From Craig Silverstein: First cut at detecting ODR violations.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29
30 namespace gold
31 {
32
33 // Symbol methods used in this file.
34
35 // Override the fields in Symbol.
36
37 template<int size, bool big_endian>
38 void
39 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
40 Object* object, const char* version)
41 {
42 gold_assert(this->source_ == FROM_OBJECT);
43 this->u_.from_object.object = object;
44 if (version != NULL && this->version() != version)
45 {
46 gold_assert(this->version() == NULL);
47 this->version_ = version;
48 }
49 // FIXME: Handle SHN_XINDEX.
50 this->u_.from_object.shndx = sym.get_st_shndx();
51 this->type_ = sym.get_st_type();
52 this->binding_ = sym.get_st_bind();
53 this->visibility_ = sym.get_st_visibility();
54 this->nonvis_ = sym.get_st_nonvis();
55 if (object->is_dynamic())
56 this->in_dyn_ = true;
57 else
58 this->in_reg_ = true;
59 }
60
61 // Override the fields in Sized_symbol.
62
63 template<int size>
64 template<bool big_endian>
65 void
66 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
67 Object* object, const char* version)
68 {
69 this->override_base(sym, object, version);
70 this->value_ = sym.get_st_value();
71 this->symsize_ = sym.get_st_size();
72 }
73
74 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
75 // VERSION. This handles all aliases of TOSYM.
76
77 template<int size, bool big_endian>
78 void
79 Symbol_table::override(Sized_symbol<size>* tosym,
80 const elfcpp::Sym<size, big_endian>& fromsym,
81 Object* object, const char* version)
82 {
83 tosym->override(fromsym, object, version);
84 if (tosym->has_alias())
85 {
86 Symbol* sym = this->weak_aliases_[tosym];
87 gold_assert(sym != NULL);
88 Sized_symbol<size>* ssym;
89 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
90 SELECT_SIZE(size));
91 do
92 {
93 ssym->override(fromsym, object, version);
94 sym = this->weak_aliases_[ssym];
95 gold_assert(sym != NULL);
96 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
97 sym SELECT_SIZE(size));
98 }
99 while (ssym != tosym);
100 }
101 }
102
103 // The resolve functions build a little code for each symbol.
104 // Bit 0: 0 for global, 1 for weak.
105 // Bit 1: 0 for regular object, 1 for shared object
106 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
107 // This gives us values from 0 to 11.
108
109 static const int global_or_weak_shift = 0;
110 static const unsigned int global_flag = 0 << global_or_weak_shift;
111 static const unsigned int weak_flag = 1 << global_or_weak_shift;
112
113 static const int regular_or_dynamic_shift = 1;
114 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
115 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
116
117 static const int def_undef_or_common_shift = 2;
118 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
119 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
120 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
121
122 // This convenience function combines all the flags based on facts
123 // about the symbol.
124
125 static unsigned int
126 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
127 unsigned int shndx, elfcpp::STT type)
128 {
129 unsigned int bits;
130
131 switch (binding)
132 {
133 case elfcpp::STB_GLOBAL:
134 bits = global_flag;
135 break;
136
137 case elfcpp::STB_WEAK:
138 bits = weak_flag;
139 break;
140
141 case elfcpp::STB_LOCAL:
142 // We should only see externally visible symbols in the symbol
143 // table.
144 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
145 bits = global_flag;
146
147 default:
148 // Any target which wants to handle STB_LOOS, etc., needs to
149 // define a resolve method.
150 gold_error(_("unsupported symbol binding"));
151 bits = global_flag;
152 }
153
154 if (is_dynamic)
155 bits |= dynamic_flag;
156 else
157 bits |= regular_flag;
158
159 switch (shndx)
160 {
161 case elfcpp::SHN_UNDEF:
162 bits |= undef_flag;
163 break;
164
165 case elfcpp::SHN_COMMON:
166 bits |= common_flag;
167 break;
168
169 default:
170 if (type == elfcpp::STT_COMMON)
171 bits |= common_flag;
172 else
173 bits |= def_flag;
174 break;
175 }
176
177 return bits;
178 }
179
180 // Resolve a symbol. This is called the second and subsequent times
181 // we see a symbol. TO is the pre-existing symbol. ORIG_SYM is the
182 // new symbol, seen in OBJECT. SYM is almost always identical to
183 // ORIG_SYM, but may be munged (for instance, if we determine the
184 // symbol is in a to-be-discarded section, we'll set sym's shndx to
185 // UNDEFINED). VERSION of the version of SYM.
