Fix incorrect handling of STT_COMMON symbols in shared libraries.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229 }
230
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
239
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
247 {
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
262
263 if (parameters->target().has_resolve())
264 {
265 Sized_target<size, big_endian>* sized_target;
266 sized_target = parameters->sized_target<size, big_endian>();
267 sized_target->resolve(to, sym, object, version);
268 return;
269 }
270
271 if (!object->is_dynamic())
272 {
273 if (sym.get_st_type() == elfcpp::STT_COMMON
274 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
275 {
276 gold_warning(_("STT_COMMON symbol '%s' in %s "
277 "is not in a common section"),
278 to->demangled_name().c_str(),
279 to->object()->name().c_str());
280 return;
281 }
282 // Record that we've seen this symbol in a regular object.
283 to->set_in_reg();
284 }
285 else if (st_shndx == elfcpp::SHN_UNDEF
286 && (to->visibility() == elfcpp::STV_HIDDEN
287 || to->visibility() == elfcpp::STV_INTERNAL))
288 {
289 // A dynamic object cannot reference a hidden or internal symbol
290 // defined in another object.
291 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
292 (to->visibility() == elfcpp::STV_HIDDEN
293 ? "hidden"
294 : "internal"),
295 to->demangled_name().c_str(),
296 to->object()->name().c_str(),
297 object->name().c_str());
298 return;
299 }
300 else
301 {
302 // Record that we've seen this symbol in a dynamic object.
303 to->set_in_dyn();
304 }
305
306 // Record if we've seen this symbol in a real ELF object (i.e., the
307 // symbol is referenced from outside the world known to the plugin).
308 if (object->pluginobj() == NULL && !object->is_dynamic())
309 to->set_in_real_elf();
310
311 // If we're processing replacement files, allow new symbols to override
312 // the placeholders from the plugin objects.
313 // Treat common symbols specially since it is possible that an ELF
314 // file increased the size of the alignment.
315 if (to->source() == Symbol::FROM_OBJECT)
316 {
317 Pluginobj* obj = to->object()->pluginobj();
318 if (obj != NULL
319 && parameters->options().plugins()->in_replacement_phase())
320 {
321 bool adjust_common = false;
322 typename Sized_symbol<size>::Size_type tosize = 0;
323 typename Sized_symbol<size>::Value_type tovalue = 0;
324 if (to->is_common()
325 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
326 {
327 adjust_common = true;
328 tosize = to->symsize();
329 tovalue = to->value();
330 }
331 this->override(to, sym, st_shndx, is_ordinary, object, version);
332 if (adjust_common)
333 {
334 if (tosize > to->symsize())
335 to->set_symsize(tosize);
336 if (tovalue > to->value())
337 to->set_value(tovalue);
338 }
339 return;
340 }
341 }
342
343 // A new weak undefined reference, merging with an old weak
344 // reference, could be a One Definition Rule (ODR) violation --
345 // especially if the types or sizes of the references differ. We'll
346 // store such pairs and look them up later to make sure they
347 // actually refer to the same lines of code. We also check
348 // combinations of weak and strong, which might occur if one case is
349 // inline and the other is not. (Note: not all ODR violations can
350 // be found this way, and not everything this finds is an ODR
351 // violation. But it's helpful to warn about.)
352 if (parameters->options().detect_odr_violations()
353 && (sym.get_st_bind() == elfcpp::STB_WEAK
354 || to->binding() == elfcpp::STB_WEAK)
355 && orig_st_shndx != elfcpp::SHN_UNDEF
356 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
357 && to_is_ordinary
358 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
359 && to->symsize() != 0
360 && (sym.get_st_type() != to->type()
361 || sym.get_st_size() != to->symsize())
362 // C does not have a concept of ODR, so we only need to do this
363 // on C++ symbols. These have (mangled) names starting with _Z.
364 && to->name()[0] == '_' && to->name()[1] == 'Z')
365 {
366 Symbol_location fromloc
367 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
368 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
369 static_cast<off_t>(to->value()) };
370 this->candidate_odr_violations_[to->name()].insert(fromloc);
371 this->candidate_odr_violations_[to->name()].insert(toloc);
372 }
373
374 // Plugins don't provide a symbol type, so adopt the existing type
375 // if the FROM symbol is from a plugin.
