ChangeLog rotatation and copyright year update
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (type == elfcpp::STT_COMMON)
222 bits |= common_flag;
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 bits |= common_flag;
225 else
226 bits |= def_flag;
227 break;
228 }
229
230 return bits;
231 }
232
233 // Resolve a symbol. This is called the second and subsequent times
234 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235 // section index for SYM, possibly adjusted for many sections.
236 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237 // than a special code. ORIG_ST_SHNDX is the original section index,
238 // before any munging because of discarded sections, except that all
239 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
240 // the version of SYM.
241
242 template<int size, bool big_endian>
243 void
244 Symbol_table::resolve(Sized_symbol<size>* to,
245 const elfcpp::Sym<size, big_endian>& sym,
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
248 Object* object, const char* version)
249 {
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
265 if (parameters->target().has_resolve())
266 {
267 Sized_target<size, big_endian>* sized_target;
268 sized_target = parameters->sized_target<size, big_endian>();
269 sized_target->resolve(to, sym, object, version);
270 return;
271 }
272
273 if (!object->is_dynamic())
274 {
275 // Record that we've seen this symbol in a regular object.
276 to->set_in_reg();
277 }
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
281 {
282 // A dynamic object cannot reference a hidden or internal symbol
283 // defined in another object.
284 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
285 (to->visibility() == elfcpp::STV_HIDDEN
286 ? "hidden"
287 : "internal"),
288 to->demangled_name().c_str(),
289 to->object()->name().c_str(),
290 object->name().c_str());
291 return;
292 }
293 else
294 {
295 // Record that we've seen this symbol in a dynamic object.
296 to->set_in_dyn();
297 }
298
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
301 if (object->pluginobj() == NULL && !object->is_dynamic())
302 to->set_in_real_elf();
303
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
306 // Treat common symbols specially since it is possible that an ELF
307 // file increased the size of the alignment.
308 if (to->source() == Symbol::FROM_OBJECT)
309 {
310 Pluginobj* obj = to->object()->pluginobj();
311 if (obj != NULL
312 && parameters->options().plugins()->in_replacement_phase())
313 {
314 bool adjust_common = false;
315 typename Sized_symbol<size>::Size_type tosize = 0;
316 typename Sized_symbol<size>::Value_type tovalue = 0;
317 if (to->is_common() && !is_ordinary && st_shndx == elfcpp::SHN_COMMON)
318 {
319 adjust_common = true;
320 tosize = to->symsize();
321 tovalue = to->value();
322 }
323 this->override(to, sym, st_shndx, is_ordinary, object, version);
324 if (adjust_common)
325 {
326 if (tosize > to->symsize())
327 to->set_symsize(tosize);
328 if (tovalue > to->value())
329 to->set_value(tovalue);
330 }
331 return;
332 }
333 }
334
335 // A new weak undefined reference, merging with an old weak
336 // reference, could be a One Definition Rule (ODR) violation --
337 // especially if the types or sizes of the references differ. We'll
338 // store such pairs and look them up later to make sure they
339 // actually refer to the same lines of code. We also check
340 // combinations of weak and strong, which might occur if one case is
341 // inline and the other is not. (Note: not all ODR violations can
342 // be found this way, and not everything this finds is an ODR
343 // violation. But it's helpful to warn about.)
344 if (parameters->options().detect_odr_violations()
345 && (sym.get_st_bind() == elfcpp::STB_WEAK
346 || to->binding() == elfcpp::STB_WEAK)
347 && orig_st_shndx != elfcpp::SHN_UNDEF
348 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
349 && to_is_ordinary
350 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
351 && to->symsize() != 0
352 && (sym.get_st_type() != to->type()
353 || sym.get_st_size() != to->symsize())
354 // C does not have a concept of ODR, so we only need to do this
355 // on C++ symbols. These have (mangled) names starting with _Z.
356 && to->name()[0] == '_' && to->name()[1] == 'Z')
357 {
358 Symbol_location fromloc
359 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
360 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
361 static_cast<off_t>(to->value()) };
362 this->candidate_odr_violations_[to->name()].insert(fromloc);
363 this->candidate_odr_violations_[to->name()].insert(toloc);
364 }
365
366 // Plugins don't provide a symbol type, so adopt the existing type
367 // if the FROM symbol is from a plugin.