186
187 template<int size, bool big_endian>
188 void
189 Symbol_table::resolve(Sized_symbol<size>* to,
190 const elfcpp::Sym<size, big_endian>& sym,
191 const elfcpp::Sym<size, big_endian>& orig_sym,
192 Object* object, const char* version)
193 {
194 if (object->target()->has_resolve())
195 {
196 Sized_target<size, big_endian>* sized_target;
197 sized_target = object->sized_target
198 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
199 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
200 sized_target->resolve(to, sym, object, version);
201 return;
202 }
203
204 if (!object->is_dynamic())
205 {
206 // Record that we've seen this symbol in a regular object.
207 to->set_in_reg();
208 }
209 else
210 {
211 // Record that we've seen this symbol in a dynamic object.
212 to->set_in_dyn();
213 }
214
215 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
216 object->is_dynamic(),
217 sym.get_st_shndx(),
218 sym.get_st_type());
219
220 bool adjust_common_sizes;
221 if (Symbol_table::should_override(to, frombits, object,
222 &adjust_common_sizes))
223 {
224 typename Sized_symbol<size>::Size_type tosize = to->symsize();
225
226 this->override(to, sym, object, version);
227
228 if (adjust_common_sizes && tosize > to->symsize())
229 to->set_symsize(tosize);
230 }
231 else
232 {
233 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
234 to->set_symsize(sym.get_st_size());
235 }
236
237 // A new weak undefined reference, merging with an old weak
238 // reference, could be a One Definition Rule (ODR) violation --
239 // especially if the types or sizes of the references differ. We'll
240 // store such pairs and look them up later to make sure they
241 // actually refer to the same lines of code. (Note: not all ODR
242 // violations can be found this way, and not everything this finds
243 // is an ODR violation. But it's helpful to warn about.)
244 // We use orig_sym here because we want the symbol exactly as it
245 // appears in the object file, not munged via our future processing.
246 if (orig_sym.get_st_bind() == elfcpp::STB_WEAK
247 && to->binding() == elfcpp::STB_WEAK
248 && orig_sym.get_st_shndx() != elfcpp::SHN_UNDEF
249 && to->shndx() != elfcpp::SHN_UNDEF
250 && orig_sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
251 && to->symsize() != 0
252 && (orig_sym.get_st_type() != to->type()
253 || orig_sym.get_st_size() != to->symsize())
254 // C does not have a concept of ODR, so we only need to do this
255 // on C++ symbols. These have (mangled) names starting with _Z.
256 && to->name()[0] == '_' && to->name()[1] == 'Z')
257 {
258 Symbol_location from_location
259 = { object, orig_sym.get_st_shndx(), orig_sym.get_st_value() };
260 Symbol_location to_location = { to->object(), to->shndx(), to->value() };
261 this->candidate_odr_violations_[to->name()].insert(from_location);
262 this->candidate_odr_violations_[to->name()].insert(to_location);
263 }
264 }
265
266 // Handle the core of symbol resolution. This is called with the
267 // existing symbol, TO, and a bitflag describing the new symbol. This
268 // returns true if we should override the existing symbol with the new
269 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
270 // true if we should set the symbol size to the maximum of the TO and
271 // FROM sizes. It handles error conditions.
272
273 bool
274 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
275 Object* object, bool* adjust_common_sizes)
276 {
277 *adjust_common_sizes = false;
278
279 unsigned int tobits = symbol_to_bits(to->binding(),
280 (to->source() == Symbol::FROM_OBJECT
281 && to->object()->is_dynamic()),
282 to->shndx(),
283 to->type());
284
285 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
286
287 // We use a giant switch table for symbol resolution. This code is
288 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
289 // cases; 3) it is easy to change the handling of a particular case.
290 // The alternative would be a series of conditionals, but it is easy
291 // to get the ordering wrong. This could also be done as a table,
292 // but that is no easier to understand than this large switch
293 // statement.
294
295 // These are the values generated by the bit codes.
