:
6087 case elfcpp::R_POWERPC_GOT16_HA:
6088 case elfcpp::R_PPC64_GOT16_DS:
6089 case elfcpp::R_PPC64_GOT16_LO_DS:
6090 return false;
6091
6092 // Function calls are good, and these do need a PLT entry.
6093 case elfcpp::R_POWERPC_ADDR24:
6094 case elfcpp::R_POWERPC_ADDR14:
6095 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6096 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6097 case elfcpp::R_POWERPC_REL24:
6098 case elfcpp::R_PPC_PLTREL24:
6099 case elfcpp::R_POWERPC_REL14:
6100 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6101 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6102 return true;
6103
6104 default:
6105 break;
6106 }
6107
6108 // Anything else is a problem.
6109 // If we are building a static executable, the libc startup function
6110 // responsible for applying indirect function relocations is going
6111 // to complain about the reloc type.
6112 // If we are building a dynamic executable, we will have a text
6113 // relocation. The dynamic loader will set the text segment
6114 // writable and non-executable to apply text relocations. So we'll
6115 // segfault when trying to run the indirection function to resolve
6116 // the reloc.
6117 if (report_err)
6118 gold_error(_("%s: unsupported reloc %u for IFUNC symbol"),
6119 object->name().c_str(), r_type);
6120 return false;
6121 }
6122
6123 // Return TRUE iff INSN is one we expect on a _LO variety toc/got
6124 // reloc.
6125
6126 static bool
6127 ok_lo_toc_insn(uint32_t insn, unsigned int r_type)
6128 {
6129 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
6130 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
6131 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
6132 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
6133 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
6134 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
6135 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
6136 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
6137 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
6138 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
6139 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
6140 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
6141 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
6142 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
6143 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
6144 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
6145 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
6146 /* Exclude lfqu by testing reloc. If relocs are ever
6147 defined for the reduced D field in psq_lu then those
6148 will need testing too. */
6149 && r_type != elfcpp::R_PPC64_TOC16_LO
6150 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6151 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
6152 && (insn & 1) == 0)
6153 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
6154 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
6155 /* Exclude stfqu. psq_stu as above for psq_lu. */
6156 && r_type != elfcpp::R_PPC64_TOC16_LO
6157 && r_type != elfcpp::R_POWERPC_GOT16_LO)
6158 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
6159 && (insn & 1) == 0));
6160 }
6161
6162 // Scan a relocation for a local symbol.
6163
6164 template<int size, bool big_endian>
6165 inline void
6166 Target_powerpc<size, big_endian>::Scan::local(
6167 Symbol_table* symtab,
6168 Layout* layout,
6169 Target_powerpc<size, big_endian>* target,
6170 Sized_relobj_file<size, big_endian>* object,
6171 unsigned int data_shndx,
6172 Output_section* output_section,
6173 const elfcpp::Rela<size, big_endian>& reloc,
6174 unsigned int r_type,
6175 const elfcpp::Sym<size, big_endian>& lsym,
6176 bool is_discarded)
6177 {
6178 this->maybe_skip_tls_get_addr_call(r_type, NULL);
6179
6180 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6181 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6182 {
6183 this->expect_tls_get_addr_call();
6184 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6185 if (tls_type != tls::TLSOPT_NONE)
6186 this->skip_next_tls_get_addr_call();
6187 }
6188 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6189 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6190 {
6191 this->expect_tls_get_addr_call();
6192 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6193 if (tls_type != tls::TLSOPT_NONE)
6194 this->skip_next_tls_get_addr_call();
6195 }
6196
6197 Powerpc_relobj<size, big_endian>* ppc_object
6198 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6199
6200 if (is_discarded)
6201 {
6202 if (size == 64
6203 && data_shndx == ppc_object->opd_shndx()
6204 && r_type == elfcpp::R_PPC64_ADDR64)
6205 ppc_object->set_opd_discard(reloc.get_r_offset());
6206 return;
6207 }
6208
6209 // A local STT_GNU_IFUNC symbol may require a PLT entry.
6210 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
6211 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6212 {
6213 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6214 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6215 r_type, r_sym, reloc.get_r_addend());
6216 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
6217 }
6218
6219 switch (r_type)
6220 {
6221 case elfcpp::R_POWERPC_NONE:
6222 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6223 case elfcpp::R_POWERPC_GNU_VTENTRY:
6224 case elfcpp::R_POWERPC_TLS:
6225 case elfcpp::R_PPC64_ENTRY:
6226 break;
6227
6228 case elfcpp::R_PPC64_TOC:
6229 {
6230 Output_data_got_powerpc<size, big_endian>* got
6231 = target->got_section(symtab, layout);
6232 if (parameters->options().output_is_position_independent())
6233 {
6234 Address off = reloc.get_r_offset();
6235 if (size == 64
6236 && target->abiversion() < 2
6237 && data_shndx == ppc_object->opd_shndx()
6238 && ppc_object->get_opd_discard(off - 8))
6239 break;
6240
6241 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6242 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6243 rela_dyn->add_output_section_relative(got->output_section(),
6244 elfcpp::R_POWERPC_RELATIVE,
6245 output_section,
6246 object, data_shndx, off,
6247 symobj->toc_base_offset());
6248 }
6249 }
6250 break;
6251
6252 case elfcpp::R_PPC64_ADDR64:
6253 case elfcpp::R_PPC64_UADDR64:
6254 case elfcpp::R_POWERPC_ADDR32:
6255 case elfcpp::R_POWERPC_UADDR32:
6256 case elfcpp::R_POWERPC_ADDR24:
6257 case elfcpp::R_POWERPC_ADDR16:
6258 case elfcpp::R_POWERPC_ADDR16_LO:
6259 case elfcpp::R_POWERPC_ADDR16_HI:
6260 case elfcpp::R_POWERPC_ADDR16_HA:
6261 case elfcpp::R_POWERPC_UADDR16:
6262 case elfcpp::R_PPC64_ADDR16_HIGH:
6263 case elfcpp::R_PPC64_ADDR16_HIGHA:
6264 case elfcpp::R_PPC64_ADDR16_HIGHER:
6265 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6266 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6267 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6268 case elfcpp::R_PPC64_ADDR16_DS:
6269 case elfcpp::R_PPC64_ADDR16_LO_DS:
6270 case elfcpp::R_POWERPC_ADDR14:
6271 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6272 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6273 // If building a shared library (or a position-independent
6274 // executable), we need to create a dynamic relocation for
6275 // this location.
6276 if (parameters->options().output_is_position_independent()
6277 || (size == 64 && is_ifunc && target->abiversion() < 2))
6278 {
6279 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6280 is_ifunc);
6281 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6282 if ((size == 32 && r_type == elfcpp::R_POWERPC_ADDR32)
6283 || (size == 64 && r_type == elfcpp::R_PPC64_ADDR64))
6284 {
6285 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6286 : elfcpp::R_POWERPC_RELATIVE);
6287 rela_dyn->add_local_relative(object, r_sym, dynrel,
6288 output_section, data_shndx,
6289 reloc.get_r_offset(),
6290 reloc.get_r_addend(), false);
6291 }
6292 else if (lsym.get_st_type() != elfcpp::STT_SECTION)
6293 {
6294 check_non_pic(object, r_type);
6295 rela_dyn->add_local(object, r_sym, r_type, output_section,
6296 data_shndx, reloc.get_r_offset(),
6297 reloc.get_r_addend());
6298 }
6299 else
6300 {
6301 gold_assert(lsym.get_st_value() == 0);
6302 unsigned int shndx = lsym.get_st_shndx();
6303 bool is_ordinary;
6304 shndx = object->adjust_sym_shndx(r_sym, shndx,
6305 &is_ordinary);
6306 if (!is_ordinary)
6307 object->error(_("section symbol %u has bad shndx %u"),
6308 r_sym, shndx);
6309 else
6310 rela_dyn->add_local_section(object, shndx, r_type,
6311 output_section, data_shndx,
6312 reloc.get_r_offset());
6313 }
6314 }
6315 break;
6316
6317 case elfcpp::R_POWERPC_REL24:
6318 case elfcpp::R_PPC_PLTREL24:
6319 case elfcpp::R_PPC_LOCAL24PC:
6320 case elfcpp::R_POWERPC_REL14:
6321 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6322 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6323 if (!is_ifunc)
6324 {
6325 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6326 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6327 r_type, r_sym, reloc.get_r_addend());
6328 }
6329 break;
6330
6331 case elfcpp::R_PPC64_TOCSAVE:
6332 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6333 // caller has already saved r2 and thus a plt call stub need not
6334 // save r2.
6335 if (size == 64
6336 && target->mark_pltcall(ppc_object, data_shndx,
6337 reloc.get_r_offset() - 4, symtab))
6338 {
6339 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6340 unsigned int shndx = lsym.get_st_shndx();
6341 bool is_ordinary;
6342 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6343 if (!is_ordinary)
6344 object->error(_("tocsave symbol %u has bad shndx %u"),
6345 r_sym, shndx);
6346 else
6347 target->add_tocsave(ppc_object, shndx,
6348 lsym.get_st_value() + reloc.get_r_addend());
6349 }
6350 break;
6351
6352 case elfcpp::R_PPC64_REL64:
6353 case elfcpp::R_POWERPC_REL32:
6354 case elfcpp::R_POWERPC_REL16:
6355 case elfcpp::R_POWERPC_REL16_LO:
6356 case elfcpp::R_POWERPC_REL16_HI:
6357 case elfcpp::R_POWERPC_REL16_HA:
6358 case elfcpp::R_POWERPC_REL16DX_HA:
6359 case elfcpp::R_POWERPC_SECTOFF:
6360 case elfcpp::R_POWERPC_SECTOFF_LO:
6361 case elfcpp::R_POWERPC_SECTOFF_HI:
6362 case elfcpp::R_POWERPC_SECTOFF_HA:
6363 case elfcpp::R_PPC64_SECTOFF_DS:
6364 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6365 case elfcpp::R_POWERPC_TPREL16:
6366 case elfcpp::R_POWERPC_TPREL16_LO:
6367 case elfcpp::R_POWERPC_TPREL16_HI:
6368 case elfcpp::R_POWERPC_TPREL16_HA:
6369 case elfcpp::R_PPC64_TPREL16_DS:
6370 case elfcpp::R_PPC64_TPREL16_LO_DS:
6371 case elfcpp::R_PPC64_TPREL16_HIGH:
6372 case elfcpp::R_PPC64_TPREL16_HIGHA:
6373 case elfcpp::R_PPC64_TPREL16_HIGHER:
6374 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6375 case elfcpp::R_PPC64_TPREL16_HIGHEST:
6376 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
6377 case elfcpp::R_POWERPC_DTPREL16:
6378 case elfcpp::R_POWERPC_DTPREL16_LO:
6379 case elfcpp::R_POWERPC_DTPREL16_HI:
6380 case elfcpp::R_POWERPC_DTPREL16_HA:
6381 case elfcpp::R_PPC64_DTPREL16_DS:
6382 case elfcpp::R_PPC64_DTPREL16_LO_DS:
6383 case elfcpp::R_PPC64_DTPREL16_HIGH:
6384 case elfcpp::R_PPC64_DTPREL16_HIGHA:
6385 case elfcpp::R_PPC64_DTPREL16_HIGHER:
6386 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
6387 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
6388 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
6389 case elfcpp::R_PPC64_TLSGD:
6390 case elfcpp::R_PPC64_TLSLD:
6391 case elfcpp::R_PPC64_ADDR64_LOCAL:
6392 break;
6393
6394 case elfcpp::R_POWERPC_GOT16:
6395 case elfcpp::R_POWERPC_GOT16_LO:
6396 case elfcpp::R_POWERPC_GOT16_HI:
6397 case elfcpp::R_POWERPC_GOT16_HA:
6398 case elfcpp::R_PPC64_GOT16_DS:
6399 case elfcpp::R_PPC64_GOT16_LO_DS:
6400 {
6401 // The symbol requires a GOT entry.
6402 Output_data_got_powerpc<size, big_endian>* got
6403 = target->got_section(symtab, layout);
6404 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6405
6406 if (!parameters->options().output_is_position_independent())
6407 {
6408 if (is_ifunc
6409 && (size == 32 || target->abiversion() >= 2))
6410 got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
6411 else
6412 got->add_local(object, r_sym, GOT_TYPE_STANDARD);
6413 }
6414 else if (!object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD))
6415 {
6416 // If we are generating a shared object or a pie, this
6417 // symbol's GOT entry will be set by a dynamic relocation.
6418 unsigned int off;
6419 off = got->add_constant(0);
6420 object->set_local_got_offset(r_sym, GOT_TYPE_STANDARD, off);
6421
6422 Reloc_section* rela_dyn = target->rela_dyn_section(symtab, layout,
6423 is_ifunc);
6424 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6425 : elfcpp::R_POWERPC_RELATIVE);
6426 rela_dyn->add_local_relative(object, r_sym, dynrel,
6427 got, off, 0, false);
6428 }
6429 }
6430 break;
6431
6432 case elfcpp::R_PPC64_TOC16:
6433 case elfcpp::R_PPC64_TOC16_LO:
6434 case elfcpp::R_PPC64_TOC16_HI:
6435 case elfcpp::R_PPC64_TOC16_HA:
6436 case elfcpp::R_PPC64_TOC16_DS:
6437 case elfcpp::R_PPC64_TOC16_LO_DS:
6438 // We need a GOT section.
6439 target->got_section(symtab, layout);
6440 break;
6441
6442 case elfcpp::R_POWERPC_GOT_TLSGD16:
6443 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6444 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
6445 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6446 {
6447 const tls::Tls_optimization tls_type = target->optimize_tls_gd(true);
6448 if (tls_type == tls::TLSOPT_NONE)
6449 {
6450 Output_data_got_powerpc<size, big_endian>* got
6451 = target->got_section(symtab, layout);
6452 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6453 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6454 got->add_local_tls_pair(object, r_sym, GOT_TYPE_TLSGD,
6455 rela_dyn, elfcpp::R_POWERPC_DTPMOD);
6456 }
6457 else if (tls_type == tls::TLSOPT_TO_LE)
6458 {
6459 // no GOT relocs needed for Local Exec.
6460 }
6461 else
6462 gold_unreachable();
6463 }
6464 break;
6465
6466 case elfcpp::R_POWERPC_GOT_TLSLD16:
6467 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6468 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
6469 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6470 {
6471 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6472 if (tls_type == tls::TLSOPT_NONE)
6473 target->tlsld_got_offset(symtab, layout, object);
6474 else if (tls_type == tls::TLSOPT_TO_LE)
6475 {
6476 // no GOT relocs needed for Local Exec.
6477 if (parameters->options().emit_relocs())
6478 {
6479 Output_section* os = layout->tls_segment()->first_section();
6480 gold_assert(os != NULL);
6481 os->set_needs_symtab_index();
6482 }
6483 }
6484 else
6485 gold_unreachable();
6486 }
6487 break;
6488
6489 case elfcpp::R_POWERPC_GOT_DTPREL16:
6490 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6491 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
6492 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6493 {
6494 Output_data_got_powerpc<size, big_endian>* got
6495 = target->got_section(symtab, layout);
6496 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6497 got->add_local_tls(object, r_sym, GOT_TYPE_DTPREL);
6498 }
6499 break;
6500
6501 case elfcpp::R_POWERPC_GOT_TPREL16:
6502 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6503 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
6504 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6505 {
6506 const tls::Tls_optimization tls_type = target->optimize_tls_ie(true);
6507 if (tls_type == tls::TLSOPT_NONE)
6508 {
6509 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6510 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TPREL))
6511 {
6512 Output_data_got_powerpc<size, big_endian>* got
6513 = target->got_section(symtab, layout);
6514 unsigned int off = got->add_constant(0);
6515 object->set_local_got_offset(r_sym, GOT_TYPE_TPREL, off);
6516
6517 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6518 rela_dyn->add_symbolless_local_addend(object, r_sym,
6519 elfcpp::R_POWERPC_TPREL,
6520 got, off, 0);
6521 }
6522 }
6523 else if (tls_type == tls::TLSOPT_TO_LE)
6524 {
6525 // no GOT relocs needed for Local Exec.
