Fix handling of common symbols with plugins.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (type == elfcpp::STT_COMMON)
222 bits |= common_flag;
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 bits |= common_flag;
225 else
226 bits |= def_flag;
227 break;
228 }
229
230 return bits;
231 }
232
233 // Resolve a symbol. This is called the second and subsequent times
234 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code. ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
240 // the version of SYM.
241
242 template<int size, bool big_endian>
243 void
244 Symbol_table::resolve(Sized_symbol<size>* to,
245 const elfcpp::Sym<size, big_endian>& sym,
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
248 Object* object, const char* version)
249 {
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
265 if (parameters->target().has_resolve())
266 {
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
270 return;
271 }
272
273 if (!object->is_dynamic())
274 {
275 // Record that we've seen this symbol in a regular object.
276 to->set_in_reg();
277 }
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
281 {
282 // A dynamic object cannot reference a hidden or internal symbol
283 // defined in another object.
284 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
285 (to->visibility() == elfcpp::STV_HIDDEN
286 ? "hidden"
287 : "internal"),
288 to->demangled_name().c_str(),
289 to->object()->name().c_str(),
290 object->name().c_str());
291 return;
292 }
293 else
294 {
295 // Record that we've seen this symbol in a dynamic object.
296 to->set_in_dyn();
297 }
298
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
301 if (object->pluginobj() == NULL && !object->is_dynamic())
302 to->set_in_real_elf();
303
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
306 // Treat common symbols specially since it is possible that an ELF
307 // file increased the size of the alignment.
308 if (to->source() == Symbol::FROM_OBJECT)
309 {
310 Pluginobj* obj = to->object()->pluginobj();
311 if (obj != NULL
312 && parameters->options().plugins()->in_replacement_phase()
313 && !to->is_common())
314 {
315 this->override(to, sym, st_shndx, is_ordinary, object, version);
316 return;
317 }
318 }
319
320 // A new weak undefined reference, merging with an old weak
321 // reference, could be a One Definition Rule (ODR) violation --
322 // especially if the types or sizes of the references differ. We'll
323 // store such pairs and look them up later to make sure they
324 // actually refer to the same lines of code. We also check
325 // combinations of weak and strong, which might occur if one case is
326 // inline and the other is not. (Note: not all ODR violations can
327 // be found this way, and not everything this finds is an ODR
328 // violation. But it's helpful to warn about.)
329 if (parameters->options().detect_odr_violations()
330 && (sym.get_st_bind() == elfcpp::STB_WEAK
331 || to->binding() == elfcpp::STB_WEAK)
332 && orig_st_shndx != elfcpp::SHN_UNDEF
333 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
334 && to_is_ordinary
335 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
336 && to->symsize() != 0
337 && (sym.get_st_type() != to->type()
338 || sym.get_st_size() != to->symsize())
339 // C does not have a concept of ODR, so we only need to do this
340 // on C++ symbols. These have (mangled) names starting with _Z.
341 && to->name()[0] == '_' && to->name()[1] == 'Z')
342 {
343 Symbol_location fromloc
344 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
345 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
346 static_cast<off_t>(to->value()) };
347 this->candidate_odr_violations_[to->name()].insert(fromloc);
348 this->candidate_odr_violations_[to->name()].insert(toloc);
349 }
350
351 // Plugins don't provide a symbol type, so adopt the existing type
352 // if the FROM symbol is from a plugin.
353 elfcpp::STT fromtype = (object->pluginobj() != NULL
354 ? to->type()
355 : sym.get_st_type());
356 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
357 object->is_dynamic(),
358 st_shndx, is_ordinary,
359 fromtype);
360
361 bool adjust_common_sizes;
362 bool adjust_dyndef;
363 typename Sized_symbol<size>::Size_type tosize = to->symsize();
364 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
365 object, &adjust_common_sizes,
366 &adjust_dyndef))
367 {
368 elfcpp::STB tobinding = to->binding();
369 typename Sized_symbol<size>::Value_type tovalue = to->value();
370 this->override(to, sym, st_shndx, is_ordinary, object, version);
371 if (adjust_common_sizes)
372 {
373 if (tosize > to->symsize())
374 to->set_symsize(tosize);
375 if (tovalue > to->value())
376 to->set_value(tovalue);
377 }
378 if (adjust_dyndef)
379 {
380 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
381 // Remember which kind of UNDEF it was for future reference.
