Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2018 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u1_.object = object;
96 this->override_version(version);
97 this->u2_.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196 break;
197
198 default:
199 // Any target which wants to handle STB_LOOS, etc., needs to
200 // define a resolve method.
201 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
202 bits = global_flag;
203 }
204
205 if (is_dynamic)
206 bits |= dynamic_flag;
207 else
208 bits |= regular_flag;
209
210 switch (shndx)
211 {
212 case elfcpp::SHN_UNDEF:
213 bits |= undef_flag;
214 break;
215
216 case elfcpp::SHN_COMMON:
217 if (!is_ordinary)
218 bits |= common_flag;
219 break;
220
221 default:
222 if (!is_ordinary && Symbol::is_common_shndx(shndx))
223 bits |= common_flag;
224 else
225 bits |= def_flag;
226 break;
227 }
228
229 return bits;
230 }
231
232 // Resolve a symbol. This is called the second and subsequent times
233 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
234 // section index for SYM, possibly adjusted for many sections.
235 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
236 // than a special code. ORIG_ST_SHNDX is the original section index,
237 // before any munging because of discarded sections, except that all
238 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
239 // the version of SYM.
240
241 template<int size, bool big_endian>
242 void
243 Symbol_table::resolve(Sized_symbol<size>* to,
244 const elfcpp::Sym<size, big_endian>& sym,
245 unsigned int st_shndx, bool is_ordinary,
246 unsigned int orig_st_shndx,
247 Object* object, const char* version,
248 bool is_default_version)
249 {
250 bool to_is_ordinary;
251 const unsigned int to_shndx = to->shndx(&to_is_ordinary);
252
253 // It's possible for a symbol to be defined in an object file
254 // using .symver to give it a version, and for there to also be
255 // a linker script giving that symbol the same version. We
256 // don't want to give a multiple-definition error for this
257 // harmless redefinition.
258 if (to->source() == Symbol::FROM_OBJECT
259 && to->object() == object
260 && to->is_defined()
261 && is_ordinary
262 && to_is_ordinary
263 && to_shndx == st_shndx
264 && to->value() == sym.get_st_value())
265 return;
266
267 // Likewise for an absolute symbol defined twice with the same value.
268 if (!is_ordinary
269 && st_shndx == elfcpp::SHN_ABS
270 && !to_is_ordinary
271 && to_shndx == elfcpp::SHN_ABS
272 && to->value() == sym.get_st_value())
273 return;
274
275 if (parameters->target().has_resolve())
276 {
277 Sized_target<size, big_endian>* sized_target;
278 sized_target = parameters->sized_target<size, big_endian>();
279 if (sized_target->resolve(to, sym, object, version))
280 return;
281 }
282
283 if (!object->is_dynamic())
284 {
285 if (sym.get_st_type() == elfcpp::STT_COMMON
286 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
287 {
288 gold_warning(_("STT_COMMON symbol '%s' in %s "
289 "is not in a common section"),
290 to->demangled_name().c_str(),
291 to->object()->name().c_str());
292 return;
293 }
294 // Record that we've seen this symbol in a regular object.
295 to->set_in_reg();
296 }
297 else if (st_shndx == elfcpp::SHN_UNDEF
298 && (to->visibility() == elfcpp::STV_HIDDEN
299 || to->visibility() == elfcpp::STV_INTERNAL))
300 {
301 // The symbol is hidden, so a reference from a shared object
302 // cannot bind to it. We tried issuing a warning in this case,
303 // but that produces false positives when the symbol is
304 // actually resolved in a different shared object (PR 15574).
305 return;
306 }
307 else
308 {
309 // Record that we've seen this symbol in a dynamic object.
310 to->set_in_dyn();
311 }
312
313 // Record if we've seen this symbol in a real ELF object (i.e., the
314 // symbol is referenced from outside the world known to the plugin).
315 if (object->pluginobj() == NULL && !object->is_dynamic())
316 to->set_in_real_elf();
317
318 // If we're processing replacement files, allow new symbols to override
319 // the placeholders from the plugin objects.
320 // Treat common symbols specially since it is possible that an ELF
321 // file increased the size of the alignment.