6526 }
6527 else
6528 gold_unreachable();
6529 }
6530 break;
6531
6532 default:
6533 unsupported_reloc_local(object, r_type);
6534 break;
6535 }
6536
6537 if (size == 64
6538 && parameters->options().toc_optimize())
6539 {
6540 if (data_shndx == ppc_object->toc_shndx())
6541 {
6542 bool ok = true;
6543 if (r_type != elfcpp::R_PPC64_ADDR64
6544 || (is_ifunc && target->abiversion() < 2))
6545 ok = false;
6546 else if (parameters->options().output_is_position_independent())
6547 {
6548 if (is_ifunc)
6549 ok = false;
6550 else
6551 {
6552 unsigned int shndx = lsym.get_st_shndx();
6553 if (shndx >= elfcpp::SHN_LORESERVE
6554 && shndx != elfcpp::SHN_XINDEX)
6555 ok = false;
6556 }
6557 }
6558 if (!ok)
6559 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6560 }
6561
6562 enum {no_check, check_lo, check_ha} insn_check;
6563 switch (r_type)
6564 {
6565 default:
6566 insn_check = no_check;
6567 break;
6568
6569 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
6570 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
6571 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
6572 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
6573 case elfcpp::R_POWERPC_GOT16_HA:
6574 case elfcpp::R_PPC64_TOC16_HA:
6575 insn_check = check_ha;
6576 break;
6577
6578 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
6579 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
6580 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
6581 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
6582 case elfcpp::R_POWERPC_GOT16_LO:
6583 case elfcpp::R_PPC64_GOT16_LO_DS:
6584 case elfcpp::R_PPC64_TOC16_LO:
6585 case elfcpp::R_PPC64_TOC16_LO_DS:
6586 insn_check = check_lo;
6587 break;
6588 }
6589
6590 section_size_type slen;
6591 const unsigned char* view = NULL;
6592 if (insn_check != no_check)
6593 {
6594 view = ppc_object->section_contents(data_shndx, &slen, false);
6595 section_size_type off =
6596 convert_to_section_size_type(reloc.get_r_offset()) & -4;
6597 if (off < slen)
6598 {
6599 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
6600 if (insn_check == check_lo
6601 ? !ok_lo_toc_insn(insn, r_type)
6602 : ((insn & ((0x3f << 26) | 0x1f << 16))
6603 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
6604 {
6605 ppc_object->set_no_toc_opt();
6606 gold_warning(_("%s: toc optimization is not supported "
6607 "for %#08x instruction"),
6608 ppc_object->name().c_str(), insn);
6609 }
6610 }
6611 }
6612
6613 switch (r_type)
6614 {
6615 default:
6616 break;
6617 case elfcpp::R_PPC64_TOC16:
6618 case elfcpp::R_PPC64_TOC16_LO:
6619 case elfcpp::R_PPC64_TOC16_HI:
6620 case elfcpp::R_PPC64_TOC16_HA:
6621 case elfcpp::R_PPC64_TOC16_DS:
6622 case elfcpp::R_PPC64_TOC16_LO_DS:
6623 unsigned int shndx = lsym.get_st_shndx();
6624 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6625 bool is_ordinary;
6626 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6627 if (is_ordinary && shndx == ppc_object->toc_shndx())
6628 {
6629 Address dst_off = lsym.get_st_value() + reloc.get_r_offset();
6630 if (dst_off < ppc_object->section_size(shndx))
6631 {
6632 bool ok = false;
6633 if (r_type == elfcpp::R_PPC64_TOC16_HA)
6634 ok = true;
6635 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
6636 {
6637 // Need to check that the insn is a ld
6638 if (!view)
6639 view = ppc_object->section_contents(data_shndx,
6640 &slen,
6641 false);
6642 section_size_type off =
6643 (convert_to_section_size_type(reloc.get_r_offset())
6644 + (big_endian ? -2 : 3));
6645 if (off < slen
6646 && (view[off] & (0x3f << 2)) == 58u << 2)
6647 ok = true;
6648 }
6649 if (!ok)
6650 ppc_object->set_no_toc_opt(dst_off);
6651 }
6652 }
6653 break;
6654 }
6655 }
6656
6657 if (size == 32)
6658 {
6659 switch (r_type)
6660 {
6661 case elfcpp::R_POWERPC_REL32:
6662 if (ppc_object->got2_shndx() != 0
6663 && parameters->options().output_is_position_independent())
6664 {
6665 unsigned int shndx = lsym.get_st_shndx();
6666 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6667 bool is_ordinary;
6668 shndx = ppc_object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
6669 if (is_ordinary && shndx == ppc_object->got2_shndx()
6670 && (ppc_object->section_flags(data_shndx)
6671 & elfcpp::SHF_EXECINSTR) != 0)
6672 gold_error(_("%s: unsupported -mbss-plt code"),
6673 ppc_object->name().c_str());
6674 }
6675 break;
6676 default:
6677 break;
6678 }
6679 }
6680
6681 switch (r_type)
6682 {
6683 case elfcpp::R_POWERPC_GOT_TLSLD16:
6684 case elfcpp::R_POWERPC_GOT_TLSGD16:
6685 case elfcpp::R_POWERPC_GOT_TPREL16:
6686 case elfcpp::R_POWERPC_GOT_DTPREL16:
6687 case elfcpp::R_POWERPC_GOT16:
6688 case elfcpp::R_PPC64_GOT16_DS:
6689 case elfcpp::R_PPC64_TOC16:
6690 case elfcpp::R_PPC64_TOC16_DS:
6691 ppc_object->set_has_small_toc_reloc();
6692 default:
6693 break;
6694 }
6695 }
6696
6697 // Report an unsupported relocation against a global symbol.
6698
6699 template<int size, bool big_endian>
6700 void
6701 Target_powerpc<size, big_endian>::Scan::unsupported_reloc_global(
6702 Sized_relobj_file<size, big_endian>* object,
6703 unsigned int r_type,
6704 Symbol* gsym)
6705 {
6706 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6707 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6708 }
6709
6710 // Scan a relocation for a global symbol.
6711
6712 template<int size, bool big_endian>
6713 inline void
6714 Target_powerpc<size, big_endian>::Scan::global(
6715 Symbol_table* symtab,
6716 Layout* layout,
6717 Target_powerpc<size, big_endian>* target,
6718 Sized_relobj_file<size, big_endian>* object,
6719 unsigned int data_shndx,
6720 Output_section* output_section,
6721 const elfcpp::Rela<size, big_endian>& reloc,
6722 unsigned int r_type,
6723 Symbol* gsym)
6724 {
6725 if (this->maybe_skip_tls_get_addr_call(r_type, gsym) == Track_tls::SKIP)
6726 return;
6727
6728 if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
6729 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
6730 {
6731 this->expect_tls_get_addr_call();
6732 const bool final = gsym->final_value_is_known();
6733 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
6734 if (tls_type != tls::TLSOPT_NONE)
6735 this->skip_next_tls_get_addr_call();
6736 }
6737 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
6738 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
6739 {
6740 this->expect_tls_get_addr_call();
6741 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
6742 if (tls_type != tls::TLSOPT_NONE)
6743 this->skip_next_tls_get_addr_call();
6744 }
6745
6746 Powerpc_relobj<size, big_endian>* ppc_object
6747 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
6748
6749 // A STT_GNU_IFUNC symbol may require a PLT entry.
6750 bool is_ifunc = gsym->type() == elfcpp::STT_GNU_IFUNC;
6751 bool pushed_ifunc = false;
6752 if (is_ifunc && this->reloc_needs_plt_for_ifunc(target, object, r_type, true))
6753 {
6754 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6755 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6756 r_type, r_sym, reloc.get_r_addend());
6757 target->make_plt_entry(symtab, layout, gsym);
6758 pushed_ifunc = true;
6759 }
6760
6761 switch (r_type)
6762 {
6763 case elfcpp::R_POWERPC_NONE:
6764 case elfcpp::R_POWERPC_GNU_VTINHERIT:
6765 case elfcpp::R_POWERPC_GNU_VTENTRY:
6766 case elfcpp::R_PPC_LOCAL24PC:
6767 case elfcpp::R_POWERPC_TLS:
6768 case elfcpp::R_PPC64_ENTRY:
6769 break;
6770
6771 case elfcpp::R_PPC64_TOC:
6772 {
6773 Output_data_got_powerpc<size, big_endian>* got
6774 = target->got_section(symtab, layout);
6775 if (parameters->options().output_is_position_independent())
6776 {
6777 Address off = reloc.get_r_offset();
6778 if (size == 64
6779 && data_shndx == ppc_object->opd_shndx()
6780 && ppc_object->get_opd_discard(off - 8))
6781 break;
6782
6783 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6784 Powerpc_relobj<size, big_endian>* symobj = ppc_object;
6785 if (data_shndx != ppc_object->opd_shndx())
6786 symobj = static_cast
6787 <Powerpc_relobj<size, big_endian>*>(gsym->object());
6788 rela_dyn->add_output_section_relative(got->output_section(),
6789 elfcpp::R_POWERPC_RELATIVE,
6790 output_section,
6791 object, data_shndx, off,
6792 symobj->toc_base_offset());
6793 }
6794 }
6795 break;
6796
6797 case elfcpp::R_PPC64_ADDR64:
6798 if (size == 64
6799 && target->abiversion() < 2
6800 && data_shndx == ppc_object->opd_shndx()
6801 && (gsym->is_defined_in_discarded_section()
6802 || gsym->object() != object))
6803 {
6804 ppc_object->set_opd_discard(reloc.get_r_offset());
6805 break;
6806 }
6807 // Fall through.
6808 case elfcpp::R_PPC64_UADDR64:
6809 case elfcpp::R_POWERPC_ADDR32:
6810 case elfcpp::R_POWERPC_UADDR32:
6811 case elfcpp::R_POWERPC_ADDR24:
6812 case elfcpp::R_POWERPC_ADDR16:
6813 case elfcpp::R_POWERPC_ADDR16_LO:
6814 case elfcpp::R_POWERPC_ADDR16_HI:
6815 case elfcpp::R_POWERPC_ADDR16_HA:
6816 case elfcpp::R_POWERPC_UADDR16:
6817 case elfcpp::R_PPC64_ADDR16_HIGH:
6818 case elfcpp::R_PPC64_ADDR16_HIGHA:
6819 case elfcpp::R_PPC64_ADDR16_HIGHER:
6820 case elfcpp::R_PPC64_ADDR16_HIGHERA:
6821 case elfcpp::R_PPC64_ADDR16_HIGHEST:
6822 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
6823 case elfcpp::R_PPC64_ADDR16_DS:
6824 case elfcpp::R_PPC64_ADDR16_LO_DS:
6825 case elfcpp::R_POWERPC_ADDR14:
6826 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
6827 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
6828 {
6829 // Make a PLT entry if necessary.
6830 if (gsym->needs_plt_entry())
6831 {
6832 // Since this is not a PC-relative relocation, we may be
6833 // taking the address of a function. In that case we need to
6834 // set the entry in the dynamic symbol table to the address of
6835 // the PLT call stub.
6836 bool need_ifunc_plt = false;
6837 if ((size == 32 || target->abiversion() >= 2)
6838 && gsym->is_from_dynobj()
6839 && !parameters->options().output_is_position_independent())
6840 {
6841 gsym->set_needs_dynsym_value();
6842 need_ifunc_plt = true;
6843 }
6844 if (!is_ifunc || (!pushed_ifunc && need_ifunc_plt))
6845 {
6846 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6847 target->push_branch(ppc_object, data_shndx,
6848 reloc.get_r_offset(), r_type, r_sym,
6849 reloc.get_r_addend());
6850 target->make_plt_entry(symtab, layout, gsym);
6851 }
6852 }
6853 // Make a dynamic relocation if necessary.
6854 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target))
6855 || (size == 64 && is_ifunc && target->abiversion() < 2))
6856 {
6857 if (!parameters->options().output_is_position_independent()
6858 && gsym->may_need_copy_reloc())
6859 {
6860 target->copy_reloc(symtab, layout, object,
6861 data_shndx, output_section, gsym, reloc);
6862 }
6863 else if ((((size == 32
6864 && r_type == elfcpp::R_POWERPC_ADDR32)
6865 || (size == 64
6866 && r_type == elfcpp::R_PPC64_ADDR64
6867 && target->abiversion() >= 2))
6868 && gsym->can_use_relative_reloc(false)
6869 && !(gsym->visibility() == elfcpp::STV_PROTECTED
6870 && parameters->options().shared()))
6871 || (size == 64
6872 && r_type == elfcpp::R_PPC64_ADDR64
6873 && target->abiversion() < 2
6874 && (gsym->can_use_relative_reloc(false)
6875 || data_shndx == ppc_object->opd_shndx())))
6876 {
6877 Reloc_section* rela_dyn
6878 = target->rela_dyn_section(symtab, layout, is_ifunc);
6879 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
6880 : elfcpp::R_POWERPC_RELATIVE);
6881 rela_dyn->add_symbolless_global_addend(
6882 gsym, dynrel, output_section, object, data_shndx,
6883 reloc.get_r_offset(), reloc.get_r_addend());
6884 }
6885 else
6886 {
6887 Reloc_section* rela_dyn
6888 = target->rela_dyn_section(symtab, layout, is_ifunc);
6889 check_non_pic(object, r_type);
6890 rela_dyn->add_global(gsym, r_type, output_section,
6891 object, data_shndx,
6892 reloc.get_r_offset(),
6893 reloc.get_r_addend());
6894
6895 if (size == 64
6896 && parameters->options().toc_optimize()
6897 && data_shndx == ppc_object->toc_shndx())
6898 ppc_object->set_no_toc_opt(reloc.get_r_offset());
6899 }
6900 }
6901 }
6902 break;
6903
6904 case elfcpp::R_PPC_PLTREL24:
6905 case elfcpp::R_POWERPC_REL24:
6906 if (!is_ifunc)
6907 {
6908 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6909 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6910 r_type, r_sym, reloc.get_r_addend());
6911 if (gsym->needs_plt_entry()
6912 || (!gsym->final_value_is_known()
6913 && (gsym->is_undefined()
6914 || gsym->is_from_dynobj()
6915 || gsym->is_preemptible())))
6916 target->make_plt_entry(symtab, layout, gsym);
6917 }
6918 // Fall through.
6919
6920 case elfcpp::R_PPC64_REL64:
6921 case elfcpp::R_POWERPC_REL32:
6922 // Make a dynamic relocation if necessary.
6923 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type, target)))
6924 {
6925 if (!parameters->options().output_is_position_independent()
6926 && gsym->may_need_copy_reloc())
6927 {
6928 target->copy_reloc(symtab, layout, object,
6929 data_shndx, output_section, gsym,
6930 reloc);
6931 }
6932 else
6933 {
6934 Reloc_section* rela_dyn
6935 = target->rela_dyn_section(symtab, layout, is_ifunc);
6936 check_non_pic(object, r_type);
6937 rela_dyn->add_global(gsym, r_type, output_section, object,
6938 data_shndx, reloc.get_r_offset(),
6939 reloc.get_r_addend());
6940 }
6941 }
6942 break;
6943
6944 case elfcpp::R_POWERPC_REL14:
6945 case elfcpp::R_POWERPC_REL14_BRTAKEN:
6946 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
6947 if (!is_ifunc)
6948 {
6949 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6950 target->push_branch(ppc_object, data_shndx, reloc.get_r_offset(),
6951 r_type, r_sym, reloc.get_r_addend());
6952 }
6953 break;
6954
6955 case elfcpp::R_PPC64_TOCSAVE:
6956 // R_PPC64_TOCSAVE follows a call instruction to indicate the
6957 // caller has already saved r2 and thus a plt call stub need not
6958 // save r2.
6959 if (size == 64
6960 && target->mark_pltcall(ppc_object, data_shndx,
6961 reloc.get_r_offset() - 4, symtab))
6962 {
6963 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
6964 bool is_ordinary;
6965 unsigned int shndx = gsym->shndx(&is_ordinary);
6966 if (!is_ordinary)
6967 object->error(_("tocsave symbol %u has bad shndx %u"),
6968 r_sym, shndx);
6969 else
6970 {
6971 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
6972 target->add_tocsave(ppc_object, shndx,
6973 sym->value() + reloc.get_r_addend());
6974 }
6975 }
6976 break;
6977
6978 case elfcpp::R_POWERPC_REL16:
6979 case elfcpp::R_POWERPC_REL16_LO:
6980 case elfcpp::R_POWERPC_REL16_HI:
6981 case elfcpp::R_POWERPC_REL16_HA:
6982 case elfcpp::R_POWERPC_REL16DX_HA:
6983 case elfcpp::R_POWERPC_SECTOFF:
6984 case elfcpp::R_POWERPC_SECTOFF_LO:
6985 case elfcpp::R_POWERPC_SECTOFF_HI:
6986 case elfcpp::R_POWERPC_SECTOFF_HA:
6987 case elfcpp::R_PPC64_SECTOFF_DS:
6988 case elfcpp::R_PPC64_SECTOFF_LO_DS:
6989 case elfcpp::R_POWERPC_TPREL16:
6990 case elfcpp::R_POWERPC_TPREL16_LO:
6991 case elfcpp::R_POWERPC_TPREL16_HI:
6992 case elfcpp::R_POWERPC_TPREL16_HA:
6993 case elfcpp::R_PPC64_TPREL16_DS:
6994 case elfcpp::R_PPC64_TPREL16_LO_DS:
6995 case elfcpp::R_PPC64_TPREL16_HIGH:
6996 case elfcpp::R_PPC64_TPREL16_HIGHA:
6997 case elfcpp::R_PPC64_TPREL16_HIGHER:
6998 case elfcpp::R_PPC64_TPREL16_HIGHERA:
6999 case elfcpp::R_PPC64_TPREL16_HIGHEST:
7000 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
7001 case elfcpp::R_POWERPC_DTPREL16:
7002 case elfcpp::R_POWERPC_DTPREL16_LO:
7003 case elfcpp::R_POWERPC_DTPREL16_HI:
7004 case elfcpp::R_POWERPC_DTPREL16_HA:
7005 case elfcpp::R_PPC64_DTPREL16_DS:
7006 case elfcpp::R_PPC64_DTPREL16_LO_DS:
7007 case elfcpp::R_PPC64_DTPREL16_HIGH:
7008 case elfcpp::R_PPC64_DTPREL16_HIGHA:
7009 case elfcpp::R_PPC64_DTPREL16_HIGHER:
7010 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
7011 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
7012 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
7013 case elfcpp::R_PPC64_TLSGD:
7014 case elfcpp::R_PPC64_TLSLD:
7015 case elfcpp::R_PPC64_ADDR64_LOCAL:
7016 break;
7017
7018 case elfcpp::R_POWERPC_GOT16:
7019 case elfcpp::R_POWERPC_GOT16_LO:
7020 case elfcpp::R_POWERPC_GOT16_HI:
7021 case elfcpp::R_POWERPC_GOT16_HA:
7022 case elfcpp::R_PPC64_GOT16_DS:
7023 case elfcpp::R_PPC64_GOT16_LO_DS:
7024 {
7025 // The symbol requires a GOT entry.