376 elfcpp::STT fromtype = (object->pluginobj() != NULL
377 ? to->type()
378 : sym.get_st_type());
379 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
380 object->is_dynamic(),
381 st_shndx, is_ordinary);
382
383 bool adjust_common_sizes;
384 bool adjust_dyndef;
385 typename Sized_symbol<size>::Size_type tosize = to->symsize();
386 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
387 object, &adjust_common_sizes,
388 &adjust_dyndef))
389 {
390 elfcpp::STB tobinding = to->binding();
391 typename Sized_symbol<size>::Value_type tovalue = to->value();
392 this->override(to, sym, st_shndx, is_ordinary, object, version);
393 if (adjust_common_sizes)
394 {
395 if (tosize > to->symsize())
396 to->set_symsize(tosize);
397 if (tovalue > to->value())
398 to->set_value(tovalue);
399 }
400 if (adjust_dyndef)
401 {
402 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
403 // Remember which kind of UNDEF it was for future reference.
404 to->set_undef_binding(tobinding);
405 }
406 }
407 else
408 {
409 if (adjust_common_sizes)
410 {
411 if (sym.get_st_size() > tosize)
412 to->set_symsize(sym.get_st_size());
413 if (sym.get_st_value() > to->value())
414 to->set_value(sym.get_st_value());
415 }
416 if (adjust_dyndef)
417 {
418 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
419 // Remember which kind of UNDEF it was.
420 to->set_undef_binding(sym.get_st_bind());
421 }
422 // The ELF ABI says that even for a reference to a symbol we
423 // merge the visibility.
424 to->override_visibility(sym.get_st_visibility());
425 }
426
427 if (adjust_common_sizes && parameters->options().warn_common())
428 {
429 if (tosize > sym.get_st_size())
430 Symbol_table::report_resolve_problem(false,
431 _("common of '%s' overriding "
432 "smaller common"),
433 to, OBJECT, object);
434 else if (tosize < sym.get_st_size())
435 Symbol_table::report_resolve_problem(false,
436 _("common of '%s' overidden by "
437 "larger common"),
438 to, OBJECT, object);
439 else
440 Symbol_table::report_resolve_problem(false,
441 _("multiple common of '%s'"),
442 to, OBJECT, object);
443 }
444 }
445
446 // Handle the core of symbol resolution. This is called with the
447 // existing symbol, TO, and a bitflag describing the new symbol. This
448 // returns true if we should override the existing symbol with the new
449 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
450 // true if we should set the symbol size to the maximum of the TO and
451 // FROM sizes. It handles error conditions.
452
453 bool
454 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
455 elfcpp::STT fromtype, Defined defined,
456 Object* object, bool* adjust_common_sizes,
457 bool* adjust_dyndef)
458 {
459 *adjust_common_sizes = false;
460 *adjust_dyndef = false;
461
462 unsigned int tobits;
463 if (to->source() == Symbol::IS_UNDEFINED)
464 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
465 else if (to->source() != Symbol::FROM_OBJECT)
466 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
467 else
468 {
469 bool is_ordinary;
470 unsigned int shndx = to->shndx(&is_ordinary);
471 tobits = symbol_to_bits(to->binding(),
472 to->object()->is_dynamic(),
473 shndx,
474 is_ordinary);
475 }
476
477 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
478 && !to->is_placeholder())
479 Symbol_table::report_resolve_problem(true,
480 _("symbol '%s' used as both __thread "
481 "and non-__thread"),
482 to, defined, object);
483
484 // We use a giant switch table for symbol resolution. This code is
485 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
486 // cases; 3) it is easy to change the handling of a particular case.
487 // The alternative would be a series of conditionals, but it is easy
488 // to get the ordering wrong. This could also be done as a table,
489 // but that is no easier to understand than this large switch
490 // statement.
491
492 // These are the values generated by the bit codes.
