PR 10471
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 this->type_ = sym.get_st_type();
100 this->binding_ = sym.get_st_bind();
101 this->override_visibility(sym.get_st_visibility());
102 this->nonvis_ = sym.get_st_nonvis();
103 if (object->is_dynamic())
104 this->in_dyn_ = true;
105 else
106 this->in_reg_ = true;
107 }
108
109 // Override the fields in Sized_symbol.
110
111 template<int size>
112 template<bool big_endian>
113 void
114 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
115 unsigned st_shndx, bool is_ordinary,
116 Object* object, const char* version)
117 {
118 this->override_base(sym, st_shndx, is_ordinary, object, version);
119 this->value_ = sym.get_st_value();
120 this->symsize_ = sym.get_st_size();
121 }
122
123 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
124 // VERSION. This handles all aliases of TOSYM.
125
126 template<int size, bool big_endian>
127 void
128 Symbol_table::override(Sized_symbol<size>* tosym,
129 const elfcpp::Sym<size, big_endian>& fromsym,
130 unsigned int st_shndx, bool is_ordinary,
131 Object* object, const char* version)
132 {
133 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
134 if (tosym->has_alias())
135 {
136 Symbol* sym = this->weak_aliases_[tosym];
137 gold_assert(sym != NULL);
138 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
139 do
140 {
141 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
142 sym = this->weak_aliases_[ssym];
143 gold_assert(sym != NULL);
144 ssym = this->get_sized_symbol<size>(sym);
145 }
146 while (ssym != tosym);
147 }
148 }
149
150 // The resolve functions build a little code for each symbol.
151 // Bit 0: 0 for global, 1 for weak.
152 // Bit 1: 0 for regular object, 1 for shared object
153 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
154 // This gives us values from 0 to 11.
155
156 static const int global_or_weak_shift = 0;
157 static const unsigned int global_flag = 0 << global_or_weak_shift;
158 static const unsigned int weak_flag = 1 << global_or_weak_shift;
159
160 static const int regular_or_dynamic_shift = 1;
161 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
162 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
163
164 static const int def_undef_or_common_shift = 2;
165 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
166 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
167 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
168
169 // This convenience function combines all the flags based on facts
170 // about the symbol.
171
172 static unsigned int
173 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
174 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
175 {
176 unsigned int bits;
177
178 switch (binding)
179 {
180 case elfcpp::STB_GLOBAL:
181 bits = global_flag;
182 break;
183
184 case elfcpp::STB_WEAK:
185 bits = weak_flag;
186 break;
187
188 case elfcpp::STB_LOCAL:
189 // We should only see externally visible symbols in the symbol
190 // table.
191 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
192 bits = global_flag;
193
194 default:
195 // Any target which wants to handle STB_LOOS, etc., needs to
196 // define a resolve method.
197 gold_error(_("unsupported symbol binding"));
198 bits = global_flag;
199 }
200
201 if (is_dynamic)
202 bits |= dynamic_flag;
203 else
204 bits |= regular_flag;
205
206 switch (shndx)
207 {
208 case elfcpp::SHN_UNDEF:
209 bits |= undef_flag;
210 break;
211
212 case elfcpp::SHN_COMMON:
213 if (!is_ordinary)
214 bits |= common_flag;
215 break;
216
217 default:
218 if (type == elfcpp::STT_COMMON)
219 bits |= common_flag;
220 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
221 bits |= common_flag;
222 else
223 bits |= def_flag;
224 break;
225 }
226
227 return bits;
228 }
229
230 // Resolve a symbol. This is called the second and subsequent times
231 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
232 // section index for SYM, possibly adjusted for many sections.
233 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
234 // than a special code. ORIG_ST_SHNDX is the original section index,
235 // before any munging because of discarded sections, except that all
236 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
237 // the version of SYM.
238
239 template<int size, bool big_endian>
240 void
241 Symbol_table::resolve(Sized_symbol<size>* to,
242 const elfcpp::Sym<size, big_endian>& sym,
243 unsigned int st_shndx, bool is_ordinary,
244 unsigned int orig_st_shndx,
245 Object* object, const char* version)
246 {
247 if (object->target()->has_resolve())
248 {
249 Sized_target<size, big_endian>* sized_target;
250 sized_target = object->sized_target<size, big_endian>();
251 sized_target->resolve(to, sym, object, version);
252 return;
253 }
254
255 if (!object->is_dynamic())
256 {
257 // Record that we've seen this symbol in a regular object.