7026 Output_data_got_powerpc<size, big_endian>* got;
7027
7028 got = target->got_section(symtab, layout);
7029 if (gsym->final_value_is_known())
7030 {
7031 if (is_ifunc
7032 && (size == 32 || target->abiversion() >= 2))
7033 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
7034 else
7035 got->add_global(gsym, GOT_TYPE_STANDARD);
7036 }
7037 else if (!gsym->has_got_offset(GOT_TYPE_STANDARD))
7038 {
7039 // If we are generating a shared object or a pie, this
7040 // symbol's GOT entry will be set by a dynamic relocation.
7041 unsigned int off = got->add_constant(0);
7042 gsym->set_got_offset(GOT_TYPE_STANDARD, off);
7043
7044 Reloc_section* rela_dyn
7045 = target->rela_dyn_section(symtab, layout, is_ifunc);
7046
7047 if (gsym->can_use_relative_reloc(false)
7048 && !((size == 32
7049 || target->abiversion() >= 2)
7050 && gsym->visibility() == elfcpp::STV_PROTECTED
7051 && parameters->options().shared()))
7052 {
7053 unsigned int dynrel = (is_ifunc ? elfcpp::R_POWERPC_IRELATIVE
7054 : elfcpp::R_POWERPC_RELATIVE);
7055 rela_dyn->add_global_relative(gsym, dynrel, got, off, 0, false);
7056 }
7057 else
7058 {
7059 unsigned int dynrel = elfcpp::R_POWERPC_GLOB_DAT;
7060 rela_dyn->add_global(gsym, dynrel, got, off, 0);
7061 }
7062 }
7063 }
7064 break;
7065
7066 case elfcpp::R_PPC64_TOC16:
7067 case elfcpp::R_PPC64_TOC16_LO:
7068 case elfcpp::R_PPC64_TOC16_HI:
7069 case elfcpp::R_PPC64_TOC16_HA:
7070 case elfcpp::R_PPC64_TOC16_DS:
7071 case elfcpp::R_PPC64_TOC16_LO_DS:
7072 // We need a GOT section.
7073 target->got_section(symtab, layout);
7074 break;
7075
7076 case elfcpp::R_POWERPC_GOT_TLSGD16:
7077 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7078 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
7079 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7080 {
7081 const bool final = gsym->final_value_is_known();
7082 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
7083 if (tls_type == tls::TLSOPT_NONE)
7084 {
7085 Output_data_got_powerpc<size, big_endian>* got
7086 = target->got_section(symtab, layout);
7087 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7088 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLSGD, rela_dyn,
7089 elfcpp::R_POWERPC_DTPMOD,
7090 elfcpp::R_POWERPC_DTPREL);
7091 }
7092 else if (tls_type == tls::TLSOPT_TO_IE)
7093 {
7094 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7095 {
7096 Output_data_got_powerpc<size, big_endian>* got
7097 = target->got_section(symtab, layout);
7098 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7099 if (gsym->is_undefined()
7100 || gsym->is_from_dynobj())
7101 {
7102 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7103 elfcpp::R_POWERPC_TPREL);
7104 }
7105 else
7106 {
7107 unsigned int off = got->add_constant(0);
7108 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7109 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7110 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7111 got, off, 0);
7112 }
7113 }
7114 }
7115 else if (tls_type == tls::TLSOPT_TO_LE)
7116 {
7117 // no GOT relocs needed for Local Exec.
7118 }
7119 else
7120 gold_unreachable();
7121 }
7122 break;
7123
7124 case elfcpp::R_POWERPC_GOT_TLSLD16:
7125 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7126 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
7127 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7128 {
7129 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
7130 if (tls_type == tls::TLSOPT_NONE)
7131 target->tlsld_got_offset(symtab, layout, object);
7132 else if (tls_type == tls::TLSOPT_TO_LE)
7133 {
7134 // no GOT relocs needed for Local Exec.
7135 if (parameters->options().emit_relocs())
7136 {
7137 Output_section* os = layout->tls_segment()->first_section();
7138 gold_assert(os != NULL);
7139 os->set_needs_symtab_index();
7140 }
7141 }
7142 else
7143 gold_unreachable();
7144 }
7145 break;
7146
7147 case elfcpp::R_POWERPC_GOT_DTPREL16:
7148 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7149 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
7150 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7151 {
7152 Output_data_got_powerpc<size, big_endian>* got
7153 = target->got_section(symtab, layout);
7154 if (!gsym->final_value_is_known()
7155 && (gsym->is_from_dynobj()
7156 || gsym->is_undefined()
7157 || gsym->is_preemptible()))
7158 got->add_global_with_rel(gsym, GOT_TYPE_DTPREL,
7159 target->rela_dyn_section(layout),
7160 elfcpp::R_POWERPC_DTPREL);
7161 else
7162 got->add_global_tls(gsym, GOT_TYPE_DTPREL);
7163 }
7164 break;
7165
7166 case elfcpp::R_POWERPC_GOT_TPREL16:
7167 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7168 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
7169 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7170 {
7171 const bool final = gsym->final_value_is_known();
7172 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
7173 if (tls_type == tls::TLSOPT_NONE)
7174 {
7175 if (!gsym->has_got_offset(GOT_TYPE_TPREL))
7176 {
7177 Output_data_got_powerpc<size, big_endian>* got
7178 = target->got_section(symtab, layout);
7179 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7180 if (gsym->is_undefined()
7181 || gsym->is_from_dynobj())
7182 {
7183 got->add_global_with_rel(gsym, GOT_TYPE_TPREL, rela_dyn,
7184 elfcpp::R_POWERPC_TPREL);
7185 }
7186 else
7187 {
7188 unsigned int off = got->add_constant(0);
7189 gsym->set_got_offset(GOT_TYPE_TPREL, off);
7190 unsigned int dynrel = elfcpp::R_POWERPC_TPREL;
7191 rela_dyn->add_symbolless_global_addend(gsym, dynrel,
7192 got, off, 0);
7193 }
7194 }
7195 }
7196 else if (tls_type == tls::TLSOPT_TO_LE)
7197 {
7198 // no GOT relocs needed for Local Exec.
7199 }
7200 else
7201 gold_unreachable();
7202 }
7203 break;
7204
7205 default:
7206 unsupported_reloc_global(object, r_type, gsym);
7207 break;
7208 }
7209
7210 if (size == 64
7211 && parameters->options().toc_optimize())
7212 {
7213 if (data_shndx == ppc_object->toc_shndx())
7214 {
7215 bool ok = true;
7216 if (r_type != elfcpp::R_PPC64_ADDR64
7217 || (is_ifunc && target->abiversion() < 2))
7218 ok = false;
7219 else if (parameters->options().output_is_position_independent()
7220 && (is_ifunc || gsym->is_absolute() || gsym->is_undefined()))
7221 ok = false;
7222 if (!ok)
7223 ppc_object->set_no_toc_opt(reloc.get_r_offset());
7224 }
7225
7226 enum {no_check, check_lo, check_ha} insn_check;
7227 switch (r_type)
7228 {
7229 default:
7230 insn_check = no_check;
7231 break;
7232
7233 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
7234 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
7235 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
7236 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
7237 case elfcpp::R_POWERPC_GOT16_HA:
7238 case elfcpp::R_PPC64_TOC16_HA:
7239 insn_check = check_ha;
7240 break;
7241
7242 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
7243 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
7244 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
7245 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
7246 case elfcpp::R_POWERPC_GOT16_LO:
7247 case elfcpp::R_PPC64_GOT16_LO_DS:
7248 case elfcpp::R_PPC64_TOC16_LO:
7249 case elfcpp::R_PPC64_TOC16_LO_DS:
7250 insn_check = check_lo;
7251 break;
7252 }
7253
7254 section_size_type slen;
7255 const unsigned char* view = NULL;
7256 if (insn_check != no_check)
7257 {
7258 view = ppc_object->section_contents(data_shndx, &slen, false);
7259 section_size_type off =
7260 convert_to_section_size_type(reloc.get_r_offset()) & -4;
7261 if (off < slen)
7262 {
7263 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(view + off);
7264 if (insn_check == check_lo
7265 ? !ok_lo_toc_insn(insn, r_type)
7266 : ((insn & ((0x3f << 26) | 0x1f << 16))
7267 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
7268 {
7269 ppc_object->set_no_toc_opt();
7270 gold_warning(_("%s: toc optimization is not supported "
7271 "for %#08x instruction"),
7272 ppc_object->name().c_str(), insn);
7273 }
7274 }
7275 }
7276
7277 switch (r_type)
7278 {
7279 default:
7280 break;
7281 case elfcpp::R_PPC64_TOC16:
7282 case elfcpp::R_PPC64_TOC16_LO:
7283 case elfcpp::R_PPC64_TOC16_HI:
7284 case elfcpp::R_PPC64_TOC16_HA:
7285 case elfcpp::R_PPC64_TOC16_DS:
7286 case elfcpp::R_PPC64_TOC16_LO_DS:
7287 if (gsym->source() == Symbol::FROM_OBJECT
7288 && !gsym->object()->is_dynamic())
7289 {
7290 Powerpc_relobj<size, big_endian>* sym_object
7291 = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7292 bool is_ordinary;
7293 unsigned int shndx = gsym->shndx(&is_ordinary);
7294 if (shndx == sym_object->toc_shndx())
7295 {
7296 Sized_symbol<size>* sym = symtab->get_sized_symbol<size>(gsym);
7297 Address dst_off = sym->value() + reloc.get_r_offset();
7298 if (dst_off < sym_object->section_size(shndx))
7299 {
7300 bool ok = false;
7301 if (r_type == elfcpp::R_PPC64_TOC16_HA)
7302 ok = true;
7303 else if (r_type == elfcpp::R_PPC64_TOC16_LO_DS)
7304 {
7305 // Need to check that the insn is a ld
7306 if (!view)
7307 view = ppc_object->section_contents(data_shndx,
7308 &slen,
7309 false);
7310 section_size_type off =
7311 (convert_to_section_size_type(reloc.get_r_offset())
7312 + (big_endian ? -2 : 3));
7313 if (off < slen
7314 && (view[off] & (0x3f << 2)) == (58u << 2))
7315 ok = true;
7316 }
7317 if (!ok)
7318 sym_object->set_no_toc_opt(dst_off);
7319 }
7320 }
7321 }
7322 break;
7323 }
7324 }
7325
7326 if (size == 32)
7327 {
7328 switch (r_type)
7329 {
7330 case elfcpp::R_PPC_LOCAL24PC:
7331 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
7332 gold_error(_("%s: unsupported -mbss-plt code"),
7333 ppc_object->name().c_str());
7334 break;
7335 default:
7336 break;
7337 }
7338 }
7339
7340 switch (r_type)
7341 {
7342 case elfcpp::R_POWERPC_GOT_TLSLD16:
7343 case elfcpp::R_POWERPC_GOT_TLSGD16:
7344 case elfcpp::R_POWERPC_GOT_TPREL16:
7345 case elfcpp::R_POWERPC_GOT_DTPREL16:
7346 case elfcpp::R_POWERPC_GOT16:
7347 case elfcpp::R_PPC64_GOT16_DS:
7348 case elfcpp::R_PPC64_TOC16:
7349 case elfcpp::R_PPC64_TOC16_DS:
7350 ppc_object->set_has_small_toc_reloc();
7351 default:
7352 break;
7353 }
7354 }
7355
7356 // Process relocations for gc.
7357
7358 template<int size, bool big_endian>
7359 void
7360 Target_powerpc<size, big_endian>::gc_process_relocs(
7361 Symbol_table* symtab,
7362 Layout* layout,
7363 Sized_relobj_file<size, big_endian>* object,
7364 unsigned int data_shndx,
7365 unsigned int,
7366 const unsigned char* prelocs,
7367 size_t reloc_count,
7368 Output_section* output_section,
7369 bool needs_special_offset_handling,
7370 size_t local_symbol_count,
7371 const unsigned char* plocal_symbols)
7372 {
7373 typedef Target_powerpc<size, big_endian> Powerpc;
7374 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7375 Classify_reloc;
7376
7377 Powerpc_relobj<size, big_endian>* ppc_object
7378 = static_cast<Powerpc_relobj<size, big_endian>*>(object);
7379 if (size == 64)
7380 ppc_object->set_opd_valid();
7381 if (size == 64 && data_shndx == ppc_object->opd_shndx())
7382 {
7383 typename Powerpc_relobj<size, big_endian>::Access_from::iterator p;
7384 for (p = ppc_object->access_from_map()->begin();
7385 p != ppc_object->access_from_map()->end();
7386 ++p)
7387 {
7388 Address dst_off = p->first;
7389 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7390 typename Powerpc_relobj<size, big_endian>::Section_refs::iterator s;
7391 for (s = p->second.begin(); s != p->second.end(); ++s)
7392 {
7393 Relobj* src_obj = s->first;
7394 unsigned int src_indx = s->second;
7395 symtab->gc()->add_reference(src_obj, src_indx,
7396 ppc_object, dst_indx);
7397 }
7398 p->second.clear();
7399 }
7400 ppc_object->access_from_map()->clear();
7401 ppc_object->process_gc_mark(symtab);
7402 // Don't look at .opd relocs as .opd will reference everything.
7403 return;
7404 }
7405
7406 gold::gc_process_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7407 symtab,
7408 layout,
7409 this,
7410 object,
7411 data_shndx,
7412 prelocs,
7413 reloc_count,
7414 output_section,
7415 needs_special_offset_handling,
7416 local_symbol_count,
7417 plocal_symbols);
7418 }
7419
7420 // Handle target specific gc actions when adding a gc reference from
7421 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
7422 // and DST_OFF. For powerpc64, this adds a referenc to the code
7423 // section of a function descriptor.
7424
7425 template<int size, bool big_endian>
7426 void
7427 Target_powerpc<size, big_endian>::do_gc_add_reference(
7428 Symbol_table* symtab,
7429 Relobj* src_obj,
7430 unsigned int src_shndx,
7431 Relobj* dst_obj,
7432 unsigned int dst_shndx,
7433 Address dst_off) const
7434 {
7435 if (size != 64 || dst_obj->is_dynamic())
7436 return;
7437
7438 Powerpc_relobj<size, big_endian>* ppc_object
7439 = static_cast<Powerpc_relobj<size, big_endian>*>(dst_obj);
7440 if (dst_shndx != 0 && dst_shndx == ppc_object->opd_shndx())
7441 {
7442 if (ppc_object->opd_valid())
7443 {
7444 dst_shndx = ppc_object->get_opd_ent(dst_off);
7445 symtab->gc()->add_reference(src_obj, src_shndx, dst_obj, dst_shndx);
7446 }
7447 else
7448 {
7449 // If we haven't run scan_opd_relocs, we must delay
7450 // processing this function descriptor reference.
7451 ppc_object->add_reference(src_obj, src_shndx, dst_off);
7452 }
7453 }
7454 }
7455
7456 // Add any special sections for this symbol to the gc work list.
7457 // For powerpc64, this adds the code section of a function
7458 // descriptor.
7459
7460 template<int size, bool big_endian>
7461 void
7462 Target_powerpc<size, big_endian>::do_gc_mark_symbol(
7463 Symbol_table* symtab,
7464 Symbol* sym) const
7465 {
7466 if (size == 64)
7467 {
7468 Powerpc_relobj<size, big_endian>* ppc_object
7469 = static_cast<Powerpc_relobj<size, big_endian>*>(sym->object());
7470 bool is_ordinary;
7471 unsigned int shndx = sym->shndx(&is_ordinary);
7472 if (is_ordinary && shndx != 0 && shndx == ppc_object->opd_shndx())
7473 {
7474 Sized_symbol<size>* gsym = symtab->get_sized_symbol<size>(sym);
7475 Address dst_off = gsym->value();
7476 if (ppc_object->opd_valid())
7477 {
7478 unsigned int dst_indx = ppc_object->get_opd_ent(dst_off);
7479 symtab->gc()->worklist().push_back(Section_id(ppc_object,
7480 dst_indx));
7481 }
7482 else
7483 ppc_object->add_gc_mark(dst_off);
7484 }
7485 }
7486 }
7487
7488 // For a symbol location in .opd, set LOC to the location of the
7489 // function entry.
7490
7491 template<int size, bool big_endian>
7492 void
7493 Target_powerpc<size, big_endian>::do_function_location(
7494 Symbol_location* loc) const
7495 {
7496 if (size == 64 && loc->shndx != 0)
7497 {
7498 if (loc->object->is_dynamic())
7499 {
7500 Powerpc_dynobj<size, big_endian>* ppc_object
7501 = static_cast<Powerpc_dynobj<size, big_endian>*>(loc->object);
7502 if (loc->shndx == ppc_object->opd_shndx())
7503 {
7504 Address dest_off;
7505 Address off = loc->offset - ppc_object->opd_address();
7506 loc->shndx = ppc_object->get_opd_ent(off, &dest_off);
7507 loc->offset = dest_off;
7508 }
7509 }
7510 else
7511 {
7512 const Powerpc_relobj<size, big_endian>* ppc_object
7513 = static_cast<const Powerpc_relobj<size, big_endian>*>(loc->object);
7514 if (loc->shndx == ppc_object->opd_shndx())
7515 {
7516 Address dest_off;
7517 loc->shndx = ppc_object->get_opd_ent(loc->offset, &dest_off);
7518 loc->offset = dest_off;
7519 }
7520 }
7521 }
7522 }
7523
7524 // FNOFFSET in section SHNDX in OBJECT is the start of a function
7525 // compiled with -fsplit-stack. The function calls non-split-stack
7526 // code. Change the function to ensure it has enough stack space to
7527 // call some random function.
