* i386.cc (Target_i386::Got_type): New enum declaration.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29
30 namespace gold
31 {
32
33 // Symbol methods used in this file.
34
35 // Override the fields in Symbol.
36
37 template<int size, bool big_endian>
38 void
39 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
40 Object* object, const char* version)
41 {
42 gold_assert(this->source_ == FROM_OBJECT);
43 this->u_.from_object.object = object;
44 if (version != NULL && this->version() != version)
45 {
46 gold_assert(this->version() == NULL);
47 this->version_ = version;
48 }
49 // FIXME: Handle SHN_XINDEX.
50 this->u_.from_object.shndx = sym.get_st_shndx();
51 this->type_ = sym.get_st_type();
52 this->binding_ = sym.get_st_bind();
53 this->visibility_ = sym.get_st_visibility();
54 this->nonvis_ = sym.get_st_nonvis();
55 if (object->is_dynamic())
56 this->in_dyn_ = true;
57 else
58 this->in_reg_ = true;
59 }
60
61 // Override the fields in Sized_symbol.
62
63 template<int size>
64 template<bool big_endian>
65 void
66 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
67 Object* object, const char* version)
68 {
69 this->override_base(sym, object, version);
70 this->value_ = sym.get_st_value();
71 this->symsize_ = sym.get_st_size();
72 }
73
74 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
75 // VERSION. This handles all aliases of TOSYM.
76
77 template<int size, bool big_endian>
78 void
79 Symbol_table::override(Sized_symbol<size>* tosym,
80 const elfcpp::Sym<size, big_endian>& fromsym,
81 Object* object, const char* version)
82 {
83 tosym->override(fromsym, object, version);
84 if (tosym->has_alias())
85 {
86 Symbol* sym = this->weak_aliases_[tosym];
87 gold_assert(sym != NULL);
88 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
89 do
90 {
91 ssym->override(fromsym, object, version);
92 sym = this->weak_aliases_[ssym];
93 gold_assert(sym != NULL);
94 ssym = this->get_sized_symbol<size>(sym);
95 }
96 while (ssym != tosym);
97 }
98 }
99
100 // The resolve functions build a little code for each symbol.
101 // Bit 0: 0 for global, 1 for weak.
102 // Bit 1: 0 for regular object, 1 for shared object
103 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
104 // This gives us values from 0 to 11.
105
106 static const int global_or_weak_shift = 0;
107 static const unsigned int global_flag = 0 << global_or_weak_shift;
108 static const unsigned int weak_flag = 1 << global_or_weak_shift;
109
110 static const int regular_or_dynamic_shift = 1;
111 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
112 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
113
114 static const int def_undef_or_common_shift = 2;
115 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
116 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
117 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
118
119 // This convenience function combines all the flags based on facts
120 // about the symbol.
121
122 static unsigned int
123 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
124 unsigned int shndx, elfcpp::STT type)
125 {
126 unsigned int bits;
127
128 switch (binding)
129 {
130 case elfcpp::STB_GLOBAL:
131 bits = global_flag;
132 break;
133
134 case elfcpp::STB_WEAK:
135 bits = weak_flag;
136 break;
137
138 case elfcpp::STB_LOCAL:
139 // We should only see externally visible symbols in the symbol
140 // table.
141 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
142 bits = global_flag;
143
144 default:
145 // Any target which wants to handle STB_LOOS, etc., needs to
146 // define a resolve method.
147 gold_error(_("unsupported symbol binding"));
148 bits = global_flag;
149 }
150
151 if (is_dynamic)
152 bits |= dynamic_flag;
153 else
154 bits |= regular_flag;
155
156 switch (shndx)
157 {
158 case elfcpp::SHN_UNDEF:
159 bits |= undef_flag;
160 break;
161
162 case elfcpp::SHN_COMMON:
163 bits |= common_flag;
164 break;
165
166 default:
167 if (type == elfcpp::STT_COMMON)
168 bits |= common_flag;
169 else
170 bits |= def_flag;
171 break;
172 }
173
174 return bits;
175 }
176
177 // Resolve a symbol. This is called the second and subsequent times
178 // we see a symbol. TO is the pre-existing symbol. ORIG_SYM is the
179 // new symbol, seen in OBJECT. SYM is almost always identical to
180 // ORIG_SYM, but may be munged (for instance, if we determine the
181 // symbol is in a to-be-discarded section, we'll set sym's shndx to
182 // UNDEFINED). VERSION of the version of SYM.
