Add plugin functionality for link-time optimization (LTO).
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // Override the fields in Symbol.
67
68 template<int size, bool big_endian>
69 void
70 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
71 unsigned int st_shndx, bool is_ordinary,
72 Object* object, const char* version)
73 {
74 gold_assert(this->source_ == FROM_OBJECT);
75 this->u_.from_object.object = object;
76 this->override_version(version);
77 this->u_.from_object.shndx = st_shndx;
78 this->is_ordinary_shndx_ = is_ordinary;
79 this->type_ = sym.get_st_type();
80 this->binding_ = sym.get_st_bind();
81 this->visibility_ = sym.get_st_visibility();
82 this->nonvis_ = sym.get_st_nonvis();
83 if (object->is_dynamic())
84 this->in_dyn_ = true;
85 else
86 this->in_reg_ = true;
87 }
88
89 // Override the fields in Sized_symbol.
90
91 template<int size>
92 template<bool big_endian>
93 void
94 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
95 unsigned st_shndx, bool is_ordinary,
96 Object* object, const char* version)
97 {
98 this->override_base(sym, st_shndx, is_ordinary, object, version);
99 this->value_ = sym.get_st_value();
100 this->symsize_ = sym.get_st_size();
101 }
102
103 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
104 // VERSION. This handles all aliases of TOSYM.
105
106 template<int size, bool big_endian>
107 void
108 Symbol_table::override(Sized_symbol<size>* tosym,
109 const elfcpp::Sym<size, big_endian>& fromsym,
110 unsigned int st_shndx, bool is_ordinary,
111 Object* object, const char* version)
112 {
113 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
114 if (tosym->has_alias())
115 {
116 Symbol* sym = this->weak_aliases_[tosym];
117 gold_assert(sym != NULL);
118 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
119 do
120 {
121 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
122 sym = this->weak_aliases_[ssym];
123 gold_assert(sym != NULL);
124 ssym = this->get_sized_symbol<size>(sym);
125 }
126 while (ssym != tosym);
127 }
128 }
129
130 // The resolve functions build a little code for each symbol.
131 // Bit 0: 0 for global, 1 for weak.
132 // Bit 1: 0 for regular object, 1 for shared object
133 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
134 // This gives us values from 0 to 11.
135
136 static const int global_or_weak_shift = 0;
137 static const unsigned int global_flag = 0 << global_or_weak_shift;
138 static const unsigned int weak_flag = 1 << global_or_weak_shift;
139
140 static const int regular_or_dynamic_shift = 1;
141 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
142 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
143
144 static const int def_undef_or_common_shift = 2;
145 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
146 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
147 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
148
149 // This convenience function combines all the flags based on facts
150 // about the symbol.
151
152 static unsigned int
153 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
154 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
155 {
156 unsigned int bits;
157
158 switch (binding)
159 {
160 case elfcpp::STB_GLOBAL:
161 bits = global_flag;
162 break;
163
164 case elfcpp::STB_WEAK:
165 bits = weak_flag;
166 break;
167
168 case elfcpp::STB_LOCAL:
169 // We should only see externally visible symbols in the symbol
170 // table.
171 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
172 bits = global_flag;
173
174 default:
175 // Any target which wants to handle STB_LOOS, etc., needs to
176 // define a resolve method.
177 gold_error(_("unsupported symbol binding"));
178 bits = global_flag;
179 }
180
181 if (is_dynamic)
182 bits |= dynamic_flag;
183 else
184 bits |= regular_flag;
185
186 switch (shndx)
187 {
188 case elfcpp::SHN_UNDEF:
189 bits |= undef_flag;
190 break;
191
192 case elfcpp::SHN_COMMON:
193 if (!is_ordinary)
194 bits |= common_flag;
195 break;
196
197 default:
198 if (type == elfcpp::STT_COMMON)
199 bits |= common_flag;
200 else
201 bits |= def_flag;
202 break;
203 }
204
205 return bits;
206 }
207
208 // Resolve a symbol. This is called the second and subsequent times
209 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
210 // section index for SYM, possibly adjusted for many sections.
211 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
212 // than a special code. ORIG_ST_SHNDX is the original section index,
213 // before any munging because of discarded sections, except that all
214 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
215 // the version of SYM.