7528
7529 template<int size, bool big_endian>
7530 void
7531 Target_powerpc<size, big_endian>::do_calls_non_split(
7532 Relobj* object,
7533 unsigned int shndx,
7534 section_offset_type fnoffset,
7535 section_size_type fnsize,
7536 const unsigned char* prelocs,
7537 size_t reloc_count,
7538 unsigned char* view,
7539 section_size_type view_size,
7540 std::string* from,
7541 std::string* to) const
7542 {
7543 // 32-bit not supported.
7544 if (size == 32)
7545 {
7546 // warn
7547 Target::do_calls_non_split(object, shndx, fnoffset, fnsize,
7548 prelocs, reloc_count, view, view_size,
7549 from, to);
7550 return;
7551 }
7552
7553 // The function always starts with
7554 // ld %r0,-0x7000-64(%r13) # tcbhead_t.__private_ss
7555 // addis %r12,%r1,-allocate@ha
7556 // addi %r12,%r12,-allocate@l
7557 // cmpld %r12,%r0
7558 // but note that the addis or addi may be replaced with a nop
7559
7560 unsigned char *entry = view + fnoffset;
7561 uint32_t insn = elfcpp::Swap<32, big_endian>::readval(entry);
7562
7563 if ((insn & 0xffff0000) == addis_2_12)
7564 {
7565 /* Skip ELFv2 global entry code. */
7566 entry += 8;
7567 insn = elfcpp::Swap<32, big_endian>::readval(entry);
7568 }
7569
7570 unsigned char *pinsn = entry;
7571 bool ok = false;
7572 const uint32_t ld_private_ss = 0xe80d8fc0;
7573 if (insn == ld_private_ss)
7574 {
7575 int32_t allocate = 0;
7576 while (1)
7577 {
7578 pinsn += 4;
7579 insn = elfcpp::Swap<32, big_endian>::readval(pinsn);
7580 if ((insn & 0xffff0000) == addis_12_1)
7581 allocate += (insn & 0xffff) << 16;
7582 else if ((insn & 0xffff0000) == addi_12_1
7583 || (insn & 0xffff0000) == addi_12_12)
7584 allocate += ((insn & 0xffff) ^ 0x8000) - 0x8000;
7585 else if (insn != nop)
7586 break;
7587 }
7588 if (insn == cmpld_7_12_0 && pinsn == entry + 12)
7589 {
7590 int extra = parameters->options().split_stack_adjust_size();
7591 allocate -= extra;
7592 if (allocate >= 0 || extra < 0)
7593 {
7594 object->error(_("split-stack stack size overflow at "
7595 "section %u offset %0zx"),
7596 shndx, static_cast<size_t>(fnoffset));
7597 return;
7598 }
7599 pinsn = entry + 4;
7600 insn = addis_12_1 | (((allocate + 0x8000) >> 16) & 0xffff);
7601 if (insn != addis_12_1)
7602 {
7603 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7604 pinsn += 4;
7605 insn = addi_12_12 | (allocate & 0xffff);
7606 if (insn != addi_12_12)
7607 {
7608 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7609 pinsn += 4;
7610 }
7611 }
7612 else
7613 {
7614 insn = addi_12_1 | (allocate & 0xffff);
7615 elfcpp::Swap<32, big_endian>::writeval(pinsn, insn);
7616 pinsn += 4;
7617 }
7618 if (pinsn != entry + 12)
7619 elfcpp::Swap<32, big_endian>::writeval(pinsn, nop);
7620
7621 ok = true;
7622 }
7623 }
7624
7625 if (!ok)
7626 {
7627 if (!object->has_no_split_stack())
7628 object->error(_("failed to match split-stack sequence at "
7629 "section %u offset %0zx"),
7630 shndx, static_cast<size_t>(fnoffset));
7631 }
7632 }
7633
7634 // Scan relocations for a section.
7635
7636 template<int size, bool big_endian>
7637 void
7638 Target_powerpc<size, big_endian>::scan_relocs(
7639 Symbol_table* symtab,
7640 Layout* layout,
7641 Sized_relobj_file<size, big_endian>* object,
7642 unsigned int data_shndx,
7643 unsigned int sh_type,
7644 const unsigned char* prelocs,
7645 size_t reloc_count,
7646 Output_section* output_section,
7647 bool needs_special_offset_handling,
7648 size_t local_symbol_count,
7649 const unsigned char* plocal_symbols)
7650 {
7651 typedef Target_powerpc<size, big_endian> Powerpc;
7652 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
7653 Classify_reloc;
7654
7655 if (!this->plt_localentry0_init_)
7656 {
7657 bool plt_localentry0 = false;
7658 if (size == 64
7659 && this->abiversion() >= 2)
7660 {
7661 if (parameters->options().user_set_plt_localentry())
7662 plt_localentry0 = parameters->options().plt_localentry();
7663 else
7664 plt_localentry0 = symtab->lookup("GLIBC_2.26", NULL) != NULL;
7665 }
7666 this->plt_localentry0_ = plt_localentry0;
7667 this->plt_localentry0_init_ = true;
7668 }
7669
7670 if (sh_type == elfcpp::SHT_REL)
7671 {
7672 gold_error(_("%s: unsupported REL reloc section"),
7673 object->name().c_str());
7674 return;
7675 }
7676
7677 gold::scan_relocs<size, big_endian, Powerpc, Scan, Classify_reloc>(
7678 symtab,
7679 layout,
7680 this,
7681 object,
7682 data_shndx,
7683 prelocs,
7684 reloc_count,
7685 output_section,
7686 needs_special_offset_handling,
7687 local_symbol_count,
7688 plocal_symbols);
7689 }
7690
7691 // Functor class for processing the global symbol table.
7692 // Removes symbols defined on discarded opd entries.
7693
7694 template<bool big_endian>
7695 class Global_symbol_visitor_opd
7696 {
7697 public:
7698 Global_symbol_visitor_opd()
7699 { }
7700
7701 void
7702 operator()(Sized_symbol<64>* sym)
7703 {
7704 if (sym->has_symtab_index()
7705 || sym->source() != Symbol::FROM_OBJECT
7706 || !sym->in_real_elf())
7707 return;
7708
7709 if (sym->object()->is_dynamic())
7710 return;
7711
7712 Powerpc_relobj<64, big_endian>* symobj
7713 = static_cast<Powerpc_relobj<64, big_endian>*>(sym->object());
7714 if (symobj->opd_shndx() == 0)
7715 return;
7716
7717 bool is_ordinary;
7718 unsigned int shndx = sym->shndx(&is_ordinary);
7719 if (shndx == symobj->opd_shndx()
7720 && symobj->get_opd_discard(sym->value()))
7721 {
7722 sym->set_undefined();
7723 sym->set_visibility(elfcpp::STV_DEFAULT);
7724 sym->set_is_defined_in_discarded_section();
7725 sym->set_symtab_index(-1U);
7726 }
7727 }
7728 };
7729
7730 template<int size, bool big_endian>
7731 void
7732 Target_powerpc<size, big_endian>::define_save_restore_funcs(
7733 Layout* layout,
7734 Symbol_table* symtab)
7735 {
7736 if (size == 64)
7737 {
7738 Output_data_save_res<size, big_endian>* savres
7739 = new Output_data_save_res<size, big_endian>(symtab);
7740 this->savres_section_ = savres;
7741 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7742 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
7743 savres, ORDER_TEXT, false);
7744 }
7745 }
7746
7747 // Sort linker created .got section first (for the header), then input
7748 // sections belonging to files using small model code.
7749
7750 template<bool big_endian>
7751 class Sort_toc_sections
7752 {
7753 public:
7754 bool
7755 operator()(const Output_section::Input_section& is1,
7756 const Output_section::Input_section& is2) const
7757 {
7758 if (!is1.is_input_section() && is2.is_input_section())
7759 return true;
7760 bool small1
7761 = (is1.is_input_section()
7762 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is1.relobj())
7763 ->has_small_toc_reloc()));
7764 bool small2
7765 = (is2.is_input_section()
7766 && (static_cast<const Powerpc_relobj<64, big_endian>*>(is2.relobj())
7767 ->has_small_toc_reloc()));
7768 return small1 && !small2;
7769 }
7770 };
7771
7772 // Finalize the sections.
7773
7774 template<int size, bool big_endian>
7775 void
7776 Target_powerpc<size, big_endian>::do_finalize_sections(
7777 Layout* layout,
7778 const Input_objects*,
7779 Symbol_table* symtab)
7780 {
7781 if (parameters->doing_static_link())
7782 {
7783 // At least some versions of glibc elf-init.o have a strong
7784 // reference to __rela_iplt marker syms. A weak ref would be
7785 // better..
7786 if (this->iplt_ != NULL)
7787 {
7788 Reloc_section* rel = this->iplt_->rel_plt();
7789 symtab->define_in_output_data("__rela_iplt_start", NULL,
7790 Symbol_table::PREDEFINED, rel, 0, 0,
7791 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7792 elfcpp::STV_HIDDEN, 0, false, true);
7793 symtab->define_in_output_data("__rela_iplt_end", NULL,
7794 Symbol_table::PREDEFINED, rel, 0, 0,
7795 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7796 elfcpp::STV_HIDDEN, 0, true, true);
7797 }
7798 else
7799 {
7800 symtab->define_as_constant("__rela_iplt_start", NULL,
7801 Symbol_table::PREDEFINED, 0, 0,
7802 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7803 elfcpp::STV_HIDDEN, 0, true, false);
7804 symtab->define_as_constant("__rela_iplt_end", NULL,
7805 Symbol_table::PREDEFINED, 0, 0,
7806 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
7807 elfcpp::STV_HIDDEN, 0, true, false);
7808 }
7809 }
7810
7811 if (size == 64)
7812 {
7813 typedef Global_symbol_visitor_opd<big_endian> Symbol_visitor;
7814 symtab->for_all_symbols<64, Symbol_visitor>(Symbol_visitor());
7815
7816 if (!parameters->options().relocatable())
7817 {
7818 this->define_save_restore_funcs(layout, symtab);
7819
7820 // Annoyingly, we need to make these sections now whether or
7821 // not we need them. If we delay until do_relax then we
7822 // need to mess with the relaxation machinery checkpointing.
7823 this->got_section(symtab, layout);
7824 this->make_brlt_section(layout);
7825
7826 if (parameters->options().toc_sort())
7827 {
7828 Output_section* os = this->got_->output_section();
7829 if (os != NULL && os->input_sections().size() > 1)
7830 std::stable_sort(os->input_sections().begin(),
7831 os->input_sections().end(),
7832 Sort_toc_sections<big_endian>());
7833 }
7834 }
7835 }
7836
7837 // Fill in some more dynamic tags.
7838 Output_data_dynamic* odyn = layout->dynamic_data();
7839 if (odyn != NULL)
7840 {
7841 const Reloc_section* rel_plt = (this->plt_ == NULL
7842 ? NULL
7843 : this->plt_->rel_plt());
7844 layout->add_target_dynamic_tags(false, this->plt_, rel_plt,
7845 this->rela_dyn_, true, size == 32);
7846
7847 if (size == 32)
7848 {
7849 if (this->got_ != NULL)
7850 {
7851 this->got_->finalize_data_size();
7852 odyn->add_section_plus_offset(elfcpp::DT_PPC_GOT,
7853 this->got_, this->got_->g_o_t());
7854 }
7855 }
7856 else
7857 {
7858 if (this->glink_ != NULL)
7859 {
7860 this->glink_->finalize_data_size();
7861 odyn->add_section_plus_offset(elfcpp::DT_PPC64_GLINK,
7862 this->glink_,
7863 (this->glink_->pltresolve_size
7864 - 32));
7865 }
7866 if (this->has_localentry0_)
7867 odyn->add_constant(elfcpp::DT_PPC64_OPT,
7868 elfcpp::PPC64_OPT_LOCALENTRY);
7869 }
7870 }
7871
7872 // Emit any relocs we saved in an attempt to avoid generating COPY
7873 // relocs.
7874 if (this->copy_relocs_.any_saved_relocs())
7875 this->copy_relocs_.emit(this->rela_dyn_section(layout));
7876 }
7877
7878 // Emit any saved relocs, and mark toc entries using any of these
7879 // relocs as not optimizable.
7880
7881 template<int sh_type, int size, bool big_endian>
7882 void
7883 Powerpc_copy_relocs<sh_type, size, big_endian>::emit(
7884 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section)
7885 {
7886 if (size == 64
7887 && parameters->options().toc_optimize())
7888 {
7889 for (typename Copy_relocs<sh_type, size, big_endian>::
7890 Copy_reloc_entries::iterator p = this->entries_.begin();
7891 p != this->entries_.end();
7892 ++p)
7893 {
7894 typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry&
7895 entry = *p;
7896
7897 // If the symbol is no longer defined in a dynamic object,
7898 // then we emitted a COPY relocation. If it is still
7899 // dynamic then we'll need dynamic relocations and thus
7900 // can't optimize toc entries.
7901 if (entry.sym_->is_from_dynobj())
7902 {
7903 Powerpc_relobj<size, big_endian>* ppc_object
7904 = static_cast<Powerpc_relobj<size, big_endian>*>(entry.relobj_);
7905 if (entry.shndx_ == ppc_object->toc_shndx())
7906 ppc_object->set_no_toc_opt(entry.address_);
7907 }
7908 }
7909 }
7910
7911 Copy_relocs<sh_type, size, big_endian>::emit(reloc_section);
7912 }
7913
7914 // Return the value to use for a branch relocation.
7915
7916 template<int size, bool big_endian>
7917 bool
7918 Target_powerpc<size, big_endian>::symval_for_branch(
7919 const Symbol_table* symtab,
7920 const Sized_symbol<size>* gsym,
7921 Powerpc_relobj<size, big_endian>* object,
7922 Address *value,
7923 unsigned int *dest_shndx)
7924 {
7925 if (size == 32 || this->abiversion() >= 2)
7926 gold_unreachable();
7927 *dest_shndx = 0;
7928
7929 // If the symbol is defined in an opd section, ie. is a function
7930 // descriptor, use the function descriptor code entry address
7931 Powerpc_relobj<size, big_endian>* symobj = object;
7932 if (gsym != NULL
7933 && (gsym->source() != Symbol::FROM_OBJECT
7934 || gsym->object()->is_dynamic()))
7935 return true;
7936 if (gsym != NULL)
7937 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(gsym->object());
7938 unsigned int shndx = symobj->opd_shndx();
7939 if (shndx == 0)
7940 return true;
7941 Address opd_addr = symobj->get_output_section_offset(shndx);
7942 if (opd_addr == invalid_address)
7943 return true;
7944 opd_addr += symobj->output_section_address(shndx);
7945 if (*value >= opd_addr && *value < opd_addr + symobj->section_size(shndx))
7946 {
7947 Address sec_off;
7948 *dest_shndx = symobj->get_opd_ent(*value - opd_addr, &sec_off);
7949 if (symtab->is_section_folded(symobj, *dest_shndx))
7950 {
7951 Section_id folded
7952 = symtab->icf()->get_folded_section(symobj, *dest_shndx);
7953 symobj = static_cast<Powerpc_relobj<size, big_endian>*>(folded.first);
7954 *dest_shndx = folded.second;
7955 }
7956 Address sec_addr = symobj->get_output_section_offset(*dest_shndx);
7957 if (sec_addr == invalid_address)
7958 return false;
7959
7960 sec_addr += symobj->output_section(*dest_shndx)->address();
7961 *value = sec_addr + sec_off;
7962 }
7963 return true;
7964 }
7965
7966 // Perform a relocation.
7967
7968 template<int size, bool big_endian>
7969 inline bool
7970 Target_powerpc<size, big_endian>::Relocate::relocate(
7971 const Relocate_info<size, big_endian>* relinfo,
7972 unsigned int,
7973 Target_powerpc* target,
7974 Output_section* os,
7975 size_t relnum,
7976 const unsigned char* preloc,
7977 const Sized_symbol<size>* gsym,
7978 const Symbol_value<size>* psymval,
7979 unsigned char* view,
7980 Address address,
7981 section_size_type view_size)
7982 {
7983 if (view == NULL)
7984 return true;
7985
7986 const elfcpp::Rela<size, big_endian> rela(preloc);
7987 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
7988 switch (this->maybe_skip_tls_get_addr_call(r_type, gsym))
7989 {
7990 case Track_tls::NOT_EXPECTED:
7991 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7992 _("__tls_get_addr call lacks marker reloc"));
7993 break;
7994 case Track_tls::EXPECTED:
7995 // We have already complained.
7996 break;
7997 case Track_tls::SKIP:
7998 return true;
7999 case Track_tls::NORMAL:
8000 break;
8001 }
8002
8003 typedef Powerpc_relocate_functions<size, big_endian> Reloc;
8004 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insn;
8005 typedef typename elfcpp::Rela<size, big_endian> Reltype;
8006 // Offset from start of insn to d-field reloc.
