From Craig Silverstein: add some internationalization calls.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29
30 namespace gold
31 {
32
33 // Symbol methods used in this file.
34
35 // Override the fields in Symbol.
36
37 template<int size, bool big_endian>
38 void
39 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
40 Object* object, const char* version)
41 {
42 gold_assert(this->source_ == FROM_OBJECT);
43 this->u_.from_object.object = object;
44 if (version != NULL && this->version() != version)
45 {
46 gold_assert(this->version() == NULL);
47 this->version_ = version;
48 }
49 // FIXME: Handle SHN_XINDEX.
50 this->u_.from_object.shndx = sym.get_st_shndx();
51 this->type_ = sym.get_st_type();
52 this->binding_ = sym.get_st_bind();
53 this->visibility_ = sym.get_st_visibility();
54 this->nonvis_ = sym.get_st_nonvis();
55 if (object->is_dynamic())
56 this->in_dyn_ = true;
57 else
58 this->in_reg_ = true;
59 }
60
61 // Override the fields in Sized_symbol.
62
63 template<int size>
64 template<bool big_endian>
65 void
66 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
67 Object* object, const char* version)
68 {
69 this->override_base(sym, object, version);
70 this->value_ = sym.get_st_value();
71 this->symsize_ = sym.get_st_size();
72 }
73
74 // The resolve functions build a little code for each symbol.
75 // Bit 0: 0 for global, 1 for weak.
76 // Bit 1: 0 for regular object, 1 for shared object
77 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
78 // This gives us values from 0 to 11.
79
80 static const int global_or_weak_shift = 0;
81 static const unsigned int global_flag = 0 << global_or_weak_shift;
82 static const unsigned int weak_flag = 1 << global_or_weak_shift;
83
84 static const int regular_or_dynamic_shift = 1;
85 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
86 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
87
88 static const int def_undef_or_common_shift = 2;
89 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
90 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
91 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
92
93 // Resolve a symbol. This is called the second and subsequent times
94 // we see a symbol. TO is the pre-existing symbol. SYM is the new
95 // symbol, seen in OBJECT. VERSION of the version of SYM.
96
97 template<int size, bool big_endian>
98 void
99 Symbol_table::resolve(Sized_symbol<size>* to,
100 const elfcpp::Sym<size, big_endian>& sym,
101 Object* object, const char* version)
102 {
103 if (object->target()->has_resolve())
104 {
105 Sized_target<size, big_endian>* sized_target;
106 sized_target = object->sized_target
107 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
108 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
109 sized_target->resolve(to, sym, object, version);
110 return;
111 }
112
113 if (!object->is_dynamic())
114 {
115 // Record that we've seen this symbol in a regular object.
116 to->set_in_reg();
117 }
118 else
119 {
120 // Record that we've seen this symbol in a dynamic object.
121 to->set_in_dyn();
122 }
123
124 unsigned int frombits;
125 switch (sym.get_st_bind())
126 {
127 case elfcpp::STB_GLOBAL:
128 frombits = global_flag;
129 break;
130
131 case elfcpp::STB_WEAK:
132 frombits = weak_flag;
133 break;
134
135 case elfcpp::STB_LOCAL:
136 fprintf(stderr,
137 _("%s: %s: invalid STB_LOCAL symbol %s in external symbols\n"),
138 program_name, object->name().c_str(), to->name());
139 gold_exit(false);
140
141 default:
142 fprintf(stderr,
143 _("%s: %s: unsupported symbol binding %d for symbol %s\n"),
144 program_name, object->name().c_str(),
145 static_cast<int>(sym.get_st_bind()), to->name());
146 gold_exit(false);
147 }
148
149 if (!object->is_dynamic())
150 frombits |= regular_flag;
151 else
152 frombits |= dynamic_flag;
153
154 switch (sym.get_st_shndx())
155 {
156 case elfcpp::SHN_UNDEF:
157 frombits |= undef_flag;
158 break;
159
160 case elfcpp::SHN_COMMON:
161 frombits |= common_flag;
162 break;
163
164 default:
165 if (sym.get_st_type() == elfcpp::STT_COMMON)
166 frombits |= common_flag;
167 else
168 frombits |= def_flag;
169 break;
170 }
171
172 bool adjust_common_sizes;
173 if (Symbol_table::should_override(to, frombits, &adjust_common_sizes))
174 {
175 typename Sized_symbol<size>::Size_type tosize = to->symsize();
176
177 to->override(sym, object, version);
178
179 if (adjust_common_sizes && tosize > to->symsize())
180 to->set_symsize(tosize);
181 }
182 else
183 {
184 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
185 to->set_symsize(sym.get_st_size());
186 }
187 }
188
189 // Handle the core of symbol resolution. This is called with the
190 // existing symbol, TO, and a bitflag describing the new symbol. This
191 // returns true if we should override the existing symbol with the new
192 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
193 // true if we should set the symbol size to the maximum of the TO and
194 // FROM sizes. It handles error conditions.