296 enum
297 {
298 DEF = global_flag | regular_flag | def_flag,
299 WEAK_DEF = weak_flag | regular_flag | def_flag,
300 DYN_DEF = global_flag | dynamic_flag | def_flag,
301 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
302 UNDEF = global_flag | regular_flag | undef_flag,
303 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
304 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
305 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
306 COMMON = global_flag | regular_flag | common_flag,
307 WEAK_COMMON = weak_flag | regular_flag | common_flag,
308 DYN_COMMON = global_flag | dynamic_flag | common_flag,
309 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
310 };
311
312 switch (tobits * 16 + frombits)
313 {
314 case DEF * 16 + DEF:
315 // Two definitions of the same symbol.
316 // FIXME: Do a better job of reporting locations.
317 gold_error(_("%s: multiple definition of %s"),
318 object != NULL ? object->name().c_str() : _("command line"),
319 to->name());
320 gold_error(_("%s: previous definition here"),
321 (to->source() == Symbol::FROM_OBJECT
322 ? to->object()->name().c_str()
323 : _("command line")));
324 return false;
325
326 case WEAK_DEF * 16 + DEF:
327 // We've seen a weak definition, and now we see a strong
328 // definition. In the original SVR4 linker, this was treated as
329 // a multiple definition error. In the Solaris linker and the
330 // GNU linker, a weak definition followed by a regular
331 // definition causes the weak definition to be overridden. We
332 // are currently compatible with the GNU linker. In the future
333 // we should add a target specific option to change this.
334 // FIXME.
335 return true;
336
337 case DYN_DEF * 16 + DEF:
338 case DYN_WEAK_DEF * 16 + DEF:
339 // We've seen a definition in a dynamic object, and now we see a
340 // definition in a regular object. The definition in the
341 // regular object overrides the definition in the dynamic
342 // object.
343 return true;
344
345 case UNDEF * 16 + DEF:
346 case WEAK_UNDEF * 16 + DEF:
347 case DYN_UNDEF * 16 + DEF:
348 case DYN_WEAK_UNDEF * 16 + DEF:
349 // We've seen an undefined reference, and now we see a
350 // definition. We use the definition.
351 return true;
352
353 case COMMON * 16 + DEF:
354 case WEAK_COMMON * 16 + DEF:
355 case DYN_COMMON * 16 + DEF:
356 case DYN_WEAK_COMMON * 16 + DEF:
357 // We've seen a common symbol and now we see a definition. The
358 // definition overrides. FIXME: We should optionally issue, version a
359 // warning.
360 return true;
361
362 case DEF * 16 + WEAK_DEF:
363 case WEAK_DEF * 16 + WEAK_DEF:
364 // We've seen a definition and now we see a weak definition. We
365 // ignore the new weak definition.
366 return false;
367
368 case DYN_DEF * 16 + WEAK_DEF:
369 case DYN_WEAK_DEF * 16 + WEAK_DEF:
370 // We've seen a dynamic definition and now we see a regular weak
371 // definition. The regular weak definition overrides.
372 return true;
373
374 case UNDEF * 16 + WEAK_DEF:
375 case WEAK_UNDEF * 16 + WEAK_DEF:
376 case DYN_UNDEF * 16 + WEAK_DEF:
377 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
378 // A weak definition of a currently undefined symbol.
379 return true;
380
381 case COMMON * 16 + WEAK_DEF:
382 case WEAK_COMMON * 16 + WEAK_DEF:
383 // A weak definition does not override a common definition.
384 return false;
385
386 case DYN_COMMON * 16 + WEAK_DEF:
387 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
388 // A weak definition does override a definition in a dynamic
389 // object. FIXME: We should optionally issue a warning.
390 return true;
391
392 case DEF * 16 + DYN_DEF:
393 case WEAK_DEF * 16 + DYN_DEF:
394 case DYN_DEF * 16 + DYN_DEF:
395 case DYN_WEAK_DEF * 16 + DYN_DEF:
396 // Ignore a dynamic definition if we already have a definition.
397 return false;
398
399 case UNDEF * 16 + DYN_DEF:
400 case WEAK_UNDEF * 16 + DYN_DEF:
401 case DYN_UNDEF * 16 + DYN_DEF:
402 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
403 // Use a dynamic definition if we have a reference.
