From Craig Silverstein: Have Parameters point to General_options.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29
30 namespace gold
31 {
32
33 // Symbol methods used in this file.
34
35 // Override the fields in Symbol.
36
37 template<int size, bool big_endian>
38 void
39 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
40 Object* object, const char* version)
41 {
42 gold_assert(this->source_ == FROM_OBJECT);
43 this->u_.from_object.object = object;
44 if (version != NULL && this->version() != version)
45 {
46 gold_assert(this->version() == NULL);
47 this->version_ = version;
48 }
49 // FIXME: Handle SHN_XINDEX.
50 this->u_.from_object.shndx = sym.get_st_shndx();
51 this->type_ = sym.get_st_type();
52 this->binding_ = sym.get_st_bind();
53 this->visibility_ = sym.get_st_visibility();
54 this->nonvis_ = sym.get_st_nonvis();
55 if (object->is_dynamic())
56 this->in_dyn_ = true;
57 else
58 this->in_reg_ = true;
59 }
60
61 // Override the fields in Sized_symbol.
62
63 template<int size>
64 template<bool big_endian>
65 void
66 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
67 Object* object, const char* version)
68 {
69 this->override_base(sym, object, version);
70 this->value_ = sym.get_st_value();
71 this->symsize_ = sym.get_st_size();
72 }
73
74 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
75 // VERSION. This handles all aliases of TOSYM.
76
77 template<int size, bool big_endian>
78 void
79 Symbol_table::override(Sized_symbol<size>* tosym,
80 const elfcpp::Sym<size, big_endian>& fromsym,
81 Object* object, const char* version)
82 {
83 tosym->override(fromsym, object, version);
84 if (tosym->has_alias())
85 {
86 Symbol* sym = this->weak_aliases_[tosym];
87 gold_assert(sym != NULL);
88 Sized_symbol<size>* ssym;
89 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
90 SELECT_SIZE(size));
91 do
92 {
93 ssym->override(fromsym, object, version);
94 sym = this->weak_aliases_[ssym];
95 gold_assert(sym != NULL);
96 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
97 sym SELECT_SIZE(size));
98 }
99 while (ssym != tosym);
100 }
101 }
102
103 // The resolve functions build a little code for each symbol.
104 // Bit 0: 0 for global, 1 for weak.
105 // Bit 1: 0 for regular object, 1 for shared object
106 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
107 // This gives us values from 0 to 11.
108
109 static const int global_or_weak_shift = 0;
110 static const unsigned int global_flag = 0 << global_or_weak_shift;
111 static const unsigned int weak_flag = 1 << global_or_weak_shift;
112
113 static const int regular_or_dynamic_shift = 1;
114 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
115 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
116
117 static const int def_undef_or_common_shift = 2;
118 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
119 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
120 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
121
122 // This convenience function combines all the flags based on facts
123 // about the symbol.
124
125 static unsigned int
126 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
127 unsigned int shndx, elfcpp::STT type)
128 {
129 unsigned int bits;
130
131 switch (binding)
132 {
133 case elfcpp::STB_GLOBAL:
134 bits = global_flag;
135 break;
136
137 case elfcpp::STB_WEAK:
138 bits = weak_flag;
139 break;
140
141 case elfcpp::STB_LOCAL:
142 // We should only see externally visible symbols in the symbol
143 // table.
144 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
145 bits = global_flag;
146
147 default:
148 // Any target which wants to handle STB_LOOS, etc., needs to
149 // define a resolve method.
150 gold_error(_("unsupported symbol binding"));
151 bits = global_flag;
152 }
153
154 if (is_dynamic)
155 bits |= dynamic_flag;
156 else
157 bits |= regular_flag;
158
159 switch (shndx)
160 {
161 case elfcpp::SHN_UNDEF:
162 bits |= undef_flag;
163 break;
164
165 case elfcpp::SHN_COMMON:
166 bits |= common_flag;
167 break;
168
169 default:
170 if (type == elfcpp::STT_COMMON)
171 bits |= common_flag;
172 else
173 bits |= def_flag;
174 break;
175 }
176
177 return bits;
178 }
179
180 // Resolve a symbol. This is called the second and subsequent times
181 // we see a symbol. TO is the pre-existing symbol. ORIG_SYM is the
182 // new symbol, seen in OBJECT. SYM is almost always identical to
183 // ORIG_SYM, but may be munged (for instance, if we determine the
184 // symbol is in a to-be-discarded section, we'll set sym's shndx to
185 // UNDEFINED). VERSION of the version of SYM.