368 elfcpp::STT fromtype = (object->pluginobj() != NULL
369 ? to->type()
370 : sym.get_st_type());
371 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
372 object->is_dynamic(),
373 st_shndx, is_ordinary,
374 fromtype);
375
376 bool adjust_common_sizes;
377 bool adjust_dyndef;
378 typename Sized_symbol<size>::Size_type tosize = to->symsize();
379 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
380 object, &adjust_common_sizes,
381 &adjust_dyndef))
382 {
383 elfcpp::STB tobinding = to->binding();
384 typename Sized_symbol<size>::Value_type tovalue = to->value();
385 this->override(to, sym, st_shndx, is_ordinary, object, version);
386 if (adjust_common_sizes)
387 {
388 if (tosize > to->symsize())
389 to->set_symsize(tosize);
390 if (tovalue > to->value())
391 to->set_value(tovalue);
392 }
393 if (adjust_dyndef)
394 {
395 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
396 // Remember which kind of UNDEF it was for future reference.
397 to->set_undef_binding(tobinding);
398 }
399 }
400 else
401 {
402 if (adjust_common_sizes)
403 {
404 if (sym.get_st_size() > tosize)
405 to->set_symsize(sym.get_st_size());
406 if (sym.get_st_value() > to->value())
407 to->set_value(sym.get_st_value());
408 }
409 if (adjust_dyndef)
410 {
411 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
412 // Remember which kind of UNDEF it was.
413 to->set_undef_binding(sym.get_st_bind());
414 }
415 // The ELF ABI says that even for a reference to a symbol we
416 // merge the visibility.
417 to->override_visibility(sym.get_st_visibility());
418 }
419
420 if (adjust_common_sizes && parameters->options().warn_common())
421 {
422 if (tosize > sym.get_st_size())
423 Symbol_table::report_resolve_problem(false,
424 _("common of '%s' overriding "
425 "smaller common"),
426 to, OBJECT, object);
427 else if (tosize < sym.get_st_size())
428 Symbol_table::report_resolve_problem(false,
429 _("common of '%s' overidden by "
430 "larger common"),
431 to, OBJECT, object);
432 else
433 Symbol_table::report_resolve_problem(false,
434 _("multiple common of '%s'"),
435 to, OBJECT, object);
436 }
437 }
438
439 // Handle the core of symbol resolution. This is called with the
440 // existing symbol, TO, and a bitflag describing the new symbol. This
441 // returns true if we should override the existing symbol with the new
442 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
443 // true if we should set the symbol size to the maximum of the TO and
444 // FROM sizes. It handles error conditions.
445
446 bool
447 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
448 elfcpp::STT fromtype, Defined defined,
449 Object* object, bool* adjust_common_sizes,
450 bool* adjust_dyndef)
451 {
452 *adjust_common_sizes = false;
453 *adjust_dyndef = false;
454
455 unsigned int tobits;
456 if (to->source() == Symbol::IS_UNDEFINED)
457 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
458 to->type());
459 else if (to->source() != Symbol::FROM_OBJECT)
460 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
461 to->type());
462 else
463 {
464 bool is_ordinary;
465 unsigned int shndx = to->shndx(&is_ordinary);
466 tobits = symbol_to_bits(to->binding(),
467 to->object()->is_dynamic(),
468 shndx,
469 is_ordinary,
470 to->type());
471 }
472
473 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
474 && !to->is_placeholder())
475 Symbol_table::report_resolve_problem(true,
476 _("symbol '%s' used as both __thread "
477 "and non-__thread"),
478 to, defined, object);
479
480 // We use a giant switch table for symbol resolution. This code is
481 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
482 // cases; 3) it is easy to change the handling of a particular case.
483 // The alternative would be a series of conditionals, but it is easy
484 // to get the ordering wrong. This could also be done as a table,
485 // but that is no easier to understand than this large switch
486 // statement.
487
488 // These are the values generated by the bit codes.