183
184 template<int size, bool big_endian>
185 void
186 Symbol_table::resolve(Sized_symbol<size>* to,
187 const elfcpp::Sym<size, big_endian>& sym,
188 const elfcpp::Sym<size, big_endian>& orig_sym,
189 Object* object, const char* version)
190 {
191 if (object->target()->has_resolve())
192 {
193 Sized_target<size, big_endian>* sized_target;
194 sized_target = object->sized_target<size, big_endian>();
195 sized_target->resolve(to, sym, object, version);
196 return;
197 }
198
199 if (!object->is_dynamic())
200 {
201 // Record that we've seen this symbol in a regular object.
202 to->set_in_reg();
203 }
204 else
205 {
206 // Record that we've seen this symbol in a dynamic object.
207 to->set_in_dyn();
208 }
209
210 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
211 object->is_dynamic(),
212 sym.get_st_shndx(),
213 sym.get_st_type());
214
215 bool adjust_common_sizes;
216 if (Symbol_table::should_override(to, frombits, object,
217 &adjust_common_sizes))
218 {
219 typename Sized_symbol<size>::Size_type tosize = to->symsize();
220
221 this->override(to, sym, object, version);
222
223 if (adjust_common_sizes && tosize > to->symsize())
224 to->set_symsize(tosize);
225 }
226 else
227 {
228 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
229 to->set_symsize(sym.get_st_size());
230 }
231
232 // A new weak undefined reference, merging with an old weak
233 // reference, could be a One Definition Rule (ODR) violation --
234 // especially if the types or sizes of the references differ. We'll
235 // store such pairs and look them up later to make sure they
236 // actually refer to the same lines of code. (Note: not all ODR
237 // violations can be found this way, and not everything this finds
238 // is an ODR violation. But it's helpful to warn about.)
239 // We use orig_sym here because we want the symbol exactly as it
240 // appears in the object file, not munged via our future processing.
241 if (parameters->options().detect_odr_violations()
242 && orig_sym.get_st_bind() == elfcpp::STB_WEAK
243 && to->binding() == elfcpp::STB_WEAK
244 && orig_sym.get_st_shndx() != elfcpp::SHN_UNDEF
245 && to->shndx() != elfcpp::SHN_UNDEF
246 && orig_sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
247 && to->symsize() != 0
248 && (orig_sym.get_st_type() != to->type()
249 || orig_sym.get_st_size() != to->symsize())
250 // C does not have a concept of ODR, so we only need to do this
251 // on C++ symbols. These have (mangled) names starting with _Z.
252 && to->name()[0] == '_' && to->name()[1] == 'Z')
253 {
254 Symbol_location fromloc
255 = { object, orig_sym.get_st_shndx(), orig_sym.get_st_value() };
256 Symbol_location toloc = { to->object(), to->shndx(), to->value() };
257 this->candidate_odr_violations_[to->name()].insert(fromloc);
258 this->candidate_odr_violations_[to->name()].insert(toloc);
259 }
260 }
261
262 // Handle the core of symbol resolution. This is called with the
263 // existing symbol, TO, and a bitflag describing the new symbol. This
264 // returns true if we should override the existing symbol with the new
265 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
266 // true if we should set the symbol size to the maximum of the TO and
267 // FROM sizes. It handles error conditions.
268
269 bool
270 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
271 Object* object, bool* adjust_common_sizes)
272 {
273 *adjust_common_sizes = false;
274
275 unsigned int tobits;
276 if (to->source() == Symbol::FROM_OBJECT)
277 tobits = symbol_to_bits(to->binding(),
278 to->object()->is_dynamic(),
279 to->shndx(),
280 to->type());
281 else
282 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS,
283 to->type());
284
285 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
286
287 // We use a giant switch table for symbol resolution. This code is
288 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
289 // cases; 3) it is easy to change the handling of a particular case.
290 // The alternative would be a series of conditionals, but it is easy
291 // to get the ordering wrong. This could also be done as a table,
292 // but that is no easier to understand than this large switch
293 // statement.
294
295 // These are the values generated by the bit codes.