216
217 template<int size, bool big_endian>
218 void
219 Symbol_table::resolve(Sized_symbol<size>* to,
220 const elfcpp::Sym<size, big_endian>& sym,
221 unsigned int st_shndx, bool is_ordinary,
222 unsigned int orig_st_shndx,
223 Object* object, const char* version)
224 {
225 if (object->target()->has_resolve())
226 {
227 Sized_target<size, big_endian>* sized_target;
228 sized_target = object->sized_target<size, big_endian>();
229 sized_target->resolve(to, sym, object, version);
230 return;
231 }
232
233 if (!object->is_dynamic())
234 {
235 // Record that we've seen this symbol in a regular object.
236 to->set_in_reg();
237 }
238 else
239 {
240 // Record that we've seen this symbol in a dynamic object.
241 to->set_in_dyn();
242 }
243
244 // Record if we've seen this symbol in a real ELF object (i.e., the
245 // symbol is referenced from outside the world known to the plugin).
246 if (object->pluginobj() == NULL)
247 to->set_in_real_elf();
248
249 // If we're processing replacement files, allow new symbols to override
250 // the placeholders from the plugin objects.
251 if (to->source() == Symbol::FROM_OBJECT)
252 {
253 Pluginobj* obj = to->object()->pluginobj();
254 if (obj != NULL
255 && parameters->options().plugins()->in_replacement_phase())
256 {
257 this->override(to, sym, st_shndx, is_ordinary, object, version);
258 return;
259 }
260 }
261
262 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
263 object->is_dynamic(),
264 st_shndx, is_ordinary,
265 sym.get_st_type());
266
267 bool adjust_common_sizes;
268 if (Symbol_table::should_override(to, frombits, object,
269 &adjust_common_sizes))
270 {
271 typename Sized_symbol<size>::Size_type tosize = to->symsize();
272
273 this->override(to, sym, st_shndx, is_ordinary, object, version);
274
275 if (adjust_common_sizes && tosize > to->symsize())
276 to->set_symsize(tosize);
277 }
278 else
279 {
280 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
281 to->set_symsize(sym.get_st_size());
282 }
283
284 // A new weak undefined reference, merging with an old weak
285 // reference, could be a One Definition Rule (ODR) violation --
286 // especially if the types or sizes of the references differ. We'll
287 // store such pairs and look them up later to make sure they
288 // actually refer to the same lines of code. (Note: not all ODR
289 // violations can be found this way, and not everything this finds
290 // is an ODR violation. But it's helpful to warn about.)
291 bool to_is_ordinary;
292 if (parameters->options().detect_odr_violations()
293 && sym.get_st_bind() == elfcpp::STB_WEAK
294 && to->binding() == elfcpp::STB_WEAK
295 && orig_st_shndx != elfcpp::SHN_UNDEF
296 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
297 && to_is_ordinary
298 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
299 && to->symsize() != 0
300 && (sym.get_st_type() != to->type()
301 || sym.get_st_size() != to->symsize())
302 // C does not have a concept of ODR, so we only need to do this
303 // on C++ symbols. These have (mangled) names starting with _Z.
304 && to->name()[0] == '_' && to->name()[1] == 'Z')
305 {
306 Symbol_location fromloc
307 = { object, orig_st_shndx, sym.get_st_value() };
308 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
309 to->value() };
310 this->candidate_odr_violations_[to->name()].insert(fromloc);
311 this->candidate_odr_violations_[to->name()].insert(toloc);
312 }
313 }
314
315 // Handle the core of symbol resolution. This is called with the
316 // existing symbol, TO, and a bitflag describing the new symbol. This
317 // returns true if we should override the existing symbol with the new
318 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
319 // true if we should set the symbol size to the maximum of the TO and
320 // FROM sizes. It handles error conditions.
321
322 bool
323 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
324 Object* object, bool* adjust_common_sizes)
325 {
326 *adjust_common_sizes = false;
327
328 unsigned int tobits;
329 if (to->source() == Symbol::IS_UNDEFINED)
330 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
331 to->type());
332 else if (to->source() != Symbol::FROM_OBJECT)
333 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
334 to->type());
335 else
336 {
337 bool is_ordinary;
338 unsigned int shndx = to->shndx(&is_ordinary);
339 tobits = symbol_to_bits(to->binding(),
340 to->object()->is_dynamic(),
341 shndx,
342 is_ordinary,
343 to->type());
344 }
345
346 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
347
348 // We use a giant switch table for symbol resolution. This code is
349 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
350 // cases; 3) it is easy to change the handling of a particular case.