404 return true;
405
406 case COMMON * 16 + DYN_DEF:
407 case WEAK_COMMON * 16 + DYN_DEF:
408 case DYN_COMMON * 16 + DYN_DEF:
409 case DYN_WEAK_COMMON * 16 + DYN_DEF:
410 // Ignore a dynamic definition if we already have a common
411 // definition.
412 return false;
413
414 case DEF * 16 + DYN_WEAK_DEF:
415 case WEAK_DEF * 16 + DYN_WEAK_DEF:
416 case DYN_DEF * 16 + DYN_WEAK_DEF:
417 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
418 // Ignore a weak dynamic definition if we already have a
419 // definition.
420 return false;
421
422 case UNDEF * 16 + DYN_WEAK_DEF:
423 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
424 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
425 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
426 // Use a weak dynamic definition if we have a reference.
427 return true;
428
429 case COMMON * 16 + DYN_WEAK_DEF:
430 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
431 case DYN_COMMON * 16 + DYN_WEAK_DEF:
432 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
433 // Ignore a weak dynamic definition if we already have a common
434 // definition.
435 return false;
436
437 case DEF * 16 + UNDEF:
438 case WEAK_DEF * 16 + UNDEF:
439 case DYN_DEF * 16 + UNDEF:
440 case DYN_WEAK_DEF * 16 + UNDEF:
441 case UNDEF * 16 + UNDEF:
442 // A new undefined reference tells us nothing.
443 return false;
444
445 case WEAK_UNDEF * 16 + UNDEF:
446 case DYN_UNDEF * 16 + UNDEF:
447 case DYN_WEAK_UNDEF * 16 + UNDEF:
448 // A strong undef overrides a dynamic or weak undef.
449 return true;
450
451 case COMMON * 16 + UNDEF:
452 case WEAK_COMMON * 16 + UNDEF:
453 case DYN_COMMON * 16 + UNDEF:
454 case DYN_WEAK_COMMON * 16 + UNDEF:
455 // A new undefined reference tells us nothing.
456 return false;
457
458 case DEF * 16 + WEAK_UNDEF:
459 case WEAK_DEF * 16 + WEAK_UNDEF:
460 case DYN_DEF * 16 + WEAK_UNDEF:
461 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
462 case UNDEF * 16 + WEAK_UNDEF:
463 case WEAK_UNDEF * 16 + WEAK_UNDEF:
464 case DYN_UNDEF * 16 + WEAK_UNDEF:
465 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
466 case COMMON * 16 + WEAK_UNDEF:
467 case WEAK_COMMON * 16 + WEAK_UNDEF:
468 case DYN_COMMON * 16 + WEAK_UNDEF:
469 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
470 // A new weak undefined reference tells us nothing.
471 return false;
472
473 case DEF * 16 + DYN_UNDEF:
474 case WEAK_DEF * 16 + DYN_UNDEF:
475 case DYN_DEF * 16 + DYN_UNDEF:
476 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
477 case UNDEF * 16 + DYN_UNDEF:
478 case WEAK_UNDEF * 16 + DYN_UNDEF:
479 case DYN_UNDEF * 16 + DYN_UNDEF:
480 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
481 case COMMON * 16 + DYN_UNDEF:
482 case WEAK_COMMON * 16 + DYN_UNDEF:
483 case DYN_COMMON * 16 + DYN_UNDEF:
484 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
485 // A new dynamic undefined reference tells us nothing.
486 return false;
487
488 case DEF * 16 + DYN_WEAK_UNDEF:
489 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
490 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
491 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
492 case UNDEF * 16 + DYN_WEAK_UNDEF:
493 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
494 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
495 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
496 case COMMON * 16 + DYN_WEAK_UNDEF:
497 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
498 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
499 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
500 // A new weak dynamic undefined reference tells us nothing.
501 return false;
502
503 case DEF * 16 + COMMON:
504 // A common symbol does not override a definition.
505 return false;
506
507 case WEAK_DEF * 16 + COMMON:
508 case DYN_DEF * 16 + COMMON:
509 case DYN_WEAK_DEF * 16 + COMMON:
510 // A common symbol does override a weak definition or a dynamic
511 // definition.