8007 const int d_offset = big_endian ? 2 : 0;
8008
8009 Powerpc_relobj<size, big_endian>* const object
8010 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
8011 Address value = 0;
8012 bool has_stub_value = false;
8013 bool localentry0 = false;
8014 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
8015 if ((gsym != NULL
8016 ? gsym->use_plt_offset(Scan::get_reference_flags(r_type, target))
8017 : object->local_has_plt_offset(r_sym))
8018 && (!psymval->is_ifunc_symbol()
8019 || Scan::reloc_needs_plt_for_ifunc(target, object, r_type, false)))
8020 {
8021 if (size == 64
8022 && gsym != NULL
8023 && target->abiversion() >= 2
8024 && !parameters->options().output_is_position_independent()
8025 && !is_branch_reloc(r_type))
8026 {
8027 Address off = target->glink_section()->find_global_entry(gsym);
8028 if (off != invalid_address)
8029 {
8030 value = target->glink_section()->global_entry_address() + off;
8031 has_stub_value = true;
8032 }
8033 }
8034 else
8035 {
8036 Stub_table<size, big_endian>* stub_table
8037 = object->stub_table(relinfo->data_shndx);
8038 if (stub_table == NULL)
8039 {
8040 // This is a ref from a data section to an ifunc symbol.
8041 if (target->stub_tables().size() != 0)
8042 stub_table = target->stub_tables()[0];
8043 }
8044 if (stub_table != NULL)
8045 {
8046 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent;
8047 if (gsym != NULL)
8048 ent = stub_table->find_plt_call_entry(object, gsym, r_type,
8049 rela.get_r_addend());
8050 else
8051 ent = stub_table->find_plt_call_entry(object, r_sym, r_type,
8052 rela.get_r_addend());
8053 if (ent != NULL)
8054 {
8055 value = stub_table->stub_address() + ent->off_;
8056 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8057 elfcpp::Shdr<size, big_endian> shdr(relinfo->reloc_shdr);
8058 size_t reloc_count = shdr.get_sh_size() / reloc_size;
8059 if (size == 64
8060 && ent->r2save_
8061 && relnum + 1 < reloc_count)
8062 {
8063 Reltype next_rela(preloc + reloc_size);
8064 if (elfcpp::elf_r_type<size>(next_rela.get_r_info())
8065 == elfcpp::R_PPC64_TOCSAVE
8066 && next_rela.get_r_offset() == rela.get_r_offset() + 4)
8067 value += 4;
8068 }
8069 localentry0 = ent->localentry0_;
8070 has_stub_value = true;
8071 }
8072 }
8073 }
8074 // We don't care too much about bogus debug references to
8075 // non-local functions, but otherwise there had better be a plt
8076 // call stub or global entry stub as appropriate.
8077 gold_assert(has_stub_value || !(os->flags() & elfcpp::SHF_ALLOC));
8078 }
8079
8080 if (r_type == elfcpp::R_POWERPC_GOT16
8081 || r_type == elfcpp::R_POWERPC_GOT16_LO
8082 || r_type == elfcpp::R_POWERPC_GOT16_HI
8083 || r_type == elfcpp::R_POWERPC_GOT16_HA
8084 || r_type == elfcpp::R_PPC64_GOT16_DS
8085 || r_type == elfcpp::R_PPC64_GOT16_LO_DS)
8086 {
8087 if (gsym != NULL)
8088 {
8089 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
8090 value = gsym->got_offset(GOT_TYPE_STANDARD);
8091 }
8092 else
8093 {
8094 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
8095 value = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
8096 }
8097 value -= target->got_section()->got_base_offset(object);
8098 }
8099 else if (r_type == elfcpp::R_PPC64_TOC)
8100 {
8101 value = (target->got_section()->output_section()->address()
8102 + object->toc_base_offset());
8103 }
8104 else if (gsym != NULL
8105 && (r_type == elfcpp::R_POWERPC_REL24
8106 || r_type == elfcpp::R_PPC_PLTREL24)
8107 && has_stub_value)
8108 {
8109 if (size == 64)
8110 {
8111 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
8112 Valtype* wv = reinterpret_cast<Valtype*>(view);
8113 bool can_plt_call = localentry0;
8114 if (!localentry0 && rela.get_r_offset() + 8 <= view_size)
8115 {
8116 Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
8117 Valtype insn2 = elfcpp::Swap<32, big_endian>::readval(wv + 1);
8118 if ((insn & 1) != 0
8119 && (insn2 == nop
8120 || insn2 == cror_15_15_15 || insn2 == cror_31_31_31))
8121 {
8122 elfcpp::Swap<32, big_endian>::
8123 writeval(wv + 1, ld_2_1 + target->stk_toc());
8124 can_plt_call = true;
8125 }
8126 }
8127 if (!can_plt_call)
8128 {
8129 // If we don't have a branch and link followed by a nop,
8130 // we can't go via the plt because there is no place to
8131 // put a toc restoring instruction.
8132 // Unless we know we won't be returning.
8133 if (strcmp(gsym->name(), "__libc_start_main") == 0)
8134 can_plt_call = true;
8135 }
8136 if (!can_plt_call)
8137 {
8138 // g++ as of 20130507 emits self-calls without a
8139 // following nop. This is arguably wrong since we have
8140 // conflicting information. On the one hand a global
8141 // symbol and on the other a local call sequence, but
8142 // don't error for this special case.
8143 // It isn't possible to cheaply verify we have exactly
8144 // such a call. Allow all calls to the same section.
8145 bool ok = false;
8146 Address code = value;
8147 if (gsym->source() == Symbol::FROM_OBJECT
8148 && gsym->object() == object)
8149 {
8150 unsigned int dest_shndx = 0;
8151 if (target->abiversion() < 2)
8152 {
8153 Address addend = rela.get_r_addend();
8154 code = psymval->value(object, addend);
8155 target->symval_for_branch(relinfo->symtab, gsym, object,
8156 &code, &dest_shndx);
8157 }
8158 bool is_ordinary;
8159 if (dest_shndx == 0)
8160 dest_shndx = gsym->shndx(&is_ordinary);
8161 ok = dest_shndx == relinfo->data_shndx;
8162 }
8163 if (!ok)
8164 {
8165 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
8166 _("call lacks nop, can't restore toc; "
8167 "recompile with -fPIC"));
8168 value = code;
8169 }
8170 }
8171 }
8172 }
8173 else if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8174 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
8175 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
8176 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
8177 {
8178 // First instruction of a global dynamic sequence, arg setup insn.
8179 const bool final = gsym == NULL || gsym->final_value_is_known();
8180 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8181 enum Got_type got_type = GOT_TYPE_STANDARD;
8182 if (tls_type == tls::TLSOPT_NONE)
8183 got_type = GOT_TYPE_TLSGD;
8184 else if (tls_type == tls::TLSOPT_TO_IE)
8185 got_type = GOT_TYPE_TPREL;
8186 if (got_type != GOT_TYPE_STANDARD)
8187 {
8188 if (gsym != NULL)
8189 {
8190 gold_assert(gsym->has_got_offset(got_type));
8191 value = gsym->got_offset(got_type);
8192 }
8193 else
8194 {
8195 gold_assert(object->local_has_got_offset(r_sym, got_type));
8196 value = object->local_got_offset(r_sym, got_type);
8197 }
8198 value -= target->got_section()->got_base_offset(object);
8199 }
8200 if (tls_type == tls::TLSOPT_TO_IE)
8201 {
8202 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8203 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8204 {
8205 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8206 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8207 insn &= (1 << 26) - (1 << 16); // extract rt,ra from addi
8208 if (size == 32)
8209 insn |= 32 << 26; // lwz
8210 else
8211 insn |= 58 << 26; // ld
8212 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8213 }
8214 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
8215 - elfcpp::R_POWERPC_GOT_TLSGD16);
8216 }
8217 else if (tls_type == tls::TLSOPT_TO_LE)
8218 {
8219 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
8220 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
8221 {
8222 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8223 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8224 insn &= (1 << 26) - (1 << 21); // extract rt
8225 if (size == 32)
8226 insn |= addis_0_2;
8227 else
8228 insn |= addis_0_13;
8229 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8230 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8231 value = psymval->value(object, rela.get_r_addend());
8232 }
8233 else
8234 {
8235 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8236 Insn insn = nop;
8237 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8238 r_type = elfcpp::R_POWERPC_NONE;
8239 }
8240 }
8241 }
8242 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8243 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
8244 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
8245 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
8246 {
8247 // First instruction of a local dynamic sequence, arg setup insn.
8248 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8249 if (tls_type == tls::TLSOPT_NONE)
8250 {
8251 value = target->tlsld_got_offset();
8252 value -= target->got_section()->got_base_offset(object);
8253 }
8254 else
8255 {
8256 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8257 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
8258 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
8259 {
8260 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8261 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8262 insn &= (1 << 26) - (1 << 21); // extract rt
8263 if (size == 32)
8264 insn |= addis_0_2;
8265 else
8266 insn |= addis_0_13;
8267 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8268 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8269 value = dtp_offset;
8270 }
8271 else
8272 {
8273 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8274 Insn insn = nop;
8275 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8276 r_type = elfcpp::R_POWERPC_NONE;
8277 }
8278 }
8279 }
8280 else if (r_type == elfcpp::R_POWERPC_GOT_DTPREL16
8281 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_LO
8282 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HI
8283 || r_type == elfcpp::R_POWERPC_GOT_DTPREL16_HA)
8284 {
8285 // Accesses relative to a local dynamic sequence address,
8286 // no optimisation here.
8287 if (gsym != NULL)
8288 {
8289 gold_assert(gsym->has_got_offset(GOT_TYPE_DTPREL));
8290 value = gsym->got_offset(GOT_TYPE_DTPREL);
8291 }
8292 else
8293 {
8294 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_DTPREL));
8295 value = object->local_got_offset(r_sym, GOT_TYPE_DTPREL);
8296 }
8297 value -= target->got_section()->got_base_offset(object);
8298 }
8299 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8300 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
8301 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
8302 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
8303 {
8304 // First instruction of initial exec sequence.
8305 const bool final = gsym == NULL || gsym->final_value_is_known();
8306 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8307 if (tls_type == tls::TLSOPT_NONE)
8308 {
8309 if (gsym != NULL)
8310 {
8311 gold_assert(gsym->has_got_offset(GOT_TYPE_TPREL));
8312 value = gsym->got_offset(GOT_TYPE_TPREL);
8313 }
8314 else
8315 {
8316 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_TPREL));
8317 value = object->local_got_offset(r_sym, GOT_TYPE_TPREL);
8318 }
8319 value -= target->got_section()->got_base_offset(object);
8320 }
8321 else
8322 {
8323 gold_assert(tls_type == tls::TLSOPT_TO_LE);
8324 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
8325 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
8326 {
8327 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8328 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8329 insn &= (1 << 26) - (1 << 21); // extract rt from ld
8330 if (size == 32)
8331 insn |= addis_0_2;
8332 else
8333 insn |= addis_0_13;
8334 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8335 r_type = elfcpp::R_POWERPC_TPREL16_HA;
8336 value = psymval->value(object, rela.get_r_addend());
8337 }
8338 else
8339 {
8340 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8341 Insn insn = nop;
8342 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8343 r_type = elfcpp::R_POWERPC_NONE;
8344 }
8345 }
8346 }
8347 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
8348 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
8349 {
8350 // Second instruction of a global dynamic sequence,
8351 // the __tls_get_addr call
8352 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8353 const bool final = gsym == NULL || gsym->final_value_is_known();
8354 const tls::Tls_optimization tls_type = target->optimize_tls_gd(final);
8355 if (tls_type != tls::TLSOPT_NONE)
8356 {
8357 if (tls_type == tls::TLSOPT_TO_IE)
8358 {
8359 Insn* iview = reinterpret_cast<Insn*>(view);
8360 Insn insn = add_3_3_13;
8361 if (size == 32)
8362 insn = add_3_3_2;
8363 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8364 r_type = elfcpp::R_POWERPC_NONE;
8365 }
8366 else
8367 {
8368 Insn* iview = reinterpret_cast<Insn*>(view);
8369 Insn insn = addi_3_3;
8370 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8371 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8372 view += d_offset;
8373 value = psymval->value(object, rela.get_r_addend());
8374 }
8375 this->skip_next_tls_get_addr_call();
8376 }
8377 }
8378 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
8379 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
8380 {
8381 // Second instruction of a local dynamic sequence,
8382 // the __tls_get_addr call
8383 this->expect_tls_get_addr_call(relinfo, relnum, rela.get_r_offset());
8384 const tls::Tls_optimization tls_type = target->optimize_tls_ld();
8385 if (tls_type == tls::TLSOPT_TO_LE)
8386 {
8387 Insn* iview = reinterpret_cast<Insn*>(view);
8388 Insn insn = addi_3_3;
8389 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8390 this->skip_next_tls_get_addr_call();
8391 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8392 view += d_offset;
8393 value = dtp_offset;
8394 }
8395 }
8396 else if (r_type == elfcpp::R_POWERPC_TLS)
8397 {
8398 // Second instruction of an initial exec sequence
8399 const bool final = gsym == NULL || gsym->final_value_is_known();
8400 const tls::Tls_optimization tls_type = target->optimize_tls_ie(final);
8401 if (tls_type == tls::TLSOPT_TO_LE)
8402 {
8403 Insn* iview = reinterpret_cast<Insn*>(view);
8404 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8405 unsigned int reg = size == 32 ? 2 : 13;
8406 insn = at_tls_transform(insn, reg);
8407 gold_assert(insn != 0);
8408 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8409 r_type = elfcpp::R_POWERPC_TPREL16_LO;
8410 view += d_offset;
8411 value = psymval->value(object, rela.get_r_addend());
8412 }
8413 }
8414 else if (!has_stub_value)
8415 {
8416 Address addend = 0;
8417 if (!(size == 32 && r_type == elfcpp::R_PPC_PLTREL24))
8418 addend = rela.get_r_addend();
8419 value = psymval->value(object, addend);
8420 if (size == 64 && is_branch_reloc(r_type))
8421 {
8422 if (target->abiversion() >= 2)
8423 {
8424 if (gsym != NULL)
8425 value += object->ppc64_local_entry_offset(gsym);
8426 else
8427 value += object->ppc64_local_entry_offset(r_sym);
8428 }
8429 else
8430 {
8431 unsigned int dest_shndx;
8432 target->symval_for_branch(relinfo->symtab, gsym, object,
8433 &value, &dest_shndx);
8434 }
8435 }
8436 Address max_branch_offset = max_branch_delta(r_type);
8437 if (max_branch_offset != 0
8438 && value - address + max_branch_offset >= 2 * max_branch_offset)
8439 {
8440 Stub_table<size, big_endian>* stub_table
8441 = object->stub_table(relinfo->data_shndx);
8442 if (stub_table != NULL)
8443 {
8444 Address off = stub_table->find_long_branch_entry(object, value);
8445 if (off != invalid_address)
8446 {
8447 value = (stub_table->stub_address() + stub_table->plt_size()
8448 + off);
8449 has_stub_value = true;
8450 }
8451 }
8452 }
8453 }
8454
8455 switch (r_type)
8456 {
8457 case elfcpp::R_PPC64_REL64:
8458 case elfcpp::R_POWERPC_REL32:
8459 case elfcpp::R_POWERPC_REL24:
8460 case elfcpp::R_PPC_PLTREL24:
8461 case elfcpp::R_PPC_LOCAL24PC:
8462 case elfcpp::R_POWERPC_REL16:
8463 case elfcpp::R_POWERPC_REL16_LO:
8464 case elfcpp::R_POWERPC_REL16_HI:
8465 case elfcpp::R_POWERPC_REL16_HA:
8466 case elfcpp::R_POWERPC_REL16DX_HA:
8467 case elfcpp::R_POWERPC_REL14:
8468 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8469 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8470 value -= address;
8471 break;
8472
8473 case elfcpp::R_PPC64_TOC16:
8474 case elfcpp::R_PPC64_TOC16_LO:
8475 case elfcpp::R_PPC64_TOC16_HI:
8476 case elfcpp::R_PPC64_TOC16_HA:
8477 case elfcpp::R_PPC64_TOC16_DS:
8478 case elfcpp::R_PPC64_TOC16_LO_DS:
8479 // Subtract the TOC base address.
8480 value -= (target->got_section()->output_section()->address()
8481 + object->toc_base_offset());
8482 break;
8483
8484 case elfcpp::R_POWERPC_SECTOFF:
8485 case elfcpp::R_POWERPC_SECTOFF_LO:
8486 case elfcpp::R_POWERPC_SECTOFF_HI:
8487 case elfcpp::R_POWERPC_SECTOFF_HA:
8488 case elfcpp::R_PPC64_SECTOFF_DS:
8489 case elfcpp::R_PPC64_SECTOFF_LO_DS:
8490 if (os != NULL)
8491 value -= os->address();
8492 break;
8493
8494 case elfcpp::R_PPC64_TPREL16_DS:
8495 case elfcpp::R_PPC64_TPREL16_LO_DS:
8496 case elfcpp::R_PPC64_TPREL16_HIGH:
8497 case elfcpp::R_PPC64_TPREL16_HIGHA:
8498 if (size != 64)
8499 // R_PPC_TLSGD, R_PPC_TLSLD, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HI
8500 break;
8501 // Fall through.