351 // The alternative would be a series of conditionals, but it is easy
352 // to get the ordering wrong. This could also be done as a table,
353 // but that is no easier to understand than this large switch
354 // statement.
355
356 // These are the values generated by the bit codes.
357 enum
358 {
359 DEF = global_flag | regular_flag | def_flag,
360 WEAK_DEF = weak_flag | regular_flag | def_flag,
361 DYN_DEF = global_flag | dynamic_flag | def_flag,
362 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
363 UNDEF = global_flag | regular_flag | undef_flag,
364 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
365 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
366 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
367 COMMON = global_flag | regular_flag | common_flag,
368 WEAK_COMMON = weak_flag | regular_flag | common_flag,
369 DYN_COMMON = global_flag | dynamic_flag | common_flag,
370 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
371 };
372
373 switch (tobits * 16 + frombits)
374 {
375 case DEF * 16 + DEF:
376 // Two definitions of the same symbol.
377
378 // If either symbol is defined by an object included using
379 // --just-symbols, then don't warn. This is for compatibility
380 // with the GNU linker. FIXME: This is a hack.
381 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
382 || object->just_symbols())
383 return false;
384
385 // FIXME: Do a better job of reporting locations.
386 gold_error(_("%s: multiple definition of %s"),
387 object != NULL ? object->name().c_str() : _("command line"),
388 to->demangled_name().c_str());
389 gold_error(_("%s: previous definition here"),
390 (to->source() == Symbol::FROM_OBJECT
391 ? to->object()->name().c_str()
392 : _("command line")));
393 return false;
394
395 case WEAK_DEF * 16 + DEF:
396 // We've seen a weak definition, and now we see a strong
397 // definition. In the original SVR4 linker, this was treated as
398 // a multiple definition error. In the Solaris linker and the
399 // GNU linker, a weak definition followed by a regular
400 // definition causes the weak definition to be overridden. We
401 // are currently compatible with the GNU linker. In the future
402 // we should add a target specific option to change this.
403 // FIXME.
404 return true;
405
406 case DYN_DEF * 16 + DEF:
407 case DYN_WEAK_DEF * 16 + DEF:
408 // We've seen a definition in a dynamic object, and now we see a
409 // definition in a regular object. The definition in the
410 // regular object overrides the definition in the dynamic
411 // object.
412 return true;
413
414 case UNDEF * 16 + DEF:
415 case WEAK_UNDEF * 16 + DEF:
416 case DYN_UNDEF * 16 + DEF:
417 case DYN_WEAK_UNDEF * 16 + DEF:
418 // We've seen an undefined reference, and now we see a
419 // definition. We use the definition.
420 return true;
421
422 case COMMON * 16 + DEF:
423 case WEAK_COMMON * 16 + DEF:
424 case DYN_COMMON * 16 + DEF:
425 case DYN_WEAK_COMMON * 16 + DEF:
426 // We've seen a common symbol and now we see a definition. The
427 // definition overrides. FIXME: We should optionally issue, version a
428 // warning.
429 return true;
430
431 case DEF * 16 + WEAK_DEF:
432 case WEAK_DEF * 16 + WEAK_DEF:
433 // We've seen a definition and now we see a weak definition. We
434 // ignore the new weak definition.
435 return false;
436
437 case DYN_DEF * 16 + WEAK_DEF:
438 case DYN_WEAK_DEF * 16 + WEAK_DEF:
439 // We've seen a dynamic definition and now we see a regular weak
440 // definition. The regular weak definition overrides.
441 return true;
442
443 case UNDEF * 16 + WEAK_DEF:
444 case WEAK_UNDEF * 16 + WEAK_DEF:
445 case DYN_UNDEF * 16 + WEAK_DEF:
446 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
447 // A weak definition of a currently undefined symbol.
448 return true;
449
450 case COMMON * 16 + WEAK_DEF:
451 case WEAK_COMMON * 16 + WEAK_DEF:
452 // A weak definition does not override a common definition.
453 return false;
454
455 case DYN_COMMON * 16 + WEAK_DEF:
456 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
457 // A weak definition does override a definition in a dynamic
458 // object. FIXME: We should optionally issue a warning.
459 return true;
460
461 case DEF * 16 + DYN_DEF:
462 case WEAK_DEF * 16 + DYN_DEF:
463 case DYN_DEF * 16 + DYN_DEF:
464 case DYN_WEAK_DEF * 16 + DYN_DEF:
465 // Ignore a dynamic definition if we already have a definition.