258 to->set_in_reg();
259 }
260 else if (to->visibility() == elfcpp::STV_HIDDEN
261 || to->visibility() == elfcpp::STV_INTERNAL)
262 {
263 // A dynamic object cannot reference a hidden or internal symbol
264 // defined in another object.
265 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
266 (to->visibility() == elfcpp::STV_HIDDEN
267 ? "hidden"
268 : "internal"),
269 to->demangled_name().c_str(),
270 to->object()->name().c_str(),
271 object->name().c_str());
272 return;
273 }
274 else
275 {
276 // Record that we've seen this symbol in a dynamic object.
277 to->set_in_dyn();
278 }
279
280 // Record if we've seen this symbol in a real ELF object (i.e., the
281 // symbol is referenced from outside the world known to the plugin).
282 if (object->pluginobj() == NULL)
283 to->set_in_real_elf();
284
285 // If we're processing replacement files, allow new symbols to override
286 // the placeholders from the plugin objects.
287 if (to->source() == Symbol::FROM_OBJECT)
288 {
289 Pluginobj* obj = to->object()->pluginobj();
290 if (obj != NULL
291 && parameters->options().plugins()->in_replacement_phase())
292 {
293 this->override(to, sym, st_shndx, is_ordinary, object, version);
294 return;
295 }
296 }
297
298 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
299 object->is_dynamic(),
300 st_shndx, is_ordinary,
301 sym.get_st_type());
302
303 bool adjust_common_sizes;
304 if (Symbol_table::should_override(to, frombits, object,
305 &adjust_common_sizes))
306 {
307 typename Sized_symbol<size>::Size_type tosize = to->symsize();
308
309 this->override(to, sym, st_shndx, is_ordinary, object, version);
310
311 if (adjust_common_sizes && tosize > to->symsize())
312 to->set_symsize(tosize);
313 }
314 else
315 {
316 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
317 to->set_symsize(sym.get_st_size());
318 // The ELF ABI says that even for a reference to a symbol we
319 // merge the visibility.
320 to->override_visibility(sym.get_st_visibility());
321 }
322
323 // A new weak undefined reference, merging with an old weak
324 // reference, could be a One Definition Rule (ODR) violation --
325 // especially if the types or sizes of the references differ. We'll
326 // store such pairs and look them up later to make sure they
327 // actually refer to the same lines of code. (Note: not all ODR
328 // violations can be found this way, and not everything this finds
329 // is an ODR violation. But it's helpful to warn about.)
330 bool to_is_ordinary;
331 if (parameters->options().detect_odr_violations()
332 && sym.get_st_bind() == elfcpp::STB_WEAK
333 && to->binding() == elfcpp::STB_WEAK
334 && orig_st_shndx != elfcpp::SHN_UNDEF
335 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
336 && to_is_ordinary
337 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
338 && to->symsize() != 0
339 && (sym.get_st_type() != to->type()
340 || sym.get_st_size() != to->symsize())
341 // C does not have a concept of ODR, so we only need to do this
342 // on C++ symbols. These have (mangled) names starting with _Z.
343 && to->name()[0] == '_' && to->name()[1] == 'Z')
344 {
345 Symbol_location fromloc
346 = { object, orig_st_shndx, sym.get_st_value() };
347 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
348 to->value() };
349 this->candidate_odr_violations_[to->name()].insert(fromloc);
350 this->candidate_odr_violations_[to->name()].insert(toloc);
351 }
352 }
353
354 // Handle the core of symbol resolution. This is called with the
355 // existing symbol, TO, and a bitflag describing the new symbol. This
356 // returns true if we should override the existing symbol with the new
357 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
358 // true if we should set the symbol size to the maximum of the TO and
359 // FROM sizes. It handles error conditions.
360
361 bool
362 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
363 Object* object, bool* adjust_common_sizes)
364 {
365 *adjust_common_sizes = false;
366
367 unsigned int tobits;
368 if (to->source() == Symbol::IS_UNDEFINED)
369 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
370 to->type());
371 else if (to->source() != Symbol::FROM_OBJECT)
372 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
373 to->type());
374 else
375 {
376 bool is_ordinary;
377 unsigned int shndx = to->shndx(&is_ordinary);
378 tobits = symbol_to_bits(to->binding(),
379 to->object()->is_dynamic(),
380 shndx,
381 is_ordinary,
382 to->type());
383 }
384
385 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
386
387 // We use a giant switch table for symbol resolution. This code is
388 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
389 // cases; 3) it is easy to change the handling of a particular case.