296 enum
297 {
298 DEF = global_flag | regular_flag | def_flag,
299 WEAK_DEF = weak_flag | regular_flag | def_flag,
300 DYN_DEF = global_flag | dynamic_flag | def_flag,
301 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
302 UNDEF = global_flag | regular_flag | undef_flag,
303 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
304 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
305 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
306 COMMON = global_flag | regular_flag | common_flag,
307 WEAK_COMMON = weak_flag | regular_flag | common_flag,
308 DYN_COMMON = global_flag | dynamic_flag | common_flag,
309 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
310 };
311
312 switch (tobits * 16 + frombits)
313 {
314 case DEF * 16 + DEF:
315 // Two definitions of the same symbol.
316
317 // If either symbol is defined by an object included using
318 // --just-symbols, then don't warn. This is for compatibility
319 // with the GNU linker. FIXME: This is a hack.
320 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
321 || object->just_symbols())
322 return false;
323
324 // FIXME: Do a better job of reporting locations.
325 gold_error(_("%s: multiple definition of %s"),
326 object != NULL ? object->name().c_str() : _("command line"),
327 to->demangled_name().c_str());
328 gold_error(_("%s: previous definition here"),
329 (to->source() == Symbol::FROM_OBJECT
330 ? to->object()->name().c_str()
331 : _("command line")));
332 return false;
333
334 case WEAK_DEF * 16 + DEF:
335 // We've seen a weak definition, and now we see a strong
336 // definition. In the original SVR4 linker, this was treated as
337 // a multiple definition error. In the Solaris linker and the
338 // GNU linker, a weak definition followed by a regular
339 // definition causes the weak definition to be overridden. We
340 // are currently compatible with the GNU linker. In the future
341 // we should add a target specific option to change this.
342 // FIXME.
343 return true;
344
345 case DYN_DEF * 16 + DEF:
346 case DYN_WEAK_DEF * 16 + DEF:
347 // We've seen a definition in a dynamic object, and now we see a
348 // definition in a regular object. The definition in the
349 // regular object overrides the definition in the dynamic
350 // object.
351 return true;
352
353 case UNDEF * 16 + DEF:
354 case WEAK_UNDEF * 16 + DEF:
355 case DYN_UNDEF * 16 + DEF:
356 case DYN_WEAK_UNDEF * 16 + DEF:
357 // We've seen an undefined reference, and now we see a
358 // definition. We use the definition.
359 return true;
360
361 case COMMON * 16 + DEF:
362 case WEAK_COMMON * 16 + DEF:
363 case DYN_COMMON * 16 + DEF:
364 case DYN_WEAK_COMMON * 16 + DEF:
365 // We've seen a common symbol and now we see a definition. The
366 // definition overrides. FIXME: We should optionally issue, version a
367 // warning.
368 return true;
369
370 case DEF * 16 + WEAK_DEF:
371 case WEAK_DEF * 16 + WEAK_DEF:
372 // We've seen a definition and now we see a weak definition. We
373 // ignore the new weak definition.
374 return false;
375
376 case DYN_DEF * 16 + WEAK_DEF:
377 case DYN_WEAK_DEF * 16 + WEAK_DEF:
378 // We've seen a dynamic definition and now we see a regular weak
379 // definition. The regular weak definition overrides.
380 return true;
381
382 case UNDEF * 16 + WEAK_DEF:
383 case WEAK_UNDEF * 16 + WEAK_DEF:
384 case DYN_UNDEF * 16 + WEAK_DEF:
385 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
386 // A weak definition of a currently undefined symbol.
387 return true;
388
389 case COMMON * 16 + WEAK_DEF:
390 case WEAK_COMMON * 16 + WEAK_DEF:
391 // A weak definition does not override a common definition.
392 return false;
393
394 case DYN_COMMON * 16 + WEAK_DEF:
395 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
396 // A weak definition does override a definition in a dynamic
397 // object. FIXME: We should optionally issue a warning.
398 return true;
399
400 case DEF * 16 + DYN_DEF:
401 case WEAK_DEF * 16 + DYN_DEF:
402 case DYN_DEF * 16 + DYN_DEF:
403 case DYN_WEAK_DEF * 16 + DYN_DEF:
404 // Ignore a dynamic definition if we already have a definition.
