Fix symbol versioning problems in PR 18703.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229 }
230
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
239
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version,
247 bool is_default_version)
248 {
249 // It's possible for a symbol to be defined in an object file
250 // using .symver to give it a version, and for there to also be
251 // a linker script giving that symbol the same version. We
252 // don't want to give a multiple-definition error for this
253 // harmless redefinition.
254 bool to_is_ordinary;
255 if (to->source() == Symbol::FROM_OBJECT
256 && to->object() == object
257 && is_ordinary
258 && to->is_defined()
259 && to->shndx(&to_is_ordinary) == st_shndx
260 && to_is_ordinary
261 && to->value() == sym.get_st_value())
262 return;
263
264 if (parameters->target().has_resolve())
265 {
266 Sized_target<size, big_endian>* sized_target;
267 sized_target = parameters->sized_target<size, big_endian>();
268 sized_target->resolve(to, sym, object, version);
269 return;
270 }
271
272 if (!object->is_dynamic())
273 {
274 if (sym.get_st_type() == elfcpp::STT_COMMON
275 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
276 {
277 gold_warning(_("STT_COMMON symbol '%s' in %s "
278 "is not in a common section"),
279 to->demangled_name().c_str(),
280 to->object()->name().c_str());
281 return;
282 }
283 // Record that we've seen this symbol in a regular object.
284 to->set_in_reg();
285 }
286 else if (st_shndx == elfcpp::SHN_UNDEF
287 && (to->visibility() == elfcpp::STV_HIDDEN
288 || to->visibility() == elfcpp::STV_INTERNAL))
289 {
290 // The symbol is hidden, so a reference from a shared object
291 // cannot bind to it. We tried issuing a warning in this case,
292 // but that produces false positives when the symbol is
293 // actually resolved in a different shared object (PR 15574).
294 return;
295 }
296 else
297 {
298 // Record that we've seen this symbol in a dynamic object.
299 to->set_in_dyn();
300 }
301
302 // Record if we've seen this symbol in a real ELF object (i.e., the
303 // symbol is referenced from outside the world known to the plugin).
304 if (object->pluginobj() == NULL && !object->is_dynamic())
305 to->set_in_real_elf();
306
307 // If we're processing replacement files, allow new symbols to override
308 // the placeholders from the plugin objects.
309 // Treat common symbols specially since it is possible that an ELF
310 // file increased the size of the alignment.
311 if (to->source() == Symbol::FROM_OBJECT)
312 {
313 Pluginobj* obj = to->object()->pluginobj();
314 if (obj != NULL
315 && parameters->options().plugins()->in_replacement_phase())
316 {
317 bool adjust_common = false;
318 typename Sized_symbol<size>::Size_type tosize = 0;
319 typename Sized_symbol<size>::Value_type tovalue = 0;
320 if (to->is_common()
321 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
322 {
323 adjust_common = true;
324 tosize = to->symsize();
325 tovalue = to->value();
326 }
327 this->override(to, sym, st_shndx, is_ordinary, object, version);
328 if (adjust_common)
329 {
330 if (tosize > to->symsize())
331 to->set_symsize(tosize);
332 if (tovalue > to->value())
333 to->set_value(tovalue);
334 }
335 return;
336 }
337 }
338
339 // A new weak undefined reference, merging with an old weak
340 // reference, could be a One Definition Rule (ODR) violation --
341 // especially if the types or sizes of the references differ. We'll
342 // store such pairs and look them up later to make sure they
343 // actually refer to the same lines of code. We also check
344 // combinations of weak and strong, which might occur if one case is
345 // inline and the other is not. (Note: not all ODR violations can
346 // be found this way, and not everything this finds is an ODR
347 // violation. But it's helpful to warn about.)
348 if (parameters->options().detect_odr_violations()
349 && (sym.get_st_bind() == elfcpp::STB_WEAK
350 || to->binding() == elfcpp::STB_WEAK)
351 && orig_st_shndx != elfcpp::SHN_UNDEF
352 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
353 && to_is_ordinary
354 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
355 && to->symsize() != 0
356 && (sym.get_st_type() != to->type()
357 || sym.get_st_size() != to->symsize())
358 // C does not have a concept of ODR, so we only need to do this
359 // on C++ symbols. These have (mangled) names starting with _Z.