489 enum
490 {
491 DEF = global_flag | regular_flag | def_flag,
492 WEAK_DEF = weak_flag | regular_flag | def_flag,
493 DYN_DEF = global_flag | dynamic_flag | def_flag,
494 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
495 UNDEF = global_flag | regular_flag | undef_flag,
496 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
497 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
498 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
499 COMMON = global_flag | regular_flag | common_flag,
500 WEAK_COMMON = weak_flag | regular_flag | common_flag,
501 DYN_COMMON = global_flag | dynamic_flag | common_flag,
502 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
503 };
504
505 switch (tobits * 16 + frombits)
506 {
507 case DEF * 16 + DEF:
508 // Two definitions of the same symbol.
509
510 // If either symbol is defined by an object included using
511 // --just-symbols, then don't warn. This is for compatibility
512 // with the GNU linker. FIXME: This is a hack.
513 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
514 || (object != NULL && object->just_symbols()))
515 return false;
516
517 if (!parameters->options().muldefs())
518 Symbol_table::report_resolve_problem(true,
519 _("multiple definition of '%s'"),
520 to, defined, object);
521 return false;
522
523 case WEAK_DEF * 16 + DEF:
524 // We've seen a weak definition, and now we see a strong
525 // definition. In the original SVR4 linker, this was treated as
526 // a multiple definition error. In the Solaris linker and the
527 // GNU linker, a weak definition followed by a regular
528 // definition causes the weak definition to be overridden. We
529 // are currently compatible with the GNU linker. In the future
530 // we should add a target specific option to change this.
531 // FIXME.
532 return true;
533
534 case DYN_DEF * 16 + DEF:
535 case DYN_WEAK_DEF * 16 + DEF:
536 // We've seen a definition in a dynamic object, and now we see a
537 // definition in a regular object. The definition in the
538 // regular object overrides the definition in the dynamic
539 // object.
540 return true;
541
542 case UNDEF * 16 + DEF:
543 case WEAK_UNDEF * 16 + DEF:
544 case DYN_UNDEF * 16 + DEF:
545 case DYN_WEAK_UNDEF * 16 + DEF:
546 // We've seen an undefined reference, and now we see a
547 // definition. We use the definition.
548 return true;
549
550 case COMMON * 16 + DEF:
551 case WEAK_COMMON * 16 + DEF:
552 case DYN_COMMON * 16 + DEF:
553 case DYN_WEAK_COMMON * 16 + DEF:
554 // We've seen a common symbol and now we see a definition. The
555 // definition overrides.
556 if (parameters->options().warn_common())
557 Symbol_table::report_resolve_problem(false,
558 _("definition of '%s' overriding "
559 "common"),
560 to, defined, object);
561 return true;
562
563 case DEF * 16 + WEAK_DEF:
564 case WEAK_DEF * 16 + WEAK_DEF:
565 // We've seen a definition and now we see a weak definition. We
566 // ignore the new weak definition.
567 return false;
568
569 case DYN_DEF * 16 + WEAK_DEF:
570 case DYN_WEAK_DEF * 16 + WEAK_DEF:
571 // We've seen a dynamic definition and now we see a regular weak
572 // definition. The regular weak definition overrides.
573 return true;
574
575 case UNDEF * 16 + WEAK_DEF:
576 case WEAK_UNDEF * 16 + WEAK_DEF:
577 case DYN_UNDEF * 16 + WEAK_DEF:
578 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
579 // A weak definition of a currently undefined symbol.
580 return true;
581
582 case COMMON * 16 + WEAK_DEF:
583 case WEAK_COMMON * 16 + WEAK_DEF:
584 // A weak definition does not override a common definition.
585 return false;
586
587 case DYN_COMMON * 16 + WEAK_DEF:
588 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
589 // A weak definition does override a definition in a dynamic
590 // object.
591 if (parameters->options().warn_common())
592 Symbol_table::report_resolve_problem(false,
593 _("definition of '%s' overriding "
594 "dynamic common definition"),
595 to, defined, object);
596 return true;
597
598 case DEF * 16 + DYN_DEF:
599 case WEAK_DEF * 16 + DYN_DEF:
600 case DYN_DEF * 16 + DYN_DEF:
601 case DYN_WEAK_DEF * 16 + DYN_DEF:
602 // Ignore a dynamic definition if we already have a definition.