493 enum
494 {
495 DEF = global_flag | regular_flag | def_flag,
496 WEAK_DEF = weak_flag | regular_flag | def_flag,
497 DYN_DEF = global_flag | dynamic_flag | def_flag,
498 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
499 UNDEF = global_flag | regular_flag | undef_flag,
500 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
501 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
502 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
503 COMMON = global_flag | regular_flag | common_flag,
504 WEAK_COMMON = weak_flag | regular_flag | common_flag,
505 DYN_COMMON = global_flag | dynamic_flag | common_flag,
506 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
507 };
508
509 switch (tobits * 16 + frombits)
510 {
511 case DEF * 16 + DEF:
512 // Two definitions of the same symbol.
513
514 // If either symbol is defined by an object included using
515 // --just-symbols, then don't warn. This is for compatibility
516 // with the GNU linker. FIXME: This is a hack.
517 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
518 || (object != NULL && object->just_symbols()))
519 return false;
520
521 if (!parameters->options().muldefs())
522 Symbol_table::report_resolve_problem(true,
523 _("multiple definition of '%s'"),
524 to, defined, object);
525 return false;
526
527 case WEAK_DEF * 16 + DEF:
528 // We've seen a weak definition, and now we see a strong
529 // definition. In the original SVR4 linker, this was treated as
530 // a multiple definition error. In the Solaris linker and the
531 // GNU linker, a weak definition followed by a regular
532 // definition causes the weak definition to be overridden. We
533 // are currently compatible with the GNU linker. In the future
534 // we should add a target specific option to change this.
535 // FIXME.
536 return true;
537
538 case DYN_DEF * 16 + DEF:
539 case DYN_WEAK_DEF * 16 + DEF:
540 // We've seen a definition in a dynamic object, and now we see a
541 // definition in a regular object. The definition in the
542 // regular object overrides the definition in the dynamic
543 // object.
544 return true;
545
546 case UNDEF * 16 + DEF:
547 case WEAK_UNDEF * 16 + DEF:
548 case DYN_UNDEF * 16 + DEF:
549 case DYN_WEAK_UNDEF * 16 + DEF:
550 // We've seen an undefined reference, and now we see a
551 // definition. We use the definition.
552 return true;
553
554 case COMMON * 16 + DEF:
555 case WEAK_COMMON * 16 + DEF:
556 case DYN_COMMON * 16 + DEF:
557 case DYN_WEAK_COMMON * 16 + DEF:
558 // We've seen a common symbol and now we see a definition. The
559 // definition overrides.
560 if (parameters->options().warn_common())
561 Symbol_table::report_resolve_problem(false,
562 _("definition of '%s' overriding "
563 "common"),
564 to, defined, object);
565 return true;
566
567 case DEF * 16 + WEAK_DEF:
568 case WEAK_DEF * 16 + WEAK_DEF:
569 // We've seen a definition and now we see a weak definition. We
570 // ignore the new weak definition.
571 return false;
572
573 case DYN_DEF * 16 + WEAK_DEF:
574 case DYN_WEAK_DEF * 16 + WEAK_DEF:
575 // We've seen a dynamic definition and now we see a regular weak
576 // definition. The regular weak definition overrides.
577 return true;
578
579 case UNDEF * 16 + WEAK_DEF:
580 case WEAK_UNDEF * 16 + WEAK_DEF:
581 case DYN_UNDEF * 16 + WEAK_DEF:
582 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
583 // A weak definition of a currently undefined symbol.
584 return true;
585
586 case COMMON * 16 + WEAK_DEF:
587 case WEAK_COMMON * 16 + WEAK_DEF:
588 // A weak definition does not override a common definition.
589 return false;
590
591 case DYN_COMMON * 16 + WEAK_DEF:
592 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
593 // A weak definition does override a definition in a dynamic
594 // object.
595 if (parameters->options().warn_common())
596 Symbol_table::report_resolve_problem(false,
597 _("definition of '%s' overriding "
598 "dynamic common definition"),
599 to, defined, object);
600 return true;
601
602 case DEF * 16 + DYN_DEF:
603 case WEAK_DEF * 16 + DYN_DEF:
604 case DYN_DEF * 16 + DYN_DEF:
605 case DYN_WEAK_DEF * 16 + DYN_DEF:
606 // Ignore a dynamic definition if we already have a definition.
607 return false;
608
609 case UNDEF * 16 + DYN_DEF:
610 case DYN_UNDEF * 16 + DYN_DEF:
611 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
612 // Use a dynamic definition if we have a reference.