360 && to->name()[0] == '_' && to->name()[1] == 'Z')
361 {
362 Symbol_location fromloc
363 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
364 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
365 static_cast<off_t>(to->value()) };
366 this->candidate_odr_violations_[to->name()].insert(fromloc);
367 this->candidate_odr_violations_[to->name()].insert(toloc);
368 }
369
370 // Plugins don't provide a symbol type, so adopt the existing type
371 // if the FROM symbol is from a plugin.
372 elfcpp::STT fromtype = (object->pluginobj() != NULL
373 ? to->type()
374 : sym.get_st_type());
375 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
376 object->is_dynamic(),
377 st_shndx, is_ordinary);
378
379 bool adjust_common_sizes;
380 bool adjust_dyndef;
381 typename Sized_symbol<size>::Size_type tosize = to->symsize();
382 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
383 object, &adjust_common_sizes,
384 &adjust_dyndef, is_default_version))
385 {
386 elfcpp::STB tobinding = to->binding();
387 typename Sized_symbol<size>::Value_type tovalue = to->value();
388 this->override(to, sym, st_shndx, is_ordinary, object, version);
389 if (adjust_common_sizes)
390 {
391 if (tosize > to->symsize())
392 to->set_symsize(tosize);
393 if (tovalue > to->value())
394 to->set_value(tovalue);
395 }
396 if (adjust_dyndef)
397 {
398 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
399 // Remember which kind of UNDEF it was for future reference.
400 to->set_undef_binding(tobinding);
401 }
402 }
403 else
404 {
405 if (adjust_common_sizes)
406 {
407 if (sym.get_st_size() > tosize)
408 to->set_symsize(sym.get_st_size());
409 if (sym.get_st_value() > to->value())
410 to->set_value(sym.get_st_value());
411 }
412 if (adjust_dyndef)
413 {
414 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
415 // Remember which kind of UNDEF it was.
416 to->set_undef_binding(sym.get_st_bind());
417 }
418 // The ELF ABI says that even for a reference to a symbol we
419 // merge the visibility.
420 to->override_visibility(sym.get_st_visibility());
421 }
422
423 if (adjust_common_sizes && parameters->options().warn_common())
424 {
425 if (tosize > sym.get_st_size())
426 Symbol_table::report_resolve_problem(false,
427 _("common of '%s' overriding "
428 "smaller common"),
429 to, OBJECT, object);
430 else if (tosize < sym.get_st_size())
431 Symbol_table::report_resolve_problem(false,
432 _("common of '%s' overidden by "
433 "larger common"),
434 to, OBJECT, object);
435 else
436 Symbol_table::report_resolve_problem(false,
437 _("multiple common of '%s'"),
438 to, OBJECT, object);
439 }
440 }
441
442 // Handle the core of symbol resolution. This is called with the
443 // existing symbol, TO, and a bitflag describing the new symbol. This
444 // returns true if we should override the existing symbol with the new
445 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
446 // true if we should set the symbol size to the maximum of the TO and
447 // FROM sizes. It handles error conditions.
448
449 bool
450 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
451 elfcpp::STT fromtype, Defined defined,
452 Object* object, bool* adjust_common_sizes,
453 bool* adjust_dyndef, bool is_default_version)
454 {
455 *adjust_common_sizes = false;
456 *adjust_dyndef = false;
457
458 unsigned int tobits;
459 if (to->source() == Symbol::IS_UNDEFINED)
460 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
461 else if (to->source() != Symbol::FROM_OBJECT)
462 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
463 else
464 {
465 bool is_ordinary;
466 unsigned int shndx = to->shndx(&is_ordinary);
467 tobits = symbol_to_bits(to->binding(),
468 to->object()->is_dynamic(),
469 shndx,
470 is_ordinary);
471 }
472
473 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
474 && !to->is_placeholder())
475 Symbol_table::report_resolve_problem(true,
476 _("symbol '%s' used as both __thread "
477 "and non-__thread"),
478 to, defined, object);
479
480 // We use a giant switch table for symbol resolution. This code is
481 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
482 // cases; 3) it is easy to change the handling of a particular case.
483 // The alternative would be a series of conditionals, but it is easy
484 // to get the ordering wrong. This could also be done as a table,
485 // but that is no easier to understand than this large switch
486 // statement.
487
488 // These are the values generated by the bit codes.
