From Craig Silverstein: Rework debug info code a bit, add option for
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29
30 namespace gold
31 {
32
33 // Symbol methods used in this file.
34
35 // Override the fields in Symbol.
36
37 template<int size, bool big_endian>
38 void
39 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
40 Object* object, const char* version)
41 {
42 gold_assert(this->source_ == FROM_OBJECT);
43 this->u_.from_object.object = object;
44 if (version != NULL && this->version() != version)
45 {
46 gold_assert(this->version() == NULL);
47 this->version_ = version;
48 }
49 // FIXME: Handle SHN_XINDEX.
50 this->u_.from_object.shndx = sym.get_st_shndx();
51 this->type_ = sym.get_st_type();
52 this->binding_ = sym.get_st_bind();
53 this->visibility_ = sym.get_st_visibility();
54 this->nonvis_ = sym.get_st_nonvis();
55 if (object->is_dynamic())
56 this->in_dyn_ = true;
57 else
58 this->in_reg_ = true;
59 }
60
61 // Override the fields in Sized_symbol.
62
63 template<int size>
64 template<bool big_endian>
65 void
66 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
67 Object* object, const char* version)
68 {
69 this->override_base(sym, object, version);
70 this->value_ = sym.get_st_value();
71 this->symsize_ = sym.get_st_size();
72 }
73
74 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
75 // VERSION. This handles all aliases of TOSYM.
76
77 template<int size, bool big_endian>
78 void
79 Symbol_table::override(Sized_symbol<size>* tosym,
80 const elfcpp::Sym<size, big_endian>& fromsym,
81 Object* object, const char* version)
82 {
83 tosym->override(fromsym, object, version);
84 if (tosym->has_alias())
85 {
86 Symbol* sym = this->weak_aliases_[tosym];
87 gold_assert(sym != NULL);
88 Sized_symbol<size>* ssym;
89 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
90 SELECT_SIZE(size));
91 do
92 {
93 ssym->override(fromsym, object, version);
94 sym = this->weak_aliases_[ssym];
95 gold_assert(sym != NULL);
96 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
97 sym SELECT_SIZE(size));
98 }
99 while (ssym != tosym);
100 }
101 }
102
103 // The resolve functions build a little code for each symbol.
104 // Bit 0: 0 for global, 1 for weak.
105 // Bit 1: 0 for regular object, 1 for shared object
106 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
107 // This gives us values from 0 to 11.
108
109 static const int global_or_weak_shift = 0;
110 static const unsigned int global_flag = 0 << global_or_weak_shift;
111 static const unsigned int weak_flag = 1 << global_or_weak_shift;
112
113 static const int regular_or_dynamic_shift = 1;
114 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
115 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
116
117 static const int def_undef_or_common_shift = 2;
118 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
119 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
120 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
121
122 // This convenience function combines all the flags based on facts
123 // about the symbol.
124
125 static unsigned int
126 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
127 unsigned int shndx, elfcpp::STT type)
128 {
129 unsigned int bits;
130
131 switch (binding)
132 {
133 case elfcpp::STB_GLOBAL:
134 bits = global_flag;
135 break;
136
137 case elfcpp::STB_WEAK:
138 bits = weak_flag;
139 break;
140
141 case elfcpp::STB_LOCAL:
142 // We should only see externally visible symbols in the symbol
143 // table.
144 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
145 bits = global_flag;
146
147 default:
148 // Any target which wants to handle STB_LOOS, etc., needs to
149 // define a resolve method.
150 gold_error(_("unsupported symbol binding"));
151 bits = global_flag;
152 }
153
154 if (is_dynamic)
155 bits |= dynamic_flag;
156 else
157 bits |= regular_flag;
158
159 switch (shndx)
160 {
161 case elfcpp::SHN_UNDEF:
162 bits |= undef_flag;
163 break;
164
165 case elfcpp::SHN_COMMON:
166 bits |= common_flag;
167 break;
168
169 default:
170 if (type == elfcpp::STT_COMMON)
171 bits |= common_flag;
172 else
173 bits |= def_flag;
174 break;
175 }
176
177 return bits;
178 }
179
180 // Resolve a symbol. This is called the second and subsequent times
181 // we see a symbol. TO is the pre-existing symbol. ORIG_SYM is the
182 // new symbol, seen in OBJECT. SYM is almost always identical to
183 // ORIG_SYM, but may be munged (for instance, if we determine the
184 // symbol is in a to-be-discarded section, we'll set sym's shndx to
185 // UNDEFINED). VERSION of the version of SYM.