382 to->set_undef_binding(tobinding);
383 }
384 }
385 else
386 {
387 if (adjust_common_sizes)
388 {
389 if (sym.get_st_size() > tosize)
390 to->set_symsize(sym.get_st_size());
391 if (sym.get_st_value() > to->value())
392 to->set_value(sym.get_st_value());
393 }
394 if (adjust_dyndef)
395 {
396 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
397 // Remember which kind of UNDEF it was.
398 to->set_undef_binding(sym.get_st_bind());
399 }
400 // The ELF ABI says that even for a reference to a symbol we
401 // merge the visibility.
402 to->override_visibility(sym.get_st_visibility());
403 }
404
405 if (adjust_common_sizes && parameters->options().warn_common())
406 {
407 if (tosize > sym.get_st_size())
408 Symbol_table::report_resolve_problem(false,
409 _("common of '%s' overriding "
410 "smaller common"),
411 to, OBJECT, object);
412 else if (tosize < sym.get_st_size())
413 Symbol_table::report_resolve_problem(false,
414 _("common of '%s' overidden by "
415 "larger common"),
416 to, OBJECT, object);
417 else
418 Symbol_table::report_resolve_problem(false,
419 _("multiple common of '%s'"),
420 to, OBJECT, object);
421 }
422 }
423
424 // Handle the core of symbol resolution. This is called with the
425 // existing symbol, TO, and a bitflag describing the new symbol. This
426 // returns true if we should override the existing symbol with the new
427 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
428 // true if we should set the symbol size to the maximum of the TO and
429 // FROM sizes. It handles error conditions.
430
431 bool
432 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
433 elfcpp::STT fromtype, Defined defined,
434 Object* object, bool* adjust_common_sizes,
435 bool* adjust_dyndef)
436 {
437 *adjust_common_sizes = false;
438 *adjust_dyndef = false;
439
440 unsigned int tobits;
441 if (to->source() == Symbol::IS_UNDEFINED)
442 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
443 to->type());
444 else if (to->source() != Symbol::FROM_OBJECT)
445 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
446 to->type());
447 else
448 {
449 bool is_ordinary;
450 unsigned int shndx = to->shndx(&is_ordinary);
451 tobits = symbol_to_bits(to->binding(),
452 to->object()->is_dynamic(),
453 shndx,
454 is_ordinary,
455 to->type());
456 }
457
458 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
459 && !to->is_placeholder())
460 Symbol_table::report_resolve_problem(true,
461 _("symbol '%s' used as both __thread "
462 "and non-__thread"),
463 to, defined, object);
464
465 // We use a giant switch table for symbol resolution. This code is
466 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
467 // cases; 3) it is easy to change the handling of a particular case.
468 // The alternative would be a series of conditionals, but it is easy
469 // to get the ordering wrong. This could also be done as a table,
470 // but that is no easier to understand than this large switch
471 // statement.
472
473 // These are the values generated by the bit codes.
474 enum
475 {
476 DEF = global_flag | regular_flag | def_flag,
477 WEAK_DEF = weak_flag | regular_flag | def_flag,
478 DYN_DEF = global_flag | dynamic_flag | def_flag,
479 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
480 UNDEF = global_flag | regular_flag | undef_flag,
481 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
482 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
483 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
484 COMMON = global_flag | regular_flag | common_flag,
485 WEAK_COMMON = weak_flag | regular_flag | common_flag,
486 DYN_COMMON = global_flag | dynamic_flag | common_flag,
487 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
488 };
489
490 switch (tobits * 16 + frombits)
491 {
492 case DEF * 16 + DEF:
493 // Two definitions of the same symbol.
494
495 // If either symbol is defined by an object included using
496 // --just-symbols, then don't warn. This is for compatibility
497 // with the GNU linker. FIXME: This is a hack.