466 return false;
467
468 case UNDEF * 16 + DYN_DEF:
469 case WEAK_UNDEF * 16 + DYN_DEF:
470 case DYN_UNDEF * 16 + DYN_DEF:
471 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
472 // Use a dynamic definition if we have a reference.
473 return true;
474
475 case COMMON * 16 + DYN_DEF:
476 case WEAK_COMMON * 16 + DYN_DEF:
477 case DYN_COMMON * 16 + DYN_DEF:
478 case DYN_WEAK_COMMON * 16 + DYN_DEF:
479 // Ignore a dynamic definition if we already have a common
480 // definition.
481 return false;
482
483 case DEF * 16 + DYN_WEAK_DEF:
484 case WEAK_DEF * 16 + DYN_WEAK_DEF:
485 case DYN_DEF * 16 + DYN_WEAK_DEF:
486 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
487 // Ignore a weak dynamic definition if we already have a
488 // definition.
489 return false;
490
491 case UNDEF * 16 + DYN_WEAK_DEF:
492 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
493 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
494 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
495 // Use a weak dynamic definition if we have a reference.
496 return true;
497
498 case COMMON * 16 + DYN_WEAK_DEF:
499 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
500 case DYN_COMMON * 16 + DYN_WEAK_DEF:
501 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
502 // Ignore a weak dynamic definition if we already have a common
503 // definition.
504 return false;
505
506 case DEF * 16 + UNDEF:
507 case WEAK_DEF * 16 + UNDEF:
508 case DYN_DEF * 16 + UNDEF:
509 case DYN_WEAK_DEF * 16 + UNDEF:
510 case UNDEF * 16 + UNDEF:
511 // A new undefined reference tells us nothing.
512 return false;
513
514 case WEAK_UNDEF * 16 + UNDEF:
515 case DYN_UNDEF * 16 + UNDEF:
516 case DYN_WEAK_UNDEF * 16 + UNDEF:
517 // A strong undef overrides a dynamic or weak undef.
518 return true;
519
520 case COMMON * 16 + UNDEF:
521 case WEAK_COMMON * 16 + UNDEF:
522 case DYN_COMMON * 16 + UNDEF:
523 case DYN_WEAK_COMMON * 16 + UNDEF:
524 // A new undefined reference tells us nothing.
525 return false;
526
527 case DEF * 16 + WEAK_UNDEF:
528 case WEAK_DEF * 16 + WEAK_UNDEF:
529 case DYN_DEF * 16 + WEAK_UNDEF:
530 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
531 case UNDEF * 16 + WEAK_UNDEF:
532 case WEAK_UNDEF * 16 + WEAK_UNDEF:
533 case DYN_UNDEF * 16 + WEAK_UNDEF:
534 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
535 case COMMON * 16 + WEAK_UNDEF:
536 case WEAK_COMMON * 16 + WEAK_UNDEF:
537 case DYN_COMMON * 16 + WEAK_UNDEF:
538 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
539 // A new weak undefined reference tells us nothing.
540 return false;
541
542 case DEF * 16 + DYN_UNDEF:
543 case WEAK_DEF * 16 + DYN_UNDEF:
544 case DYN_DEF * 16 + DYN_UNDEF:
545 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
546 case UNDEF * 16 + DYN_UNDEF:
547 case WEAK_UNDEF * 16 + DYN_UNDEF:
548 case DYN_UNDEF * 16 + DYN_UNDEF:
549 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
550 case COMMON * 16 + DYN_UNDEF:
551 case WEAK_COMMON * 16 + DYN_UNDEF:
552 case DYN_COMMON * 16 + DYN_UNDEF:
553 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
554 // A new dynamic undefined reference tells us nothing.
555 return false;
556
557 case DEF * 16 + DYN_WEAK_UNDEF:
558 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
559 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
560 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
561 case UNDEF * 16 + DYN_WEAK_UNDEF:
562 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
563 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
564 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
565 case COMMON * 16 + DYN_WEAK_UNDEF:
566 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
567 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
568 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
569 // A new weak dynamic undefined reference tells us nothing.
570 return false;
571
572 case DEF * 16 + COMMON:
573 // A common symbol does not override a definition.