186
187 template<int size, bool big_endian>
188 void
189 Symbol_table::resolve(Sized_symbol<size>* to,
190 const elfcpp::Sym<size, big_endian>& sym,
191 const elfcpp::Sym<size, big_endian>& orig_sym,
192 Object* object, const char* version)
193 {
194 if (object->target()->has_resolve())
195 {
196 Sized_target<size, big_endian>* sized_target;
197 sized_target = object->sized_target
198 SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
199 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
200 sized_target->resolve(to, sym, object, version);
201 return;
202 }
203
204 if (!object->is_dynamic())
205 {
206 // Record that we've seen this symbol in a regular object.
207 to->set_in_reg();
208 }
209 else
210 {
211 // Record that we've seen this symbol in a dynamic object.
212 to->set_in_dyn();
213 }
214
215 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
216 object->is_dynamic(),
217 sym.get_st_shndx(),
218 sym.get_st_type());
219
220 bool adjust_common_sizes;
221 if (Symbol_table::should_override(to, frombits, object,
222 &adjust_common_sizes))
223 {
224 typename Sized_symbol<size>::Size_type tosize = to->symsize();
225
226 this->override(to, sym, object, version);
227
228 if (adjust_common_sizes && tosize > to->symsize())
229 to->set_symsize(tosize);
230 }
231 else
232 {
233 if (adjust_common_sizes && sym.get_st_size() > to->symsize())
234 to->set_symsize(sym.get_st_size());
235 }
236
237 // A new weak undefined reference, merging with an old weak
238 // reference, could be a One Definition Rule (ODR) violation --
239 // especially if the types or sizes of the references differ. We'll
240 // store such pairs and look them up later to make sure they
241 // actually refer to the same lines of code. (Note: not all ODR
242 // violations can be found this way, and not everything this finds
243 // is an ODR violation. But it's helpful to warn about.)
244 // We use orig_sym here because we want the symbol exactly as it
245 // appears in the object file, not munged via our future processing.
246 if (parameters->detect_odr_violations()
247 && orig_sym.get_st_bind() == elfcpp::STB_WEAK
248 && to->binding() == elfcpp::STB_WEAK
249 && orig_sym.get_st_shndx() != elfcpp::SHN_UNDEF
250 && to->shndx() != elfcpp::SHN_UNDEF
251 && orig_sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
252 && to->symsize() != 0
253 && (orig_sym.get_st_type() != to->type()
254 || orig_sym.get_st_size() != to->symsize())
255 // C does not have a concept of ODR, so we only need to do this
256 // on C++ symbols. These have (mangled) names starting with _Z.
257 && to->name()[0] == '_' && to->name()[1] == 'Z')
258 {
259 Symbol_location from_location
260 = { object, orig_sym.get_st_shndx(), orig_sym.get_st_value() };
261 Symbol_location to_location = { to->object(), to->shndx(), to->value() };
262 this->candidate_odr_violations_[to->name()].insert(from_location);
263 this->candidate_odr_violations_[to->name()].insert(to_location);
264 }
265 }
266
267 // Handle the core of symbol resolution. This is called with the
268 // existing symbol, TO, and a bitflag describing the new symbol. This
269 // returns true if we should override the existing symbol with the new
270 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
271 // true if we should set the symbol size to the maximum of the TO and
272 // FROM sizes. It handles error conditions.
273
274 bool
275 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
276 Object* object, bool* adjust_common_sizes)
277 {
278 *adjust_common_sizes = false;
279
280 unsigned int tobits = symbol_to_bits(to->binding(),
281 (to->source() == Symbol::FROM_OBJECT
282 && to->object()->is_dynamic()),
283 to->shndx(),
284 to->type());
285
286 // FIXME: Warn if either but not both of TO and SYM are STT_TLS.
287
288 // We use a giant switch table for symbol resolution. This code is
289 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
290 // cases; 3) it is easy to change the handling of a particular case.
291 // The alternative would be a series of conditionals, but it is easy
292 // to get the ordering wrong. This could also be done as a table,
293 // but that is no easier to understand than this large switch
294 // statement.