186
187 template<int size, bool big_endian>
188 void
189 Symbol_table::resolve(Sized_symbol<size>* to,
190 const elfcpp::Sym<size, big_endian>& sym,
191 const elfcpp::Sym<size, big_endian>& orig_sym,
192 Object* object, const char* version)
193 {
194 if (object->target()->has_resolve())
195 {
196 Sized_target<size, big_endian>* sized_target;
197 sized_target = object->sized_target
198 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
199 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
200 sized_target->resolve(to, sym, object, version);
201 return;
202 }
203
204 if (!object->is_dynamic())
205 {
206 // Record that we've seen this symbol in a regular object.
207 to->set_in_reg();
208 }
209 else
210 {
211 // Record that we've seen this symbol in a dynamic object.
212 to->set_in_dyn();
213 }
214
215 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
216 object->is_dynamic(),
217 sym.get_st_shndx(),
218 sym.get_st_type());
219
220 bool adjust_common_sizes;
221 if (Symbol_table::should_override(to, frombits, object,
222 &adjust_common_sizes))
223 {
224 typename Sized_symbol<size>::Size_type tosize = to->symsize();
225
226 this->override(to, sym, object, version);
227
228 if (adjust_common_sizes && tosize > to->symsize())
229 to->set_symsize(tosize);
230 }
231 else
232 {
233 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
234 to->set_symsize(sym.get_st_size());
235 }
236
237 // A new weak undefined reference, merging with an old weak
238 // reference, could be a One Definition Rule (ODR) violation --
239 // especially if the types or sizes of the references differ. We'll
240 // store such pairs and look them up later to make sure they
241 // actually refer to the same lines of code. (Note: not all ODR
242 // violations can be found this way, and not everything this finds
243 // is an ODR violation. But it's helpful to warn about.)
244 // We use orig_sym here because we want the symbol exactly as it
245 // appears in the object file, not munged via our future processing.
246 if (parameters->options().detect_odr_violations()
247 && orig_sym.get_st_bind() == elfcpp::STB_WEAK
248 && to->binding() == elfcpp::STB_WEAK
249 && orig_sym.get_st_shndx() != elfcpp::SHN_UNDEF
250 && to->shndx() != elfcpp::SHN_UNDEF
251 && orig_sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
252 && to->symsize() != 0
253 && (orig_sym.get_st_type() != to->type()
254 || orig_sym.get_st_size() != to->symsize())
255 // C does not have a concept of ODR, so we only need to do this
256 // on C++ symbols. These have (mangled) names starting with _Z.
257 && to->name()[0] == '_' && to->name()[1] == 'Z')
258 {
259 Symbol_location fromloc
260 = { object, orig_sym.get_st_shndx(), orig_sym.get_st_value() };
261 Symbol_location toloc = { to->object(), to->shndx(), to->value() };
262 this->candidate_odr_violations_[to->name()].insert(fromloc);
263 this->candidate_odr_violations_[to->name()].insert(toloc);
264 }
265 }
266
267 // Handle the core of symbol resolution. This is called with the
268 // existing symbol, TO, and a bitflag describing the new symbol. This
269 // returns true if we should override the existing symbol with the new
270 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
271 // true if we should set the symbol size to the maximum of the TO and
272 // FROM sizes. It handles error conditions.
273
274 bool
275 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
276 Object* object, bool* adjust_common_sizes)
277 {
278 *adjust_common_sizes = false;
279
280 unsigned int tobits;
281 if (to->source() == Symbol::FROM_OBJECT)
282 tobits = symbol_to_bits(to->binding(),
283 to->object()->is_dynamic(),
284 to->shndx(),
285 to->type());
286 else
287 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS,
288 to->type());
289
290 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
291
292 // We use a giant switch table for symbol resolution. This code is
293 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
294 // cases; 3) it is easy to change the handling of a particular case.
295 // The alternative would be a series of conditionals, but it is easy
296 // to get the ordering wrong. This could also be done as a table,
297 // but that is no easier to understand than this large switch
298 // statement.
299
300 // These are the values generated by the bit codes.