322 if (to->source() == Symbol::FROM_OBJECT)
323 {
324 Pluginobj* obj = to->object()->pluginobj();
325 if (obj != NULL
326 && parameters->options().plugins()->in_replacement_phase())
327 {
328 bool adjust_common = false;
329 typename Sized_symbol<size>::Size_type tosize = 0;
330 typename Sized_symbol<size>::Value_type tovalue = 0;
331 if (to->is_common()
332 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
333 {
334 adjust_common = true;
335 tosize = to->symsize();
336 tovalue = to->value();
337 }
338 this->override(to, sym, st_shndx, is_ordinary, object, version);
339 if (adjust_common)
340 {
341 if (tosize > to->symsize())
342 to->set_symsize(tosize);
343 if (tovalue > to->value())
344 to->set_value(tovalue);
345 }
346 return;
347 }
348 }
349
350 // A new weak undefined reference, merging with an old weak
351 // reference, could be a One Definition Rule (ODR) violation --
352 // especially if the types or sizes of the references differ. We'll
353 // store such pairs and look them up later to make sure they
354 // actually refer to the same lines of code. We also check
355 // combinations of weak and strong, which might occur if one case is
356 // inline and the other is not. (Note: not all ODR violations can
357 // be found this way, and not everything this finds is an ODR
358 // violation. But it's helpful to warn about.)
359 if (parameters->options().detect_odr_violations()
360 && (sym.get_st_bind() == elfcpp::STB_WEAK
361 || to->binding() == elfcpp::STB_WEAK)
362 && orig_st_shndx != elfcpp::SHN_UNDEF
363 && to_is_ordinary
364 && to_shndx != elfcpp::SHN_UNDEF
365 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
366 && to->symsize() != 0
367 && (sym.get_st_type() != to->type()
368 || sym.get_st_size() != to->symsize())
369 // C does not have a concept of ODR, so we only need to do this
370 // on C++ symbols. These have (mangled) names starting with _Z.
371 && to->name()[0] == '_' && to->name()[1] == 'Z')
372 {
373 Symbol_location fromloc
374 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
375 Symbol_location toloc = { to->object(), to_shndx,
376 static_cast<off_t>(to->value()) };
377 this->candidate_odr_violations_[to->name()].insert(fromloc);
378 this->candidate_odr_violations_[to->name()].insert(toloc);
379 }
380
381 // Plugins don't provide a symbol type, so adopt the existing type
382 // if the FROM symbol is from a plugin.
383 elfcpp::STT fromtype = (object->pluginobj() != NULL
384 ? to->type()
385 : sym.get_st_type());
386 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
387 object->is_dynamic(),
388 st_shndx, is_ordinary);
389
390 bool adjust_common_sizes;
391 bool adjust_dyndef;
392 typename Sized_symbol<size>::Size_type tosize = to->symsize();
393 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
394 object, &adjust_common_sizes,
395 &adjust_dyndef, is_default_version))
396 {
397 elfcpp::STB tobinding = to->binding();
398 typename Sized_symbol<size>::Value_type tovalue = to->value();
399 this->override(to, sym, st_shndx, is_ordinary, object, version);
400 if (adjust_common_sizes)
401 {
402 if (tosize > to->symsize())
403 to->set_symsize(tosize);
404 if (tovalue > to->value())
405 to->set_value(tovalue);
406 }
407 if (adjust_dyndef)
408 {
409 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
410 // Remember which kind of UNDEF it was for future reference.
411 to->set_undef_binding(tobinding);
412 }
413 }
414 else
415 {
416 if (adjust_common_sizes)
417 {
418 if (sym.get_st_size() > tosize)
419 to->set_symsize(sym.get_st_size());
420 if (sym.get_st_value() > to->value())
421 to->set_value(sym.get_st_value());
422 }
423 if (adjust_dyndef)
424 {
425 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
426 // Remember which kind of UNDEF it was.
427 to->set_undef_binding(sym.get_st_bind());
428 }
429 // The ELF ABI says that even for a reference to a symbol we
430 // merge the visibility.
431 to->override_visibility(sym.get_st_visibility());
432 }
433
434 if (adjust_common_sizes && parameters->options().warn_common())
435 {
436 if (tosize > sym.get_st_size())
437 Symbol_table::report_resolve_problem(false,
438 _("common of '%s' overriding "
439 "smaller common"),
440 to, OBJECT, object);
441 else if (tosize < sym.get_st_size())
442 Symbol_table::report_resolve_problem(false,
443 _("common of '%s' overidden by "
444 "larger common"),
445 to, OBJECT, object);
446 else
447 Symbol_table::report_resolve_problem(false,
448 _("multiple common of '%s'"),
449 to, OBJECT, object);
450 }
451 }
452
453 // Handle the core of symbol resolution. This is called with the
454 // existing symbol, TO, and a bitflag describing the new symbol. This
455 // returns true if we should override the existing symbol with the new
456 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
457 // true if we should set the symbol size to the maximum of the TO and
458 // FROM sizes. It handles error conditions.
