* object.h (class Object): Remove target_ field, and target,
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
107 }
108
109 // Override the fields in Sized_symbol.
110
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
117 {
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
121 }
122
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
125
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
132 {
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139 do
140 {
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
145 }
146 while (ssym != tosym);
147 }
148 }
149
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
155
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
171
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175 {
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
181 bits = global_flag;
182 break;
183
184 case elfcpp::STB_WEAK:
185 bits = weak_flag;
186 break;
187
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
190 // table.
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192 bits = global_flag;
193
194 default:
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
198 bits = global_flag;
199 }
200
201 if (is_dynamic)
202 bits |= dynamic_flag;
203 else
204 bits |= regular_flag;
205
206 switch (shndx)
207 {
208 case elfcpp::SHN_UNDEF:
209 bits |= undef_flag;
210 break;
211
212 case elfcpp::SHN_COMMON:
213 if (!is_ordinary)
214 bits |= common_flag;
215 break;
216
217 default:
218 if (type == elfcpp::STT_COMMON)
219 bits |= common_flag;
220 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
221 bits |= common_flag;
222 else
223 bits |= def_flag;
224 break;
225 }
226
227 return bits;
228 }
229
230 // Resolve a symbol. This is called the second and subsequent times
231 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232 // section index for SYM, possibly adjusted for many sections.
233 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234 // than a special code. ORIG_ST_SHNDX is the original section index,
235 // before any munging because of discarded sections, except that all
236 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
237 // the version of SYM.
238
239 template<int size, bool big_endian>
240 void
241 Symbol_table::resolve(Sized_symbol<size>* to,
242 const elfcpp::Sym<size, big_endian>& sym,
243 unsigned int st_shndx, bool is_ordinary,
244 unsigned int orig_st_shndx,
245 Object* object, const char* version)
246 {
247 if (parameters->target().has_resolve())
248 {
249 Sized_target<size, big_endian>* sized_target;
250 sized_target = parameters->sized_target<size, big_endian>();
251 sized_target->resolve(to, sym, object, version);
252 return;
253 }
254
255 if (!object->is_dynamic())
256 {
257 // Record that we've seen this symbol in a regular object.
258 to->set_in_reg();
259 }
260 else if (st_shndx == elfcpp::SHN_UNDEF
261 && (to->visibility() == elfcpp::STV_HIDDEN
262 || to->visibility() == elfcpp::STV_INTERNAL))
263 {
264 // A dynamic object cannot reference a hidden or internal symbol
265 // defined in another object.
266 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
267 (to->visibility() == elfcpp::STV_HIDDEN
268 ? "hidden"
269 : "internal"),
270 to->demangled_name().c_str(),
271 to->object()->name().c_str(),
272 object->name().c_str());
273 return;
274 }
275 else
276 {
277 // Record that we've seen this symbol in a dynamic object.
278 to->set_in_dyn();
279 }
280
281 // Record if we've seen this symbol in a real ELF object (i.e., the
282 // symbol is referenced from outside the world known to the plugin).
283 if (object->pluginobj() == NULL)
284 to->set_in_real_elf();
285
286 // If we're processing replacement files, allow new symbols to override
287 // the placeholders from the plugin objects.
288 if (to->source() == Symbol::FROM_OBJECT)
289 {
290 Pluginobj* obj = to->object()->pluginobj();
291 if (obj != NULL
292 && parameters->options().plugins()->in_replacement_phase())
293 {
294 this->override(to, sym, st_shndx, is_ordinary, object, version);
295 return;
296 }
297 }
298
299 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
300 object->is_dynamic(),
301 st_shndx, is_ordinary,
302 sym.get_st_type());
303
304 bool adjust_common_sizes;
305 if (Symbol_table::should_override(to, frombits, object,
306 &adjust_common_sizes))
307 {
308 typename Sized_symbol<size>::Size_type tosize = to->symsize();
309
310 this->override(to, sym, st_shndx, is_ordinary, object, version);
311
312 if (adjust_common_sizes && tosize > to->symsize())
313 to->set_symsize(tosize);
314 }
315 else
316 {
317 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
318 to->set_symsize(sym.get_st_size());
319 // The ELF ABI says that even for a reference to a symbol we
320 // merge the visibility.