301 enum
302 {
303 DEF = global_flag | regular_flag | def_flag,
304 WEAK_DEF = weak_flag | regular_flag | def_flag,
305 DYN_DEF = global_flag | dynamic_flag | def_flag,
306 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
307 UNDEF = global_flag | regular_flag | undef_flag,
308 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
309 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
310 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
311 COMMON = global_flag | regular_flag | common_flag,
312 WEAK_COMMON = weak_flag | regular_flag | common_flag,
313 DYN_COMMON = global_flag | dynamic_flag | common_flag,
314 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
315 };
316
317 switch (tobits * 16 + frombits)
318 {
319 case DEF * 16 + DEF:
320 // Two definitions of the same symbol.
321 // FIXME: Do a better job of reporting locations.
322 gold_error(_("%s: multiple definition of %s"),
323 object != NULL ? object->name().c_str() : _("command line"),
324 to->demangled_name().c_str());
325 gold_error(_("%s: previous definition here"),
326 (to->source() == Symbol::FROM_OBJECT
327 ? to->object()->name().c_str()
328 : _("command line")));
329 return false;
330
331 case WEAK_DEF * 16 + DEF:
332 // We've seen a weak definition, and now we see a strong
333 // definition. In the original SVR4 linker, this was treated as
334 // a multiple definition error. In the Solaris linker and the
335 // GNU linker, a weak definition followed by a regular
336 // definition causes the weak definition to be overridden. We
337 // are currently compatible with the GNU linker. In the future
338 // we should add a target specific option to change this.
339 // FIXME.
340 return true;
341
342 case DYN_DEF * 16 + DEF:
343 case DYN_WEAK_DEF * 16 + DEF:
344 // We've seen a definition in a dynamic object, and now we see a
345 // definition in a regular object. The definition in the
346 // regular object overrides the definition in the dynamic
347 // object.
348 return true;
349
350 case UNDEF * 16 + DEF:
351 case WEAK_UNDEF * 16 + DEF:
352 case DYN_UNDEF * 16 + DEF:
353 case DYN_WEAK_UNDEF * 16 + DEF:
354 // We've seen an undefined reference, and now we see a
355 // definition. We use the definition.
356 return true;
357
358 case COMMON * 16 + DEF:
359 case WEAK_COMMON * 16 + DEF:
360 case DYN_COMMON * 16 + DEF:
361 case DYN_WEAK_COMMON * 16 + DEF:
362 // We've seen a common symbol and now we see a definition. The
363 // definition overrides. FIXME: We should optionally issue, version a
364 // warning.
365 return true;
366
367 case DEF * 16 + WEAK_DEF:
368 case WEAK_DEF * 16 + WEAK_DEF:
369 // We've seen a definition and now we see a weak definition. We
370 // ignore the new weak definition.
371 return false;
372
373 case DYN_DEF * 16 + WEAK_DEF:
374 case DYN_WEAK_DEF * 16 + WEAK_DEF:
375 // We've seen a dynamic definition and now we see a regular weak
376 // definition. The regular weak definition overrides.
377 return true;
378
379 case UNDEF * 16 + WEAK_DEF:
380 case WEAK_UNDEF * 16 + WEAK_DEF:
381 case DYN_UNDEF * 16 + WEAK_DEF:
382 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
383 // A weak definition of a currently undefined symbol.
384 return true;
385
386 case COMMON * 16 + WEAK_DEF:
387 case WEAK_COMMON * 16 + WEAK_DEF:
388 // A weak definition does not override a common definition.
389 return false;
390
391 case DYN_COMMON * 16 + WEAK_DEF:
392 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
393 // A weak definition does override a definition in a dynamic
394 // object. FIXME: We should optionally issue a warning.
395 return true;
396
397 case DEF * 16 + DYN_DEF:
398 case WEAK_DEF * 16 + DYN_DEF:
399 case DYN_DEF * 16 + DYN_DEF:
400 case DYN_WEAK_DEF * 16 + DYN_DEF:
401 // Ignore a dynamic definition if we already have a definition.
402 return false;
403
404 case UNDEF * 16 + DYN_DEF:
405 case WEAK_UNDEF * 16 + DYN_DEF:
406 case DYN_UNDEF * 16 + DYN_DEF:
407 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
408 // Use a dynamic definition if we have a reference.