613 return true;
614
615 case WEAK_UNDEF * 16 + DYN_DEF:
616 // When overriding a weak undef by a dynamic definition,
617 // we need to remember that the original undef was weak.
618 *adjust_dyndef = true;
619 return true;
620
621 case COMMON * 16 + DYN_DEF:
622 case WEAK_COMMON * 16 + DYN_DEF:
623 case DYN_COMMON * 16 + DYN_DEF:
624 case DYN_WEAK_COMMON * 16 + DYN_DEF:
625 // Ignore a dynamic definition if we already have a common
626 // definition.
627 return false;
628
629 case DEF * 16 + DYN_WEAK_DEF:
630 case WEAK_DEF * 16 + DYN_WEAK_DEF:
631 case DYN_DEF * 16 + DYN_WEAK_DEF:
632 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
633 // Ignore a weak dynamic definition if we already have a
634 // definition.
635 return false;
636
637 case UNDEF * 16 + DYN_WEAK_DEF:
638 // When overriding an undef by a dynamic weak definition,
639 // we need to remember that the original undef was not weak.
640 *adjust_dyndef = true;
641 return true;
642
643 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
644 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
645 // Use a weak dynamic definition if we have a reference.
646 return true;
647
648 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
649 // When overriding a weak undef by a dynamic definition,
650 // we need to remember that the original undef was weak.
651 *adjust_dyndef = true;
652 return true;
653
654 case COMMON * 16 + DYN_WEAK_DEF:
655 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
656 case DYN_COMMON * 16 + DYN_WEAK_DEF:
657 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
658 // Ignore a weak dynamic definition if we already have a common
659 // definition.
660 return false;
661
662 case DEF * 16 + UNDEF:
663 case WEAK_DEF * 16 + UNDEF:
664 case UNDEF * 16 + UNDEF:
665 // A new undefined reference tells us nothing.
666 return false;
667
668 case DYN_DEF * 16 + UNDEF:
669 case DYN_WEAK_DEF * 16 + UNDEF:
670 // For a dynamic def, we need to remember which kind of undef we see.
671 *adjust_dyndef = true;
672 return false;
673
674 case WEAK_UNDEF * 16 + UNDEF:
675 case DYN_UNDEF * 16 + UNDEF:
676 case DYN_WEAK_UNDEF * 16 + UNDEF:
677 // A strong undef overrides a dynamic or weak undef.
678 return true;
679
680 case COMMON * 16 + UNDEF:
681 case WEAK_COMMON * 16 + UNDEF:
682 case DYN_COMMON * 16 + UNDEF:
683 case DYN_WEAK_COMMON * 16 + UNDEF:
684 // A new undefined reference tells us nothing.
685 return false;
686
687 case DEF * 16 + WEAK_UNDEF:
688 case WEAK_DEF * 16 + WEAK_UNDEF:
689 case UNDEF * 16 + WEAK_UNDEF:
690 case WEAK_UNDEF * 16 + WEAK_UNDEF:
691 case DYN_UNDEF * 16 + WEAK_UNDEF:
692 case COMMON * 16 + WEAK_UNDEF:
693 case WEAK_COMMON * 16 + WEAK_UNDEF:
694 case DYN_COMMON * 16 + WEAK_UNDEF:
695 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
696 // A new weak undefined reference tells us nothing unless the
697 // exisiting symbol is a dynamic weak reference.
698 return false;
699
700 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
701 // A new weak reference overrides an existing dynamic weak reference.
702 // This is necessary because a dynamic weak reference remembers
703 // the old binding, which may not be weak. If we keeps the existing
704 // dynamic weak reference, the weakness may be dropped in the output.
705 return true;
706
707 case DYN_DEF * 16 + WEAK_UNDEF:
708 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
709 // For a dynamic def, we need to remember which kind of undef we see.