295
296 // These are the values generated by the bit codes.
297 enum
298 {
299 DEF = global_flag | regular_flag | def_flag,
300 WEAK_DEF = weak_flag | regular_flag | def_flag,
301 DYN_DEF = global_flag | dynamic_flag | def_flag,
302 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
303 UNDEF = global_flag | regular_flag | undef_flag,
304 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
305 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
306 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
307 COMMON = global_flag | regular_flag | common_flag,
308 WEAK_COMMON = weak_flag | regular_flag | common_flag,
309 DYN_COMMON = global_flag | dynamic_flag | common_flag,
310 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
311 };
312
313 switch (tobits * 16 + frombits)
314 {
315 case DEF * 16 + DEF:
316 // Two definitions of the same symbol.
317 // FIXME: Do a better job of reporting locations.
318 gold_error(_("%s: multiple definition of %s"),
319 object != NULL ? object->name().c_str() : _("command line"),
320 to->name());
321 gold_error(_("%s: previous definition here"),
322 (to->source() == Symbol::FROM_OBJECT
323 ? to->object()->name().c_str()
324 : _("command line")));
325 return false;
326
327 case WEAK_DEF * 16 + DEF:
328 // We've seen a weak definition, and now we see a strong
329 // definition. In the original SVR4 linker, this was treated as
330 // a multiple definition error. In the Solaris linker and the
331 // GNU linker, a weak definition followed by a regular
332 // definition causes the weak definition to be overridden. We
333 // are currently compatible with the GNU linker. In the future
334 // we should add a target specific option to change this.
335 // FIXME.
336 return true;
337
338 case DYN_DEF * 16 + DEF:
339 case DYN_WEAK_DEF * 16 + DEF:
340 // We've seen a definition in a dynamic object, and now we see a
341 // definition in a regular object. The definition in the
342 // regular object overrides the definition in the dynamic
343 // object.
344 return true;
345
346 case UNDEF * 16 + DEF:
347 case WEAK_UNDEF * 16 + DEF:
348 case DYN_UNDEF * 16 + DEF:
349 case DYN_WEAK_UNDEF * 16 + DEF:
350 // We've seen an undefined reference, and now we see a
351 // definition. We use the definition.
352 return true;
353
354 case COMMON * 16 + DEF:
355 case WEAK_COMMON * 16 + DEF:
356 case DYN_COMMON * 16 + DEF:
357 case DYN_WEAK_COMMON * 16 + DEF:
358 // We've seen a common symbol and now we see a definition. The
359 // definition overrides. FIXME: We should optionally issue, version a
360 // warning.
361 return true;
362
363 case DEF * 16 + WEAK_DEF:
364 case WEAK_DEF * 16 + WEAK_DEF:
365 // We've seen a definition and now we see a weak definition. We
366 // ignore the new weak definition.
367 return false;
368
369 case DYN_DEF * 16 + WEAK_DEF:
370 case DYN_WEAK_DEF * 16 + WEAK_DEF:
371 // We've seen a dynamic definition and now we see a regular weak
372 // definition. The regular weak definition overrides.
373 return true;
374
375 case UNDEF * 16 + WEAK_DEF:
376 case WEAK_UNDEF * 16 + WEAK_DEF:
377 case DYN_UNDEF * 16 + WEAK_DEF:
378 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
379 // A weak definition of a currently undefined symbol.
380 return true;
381
382 case COMMON * 16 + WEAK_DEF:
383 case WEAK_COMMON * 16 + WEAK_DEF:
384 // A weak definition does not override a common definition.
385 return false;
386
387 case DYN_COMMON * 16 + WEAK_DEF:
388 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
389 // A weak definition does override a definition in a dynamic
390 // object. FIXME: We should optionally issue a warning.
391 return true;
392
393 case DEF * 16 + DYN_DEF:
394 case WEAK_DEF * 16 + DYN_DEF:
395 case DYN_DEF * 16 + DYN_DEF:
396 case DYN_WEAK_DEF * 16 + DYN_DEF:
397 // Ignore a dynamic definition if we already have a definition.
398 return false;
399
400 case UNDEF * 16 + DYN_DEF:
401 case WEAK_UNDEF * 16 + DYN_DEF:
402 case DYN_UNDEF * 16 + DYN_DEF:
403 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
404 // Use a dynamic definition if we have a reference.