405 return false;
406
407 case UNDEF * 16 + DYN_DEF:
408 case WEAK_UNDEF * 16 + DYN_DEF:
409 case DYN_UNDEF * 16 + DYN_DEF:
410 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
411 // Use a dynamic definition if we have a reference.
412 return true;
413
414 case COMMON * 16 + DYN_DEF:
415 case WEAK_COMMON * 16 + DYN_DEF:
416 case DYN_COMMON * 16 + DYN_DEF:
417 case DYN_WEAK_COMMON * 16 + DYN_DEF:
418 // Ignore a dynamic definition if we already have a common
419 // definition.
420 return false;
421
422 case DEF * 16 + DYN_WEAK_DEF:
423 case WEAK_DEF * 16 + DYN_WEAK_DEF:
424 case DYN_DEF * 16 + DYN_WEAK_DEF:
425 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
426 // Ignore a weak dynamic definition if we already have a
427 // definition.
428 return false;
429
430 case UNDEF * 16 + DYN_WEAK_DEF:
431 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
432 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
433 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
434 // Use a weak dynamic definition if we have a reference.
435 return true;
436
437 case COMMON * 16 + DYN_WEAK_DEF:
438 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
439 case DYN_COMMON * 16 + DYN_WEAK_DEF:
440 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
441 // Ignore a weak dynamic definition if we already have a common
442 // definition.
443 return false;
444
445 case DEF * 16 + UNDEF:
446 case WEAK_DEF * 16 + UNDEF:
447 case DYN_DEF * 16 + UNDEF:
448 case DYN_WEAK_DEF * 16 + UNDEF:
449 case UNDEF * 16 + UNDEF:
450 // A new undefined reference tells us nothing.
451 return false;
452
453 case WEAK_UNDEF * 16 + UNDEF:
454 case DYN_UNDEF * 16 + UNDEF:
455 case DYN_WEAK_UNDEF * 16 + UNDEF:
456 // A strong undef overrides a dynamic or weak undef.
457 return true;
458
459 case COMMON * 16 + UNDEF:
460 case WEAK_COMMON * 16 + UNDEF:
461 case DYN_COMMON * 16 + UNDEF:
462 case DYN_WEAK_COMMON * 16 + UNDEF:
463 // A new undefined reference tells us nothing.
464 return false;
465
466 case DEF * 16 + WEAK_UNDEF:
467 case WEAK_DEF * 16 + WEAK_UNDEF:
468 case DYN_DEF * 16 + WEAK_UNDEF:
469 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
470 case UNDEF * 16 + WEAK_UNDEF:
471 case WEAK_UNDEF * 16 + WEAK_UNDEF:
472 case DYN_UNDEF * 16 + WEAK_UNDEF:
473 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
474 case COMMON * 16 + WEAK_UNDEF:
475 case WEAK_COMMON * 16 + WEAK_UNDEF:
476 case DYN_COMMON * 16 + WEAK_UNDEF:
477 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
478 // A new weak undefined reference tells us nothing.
479 return false;
480
481 case DEF * 16 + DYN_UNDEF:
482 case WEAK_DEF * 16 + DYN_UNDEF:
483 case DYN_DEF * 16 + DYN_UNDEF:
484 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
485 case UNDEF * 16 + DYN_UNDEF:
486 case WEAK_UNDEF * 16 + DYN_UNDEF:
487 case DYN_UNDEF * 16 + DYN_UNDEF:
488 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
489 case COMMON * 16 + DYN_UNDEF:
490 case WEAK_COMMON * 16 + DYN_UNDEF:
491 case DYN_COMMON * 16 + DYN_UNDEF:
492 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
493 // A new dynamic undefined reference tells us nothing.
494 return false;
495
496 case DEF * 16 + DYN_WEAK_UNDEF:
497 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
498 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
499 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
500 case UNDEF * 16 + DYN_WEAK_UNDEF:
501 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
502 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
503 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
504 case COMMON * 16 + DYN_WEAK_UNDEF:
505 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
506 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
507 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
508 // A new weak dynamic undefined reference tells us nothing.
509 return false;
510
511 case DEF * 16 + COMMON:
512 // A common symbol does not override a definition.
513 return false;
514
515 case WEAK_DEF * 16 + COMMON:
516 case DYN_DEF * 16 + COMMON:
517 case DYN_WEAK_DEF * 16 + COMMON:
518 // A common symbol does override a weak definition or a dynamic
519 // definition.