321 to->override_visibility(sym.get_st_visibility());
322 }
323
324 // A new weak undefined reference, merging with an old weak
325 // reference, could be a One Definition Rule (ODR) violation --
326 // especially if the types or sizes of the references differ. We'll
327 // store such pairs and look them up later to make sure they
328 // actually refer to the same lines of code. (Note: not all ODR
329 // violations can be found this way, and not everything this finds
330 // is an ODR violation. But it's helpful to warn about.)
331 bool to_is_ordinary;
332 if (parameters->options().detect_odr_violations()
333 && sym.get_st_bind() == elfcpp::STB_WEAK
334 && to->binding() == elfcpp::STB_WEAK
335 && orig_st_shndx != elfcpp::SHN_UNDEF
336 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
337 && to_is_ordinary
338 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
339 && to->symsize() != 0
340 && (sym.get_st_type() != to->type()
341 || sym.get_st_size() != to->symsize())
342 // C does not have a concept of ODR, so we only need to do this
343 // on C++ symbols. These have (mangled) names starting with _Z.
344 && to->name()[0] == '_' && to->name()[1] == 'Z')
345 {
346 Symbol_location fromloc
347 = { object, orig_st_shndx, sym.get_st_value() };
348 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
349 to->value() };
350 this->candidate_odr_violations_[to->name()].insert(fromloc);
351 this->candidate_odr_violations_[to->name()].insert(toloc);
352 }
353 }
354
355 // Handle the core of symbol resolution. This is called with the
356 // existing symbol, TO, and a bitflag describing the new symbol. This
357 // returns true if we should override the existing symbol with the new
358 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
359 // true if we should set the symbol size to the maximum of the TO and
360 // FROM sizes. It handles error conditions.
361
362 bool
363 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
364 Object* object, bool* adjust_common_sizes)
365 {
366 *adjust_common_sizes = false;
367
368 unsigned int tobits;
369 if (to->source() == Symbol::IS_UNDEFINED)
370 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
371 to->type());
372 else if (to->source() != Symbol::FROM_OBJECT)
373 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
374 to->type());
375 else
376 {
377 bool is_ordinary;
378 unsigned int shndx = to->shndx(&is_ordinary);
379 tobits = symbol_to_bits(to->binding(),
380 to->object()->is_dynamic(),
381 shndx,
382 is_ordinary,
383 to->type());
384 }
385
386 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
387
388 // We use a giant switch table for symbol resolution. This code is
389 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
390 // cases; 3) it is easy to change the handling of a particular case.
391 // The alternative would be a series of conditionals, but it is easy
392 // to get the ordering wrong. This could also be done as a table,
393 // but that is no easier to understand than this large switch
394 // statement.
395
396 // These are the values generated by the bit codes.
397 enum
398 {
399 DEF = global_flag | regular_flag | def_flag,
400 WEAK_DEF = weak_flag | regular_flag | def_flag,
401 DYN_DEF = global_flag | dynamic_flag | def_flag,
402 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
403 UNDEF = global_flag | regular_flag | undef_flag,
404 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
405 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
406 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
407 COMMON = global_flag | regular_flag | common_flag,
408 WEAK_COMMON = weak_flag | regular_flag | common_flag,
409 DYN_COMMON = global_flag | dynamic_flag | common_flag,
410 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
411 };
412
413 switch (tobits * 16 + frombits)
414 {
415 case DEF * 16 + DEF:
416 // Two definitions of the same symbol.
417
418 // If either symbol is defined by an object included using
419 // --just-symbols, then don't warn. This is for compatibility
420 // with the GNU linker. FIXME: This is a hack.
421 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
422 || object->just_symbols())
423 return false;
424
425 // FIXME: Do a better job of reporting locations.