390 // The alternative would be a series of conditionals, but it is easy
391 // to get the ordering wrong. This could also be done as a table,
392 // but that is no easier to understand than this large switch
393 // statement.
394
395 // These are the values generated by the bit codes.
396 enum
397 {
398 DEF = global_flag | regular_flag | def_flag,
399 WEAK_DEF = weak_flag | regular_flag | def_flag,
400 DYN_DEF = global_flag | dynamic_flag | def_flag,
401 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
402 UNDEF = global_flag | regular_flag | undef_flag,
403 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
404 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
405 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
406 COMMON = global_flag | regular_flag | common_flag,
407 WEAK_COMMON = weak_flag | regular_flag | common_flag,
408 DYN_COMMON = global_flag | dynamic_flag | common_flag,
409 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
410 };
411
412 switch (tobits * 16 + frombits)
413 {
414 case DEF * 16 + DEF:
415 // Two definitions of the same symbol.
416
417 // If either symbol is defined by an object included using
418 // --just-symbols, then don't warn. This is for compatibility
419 // with the GNU linker. FIXME: This is a hack.
420 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
421 || object->just_symbols())
422 return false;
423
424 // FIXME: Do a better job of reporting locations.
425 gold_error(_("%s: multiple definition of %s"),
426 object != NULL ? object->name().c_str() : _("command line"),
427 to->demangled_name().c_str());
428 gold_error(_("%s: previous definition here"),
429 (to->source() == Symbol::FROM_OBJECT
430 ? to->object()->name().c_str()
431 : _("command line")));
432 return false;
433
434 case WEAK_DEF * 16 + DEF:
435 // We've seen a weak definition, and now we see a strong
436 // definition. In the original SVR4 linker, this was treated as
437 // a multiple definition error. In the Solaris linker and the
438 // GNU linker, a weak definition followed by a regular
439 // definition causes the weak definition to be overridden. We
440 // are currently compatible with the GNU linker. In the future
441 // we should add a target specific option to change this.
442 // FIXME.
443 return true;
444
445 case DYN_DEF * 16 + DEF:
446 case DYN_WEAK_DEF * 16 + DEF:
447 // We've seen a definition in a dynamic object, and now we see a
448 // definition in a regular object. The definition in the
449 // regular object overrides the definition in the dynamic
450 // object.
451 return true;
452
453 case UNDEF * 16 + DEF:
454 case WEAK_UNDEF * 16 + DEF:
455 case DYN_UNDEF * 16 + DEF:
456 case DYN_WEAK_UNDEF * 16 + DEF:
457 // We've seen an undefined reference, and now we see a
458 // definition. We use the definition.
459 return true;
460
461 case COMMON * 16 + DEF:
462 case WEAK_COMMON * 16 + DEF:
463 case DYN_COMMON * 16 + DEF:
464 case DYN_WEAK_COMMON * 16 + DEF:
465 // We've seen a common symbol and now we see a definition. The
466 // definition overrides. FIXME: We should optionally issue, version a
467 // warning.
468 return true;
469
470 case DEF * 16 + WEAK_DEF:
471 case WEAK_DEF * 16 + WEAK_DEF:
472 // We've seen a definition and now we see a weak definition. We
473 // ignore the new weak definition.
474 return false;
475
476 case DYN_DEF * 16 + WEAK_DEF:
477 case DYN_WEAK_DEF * 16 + WEAK_DEF:
478 // We've seen a dynamic definition and now we see a regular weak
479 // definition. The regular weak definition overrides.
480 return true;
481
482 case UNDEF * 16 + WEAK_DEF:
483 case WEAK_UNDEF * 16 + WEAK_DEF:
484 case DYN_UNDEF * 16 + WEAK_DEF:
485 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
486 // A weak definition of a currently undefined symbol.
487 return true;
488
489 case COMMON * 16 + WEAK_DEF:
490 case WEAK_COMMON * 16 + WEAK_DEF:
491 // A weak definition does not override a common definition.
492 return false;
493
494 case DYN_COMMON * 16 + WEAK_DEF:
495 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
496 // A weak definition does override a definition in a dynamic
497 // object. FIXME: We should optionally issue a warning.
498 return true;
499
500 case DEF * 16 + DYN_DEF:
501 case WEAK_DEF * 16 + DYN_DEF:
502 case DYN_DEF * 16 + DYN_DEF:
503 case DYN_WEAK_DEF * 16 + DYN_DEF:
504 // Ignore a dynamic definition if we already have a definition.