489 enum
490 {
491 DEF = global_flag | regular_flag | def_flag,
492 WEAK_DEF = weak_flag | regular_flag | def_flag,
493 DYN_DEF = global_flag | dynamic_flag | def_flag,
494 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
495 UNDEF = global_flag | regular_flag | undef_flag,
496 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
497 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
498 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
499 COMMON = global_flag | regular_flag | common_flag,
500 WEAK_COMMON = weak_flag | regular_flag | common_flag,
501 DYN_COMMON = global_flag | dynamic_flag | common_flag,
502 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
503 };
504
505 switch (tobits * 16 + frombits)
506 {
507 case DEF * 16 + DEF:
508 // Two definitions of the same symbol.
509
510 // If either symbol is defined by an object included using
511 // --just-symbols, then don't warn. This is for compatibility
512 // with the GNU linker. FIXME: This is a hack.
513 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
514 || (object != NULL && object->just_symbols()))
515 return false;
516
517 if (!parameters->options().muldefs())
518 Symbol_table::report_resolve_problem(true,
519 _("multiple definition of '%s'"),
520 to, defined, object);
521 return false;
522
523 case WEAK_DEF * 16 + DEF:
524 // We've seen a weak definition, and now we see a strong
525 // definition. In the original SVR4 linker, this was treated as
526 // a multiple definition error. In the Solaris linker and the
527 // GNU linker, a weak definition followed by a regular
528 // definition causes the weak definition to be overridden. We
529 // are currently compatible with the GNU linker. In the future
530 // we should add a target specific option to change this.
531 // FIXME.
532 return true;
533
534 case DYN_DEF * 16 + DEF:
535 case DYN_WEAK_DEF * 16 + DEF:
536 // We've seen a definition in a dynamic object, and now we see a
537 // definition in a regular object. The definition in the
538 // regular object overrides the definition in the dynamic
539 // object.
540 return true;
541
542 case UNDEF * 16 + DEF:
543 case WEAK_UNDEF * 16 + DEF:
544 case DYN_UNDEF * 16 + DEF:
545 case DYN_WEAK_UNDEF * 16 + DEF:
546 // We've seen an undefined reference, and now we see a
547 // definition. We use the definition.
548 return true;
549
550 case COMMON * 16 + DEF:
551 case WEAK_COMMON * 16 + DEF:
552 case DYN_COMMON * 16 + DEF:
553 case DYN_WEAK_COMMON * 16 + DEF:
554 // We've seen a common symbol and now we see a definition. The
555 // definition overrides.
556 if (parameters->options().warn_common())
557 Symbol_table::report_resolve_problem(false,
558 _("definition of '%s' overriding "
559 "common"),
560 to, defined, object);
561 return true;
562
563 case DEF * 16 + WEAK_DEF:
564 case WEAK_DEF * 16 + WEAK_DEF:
565 // We've seen a definition and now we see a weak definition. We
566 // ignore the new weak definition.
567 return false;
568
569 case DYN_DEF * 16 + WEAK_DEF:
570 case DYN_WEAK_DEF * 16 + WEAK_DEF:
571 // We've seen a dynamic definition and now we see a regular weak
572 // definition. The regular weak definition overrides.
573 return true;
574
575 case UNDEF * 16 + WEAK_DEF:
576 case WEAK_UNDEF * 16 + WEAK_DEF:
577 case DYN_UNDEF * 16 + WEAK_DEF:
578 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
579 // A weak definition of a currently undefined symbol.
580 return true;
581
582 case COMMON * 16 + WEAK_DEF:
583 case WEAK_COMMON * 16 + WEAK_DEF:
584 // A weak definition does not override a common definition.
585 return false;
586
587 case DYN_COMMON * 16 + WEAK_DEF:
588 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
589 // A weak definition does override a definition in a dynamic
590 // object.
591 if (parameters->options().warn_common())
592 Symbol_table::report_resolve_problem(false,
593 _("definition of '%s' overriding "
594 "dynamic common definition"),
595 to, defined, object);
596 return true;
597
598 case DEF * 16 + DYN_DEF:
599 case WEAK_DEF * 16 + DYN_DEF:
600 // Ignore a dynamic definition if we already have a definition.
