Remove warning about references from shared objects to hidden symbols.
[deliverable/binutils-gdb.git] / gold / resolve.cc
1 // resolve.cc -- symbol resolution for gold
2
3 // Copyright (C) 2006-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include "elfcpp.h"
26 #include "target.h"
27 #include "object.h"
28 #include "symtab.h"
29 #include "plugin.h"
30
31 namespace gold
32 {
33
34 // Symbol methods used in this file.
35
36 // This symbol is being overridden by another symbol whose version is
37 // VERSION. Update the VERSION_ field accordingly.
38
39 inline void
40 Symbol::override_version(const char* version)
41 {
42 if (version == NULL)
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
52 this->version_ = version;
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
63 }
64 }
65
66 // This symbol is being overidden by another symbol whose visibility
67 // is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69 inline void
70 Symbol::override_visibility(elfcpp::STV visibility)
71 {
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
77 if (visibility != elfcpp::STV_DEFAULT)
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
83 }
84 }
85
86 // Override the fields in Symbol.
87
88 template<int size, bool big_endian>
89 void
90 Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
91 unsigned int st_shndx, bool is_ordinary,
92 Object* object, const char* version)
93 {
94 gold_assert(this->source_ == FROM_OBJECT);
95 this->u_.from_object.object = object;
96 this->override_version(version);
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
102 this->binding_ = sym.get_st_bind();
103 this->override_visibility(sym.get_st_visibility());
104 this->nonvis_ = sym.get_st_nonvis();
105 if (object->is_dynamic())
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
109 }
110
111 // Override the fields in Sized_symbol.
112
113 template<int size>
114 template<bool big_endian>
115 void
116 Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
117 unsigned st_shndx, bool is_ordinary,
118 Object* object, const char* version)
119 {
120 this->override_base(sym, st_shndx, is_ordinary, object, version);
121 this->value_ = sym.get_st_value();
122 this->symsize_ = sym.get_st_size();
123 }
124
125 // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126 // VERSION. This handles all aliases of TOSYM.
127
128 template<int size, bool big_endian>
129 void
130 Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
132 unsigned int st_shndx, bool is_ordinary,
133 Object* object, const char* version)
134 {
135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
141 do
142 {
143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
146 ssym = this->get_sized_symbol<size>(sym);
147 }
148 while (ssym != tosym);
149 }
150 }
151
152 // The resolve functions build a little code for each symbol.
153 // Bit 0: 0 for global, 1 for weak.
154 // Bit 1: 0 for regular object, 1 for shared object
155 // Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156 // This gives us values from 0 to 11.
157
158 static const int global_or_weak_shift = 0;
159 static const unsigned int global_flag = 0 << global_or_weak_shift;
160 static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162 static const int regular_or_dynamic_shift = 1;
163 static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164 static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166 static const int def_undef_or_common_shift = 2;
167 static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168 static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169 static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
171 // This convenience function combines all the flags based on facts
172 // about the symbol.
173
174 static unsigned int
175 symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
176 unsigned int shndx, bool is_ordinary)
177 {
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
183 case elfcpp::STB_GNU_UNIQUE:
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
216 if (!is_ordinary)
217 bits |= common_flag;
218 break;
219
220 default:
221 if (!is_ordinary && Symbol::is_common_shndx(shndx))
222 bits |= common_flag;
223 else
224 bits |= def_flag;
225 break;
226 }
227
228 return bits;
229 }
230
231 // Resolve a symbol. This is called the second and subsequent times
232 // we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
233 // section index for SYM, possibly adjusted for many sections.
234 // IS_ORDINARY is whether ST_SHNDX is a normal section index rather
235 // than a special code. ORIG_ST_SHNDX is the original section index,
236 // before any munging because of discarded sections, except that all
237 // non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
238 // the version of SYM.
239
240 template<int size, bool big_endian>
241 void
242 Symbol_table::resolve(Sized_symbol<size>* to,
243 const elfcpp::Sym<size, big_endian>& sym,
244 unsigned int st_shndx, bool is_ordinary,
245 unsigned int orig_st_shndx,
246 Object* object, const char* version)
247 {
248 // It's possible for a symbol to be defined in an object file
249 // using .symver to give it a version, and for there to also be
250 // a linker script giving that symbol the same version. We
251 // don't want to give a multiple-definition error for this
252 // harmless redefinition.
253 bool to_is_ordinary;
254 if (to->source() == Symbol::FROM_OBJECT
255 && to->object() == object
256 && is_ordinary
257 && to->is_defined()
258 && to->shndx(&to_is_ordinary) == st_shndx
259 && to_is_ordinary
260 && to->value() == sym.get_st_value())
261 return;
262
263 if (parameters->target().has_resolve())
264 {
265 Sized_target<size, big_endian>* sized_target;
266 sized_target = parameters->sized_target<size, big_endian>();
267 sized_target->resolve(to, sym, object, version);
268 return;
269 }
270
271 if (!object->is_dynamic())
272 {
273 if (sym.get_st_type() == elfcpp::STT_COMMON
274 && (is_ordinary || !Symbol::is_common_shndx(st_shndx)))
275 {
276 gold_warning(_("STT_COMMON symbol '%s' in %s "
277 "is not in a common section"),
278 to->demangled_name().c_str(),
279 to->object()->name().c_str());
280 return;
281 }
282 // Record that we've seen this symbol in a regular object.