459
460 bool
461 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
462 elfcpp::STT fromtype, Defined defined,
463 Object* object, bool* adjust_common_sizes,
464 bool* adjust_dyndef, bool is_default_version)
465 {
466 *adjust_common_sizes = false;
467 *adjust_dyndef = false;
468
469 unsigned int tobits;
470 if (to->source() == Symbol::IS_UNDEFINED)
471 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
472 else if (to->source() != Symbol::FROM_OBJECT)
473 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
474 else
475 {
476 bool is_ordinary;
477 unsigned int shndx = to->shndx(&is_ordinary);
478 tobits = symbol_to_bits(to->binding(),
479 to->object()->is_dynamic(),
480 shndx,
481 is_ordinary);
482 }
483
484 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
485 && !to->is_placeholder())
486 Symbol_table::report_resolve_problem(true,
487 _("symbol '%s' used as both __thread "
488 "and non-__thread"),
489 to, defined, object);
490
491 // We use a giant switch table for symbol resolution. This code is
492 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
493 // cases; 3) it is easy to change the handling of a particular case.
494 // The alternative would be a series of conditionals, but it is easy
495 // to get the ordering wrong. This could also be done as a table,
496 // but that is no easier to understand than this large switch
497 // statement.
498
499 // These are the values generated by the bit codes.
500 enum
501 {
502 DEF = global_flag | regular_flag | def_flag,
503 WEAK_DEF = weak_flag | regular_flag | def_flag,
504 DYN_DEF = global_flag | dynamic_flag | def_flag,
505 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
506 UNDEF = global_flag | regular_flag | undef_flag,
507 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
508 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
509 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
510 COMMON = global_flag | regular_flag | common_flag,
511 WEAK_COMMON = weak_flag | regular_flag | common_flag,
512 DYN_COMMON = global_flag | dynamic_flag | common_flag,
513 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
514 };
515
516 switch (tobits * 16 + frombits)
517 {
518 case DEF * 16 + DEF:
519 // Two definitions of the same symbol.
520
521 // If either symbol is defined by an object included using
522 // --just-symbols, then don't warn. This is for compatibility
523 // with the GNU linker. FIXME: This is a hack.
524 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
525 || (object != NULL && object->just_symbols()))
526 return false;
527
528 if (!parameters->options().muldefs())
529 Symbol_table::report_resolve_problem(true,
530 _("multiple definition of '%s'"),
531 to, defined, object);
532 return false;
533
534 case WEAK_DEF * 16 + DEF:
535 // We've seen a weak definition, and now we see a strong
536 // definition. In the original SVR4 linker, this was treated as
537 // a multiple definition error. In the Solaris linker and the
538 // GNU linker, a weak definition followed by a regular
539 // definition causes the weak definition to be overridden. We
540 // are currently compatible with the GNU linker. In the future
541 // we should add a target specific option to change this.
542 // FIXME.
543 return true;
544
545 case DYN_DEF * 16 + DEF:
546 case DYN_WEAK_DEF * 16 + DEF:
547 // We've seen a definition in a dynamic object, and now we see a
548 // definition in a regular object. The definition in the
549 // regular object overrides the definition in the dynamic
550 // object.
551 return true;
552
553 case UNDEF * 16 + DEF:
554 case WEAK_UNDEF * 16 + DEF:
555 case DYN_UNDEF * 16 + DEF:
556 case DYN_WEAK_UNDEF * 16 + DEF:
557 // We've seen an undefined reference, and now we see a
558 // definition. We use the definition.
559 return true;
560
561 case COMMON * 16 + DEF:
562 case WEAK_COMMON * 16 + DEF:
563 case DYN_COMMON * 16 + DEF:
564 case DYN_WEAK_COMMON * 16 + DEF:
565 // We've seen a common symbol and now we see a definition. The
566 // definition overrides.