498 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
499 || (object != NULL && object->just_symbols()))
500 return false;
501
502 if (!parameters->options().muldefs())
503 Symbol_table::report_resolve_problem(true,
504 _("multiple definition of '%s'"),
505 to, defined, object);
506 return false;
507
508 case WEAK_DEF * 16 + DEF:
509 // We've seen a weak definition, and now we see a strong
510 // definition. In the original SVR4 linker, this was treated as
511 // a multiple definition error. In the Solaris linker and the
512 // GNU linker, a weak definition followed by a regular
513 // definition causes the weak definition to be overridden. We
514 // are currently compatible with the GNU linker. In the future
515 // we should add a target specific option to change this.
516 // FIXME.
517 return true;
518
519 case DYN_DEF * 16 + DEF:
520 case DYN_WEAK_DEF * 16 + DEF:
521 // We've seen a definition in a dynamic object, and now we see a
522 // definition in a regular object. The definition in the
523 // regular object overrides the definition in the dynamic
524 // object.
525 return true;
526
527 case UNDEF * 16 + DEF:
528 case WEAK_UNDEF * 16 + DEF:
529 case DYN_UNDEF * 16 + DEF:
530 case DYN_WEAK_UNDEF * 16 + DEF:
531 // We've seen an undefined reference, and now we see a
532 // definition. We use the definition.
533 return true;
534
535 case COMMON * 16 + DEF:
536 case WEAK_COMMON * 16 + DEF:
537 case DYN_COMMON * 16 + DEF:
538 case DYN_WEAK_COMMON * 16 + DEF:
539 // We've seen a common symbol and now we see a definition. The
540 // definition overrides.
541 if (parameters->options().warn_common())
542 Symbol_table::report_resolve_problem(false,
543 _("definition of '%s' overriding "
544 "common"),
545 to, defined, object);
546 return true;
547
548 case DEF * 16 + WEAK_DEF:
549 case WEAK_DEF * 16 + WEAK_DEF:
550 // We've seen a definition and now we see a weak definition. We
551 // ignore the new weak definition.
552 return false;
553
554 case DYN_DEF * 16 + WEAK_DEF:
555 case DYN_WEAK_DEF * 16 + WEAK_DEF:
556 // We've seen a dynamic definition and now we see a regular weak
557 // definition. The regular weak definition overrides.
558 return true;
559
560 case UNDEF * 16 + WEAK_DEF:
561 case WEAK_UNDEF * 16 + WEAK_DEF:
562 case DYN_UNDEF * 16 + WEAK_DEF:
563 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
564 // A weak definition of a currently undefined symbol.
565 return true;
566
567 case COMMON * 16 + WEAK_DEF:
568 case WEAK_COMMON * 16 + WEAK_DEF:
569 // A weak definition does not override a common definition.
570 return false;
571
572 case DYN_COMMON * 16 + WEAK_DEF:
573 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
574 // A weak definition does override a definition in a dynamic
575 // object.
576 if (parameters->options().warn_common())
577 Symbol_table::report_resolve_problem(false,
578 _("definition of '%s' overriding "
579 "dynamic common definition"),
580 to, defined, object);
581 return true;
582
583 case DEF * 16 + DYN_DEF:
584 case WEAK_DEF * 16 + DYN_DEF:
585 case DYN_DEF * 16 + DYN_DEF:
586 case DYN_WEAK_DEF * 16 + DYN_DEF:
587 // Ignore a dynamic definition if we already have a definition.
588 return false;
589
590 case UNDEF * 16 + DYN_DEF:
591 case DYN_UNDEF * 16 + DYN_DEF:
592 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
593 // Use a dynamic definition if we have a reference.
594 return true;
595
596 case WEAK_UNDEF * 16 + DYN_DEF:
597 // When overriding a weak undef by a dynamic definition,
598 // we need to remember that the original undef was weak.