195
196 bool
197 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
198 bool* adjust_common_sizes)
199 {
200 *adjust_common_sizes = false;
201
202 unsigned int tobits;
203 switch (to->binding())
204 {
205 case elfcpp::STB_GLOBAL:
206 tobits = global_flag;
207 break;
208
209 case elfcpp::STB_WEAK:
210 tobits = weak_flag;
211 break;
212
213 case elfcpp::STB_LOCAL:
214 // We should only see externally visible symbols in the symbol
215 // table.
216 gold_unreachable();
217
218 default:
219 // Any target which wants to handle STB_LOOS, etc., needs to
220 // define a resolve method.
221 gold_unreachable();
222 }
223
224 if (to->source() == Symbol::FROM_OBJECT
225 && to->object()->is_dynamic())
226 tobits |= dynamic_flag;
227 else
228 tobits |= regular_flag;
229
230 switch (to->shndx())
231 {
232 case elfcpp::SHN_UNDEF:
233 tobits |= undef_flag;
234 break;
235
236 case elfcpp::SHN_COMMON:
237 tobits |= common_flag;
238 break;
239
240 default:
241 if (to->type() == elfcpp::STT_COMMON)
242 tobits |= common_flag;
243 else
244 tobits |= def_flag;
245 break;
246 }
247
248 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
249
250 // We use a giant switch table for symbol resolution. This code is
251 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
252 // cases; 3) it is easy to change the handling of a particular case.
253 // The alternative would be a series of conditionals, but it is easy
254 // to get the ordering wrong. This could also be done as a table,
255 // but that is no easier to understand than this large switch
256 // statement.
257
258 // These are the values generated by the bit codes.
259 enum
260 {
261 DEF = global_flag | regular_flag | def_flag,
262 WEAK_DEF = weak_flag | regular_flag | def_flag,
263 DYN_DEF = global_flag | dynamic_flag | def_flag,
264 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
265 UNDEF = global_flag | regular_flag | undef_flag,
266 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
267 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
268 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
269 COMMON = global_flag | regular_flag | common_flag,
270 WEAK_COMMON = weak_flag | regular_flag | common_flag,
271 DYN_COMMON = global_flag | dynamic_flag | common_flag,
272 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
273 };
274
275 switch (tobits * 16 + frombits)
276 {
277 case DEF * 16 + DEF:
278 // Two definitions of the same symbol.
279 fprintf(stderr, _("%s: multiple definition of %s\n"),
280 program_name, to->name());
281 // FIXME: Report locations. Record that we have seen an error.
282 return false;
283
284 case WEAK_DEF * 16 + DEF:
285 // We've seen a weak definition, and now we see a strong
286 // definition. In the original SVR4 linker, this was treated as
287 // a multiple definition error. In the Solaris linker and the
288 // GNU linker, a weak definition followed by a regular
289 // definition causes the weak definition to be overridden. We
290 // are currently compatible with the GNU linker. In the future
291 // we should add a target specific option to change this.
292 // FIXME.
293 return true;
294
295 case DYN_DEF * 16 + DEF:
296 case DYN_WEAK_DEF * 16 + DEF:
297 // We've seen a definition in a dynamic object, and now we see a
298 // definition in a regular object. The definition in the
299 // regular object overrides the definition in the dynamic
300 // object.
301 return true;
302
303 case UNDEF * 16 + DEF:
304 case WEAK_UNDEF * 16 + DEF:
305 case DYN_UNDEF * 16 + DEF:
306 case DYN_WEAK_UNDEF * 16 + DEF:
307 // We've seen an undefined reference, and now we see a
308 // definition. We use the definition.