567 if (parameters->options().warn_common())
568 Symbol_table::report_resolve_problem(false,
569 _("definition of '%s' overriding "
570 "common"),
571 to, defined, object);
572 return true;
573
574 case DEF * 16 + WEAK_DEF:
575 case WEAK_DEF * 16 + WEAK_DEF:
576 // We've seen a definition and now we see a weak definition. We
577 // ignore the new weak definition.
578 return false;
579
580 case DYN_DEF * 16 + WEAK_DEF:
581 case DYN_WEAK_DEF * 16 + WEAK_DEF:
582 // We've seen a dynamic definition and now we see a regular weak
583 // definition. The regular weak definition overrides.
584 return true;
585
586 case UNDEF * 16 + WEAK_DEF:
587 case WEAK_UNDEF * 16 + WEAK_DEF:
588 case DYN_UNDEF * 16 + WEAK_DEF:
589 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
590 // A weak definition of a currently undefined symbol.
591 return true;
592
593 case COMMON * 16 + WEAK_DEF:
594 case WEAK_COMMON * 16 + WEAK_DEF:
595 // A weak definition does not override a common definition.
596 return false;
597
598 case DYN_COMMON * 16 + WEAK_DEF:
599 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
600 // A weak definition does override a definition in a dynamic
601 // object.
602 if (parameters->options().warn_common())
603 Symbol_table::report_resolve_problem(false,
604 _("definition of '%s' overriding "
605 "dynamic common definition"),
606 to, defined, object);
607 return true;
608
609 case DEF * 16 + DYN_DEF:
610 case WEAK_DEF * 16 + DYN_DEF:
611 // Ignore a dynamic definition if we already have a definition.
612 return false;
613
614 case DYN_DEF * 16 + DYN_DEF:
615 case DYN_WEAK_DEF * 16 + DYN_DEF:
616 // Ignore a dynamic definition if we already have a definition,
617 // unless the existing definition is an unversioned definition
618 // in the same dynamic object, and the new definition is a
619 // default version.
620 if (to->object() == object
621 && to->version() == NULL
622 && is_default_version)
623 return true;
624 return false;
625
626 case UNDEF * 16 + DYN_DEF:
627 case DYN_UNDEF * 16 + DYN_DEF:
628 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
629 // Use a dynamic definition if we have a reference.
630 return true;
631
632 case WEAK_UNDEF * 16 + DYN_DEF:
633 // When overriding a weak undef by a dynamic definition,
634 // we need to remember that the original undef was weak.
635 *adjust_dyndef = true;
636 return true;
637
638 case COMMON * 16 + DYN_DEF:
639 case WEAK_COMMON * 16 + DYN_DEF:
640 case DYN_COMMON * 16 + DYN_DEF:
641 case DYN_WEAK_COMMON * 16 + DYN_DEF:
642 // Ignore a dynamic definition if we already have a common
643 // definition.
644 return false;
645
646 case DEF * 16 + DYN_WEAK_DEF:
647 case WEAK_DEF * 16 + DYN_WEAK_DEF:
648 case DYN_DEF * 16 + DYN_WEAK_DEF:
649 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
650 // Ignore a weak dynamic definition if we already have a
651 // definition.
652 return false;
653
654 case UNDEF * 16 + DYN_WEAK_DEF:
655 // When overriding an undef by a dynamic weak definition,
656 // we need to remember that the original undef was not weak.
657 *adjust_dyndef = true;
658 return true;
659
660 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
661 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
662 // Use a weak dynamic definition if we have a reference.
663 return true;
664
665 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
666 // When overriding a weak undef by a dynamic definition,
667 // we need to remember that the original undef was weak.
668 *adjust_dyndef = true;
669 return true;
670
671 case COMMON * 16 + DYN_WEAK_DEF:
672 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
673 case DYN_COMMON * 16 + DYN_WEAK_DEF:
674 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
675 // Ignore a weak dynamic definition if we already have a common
676 // definition.
677 return false;
678
679 case DEF * 16 + UNDEF:
680 case WEAK_DEF * 16 + UNDEF:
681 case UNDEF * 16 + UNDEF:
682 // A new undefined reference tells us nothing.
683 return false;
684
685 case DYN_DEF * 16 + UNDEF:
686 case DYN_WEAK_DEF * 16 + UNDEF:
687 // For a dynamic def, we need to remember which kind of undef we see.