601 return false;
602
603 case DYN_DEF * 16 + DYN_DEF:
604 case DYN_WEAK_DEF * 16 + DYN_DEF:
605 // Ignore a dynamic definition if we already have a definition,
606 // unless the existing definition is an unversioned definition
607 // in the same dynamic object, and the new definition is a
608 // default version.
609 if (to->object() == object
610 && to->version() == NULL
611 && is_default_version)
612 return true;
613 return false;
614
615 case UNDEF * 16 + DYN_DEF:
616 case DYN_UNDEF * 16 + DYN_DEF:
617 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
618 // Use a dynamic definition if we have a reference.
619 return true;
620
621 case WEAK_UNDEF * 16 + DYN_DEF:
622 // When overriding a weak undef by a dynamic definition,
623 // we need to remember that the original undef was weak.
624 *adjust_dyndef = true;
625 return true;
626
627 case COMMON * 16 + DYN_DEF:
628 case WEAK_COMMON * 16 + DYN_DEF:
629 case DYN_COMMON * 16 + DYN_DEF:
630 case DYN_WEAK_COMMON * 16 + DYN_DEF:
631 // Ignore a dynamic definition if we already have a common
632 // definition.
633 return false;
634
635 case DEF * 16 + DYN_WEAK_DEF:
636 case WEAK_DEF * 16 + DYN_WEAK_DEF:
637 case DYN_DEF * 16 + DYN_WEAK_DEF:
638 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
639 // Ignore a weak dynamic definition if we already have a
640 // definition.
641 return false;
642
643 case UNDEF * 16 + DYN_WEAK_DEF:
644 // When overriding an undef by a dynamic weak definition,
645 // we need to remember that the original undef was not weak.
646 *adjust_dyndef = true;
647 return true;
648
649 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
650 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
651 // Use a weak dynamic definition if we have a reference.
652 return true;
653
654 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
655 // When overriding a weak undef by a dynamic definition,
656 // we need to remember that the original undef was weak.
657 *adjust_dyndef = true;
658 return true;
659
660 case COMMON * 16 + DYN_WEAK_DEF:
661 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
662 case DYN_COMMON * 16 + DYN_WEAK_DEF:
663 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
664 // Ignore a weak dynamic definition if we already have a common
665 // definition.
666 return false;
667
668 case DEF * 16 + UNDEF:
669 case WEAK_DEF * 16 + UNDEF:
670 case UNDEF * 16 + UNDEF:
671 // A new undefined reference tells us nothing.
672 return false;
673
674 case DYN_DEF * 16 + UNDEF:
675 case DYN_WEAK_DEF * 16 + UNDEF:
676 // For a dynamic def, we need to remember which kind of undef we see.
677 *adjust_dyndef = true;
678 return false;
679
680 case WEAK_UNDEF * 16 + UNDEF:
681 case DYN_UNDEF * 16 + UNDEF:
682 case DYN_WEAK_UNDEF * 16 + UNDEF:
683 // A strong undef overrides a dynamic or weak undef.
684 return true;
685
686 case COMMON * 16 + UNDEF:
687 case WEAK_COMMON * 16 + UNDEF:
688 case DYN_COMMON * 16 + UNDEF:
689 case DYN_WEAK_COMMON * 16 + UNDEF:
690 // A new undefined reference tells us nothing.
691 return false;
692
693 case DEF * 16 + WEAK_UNDEF:
694 case WEAK_DEF * 16 + WEAK_UNDEF:
695 case UNDEF * 16 + WEAK_UNDEF:
696 case WEAK_UNDEF * 16 + WEAK_UNDEF:
697 case DYN_UNDEF * 16 + WEAK_UNDEF:
698 case COMMON * 16 + WEAK_UNDEF:
699 case WEAK_COMMON * 16 + WEAK_UNDEF:
700 case DYN_COMMON * 16 + WEAK_UNDEF:
701 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
702 // A new weak undefined reference tells us nothing unless the
703 // exisiting symbol is a dynamic weak reference.
704 return false;
705
706 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
707 // A new weak reference overrides an existing dynamic weak reference.
708 // This is necessary because a dynamic weak reference remembers
709 // the old binding, which may not be weak. If we keeps the existing
710 // dynamic weak reference, the weakness may be dropped in the output.
711 return true;
712
713 case DYN_DEF * 16 + WEAK_UNDEF:
714 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
715 // For a dynamic def, we need to remember which kind of undef we see.