309 return true;
310
311 case COMMON * 16 + DEF:
312 case WEAK_COMMON * 16 + DEF:
313 case DYN_COMMON * 16 + DEF:
314 case DYN_WEAK_COMMON * 16 + DEF:
315 // We've seen a common symbol and now we see a definition. The
316 // definition overrides. FIXME: We should optionally issue, version a
317 // warning.
318 return true;
319
320 case DEF * 16 + WEAK_DEF:
321 case WEAK_DEF * 16 + WEAK_DEF:
322 // We've seen a definition and now we see a weak definition. We
323 // ignore the new weak definition.
324 return false;
325
326 case DYN_DEF * 16 + WEAK_DEF:
327 case DYN_WEAK_DEF * 16 + WEAK_DEF:
328 // We've seen a dynamic definition and now we see a regular weak
329 // definition. The regular weak definition overrides.
330 return true;
331
332 case UNDEF * 16 + WEAK_DEF:
333 case WEAK_UNDEF * 16 + WEAK_DEF:
334 case DYN_UNDEF * 16 + WEAK_DEF:
335 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
336 // A weak definition of a currently undefined symbol.
337 return true;
338
339 case COMMON * 16 + WEAK_DEF:
340 case WEAK_COMMON * 16 + WEAK_DEF:
341 // A weak definition does not override a common definition.
342 return false;
343
344 case DYN_COMMON * 16 + WEAK_DEF:
345 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
346 // A weak definition does override a definition in a dynamic
347 // object. FIXME: We should optionally issue a warning.
348 return true;
349
350 case DEF * 16 + DYN_DEF:
351 case WEAK_DEF * 16 + DYN_DEF:
352 case DYN_DEF * 16 + DYN_DEF:
353 case DYN_WEAK_DEF * 16 + DYN_DEF:
354 // Ignore a dynamic definition if we already have a definition.
355 return false;
356
357 case UNDEF * 16 + DYN_DEF:
358 case WEAK_UNDEF * 16 + DYN_DEF:
359 case DYN_UNDEF * 16 + DYN_DEF:
360 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
361 // Use a dynamic definition if we have a reference.
362 return true;
363
364 case COMMON * 16 + DYN_DEF:
365 case WEAK_COMMON * 16 + DYN_DEF:
366 case DYN_COMMON * 16 + DYN_DEF:
367 case DYN_WEAK_COMMON * 16 + DYN_DEF:
368 // Ignore a dynamic definition if we already have a common
369 // definition.
370 return false;
371
372 case DEF * 16 + DYN_WEAK_DEF:
373 case WEAK_DEF * 16 + DYN_WEAK_DEF:
374 case DYN_DEF * 16 + DYN_WEAK_DEF:
375 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
376 // Ignore a weak dynamic definition if we already have a
377 // definition.
378 return false;
379
380 case UNDEF * 16 + DYN_WEAK_DEF:
381 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
382 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
383 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
384 // Use a weak dynamic definition if we have a reference.
385 return true;
386
387 case COMMON * 16 + DYN_WEAK_DEF:
388 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
389 case DYN_COMMON * 16 + DYN_WEAK_DEF:
390 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
391 // Ignore a weak dynamic definition if we already have a common
392 // definition.
393 return false;
394
395 case DEF * 16 + UNDEF:
396 case WEAK_DEF * 16 + UNDEF:
397 case DYN_DEF * 16 + UNDEF:
398 case DYN_WEAK_DEF * 16 + UNDEF:
399 case UNDEF * 16 + UNDEF:
400 // A new undefined reference tells us nothing.
401 return false;
402
403 case WEAK_UNDEF * 16 + UNDEF:
404 case DYN_UNDEF * 16 + UNDEF:
405 case DYN_WEAK_UNDEF * 16 + UNDEF:
406 // A strong undef overrides a dynamic or weak undef.
407 return true;
408
409 case COMMON * 16 + UNDEF:
410 case WEAK_COMMON * 16 + UNDEF:
411 case DYN_COMMON * 16 + UNDEF:
412 case DYN_WEAK_COMMON * 16 + UNDEF:
413 // A new undefined reference tells us nothing.