409 return true;
410
411 case COMMON * 16 + DYN_DEF:
412 case WEAK_COMMON * 16 + DYN_DEF:
413 case DYN_COMMON * 16 + DYN_DEF:
414 case DYN_WEAK_COMMON * 16 + DYN_DEF:
415 // Ignore a dynamic definition if we already have a common
416 // definition.
417 return false;
418
419 case DEF * 16 + DYN_WEAK_DEF:
420 case WEAK_DEF * 16 + DYN_WEAK_DEF:
421 case DYN_DEF * 16 + DYN_WEAK_DEF:
422 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
423 // Ignore a weak dynamic definition if we already have a
424 // definition.
425 return false;
426
427 case UNDEF * 16 + DYN_WEAK_DEF:
428 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
429 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
430 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
431 // Use a weak dynamic definition if we have a reference.
432 return true;
433
434 case COMMON * 16 + DYN_WEAK_DEF:
435 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
436 case DYN_COMMON * 16 + DYN_WEAK_DEF:
437 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
438 // Ignore a weak dynamic definition if we already have a common
439 // definition.
440 return false;
441
442 case DEF * 16 + UNDEF:
443 case WEAK_DEF * 16 + UNDEF:
444 case DYN_DEF * 16 + UNDEF:
445 case DYN_WEAK_DEF * 16 + UNDEF:
446 case UNDEF * 16 + UNDEF:
447 // A new undefined reference tells us nothing.
448 return false;
449
450 case WEAK_UNDEF * 16 + UNDEF:
451 case DYN_UNDEF * 16 + UNDEF:
452 case DYN_WEAK_UNDEF * 16 + UNDEF:
453 // A strong undef overrides a dynamic or weak undef.
454 return true;
455
456 case COMMON * 16 + UNDEF:
457 case WEAK_COMMON * 16 + UNDEF:
458 case DYN_COMMON * 16 + UNDEF:
459 case DYN_WEAK_COMMON * 16 + UNDEF:
460 // A new undefined reference tells us nothing.
461 return false;
462
463 case DEF * 16 + WEAK_UNDEF:
464 case WEAK_DEF * 16 + WEAK_UNDEF:
465 case DYN_DEF * 16 + WEAK_UNDEF:
466 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
467 case UNDEF * 16 + WEAK_UNDEF:
468 case WEAK_UNDEF * 16 + WEAK_UNDEF:
469 case DYN_UNDEF * 16 + WEAK_UNDEF:
470 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
471 case COMMON * 16 + WEAK_UNDEF:
472 case WEAK_COMMON * 16 + WEAK_UNDEF:
473 case DYN_COMMON * 16 + WEAK_UNDEF:
474 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
475 // A new weak undefined reference tells us nothing.
476 return false;
477
478 case DEF * 16 + DYN_UNDEF:
479 case WEAK_DEF * 16 + DYN_UNDEF:
480 case DYN_DEF * 16 + DYN_UNDEF:
481 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
482 case UNDEF * 16 + DYN_UNDEF:
483 case WEAK_UNDEF * 16 + DYN_UNDEF:
484 case DYN_UNDEF * 16 + DYN_UNDEF:
485 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
486 case COMMON * 16 + DYN_UNDEF:
487 case WEAK_COMMON * 16 + DYN_UNDEF:
488 case DYN_COMMON * 16 + DYN_UNDEF:
489 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
490 // A new dynamic undefined reference tells us nothing.
491 return false;
492
493 case DEF * 16 + DYN_WEAK_UNDEF:
494 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
495 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
496 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
497 case UNDEF * 16 + DYN_WEAK_UNDEF:
498 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
499 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
500 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
501 case COMMON * 16 + DYN_WEAK_UNDEF:
502 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
503 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
504 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
505 // A new weak dynamic undefined reference tells us nothing.
506 return false;
507
508 case DEF * 16 + COMMON:
509 // A common symbol does not override a definition.
510 return false;
511
512 case WEAK_DEF * 16 + COMMON:
513 case DYN_DEF * 16 + COMMON:
514 case DYN_WEAK_DEF * 16 + COMMON:
515 // A common symbol does override a weak definition or a dynamic
516 // definition.