8502 case elfcpp::R_POWERPC_TPREL16:
8503 case elfcpp::R_POWERPC_TPREL16_LO:
8504 case elfcpp::R_POWERPC_TPREL16_HI:
8505 case elfcpp::R_POWERPC_TPREL16_HA:
8506 case elfcpp::R_POWERPC_TPREL:
8507 case elfcpp::R_PPC64_TPREL16_HIGHER:
8508 case elfcpp::R_PPC64_TPREL16_HIGHERA:
8509 case elfcpp::R_PPC64_TPREL16_HIGHEST:
8510 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
8511 // tls symbol values are relative to tls_segment()->vaddr()
8512 value -= tp_offset;
8513 break;
8514
8515 case elfcpp::R_PPC64_DTPREL16_DS:
8516 case elfcpp::R_PPC64_DTPREL16_LO_DS:
8517 case elfcpp::R_PPC64_DTPREL16_HIGHER:
8518 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
8519 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
8520 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
8521 if (size != 64)
8522 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16, R_PPC_EMB_NADDR16_LO
8523 // R_PPC_EMB_NADDR16_HI, R_PPC_EMB_NADDR16_HA, R_PPC_EMB_SDAI16
8524 break;
8525 // Fall through.
8526 case elfcpp::R_POWERPC_DTPREL16:
8527 case elfcpp::R_POWERPC_DTPREL16_LO:
8528 case elfcpp::R_POWERPC_DTPREL16_HI:
8529 case elfcpp::R_POWERPC_DTPREL16_HA:
8530 case elfcpp::R_POWERPC_DTPREL:
8531 case elfcpp::R_PPC64_DTPREL16_HIGH:
8532 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8533 // tls symbol values are relative to tls_segment()->vaddr()
8534 value -= dtp_offset;
8535 break;
8536
8537 case elfcpp::R_PPC64_ADDR64_LOCAL:
8538 if (gsym != NULL)
8539 value += object->ppc64_local_entry_offset(gsym);
8540 else
8541 value += object->ppc64_local_entry_offset(r_sym);
8542 break;
8543
8544 default:
8545 break;
8546 }
8547
8548 Insn branch_bit = 0;
8549 switch (r_type)
8550 {
8551 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8552 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8553 branch_bit = 1 << 21;
8554 // Fall through.
8555 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8556 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8557 {
8558 Insn* iview = reinterpret_cast<Insn*>(view);
8559 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8560 insn &= ~(1 << 21);
8561 insn |= branch_bit;
8562 if (this->is_isa_v2)
8563 {
8564 // Set 'a' bit. This is 0b00010 in BO field for branch
8565 // on CR(BI) insns (BO == 001at or 011at), and 0b01000
8566 // for branch on CTR insns (BO == 1a00t or 1a01t).
8567 if ((insn & (0x14 << 21)) == (0x04 << 21))
8568 insn |= 0x02 << 21;
8569 else if ((insn & (0x14 << 21)) == (0x10 << 21))
8570 insn |= 0x08 << 21;
8571 else
8572 break;
8573 }
8574 else
8575 {
8576 // Invert 'y' bit if not the default.
8577 if (static_cast<Signed_address>(value) < 0)
8578 insn ^= 1 << 21;
8579 }
8580 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8581 }
8582 break;
8583
8584 default:
8585 break;
8586 }
8587
8588 if (size == 64)
8589 {
8590 switch (r_type)
8591 {
8592 default:
8593 break;
8594
8595 // Multi-instruction sequences that access the GOT/TOC can
8596 // be optimized, eg.
8597 // addis ra,r2,x@got@ha; ld rb,x@got@l(ra);
8598 // to addis ra,r2,x@toc@ha; addi rb,ra,x@toc@l;
8599 // and
8600 // addis ra,r2,0; addi rb,ra,x@toc@l;
8601 // to nop; addi rb,r2,x@toc;
8602 // FIXME: the @got sequence shown above is not yet
8603 // optimized. Note that gcc as of 2017-01-07 doesn't use
8604 // the ELF @got relocs except for TLS, instead using the
8605 // PowerOpen variant of a compiler managed GOT (called TOC).
8606 // The PowerOpen TOC sequence equivalent to the first
8607 // example is optimized.
8608 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8609 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8610 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8611 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8612 case elfcpp::R_POWERPC_GOT16_HA:
8613 case elfcpp::R_PPC64_TOC16_HA:
8614 if (parameters->options().toc_optimize())
8615 {
8616 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8617 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8618 if (r_type == elfcpp::R_PPC64_TOC16_HA
8619 && object->make_toc_relative(target, &value))
8620 {
8621 gold_assert((insn & ((0x3f << 26) | 0x1f << 16))
8622 == ((15u << 26) | (2 << 16)));
8623 }
8624 if (((insn & ((0x3f << 26) | 0x1f << 16))
8625 == ((15u << 26) | (2 << 16)) /* addis rt,2,imm */)
8626 && value + 0x8000 < 0x10000)
8627 {
8628 elfcpp::Swap<32, big_endian>::writeval(iview, nop);
8629 return true;
8630 }
8631 }
8632 break;
8633
8634 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8635 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8636 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8637 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8638 case elfcpp::R_POWERPC_GOT16_LO:
8639 case elfcpp::R_PPC64_GOT16_LO_DS:
8640 case elfcpp::R_PPC64_TOC16_LO:
8641 case elfcpp::R_PPC64_TOC16_LO_DS:
8642 if (parameters->options().toc_optimize())
8643 {
8644 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8645 Insn insn = elfcpp::Swap<32, big_endian>::readval(iview);
8646 bool changed = false;
8647 if (r_type == elfcpp::R_PPC64_TOC16_LO_DS
8648 && object->make_toc_relative(target, &value))
8649 {
8650 gold_assert ((insn & (0x3f << 26)) == 58u << 26 /* ld */);
8651 insn ^= (14u << 26) ^ (58u << 26);
8652 r_type = elfcpp::R_PPC64_TOC16_LO;
8653 changed = true;
8654 }
8655 if (ok_lo_toc_insn(insn, r_type)
8656 && value + 0x8000 < 0x10000)
8657 {
8658 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
8659 {
8660 // Transform addic to addi when we change reg.
8661 insn &= ~((0x3f << 26) | (0x1f << 16));
8662 insn |= (14u << 26) | (2 << 16);
8663 }
8664 else
8665 {
8666 insn &= ~(0x1f << 16);
8667 insn |= 2 << 16;
8668 }
8669 changed = true;
8670 }
8671 if (changed)
8672 elfcpp::Swap<32, big_endian>::writeval(iview, insn);
8673 }
8674 break;
8675
8676 case elfcpp::R_PPC64_ENTRY:
8677 value = (target->got_section()->output_section()->address()
8678 + object->toc_base_offset());
8679 if (value + 0x80008000 <= 0xffffffff
8680 && !parameters->options().output_is_position_independent())
8681 {
8682 Insn* iview = reinterpret_cast<Insn*>(view);
8683 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8684 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8685
8686 if ((insn1 & ~0xfffc) == ld_2_12
8687 && insn2 == add_2_2_12)
8688 {
8689 insn1 = lis_2 + ha(value);
8690 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8691 insn2 = addi_2_2 + l(value);
8692 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8693 return true;
8694 }
8695 }
8696 else
8697 {
8698 value -= address;
8699 if (value + 0x80008000 <= 0xffffffff)
8700 {
8701 Insn* iview = reinterpret_cast<Insn*>(view);
8702 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview);
8703 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview + 1);
8704
8705 if ((insn1 & ~0xfffc) == ld_2_12
8706 && insn2 == add_2_2_12)
8707 {
8708 insn1 = addis_2_12 + ha(value);
8709 elfcpp::Swap<32, big_endian>::writeval(iview, insn1);
8710 insn2 = addi_2_2 + l(value);
8711 elfcpp::Swap<32, big_endian>::writeval(iview + 1, insn2);
8712 return true;
8713 }
8714 }
8715 }
8716 break;
8717
8718 case elfcpp::R_POWERPC_REL16_LO:
8719 // If we are generating a non-PIC executable, edit
8720 // 0: addis 2,12,.TOC.-0b@ha
8721 // addi 2,2,.TOC.-0b@l
8722 // used by ELFv2 global entry points to set up r2, to
8723 // lis 2,.TOC.@ha
8724 // addi 2,2,.TOC.@l
8725 // if .TOC. is in range. */
8726 if (value + address - 4 + 0x80008000 <= 0xffffffff
8727 && relnum != 0
8728 && preloc != NULL
8729 && target->abiversion() >= 2
8730 && !parameters->options().output_is_position_independent()
8731 && rela.get_r_addend() == d_offset + 4
8732 && gsym != NULL
8733 && strcmp(gsym->name(), ".TOC.") == 0)
8734 {
8735 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
8736 Reltype prev_rela(preloc - reloc_size);
8737 if ((prev_rela.get_r_info()
8738 == elfcpp::elf_r_info<size>(r_sym,
8739 elfcpp::R_POWERPC_REL16_HA))
8740 && prev_rela.get_r_offset() + 4 == rela.get_r_offset()
8741 && prev_rela.get_r_addend() + 4 == rela.get_r_addend())
8742 {
8743 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8744 Insn insn1 = elfcpp::Swap<32, big_endian>::readval(iview - 1);
8745 Insn insn2 = elfcpp::Swap<32, big_endian>::readval(iview);
8746
8747 if ((insn1 & 0xffff0000) == addis_2_12
8748 && (insn2 & 0xffff0000) == addi_2_2)
8749 {
8750 insn1 = lis_2 + ha(value + address - 4);
8751 elfcpp::Swap<32, big_endian>::writeval(iview - 1, insn1);
8752 insn2 = addi_2_2 + l(value + address - 4);
8753 elfcpp::Swap<32, big_endian>::writeval(iview, insn2);
8754 if (relinfo->rr)
8755 {
8756 relinfo->rr->set_strategy(relnum - 1,
8757 Relocatable_relocs::RELOC_SPECIAL);
8758 relinfo->rr->set_strategy(relnum,
8759 Relocatable_relocs::RELOC_SPECIAL);
8760 }
8761 return true;
8762 }
8763 }
8764 }
8765 break;
8766 }
8767 }
8768
8769 typename Reloc::Overflow_check overflow = Reloc::CHECK_NONE;
8770 elfcpp::Shdr<size, big_endian> shdr(relinfo->data_shdr);
8771 switch (r_type)
8772 {
8773 case elfcpp::R_POWERPC_ADDR32:
8774 case elfcpp::R_POWERPC_UADDR32:
8775 if (size == 64)
8776 overflow = Reloc::CHECK_BITFIELD;
8777 break;
8778
8779 case elfcpp::R_POWERPC_REL32:
8780 case elfcpp::R_POWERPC_REL16DX_HA:
8781 if (size == 64)
8782 overflow = Reloc::CHECK_SIGNED;
8783 break;
8784
8785 case elfcpp::R_POWERPC_UADDR16:
8786 overflow = Reloc::CHECK_BITFIELD;
8787 break;
8788
8789 case elfcpp::R_POWERPC_ADDR16:
8790 // We really should have three separate relocations,
8791 // one for 16-bit data, one for insns with 16-bit signed fields,
8792 // and one for insns with 16-bit unsigned fields.
8793 overflow = Reloc::CHECK_BITFIELD;
8794 if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
8795 overflow = Reloc::CHECK_LOW_INSN;
8796 break;
8797
8798 case elfcpp::R_POWERPC_ADDR16_HI:
8799 case elfcpp::R_POWERPC_ADDR16_HA:
8800 case elfcpp::R_POWERPC_GOT16_HI:
8801 case elfcpp::R_POWERPC_GOT16_HA:
8802 case elfcpp::R_POWERPC_PLT16_HI:
8803 case elfcpp::R_POWERPC_PLT16_HA:
8804 case elfcpp::R_POWERPC_SECTOFF_HI:
8805 case elfcpp::R_POWERPC_SECTOFF_HA:
8806 case elfcpp::R_PPC64_TOC16_HI:
8807 case elfcpp::R_PPC64_TOC16_HA:
8808 case elfcpp::R_PPC64_PLTGOT16_HI:
8809 case elfcpp::R_PPC64_PLTGOT16_HA:
8810 case elfcpp::R_POWERPC_TPREL16_HI:
8811 case elfcpp::R_POWERPC_TPREL16_HA:
8812 case elfcpp::R_POWERPC_DTPREL16_HI:
8813 case elfcpp::R_POWERPC_DTPREL16_HA:
8814 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8815 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
8816 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8817 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
8818 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8819 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
8820 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8821 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
8822 case elfcpp::R_POWERPC_REL16_HI:
8823 case elfcpp::R_POWERPC_REL16_HA:
8824 if (size != 32)
8825 overflow = Reloc::CHECK_HIGH_INSN;
8826 break;
8827
8828 case elfcpp::R_POWERPC_REL16:
8829 case elfcpp::R_PPC64_TOC16:
8830 case elfcpp::R_POWERPC_GOT16:
8831 case elfcpp::R_POWERPC_SECTOFF:
8832 case elfcpp::R_POWERPC_TPREL16:
8833 case elfcpp::R_POWERPC_DTPREL16:
8834 case elfcpp::R_POWERPC_GOT_TLSGD16:
8835 case elfcpp::R_POWERPC_GOT_TLSLD16:
8836 case elfcpp::R_POWERPC_GOT_TPREL16:
8837 case elfcpp::R_POWERPC_GOT_DTPREL16:
8838 overflow = Reloc::CHECK_LOW_INSN;
8839 break;
8840
8841 case elfcpp::R_POWERPC_ADDR24:
8842 case elfcpp::R_POWERPC_ADDR14:
8843 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
8844 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
8845 case elfcpp::R_PPC64_ADDR16_DS:
8846 case elfcpp::R_POWERPC_REL24:
8847 case elfcpp::R_PPC_PLTREL24:
8848 case elfcpp::R_PPC_LOCAL24PC:
8849 case elfcpp::R_PPC64_TPREL16_DS:
8850 case elfcpp::R_PPC64_DTPREL16_DS:
8851 case elfcpp::R_PPC64_TOC16_DS:
8852 case elfcpp::R_PPC64_GOT16_DS:
8853 case elfcpp::R_PPC64_SECTOFF_DS:
8854 case elfcpp::R_POWERPC_REL14:
8855 case elfcpp::R_POWERPC_REL14_BRTAKEN:
8856 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
8857 overflow = Reloc::CHECK_SIGNED;
8858 break;
8859 }
8860
8861 Insn* iview = reinterpret_cast<Insn*>(view - d_offset);
8862 Insn insn = 0;
8863
8864 if (overflow == Reloc::CHECK_LOW_INSN
8865 || overflow == Reloc::CHECK_HIGH_INSN)
8866 {
8867 insn = elfcpp::Swap<32, big_endian>::readval(iview);
8868
8869 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
8870 overflow = Reloc::CHECK_BITFIELD;
8871 else if (overflow == Reloc::CHECK_LOW_INSN
8872 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
8873 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
8874 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
8875 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
8876 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
8877 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
8878 overflow = Reloc::CHECK_UNSIGNED;
8879 else
8880 overflow = Reloc::CHECK_SIGNED;
8881 }
8882
8883 bool maybe_dq_reloc = false;
8884 typename Powerpc_relocate_functions<size, big_endian>::Status status
8885 = Powerpc_relocate_functions<size, big_endian>::STATUS_OK;
8886 switch (r_type)
8887 {
8888 case elfcpp::R_POWERPC_NONE:
8889 case elfcpp::R_POWERPC_TLS:
8890 case elfcpp::R_POWERPC_GNU_VTINHERIT:
8891 case elfcpp::R_POWERPC_GNU_VTENTRY:
8892 break;
8893
8894 case elfcpp::R_PPC64_ADDR64:
8895 case elfcpp::R_PPC64_REL64:
8896 case elfcpp::R_PPC64_TOC:
8897 case elfcpp::R_PPC64_ADDR64_LOCAL:
8898 Reloc::addr64(view, value);
8899 break;
8900
8901 case elfcpp::R_POWERPC_TPREL:
8902 case elfcpp::R_POWERPC_DTPREL:
8903 if (size == 64)
8904 Reloc::addr64(view, value);
8905 else
8906 status = Reloc::addr32(view, value, overflow);
8907 break;
8908
8909 case elfcpp::R_PPC64_UADDR64:
8910 Reloc::addr64_u(view, value);
8911 break;
8912
8913 case elfcpp::R_POWERPC_ADDR32:
8914 status = Reloc::addr32(view, value, overflow);
8915 break;
8916
8917 case elfcpp::R_POWERPC_REL32:
8918 case elfcpp::R_POWERPC_UADDR32:
8919 status = Reloc::addr32_u(view, value, overflow);
8920 break;
8921
8922 case elfcpp::R_POWERPC_ADDR24:
8923 case elfcpp::R_POWERPC_REL24:
8924 case elfcpp::R_PPC_PLTREL24:
8925 case elfcpp::R_PPC_LOCAL24PC:
8926 status = Reloc::addr24(view, value, overflow);
8927 break;
8928
8929 case elfcpp::R_POWERPC_GOT_DTPREL16:
8930 case elfcpp::R_POWERPC_GOT_DTPREL16_LO:
8931 case elfcpp::R_POWERPC_GOT_TPREL16:
8932 case elfcpp::R_POWERPC_GOT_TPREL16_LO:
8933 if (size == 64)
8934 {
8935 // On ppc64 these are all ds form
8936 maybe_dq_reloc = true;
8937 break;
8938 }
8939 // Fall through.