414 return false;
415
416 case DEF * 16 + WEAK_UNDEF:
417 case WEAK_DEF * 16 + WEAK_UNDEF:
418 case DYN_DEF * 16 + WEAK_UNDEF:
419 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
420 case UNDEF * 16 + WEAK_UNDEF:
421 case WEAK_UNDEF * 16 + WEAK_UNDEF:
422 case DYN_UNDEF * 16 + WEAK_UNDEF:
423 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
424 case COMMON * 16 + WEAK_UNDEF:
425 case WEAK_COMMON * 16 + WEAK_UNDEF:
426 case DYN_COMMON * 16 + WEAK_UNDEF:
427 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
428 // A new weak undefined reference tells us nothing.
429 return false;
430
431 case DEF * 16 + DYN_UNDEF:
432 case WEAK_DEF * 16 + DYN_UNDEF:
433 case DYN_DEF * 16 + DYN_UNDEF:
434 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
435 case UNDEF * 16 + DYN_UNDEF:
436 case WEAK_UNDEF * 16 + DYN_UNDEF:
437 case DYN_UNDEF * 16 + DYN_UNDEF:
438 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
439 case COMMON * 16 + DYN_UNDEF:
440 case WEAK_COMMON * 16 + DYN_UNDEF:
441 case DYN_COMMON * 16 + DYN_UNDEF:
442 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
443 // A new dynamic undefined reference tells us nothing.
444 return false;
445
446 case DEF * 16 + DYN_WEAK_UNDEF:
447 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
448 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
449 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
450 case UNDEF * 16 + DYN_WEAK_UNDEF:
451 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
452 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
453 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
454 case COMMON * 16 + DYN_WEAK_UNDEF:
455 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
456 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
457 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
458 // A new weak dynamic undefined reference tells us nothing.
459 return false;
460
461 case DEF * 16 + COMMON:
462 // A common symbol does not override a definition.
463 return false;
464
465 case WEAK_DEF * 16 + COMMON:
466 case DYN_DEF * 16 + COMMON:
467 case DYN_WEAK_DEF * 16 + COMMON:
468 // A common symbol does override a weak definition or a dynamic
469 // definition.
470 return true;
471
472 case UNDEF * 16 + COMMON:
473 case WEAK_UNDEF * 16 + COMMON:
474 case DYN_UNDEF * 16 + COMMON:
475 case DYN_WEAK_UNDEF * 16 + COMMON:
476 // A common symbol is a definition for a reference.
477 return true;
478
479 case COMMON * 16 + COMMON:
480 // Set the size to the maximum.
481 *adjust_common_sizes = true;
482 return false;
483
484 case WEAK_COMMON * 16 + COMMON:
485 // I'm not sure just what a weak common symbol means, but
486 // presumably it can be overridden by a regular common symbol.
487 return true;
488
489 case DYN_COMMON * 16 + COMMON:
490 case DYN_WEAK_COMMON * 16 + COMMON:
491 // Use the real common symbol, but adjust the size if necessary.
492 *adjust_common_sizes = true;
493 return true;
494
495 case DEF * 16 + WEAK_COMMON:
496 case WEAK_DEF * 16 + WEAK_COMMON:
497 case DYN_DEF * 16 + WEAK_COMMON:
498 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
499 // Whatever a weak common symbol is, it won't override a
500 // definition.
501 return false;
502
503 case UNDEF * 16 + WEAK_COMMON:
504 case WEAK_UNDEF * 16 + WEAK_COMMON:
505 case DYN_UNDEF * 16 + WEAK_COMMON:
506 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
507 // A weak common symbol is better than an undefined symbol.
508 return true;
509
510 case COMMON * 16 + WEAK_COMMON:
511 case WEAK_COMMON * 16 + WEAK_COMMON:
512 case DYN_COMMON * 16 + WEAK_COMMON:
513 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
514 // Ignore a weak common symbol in the presence of a real common
515 // symbol.
516 return false;
517
518 case DEF * 16 + DYN_COMMON:
519 case WEAK_DEF * 16 + DYN_COMMON:
520 case DYN_DEF * 16 + DYN_COMMON:
521 case DYN_WEAK_DEF * 16 + DYN_COMMON:
522 // Ignore a dynamic common symbol in the presence of a
523 // definition.
524 return false;
525
526 case UNDEF * 16 + DYN_COMMON:
527 case WEAK_UNDEF * 16 + DYN_COMMON:
528 case DYN_UNDEF * 16 + DYN_COMMON:
529 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
530 // A dynamic common symbol is a definition of sorts.