520 return true;
521
522 case UNDEF * 16 + COMMON:
523 case WEAK_UNDEF * 16 + COMMON:
524 case DYN_UNDEF * 16 + COMMON:
525 case DYN_WEAK_UNDEF * 16 + COMMON:
526 // A common symbol is a definition for a reference.
527 return true;
528
529 case COMMON * 16 + COMMON:
530 // Set the size to the maximum.
531 *adjust_common_sizes = true;
532 return false;
533
534 case WEAK_COMMON * 16 + COMMON:
535 // I'm not sure just what a weak common symbol means, but
536 // presumably it can be overridden by a regular common symbol.
537 return true;
538
539 case DYN_COMMON * 16 + COMMON:
540 case DYN_WEAK_COMMON * 16 + COMMON:
541 // Use the real common symbol, but adjust the size if necessary.
542 *adjust_common_sizes = true;
543 return true;
544
545 case DEF * 16 + WEAK_COMMON:
546 case WEAK_DEF * 16 + WEAK_COMMON:
547 case DYN_DEF * 16 + WEAK_COMMON:
548 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
549 // Whatever a weak common symbol is, it won't override a
550 // definition.
551 return false;
552
553 case UNDEF * 16 + WEAK_COMMON:
554 case WEAK_UNDEF * 16 + WEAK_COMMON:
555 case DYN_UNDEF * 16 + WEAK_COMMON:
556 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
557 // A weak common symbol is better than an undefined symbol.
558 return true;
559
560 case COMMON * 16 + WEAK_COMMON:
561 case WEAK_COMMON * 16 + WEAK_COMMON:
562 case DYN_COMMON * 16 + WEAK_COMMON:
563 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
564 // Ignore a weak common symbol in the presence of a real common
565 // symbol.
566 return false;
567
568 case DEF * 16 + DYN_COMMON:
569 case WEAK_DEF * 16 + DYN_COMMON:
570 case DYN_DEF * 16 + DYN_COMMON:
571 case DYN_WEAK_DEF * 16 + DYN_COMMON:
572 // Ignore a dynamic common symbol in the presence of a
573 // definition.
574 return false;
575
576 case UNDEF * 16 + DYN_COMMON:
577 case WEAK_UNDEF * 16 + DYN_COMMON:
578 case DYN_UNDEF * 16 + DYN_COMMON:
579 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
580 // A dynamic common symbol is a definition of sorts.
581 return true;
582
583 case COMMON * 16 + DYN_COMMON:
584 case WEAK_COMMON * 16 + DYN_COMMON:
585 case DYN_COMMON * 16 + DYN_COMMON:
586 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
587 // Set the size to the maximum.
588 *adjust_common_sizes = true;
589 return false;
590
591 case DEF * 16 + DYN_WEAK_COMMON:
592 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
593 case DYN_DEF * 16 + DYN_WEAK_COMMON:
594 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
595 // A common symbol is ignored in the face of a definition.
596 return false;
597
598 case UNDEF * 16 + DYN_WEAK_COMMON:
599 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
600 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
601 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
602 // I guess a weak common symbol is better than a definition.
603 return true;
604
605 case COMMON * 16 + DYN_WEAK_COMMON:
606 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
607 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
608 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
609 // Set the size to the maximum.
610 *adjust_common_sizes = true;
611 return false;
612
613 default:
614 gold_unreachable();
615 }
616 }
617
618 // A special case of should_override which is only called for a strong
619 // defined symbol from a regular object file. This is used when
620 // defining special symbols.
621
622 bool
623 Symbol_table::should_override_with_special(const Symbol* to)
624 {
625 bool adjust_common_sizes;
626 unsigned int frombits = global_flag | regular_flag | def_flag;
627 bool ret = Symbol_table::should_override(to, frombits, NULL,
628 &adjust_common_sizes);
629 gold_assert(!adjust_common_sizes);
630 return ret;
631 }
632
633 // Override symbol base with a special symbol.