505 return false;
506
507 case UNDEF * 16 + DYN_DEF:
508 case WEAK_UNDEF * 16 + DYN_DEF:
509 case DYN_UNDEF * 16 + DYN_DEF:
510 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
511 // Use a dynamic definition if we have a reference.
512 return true;
513
514 case COMMON * 16 + DYN_DEF:
515 case WEAK_COMMON * 16 + DYN_DEF:
516 case DYN_COMMON * 16 + DYN_DEF:
517 case DYN_WEAK_COMMON * 16 + DYN_DEF:
518 // Ignore a dynamic definition if we already have a common
519 // definition.
520 return false;
521
522 case DEF * 16 + DYN_WEAK_DEF:
523 case WEAK_DEF * 16 + DYN_WEAK_DEF:
524 case DYN_DEF * 16 + DYN_WEAK_DEF:
525 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
526 // Ignore a weak dynamic definition if we already have a
527 // definition.
528 return false;
529
530 case UNDEF * 16 + DYN_WEAK_DEF:
531 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
532 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
533 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
534 // Use a weak dynamic definition if we have a reference.
535 return true;
536
537 case COMMON * 16 + DYN_WEAK_DEF:
538 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
539 case DYN_COMMON * 16 + DYN_WEAK_DEF:
540 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
541 // Ignore a weak dynamic definition if we already have a common
542 // definition.
543 return false;
544
545 case DEF * 16 + UNDEF:
546 case WEAK_DEF * 16 + UNDEF:
547 case DYN_DEF * 16 + UNDEF:
548 case DYN_WEAK_DEF * 16 + UNDEF:
549 case UNDEF * 16 + UNDEF:
550 // A new undefined reference tells us nothing.
551 return false;
552
553 case WEAK_UNDEF * 16 + UNDEF:
554 case DYN_UNDEF * 16 + UNDEF:
555 case DYN_WEAK_UNDEF * 16 + UNDEF:
556 // A strong undef overrides a dynamic or weak undef.
557 return true;
558
559 case COMMON * 16 + UNDEF:
560 case WEAK_COMMON * 16 + UNDEF:
561 case DYN_COMMON * 16 + UNDEF:
562 case DYN_WEAK_COMMON * 16 + UNDEF:
563 // A new undefined reference tells us nothing.
564 return false;
565
566 case DEF * 16 + WEAK_UNDEF:
567 case WEAK_DEF * 16 + WEAK_UNDEF:
568 case DYN_DEF * 16 + WEAK_UNDEF:
569 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
570 case UNDEF * 16 + WEAK_UNDEF:
571 case WEAK_UNDEF * 16 + WEAK_UNDEF:
572 case DYN_UNDEF * 16 + WEAK_UNDEF:
573 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
574 case COMMON * 16 + WEAK_UNDEF:
575 case WEAK_COMMON * 16 + WEAK_UNDEF:
576 case DYN_COMMON * 16 + WEAK_UNDEF:
577 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
578 // A new weak undefined reference tells us nothing.
579 return false;
580
581 case DEF * 16 + DYN_UNDEF:
582 case WEAK_DEF * 16 + DYN_UNDEF:
583 case DYN_DEF * 16 + DYN_UNDEF:
584 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
585 case UNDEF * 16 + DYN_UNDEF:
586 case WEAK_UNDEF * 16 + DYN_UNDEF:
587 case DYN_UNDEF * 16 + DYN_UNDEF:
588 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
589 case COMMON * 16 + DYN_UNDEF:
590 case WEAK_COMMON * 16 + DYN_UNDEF:
591 case DYN_COMMON * 16 + DYN_UNDEF:
592 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
593 // A new dynamic undefined reference tells us nothing.
594 return false;
595
596 case DEF * 16 + DYN_WEAK_UNDEF:
597 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
598 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
599 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
600 case UNDEF * 16 + DYN_WEAK_UNDEF:
601 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
602 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
603 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
604 case COMMON * 16 + DYN_WEAK_UNDEF:
605 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
606 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
607 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
608 // A new weak dynamic undefined reference tells us nothing.
609 return false;
610
611 case DEF * 16 + COMMON:
612 // A common symbol does not override a definition.
613 return false;
614
615 case WEAK_DEF * 16 + COMMON:
616 case DYN_DEF * 16 + COMMON:
617 case DYN_WEAK_DEF * 16 + COMMON:
618 // A common symbol does override a weak definition or a dynamic
619 // definition.