716 *adjust_dyndef = true;
717 return false;
718
719 case DEF * 16 + DYN_UNDEF:
720 case WEAK_DEF * 16 + DYN_UNDEF:
721 case DYN_DEF * 16 + DYN_UNDEF:
722 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
723 case UNDEF * 16 + DYN_UNDEF:
724 case WEAK_UNDEF * 16 + DYN_UNDEF:
725 case DYN_UNDEF * 16 + DYN_UNDEF:
726 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
727 case COMMON * 16 + DYN_UNDEF:
728 case WEAK_COMMON * 16 + DYN_UNDEF:
729 case DYN_COMMON * 16 + DYN_UNDEF:
730 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
731 // A new dynamic undefined reference tells us nothing.
732 return false;
733
734 case DEF * 16 + DYN_WEAK_UNDEF:
735 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
736 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
737 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
738 case UNDEF * 16 + DYN_WEAK_UNDEF:
739 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
740 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
741 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
742 case COMMON * 16 + DYN_WEAK_UNDEF:
743 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
744 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
745 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
746 // A new weak dynamic undefined reference tells us nothing.
747 return false;
748
749 case DEF * 16 + COMMON:
750 // A common symbol does not override a definition.
751 if (parameters->options().warn_common())
752 Symbol_table::report_resolve_problem(false,
753 _("common '%s' overridden by "
754 "previous definition"),
755 to, defined, object);
756 return false;
757
758 case WEAK_DEF * 16 + COMMON:
759 case DYN_DEF * 16 + COMMON:
760 case DYN_WEAK_DEF * 16 + COMMON:
761 // A common symbol does override a weak definition or a dynamic
762 // definition.
763 return true;
764
765 case UNDEF * 16 + COMMON:
766 case WEAK_UNDEF * 16 + COMMON:
767 case DYN_UNDEF * 16 + COMMON:
768 case DYN_WEAK_UNDEF * 16 + COMMON:
769 // A common symbol is a definition for a reference.
770 return true;
771
772 case COMMON * 16 + COMMON:
773 // Set the size to the maximum.
774 *adjust_common_sizes = true;
775 return false;
776
777 case WEAK_COMMON * 16 + COMMON:
778 // I'm not sure just what a weak common symbol means, but
779 // presumably it can be overridden by a regular common symbol.
780 return true;
781
782 case DYN_COMMON * 16 + COMMON:
783 case DYN_WEAK_COMMON * 16 + COMMON:
784 // Use the real common symbol, but adjust the size if necessary.
785 *adjust_common_sizes = true;
786 return true;
787
788 case DEF * 16 + WEAK_COMMON:
789 case WEAK_DEF * 16 + WEAK_COMMON:
790 case DYN_DEF * 16 + WEAK_COMMON:
791 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
792 // Whatever a weak common symbol is, it won't override a
793 // definition.
794 return false;
795
796 case UNDEF * 16 + WEAK_COMMON:
797 case WEAK_UNDEF * 16 + WEAK_COMMON:
798 case DYN_UNDEF * 16 + WEAK_COMMON:
799 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
800 // A weak common symbol is better than an undefined symbol.
801 return true;
802
803 case COMMON * 16 + WEAK_COMMON:
804 case WEAK_COMMON * 16 + WEAK_COMMON:
805 case DYN_COMMON * 16 + WEAK_COMMON:
806 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
807 // Ignore a weak common symbol in the presence of a real common
808 // symbol.
809 return false;
810
811 case DEF * 16 + DYN_COMMON:
812 case WEAK_DEF * 16 + DYN_COMMON:
813 case DYN_DEF * 16 + DYN_COMMON:
814 case DYN_WEAK_DEF * 16 + DYN_COMMON:
815 // Ignore a dynamic common symbol in the presence of a
816 // definition.
817 return false;
818
819 case UNDEF * 16 + DYN_COMMON:
820 case WEAK_UNDEF * 16 + DYN_COMMON:
821 case DYN_UNDEF * 16 + DYN_COMMON:
822 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
823 // A dynamic common symbol is a definition of sorts.
824 return true;
825
826 case COMMON * 16 + DYN_COMMON:
827 case WEAK_COMMON * 16 + DYN_COMMON:
828 case DYN_COMMON * 16 + DYN_COMMON:
829 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
830 // Set the size to the maximum.