512 return true;
513
514 case UNDEF * 16 + COMMON:
515 case WEAK_UNDEF * 16 + COMMON:
516 case DYN_UNDEF * 16 + COMMON:
517 case DYN_WEAK_UNDEF * 16 + COMMON:
518 // A common symbol is a definition for a reference.
519 return true;
520
521 case COMMON * 16 + COMMON:
522 // Set the size to the maximum.
523 *adjust_common_sizes = true;
524 return false;
525
526 case WEAK_COMMON * 16 + COMMON:
527 // I'm not sure just what a weak common symbol means, but
528 // presumably it can be overridden by a regular common symbol.
529 return true;
530
531 case DYN_COMMON * 16 + COMMON:
532 case DYN_WEAK_COMMON * 16 + COMMON:
533 // Use the real common symbol, but adjust the size if necessary.
534 *adjust_common_sizes = true;
535 return true;
536
537 case DEF * 16 + WEAK_COMMON:
538 case WEAK_DEF * 16 + WEAK_COMMON:
539 case DYN_DEF * 16 + WEAK_COMMON:
540 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
541 // Whatever a weak common symbol is, it won't override a
542 // definition.
543 return false;
544
545 case UNDEF * 16 + WEAK_COMMON:
546 case WEAK_UNDEF * 16 + WEAK_COMMON:
547 case DYN_UNDEF * 16 + WEAK_COMMON:
548 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
549 // A weak common symbol is better than an undefined symbol.
550 return true;
551
552 case COMMON * 16 + WEAK_COMMON:
553 case WEAK_COMMON * 16 + WEAK_COMMON:
554 case DYN_COMMON * 16 + WEAK_COMMON:
555 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
556 // Ignore a weak common symbol in the presence of a real common
557 // symbol.
558 return false;
559
560 case DEF * 16 + DYN_COMMON:
561 case WEAK_DEF * 16 + DYN_COMMON:
562 case DYN_DEF * 16 + DYN_COMMON:
563 case DYN_WEAK_DEF * 16 + DYN_COMMON:
564 // Ignore a dynamic common symbol in the presence of a
565 // definition.
566 return false;
567
568 case UNDEF * 16 + DYN_COMMON:
569 case WEAK_UNDEF * 16 + DYN_COMMON:
570 case DYN_UNDEF * 16 + DYN_COMMON:
571 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
572 // A dynamic common symbol is a definition of sorts.
573 return true;
574
575 case COMMON * 16 + DYN_COMMON:
576 case WEAK_COMMON * 16 + DYN_COMMON:
577 case DYN_COMMON * 16 + DYN_COMMON:
578 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
579 // Set the size to the maximum.
580 *adjust_common_sizes = true;
581 return false;
582
583 case DEF * 16 + DYN_WEAK_COMMON:
584 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
585 case DYN_DEF * 16 + DYN_WEAK_COMMON:
586 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
587 // A common symbol is ignored in the face of a definition.
588 return false;
589
590 case UNDEF * 16 + DYN_WEAK_COMMON:
591 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
592 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
593 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
594 // I guess a weak common symbol is better than a definition.
595 return true;
596
597 case COMMON * 16 + DYN_WEAK_COMMON:
598 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
599 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
600 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
601 // Set the size to the maximum.
602 *adjust_common_sizes = true;
603 return false;
604
605 default:
606 gold_unreachable();
607 }
608 }
609
610 // A special case of should_override which is only called for a strong
611 // defined symbol from a regular object file. This is used when
612 // defining special symbols.
613
614 bool
615 Symbol_table::should_override_with_special(const Symbol* to)
616 {
617 bool adjust_common_sizes;
618 unsigned int frombits = global_flag | regular_flag | def_flag;
619 bool ret = Symbol_table::should_override(to, frombits, NULL,
620 &adjust_common_sizes);
621 gold_assert(!adjust_common_sizes);
622 return ret;
623 }
624
625 // Override symbol base with a special symbol.