405 return true;
406
407 case COMMON * 16 + DYN_DEF:
408 case WEAK_COMMON * 16 + DYN_DEF:
409 case DYN_COMMON * 16 + DYN_DEF:
410 case DYN_WEAK_COMMON * 16 + DYN_DEF:
411 // Ignore a dynamic definition if we already have a common
412 // definition.
413 return false;
414
415 case DEF * 16 + DYN_WEAK_DEF:
416 case WEAK_DEF * 16 + DYN_WEAK_DEF:
417 case DYN_DEF * 16 + DYN_WEAK_DEF:
418 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
419 // Ignore a weak dynamic definition if we already have a
420 // definition.
421 return false;
422
423 case UNDEF * 16 + DYN_WEAK_DEF:
424 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
425 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
426 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
427 // Use a weak dynamic definition if we have a reference.
428 return true;
429
430 case COMMON * 16 + DYN_WEAK_DEF:
431 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
432 case DYN_COMMON * 16 + DYN_WEAK_DEF:
433 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
434 // Ignore a weak dynamic definition if we already have a common
435 // definition.
436 return false;
437
438 case DEF * 16 + UNDEF:
439 case WEAK_DEF * 16 + UNDEF:
440 case DYN_DEF * 16 + UNDEF:
441 case DYN_WEAK_DEF * 16 + UNDEF:
442 case UNDEF * 16 + UNDEF:
443 // A new undefined reference tells us nothing.
444 return false;
445
446 case WEAK_UNDEF * 16 + UNDEF:
447 case DYN_UNDEF * 16 + UNDEF:
448 case DYN_WEAK_UNDEF * 16 + UNDEF:
449 // A strong undef overrides a dynamic or weak undef.
450 return true;
451
452 case COMMON * 16 + UNDEF:
453 case WEAK_COMMON * 16 + UNDEF:
454 case DYN_COMMON * 16 + UNDEF:
455 case DYN_WEAK_COMMON * 16 + UNDEF:
456 // A new undefined reference tells us nothing.
457 return false;
458
459 case DEF * 16 + WEAK_UNDEF:
460 case WEAK_DEF * 16 + WEAK_UNDEF:
461 case DYN_DEF * 16 + WEAK_UNDEF:
462 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
463 case UNDEF * 16 + WEAK_UNDEF:
464 case WEAK_UNDEF * 16 + WEAK_UNDEF:
465 case DYN_UNDEF * 16 + WEAK_UNDEF:
466 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
467 case COMMON * 16 + WEAK_UNDEF:
468 case WEAK_COMMON * 16 + WEAK_UNDEF:
469 case DYN_COMMON * 16 + WEAK_UNDEF:
470 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
471 // A new weak undefined reference tells us nothing.
472 return false;
473
474 case DEF * 16 + DYN_UNDEF:
475 case WEAK_DEF * 16 + DYN_UNDEF:
476 case DYN_DEF * 16 + DYN_UNDEF:
477 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
478 case UNDEF * 16 + DYN_UNDEF:
479 case WEAK_UNDEF * 16 + DYN_UNDEF:
480 case DYN_UNDEF * 16 + DYN_UNDEF:
481 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
482 case COMMON * 16 + DYN_UNDEF:
483 case WEAK_COMMON * 16 + DYN_UNDEF:
484 case DYN_COMMON * 16 + DYN_UNDEF:
485 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
486 // A new dynamic undefined reference tells us nothing.
487 return false;
488
489 case DEF * 16 + DYN_WEAK_UNDEF:
490 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
491 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
492 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
493 case UNDEF * 16 + DYN_WEAK_UNDEF:
494 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
495 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
496 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
497 case COMMON * 16 + DYN_WEAK_UNDEF:
498 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
499 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
500 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
501 // A new weak dynamic undefined reference tells us nothing.
502 return false;
503
504 case DEF * 16 + COMMON:
505 // A common symbol does not override a definition.
506 return false;
507
508 case WEAK_DEF * 16 + COMMON:
509 case DYN_DEF * 16 + COMMON:
510 case DYN_WEAK_DEF * 16 + COMMON:
511 // A common symbol does override a weak definition or a dynamic
512 // definition.