831 *adjust_common_sizes = true;
832 return false;
833
834 case DEF * 16 + DYN_WEAK_COMMON:
835 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
836 case DYN_DEF * 16 + DYN_WEAK_COMMON:
837 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
838 // A common symbol is ignored in the face of a definition.
839 return false;
840
841 case UNDEF * 16 + DYN_WEAK_COMMON:
842 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
843 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
844 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
845 // I guess a weak common symbol is better than a definition.
846 return true;
847
848 case COMMON * 16 + DYN_WEAK_COMMON:
849 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
850 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
851 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
852 // Set the size to the maximum.
853 *adjust_common_sizes = true;
854 return false;
855
856 default:
857 gold_unreachable();
858 }
859 }
860
861 // Issue an error or warning due to symbol resolution. IS_ERROR
862 // indicates an error rather than a warning. MSG is the error
863 // message; it is expected to have a %s for the symbol name. TO is
864 // the existing symbol. DEFINED/OBJECT is where the new symbol was
865 // found.
866
867 // FIXME: We should have better location information here. When the
868 // symbol is defined, we should be able to pull the location from the
869 // debug info if there is any.
870
871 void
872 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
873 const Symbol* to, Defined defined,
874 Object* object)
875 {
876 std::string demangled(to->demangled_name());
877 size_t len = strlen(msg) + demangled.length() + 10;
878 char* buf = new char[len];
879 snprintf(buf, len, msg, demangled.c_str());
880
881 const char* objname;
882 switch (defined)
883 {
884 case OBJECT:
885 objname = object->name().c_str();
886 break;
887 case COPY:
888 objname = _("COPY reloc");
889 break;
890 case DEFSYM:
891 case UNDEFINED:
892 objname = _("command line");
893 break;
894 case SCRIPT:
895 objname = _("linker script");
896 break;
897 case PREDEFINED:
898 case INCREMENTAL_BASE:
899 objname = _("linker defined");
900 break;
901 default:
902 gold_unreachable();
903 }
904
905 if (is_error)
906 gold_error("%s: %s", objname, buf);
907 else
908 gold_warning("%s: %s", objname, buf);
909
910 delete[] buf;
911
912 if (to->source() == Symbol::FROM_OBJECT)
913 objname = to->object()->name().c_str();
914 else
915 objname = _("command line");
916 gold_info("%s: %s: previous definition here", program_name, objname);
917 }
918
919 // A special case of should_override which is only called for a strong
920 // defined symbol from a regular object file. This is used when
921 // defining special symbols.
922
923 bool
924 Symbol_table::should_override_with_special(const Symbol* to,
925 elfcpp::STT fromtype,
926 Defined defined)
927 {
928 bool adjust_common_sizes;
929 bool adjust_dyn_def;
930 unsigned int frombits = global_flag | regular_flag | def_flag;
931 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
932 NULL, &adjust_common_sizes,
933 &adjust_dyn_def, false);
934 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
935 return ret;
936 }
937
938 // Override symbol base with a special symbol.
939
940 void
941 Symbol::override_base_with_special(const Symbol* from)
942 {
943 bool same_name = this->name_ == from->name_;
944 gold_assert(same_name || this->has_alias());
945
946 // If we are overriding an undef, remember the original binding.
947 if (this->is_undefined())
948 this->set_undef_binding(this->binding_);
949
950 this->source_ = from->source_;
951 switch (from->source_)
952 {
953 case FROM_OBJECT:
954 this->u_.from_object = from->u_.from_object;
955 break;
956 case IN_OUTPUT_DATA:
957 this->u_.in_output_data = from->u_.in_output_data;
958 break;
959 case IN_OUTPUT_SEGMENT:
960 this->u_.in_output_segment = from->u_.in_output_segment;
961 break;
962 case IS_CONSTANT:
963 case IS_UNDEFINED:
964 break;
965 default:
966 gold_unreachable();
967 break;
968 }
969
970 if (same_name)
971 {
972 // When overriding a versioned symbol with a special symbol, we
973 // may be changing the version. This will happen if we see a
974 // special symbol such as "_end" defined in a shared object with
975 // one version (from a version script), but we want to define it
976 // here with a different version (from a different version
977 // script).
978 this->version_ = from->version_;
979 }
980 this->type_ = from->type_;
981 this->binding_ = from->binding_;
982 this->override_visibility(from->visibility_);
983 this->nonvis_ = from->nonvis_;
984
985 // Special symbols are always considered to be regular symbols.