710 *adjust_dyndef = true;
711 return false;
712
713 case DEF * 16 + DYN_UNDEF:
714 case WEAK_DEF * 16 + DYN_UNDEF:
715 case DYN_DEF * 16 + DYN_UNDEF:
716 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
717 case UNDEF * 16 + DYN_UNDEF:
718 case WEAK_UNDEF * 16 + DYN_UNDEF:
719 case DYN_UNDEF * 16 + DYN_UNDEF:
720 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
721 case COMMON * 16 + DYN_UNDEF:
722 case WEAK_COMMON * 16 + DYN_UNDEF:
723 case DYN_COMMON * 16 + DYN_UNDEF:
724 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
725 // A new dynamic undefined reference tells us nothing.
726 return false;
727
728 case DEF * 16 + DYN_WEAK_UNDEF:
729 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
730 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
731 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
732 case UNDEF * 16 + DYN_WEAK_UNDEF:
733 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
734 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
735 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
736 case COMMON * 16 + DYN_WEAK_UNDEF:
737 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
738 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
739 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
740 // A new weak dynamic undefined reference tells us nothing.
741 return false;
742
743 case DEF * 16 + COMMON:
744 // A common symbol does not override a definition.
745 if (parameters->options().warn_common())
746 Symbol_table::report_resolve_problem(false,
747 _("common '%s' overridden by "
748 "previous definition"),
749 to, defined, object);
750 return false;
751
752 case WEAK_DEF * 16 + COMMON:
753 case DYN_DEF * 16 + COMMON:
754 case DYN_WEAK_DEF * 16 + COMMON:
755 // A common symbol does override a weak definition or a dynamic
756 // definition.
757 return true;
758
759 case UNDEF * 16 + COMMON:
760 case WEAK_UNDEF * 16 + COMMON:
761 case DYN_UNDEF * 16 + COMMON:
762 case DYN_WEAK_UNDEF * 16 + COMMON:
763 // A common symbol is a definition for a reference.
764 return true;
765
766 case COMMON * 16 + COMMON:
767 // Set the size to the maximum.
768 *adjust_common_sizes = true;
769 return false;
770
771 case WEAK_COMMON * 16 + COMMON:
772 // I'm not sure just what a weak common symbol means, but
773 // presumably it can be overridden by a regular common symbol.
774 return true;
775
776 case DYN_COMMON * 16 + COMMON:
777 case DYN_WEAK_COMMON * 16 + COMMON:
778 // Use the real common symbol, but adjust the size if necessary.
779 *adjust_common_sizes = true;
780 return true;
781
782 case DEF * 16 + WEAK_COMMON:
783 case WEAK_DEF * 16 + WEAK_COMMON:
784 case DYN_DEF * 16 + WEAK_COMMON:
785 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
786 // Whatever a weak common symbol is, it won't override a
787 // definition.
788 return false;
789
790 case UNDEF * 16 + WEAK_COMMON:
791 case WEAK_UNDEF * 16 + WEAK_COMMON:
792 case DYN_UNDEF * 16 + WEAK_COMMON:
793 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
794 // A weak common symbol is better than an undefined symbol.
795 return true;
796
797 case COMMON * 16 + WEAK_COMMON:
798 case WEAK_COMMON * 16 + WEAK_COMMON:
799 case DYN_COMMON * 16 + WEAK_COMMON:
800 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
801 // Ignore a weak common symbol in the presence of a real common
802 // symbol.
803 return false;
804
805 case DEF * 16 + DYN_COMMON:
806 case WEAK_DEF * 16 + DYN_COMMON:
807 case DYN_DEF * 16 + DYN_COMMON:
808 case DYN_WEAK_DEF * 16 + DYN_COMMON:
809 // Ignore a dynamic common symbol in the presence of a
810 // definition.
811 return false;
812
813 case UNDEF * 16 + DYN_COMMON:
814 case WEAK_UNDEF * 16 + DYN_COMMON:
815 case DYN_UNDEF * 16 + DYN_COMMON:
816 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
817 // A dynamic common symbol is a definition of sorts.
818 return true;
819
820 case COMMON * 16 + DYN_COMMON:
821 case WEAK_COMMON * 16 + DYN_COMMON:
822 case DYN_COMMON * 16 + DYN_COMMON:
823 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
824 // Set the size to the maximum.
825 *adjust_common_sizes = true;
826 return false;
827
828 case DEF * 16 + DYN_WEAK_COMMON:
829 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
830 case DYN_DEF * 16 + DYN_WEAK_COMMON:
831 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
832 // A common symbol is ignored in the face of a definition.