599 *adjust_dyndef = true;
600 return true;
601
602 case COMMON * 16 + DYN_DEF:
603 case WEAK_COMMON * 16 + DYN_DEF:
604 case DYN_COMMON * 16 + DYN_DEF:
605 case DYN_WEAK_COMMON * 16 + DYN_DEF:
606 // Ignore a dynamic definition if we already have a common
607 // definition.
608 return false;
609
610 case DEF * 16 + DYN_WEAK_DEF:
611 case WEAK_DEF * 16 + DYN_WEAK_DEF:
612 case DYN_DEF * 16 + DYN_WEAK_DEF:
613 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
614 // Ignore a weak dynamic definition if we already have a
615 // definition.
616 return false;
617
618 case UNDEF * 16 + DYN_WEAK_DEF:
619 // When overriding an undef by a dynamic weak definition,
620 // we need to remember that the original undef was not weak.
621 *adjust_dyndef = true;
622 return true;
623
624 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
625 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
626 // Use a weak dynamic definition if we have a reference.
627 return true;
628
629 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
630 // When overriding a weak undef by a dynamic definition,
631 // we need to remember that the original undef was weak.
632 *adjust_dyndef = true;
633 return true;
634
635 case COMMON * 16 + DYN_WEAK_DEF:
636 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
637 case DYN_COMMON * 16 + DYN_WEAK_DEF:
638 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
639 // Ignore a weak dynamic definition if we already have a common
640 // definition.
641 return false;
642
643 case DEF * 16 + UNDEF:
644 case WEAK_DEF * 16 + UNDEF:
645 case UNDEF * 16 + UNDEF:
646 // A new undefined reference tells us nothing.
647 return false;
648
649 case DYN_DEF * 16 + UNDEF:
650 case DYN_WEAK_DEF * 16 + UNDEF:
651 // For a dynamic def, we need to remember which kind of undef we see.
652 *adjust_dyndef = true;
653 return false;
654
655 case WEAK_UNDEF * 16 + UNDEF:
656 case DYN_UNDEF * 16 + UNDEF:
657 case DYN_WEAK_UNDEF * 16 + UNDEF:
658 // A strong undef overrides a dynamic or weak undef.
659 return true;
660
661 case COMMON * 16 + UNDEF:
662 case WEAK_COMMON * 16 + UNDEF:
663 case DYN_COMMON * 16 + UNDEF:
664 case DYN_WEAK_COMMON * 16 + UNDEF:
665 // A new undefined reference tells us nothing.
666 return false;
667
668 case DEF * 16 + WEAK_UNDEF:
669 case WEAK_DEF * 16 + WEAK_UNDEF:
670 case UNDEF * 16 + WEAK_UNDEF:
671 case WEAK_UNDEF * 16 + WEAK_UNDEF:
672 case DYN_UNDEF * 16 + WEAK_UNDEF:
673 case COMMON * 16 + WEAK_UNDEF:
674 case WEAK_COMMON * 16 + WEAK_UNDEF:
675 case DYN_COMMON * 16 + WEAK_UNDEF:
676 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
677 // A new weak undefined reference tells us nothing unless the
678 // exisiting symbol is a dynamic weak reference.
679 return false;
680
681 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
682 // A new weak reference overrides an existing dynamic weak reference.
683 // This is necessary because a dynamic weak reference remembers
684 // the old binding, which may not be weak. If we keeps the existing
685 // dynamic weak reference, the weakness may be dropped in the output.
686 return true;
687
688 case DYN_DEF * 16 + WEAK_UNDEF:
689 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
690 // For a dynamic def, we need to remember which kind of undef we see.
691 *adjust_dyndef = true;
692 return false;
693
694 case DEF * 16 + DYN_UNDEF:
695 case WEAK_DEF * 16 + DYN_UNDEF:
696 case DYN_DEF * 16 + DYN_UNDEF:
697 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
698 case UNDEF * 16 + DYN_UNDEF:
699 case WEAK_UNDEF * 16 + DYN_UNDEF:
700 case DYN_UNDEF * 16 + DYN_UNDEF:
701 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
702 case COMMON * 16 + DYN_UNDEF:
703 case WEAK_COMMON * 16 + DYN_UNDEF:
704 case DYN_COMMON * 16 + DYN_UNDEF:
705 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
706 // A new dynamic undefined reference tells us nothing.