426 gold_error(_("%s: multiple definition of %s"),
427 object != NULL ? object->name().c_str() : _("command line"),
428 to->demangled_name().c_str());
429 gold_error(_("%s: previous definition here"),
430 (to->source() == Symbol::FROM_OBJECT
431 ? to->object()->name().c_str()
432 : _("command line")));
433 return false;
434
435 case WEAK_DEF * 16 + DEF:
436 // We've seen a weak definition, and now we see a strong
437 // definition. In the original SVR4 linker, this was treated as
438 // a multiple definition error. In the Solaris linker and the
439 // GNU linker, a weak definition followed by a regular
440 // definition causes the weak definition to be overridden. We
441 // are currently compatible with the GNU linker. In the future
442 // we should add a target specific option to change this.
443 // FIXME.
444 return true;
445
446 case DYN_DEF * 16 + DEF:
447 case DYN_WEAK_DEF * 16 + DEF:
448 // We've seen a definition in a dynamic object, and now we see a
449 // definition in a regular object. The definition in the
450 // regular object overrides the definition in the dynamic
451 // object.
452 return true;
453
454 case UNDEF * 16 + DEF:
455 case WEAK_UNDEF * 16 + DEF:
456 case DYN_UNDEF * 16 + DEF:
457 case DYN_WEAK_UNDEF * 16 + DEF:
458 // We've seen an undefined reference, and now we see a
459 // definition. We use the definition.
460 return true;
461
462 case COMMON * 16 + DEF:
463 case WEAK_COMMON * 16 + DEF:
464 case DYN_COMMON * 16 + DEF:
465 case DYN_WEAK_COMMON * 16 + DEF:
466 // We've seen a common symbol and now we see a definition. The
467 // definition overrides. FIXME: We should optionally issue, version a
468 // warning.
469 return true;
470
471 case DEF * 16 + WEAK_DEF:
472 case WEAK_DEF * 16 + WEAK_DEF:
473 // We've seen a definition and now we see a weak definition. We
474 // ignore the new weak definition.
475 return false;
476
477 case DYN_DEF * 16 + WEAK_DEF:
478 case DYN_WEAK_DEF * 16 + WEAK_DEF:
479 // We've seen a dynamic definition and now we see a regular weak
480 // definition. The regular weak definition overrides.
481 return true;
482
483 case UNDEF * 16 + WEAK_DEF:
484 case WEAK_UNDEF * 16 + WEAK_DEF:
485 case DYN_UNDEF * 16 + WEAK_DEF:
486 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
487 // A weak definition of a currently undefined symbol.
488 return true;
489
490 case COMMON * 16 + WEAK_DEF:
491 case WEAK_COMMON * 16 + WEAK_DEF:
492 // A weak definition does not override a common definition.
493 return false;
494
495 case DYN_COMMON * 16 + WEAK_DEF:
496 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
497 // A weak definition does override a definition in a dynamic
498 // object. FIXME: We should optionally issue a warning.
499 return true;
500
501 case DEF * 16 + DYN_DEF:
502 case WEAK_DEF * 16 + DYN_DEF:
503 case DYN_DEF * 16 + DYN_DEF:
504 case DYN_WEAK_DEF * 16 + DYN_DEF:
505 // Ignore a dynamic definition if we already have a definition.
506 return false;
507
508 case UNDEF * 16 + DYN_DEF:
509 case WEAK_UNDEF * 16 + DYN_DEF:
510 case DYN_UNDEF * 16 + DYN_DEF:
511 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
512 // Use a dynamic definition if we have a reference.
513 return true;
514
515 case COMMON * 16 + DYN_DEF:
516 case WEAK_COMMON * 16 + DYN_DEF:
517 case DYN_COMMON * 16 + DYN_DEF:
518 case DYN_WEAK_COMMON * 16 + DYN_DEF:
519 // Ignore a dynamic definition if we already have a common
520 // definition.
521 return false;
522
523 case DEF * 16 + DYN_WEAK_DEF:
524 case WEAK_DEF * 16 + DYN_WEAK_DEF:
525 case DYN_DEF * 16 + DYN_WEAK_DEF:
526 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
527 // Ignore a weak dynamic definition if we already have a
528 // definition.
529 return false;
530
531 case UNDEF * 16 + DYN_WEAK_DEF:
532 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
533 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
534 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
535 // Use a weak dynamic definition if we have a reference.