833 return false;
834
835 case UNDEF * 16 + DYN_WEAK_COMMON:
836 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
837 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
838 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
839 // I guess a weak common symbol is better than a definition.
840 return true;
841
842 case COMMON * 16 + DYN_WEAK_COMMON:
843 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
844 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
845 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
846 // Set the size to the maximum.
847 *adjust_common_sizes = true;
848 return false;
849
850 default:
851 gold_unreachable();
852 }
853 }
854
855 // Issue an error or warning due to symbol resolution. IS_ERROR
856 // indicates an error rather than a warning. MSG is the error
857 // message; it is expected to have a %s for the symbol name. TO is
858 // the existing symbol. DEFINED/OBJECT is where the new symbol was
859 // found.
860
861 // FIXME: We should have better location information here. When the
862 // symbol is defined, we should be able to pull the location from the
863 // debug info if there is any.
864
865 void
866 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
867 const Symbol* to, Defined defined,
868 Object* object)
869 {
870 std::string demangled(to->demangled_name());
871 size_t len = strlen(msg) + demangled.length() + 10;
872 char* buf = new char[len];
873 snprintf(buf, len, msg, demangled.c_str());
874
875 const char* objname;
876 switch (defined)
877 {
878 case OBJECT:
879 objname = object->name().c_str();
880 break;
881 case COPY:
882 objname = _("COPY reloc");
883 break;
884 case DEFSYM:
885 case UNDEFINED:
886 objname = _("command line");
887 break;
888 case SCRIPT:
889 objname = _("linker script");
890 break;
891 case PREDEFINED:
892 case INCREMENTAL_BASE:
893 objname = _("linker defined");
894 break;
895 default:
896 gold_unreachable();
897 }
898
899 if (is_error)
900 gold_error("%s: %s", objname, buf);
901 else
902 gold_warning("%s: %s", objname, buf);
903
904 delete[] buf;
905
906 if (to->source() == Symbol::FROM_OBJECT)
907 objname = to->object()->name().c_str();
908 else
909 objname = _("command line");
910 gold_info("%s: %s: previous definition here", program_name, objname);
911 }
912
913 // A special case of should_override which is only called for a strong
914 // defined symbol from a regular object file. This is used when
915 // defining special symbols.
916
917 bool
918 Symbol_table::should_override_with_special(const Symbol* to,
919 elfcpp::STT fromtype,
920 Defined defined)
921 {
922 bool adjust_common_sizes;
923 bool adjust_dyn_def;
924 unsigned int frombits = global_flag | regular_flag | def_flag;
925 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
926 NULL, &adjust_common_sizes,
927 &adjust_dyn_def);
928 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
929 return ret;
930 }
931
932 // Override symbol base with a special symbol.
933
934 void
935 Symbol::override_base_with_special(const Symbol* from)
936 {
937 bool same_name = this->name_ == from->name_;
938 gold_assert(same_name || this->has_alias());
939
940 // If we are overriding an undef, remember the original binding.
941 if (this->is_undefined())
942 this->set_undef_binding(this->binding_);
943
944 this->source_ = from->source_;
945 switch (from->source_)
946 {
947 case FROM_OBJECT:
948 this->u_.from_object = from->u_.from_object;
949 break;
950 case IN_OUTPUT_DATA:
951 this->u_.in_output_data = from->u_.in_output_data;
952 break;
953 case IN_OUTPUT_SEGMENT:
954 this->u_.in_output_segment = from->u_.in_output_segment;
955 break;
956 case IS_CONSTANT:
957 case IS_UNDEFINED:
958 break;
959 default:
960 gold_unreachable();
961 break;
962 }
963
964 if (same_name)
965 {
966 // When overriding a versioned symbol with a special symbol, we
967 // may be changing the version. This will happen if we see a
968 // special symbol such as "_end" defined in a shared object with
969 // one version (from a version script), but we want to define it
970 // here with a different version (from a different version
971 // script).
972 this->version_ = from->version_;
973 }
974 this->type_ = from->type_;
975 this->binding_ = from->binding_;
976 this->override_visibility(from->visibility_);
977 this->nonvis_ = from->nonvis_;
978
979 // Special symbols are always considered to be regular symbols.