603 return false;
604
605 case UNDEF * 16 + DYN_DEF:
606 case DYN_UNDEF * 16 + DYN_DEF:
607 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
608 // Use a dynamic definition if we have a reference.
609 return true;
610
611 case WEAK_UNDEF * 16 + DYN_DEF:
612 // When overriding a weak undef by a dynamic definition,
613 // we need to remember that the original undef was weak.
614 *adjust_dyndef = true;
615 return true;
616
617 case COMMON * 16 + DYN_DEF:
618 case WEAK_COMMON * 16 + DYN_DEF:
619 case DYN_COMMON * 16 + DYN_DEF:
620 case DYN_WEAK_COMMON * 16 + DYN_DEF:
621 // Ignore a dynamic definition if we already have a common
622 // definition.
623 return false;
624
625 case DEF * 16 + DYN_WEAK_DEF:
626 case WEAK_DEF * 16 + DYN_WEAK_DEF:
627 case DYN_DEF * 16 + DYN_WEAK_DEF:
628 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
629 // Ignore a weak dynamic definition if we already have a
630 // definition.
631 return false;
632
633 case UNDEF * 16 + DYN_WEAK_DEF:
634 // When overriding an undef by a dynamic weak definition,
635 // we need to remember that the original undef was not weak.
636 *adjust_dyndef = true;
637 return true;
638
639 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
640 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
641 // Use a weak dynamic definition if we have a reference.
642 return true;
643
644 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
645 // When overriding a weak undef by a dynamic definition,
646 // we need to remember that the original undef was weak.
647 *adjust_dyndef = true;
648 return true;
649
650 case COMMON * 16 + DYN_WEAK_DEF:
651 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
652 case DYN_COMMON * 16 + DYN_WEAK_DEF:
653 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
654 // Ignore a weak dynamic definition if we already have a common
655 // definition.
656 return false;
657
658 case DEF * 16 + UNDEF:
659 case WEAK_DEF * 16 + UNDEF:
660 case UNDEF * 16 + UNDEF:
661 // A new undefined reference tells us nothing.
662 return false;
663
664 case DYN_DEF * 16 + UNDEF:
665 case DYN_WEAK_DEF * 16 + UNDEF:
666 // For a dynamic def, we need to remember which kind of undef we see.
667 *adjust_dyndef = true;
668 return false;
669
670 case WEAK_UNDEF * 16 + UNDEF:
671 case DYN_UNDEF * 16 + UNDEF:
672 case DYN_WEAK_UNDEF * 16 + UNDEF:
673 // A strong undef overrides a dynamic or weak undef.
674 return true;
675
676 case COMMON * 16 + UNDEF:
677 case WEAK_COMMON * 16 + UNDEF:
678 case DYN_COMMON * 16 + UNDEF:
679 case DYN_WEAK_COMMON * 16 + UNDEF:
680 // A new undefined reference tells us nothing.
681 return false;
682
683 case DEF * 16 + WEAK_UNDEF:
684 case WEAK_DEF * 16 + WEAK_UNDEF:
685 case UNDEF * 16 + WEAK_UNDEF:
686 case WEAK_UNDEF * 16 + WEAK_UNDEF:
687 case DYN_UNDEF * 16 + WEAK_UNDEF:
688 case COMMON * 16 + WEAK_UNDEF:
689 case WEAK_COMMON * 16 + WEAK_UNDEF:
690 case DYN_COMMON * 16 + WEAK_UNDEF:
691 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
692 // A new weak undefined reference tells us nothing unless the
693 // exisiting symbol is a dynamic weak reference.
694 return false;
695
696 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
697 // A new weak reference overrides an existing dynamic weak reference.
698 // This is necessary because a dynamic weak reference remembers
699 // the old binding, which may not be weak. If we keeps the existing
700 // dynamic weak reference, the weakness may be dropped in the output.
701 return true;
702
703 case DYN_DEF * 16 + WEAK_UNDEF:
704 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
705 // For a dynamic def, we need to remember which kind of undef we see.