634
635 void
636 Symbol::override_base_with_special(const Symbol* from)
637 {
638 gold_assert(this->name_ == from->name_ || this->has_alias());
639
640 this->source_ = from->source_;
641 switch (from->source_)
642 {
643 case FROM_OBJECT:
644 this->u_.from_object = from->u_.from_object;
645 break;
646 case IN_OUTPUT_DATA:
647 this->u_.in_output_data = from->u_.in_output_data;
648 break;
649 case IN_OUTPUT_SEGMENT:
650 this->u_.in_output_segment = from->u_.in_output_segment;
651 break;
652 case CONSTANT:
653 break;
654 default:
655 gold_unreachable();
656 break;
657 }
658
659 if (from->version_ != NULL && this->version_ != from->version_)
660 {
661 gold_assert(this->version_ == NULL);
662 this->version_ = from->version_;
663 }
664
665 this->type_ = from->type_;
666 this->binding_ = from->binding_;
667 this->visibility_ = from->visibility_;
668 this->nonvis_ = from->nonvis_;
669
670 // Special symbols are always considered to be regular symbols.
671 this->in_reg_ = true;
672
673 if (from->needs_dynsym_entry_)
674 this->needs_dynsym_entry_ = true;
675 if (from->needs_dynsym_value_)
676 this->needs_dynsym_value_ = true;
677
678 // We shouldn't see these flags. If we do, we need to handle them
679 // somehow.
680 gold_assert(!from->is_target_special_ || this->is_target_special_);
681 gold_assert(!from->is_forwarder_);
682 gold_assert(!from->has_plt_offset_);
683 gold_assert(!from->has_warning_);
684 gold_assert(!from->is_copied_from_dynobj_);
685 gold_assert(!from->is_forced_local_);
686 }
687
688 // Override a symbol with a special symbol.
689
690 template<int size>
691 void
692 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
693 {
694 this->override_base_with_special(from);
695 this->value_ = from->value_;
696 this->symsize_ = from->symsize_;
697 }
698
699 // Override TOSYM with the special symbol FROMSYM. This handles all
700 // aliases of TOSYM.
701
702 template<int size>
703 void
704 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
705 const Sized_symbol<size>* fromsym)
706 {
707 tosym->override_with_special(fromsym);
708 if (tosym->has_alias())
709 {
710 Symbol* sym = this->weak_aliases_[tosym];
711 gold_assert(sym != NULL);
712 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
713 do
714 {
715 ssym->override_with_special(fromsym);
716 sym = this->weak_aliases_[ssym];
717 gold_assert(sym != NULL);
718 ssym = this->get_sized_symbol<size>(sym);
719 }
720 while (ssym != tosym);
721 }
722 if (tosym->binding() == elfcpp::STB_LOCAL)
723 this->force_local(tosym);
724 }
725
726 // Instantiate the templates we need. We could use the configure
727 // script to restrict this to only the ones needed for implemented
728 // targets.
729
730 #ifdef HAVE_TARGET_32_LITTLE
731 template
732 void
733 Symbol_table::resolve<32, false>(
734 Sized_symbol<32>* to,
735 const elfcpp::Sym<32, false>& sym,
736 const elfcpp::Sym<32, false>& orig_sym,
737 Object* object,
738 const char* version);
739 #endif
740
741 #ifdef HAVE_TARGET_32_BIG
742 template
743 void
744 Symbol_table::resolve<32, true>(
745 Sized_symbol<32>* to,
746 const elfcpp::Sym<32, true>& sym,
747 const elfcpp::Sym<32, true>& orig_sym,
748 Object* object,
749 const char* version);
750 #endif
751
752 #ifdef HAVE_TARGET_64_LITTLE
753 template
754 void
755 Symbol_table::resolve<64, false>(
756 Sized_symbol<64>* to,
757 const elfcpp::Sym<64, false>& sym,
758 const elfcpp::Sym<64, false>& orig_sym,
759 Object* object,
760 const char* version);
761 #endif
762
763 #ifdef HAVE_TARGET_64_BIG
764 template
765 void
766 Symbol_table::resolve<64, true>(
767 Sized_symbol<64>* to,
768 const elfcpp::Sym<64, true>& sym,
769 const elfcpp::Sym<64, true>& orig_sym,
770 Object* object,
771 const char* version);
772 #endif
773
774 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
775 template
776 void
777 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
778 const Sized_symbol<32>*);
779 #endif
780
781 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
782 template
783 void
784 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
785 const Sized_symbol<64>*);
786 #endif
787
788 } // End namespace gold.
This page took 0.062631 seconds and 5 git commands to generate.