707 return false;
708
709 case DEF * 16 + DYN_WEAK_UNDEF:
710 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
711 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
712 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
713 case UNDEF * 16 + DYN_WEAK_UNDEF:
714 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
715 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
716 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
717 case COMMON * 16 + DYN_WEAK_UNDEF:
718 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
719 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
720 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
721 // A new weak dynamic undefined reference tells us nothing.
722 return false;
723
724 case DEF * 16 + COMMON:
725 // A common symbol does not override a definition.
726 if (parameters->options().warn_common())
727 Symbol_table::report_resolve_problem(false,
728 _("common '%s' overridden by "
729 "previous definition"),
730 to, defined, object);
731 return false;
732
733 case WEAK_DEF * 16 + COMMON:
734 case DYN_DEF * 16 + COMMON:
735 case DYN_WEAK_DEF * 16 + COMMON:
736 // A common symbol does override a weak definition or a dynamic
737 // definition.
738 return true;
739
740 case UNDEF * 16 + COMMON:
741 case WEAK_UNDEF * 16 + COMMON:
742 case DYN_UNDEF * 16 + COMMON:
743 case DYN_WEAK_UNDEF * 16 + COMMON:
744 // A common symbol is a definition for a reference.
745 return true;
746
747 case COMMON * 16 + COMMON:
748 // Set the size to the maximum.
749 *adjust_common_sizes = true;
750 return false;
751
752 case WEAK_COMMON * 16 + COMMON:
753 // I'm not sure just what a weak common symbol means, but
754 // presumably it can be overridden by a regular common symbol.
755 return true;
756
757 case DYN_COMMON * 16 + COMMON:
758 case DYN_WEAK_COMMON * 16 + COMMON:
759 // Use the real common symbol, but adjust the size if necessary.
760 *adjust_common_sizes = true;
761 return true;
762
763 case DEF * 16 + WEAK_COMMON:
764 case WEAK_DEF * 16 + WEAK_COMMON:
765 case DYN_DEF * 16 + WEAK_COMMON:
766 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
767 // Whatever a weak common symbol is, it won't override a
768 // definition.
769 return false;
770
771 case UNDEF * 16 + WEAK_COMMON:
772 case WEAK_UNDEF * 16 + WEAK_COMMON:
773 case DYN_UNDEF * 16 + WEAK_COMMON:
774 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
775 // A weak common symbol is better than an undefined symbol.
776 return true;
777
778 case COMMON * 16 + WEAK_COMMON:
779 case WEAK_COMMON * 16 + WEAK_COMMON:
780 case DYN_COMMON * 16 + WEAK_COMMON:
781 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
782 // Ignore a weak common symbol in the presence of a real common
783 // symbol.
784 return false;
785
786 case DEF * 16 + DYN_COMMON:
787 case WEAK_DEF * 16 + DYN_COMMON:
788 case DYN_DEF * 16 + DYN_COMMON:
789 case DYN_WEAK_DEF * 16 + DYN_COMMON:
790 // Ignore a dynamic common symbol in the presence of a
791 // definition.
792 return false;
793
794 case UNDEF * 16 + DYN_COMMON:
795 case WEAK_UNDEF * 16 + DYN_COMMON:
796 case DYN_UNDEF * 16 + DYN_COMMON:
797 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
798 // A dynamic common symbol is a definition of sorts.
799 return true;
800
801 case COMMON * 16 + DYN_COMMON:
802 case WEAK_COMMON * 16 + DYN_COMMON:
803 case DYN_COMMON * 16 + DYN_COMMON:
804 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
805 // Set the size to the maximum.
806 *adjust_common_sizes = true;
807 return false;
808
809 case DEF * 16 + DYN_WEAK_COMMON:
810 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
811 case DYN_DEF * 16 + DYN_WEAK_COMMON:
812 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
813 // A common symbol is ignored in the face of a definition.