8940 case elfcpp::R_POWERPC_ADDR16:
8941 case elfcpp::R_POWERPC_REL16:
8942 case elfcpp::R_PPC64_TOC16:
8943 case elfcpp::R_POWERPC_GOT16:
8944 case elfcpp::R_POWERPC_SECTOFF:
8945 case elfcpp::R_POWERPC_TPREL16:
8946 case elfcpp::R_POWERPC_DTPREL16:
8947 case elfcpp::R_POWERPC_GOT_TLSGD16:
8948 case elfcpp::R_POWERPC_GOT_TLSLD16:
8949 case elfcpp::R_POWERPC_ADDR16_LO:
8950 case elfcpp::R_POWERPC_REL16_LO:
8951 case elfcpp::R_PPC64_TOC16_LO:
8952 case elfcpp::R_POWERPC_GOT16_LO:
8953 case elfcpp::R_POWERPC_SECTOFF_LO:
8954 case elfcpp::R_POWERPC_TPREL16_LO:
8955 case elfcpp::R_POWERPC_DTPREL16_LO:
8956 case elfcpp::R_POWERPC_GOT_TLSGD16_LO:
8957 case elfcpp::R_POWERPC_GOT_TLSLD16_LO:
8958 if (size == 64)
8959 status = Reloc::addr16(view, value, overflow);
8960 else
8961 maybe_dq_reloc = true;
8962 break;
8963
8964 case elfcpp::R_POWERPC_UADDR16:
8965 status = Reloc::addr16_u(view, value, overflow);
8966 break;
8967
8968 case elfcpp::R_PPC64_ADDR16_HIGH:
8969 case elfcpp::R_PPC64_TPREL16_HIGH:
8970 case elfcpp::R_PPC64_DTPREL16_HIGH:
8971 if (size == 32)
8972 // R_PPC_EMB_MRKREF, R_PPC_EMB_RELST_LO, R_PPC_EMB_RELST_HA
8973 goto unsupp;
8974 // Fall through.
8975 case elfcpp::R_POWERPC_ADDR16_HI:
8976 case elfcpp::R_POWERPC_REL16_HI:
8977 case elfcpp::R_PPC64_TOC16_HI:
8978 case elfcpp::R_POWERPC_GOT16_HI:
8979 case elfcpp::R_POWERPC_SECTOFF_HI:
8980 case elfcpp::R_POWERPC_TPREL16_HI:
8981 case elfcpp::R_POWERPC_DTPREL16_HI:
8982 case elfcpp::R_POWERPC_GOT_TLSGD16_HI:
8983 case elfcpp::R_POWERPC_GOT_TLSLD16_HI:
8984 case elfcpp::R_POWERPC_GOT_TPREL16_HI:
8985 case elfcpp::R_POWERPC_GOT_DTPREL16_HI:
8986 Reloc::addr16_hi(view, value);
8987 break;
8988
8989 case elfcpp::R_PPC64_ADDR16_HIGHA:
8990 case elfcpp::R_PPC64_TPREL16_HIGHA:
8991 case elfcpp::R_PPC64_DTPREL16_HIGHA:
8992 if (size == 32)
8993 // R_PPC_EMB_RELSEC16, R_PPC_EMB_RELST_HI, R_PPC_EMB_BIT_FLD
8994 goto unsupp;
8995 // Fall through.
8996 case elfcpp::R_POWERPC_ADDR16_HA:
8997 case elfcpp::R_POWERPC_REL16_HA:
8998 case elfcpp::R_PPC64_TOC16_HA:
8999 case elfcpp::R_POWERPC_GOT16_HA:
9000 case elfcpp::R_POWERPC_SECTOFF_HA:
9001 case elfcpp::R_POWERPC_TPREL16_HA:
9002 case elfcpp::R_POWERPC_DTPREL16_HA:
9003 case elfcpp::R_POWERPC_GOT_TLSGD16_HA:
9004 case elfcpp::R_POWERPC_GOT_TLSLD16_HA:
9005 case elfcpp::R_POWERPC_GOT_TPREL16_HA:
9006 case elfcpp::R_POWERPC_GOT_DTPREL16_HA:
9007 Reloc::addr16_ha(view, value);
9008 break;
9009
9010 case elfcpp::R_POWERPC_REL16DX_HA:
9011 status = Reloc::addr16dx_ha(view, value, overflow);
9012 break;
9013
9014 case elfcpp::R_PPC64_DTPREL16_HIGHER:
9015 if (size == 32)
9016 // R_PPC_EMB_NADDR16_LO
9017 goto unsupp;
9018 // Fall through.
9019 case elfcpp::R_PPC64_ADDR16_HIGHER:
9020 case elfcpp::R_PPC64_TPREL16_HIGHER:
9021 Reloc::addr16_hi2(view, value);
9022 break;
9023
9024 case elfcpp::R_PPC64_DTPREL16_HIGHERA:
9025 if (size == 32)
9026 // R_PPC_EMB_NADDR16_HI
9027 goto unsupp;
9028 // Fall through.
9029 case elfcpp::R_PPC64_ADDR16_HIGHERA:
9030 case elfcpp::R_PPC64_TPREL16_HIGHERA:
9031 Reloc::addr16_ha2(view, value);
9032 break;
9033
9034 case elfcpp::R_PPC64_DTPREL16_HIGHEST:
9035 if (size == 32)
9036 // R_PPC_EMB_NADDR16_HA
9037 goto unsupp;
9038 // Fall through.
9039 case elfcpp::R_PPC64_ADDR16_HIGHEST:
9040 case elfcpp::R_PPC64_TPREL16_HIGHEST:
9041 Reloc::addr16_hi3(view, value);
9042 break;
9043
9044 case elfcpp::R_PPC64_DTPREL16_HIGHESTA:
9045 if (size == 32)
9046 // R_PPC_EMB_SDAI16
9047 goto unsupp;
9048 // Fall through.
9049 case elfcpp::R_PPC64_ADDR16_HIGHESTA:
9050 case elfcpp::R_PPC64_TPREL16_HIGHESTA:
9051 Reloc::addr16_ha3(view, value);
9052 break;
9053
9054 case elfcpp::R_PPC64_DTPREL16_DS:
9055 case elfcpp::R_PPC64_DTPREL16_LO_DS:
9056 if (size == 32)
9057 // R_PPC_EMB_NADDR32, R_PPC_EMB_NADDR16
9058 goto unsupp;
9059 // Fall through.
9060 case elfcpp::R_PPC64_TPREL16_DS:
9061 case elfcpp::R_PPC64_TPREL16_LO_DS:
9062 if (size == 32)
9063 // R_PPC_TLSGD, R_PPC_TLSLD
9064 break;
9065 // Fall through.
9066 case elfcpp::R_PPC64_ADDR16_DS:
9067 case elfcpp::R_PPC64_ADDR16_LO_DS:
9068 case elfcpp::R_PPC64_TOC16_DS:
9069 case elfcpp::R_PPC64_TOC16_LO_DS:
9070 case elfcpp::R_PPC64_GOT16_DS:
9071 case elfcpp::R_PPC64_GOT16_LO_DS:
9072 case elfcpp::R_PPC64_SECTOFF_DS:
9073 case elfcpp::R_PPC64_SECTOFF_LO_DS:
9074 maybe_dq_reloc = true;
9075 break;
9076
9077 case elfcpp::R_POWERPC_ADDR14:
9078 case elfcpp::R_POWERPC_ADDR14_BRTAKEN:
9079 case elfcpp::R_POWERPC_ADDR14_BRNTAKEN:
9080 case elfcpp::R_POWERPC_REL14:
9081 case elfcpp::R_POWERPC_REL14_BRTAKEN:
9082 case elfcpp::R_POWERPC_REL14_BRNTAKEN:
9083 status = Reloc::addr14(view, value, overflow);
9084 break;
9085
9086 case elfcpp::R_POWERPC_COPY:
9087 case elfcpp::R_POWERPC_GLOB_DAT:
9088 case elfcpp::R_POWERPC_JMP_SLOT:
9089 case elfcpp::R_POWERPC_RELATIVE:
9090 case elfcpp::R_POWERPC_DTPMOD:
9091 case elfcpp::R_PPC64_JMP_IREL:
9092 case elfcpp::R_POWERPC_IRELATIVE:
9093 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9094 _("unexpected reloc %u in object file"),
9095 r_type);
9096 break;
9097
9098 case elfcpp::R_PPC64_TOCSAVE:
9099 if (size == 32)
9100 // R_PPC_EMB_SDA21
9101 goto unsupp;
9102 else
9103 {
9104 Symbol_location loc;
9105 loc.object = relinfo->object;
9106 loc.shndx = relinfo->data_shndx;
9107 loc.offset = rela.get_r_offset();
9108 Tocsave_loc::const_iterator p = target->tocsave_loc().find(loc);
9109 if (p != target->tocsave_loc().end())
9110 {
9111 // If we've generated plt calls using this tocsave, then
9112 // the nop needs to be changed to save r2.
9113 Insn* iview = reinterpret_cast<Insn*>(view);
9114 if (elfcpp::Swap<32, big_endian>::readval(iview) == nop)
9115 elfcpp::Swap<32, big_endian>::
9116 writeval(iview, std_2_1 + target->stk_toc());
9117 }
9118 }
9119 break;
9120
9121 case elfcpp::R_PPC_EMB_SDA2I16:
9122 case elfcpp::R_PPC_EMB_SDA2REL:
9123 if (size == 32)
9124 goto unsupp;
9125 // R_PPC64_TLSGD, R_PPC64_TLSLD
9126 break;
9127
9128 case elfcpp::R_POWERPC_PLT32:
9129 case elfcpp::R_POWERPC_PLTREL32:
9130 case elfcpp::R_POWERPC_PLT16_LO:
9131 case elfcpp::R_POWERPC_PLT16_HI:
9132 case elfcpp::R_POWERPC_PLT16_HA:
9133 case elfcpp::R_PPC_SDAREL16:
9134 case elfcpp::R_POWERPC_ADDR30:
9135 case elfcpp::R_PPC64_PLT64:
9136 case elfcpp::R_PPC64_PLTREL64:
9137 case elfcpp::R_PPC64_PLTGOT16:
9138 case elfcpp::R_PPC64_PLTGOT16_LO:
9139 case elfcpp::R_PPC64_PLTGOT16_HI:
9140 case elfcpp::R_PPC64_PLTGOT16_HA:
9141 case elfcpp::R_PPC64_PLT16_LO_DS:
9142 case elfcpp::R_PPC64_PLTGOT16_DS:
9143 case elfcpp::R_PPC64_PLTGOT16_LO_DS:
9144 case elfcpp::R_PPC_EMB_RELSDA:
9145 case elfcpp::R_PPC_TOC16:
9146 default:
9147 unsupp:
9148 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9149 _("unsupported reloc %u"),
9150 r_type);
9151 break;
9152 }
9153
9154 if (maybe_dq_reloc)
9155 {
9156 if (insn == 0)
9157 insn = elfcpp::Swap<32, big_endian>::readval(iview);
9158
9159 if ((insn & (0x3f << 26)) == 56u << 26 /* lq */
9160 || ((insn & (0x3f << 26)) == (61u << 26) /* lxv, stxv */
9161 && (insn & 3) == 1))
9162 status = Reloc::addr16_dq(view, value, overflow);
9163 else if (size == 64
9164 || (insn & (0x3f << 26)) == 58u << 26 /* ld,ldu,lwa */
9165 || (insn & (0x3f << 26)) == 62u << 26 /* std,stdu,stq */
9166 || (insn & (0x3f << 26)) == 57u << 26 /* lfdp */
9167 || (insn & (0x3f << 26)) == 61u << 26 /* stfdp */)
9168 status = Reloc::addr16_ds(view, value, overflow);
9169 else
9170 status = Reloc::addr16(view, value, overflow);
9171 }
9172
9173 if (status != Powerpc_relocate_functions<size, big_endian>::STATUS_OK
9174 && (has_stub_value
9175 || !(gsym != NULL
9176 && gsym->is_undefined()
9177 && is_branch_reloc(r_type))))
9178 {
9179 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
9180 _("relocation overflow"));
9181 if (has_stub_value)
9182 gold_info(_("try relinking with a smaller --stub-group-size"));
9183 }
9184
9185 return true;
9186 }
9187
9188 // Relocate section data.
9189
9190 template<int size, bool big_endian>
9191 void
9192 Target_powerpc<size, big_endian>::relocate_section(
9193 const Relocate_info<size, big_endian>* relinfo,
9194 unsigned int sh_type,
9195 const unsigned char* prelocs,
9196 size_t reloc_count,
9197 Output_section* output_section,
9198 bool needs_special_offset_handling,
9199 unsigned char* view,
9200 Address address,
9201 section_size_type view_size,
9202 const Reloc_symbol_changes* reloc_symbol_changes)
9203 {
9204 typedef Target_powerpc<size, big_endian> Powerpc;
9205 typedef typename Target_powerpc<size, big_endian>::Relocate Powerpc_relocate;
9206 typedef typename Target_powerpc<size, big_endian>::Relocate_comdat_behavior
9207 Powerpc_comdat_behavior;
9208 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9209 Classify_reloc;
9210
9211 gold_assert(sh_type == elfcpp::SHT_RELA);
9212
9213 gold::relocate_section<size, big_endian, Powerpc, Powerpc_relocate,
9214 Powerpc_comdat_behavior, Classify_reloc>(
9215 relinfo,
9216 this,
9217 prelocs,
9218 reloc_count,
9219 output_section,
9220 needs_special_offset_handling,
9221 view,
9222 address,
9223 view_size,
9224 reloc_symbol_changes);
9225 }
9226
9227 template<int size, bool big_endian>
9228 class Powerpc_scan_relocatable_reloc
9229 {
9230 public:
9231 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9232 static const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9233 static const int sh_type = elfcpp::SHT_RELA;
9234
9235 // Return the symbol referred to by the relocation.
9236 static inline unsigned int
9237 get_r_sym(const Reltype* reloc)
9238 { return elfcpp::elf_r_sym<size>(reloc->get_r_info()); }
9239
9240 // Return the type of the relocation.
9241 static inline unsigned int
9242 get_r_type(const Reltype* reloc)
9243 { return elfcpp::elf_r_type<size>(reloc->get_r_info()); }
9244
9245 // Return the strategy to use for a local symbol which is not a
9246 // section symbol, given the relocation type.
9247 inline Relocatable_relocs::Reloc_strategy
9248 local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
9249 {
9250 if (r_type == 0 && r_sym == 0)
9251 return Relocatable_relocs::RELOC_DISCARD;
9252 return Relocatable_relocs::RELOC_COPY;
9253 }
9254
9255 // Return the strategy to use for a local symbol which is a section
9256 // symbol, given the relocation type.
9257 inline Relocatable_relocs::Reloc_strategy
9258 local_section_strategy(unsigned int, Relobj*)
9259 {
9260 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
9261 }
9262
9263 // Return the strategy to use for a global symbol, given the
9264 // relocation type, the object, and the symbol index.
9265 inline Relocatable_relocs::Reloc_strategy
9266 global_strategy(unsigned int r_type, Relobj*, unsigned int)
9267 {
9268 if (r_type == elfcpp::R_PPC_PLTREL24)
9269 return Relocatable_relocs::RELOC_SPECIAL;
9270 return Relocatable_relocs::RELOC_COPY;
9271 }
9272 };
9273
9274 // Scan the relocs during a relocatable link.
9275
9276 template<int size, bool big_endian>
9277 void
9278 Target_powerpc<size, big_endian>::scan_relocatable_relocs(
9279 Symbol_table* symtab,
9280 Layout* layout,
9281 Sized_relobj_file<size, big_endian>* object,
9282 unsigned int data_shndx,
9283 unsigned int sh_type,
9284 const unsigned char* prelocs,
9285 size_t reloc_count,
9286 Output_section* output_section,
9287 bool needs_special_offset_handling,
9288 size_t local_symbol_count,
9289 const unsigned char* plocal_symbols,
9290 Relocatable_relocs* rr)
9291 {
9292 typedef Powerpc_scan_relocatable_reloc<size, big_endian> Scan_strategy;
9293
9294 gold_assert(sh_type == elfcpp::SHT_RELA);
9295
9296 gold::scan_relocatable_relocs<size, big_endian, Scan_strategy>(
9297 symtab,
9298 layout,
9299 object,
9300 data_shndx,
9301 prelocs,
9302 reloc_count,
9303 output_section,
9304 needs_special_offset_handling,
9305 local_symbol_count,
9306 plocal_symbols,
9307 rr);
9308 }
9309
9310 // Scan the relocs for --emit-relocs.
9311
9312 template<int size, bool big_endian>
9313 void
9314 Target_powerpc<size, big_endian>::emit_relocs_scan(
9315 Symbol_table* symtab,
9316 Layout* layout,
9317 Sized_relobj_file<size, big_endian>* object,
9318 unsigned int data_shndx,
9319 unsigned int sh_type,
9320 const unsigned char* prelocs,
9321 size_t reloc_count,
9322 Output_section* output_section,
9323 bool needs_special_offset_handling,
9324 size_t local_symbol_count,
9325 const unsigned char* plocal_syms,
9326 Relocatable_relocs* rr)
9327 {
9328 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
9329 Classify_reloc;
9330 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
9331 Emit_relocs_strategy;
9332
9333 gold_assert(sh_type == elfcpp::SHT_RELA);
9334
9335 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
9336 symtab,
9337 layout,
9338 object,
9339 data_shndx,
9340 prelocs,
9341 reloc_count,
9342 output_section,
9343 needs_special_offset_handling,
9344 local_symbol_count,
9345 plocal_syms,
9346 rr);
9347 }
9348
9349 // Emit relocations for a section.