620 return true;
621
622 case UNDEF * 16 + COMMON:
623 case WEAK_UNDEF * 16 + COMMON:
624 case DYN_UNDEF * 16 + COMMON:
625 case DYN_WEAK_UNDEF * 16 + COMMON:
626 // A common symbol is a definition for a reference.
627 return true;
628
629 case COMMON * 16 + COMMON:
630 // Set the size to the maximum.
631 *adjust_common_sizes = true;
632 return false;
633
634 case WEAK_COMMON * 16 + COMMON:
635 // I'm not sure just what a weak common symbol means, but
636 // presumably it can be overridden by a regular common symbol.
637 return true;
638
639 case DYN_COMMON * 16 + COMMON:
640 case DYN_WEAK_COMMON * 16 + COMMON:
641 // Use the real common symbol, but adjust the size if necessary.
642 *adjust_common_sizes = true;
643 return true;
644
645 case DEF * 16 + WEAK_COMMON:
646 case WEAK_DEF * 16 + WEAK_COMMON:
647 case DYN_DEF * 16 + WEAK_COMMON:
648 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
649 // Whatever a weak common symbol is, it won't override a
650 // definition.
651 return false;
652
653 case UNDEF * 16 + WEAK_COMMON:
654 case WEAK_UNDEF * 16 + WEAK_COMMON:
655 case DYN_UNDEF * 16 + WEAK_COMMON:
656 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
657 // A weak common symbol is better than an undefined symbol.
658 return true;
659
660 case COMMON * 16 + WEAK_COMMON:
661 case WEAK_COMMON * 16 + WEAK_COMMON:
662 case DYN_COMMON * 16 + WEAK_COMMON:
663 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
664 // Ignore a weak common symbol in the presence of a real common
665 // symbol.
666 return false;
667
668 case DEF * 16 + DYN_COMMON:
669 case WEAK_DEF * 16 + DYN_COMMON:
670 case DYN_DEF * 16 + DYN_COMMON:
671 case DYN_WEAK_DEF * 16 + DYN_COMMON:
672 // Ignore a dynamic common symbol in the presence of a
673 // definition.
674 return false;
675
676 case UNDEF * 16 + DYN_COMMON:
677 case WEAK_UNDEF * 16 + DYN_COMMON:
678 case DYN_UNDEF * 16 + DYN_COMMON:
679 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
680 // A dynamic common symbol is a definition of sorts.
681 return true;
682
683 case COMMON * 16 + DYN_COMMON:
684 case WEAK_COMMON * 16 + DYN_COMMON:
685 case DYN_COMMON * 16 + DYN_COMMON:
686 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
687 // Set the size to the maximum.
688 *adjust_common_sizes = true;
689 return false;
690
691 case DEF * 16 + DYN_WEAK_COMMON:
692 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
693 case DYN_DEF * 16 + DYN_WEAK_COMMON:
694 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
695 // A common symbol is ignored in the face of a definition.
696 return false;
697
698 case UNDEF * 16 + DYN_WEAK_COMMON:
699 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
700 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
701 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
702 // I guess a weak common symbol is better than a definition.
703 return true;
704
705 case COMMON * 16 + DYN_WEAK_COMMON:
706 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
707 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
708 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
709 // Set the size to the maximum.
710 *adjust_common_sizes = true;
711 return false;
712
713 default:
714 gold_unreachable();
715 }
716 }
717
718 // A special case of should_override which is only called for a strong
719 // defined symbol from a regular object file. This is used when
720 // defining special symbols.
721
722 bool
723 Symbol_table::should_override_with_special(const Symbol* to)
724 {
725 bool adjust_common_sizes;
726 unsigned int frombits = global_flag | regular_flag | def_flag;
727 bool ret = Symbol_table::should_override(to, frombits, NULL,
728 &adjust_common_sizes);
729 gold_assert(!adjust_common_sizes);
730 return ret;
731 }
732
733 // Override symbol base with a special symbol.
734
735 void
736 Symbol::override_base_with_special(const Symbol* from)
737 {
738 gold_assert(this->name_ == from->name_ || this->has_alias());
739
740 this->source_ = from->source_;
741 switch (from->source_)
742 {
743 case FROM_OBJECT:
744 this->u_.from_object = from->u_.from_object;
745 break;
746 case IN_OUTPUT_DATA:
747 this->u_.in_output_data = from->u_.in_output_data;
748 break;
749 case IN_OUTPUT_SEGMENT:
750 this->u_.in_output_segment = from->u_.in_output_segment;
751 break;
752 case IS_CONSTANT:
753 case IS_UNDEFINED:
754 break;
755 default:
756 gold_unreachable();
757 break;
758 }
759
760 this->override_version(from->version_);
761 this->type_ = from->type_;
762 this->binding_ = from->binding_;
763 this->override_visibility(from->visibility_);
764 this->nonvis_ = from->nonvis_;
765
766 // Special symbols are always considered to be regular symbols.