706 *adjust_dyndef = true;
707 return false;
708
709 case DEF * 16 + DYN_UNDEF:
710 case WEAK_DEF * 16 + DYN_UNDEF:
711 case DYN_DEF * 16 + DYN_UNDEF:
712 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
713 case UNDEF * 16 + DYN_UNDEF:
714 case WEAK_UNDEF * 16 + DYN_UNDEF:
715 case DYN_UNDEF * 16 + DYN_UNDEF:
716 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
717 case COMMON * 16 + DYN_UNDEF:
718 case WEAK_COMMON * 16 + DYN_UNDEF:
719 case DYN_COMMON * 16 + DYN_UNDEF:
720 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
721 // A new dynamic undefined reference tells us nothing.
722 return false;
723
724 case DEF * 16 + DYN_WEAK_UNDEF:
725 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
726 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
727 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
728 case UNDEF * 16 + DYN_WEAK_UNDEF:
729 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
730 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
731 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
732 case COMMON * 16 + DYN_WEAK_UNDEF:
733 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
734 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
735 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
736 // A new weak dynamic undefined reference tells us nothing.
737 return false;
738
739 case DEF * 16 + COMMON:
740 // A common symbol does not override a definition.
741 if (parameters->options().warn_common())
742 Symbol_table::report_resolve_problem(false,
743 _("common '%s' overridden by "
744 "previous definition"),
745 to, defined, object);
746 return false;
747
748 case WEAK_DEF * 16 + COMMON:
749 case DYN_DEF * 16 + COMMON:
750 case DYN_WEAK_DEF * 16 + COMMON:
751 // A common symbol does override a weak definition or a dynamic
752 // definition.
753 return true;
754
755 case UNDEF * 16 + COMMON:
756 case WEAK_UNDEF * 16 + COMMON:
757 case DYN_UNDEF * 16 + COMMON:
758 case DYN_WEAK_UNDEF * 16 + COMMON:
759 // A common symbol is a definition for a reference.
760 return true;
761
762 case COMMON * 16 + COMMON:
763 // Set the size to the maximum.
764 *adjust_common_sizes = true;
765 return false;
766
767 case WEAK_COMMON * 16 + COMMON:
768 // I'm not sure just what a weak common symbol means, but
769 // presumably it can be overridden by a regular common symbol.
770 return true;
771
772 case DYN_COMMON * 16 + COMMON:
773 case DYN_WEAK_COMMON * 16 + COMMON:
774 // Use the real common symbol, but adjust the size if necessary.
775 *adjust_common_sizes = true;
776 return true;
777
778 case DEF * 16 + WEAK_COMMON:
779 case WEAK_DEF * 16 + WEAK_COMMON:
780 case DYN_DEF * 16 + WEAK_COMMON:
781 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
782 // Whatever a weak common symbol is, it won't override a
783 // definition.
784 return false;
785
786 case UNDEF * 16 + WEAK_COMMON:
787 case WEAK_UNDEF * 16 + WEAK_COMMON:
788 case DYN_UNDEF * 16 + WEAK_COMMON:
789 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
790 // A weak common symbol is better than an undefined symbol.
791 return true;
792
793 case COMMON * 16 + WEAK_COMMON:
794 case WEAK_COMMON * 16 + WEAK_COMMON:
795 case DYN_COMMON * 16 + WEAK_COMMON:
796 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
797 // Ignore a weak common symbol in the presence of a real common
798 // symbol.
799 return false;
800
801 case DEF * 16 + DYN_COMMON:
802 case WEAK_DEF * 16 + DYN_COMMON:
803 case DYN_DEF * 16 + DYN_COMMON:
804 case DYN_WEAK_DEF * 16 + DYN_COMMON:
805 // Ignore a dynamic common symbol in the presence of a
806 // definition.
807 return false;
808
809 case UNDEF * 16 + DYN_COMMON:
810 case WEAK_UNDEF * 16 + DYN_COMMON:
811 case DYN_UNDEF * 16 + DYN_COMMON:
812 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
813 // A dynamic common symbol is a definition of sorts.
814 return true;
815
816 case COMMON * 16 + DYN_COMMON:
817 case WEAK_COMMON * 16 + DYN_COMMON:
818 case DYN_COMMON * 16 + DYN_COMMON:
819 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
820 // Set the size to the maximum.