626
627 void
628 Symbol::override_base_with_special(const Symbol* from)
629 {
630 gold_assert(this->name_ == from->name_ || this->has_alias());
631
632 this->source_ = from->source_;
633 switch (from->source_)
634 {
635 case FROM_OBJECT:
636 this->u_.from_object = from->u_.from_object;
637 break;
638 case IN_OUTPUT_DATA:
639 this->u_.in_output_data = from->u_.in_output_data;
640 break;
641 case IN_OUTPUT_SEGMENT:
642 this->u_.in_output_segment = from->u_.in_output_segment;
643 break;
644 case CONSTANT:
645 break;
646 default:
647 gold_unreachable();
648 break;
649 }
650
651 if (from->version_ != NULL && this->version_ != from->version_)
652 {
653 gold_assert(this->version_ == NULL);
654 this->version_ = from->version_;
655 }
656
657 this->type_ = from->type_;
658 this->binding_ = from->binding_;
659 this->visibility_ = from->visibility_;
660 this->nonvis_ = from->nonvis_;
661
662 // Special symbols are always considered to be regular symbols.
663 this->in_reg_ = true;
664
665 if (from->needs_dynsym_entry_)
666 this->needs_dynsym_entry_ = true;
667 if (from->needs_dynsym_value_)
668 this->needs_dynsym_value_ = true;
669
670 // We shouldn't see these flags. If we do, we need to handle them
671 // somehow.
672 gold_assert(!from->is_target_special_ || this->is_target_special_);
673 gold_assert(!from->is_forwarder_);
674 gold_assert(!from->has_got_offset_);
675 gold_assert(!from->has_plt_offset_);
676 gold_assert(!from->has_warning_);
677 gold_assert(!from->is_copied_from_dynobj_);
678 }
679
680 // Override a symbol with a special symbol.
681
682 template<int size>
683 void
684 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
685 {
686 this->override_base_with_special(from);
687 this->value_ = from->value_;
688 this->symsize_ = from->symsize_;
689 }
690
691 // Override TOSYM with the special symbol FROMSYM. This handles all
692 // aliases of TOSYM.
693
694 template<int size>
695 void
696 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
697 const Sized_symbol<size>* fromsym)
698 {
699 tosym->override_with_special(fromsym);
700 if (tosym->has_alias())
701 {
702 Symbol* sym = this->weak_aliases_[tosym];
703 gold_assert(sym != NULL);
704 Sized_symbol<size>* ssym;
705 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
706 SELECT_SIZE(size));
707 do
708 {
709 ssym->override_with_special(fromsym);
710 sym = this->weak_aliases_[ssym];
711 gold_assert(sym != NULL);
712 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
713 sym SELECT_SIZE(size));
714 }
715 while (ssym != tosym);
716 }
717 }
718
719 // Instantiate the templates we need. We could use the configure
720 // script to restrict this to only the ones needed for implemented
721 // targets.
722
723 #ifdef HAVE_TARGET_32_LITTLE
724 template
725 void
726 Symbol_table::resolve<32, false>(
727 Sized_symbol<32>* to,
728 const elfcpp::Sym<32, false>& sym,
729 const elfcpp::Sym<32, false>& orig_sym,
730 Object* object,
731 const char* version);
732 #endif
733
734 #ifdef HAVE_TARGET_32_BIG
735 template
736 void
737 Symbol_table::resolve<32, true>(
738 Sized_symbol<32>* to,
739 const elfcpp::Sym<32, true>& sym,
740 const elfcpp::Sym<32, true>& orig_sym,
741 Object* object,
742 const char* version);
743 #endif
744
745 #ifdef HAVE_TARGET_64_LITTLE
746 template
747 void
748 Symbol_table::resolve<64, false>(
749 Sized_symbol<64>* to,
750 const elfcpp::Sym<64, false>& sym,
751 const elfcpp::Sym<64, false>& orig_sym,
752 Object* object,
753 const char* version);
754 #endif
755
756 #ifdef HAVE_TARGET_64_BIG
757 template
758 void
759 Symbol_table::resolve<64, true>(
760 Sized_symbol<64>* to,
761 const elfcpp::Sym<64, true>& sym,
762 const elfcpp::Sym<64, true>& orig_sym,
763 Object* object,
764 const char* version);
765 #endif
766
767 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
768 template
769 void
770 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
771 const Sized_symbol<32>*);
772 #endif
773
774 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
775 template
776 void
777 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
778 const Sized_symbol<64>*);
779 #endif
780
781 } // End namespace gold.
This page took 0.046378 seconds and 5 git commands to generate.