536 return true;
537
538 case COMMON * 16 + DYN_WEAK_DEF:
539 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
540 case DYN_COMMON * 16 + DYN_WEAK_DEF:
541 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
542 // Ignore a weak dynamic definition if we already have a common
543 // definition.
544 return false;
545
546 case DEF * 16 + UNDEF:
547 case WEAK_DEF * 16 + UNDEF:
548 case DYN_DEF * 16 + UNDEF:
549 case DYN_WEAK_DEF * 16 + UNDEF:
550 case UNDEF * 16 + UNDEF:
551 // A new undefined reference tells us nothing.
552 return false;
553
554 case WEAK_UNDEF * 16 + UNDEF:
555 case DYN_UNDEF * 16 + UNDEF:
556 case DYN_WEAK_UNDEF * 16 + UNDEF:
557 // A strong undef overrides a dynamic or weak undef.
558 return true;
559
560 case COMMON * 16 + UNDEF:
561 case WEAK_COMMON * 16 + UNDEF:
562 case DYN_COMMON * 16 + UNDEF:
563 case DYN_WEAK_COMMON * 16 + UNDEF:
564 // A new undefined reference tells us nothing.
565 return false;
566
567 case DEF * 16 + WEAK_UNDEF:
568 case WEAK_DEF * 16 + WEAK_UNDEF:
569 case DYN_DEF * 16 + WEAK_UNDEF:
570 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
571 case UNDEF * 16 + WEAK_UNDEF:
572 case WEAK_UNDEF * 16 + WEAK_UNDEF:
573 case DYN_UNDEF * 16 + WEAK_UNDEF:
574 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
575 case COMMON * 16 + WEAK_UNDEF:
576 case WEAK_COMMON * 16 + WEAK_UNDEF:
577 case DYN_COMMON * 16 + WEAK_UNDEF:
578 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
579 // A new weak undefined reference tells us nothing.
580 return false;
581
582 case DEF * 16 + DYN_UNDEF:
583 case WEAK_DEF * 16 + DYN_UNDEF:
584 case DYN_DEF * 16 + DYN_UNDEF:
585 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
586 case UNDEF * 16 + DYN_UNDEF:
587 case WEAK_UNDEF * 16 + DYN_UNDEF:
588 case DYN_UNDEF * 16 + DYN_UNDEF:
589 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
590 case COMMON * 16 + DYN_UNDEF:
591 case WEAK_COMMON * 16 + DYN_UNDEF:
592 case DYN_COMMON * 16 + DYN_UNDEF:
593 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
594 // A new dynamic undefined reference tells us nothing.
595 return false;
596
597 case DEF * 16 + DYN_WEAK_UNDEF:
598 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
599 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
600 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
601 case UNDEF * 16 + DYN_WEAK_UNDEF:
602 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
603 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
604 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
605 case COMMON * 16 + DYN_WEAK_UNDEF:
606 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
607 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
608 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
609 // A new weak dynamic undefined reference tells us nothing.
610 return false;
611
612 case DEF * 16 + COMMON:
613 // A common symbol does not override a definition.
614 return false;
615
616 case WEAK_DEF * 16 + COMMON:
617 case DYN_DEF * 16 + COMMON:
618 case DYN_WEAK_DEF * 16 + COMMON:
619 // A common symbol does override a weak definition or a dynamic
620 // definition.
621 return true;
622
623 case UNDEF * 16 + COMMON:
624 case WEAK_UNDEF * 16 + COMMON:
625 case DYN_UNDEF * 16 + COMMON:
626 case DYN_WEAK_UNDEF * 16 + COMMON:
627 // A common symbol is a definition for a reference.
628 return true;
629
630 case COMMON * 16 + COMMON:
631 // Set the size to the maximum.
632 *adjust_common_sizes = true;
633 return false;
634
635 case WEAK_COMMON * 16 + COMMON:
636 // I'm not sure just what a weak common symbol means, but
637 // presumably it can be overridden by a regular common symbol.
638 return true;
639
640 case DYN_COMMON * 16 + COMMON:
641 case DYN_WEAK_COMMON * 16 + COMMON:
642 // Use the real common symbol, but adjust the size if necessary.