821 *adjust_common_sizes = true;
822 return false;
823
824 case DEF * 16 + DYN_WEAK_COMMON:
825 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
826 case DYN_DEF * 16 + DYN_WEAK_COMMON:
827 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
828 // A common symbol is ignored in the face of a definition.
829 return false;
830
831 case UNDEF * 16 + DYN_WEAK_COMMON:
832 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
833 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
834 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
835 // I guess a weak common symbol is better than a definition.
836 return true;
837
838 case COMMON * 16 + DYN_WEAK_COMMON:
839 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
840 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
841 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
842 // Set the size to the maximum.
843 *adjust_common_sizes = true;
844 return false;
845
846 default:
847 gold_unreachable();
848 }
849 }
850
851 // Issue an error or warning due to symbol resolution. IS_ERROR
852 // indicates an error rather than a warning. MSG is the error
853 // message; it is expected to have a %s for the symbol name. TO is
854 // the existing symbol. DEFINED/OBJECT is where the new symbol was
855 // found.
856
857 // FIXME: We should have better location information here. When the
858 // symbol is defined, we should be able to pull the location from the
859 // debug info if there is any.
860
861 void
862 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
863 const Symbol* to, Defined defined,
864 Object* object)
865 {
866 std::string demangled(to->demangled_name());
867 size_t len = strlen(msg) + demangled.length() + 10;
868 char* buf = new char[len];
869 snprintf(buf, len, msg, demangled.c_str());
870
871 const char* objname;
872 switch (defined)
873 {
874 case OBJECT:
875 objname = object->name().c_str();
876 break;
877 case COPY:
878 objname = _("COPY reloc");
879 break;
880 case DEFSYM:
881 case UNDEFINED:
882 objname = _("command line");
883 break;
884 case SCRIPT:
885 objname = _("linker script");
886 break;
887 case PREDEFINED:
888 case INCREMENTAL_BASE:
889 objname = _("linker defined");
890 break;
891 default:
892 gold_unreachable();
893 }
894
895 if (is_error)
896 gold_error("%s: %s", objname, buf);
897 else
898 gold_warning("%s: %s", objname, buf);
899
900 delete[] buf;
901
902 if (to->source() == Symbol::FROM_OBJECT)
903 objname = to->object()->name().c_str();
904 else
905 objname = _("command line");
906 gold_info("%s: %s: previous definition here", program_name, objname);
907 }
908
909 // A special case of should_override which is only called for a strong
910 // defined symbol from a regular object file. This is used when
911 // defining special symbols.
912
913 bool
914 Symbol_table::should_override_with_special(const Symbol* to,
915 elfcpp::STT fromtype,
916 Defined defined)
917 {
918 bool adjust_common_sizes;
919 bool adjust_dyn_def;
920 unsigned int frombits = global_flag | regular_flag | def_flag;
921 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
922 NULL, &adjust_common_sizes,
923 &adjust_dyn_def);
924 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
925 return ret;
926 }
927
928 // Override symbol base with a special symbol.
929
930 void
931 Symbol::override_base_with_special(const Symbol* from)
932 {
933 bool same_name = this->name_ == from->name_;
934 gold_assert(same_name || this->has_alias());
935
936 // If we are overriding an undef, remember the original binding.
937 if (this->is_undefined())
938 this->set_undef_binding(this->binding_);
939
940 this->source_ = from->source_;
941 switch (from->source_)
942 {
943 case FROM_OBJECT:
944 this->u_.from_object = from->u_.from_object;
945 break;
946 case IN_OUTPUT_DATA:
947 this->u_.in_output_data = from->u_.in_output_data;
948 break;
949 case IN_OUTPUT_SEGMENT:
950 this->u_.in_output_segment = from->u_.in_output_segment;
951 break;
952 case IS_CONSTANT:
953 case IS_UNDEFINED:
954 break;
955 default:
956 gold_unreachable();
957 break;
958 }
959
960 if (same_name)
961 {
962 // When overriding a versioned symbol with a special symbol, we
963 // may be changing the version. This will happen if we see a
964 // special symbol such as "_end" defined in a shared object with
965 // one version (from a version script), but we want to define it
966 // here with a different version (from a different version
967 // script).