531 return true;
532
533 case COMMON * 16 + DYN_COMMON:
534 case WEAK_COMMON * 16 + DYN_COMMON:
535 case DYN_COMMON * 16 + DYN_COMMON:
536 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
537 // Set the size to the maximum.
538 *adjust_common_sizes = true;
539 return false;
540
541 case DEF * 16 + DYN_WEAK_COMMON:
542 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
543 case DYN_DEF * 16 + DYN_WEAK_COMMON:
544 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
545 // A common symbol is ignored in the face of a definition.
546 return false;
547
548 case UNDEF * 16 + DYN_WEAK_COMMON:
549 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
550 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
551 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
552 // I guess a weak common symbol is better than a definition.
553 return true;
554
555 case COMMON * 16 + DYN_WEAK_COMMON:
556 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
557 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
558 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
559 // Set the size to the maximum.
560 *adjust_common_sizes = true;
561 return false;
562
563 default:
564 gold_unreachable();
565 }
566 }
567
568 // A special case of should_override which is only called for a strong
569 // defined symbol from a regular object file. This is used when
570 // defining special symbols.
571
572 bool
573 Symbol_table::should_override_with_special(const Symbol* to)
574 {
575 bool adjust_common_sizes;
576 unsigned int frombits = global_flag | regular_flag | def_flag;
577 bool ret = Symbol_table::should_override(to, frombits, &adjust_common_sizes);
578 gold_assert(!adjust_common_sizes);
579 return ret;
580 }
581
582 // Override symbol base with a special symbol.
583
584 void
585 Symbol::override_base_with_special(const Symbol* from)
586 {
587 this->source_ = from->source_;
588 switch (from->source_)
589 {
590 case FROM_OBJECT:
591 this->u_.from_object = from->u_.from_object;
592 break;
593 case IN_OUTPUT_DATA:
594 this->u_.in_output_data = from->u_.in_output_data;
595 break;
596 case IN_OUTPUT_SEGMENT:
597 this->u_.in_output_segment = from->u_.in_output_segment;
598 break;
599 case CONSTANT:
600 break;
601 default:
602 gold_unreachable();
603 break;
604 }
605
606 if (from->version_ != NULL && this->version_ != from->version_)
607 {
608 gold_assert(this->version_ == NULL);
609 this->version_ = from->version_;
610 }
611
612 this->type_ = from->type_;
613 this->binding_ = from->binding_;
614 this->visibility_ = from->visibility_;
615 this->nonvis_ = from->nonvis_;
616
617 // Special symbols are always considered to be regular symbols.
618 this->in_reg_ = true;
619 }
620
621 // Override a symbol with a special symbol.
622
623 template<int size>
624 void
625 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
626 {
627 this->override_base_with_special(from);
628 this->value_ = from->value_;
629 this->symsize_ = from->symsize_;
630 }
631
632 // Instantiate the templates we need. We could use the configure
633 // script to restrict this to only the ones needed for implemented
634 // targets.
635
636 #ifdef HAVE_TARGET_32_LITTLE
637 template
638 void
639 Symbol_table::resolve<32, false>(
640 Sized_symbol<32>* to,
641 const elfcpp::Sym<32, false>& sym,
642 Object* object,
643 const char* version);
644 #endif
645
646 #ifdef HAVE_TARGET_32_BIG
647 template
648 void
649 Symbol_table::resolve<32, true>(
650 Sized_symbol<32>* to,
651 const elfcpp::Sym<32, true>& sym,
652 Object* object,
653 const char* version);
654 #endif
655
656 #ifdef HAVE_TARGET_64_LITTLE
657 template
658 void
659 Symbol_table::resolve<64, false>(
660 Sized_symbol<64>* to,
661 const elfcpp::Sym<64, false>& sym,
662 Object* object,
663 const char* version);
664 #endif
665
666 #ifdef HAVE_TARGET_64_BIG
667 template
668 void
669 Symbol_table::resolve<64, true>(
670 Sized_symbol<64>* to,
671 const elfcpp::Sym<64, true>& sym,
672 Object* object,
673 const char* version);
674 #endif
675
676 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
677 template
678 void
679 Sized_symbol<32>::override_with_special(const Sized_symbol<32>*);
680 #endif
681
682 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
683 template
684 void
685 Sized_symbol<64>::override_with_special(const Sized_symbol<64>*);
686 #endif
687
688 } // End namespace gold.
This page took 0.043171 seconds and 5 git commands to generate.