688 *adjust_dyndef = true;
689 return false;
690
691 case WEAK_UNDEF * 16 + UNDEF:
692 case DYN_UNDEF * 16 + UNDEF:
693 case DYN_WEAK_UNDEF * 16 + UNDEF:
694 // A strong undef overrides a dynamic or weak undef.
695 return true;
696
697 case COMMON * 16 + UNDEF:
698 case WEAK_COMMON * 16 + UNDEF:
699 case DYN_COMMON * 16 + UNDEF:
700 case DYN_WEAK_COMMON * 16 + UNDEF:
701 // A new undefined reference tells us nothing.
702 return false;
703
704 case DEF * 16 + WEAK_UNDEF:
705 case WEAK_DEF * 16 + WEAK_UNDEF:
706 case UNDEF * 16 + WEAK_UNDEF:
707 case WEAK_UNDEF * 16 + WEAK_UNDEF:
708 case DYN_UNDEF * 16 + WEAK_UNDEF:
709 case COMMON * 16 + WEAK_UNDEF:
710 case WEAK_COMMON * 16 + WEAK_UNDEF:
711 case DYN_COMMON * 16 + WEAK_UNDEF:
712 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
713 // A new weak undefined reference tells us nothing unless the
714 // exisiting symbol is a dynamic weak reference.
715 return false;
716
717 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
718 // A new weak reference overrides an existing dynamic weak reference.
719 // This is necessary because a dynamic weak reference remembers
720 // the old binding, which may not be weak. If we keeps the existing
721 // dynamic weak reference, the weakness may be dropped in the output.
722 return true;
723
724 case DYN_DEF * 16 + WEAK_UNDEF:
725 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
726 // For a dynamic def, we need to remember which kind of undef we see.
727 *adjust_dyndef = true;
728 return false;
729
730 case DEF * 16 + DYN_UNDEF:
731 case WEAK_DEF * 16 + DYN_UNDEF:
732 case DYN_DEF * 16 + DYN_UNDEF:
733 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
734 case UNDEF * 16 + DYN_UNDEF:
735 case WEAK_UNDEF * 16 + DYN_UNDEF:
736 case DYN_UNDEF * 16 + DYN_UNDEF:
737 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
738 case COMMON * 16 + DYN_UNDEF:
739 case WEAK_COMMON * 16 + DYN_UNDEF:
740 case DYN_COMMON * 16 + DYN_UNDEF:
741 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
742 // A new dynamic undefined reference tells us nothing.
743 return false;
744
745 case DEF * 16 + DYN_WEAK_UNDEF:
746 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
747 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
748 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
749 case UNDEF * 16 + DYN_WEAK_UNDEF:
750 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
751 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
752 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
753 case COMMON * 16 + DYN_WEAK_UNDEF:
754 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
755 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
756 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
757 // A new weak dynamic undefined reference tells us nothing.
758 return false;
759
760 case DEF * 16 + COMMON:
761 // A common symbol does not override a definition.
762 if (parameters->options().warn_common())
763 Symbol_table::report_resolve_problem(false,
764 _("common '%s' overridden by "
765 "previous definition"),
766 to, defined, object);
767 return false;
768
769 case WEAK_DEF * 16 + COMMON:
770 case DYN_DEF * 16 + COMMON:
771 case DYN_WEAK_DEF * 16 + COMMON:
772 // A common symbol does override a weak definition or a dynamic
773 // definition.
774 return true;
775
776 case UNDEF * 16 + COMMON:
777 case WEAK_UNDEF * 16 + COMMON:
778 case DYN_UNDEF * 16 + COMMON:
779 case DYN_WEAK_UNDEF * 16 + COMMON:
780 // A common symbol is a definition for a reference.
781 return true;
782
783 case COMMON * 16 + COMMON:
784 // Set the size to the maximum.
785 *adjust_common_sizes = true;
786 return false;
787
788 case WEAK_COMMON * 16 + COMMON:
789 // I'm not sure just what a weak common symbol means, but
790 // presumably it can be overridden by a regular common symbol.
791 return true;
792
793 case DYN_COMMON * 16 + COMMON:
794 case DYN_WEAK_COMMON * 16 + COMMON:
795 // Use the real common symbol, but adjust the size if necessary.