968 this->version_ = from->version_;
969 }
970 this->type_ = from->type_;
971 this->binding_ = from->binding_;
972 this->override_visibility(from->visibility_);
973 this->nonvis_ = from->nonvis_;
974
975 // Special symbols are always considered to be regular symbols.
976 this->in_reg_ = true;
977
978 if (from->needs_dynsym_entry_)
979 this->needs_dynsym_entry_ = true;
980 if (from->needs_dynsym_value_)
981 this->needs_dynsym_value_ = true;
982
983 this->is_predefined_ = from->is_predefined_;
984
985 // We shouldn't see these flags. If we do, we need to handle them
986 // somehow.
987 gold_assert(!from->is_forwarder_);
988 gold_assert(!from->has_plt_offset());
989 gold_assert(!from->has_warning_);
990 gold_assert(!from->is_copied_from_dynobj_);
991 gold_assert(!from->is_forced_local_);
992 }
993
994 // Override a symbol with a special symbol.
995
996 template<int size>
997 void
998 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
999 {
1000 this->override_base_with_special(from);
1001 this->value_ = from->value_;
1002 this->symsize_ = from->symsize_;
1003 }
1004
1005 // Override TOSYM with the special symbol FROMSYM. This handles all
1006 // aliases of TOSYM.
1007
1008 template<int size>
1009 void
1010 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1011 const Sized_symbol<size>* fromsym)
1012 {
1013 tosym->override_with_special(fromsym);
1014 if (tosym->has_alias())
1015 {
1016 Symbol* sym = this->weak_aliases_[tosym];
1017 gold_assert(sym != NULL);
1018 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1019 do
1020 {
1021 ssym->override_with_special(fromsym);
1022 sym = this->weak_aliases_[ssym];
1023 gold_assert(sym != NULL);
1024 ssym = this->get_sized_symbol<size>(sym);
1025 }
1026 while (ssym != tosym);
1027 }
1028 if (tosym->binding() == elfcpp::STB_LOCAL
1029 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1030 || tosym->visibility() == elfcpp::STV_INTERNAL)
1031 && (tosym->binding() == elfcpp::STB_GLOBAL
1032 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1033 || tosym->binding() == elfcpp::STB_WEAK)
1034 && !parameters->options().relocatable()))
1035 this->force_local(tosym);
1036 }
1037
1038 // Instantiate the templates we need. We could use the configure
1039 // script to restrict this to only the ones needed for implemented
1040 // targets.
1041
1042 // We have to instantiate both big and little endian versions because
1043 // these are used by other templates that depends on size only.
1044
1045 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1046 template
1047 void
1048 Symbol_table::resolve<32, false>(
1049 Sized_symbol<32>* to,
1050 const elfcpp::Sym<32, false>& sym,
1051 unsigned int st_shndx,
1052 bool is_ordinary,
1053 unsigned int orig_st_shndx,
1054 Object* object,
1055 const char* version);
1056
1057 template
1058 void
1059 Symbol_table::resolve<32, true>(
1060 Sized_symbol<32>* to,
1061 const elfcpp::Sym<32, true>& sym,
1062 unsigned int st_shndx,
1063 bool is_ordinary,
1064 unsigned int orig_st_shndx,
1065 Object* object,
1066 const char* version);
1067 #endif
1068
1069 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1070 template
1071 void
1072 Symbol_table::resolve<64, false>(
1073 Sized_symbol<64>* to,
1074 const elfcpp::Sym<64, false>& sym,
1075 unsigned int st_shndx,
1076 bool is_ordinary,
1077 unsigned int orig_st_shndx,
1078 Object* object,
1079 const char* version);
1080
1081 template
1082 void
1083 Symbol_table::resolve<64, true>(
1084 Sized_symbol<64>* to,
1085 const elfcpp::Sym<64, true>& sym,
1086 unsigned int st_shndx,
1087 bool is_ordinary,
1088 unsigned int orig_st_shndx,
1089 Object* object,
1090 const char* version);
1091 #endif
1092
1093 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1094 template
1095 void
1096 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1097 const Sized_symbol<32>*);
1098 #endif
1099
1100 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1101 template
1102 void
1103 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1104 const Sized_symbol<64>*);
1105 #endif
1106
1107 } // End namespace gold.
This page took 0.071381 seconds and 5 git commands to generate.