980 this->in_reg_ = true;
981
982 if (from->needs_dynsym_entry_)
983 this->needs_dynsym_entry_ = true;
984 if (from->needs_dynsym_value_)
985 this->needs_dynsym_value_ = true;
986
987 this->is_predefined_ = from->is_predefined_;
988
989 // We shouldn't see these flags. If we do, we need to handle them
990 // somehow.
991 gold_assert(!from->is_forwarder_);
992 gold_assert(!from->has_plt_offset());
993 gold_assert(!from->has_warning_);
994 gold_assert(!from->is_copied_from_dynobj_);
995 gold_assert(!from->is_forced_local_);
996 }
997
998 // Override a symbol with a special symbol.
999
1000 template<int size>
1001 void
1002 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
1003 {
1004 this->override_base_with_special(from);
1005 this->value_ = from->value_;
1006 this->symsize_ = from->symsize_;
1007 }
1008
1009 // Override TOSYM with the special symbol FROMSYM. This handles all
1010 // aliases of TOSYM.
1011
1012 template<int size>
1013 void
1014 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1015 const Sized_symbol<size>* fromsym)
1016 {
1017 tosym->override_with_special(fromsym);
1018 if (tosym->has_alias())
1019 {
1020 Symbol* sym = this->weak_aliases_[tosym];
1021 gold_assert(sym != NULL);
1022 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1023 do
1024 {
1025 ssym->override_with_special(fromsym);
1026 sym = this->weak_aliases_[ssym];
1027 gold_assert(sym != NULL);
1028 ssym = this->get_sized_symbol<size>(sym);
1029 }
1030 while (ssym != tosym);
1031 }
1032 if (tosym->binding() == elfcpp::STB_LOCAL
1033 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1034 || tosym->visibility() == elfcpp::STV_INTERNAL)
1035 && (tosym->binding() == elfcpp::STB_GLOBAL
1036 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1037 || tosym->binding() == elfcpp::STB_WEAK)
1038 && !parameters->options().relocatable()))
1039 this->force_local(tosym);
1040 }
1041
1042 // Instantiate the templates we need. We could use the configure
1043 // script to restrict this to only the ones needed for implemented
1044 // targets.
1045
1046 // We have to instantiate both big and little endian versions because
1047 // these are used by other templates that depends on size only.
1048
1049 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1050 template
1051 void
1052 Symbol_table::resolve<32, false>(
1053 Sized_symbol<32>* to,
1054 const elfcpp::Sym<32, false>& sym,
1055 unsigned int st_shndx,
1056 bool is_ordinary,
1057 unsigned int orig_st_shndx,
1058 Object* object,
1059 const char* version);
1060
1061 template
1062 void
1063 Symbol_table::resolve<32, true>(
1064 Sized_symbol<32>* to,
1065 const elfcpp::Sym<32, true>& sym,
1066 unsigned int st_shndx,
1067 bool is_ordinary,
1068 unsigned int orig_st_shndx,
1069 Object* object,
1070 const char* version);
1071 #endif
1072
1073 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1074 template
1075 void
1076 Symbol_table::resolve<64, false>(
1077 Sized_symbol<64>* to,
1078 const elfcpp::Sym<64, false>& sym,
1079 unsigned int st_shndx,
1080 bool is_ordinary,
1081 unsigned int orig_st_shndx,
1082 Object* object,
1083 const char* version);
1084
1085 template
1086 void
1087 Symbol_table::resolve<64, true>(
1088 Sized_symbol<64>* to,
1089 const elfcpp::Sym<64, true>& sym,
1090 unsigned int st_shndx,
1091 bool is_ordinary,
1092 unsigned int orig_st_shndx,
1093 Object* object,
1094 const char* version);
1095 #endif
1096
1097 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1098 template
1099 void
1100 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1101 const Sized_symbol<32>*);
1102 #endif
1103
1104 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1105 template
1106 void
1107 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1108 const Sized_symbol<64>*);
1109 #endif
1110
1111 } // End namespace gold.
This page took 0.076861 seconds and 5 git commands to generate.