814 return false;
815
816 case UNDEF * 16 + DYN_WEAK_COMMON:
817 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
818 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
819 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
820 // I guess a weak common symbol is better than a definition.
821 return true;
822
823 case COMMON * 16 + DYN_WEAK_COMMON:
824 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
825 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
826 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
827 // Set the size to the maximum.
828 *adjust_common_sizes = true;
829 return false;
830
831 default:
832 gold_unreachable();
833 }
834 }
835
836 // Issue an error or warning due to symbol resolution. IS_ERROR
837 // indicates an error rather than a warning. MSG is the error
838 // message; it is expected to have a %s for the symbol name. TO is
839 // the existing symbol. DEFINED/OBJECT is where the new symbol was
840 // found.
841
842 // FIXME: We should have better location information here. When the
843 // symbol is defined, we should be able to pull the location from the
844 // debug info if there is any.
845
846 void
847 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
848 const Symbol* to, Defined defined,
849 Object* object)
850 {
851 std::string demangled(to->demangled_name());
852 size_t len = strlen(msg) + demangled.length() + 10;
853 char* buf = new char[len];
854 snprintf(buf, len, msg, demangled.c_str());
855
856 const char* objname;
857 switch (defined)
858 {
859 case OBJECT:
860 objname = object->name().c_str();
861 break;
862 case COPY:
863 objname = _("COPY reloc");
864 break;
865 case DEFSYM:
866 case UNDEFINED:
867 objname = _("command line");
868 break;
869 case SCRIPT:
870 objname = _("linker script");
871 break;
872 case PREDEFINED:
873 case INCREMENTAL_BASE:
874 objname = _("linker defined");
875 break;
876 default:
877 gold_unreachable();
878 }
879
880 if (is_error)
881 gold_error("%s: %s", objname, buf);
882 else
883 gold_warning("%s: %s", objname, buf);
884
885 delete[] buf;
886
887 if (to->source() == Symbol::FROM_OBJECT)
888 objname = to->object()->name().c_str();
889 else
890 objname = _("command line");
891 gold_info("%s: %s: previous definition here", program_name, objname);
892 }
893
894 // A special case of should_override which is only called for a strong
895 // defined symbol from a regular object file. This is used when
896 // defining special symbols.
897
898 bool
899 Symbol_table::should_override_with_special(const Symbol* to,
900 elfcpp::STT fromtype,
901 Defined defined)
902 {
903 bool adjust_common_sizes;
904 bool adjust_dyn_def;
905 unsigned int frombits = global_flag | regular_flag | def_flag;
906 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
907 NULL, &adjust_common_sizes,
908 &adjust_dyn_def);
909 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
910 return ret;
911 }
912
913 // Override symbol base with a special symbol.
914
915 void
916 Symbol::override_base_with_special(const Symbol* from)
917 {
918 bool same_name = this->name_ == from->name_;
919 gold_assert(same_name || this->has_alias());
920
921 // If we are overriding an undef, remember the original binding.
922 if (this->is_undefined())
923 this->set_undef_binding(this->binding_);
924
925 this->source_ = from->source_;
926 switch (from->source_)
927 {
928 case FROM_OBJECT:
929 this->u_.from_object = from->u_.from_object;
930 break;
931 case IN_OUTPUT_DATA:
932 this->u_.in_output_data = from->u_.in_output_data;
933 break;
934 case IN_OUTPUT_SEGMENT:
935 this->u_.in_output_segment = from->u_.in_output_segment;
936 break;
937 case IS_CONSTANT:
938 case IS_UNDEFINED:
939 break;
940 default:
941 gold_unreachable();
942 break;
943 }
944
945 if (same_name)
946 {
947 // When overriding a versioned symbol with a special symbol, we
948 // may be changing the version. This will happen if we see a
949 // special symbol such as "_end" defined in a shared object with
950 // one version (from a version script), but we want to define it
951 // here with a different version (from a different version
952 // script).
953 this->version_ = from->version_;
954 }
955 this->type_ = from->type_;
956 this->binding_ = from->binding_;
957 this->override_visibility(from->visibility_);
958 this->nonvis_ = from->nonvis_;
959
960 // Special symbols are always considered to be regular symbols.