513 return true;
514
515 case UNDEF * 16 + COMMON:
516 case WEAK_UNDEF * 16 + COMMON:
517 case DYN_UNDEF * 16 + COMMON:
518 case DYN_WEAK_UNDEF * 16 + COMMON:
519 // A common symbol is a definition for a reference.
520 return true;
521
522 case COMMON * 16 + COMMON:
523 // Set the size to the maximum.
524 *adjust_common_sizes = true;
525 return false;
526
527 case WEAK_COMMON * 16 + COMMON:
528 // I'm not sure just what a weak common symbol means, but
529 // presumably it can be overridden by a regular common symbol.
530 return true;
531
532 case DYN_COMMON * 16 + COMMON:
533 case DYN_WEAK_COMMON * 16 + COMMON:
534 // Use the real common symbol, but adjust the size if necessary.
535 *adjust_common_sizes = true;
536 return true;
537
538 case DEF * 16 + WEAK_COMMON:
539 case WEAK_DEF * 16 + WEAK_COMMON:
540 case DYN_DEF * 16 + WEAK_COMMON:
541 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
542 // Whatever a weak common symbol is, it won't override a
543 // definition.
544 return false;
545
546 case UNDEF * 16 + WEAK_COMMON:
547 case WEAK_UNDEF * 16 + WEAK_COMMON:
548 case DYN_UNDEF * 16 + WEAK_COMMON:
549 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
550 // A weak common symbol is better than an undefined symbol.
551 return true;
552
553 case COMMON * 16 + WEAK_COMMON:
554 case WEAK_COMMON * 16 + WEAK_COMMON:
555 case DYN_COMMON * 16 + WEAK_COMMON:
556 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
557 // Ignore a weak common symbol in the presence of a real common
558 // symbol.
559 return false;
560
561 case DEF * 16 + DYN_COMMON:
562 case WEAK_DEF * 16 + DYN_COMMON:
563 case DYN_DEF * 16 + DYN_COMMON:
564 case DYN_WEAK_DEF * 16 + DYN_COMMON:
565 // Ignore a dynamic common symbol in the presence of a
566 // definition.
567 return false;
568
569 case UNDEF * 16 + DYN_COMMON:
570 case WEAK_UNDEF * 16 + DYN_COMMON:
571 case DYN_UNDEF * 16 + DYN_COMMON:
572 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
573 // A dynamic common symbol is a definition of sorts.
574 return true;
575
576 case COMMON * 16 + DYN_COMMON:
577 case WEAK_COMMON * 16 + DYN_COMMON:
578 case DYN_COMMON * 16 + DYN_COMMON:
579 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
580 // Set the size to the maximum.
581 *adjust_common_sizes = true;
582 return false;
583
584 case DEF * 16 + DYN_WEAK_COMMON:
585 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
586 case DYN_DEF * 16 + DYN_WEAK_COMMON:
587 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
588 // A common symbol is ignored in the face of a definition.
589 return false;
590
591 case UNDEF * 16 + DYN_WEAK_COMMON:
592 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
593 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
594 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
595 // I guess a weak common symbol is better than a definition.
596 return true;
597
598 case COMMON * 16 + DYN_WEAK_COMMON:
599 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
600 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
601 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
602 // Set the size to the maximum.
603 *adjust_common_sizes = true;
604 return false;
605
606 default:
607 gold_unreachable();
608 }
609 }
610
611 // A special case of should_override which is only called for a strong
612 // defined symbol from a regular object file. This is used when
613 // defining special symbols.
614
615 bool
616 Symbol_table::should_override_with_special(const Symbol* to)
617 {
618 bool adjust_common_sizes;
619 unsigned int frombits = global_flag | regular_flag | def_flag;
620 bool ret = Symbol_table::should_override(to, frombits, NULL,
621 &adjust_common_sizes);
622 gold_assert(!adjust_common_sizes);
623 return ret;
624 }
625
626 // Override symbol base with a special symbol.