517 return true;
518
519 case UNDEF * 16 + COMMON:
520 case WEAK_UNDEF * 16 + COMMON:
521 case DYN_UNDEF * 16 + COMMON:
522 case DYN_WEAK_UNDEF * 16 + COMMON:
523 // A common symbol is a definition for a reference.
524 return true;
525
526 case COMMON * 16 + COMMON:
527 // Set the size to the maximum.
528 *adjust_common_sizes = true;
529 return false;
530
531 case WEAK_COMMON * 16 + COMMON:
532 // I'm not sure just what a weak common symbol means, but
533 // presumably it can be overridden by a regular common symbol.
534 return true;
535
536 case DYN_COMMON * 16 + COMMON:
537 case DYN_WEAK_COMMON * 16 + COMMON:
538 // Use the real common symbol, but adjust the size if necessary.
539 *adjust_common_sizes = true;
540 return true;
541
542 case DEF * 16 + WEAK_COMMON:
543 case WEAK_DEF * 16 + WEAK_COMMON:
544 case DYN_DEF * 16 + WEAK_COMMON:
545 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
546 // Whatever a weak common symbol is, it won't override a
547 // definition.
548 return false;
549
550 case UNDEF * 16 + WEAK_COMMON:
551 case WEAK_UNDEF * 16 + WEAK_COMMON:
552 case DYN_UNDEF * 16 + WEAK_COMMON:
553 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
554 // A weak common symbol is better than an undefined symbol.
555 return true;
556
557 case COMMON * 16 + WEAK_COMMON:
558 case WEAK_COMMON * 16 + WEAK_COMMON:
559 case DYN_COMMON * 16 + WEAK_COMMON:
560 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
561 // Ignore a weak common symbol in the presence of a real common
562 // symbol.
563 return false;
564
565 case DEF * 16 + DYN_COMMON:
566 case WEAK_DEF * 16 + DYN_COMMON:
567 case DYN_DEF * 16 + DYN_COMMON:
568 case DYN_WEAK_DEF * 16 + DYN_COMMON:
569 // Ignore a dynamic common symbol in the presence of a
570 // definition.
571 return false;
572
573 case UNDEF * 16 + DYN_COMMON:
574 case WEAK_UNDEF * 16 + DYN_COMMON:
575 case DYN_UNDEF * 16 + DYN_COMMON:
576 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
577 // A dynamic common symbol is a definition of sorts.
578 return true;
579
580 case COMMON * 16 + DYN_COMMON:
581 case WEAK_COMMON * 16 + DYN_COMMON:
582 case DYN_COMMON * 16 + DYN_COMMON:
583 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
584 // Set the size to the maximum.
585 *adjust_common_sizes = true;
586 return false;
587
588 case DEF * 16 + DYN_WEAK_COMMON:
589 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
590 case DYN_DEF * 16 + DYN_WEAK_COMMON:
591 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
592 // A common symbol is ignored in the face of a definition.
593 return false;
594
595 case UNDEF * 16 + DYN_WEAK_COMMON:
596 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
597 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
598 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
599 // I guess a weak common symbol is better than a definition.
600 return true;
601
602 case COMMON * 16 + DYN_WEAK_COMMON:
603 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
604 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
605 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
606 // Set the size to the maximum.
607 *adjust_common_sizes = true;
608 return false;
609
610 default:
611 gold_unreachable();
612 }
613 }
614
615 // A special case of should_override which is only called for a strong
616 // defined symbol from a regular object file. This is used when
617 // defining special symbols.
618
619 bool
620 Symbol_table::should_override_with_special(const Symbol* to)
621 {
622 bool adjust_common_sizes;
623 unsigned int frombits = global_flag | regular_flag | def_flag;
624 bool ret = Symbol_table::should_override(to, frombits, NULL,
625 &adjust_common_sizes);
626 gold_assert(!adjust_common_sizes);
627 return ret;
628 }
629
630 // Override symbol base with a special symbol.