643 *adjust_common_sizes = true;
644 return true;
645
646 case DEF * 16 + WEAK_COMMON:
647 case WEAK_DEF * 16 + WEAK_COMMON:
648 case DYN_DEF * 16 + WEAK_COMMON:
649 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
650 // Whatever a weak common symbol is, it won't override a
651 // definition.
652 return false;
653
654 case UNDEF * 16 + WEAK_COMMON:
655 case WEAK_UNDEF * 16 + WEAK_COMMON:
656 case DYN_UNDEF * 16 + WEAK_COMMON:
657 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
658 // A weak common symbol is better than an undefined symbol.
659 return true;
660
661 case COMMON * 16 + WEAK_COMMON:
662 case WEAK_COMMON * 16 + WEAK_COMMON:
663 case DYN_COMMON * 16 + WEAK_COMMON:
664 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
665 // Ignore a weak common symbol in the presence of a real common
666 // symbol.
667 return false;
668
669 case DEF * 16 + DYN_COMMON:
670 case WEAK_DEF * 16 + DYN_COMMON:
671 case DYN_DEF * 16 + DYN_COMMON:
672 case DYN_WEAK_DEF * 16 + DYN_COMMON:
673 // Ignore a dynamic common symbol in the presence of a
674 // definition.
675 return false;
676
677 case UNDEF * 16 + DYN_COMMON:
678 case WEAK_UNDEF * 16 + DYN_COMMON:
679 case DYN_UNDEF * 16 + DYN_COMMON:
680 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
681 // A dynamic common symbol is a definition of sorts.
682 return true;
683
684 case COMMON * 16 + DYN_COMMON:
685 case WEAK_COMMON * 16 + DYN_COMMON:
686 case DYN_COMMON * 16 + DYN_COMMON:
687 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
688 // Set the size to the maximum.
689 *adjust_common_sizes = true;
690 return false;
691
692 case DEF * 16 + DYN_WEAK_COMMON:
693 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
694 case DYN_DEF * 16 + DYN_WEAK_COMMON:
695 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
696 // A common symbol is ignored in the face of a definition.
697 return false;
698
699 case UNDEF * 16 + DYN_WEAK_COMMON:
700 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
701 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
702 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
703 // I guess a weak common symbol is better than a definition.
704 return true;
705
706 case COMMON * 16 + DYN_WEAK_COMMON:
707 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
708 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
709 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
710 // Set the size to the maximum.
711 *adjust_common_sizes = true;
712 return false;
713
714 default:
715 gold_unreachable();
716 }
717 }
718
719 // A special case of should_override which is only called for a strong
720 // defined symbol from a regular object file. This is used when
721 // defining special symbols.
722
723 bool
724 Symbol_table::should_override_with_special(const Symbol* to)
725 {
726 bool adjust_common_sizes;
727 unsigned int frombits = global_flag | regular_flag | def_flag;
728 bool ret = Symbol_table::should_override(to, frombits, NULL,
729 &adjust_common_sizes);
730 gold_assert(!adjust_common_sizes);
731 return ret;
732 }
733
734 // Override symbol base with a special symbol.
735
736 void
737 Symbol::override_base_with_special(const Symbol* from)
738 {
739 gold_assert(this->name_ == from->name_ || this->has_alias());
740
741 this->source_ = from->source_;
742 switch (from->source_)
743 {
744 case FROM_OBJECT:
745 this->u_.from_object = from->u_.from_object;
746 break;
747 case IN_OUTPUT_DATA:
748 this->u_.in_output_data = from->u_.in_output_data;
749 break;
750 case IN_OUTPUT_SEGMENT:
751 this->u_.in_output_segment = from->u_.in_output_segment;
752 break;
753 case IS_CONSTANT:
754 case IS_UNDEFINED:
755 break;
756 default:
757 gold_unreachable();
758 break;
759 }
760
761 this->override_version(from->version_);
762 this->type_ = from->type_;
763 this->binding_ = from->binding_;
764 this->override_visibility(from->visibility_);
765 this->nonvis_ = from->nonvis_;
766
767 // Special symbols are always considered to be regular symbols.