796 *adjust_common_sizes = true;
797 return true;
798
799 case DEF * 16 + WEAK_COMMON:
800 case WEAK_DEF * 16 + WEAK_COMMON:
801 case DYN_DEF * 16 + WEAK_COMMON:
802 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
803 // Whatever a weak common symbol is, it won't override a
804 // definition.
805 return false;
806
807 case UNDEF * 16 + WEAK_COMMON:
808 case WEAK_UNDEF * 16 + WEAK_COMMON:
809 case DYN_UNDEF * 16 + WEAK_COMMON:
810 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
811 // A weak common symbol is better than an undefined symbol.
812 return true;
813
814 case COMMON * 16 + WEAK_COMMON:
815 case WEAK_COMMON * 16 + WEAK_COMMON:
816 case DYN_COMMON * 16 + WEAK_COMMON:
817 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
818 // Ignore a weak common symbol in the presence of a real common
819 // symbol.
820 return false;
821
822 case DEF * 16 + DYN_COMMON:
823 case WEAK_DEF * 16 + DYN_COMMON:
824 case DYN_DEF * 16 + DYN_COMMON:
825 case DYN_WEAK_DEF * 16 + DYN_COMMON:
826 // Ignore a dynamic common symbol in the presence of a
827 // definition.
828 return false;
829
830 case UNDEF * 16 + DYN_COMMON:
831 case WEAK_UNDEF * 16 + DYN_COMMON:
832 case DYN_UNDEF * 16 + DYN_COMMON:
833 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
834 // A dynamic common symbol is a definition of sorts.
835 return true;
836
837 case COMMON * 16 + DYN_COMMON:
838 case WEAK_COMMON * 16 + DYN_COMMON:
839 case DYN_COMMON * 16 + DYN_COMMON:
840 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
841 // Set the size to the maximum.
842 *adjust_common_sizes = true;
843 return false;
844
845 case DEF * 16 + DYN_WEAK_COMMON:
846 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
847 case DYN_DEF * 16 + DYN_WEAK_COMMON:
848 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
849 // A common symbol is ignored in the face of a definition.
850 return false;
851
852 case UNDEF * 16 + DYN_WEAK_COMMON:
853 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
854 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
855 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
856 // I guess a weak common symbol is better than a definition.
857 return true;
858
859 case COMMON * 16 + DYN_WEAK_COMMON:
860 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
861 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
862 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
863 // Set the size to the maximum.
864 *adjust_common_sizes = true;
865 return false;
866
867 default:
868 gold_unreachable();
869 }
870 }
871
872 // Issue an error or warning due to symbol resolution. IS_ERROR
873 // indicates an error rather than a warning. MSG is the error
874 // message; it is expected to have a %s for the symbol name. TO is
875 // the existing symbol. DEFINED/OBJECT is where the new symbol was
876 // found.
877
878 // FIXME: We should have better location information here. When the
879 // symbol is defined, we should be able to pull the location from the
880 // debug info if there is any.
881
882 void
883 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
884 const Symbol* to, Defined defined,
885 Object* object)
886 {
887 std::string demangled(to->demangled_name());
888 size_t len = strlen(msg) + demangled.length() + 10;
889 char* buf = new char[len];
890 snprintf(buf, len, msg, demangled.c_str());
891
892 const char* objname;
893 switch (defined)
894 {
895 case OBJECT:
896 objname = object->name().c_str();
897 break;
898 case COPY:
899 objname = _("COPY reloc");
900 break;
901 case DEFSYM:
902 case UNDEFINED:
903 objname = _("command line");
904 break;
905 case SCRIPT:
906 objname = _("linker script");
907 break;
908 case PREDEFINED:
909 case INCREMENTAL_BASE:
910 objname = _("linker defined");
911 break;
912 default:
913 gold_unreachable();
914 }
915
916 if (is_error)
917 gold_error("%s: %s", objname, buf);
918 else
919 gold_warning("%s: %s", objname, buf);
920
921 delete[] buf;
922
923 if (to->source() == Symbol::FROM_OBJECT)
924 objname = to->object()->name().c_str();
925 else
926 objname = _("command line");
927 gold_info("%s: %s: previous definition here", program_name, objname);
928 }
929
930 // Completely override existing symbol. Everything bar name_,
931 // version_, and is_forced_local_ flag are copied. version_ is
932 // cleared if from->version_ is clear. Returns true if this symbol
933 // should be forced local.