986 this->in_reg_ = true;
987
988 if (from->needs_dynsym_entry_)
989 this->needs_dynsym_entry_ = true;
990 if (from->needs_dynsym_value_)
991 this->needs_dynsym_value_ = true;
992
993 this->is_predefined_ = from->is_predefined_;
994
995 // We shouldn't see these flags. If we do, we need to handle them
996 // somehow.
997 gold_assert(!from->is_forwarder_);
998 gold_assert(!from->has_plt_offset());
999 gold_assert(!from->has_warning_);
1000 gold_assert(!from->is_copied_from_dynobj_);
1001 gold_assert(!from->is_forced_local_);
1002 }
1003
1004 // Override a symbol with a special symbol.
1005
1006 template<int size>
1007 void
1008 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1009 {
1010 this->override_base_with_special(from);
1011 this->value_ = from->value_;
1012 this->symsize_ = from->symsize_;
1013 }
1014
1015 // Override TOSYM with the special symbol FROMSYM. This handles all
1016 // aliases of TOSYM.
1017
1018 template<int size>
1019 void
1020 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1021 const Sized_symbol<size>* fromsym)
1022 {
1023 tosym->override_with_special(fromsym);
1024 if (tosym->has_alias())
1025 {
1026 Symbol* sym = this->weak_aliases_[tosym];
1027 gold_assert(sym != NULL);
1028 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1029 do
1030 {
1031 ssym->override_with_special(fromsym);
1032 sym = this->weak_aliases_[ssym];
1033 gold_assert(sym != NULL);
1034 ssym = this->get_sized_symbol<size>(sym);
1035 }
1036 while (ssym != tosym);
1037 }
1038 if (tosym->binding() == elfcpp::STB_LOCAL
1039 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1040 || tosym->visibility() == elfcpp::STV_INTERNAL)
1041 && (tosym->binding() == elfcpp::STB_GLOBAL
1042 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1043 || tosym->binding() == elfcpp::STB_WEAK)
1044 && !parameters->options().relocatable()))
1045 this->force_local(tosym);
1046 }
1047
1048 // Instantiate the templates we need. We could use the configure
1049 // script to restrict this to only the ones needed for implemented
1050 // targets.
1051
1052 // We have to instantiate both big and little endian versions because
1053 // these are used by other templates that depends on size only.
1054
1055 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1056 template
1057 void
1058 Symbol_table::resolve<32, false>(
1059 Sized_symbol<32>* to,
1060 const elfcpp::Sym<32, false>& sym,
1061 unsigned int st_shndx,
1062 bool is_ordinary,
1063 unsigned int orig_st_shndx,
1064 Object* object,
1065 const char* version,
1066 bool is_default_version);
1067
1068 template
1069 void
1070 Symbol_table::resolve<32, true>(
1071 Sized_symbol<32>* to,
1072 const elfcpp::Sym<32, true>& sym,
1073 unsigned int st_shndx,
1074 bool is_ordinary,
1075 unsigned int orig_st_shndx,
1076 Object* object,
1077 const char* version,
1078 bool is_default_version);
1079 #endif
1080
1081 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1082 template
1083 void
1084 Symbol_table::resolve<64, false>(
1085 Sized_symbol<64>* to,
1086 const elfcpp::Sym<64, false>& sym,
1087 unsigned int st_shndx,
1088 bool is_ordinary,
1089 unsigned int orig_st_shndx,
1090 Object* object,
1091 const char* version,
1092 bool is_default_version);
1093
1094 template
1095 void
1096 Symbol_table::resolve<64, true>(
1097 Sized_symbol<64>* to,
1098 const elfcpp::Sym<64, true>& sym,
1099 unsigned int st_shndx,
1100 bool is_ordinary,
1101 unsigned int orig_st_shndx,
1102 Object* object,
1103 const char* version,
1104 bool is_default_version);
1105 #endif
1106
1107 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1108 template
1109 void
1110 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1111 const Sized_symbol<32>*);
1112 #endif
1113
1114 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1115 template
1116 void
1117 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1118 const Sized_symbol<64>*);
1119 #endif
1120
1121 } // End namespace gold.
This page took 0.072336 seconds and 5 git commands to generate.