9350 // This is a modified version of the function by the same name in
9351 // target-reloc.h. Using relocate_special_relocatable for
9352 // R_PPC_PLTREL24 would require duplication of the entire body of the
9353 // loop, so we may as well duplicate the whole thing.
9354
9355 template<int size, bool big_endian>
9356 void
9357 Target_powerpc<size, big_endian>::relocate_relocs(
9358 const Relocate_info<size, big_endian>* relinfo,
9359 unsigned int sh_type,
9360 const unsigned char* prelocs,
9361 size_t reloc_count,
9362 Output_section* output_section,
9363 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
9364 unsigned char*,
9365 Address view_address,
9366 section_size_type,
9367 unsigned char* reloc_view,
9368 section_size_type reloc_view_size)
9369 {
9370 gold_assert(sh_type == elfcpp::SHT_RELA);
9371
9372 typedef typename elfcpp::Rela<size, big_endian> Reltype;
9373 typedef typename elfcpp::Rela_write<size, big_endian> Reltype_write;
9374 const int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
9375 // Offset from start of insn to d-field reloc.
9376 const int d_offset = big_endian ? 2 : 0;
9377
9378 Powerpc_relobj<size, big_endian>* const object
9379 = static_cast<Powerpc_relobj<size, big_endian>*>(relinfo->object);
9380 const unsigned int local_count = object->local_symbol_count();
9381 unsigned int got2_shndx = object->got2_shndx();
9382 Address got2_addend = 0;
9383 if (got2_shndx != 0)
9384 {
9385 got2_addend = object->get_output_section_offset(got2_shndx);
9386 gold_assert(got2_addend != invalid_address);
9387 }
9388
9389 unsigned char* pwrite = reloc_view;
9390 bool zap_next = false;
9391 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
9392 {
9393 Relocatable_relocs::Reloc_strategy strategy = relinfo->rr->strategy(i);
9394 if (strategy == Relocatable_relocs::RELOC_DISCARD)
9395 continue;
9396
9397 Reltype reloc(prelocs);
9398 Reltype_write reloc_write(pwrite);
9399
9400 Address offset = reloc.get_r_offset();
9401 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
9402 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9403 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9404 const unsigned int orig_r_sym = r_sym;
9405 typename elfcpp::Elf_types<size>::Elf_Swxword addend
9406 = reloc.get_r_addend();
9407 const Symbol* gsym = NULL;
9408
9409 if (zap_next)
9410 {
9411 // We could arrange to discard these and other relocs for
9412 // tls optimised sequences in the strategy methods, but for
9413 // now do as BFD ld does.
9414 r_type = elfcpp::R_POWERPC_NONE;
9415 zap_next = false;
9416 }
9417
9418 // Get the new symbol index.
9419 Output_section* os = NULL;
9420 if (r_sym < local_count)
9421 {
9422 switch (strategy)
9423 {
9424 case Relocatable_relocs::RELOC_COPY:
9425 case Relocatable_relocs::RELOC_SPECIAL:
9426 if (r_sym != 0)
9427 {
9428 r_sym = object->symtab_index(r_sym);
9429 gold_assert(r_sym != -1U);
9430 }
9431 break;
9432
9433 case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
9434 {
9435 // We are adjusting a section symbol. We need to find
9436 // the symbol table index of the section symbol for
9437 // the output section corresponding to input section
9438 // in which this symbol is defined.
9439 gold_assert(r_sym < local_count);
9440 bool is_ordinary;
9441 unsigned int shndx =
9442 object->local_symbol_input_shndx(r_sym, &is_ordinary);
9443 gold_assert(is_ordinary);
9444 os = object->output_section(shndx);
9445 gold_assert(os != NULL);
9446 gold_assert(os->needs_symtab_index());
9447 r_sym = os->symtab_index();
9448 }
9449 break;
9450
9451 default:
9452 gold_unreachable();
9453 }
9454 }
9455 else
9456 {
9457 gsym = object->global_symbol(r_sym);
9458 gold_assert(gsym != NULL);
9459 if (gsym->is_forwarder())
9460 gsym = relinfo->symtab->resolve_forwards(gsym);
9461
9462 gold_assert(gsym->has_symtab_index());
9463 r_sym = gsym->symtab_index();
9464 }
9465
9466 // Get the new offset--the location in the output section where
9467 // this relocation should be applied.
9468 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9469 offset += offset_in_output_section;
9470 else
9471 {
9472 section_offset_type sot_offset =
9473 convert_types<section_offset_type, Address>(offset);
9474 section_offset_type new_sot_offset =
9475 output_section->output_offset(object, relinfo->data_shndx,
9476 sot_offset);
9477 gold_assert(new_sot_offset != -1);
9478 offset = new_sot_offset;
9479 }
9480
9481 // In an object file, r_offset is an offset within the section.
9482 // In an executable or dynamic object, generated by
9483 // --emit-relocs, r_offset is an absolute address.
9484 if (!parameters->options().relocatable())
9485 {
9486 offset += view_address;
9487 if (static_cast<Address>(offset_in_output_section) != invalid_address)
9488 offset -= offset_in_output_section;
9489 }
9490
9491 // Handle the reloc addend based on the strategy.
9492 if (strategy == Relocatable_relocs::RELOC_COPY)
9493 ;
9494 else if (strategy == Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA)
9495 {
9496 const Symbol_value<size>* psymval = object->local_symbol(orig_r_sym);
9497 gold_assert(os != NULL);
9498 addend = psymval->value(object, addend) - os->address();
9499 }
9500 else if (strategy == Relocatable_relocs::RELOC_SPECIAL)
9501 {
9502 if (size == 32)
9503 {
9504 if (addend >= 32768)
9505 addend += got2_addend;
9506 }
9507 else if (r_type == elfcpp::R_POWERPC_REL16_HA)
9508 {
9509 r_type = elfcpp::R_POWERPC_ADDR16_HA;
9510 addend -= d_offset;
9511 }
9512 else if (r_type == elfcpp::R_POWERPC_REL16_LO)
9513 {
9514 r_type = elfcpp::R_POWERPC_ADDR16_LO;
9515 addend -= d_offset + 4;
9516 }
9517 }
9518 else
9519 gold_unreachable();
9520
9521 if (!parameters->options().relocatable())
9522 {
9523 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9524 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO
9525 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HI
9526 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_HA)
9527 {
9528 // First instruction of a global dynamic sequence,
9529 // arg setup insn.
9530 const bool final = gsym == NULL || gsym->final_value_is_known();
9531 switch (this->optimize_tls_gd(final))
9532 {
9533 case tls::TLSOPT_TO_IE:
9534 r_type += (elfcpp::R_POWERPC_GOT_TPREL16
9535 - elfcpp::R_POWERPC_GOT_TLSGD16);
9536 break;
9537 case tls::TLSOPT_TO_LE:
9538 if (r_type == elfcpp::R_POWERPC_GOT_TLSGD16
9539 || r_type == elfcpp::R_POWERPC_GOT_TLSGD16_LO)
9540 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9541 else
9542 {
9543 r_type = elfcpp::R_POWERPC_NONE;
9544 offset -= d_offset;
9545 }
9546 break;
9547 default:
9548 break;
9549 }
9550 }
9551 else if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9552 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO
9553 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HI
9554 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_HA)
9555 {
9556 // First instruction of a local dynamic sequence,
9557 // arg setup insn.
9558 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9559 {
9560 if (r_type == elfcpp::R_POWERPC_GOT_TLSLD16
9561 || r_type == elfcpp::R_POWERPC_GOT_TLSLD16_LO)
9562 {
9563 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9564 const Output_section* os = relinfo->layout->tls_segment()
9565 ->first_section();
9566 gold_assert(os != NULL);
9567 gold_assert(os->needs_symtab_index());
9568 r_sym = os->symtab_index();
9569 addend = dtp_offset;
9570 }
9571 else
9572 {
9573 r_type = elfcpp::R_POWERPC_NONE;
9574 offset -= d_offset;
9575 }
9576 }
9577 }
9578 else if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9579 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO
9580 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HI
9581 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_HA)
9582 {
9583 // First instruction of initial exec sequence.
9584 const bool final = gsym == NULL || gsym->final_value_is_known();
9585 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9586 {
9587 if (r_type == elfcpp::R_POWERPC_GOT_TPREL16
9588 || r_type == elfcpp::R_POWERPC_GOT_TPREL16_LO)
9589 r_type = elfcpp::R_POWERPC_TPREL16_HA;
9590 else
9591 {
9592 r_type = elfcpp::R_POWERPC_NONE;
9593 offset -= d_offset;
9594 }
9595 }
9596 }
9597 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSGD)
9598 || (size == 32 && r_type == elfcpp::R_PPC_TLSGD))
9599 {
9600 // Second instruction of a global dynamic sequence,
9601 // the __tls_get_addr call
9602 const bool final = gsym == NULL || gsym->final_value_is_known();
9603 switch (this->optimize_tls_gd(final))
9604 {
9605 case tls::TLSOPT_TO_IE:
9606 r_type = elfcpp::R_POWERPC_NONE;
9607 zap_next = true;
9608 break;
9609 case tls::TLSOPT_TO_LE:
9610 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9611 offset += d_offset;
9612 zap_next = true;
9613 break;
9614 default:
9615 break;
9616 }
9617 }
9618 else if ((size == 64 && r_type == elfcpp::R_PPC64_TLSLD)
9619 || (size == 32 && r_type == elfcpp::R_PPC_TLSLD))
9620 {
9621 // Second instruction of a local dynamic sequence,
9622 // the __tls_get_addr call
9623 if (this->optimize_tls_ld() == tls::TLSOPT_TO_LE)
9624 {
9625 const Output_section* os = relinfo->layout->tls_segment()
9626 ->first_section();
9627 gold_assert(os != NULL);
9628 gold_assert(os->needs_symtab_index());
9629 r_sym = os->symtab_index();
9630 addend = dtp_offset;
9631 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9632 offset += d_offset;
9633 zap_next = true;
9634 }
9635 }
9636 else if (r_type == elfcpp::R_POWERPC_TLS)
9637 {
9638 // Second instruction of an initial exec sequence
9639 const bool final = gsym == NULL || gsym->final_value_is_known();
9640 if (this->optimize_tls_ie(final) == tls::TLSOPT_TO_LE)
9641 {
9642 r_type = elfcpp::R_POWERPC_TPREL16_LO;
9643 offset += d_offset;
9644 }
9645 }
9646 }
9647
9648 reloc_write.put_r_offset(offset);
9649 reloc_write.put_r_info(elfcpp::elf_r_info<size>(r_sym, r_type));
9650 reloc_write.put_r_addend(addend);
9651
9652 pwrite += reloc_size;
9653 }
9654
9655 gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
9656 == reloc_view_size);
9657 }
9658
9659 // Return the value to use for a dynamic symbol which requires special
9660 // treatment. This is how we support equality comparisons of function
9661 // pointers across shared library boundaries, as described in the
9662 // processor specific ABI supplement.
9663
9664 template<int size, bool big_endian>
9665 uint64_t
9666 Target_powerpc<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
9667 {
9668 if (size == 32)
9669 {
9670 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
9671 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9672 p != this->stub_tables_.end();
9673 ++p)
9674 {
9675 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
9676 = (*p)->find_plt_call_entry(gsym);
9677 if (ent != NULL)
9678 return (*p)->stub_address() + ent->off_;
9679 }
9680 }
9681 else if (this->abiversion() >= 2)
9682 {
9683 Address off = this->glink_section()->find_global_entry(gsym);
9684 if (off != invalid_address)
9685 return this->glink_section()->global_entry_address() + off;
9686 }
9687 gold_unreachable();
9688 }
9689
9690 // Return the PLT address to use for a local symbol.
9691 template<int size, bool big_endian>
9692 uint64_t
9693 Target_powerpc<size, big_endian>::do_plt_address_for_local(
9694 const Relobj* object,
9695 unsigned int symndx) const
9696 {
9697 if (size == 32)
9698 {
9699 const Sized_relobj<size, big_endian>* relobj
9700 = static_cast<const Sized_relobj<size, big_endian>*>(object);
9701 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9702 p != this->stub_tables_.end();
9703 ++p)
9704 {
9705 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
9706 = (*p)->find_plt_call_entry(relobj->sized_relobj(), symndx);
9707 if (ent != NULL)
9708 return (*p)->stub_address() + ent->off_;
9709 }
9710 }
9711 gold_unreachable();
9712 }
9713
9714 // Return the PLT address to use for a global symbol.
9715 template<int size, bool big_endian>
9716 uint64_t
9717 Target_powerpc<size, big_endian>::do_plt_address_for_global(
9718 const Symbol* gsym) const
9719 {
9720 if (size == 32)
9721 {
9722 for (typename Stub_tables::const_iterator p = this->stub_tables_.begin();
9723 p != this->stub_tables_.end();
9724 ++p)
9725 {
9726 const typename Stub_table<size, big_endian>::Plt_stub_ent* ent
9727 = (*p)->find_plt_call_entry(gsym);
9728 if (ent != NULL)
9729 return (*p)->stub_address() + ent->off_;
9730 }
9731 }
9732 else if (this->abiversion() >= 2)
9733 {
9734 Address off = this->glink_section()->find_global_entry(gsym);
9735 if (off != invalid_address)
9736 return this->glink_section()->global_entry_address() + off;
9737 }
9738 gold_unreachable();
9739 }
9740
9741 // Return the offset to use for the GOT_INDX'th got entry which is
9742 // for a local tls symbol specified by OBJECT, SYMNDX.
9743 template<int size, bool big_endian>
9744 int64_t
9745 Target_powerpc<size, big_endian>::do_tls_offset_for_local(
9746 const Relobj* object,
9747 unsigned int symndx,
9748 unsigned int got_indx) const
9749 {
9750 const Powerpc_relobj<size, big_endian>* ppc_object
9751 = static_cast<const Powerpc_relobj<size, big_endian>*>(object);
9752 if (ppc_object->local_symbol(symndx)->is_tls_symbol())
9753 {
9754 for (Got_type got_type = GOT_TYPE_TLSGD;
9755 got_type <= GOT_TYPE_TPREL;
9756 got_type = Got_type(got_type + 1))
9757 if (ppc_object->local_has_got_offset(symndx, got_type))
9758 {
9759 unsigned int off = ppc_object->local_got_offset(symndx, got_type);
9760 if (got_type == GOT_TYPE_TLSGD)
9761 off += size / 8;
9762 if (off == got_indx * (size / 8))
9763 {
9764 if (got_type == GOT_TYPE_TPREL)
9765 return -tp_offset;
9766 else
9767 return -dtp_offset;
9768 }
9769 }
9770 }
9771 gold_unreachable();
9772 }
9773
9774 // Return the offset to use for the GOT_INDX'th got entry which is
9775 // for global tls symbol GSYM.
9776 template<int size, bool big_endian>
9777 int64_t
9778 Target_powerpc<size, big_endian>::do_tls_offset_for_global(
9779 Symbol* gsym,
9780 unsigned int got_indx) const
9781 {
9782 if (gsym->type() == elfcpp::STT_TLS)
9783 {
9784 for (Got_type got_type = GOT_TYPE_TLSGD;
9785 got_type <= GOT_TYPE_TPREL;
9786 got_type = Got_type(got_type + 1))
9787 if (gsym->has_got_offset(got_type))
9788 {
9789 unsigned int off = gsym->got_offset(got_type);
9790 if (got_type == GOT_TYPE_TLSGD)
9791 off += size / 8;
9792 if (off == got_indx * (size / 8))
9793 {
9794 if (got_type == GOT_TYPE_TPREL)
9795 return -tp_offset;
9796 else
9797 return -dtp_offset;
9798 }
9799 }
9800 }
9801 gold_unreachable();
9802 }
9803
9804 // The selector for powerpc object files.
9805
9806 template<int size, bool big_endian>
9807 class Target_selector_powerpc : public Target_selector
9808 {
9809 public:
9810 Target_selector_powerpc()
9811 : Target_selector(size == 64 ? elfcpp::EM_PPC64 : elfcpp::EM_PPC,
9812 size, big_endian,
9813 (size == 64
9814 ? (big_endian ? "elf64-powerpc" : "elf64-powerpcle")
9815 : (big_endian ? "elf32-powerpc" : "elf32-powerpcle")),
9816 (size == 64
9817 ? (big_endian ? "elf64ppc" : "elf64lppc")
9818 : (big_endian ? "elf32ppc" : "elf32lppc")))
9819 { }
9820
9821 virtual Target*
9822 do_instantiate_target()
9823 { return new Target_powerpc<size, big_endian>(); }
9824 };
9825
9826 Target_selector_powerpc<32, true> target_selector_ppc32;
9827 Target_selector_powerpc<32, false> target_selector_ppc32le;
9828 Target_selector_powerpc<64, true> target_selector_ppc64;
9829 Target_selector_powerpc<64, false> target_selector_ppc64le;
9830
9831 // Instantiate these constants for -O0
9832 template<int size, bool big_endian>
9833 const int Output_data_glink<size, big_endian>::pltresolve_size;
9834 template<int size, bool big_endian>
9835 const typename Output_data_glink<size, big_endian>::Address
9836 Output_data_glink<size, big_endian>::invalid_address;
9837 template<int size, bool big_endian>
9838 const typename Stub_table<size, big_endian>::Address
9839 Stub_table<size, big_endian>::invalid_address;
9840 template<int size, bool big_endian>
9841 const typename Target_powerpc<size, big_endian>::Address
9842 Target_powerpc<size, big_endian>::invalid_address;
9843
9844 } // End anonymous namespace.
This page took 0.220743 seconds and 5 git commands to generate.