574 return false;
575
576 case WEAK_DEF * 16 + COMMON:
577 case DYN_DEF * 16 + COMMON:
578 case DYN_WEAK_DEF * 16 + COMMON:
579 // A common symbol does override a weak definition or a dynamic
580 // definition.
581 return true;
582
583 case UNDEF * 16 + COMMON:
584 case WEAK_UNDEF * 16 + COMMON:
585 case DYN_UNDEF * 16 + COMMON:
586 case DYN_WEAK_UNDEF * 16 + COMMON:
587 // A common symbol is a definition for a reference.
588 return true;
589
590 case COMMON * 16 + COMMON:
591 // Set the size to the maximum.
592 *adjust_common_sizes = true;
593 return false;
594
595 case WEAK_COMMON * 16 + COMMON:
596 // I'm not sure just what a weak common symbol means, but
597 // presumably it can be overridden by a regular common symbol.
598 return true;
599
600 case DYN_COMMON * 16 + COMMON:
601 case DYN_WEAK_COMMON * 16 + COMMON:
602 // Use the real common symbol, but adjust the size if necessary.
603 *adjust_common_sizes = true;
604 return true;
605
606 case DEF * 16 + WEAK_COMMON:
607 case WEAK_DEF * 16 + WEAK_COMMON:
608 case DYN_DEF * 16 + WEAK_COMMON:
609 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
610 // Whatever a weak common symbol is, it won't override a
611 // definition.
612 return false;
613
614 case UNDEF * 16 + WEAK_COMMON:
615 case WEAK_UNDEF * 16 + WEAK_COMMON:
616 case DYN_UNDEF * 16 + WEAK_COMMON:
617 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
618 // A weak common symbol is better than an undefined symbol.
619 return true;
620
621 case COMMON * 16 + WEAK_COMMON:
622 case WEAK_COMMON * 16 + WEAK_COMMON:
623 case DYN_COMMON * 16 + WEAK_COMMON:
624 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
625 // Ignore a weak common symbol in the presence of a real common
626 // symbol.
627 return false;
628
629 case DEF * 16 + DYN_COMMON:
630 case WEAK_DEF * 16 + DYN_COMMON:
631 case DYN_DEF * 16 + DYN_COMMON:
632 case DYN_WEAK_DEF * 16 + DYN_COMMON:
633 // Ignore a dynamic common symbol in the presence of a
634 // definition.
635 return false;
636
637 case UNDEF * 16 + DYN_COMMON:
638 case WEAK_UNDEF * 16 + DYN_COMMON:
639 case DYN_UNDEF * 16 + DYN_COMMON:
640 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
641 // A dynamic common symbol is a definition of sorts.
642 return true;
643
644 case COMMON * 16 + DYN_COMMON:
645 case WEAK_COMMON * 16 + DYN_COMMON:
646 case DYN_COMMON * 16 + DYN_COMMON:
647 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
648 // Set the size to the maximum.
649 *adjust_common_sizes = true;
650 return false;
651
652 case DEF * 16 + DYN_WEAK_COMMON:
653 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
654 case DYN_DEF * 16 + DYN_WEAK_COMMON:
655 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
656 // A common symbol is ignored in the face of a definition.
657 return false;
658
659 case UNDEF * 16 + DYN_WEAK_COMMON:
660 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
661 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
662 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
663 // I guess a weak common symbol is better than a definition.
664 return true;
665
666 case COMMON * 16 + DYN_WEAK_COMMON:
667 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
668 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
669 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
670 // Set the size to the maximum.
671 *adjust_common_sizes = true;
672 return false;
673
674 default:
675 gold_unreachable();
676 }
677 }
678
679 // A special case of should_override which is only called for a strong
680 // defined symbol from a regular object file. This is used when
681 // defining special symbols.
682
683 bool
684 Symbol_table::should_override_with_special(const Symbol* to)
685 {
686 bool adjust_common_sizes;
687 unsigned int frombits = global_flag | regular_flag | def_flag;
688 bool ret = Symbol_table::should_override(to, frombits, NULL,
689 &adjust_common_sizes);
690 gold_assert(!adjust_common_sizes);
691 return ret;
692 }
693
694 // Override symbol base with a special symbol.