961 this->in_reg_ = true;
962
963 if (from->needs_dynsym_entry_)
964 this->needs_dynsym_entry_ = true;
965 if (from->needs_dynsym_value_)
966 this->needs_dynsym_value_ = true;
967
968 this->is_predefined_ = from->is_predefined_;
969
970 // We shouldn't see these flags. If we do, we need to handle them
971 // somehow.
972 gold_assert(!from->is_forwarder_);
973 gold_assert(!from->has_plt_offset());
974 gold_assert(!from->has_warning_);
975 gold_assert(!from->is_copied_from_dynobj_);
976 gold_assert(!from->is_forced_local_);
977 }
978
979 // Override a symbol with a special symbol.
980
981 template<int size>
982 void
983 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
984 {
985 this->override_base_with_special(from);
986 this->value_ = from->value_;
987 this->symsize_ = from->symsize_;
988 }
989
990 // Override TOSYM with the special symbol FROMSYM. This handles all
991 // aliases of TOSYM.
992
993 template<int size>
994 void
995 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
996 const Sized_symbol<size>* fromsym)
997 {
998 tosym->override_with_special(fromsym);
999 if (tosym->has_alias())
1000 {
1001 Symbol* sym = this->weak_aliases_[tosym];
1002 gold_assert(sym != NULL);
1003 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1004 do
1005 {
1006 ssym->override_with_special(fromsym);
1007 sym = this->weak_aliases_[ssym];
1008 gold_assert(sym != NULL);
1009 ssym = this->get_sized_symbol<size>(sym);
1010 }
1011 while (ssym != tosym);
1012 }
1013 if (tosym->binding() == elfcpp::STB_LOCAL
1014 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1015 || tosym->visibility() == elfcpp::STV_INTERNAL)
1016 && (tosym->binding() == elfcpp::STB_GLOBAL
1017 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1018 || tosym->binding() == elfcpp::STB_WEAK)
1019 && !parameters->options().relocatable()))
1020 this->force_local(tosym);
1021 }
1022
1023 // Instantiate the templates we need. We could use the configure
1024 // script to restrict this to only the ones needed for implemented
1025 // targets.
1026
1027 // We have to instantiate both big and little endian versions because
1028 // these are used by other templates that depends on size only.
1029
1030 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1031 template
1032 void
1033 Symbol_table::resolve<32, false>(
1034 Sized_symbol<32>* to,
1035 const elfcpp::Sym<32, false>& sym,
1036 unsigned int st_shndx,
1037 bool is_ordinary,
1038 unsigned int orig_st_shndx,
1039 Object* object,
1040 const char* version);
1041
1042 template
1043 void
1044 Symbol_table::resolve<32, true>(
1045 Sized_symbol<32>* to,
1046 const elfcpp::Sym<32, true>& sym,
1047 unsigned int st_shndx,
1048 bool is_ordinary,
1049 unsigned int orig_st_shndx,
1050 Object* object,
1051 const char* version);
1052 #endif
1053
1054 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1055 template
1056 void
1057 Symbol_table::resolve<64, false>(
1058 Sized_symbol<64>* to,
1059 const elfcpp::Sym<64, false>& sym,
1060 unsigned int st_shndx,
1061 bool is_ordinary,
1062 unsigned int orig_st_shndx,
1063 Object* object,
1064 const char* version);
1065
1066 template
1067 void
1068 Symbol_table::resolve<64, true>(
1069 Sized_symbol<64>* to,
1070 const elfcpp::Sym<64, true>& sym,
1071 unsigned int st_shndx,
1072 bool is_ordinary,
1073 unsigned int orig_st_shndx,
1074 Object* object,
1075 const char* version);
1076 #endif
1077
1078 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1079 template
1080 void
1081 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1082 const Sized_symbol<32>*);
1083 #endif
1084
1085 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1086 template
1087 void
1088 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1089 const Sized_symbol<64>*);
1090 #endif
1091
1092 } // End namespace gold.
This page took 0.050965 seconds and 5 git commands to generate.