934 bool
935 Symbol::clone(const Symbol* from)
936 {
937 // Don't allow cloning after dynamic linking info is attached to symbols.
938 // We aren't prepared to merge such.
939 gold_assert(!this->has_symtab_index() && !from->has_symtab_index());
940 gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index());
941 gold_assert(this->got_offset_list() == NULL
942 && from->got_offset_list() == NULL);
943 gold_assert(!this->has_plt_offset() && !from->has_plt_offset());
944
945 if (!from->version_)
946 this->version_ = from->version_;
947 this->u1_ = from->u1_;
948 this->u2_ = from->u2_;
949 this->type_ = from->type_;
950 this->binding_ = from->binding_;
951 this->visibility_ = from->visibility_;
952 this->nonvis_ = from->nonvis_;
953 this->source_ = from->source_;
954 this->is_def_ = from->is_def_;
955 this->is_forwarder_ = from->is_forwarder_;
956 this->has_alias_ = from->has_alias_;
957 this->needs_dynsym_entry_ = from->needs_dynsym_entry_;
958 this->in_reg_ = from->in_reg_;
959 this->in_dyn_ = from->in_dyn_;
960 this->needs_dynsym_value_ = from->needs_dynsym_value_;
961 this->has_warning_ = from->has_warning_;
962 this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_;
963 this->is_ordinary_shndx_ = from->is_ordinary_shndx_;
964 this->in_real_elf_ = from->in_real_elf_;
965 this->is_defined_in_discarded_section_
966 = from->is_defined_in_discarded_section_;
967 this->undef_binding_set_ = from->undef_binding_set_;
968 this->undef_binding_weak_ = from->undef_binding_weak_;
969 this->is_predefined_ = from->is_predefined_;
970 this->is_protected_ = from->is_protected_;
971 this->non_zero_localentry_ = from->non_zero_localentry_;
972
973 return !this->is_forced_local_ && from->is_forced_local_;
974 }
975
976 template <int size>
977 bool
978 Sized_symbol<size>::clone(const Sized_symbol<size>* from)
979 {
980 this->value_ = from->value_;
981 this->symsize_ = from->symsize_;
982 return Symbol::clone(from);
983 }
984
985 // A special case of should_override which is only called for a strong
986 // defined symbol from a regular object file. This is used when
987 // defining special symbols.
988
989 bool
990 Symbol_table::should_override_with_special(const Symbol* to,
991 elfcpp::STT fromtype,
992 Defined defined)
993 {
994 bool adjust_common_sizes;
995 bool adjust_dyn_def;
996 unsigned int frombits = global_flag | regular_flag | def_flag;
997 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
998 NULL, &adjust_common_sizes,
999 &adjust_dyn_def, false);
1000 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
1001 return ret;
1002 }
1003
1004 // Override symbol base with a special symbol.
1005
1006 void
1007 Symbol::override_base_with_special(const Symbol* from)
1008 {
1009 bool same_name = this->name_ == from->name_;
1010 gold_assert(same_name || this->has_alias());
1011
1012 // If we are overriding an undef, remember the original binding.
1013 if (this->is_undefined())
1014 this->set_undef_binding(this->binding_);
1015
1016 this->source_ = from->source_;
1017 switch (from->source_)
1018 {
1019 case FROM_OBJECT:
1020 case IN_OUTPUT_DATA:
1021 case IN_OUTPUT_SEGMENT:
1022 this->u1_ = from->u1_;
1023 this->u2_ = from->u2_;
1024 break;
1025 case IS_CONSTANT:
1026 case IS_UNDEFINED:
1027 break;
1028 default:
1029 gold_unreachable();
1030 break;
1031 }
1032
1033 if (same_name)
1034 {
1035 // When overriding a versioned symbol with a special symbol, we
1036 // may be changing the version. This will happen if we see a
1037 // special symbol such as "_end" defined in a shared object with
1038 // one version (from a version script), but we want to define it
1039 // here with a different version (from a different version
1040 // script).
1041 this->version_ = from->version_;
1042 }
1043 this->type_ = from->type_;
1044 this->binding_ = from->binding_;
1045 this->override_visibility(from->visibility_);
1046 this->nonvis_ = from->nonvis_;
1047
1048 // Special symbols are always considered to be regular symbols.