695
696 void
697 Symbol::override_base_with_special(const Symbol* from)
698 {
699 gold_assert(this->name_ == from->name_ || this->has_alias());
700
701 this->source_ = from->source_;
702 switch (from->source_)
703 {
704 case FROM_OBJECT:
705 this->u_.from_object = from->u_.from_object;
706 break;
707 case IN_OUTPUT_DATA:
708 this->u_.in_output_data = from->u_.in_output_data;
709 break;
710 case IN_OUTPUT_SEGMENT:
711 this->u_.in_output_segment = from->u_.in_output_segment;
712 break;
713 case IS_CONSTANT:
714 case IS_UNDEFINED:
715 break;
716 default:
717 gold_unreachable();
718 break;
719 }
720
721 this->override_version(from->version_);
722 this->type_ = from->type_;
723 this->binding_ = from->binding_;
724 this->visibility_ = from->visibility_;
725 this->nonvis_ = from->nonvis_;
726
727 // Special symbols are always considered to be regular symbols.
728 this->in_reg_ = true;
729
730 if (from->needs_dynsym_entry_)
731 this->needs_dynsym_entry_ = true;
732 if (from->needs_dynsym_value_)
733 this->needs_dynsym_value_ = true;
734
735 // We shouldn't see these flags. If we do, we need to handle them
736 // somehow.
737 gold_assert(!from->is_target_special_ || this->is_target_special_);
738 gold_assert(!from->is_forwarder_);
739 gold_assert(!from->has_plt_offset_);
740 gold_assert(!from->has_warning_);
741 gold_assert(!from->is_copied_from_dynobj_);
742 gold_assert(!from->is_forced_local_);
743 }
744
745 // Override a symbol with a special symbol.
746
747 template<int size>
748 void
749 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
750 {
751 this->override_base_with_special(from);
752 this->value_ = from->value_;
753 this->symsize_ = from->symsize_;
754 }
755
756 // Override TOSYM with the special symbol FROMSYM. This handles all
757 // aliases of TOSYM.
758
759 template<int size>
760 void
761 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
762 const Sized_symbol<size>* fromsym)
763 {
764 tosym->override_with_special(fromsym);
765 if (tosym->has_alias())
766 {
767 Symbol* sym = this->weak_aliases_[tosym];
768 gold_assert(sym != NULL);
769 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
770 do
771 {
772 ssym->override_with_special(fromsym);
773 sym = this->weak_aliases_[ssym];
774 gold_assert(sym != NULL);
775 ssym = this->get_sized_symbol<size>(sym);
776 }
777 while (ssym != tosym);
778 }
779 if (tosym->binding() == elfcpp::STB_LOCAL)
780 this->force_local(tosym);
781 }
782
783 // Instantiate the templates we need. We could use the configure
784 // script to restrict this to only the ones needed for implemented
785 // targets.
786
787 #ifdef HAVE_TARGET_32_LITTLE
788 template
789 void
790 Symbol_table::resolve<32, false>(
791 Sized_symbol<32>* to,
792 const elfcpp::Sym<32, false>& sym,
793 unsigned int st_shndx,
794 bool is_ordinary,
795 unsigned int orig_st_shndx,
796 Object* object,
797 const char* version);
798 #endif
799
800 #ifdef HAVE_TARGET_32_BIG
801 template
802 void
803 Symbol_table::resolve<32, true>(
804 Sized_symbol<32>* to,
805 const elfcpp::Sym<32, true>& sym,
806 unsigned int st_shndx,
807 bool is_ordinary,
808 unsigned int orig_st_shndx,
809 Object* object,
810 const char* version);
811 #endif
812
813 #ifdef HAVE_TARGET_64_LITTLE
814 template
815 void
816 Symbol_table::resolve<64, false>(
817 Sized_symbol<64>* to,
818 const elfcpp::Sym<64, false>& sym,
819 unsigned int st_shndx,
820 bool is_ordinary,
821 unsigned int orig_st_shndx,
822 Object* object,
823 const char* version);
824 #endif
825
826 #ifdef HAVE_TARGET_64_BIG
827 template
828 void
829 Symbol_table::resolve<64, true>(
830 Sized_symbol<64>* to,
831 const elfcpp::Sym<64, true>& sym,
832 unsigned int st_shndx,
833 bool is_ordinary,
834 unsigned int orig_st_shndx,
835 Object* object,
836 const char* version);
837 #endif
838
839 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
840 template
841 void
842 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
843 const Sized_symbol<32>*);
844 #endif
845
846 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
847 template
848 void
849 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
850 const Sized_symbol<64>*);
851 #endif
852
853 } // End namespace gold.
This page took 0.047011 seconds and 5 git commands to generate.