627
628 void
629 Symbol::override_base_with_special(const Symbol* from)
630 {
631 gold_assert(this->name_ == from->name_ || this->has_alias());
632
633 this->source_ = from->source_;
634 switch (from->source_)
635 {
636 case FROM_OBJECT:
637 this->u_.from_object = from->u_.from_object;
638 break;
639 case IN_OUTPUT_DATA:
640 this->u_.in_output_data = from->u_.in_output_data;
641 break;
642 case IN_OUTPUT_SEGMENT:
643 this->u_.in_output_segment = from->u_.in_output_segment;
644 break;
645 case CONSTANT:
646 break;
647 default:
648 gold_unreachable();
649 break;
650 }
651
652 if (from->version_ != NULL && this->version_ != from->version_)
653 {
654 gold_assert(this->version_ == NULL);
655 this->version_ = from->version_;
656 }
657
658 this->type_ = from->type_;
659 this->binding_ = from->binding_;
660 this->visibility_ = from->visibility_;
661 this->nonvis_ = from->nonvis_;
662
663 // Special symbols are always considered to be regular symbols.
664 this->in_reg_ = true;
665
666 if (from->needs_dynsym_entry_)
667 this->needs_dynsym_entry_ = true;
668 if (from->needs_dynsym_value_)
669 this->needs_dynsym_value_ = true;
670
671 // We shouldn't see these flags. If we do, we need to handle them
672 // somehow.
673 gold_assert(!from->is_target_special_ || this->is_target_special_);
674 gold_assert(!from->is_forwarder_);
675 gold_assert(!from->has_got_offset_);
676 gold_assert(!from->has_plt_offset_);
677 gold_assert(!from->has_warning_);
678 gold_assert(!from->is_copied_from_dynobj_);
679 }
680
681 // Override a symbol with a special symbol.
682
683 template<int size>
684 void
685 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
686 {
687 this->override_base_with_special(from);
688 this->value_ = from->value_;
689 this->symsize_ = from->symsize_;
690 }
691
692 // Override TOSYM with the special symbol FROMSYM. This handles all
693 // aliases of TOSYM.
694
695 template<int size>
696 void
697 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
698 const Sized_symbol<size>* fromsym)
699 {
700 tosym->override_with_special(fromsym);
701 if (tosym->has_alias())
702 {
703 Symbol* sym = this->weak_aliases_[tosym];
704 gold_assert(sym != NULL);
705 Sized_symbol<size>* ssym;
706 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (sym
707 SELECT_SIZE(size));
708 do
709 {
710 ssym->override_with_special(fromsym);
711 sym = this->weak_aliases_[ssym];
712 gold_assert(sym != NULL);
713 ssym = this->get_sized_symbol SELECT_SIZE_NAME(size) (
714 sym SELECT_SIZE(size));
715 }
716 while (ssym != tosym);
717 }
718 }
719
720 // Instantiate the templates we need. We could use the configure
721 // script to restrict this to only the ones needed for implemented
722 // targets.
723
724 #ifdef HAVE_TARGET_32_LITTLE
725 template
726 void
727 Symbol_table::resolve<32, false>(
728 Sized_symbol<32>* to,
729 const elfcpp::Sym<32, false>& sym,
730 const elfcpp::Sym<32, false>& orig_sym,
731 Object* object,
732 const char* version);
733 #endif
734
735 #ifdef HAVE_TARGET_32_BIG
736 template
737 void
738 Symbol_table::resolve<32, true>(
739 Sized_symbol<32>* to,
740 const elfcpp::Sym<32, true>& sym,
741 const elfcpp::Sym<32, true>& orig_sym,
742 Object* object,
743 const char* version);
744 #endif
745
746 #ifdef HAVE_TARGET_64_LITTLE
747 template
748 void
749 Symbol_table::resolve<64, false>(
750 Sized_symbol<64>* to,
751 const elfcpp::Sym<64, false>& sym,
752 const elfcpp::Sym<64, false>& orig_sym,
753 Object* object,
754 const char* version);
755 #endif
756
757 #ifdef HAVE_TARGET_64_BIG
758 template
759 void
760 Symbol_table::resolve<64, true>(
761 Sized_symbol<64>* to,
762 const elfcpp::Sym<64, true>& sym,
763 const elfcpp::Sym<64, true>& orig_sym,
764 Object* object,
765 const char* version);
766 #endif
767
768 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
769 template
770 void
771 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
772 const Sized_symbol<32>*);
773 #endif
774
775 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
776 template
777 void
778 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
779 const Sized_symbol<64>*);
780 #endif
781
782 } // End namespace gold.
This page took 0.046582 seconds and 5 git commands to generate.