1049 this->in_reg_ = true;
1050
1051 if (from->needs_dynsym_entry_)
1052 this->needs_dynsym_entry_ = true;
1053 if (from->needs_dynsym_value_)
1054 this->needs_dynsym_value_ = true;
1055
1056 this->is_predefined_ = from->is_predefined_;
1057
1058 // We shouldn't see these flags. If we do, we need to handle them
1059 // somehow.
1060 gold_assert(!from->is_forwarder_);
1061 gold_assert(!from->has_plt_offset());
1062 gold_assert(!from->has_warning_);
1063 gold_assert(!from->is_copied_from_dynobj_);
1064 gold_assert(!from->is_forced_local_);
1065 }
1066
1067 // Override a symbol with a special symbol.
1068
1069 template<int size>
1070 void
1071 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1072 {
1073 this->override_base_with_special(from);
1074 this->value_ = from->value_;
1075 this->symsize_ = from->symsize_;
1076 }
1077
1078 // Override TOSYM with the special symbol FROMSYM. This handles all
1079 // aliases of TOSYM.
1080
1081 template<int size>
1082 void
1083 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1084 const Sized_symbol<size>* fromsym)
1085 {
1086 tosym->override_with_special(fromsym);
1087 if (tosym->has_alias())
1088 {
1089 Symbol* sym = this->weak_aliases_[tosym];
1090 gold_assert(sym != NULL);
1091 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1092 do
1093 {
1094 ssym->override_with_special(fromsym);
1095 sym = this->weak_aliases_[ssym];
1096 gold_assert(sym != NULL);
1097 ssym = this->get_sized_symbol<size>(sym);
1098 }
1099 while (ssym != tosym);
1100 }
1101 if (tosym->binding() == elfcpp::STB_LOCAL
1102 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1103 || tosym->visibility() == elfcpp::STV_INTERNAL)
1104 && (tosym->binding() == elfcpp::STB_GLOBAL
1105 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1106 || tosym->binding() == elfcpp::STB_WEAK)
1107 && !parameters->options().relocatable()))
1108 this->force_local(tosym);
1109 }
1110
1111 // Instantiate the templates we need. We could use the configure
1112 // script to restrict this to only the ones needed for implemented
1113 // targets.
1114
1115 // We have to instantiate both big and little endian versions because
1116 // these are used by other templates that depends on size only.
1117
1118 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1119 template
1120 void
1121 Symbol_table::resolve<32, false>(
1122 Sized_symbol<32>* to,
1123 const elfcpp::Sym<32, false>& sym,
1124 unsigned int st_shndx,
1125 bool is_ordinary,
1126 unsigned int orig_st_shndx,
1127 Object* object,
1128 const char* version,
1129 bool is_default_version);
1130
1131 template
1132 void
1133 Symbol_table::resolve<32, true>(
1134 Sized_symbol<32>* to,
1135 const elfcpp::Sym<32, true>& sym,
1136 unsigned int st_shndx,
1137 bool is_ordinary,
1138 unsigned int orig_st_shndx,
1139 Object* object,
1140 const char* version,
1141 bool is_default_version);
1142 #endif
1143
1144 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1145 template
1146 void
1147 Symbol_table::resolve<64, false>(
1148 Sized_symbol<64>* to,
1149 const elfcpp::Sym<64, false>& sym,
1150 unsigned int st_shndx,
1151 bool is_ordinary,
1152 unsigned int orig_st_shndx,
1153 Object* object,
1154 const char* version,
1155 bool is_default_version);
1156
1157 template
1158 void
1159 Symbol_table::resolve<64, true>(
1160 Sized_symbol<64>* to,
1161 const elfcpp::Sym<64, true>& sym,
1162 unsigned int st_shndx,
1163 bool is_ordinary,
1164 unsigned int orig_st_shndx,
1165 Object* object,
1166 const char* version,
1167 bool is_default_version);
1168 #endif
1169
1170 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1171 template
1172 void
1173 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1174 const Sized_symbol<32>*);
1175 #endif
1176
1177 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1178 template
1179 void
1180 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1181 const Sized_symbol<64>*);
1182 #endif
1183
1184 template
1185 bool
1186 Sized_symbol<32>::clone(const Sized_symbol<32>*);
1187
1188 template
1189 bool
1190 Sized_symbol<64>::clone(const Sized_symbol<64>*);
1191 } // End namespace gold.
This page took 0.077595 seconds and 5 git commands to generate.