768 this->in_reg_ = true;
769
770 if (from->needs_dynsym_entry_)
771 this->needs_dynsym_entry_ = true;
772 if (from->needs_dynsym_value_)
773 this->needs_dynsym_value_ = true;
774
775 // We shouldn't see these flags. If we do, we need to handle them
776 // somehow.
777 gold_assert(!from->is_target_special_ || this->is_target_special_);
778 gold_assert(!from->is_forwarder_);
779 gold_assert(!from->has_plt_offset_);
780 gold_assert(!from->has_warning_);
781 gold_assert(!from->is_copied_from_dynobj_);
782 gold_assert(!from->is_forced_local_);
783 }
784
785 // Override a symbol with a special symbol.
786
787 template<int size>
788 void
789 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
790 {
791 this->override_base_with_special(from);
792 this->value_ = from->value_;
793 this->symsize_ = from->symsize_;
794 }
795
796 // Override TOSYM with the special symbol FROMSYM. This handles all
797 // aliases of TOSYM.
798
799 template<int size>
800 void
801 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
802 const Sized_symbol<size>* fromsym)
803 {
804 tosym->override_with_special(fromsym);
805 if (tosym->has_alias())
806 {
807 Symbol* sym = this->weak_aliases_[tosym];
808 gold_assert(sym != NULL);
809 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
810 do
811 {
812 ssym->override_with_special(fromsym);
813 sym = this->weak_aliases_[ssym];
814 gold_assert(sym != NULL);
815 ssym = this->get_sized_symbol<size>(sym);
816 }
817 while (ssym != tosym);
818 }
819 if (tosym->binding() == elfcpp::STB_LOCAL
820 || ((tosym->visibility() == elfcpp::STV_HIDDEN
821 || tosym->visibility() == elfcpp::STV_INTERNAL)
822 && (tosym->binding() == elfcpp::STB_GLOBAL
823 || tosym->binding() == elfcpp::STB_WEAK)
824 && !parameters->options().relocatable()))
825 this->force_local(tosym);
826 }
827
828 // Instantiate the templates we need. We could use the configure
829 // script to restrict this to only the ones needed for implemented
830 // targets.
831
832 #ifdef HAVE_TARGET_32_LITTLE
833 template
834 void
835 Symbol_table::resolve<32, false>(
836 Sized_symbol<32>* to,
837 const elfcpp::Sym<32, false>& sym,
838 unsigned int st_shndx,
839 bool is_ordinary,
840 unsigned int orig_st_shndx,
841 Object* object,
842 const char* version);
843 #endif
844
845 #ifdef HAVE_TARGET_32_BIG
846 template
847 void
848 Symbol_table::resolve<32, true>(
849 Sized_symbol<32>* to,
850 const elfcpp::Sym<32, true>& sym,
851 unsigned int st_shndx,
852 bool is_ordinary,
853 unsigned int orig_st_shndx,
854 Object* object,
855 const char* version);
856 #endif
857
858 #ifdef HAVE_TARGET_64_LITTLE
859 template
860 void
861 Symbol_table::resolve<64, false>(
862 Sized_symbol<64>* to,
863 const elfcpp::Sym<64, false>& sym,
864 unsigned int st_shndx,
865 bool is_ordinary,
866 unsigned int orig_st_shndx,
867 Object* object,
868 const char* version);
869 #endif
870
871 #ifdef HAVE_TARGET_64_BIG
872 template
873 void
874 Symbol_table::resolve<64, true>(
875 Sized_symbol<64>* to,
876 const elfcpp::Sym<64, true>& sym,
877 unsigned int st_shndx,
878 bool is_ordinary,
879 unsigned int orig_st_shndx,
880 Object* object,
881 const char* version);
882 #endif
883
884 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
885 template
886 void
887 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
888 const Sized_symbol<32>*);
889 #endif
890
891 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
892 template
893 void
894 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
895 const Sized_symbol<64>*);
896 #endif
897
898 } // End namespace gold.
This page took 0.053227 seconds and 5 git commands to generate.