767 this->in_reg_ = true;
768
769 if (from->needs_dynsym_entry_)
770 this->needs_dynsym_entry_ = true;
771 if (from->needs_dynsym_value_)
772 this->needs_dynsym_value_ = true;
773
774 // We shouldn't see these flags. If we do, we need to handle them
775 // somehow.
776 gold_assert(!from->is_target_special_ || this->is_target_special_);
777 gold_assert(!from->is_forwarder_);
778 gold_assert(!from->has_plt_offset_);
779 gold_assert(!from->has_warning_);
780 gold_assert(!from->is_copied_from_dynobj_);
781 gold_assert(!from->is_forced_local_);
782 }
783
784 // Override a symbol with a special symbol.
785
786 template<int size>
787 void
788 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
789 {
790 this->override_base_with_special(from);
791 this->value_ = from->value_;
792 this->symsize_ = from->symsize_;
793 }
794
795 // Override TOSYM with the special symbol FROMSYM. This handles all
796 // aliases of TOSYM.
797
798 template<int size>
799 void
800 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
801 const Sized_symbol<size>* fromsym)
802 {
803 tosym->override_with_special(fromsym);
804 if (tosym->has_alias())
805 {
806 Symbol* sym = this->weak_aliases_[tosym];
807 gold_assert(sym != NULL);
808 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
809 do
810 {
811 ssym->override_with_special(fromsym);
812 sym = this->weak_aliases_[ssym];
813 gold_assert(sym != NULL);
814 ssym = this->get_sized_symbol<size>(sym);
815 }
816 while (ssym != tosym);
817 }
818 if (tosym->binding() == elfcpp::STB_LOCAL
819 || ((tosym->visibility() == elfcpp::STV_HIDDEN
820 || tosym->visibility() == elfcpp::STV_INTERNAL)
821 && (tosym->binding() == elfcpp::STB_GLOBAL
822 || tosym->binding() == elfcpp::STB_WEAK)
823 && !parameters->options().relocatable()))
824 this->force_local(tosym);
825 }
826
827 // Instantiate the templates we need. We could use the configure
828 // script to restrict this to only the ones needed for implemented
829 // targets.
830
831 #ifdef HAVE_TARGET_32_LITTLE
832 template
833 void
834 Symbol_table::resolve<32, false>(
835 Sized_symbol<32>* to,
836 const elfcpp::Sym<32, false>& sym,
837 unsigned int st_shndx,
838 bool is_ordinary,
839 unsigned int orig_st_shndx,
840 Object* object,
841 const char* version);
842 #endif
843
844 #ifdef HAVE_TARGET_32_BIG
845 template
846 void
847 Symbol_table::resolve<32, true>(
848 Sized_symbol<32>* to,
849 const elfcpp::Sym<32, true>& sym,
850 unsigned int st_shndx,
851 bool is_ordinary,
852 unsigned int orig_st_shndx,
853 Object* object,
854 const char* version);
855 #endif
856
857 #ifdef HAVE_TARGET_64_LITTLE
858 template
859 void
860 Symbol_table::resolve<64, false>(
861 Sized_symbol<64>* to,
862 const elfcpp::Sym<64, false>& sym,
863 unsigned int st_shndx,
864 bool is_ordinary,
865 unsigned int orig_st_shndx,
866 Object* object,
867 const char* version);
868 #endif
869
870 #ifdef HAVE_TARGET_64_BIG
871 template
872 void
873 Symbol_table::resolve<64, true>(
874 Sized_symbol<64>* to,
875 const elfcpp::Sym<64, true>& sym,
876 unsigned int st_shndx,
877 bool is_ordinary,
878 unsigned int orig_st_shndx,
879 Object* object,
880 const char* version);
881 #endif
882
883 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
884 template
885 void
886 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
887 const Sized_symbol<32>*);
888 #endif
889
890 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
891 template
892 void
893 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
894 const Sized_symbol<64>*);
895 #endif
896
897 } // End namespace gold.
This page took 0.049894 seconds and 5 git commands to generate.