631
632 void
633 Symbol::override_base_with_special(const Symbol* from)
634 {
635 gold_assert(this->name_ == from->name_ || this->has_alias());
636
637 this->source_ = from->source_;
638 switch (from->source_)
639 {
640 case FROM_OBJECT:
641 this->u_.from_object = from->u_.from_object;
642 break;
643 case IN_OUTPUT_DATA:
644 this->u_.in_output_data = from->u_.in_output_data;
645 break;
646 case IN_OUTPUT_SEGMENT:
647 this->u_.in_output_segment = from->u_.in_output_segment;
648 break;
649 case CONSTANT:
650 break;
651 default:
652 gold_unreachable();
653 break;
654 }
655
656 if (from->version_ != NULL && this->version_ != from->version_)
657 {
658 gold_assert(this->version_ == NULL);
659 this->version_ = from->version_;
660 }
661
662 this->type_ = from->type_;
663 this->binding_ = from->binding_;
664 this->visibility_ = from->visibility_;
665 this->nonvis_ = from->nonvis_;
666
667 // Special symbols are always considered to be regular symbols.
668 this->in_reg_ = true;
669
670 if (from->needs_dynsym_entry_)
671 this->needs_dynsym_entry_ = true;
672 if (from->needs_dynsym_value_)
673 this->needs_dynsym_value_ = true;
674
675 // We shouldn't see these flags. If we do, we need to handle them
676 // somehow.
677 gold_assert(!from->is_target_special_ || this->is_target_special_);
678 gold_assert(!from->is_forwarder_);
679 gold_assert(!from->has_got_offset_);
680 gold_assert(!from->has_plt_offset_);
681 gold_assert(!from->has_warning_);
682 gold_assert(!from->is_copied_from_dynobj_);
683 gold_assert(!from->is_forced_local_);
684 }
685
686 // Override a symbol with a special symbol.
687
688 template<int size>
689 void
690 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
691 {
692 this->override_base_with_special(from);
693 this->value_ = from->value_;
694 this->symsize_ = from->symsize_;
695 }
696
697 // Override TOSYM with the special symbol FROMSYM. This handles all
698 // aliases of TOSYM.
699
700 template<int size>
701 void
702 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
703 const Sized_symbol<size>* fromsym)
704 {
705 tosym->override_with_special(fromsym);
706 if (tosym->has_alias())
707 {
708 Symbol* sym = this->weak_aliases_[tosym];
709 gold_assert(sym != NULL);
710 Sized_symbol<size>* ssym;
711 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
712 SELECT_SIZE(size));
713 do
714 {
715 ssym->override_with_special(fromsym);
716 sym = this->weak_aliases_[ssym];
717 gold_assert(sym != NULL);
718 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
719 sym SELECT_SIZE(size));
720 }
721 while (ssym != tosym);
722 }
723 if (tosym->binding() == elfcpp::STB_LOCAL)
724 this->force_local(tosym);
725 }
726
727 // Instantiate the templates we need. We could use the configure
728 // script to restrict this to only the ones needed for implemented
729 // targets.
730
731 #ifdef HAVE_TARGET_32_LITTLE
732 template
733 void
734 Symbol_table::resolve<32, false>(
735 Sized_symbol<32>* to,
736 const elfcpp::Sym<32, false>& sym,
737 const elfcpp::Sym<32, false>& orig_sym,
738 Object* object,
739 const char* version);
740 #endif
741
742 #ifdef HAVE_TARGET_32_BIG
743 template
744 void
745 Symbol_table::resolve<32, true>(
746 Sized_symbol<32>* to,
747 const elfcpp::Sym<32, true>& sym,
748 const elfcpp::Sym<32, true>& orig_sym,
749 Object* object,
750 const char* version);
751 #endif
752
753 #ifdef HAVE_TARGET_64_LITTLE
754 template
755 void
756 Symbol_table::resolve<64, false>(
757 Sized_symbol<64>* to,
758 const elfcpp::Sym<64, false>& sym,
759 const elfcpp::Sym<64, false>& orig_sym,
760 Object* object,
761 const char* version);
762 #endif
763
764 #ifdef HAVE_TARGET_64_BIG
765 template
766 void
767 Symbol_table::resolve<64, true>(
768 Sized_symbol<64>* to,
769 const elfcpp::Sym<64, true>& sym,
770 const elfcpp::Sym<64, true>& orig_sym,
771 Object* object,
772 const char* version);
773 #endif
774
775 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
776 template
777 void
778 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
779 const Sized_symbol<32>*);
780 #endif
781
782 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
783 template
784 void
785 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
786 const Sized_symbol<64>*);
787 #endif
788
789 } // End namespace gold.
This page took 0.05879 seconds and 5 git commands to generate.