283 to->set_in_reg();
284 }
285 else if (st_shndx == elfcpp::SHN_UNDEF
286 && (to->visibility() == elfcpp::STV_HIDDEN
287 || to->visibility() == elfcpp::STV_INTERNAL))
288 {
289 // The symbol is hidden, so a reference from a shared object
290 // cannot bind to it. We tried issuing a warning in this case,
291 // but that produces false positives when the symbol is
292 // actually resolved in a different shared object (PR 15574).
293 return;
294 }
295 else
296 {
297 // Record that we've seen this symbol in a dynamic object.
298 to->set_in_dyn();
299 }
300
301 // Record if we've seen this symbol in a real ELF object (i.e., the
302 // symbol is referenced from outside the world known to the plugin).
303 if (object->pluginobj() == NULL && !object->is_dynamic())
304 to->set_in_real_elf();
305
306 // If we're processing replacement files, allow new symbols to override
307 // the placeholders from the plugin objects.
308 // Treat common symbols specially since it is possible that an ELF
309 // file increased the size of the alignment.
310 if (to->source() == Symbol::FROM_OBJECT)
311 {
312 Pluginobj* obj = to->object()->pluginobj();
313 if (obj != NULL
314 && parameters->options().plugins()->in_replacement_phase())
315 {
316 bool adjust_common = false;
317 typename Sized_symbol<size>::Size_type tosize = 0;
318 typename Sized_symbol<size>::Value_type tovalue = 0;
319 if (to->is_common()
320 && !is_ordinary && Symbol::is_common_shndx(st_shndx))
321 {
322 adjust_common = true;
323 tosize = to->symsize();
324 tovalue = to->value();
325 }
326 this->override(to, sym, st_shndx, is_ordinary, object, version);
327 if (adjust_common)
328 {
329 if (tosize > to->symsize())
330 to->set_symsize(tosize);
331 if (tovalue > to->value())
332 to->set_value(tovalue);
333 }
334 return;
335 }
336 }
337
338 // A new weak undefined reference, merging with an old weak
339 // reference, could be a One Definition Rule (ODR) violation --
340 // especially if the types or sizes of the references differ. We'll
341 // store such pairs and look them up later to make sure they
342 // actually refer to the same lines of code. We also check
343 // combinations of weak and strong, which might occur if one case is
344 // inline and the other is not. (Note: not all ODR violations can
345 // be found this way, and not everything this finds is an ODR
346 // violation. But it's helpful to warn about.)
347 if (parameters->options().detect_odr_violations()
348 && (sym.get_st_bind() == elfcpp::STB_WEAK
349 || to->binding() == elfcpp::STB_WEAK)
350 && orig_st_shndx != elfcpp::SHN_UNDEF
351 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
352 && to_is_ordinary
353 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
354 && to->symsize() != 0
355 && (sym.get_st_type() != to->type()
356 || sym.get_st_size() != to->symsize())
357 // C does not have a concept of ODR, so we only need to do this
358 // on C++ symbols. These have (mangled) names starting with _Z.
359 && to->name()[0] == '_' && to->name()[1] == 'Z')
360 {
361 Symbol_location fromloc
362 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
363 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
364 static_cast<off_t>(to->value()) };
365 this->candidate_odr_violations_[to->name()].insert(fromloc);
366 this->candidate_odr_violations_[to->name()].insert(toloc);
367 }
368
369 // Plugins don't provide a symbol type, so adopt the existing type
370 // if the FROM symbol is from a plugin.
371 elfcpp::STT fromtype = (object->pluginobj() != NULL
372 ? to->type()
373 : sym.get_st_type());
374 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
375 object->is_dynamic(),
376 st_shndx, is_ordinary);
377
378 bool adjust_common_sizes;
379 bool adjust_dyndef;
380 typename Sized_symbol<size>::Size_type tosize = to->symsize();
381 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
382 object, &adjust_common_sizes,
383 &adjust_dyndef))
384 {
385 elfcpp::STB tobinding = to->binding();
386 typename Sized_symbol<size>::Value_type tovalue = to->value();
387 this->override(to, sym, st_shndx, is_ordinary, object, version);
388 if (adjust_common_sizes)
389 {
390 if (tosize > to->symsize())
391 to->set_symsize(tosize);
392 if (tovalue > to->value())
393 to->set_value(tovalue);
394 }
395 if (adjust_dyndef)
396 {
397 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
398 // Remember which kind of UNDEF it was for future reference.
399 to->set_undef_binding(tobinding);
400 }
401 }
402 else
403 {
404 if (adjust_common_sizes)
405 {
406 if (sym.get_st_size() > tosize)
407 to->set_symsize(sym.get_st_size());
408 if (sym.get_st_value() > to->value())
409 to->set_value(sym.get_st_value());
410 }
411 if (adjust_dyndef)
412 {
413 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
414 // Remember which kind of UNDEF it was.
415 to->set_undef_binding(sym.get_st_bind());
416 }
417 // The ELF ABI says that even for a reference to a symbol we
418 // merge the visibility.
419 to->override_visibility(sym.get_st_visibility());
420 }
421
422 if (adjust_common_sizes && parameters->options().warn_common())
423 {
424 if (tosize > sym.get_st_size())
425 Symbol_table::report_resolve_problem(false,
426 _("common of '%s' overriding "
427 "smaller common"),
428 to, OBJECT, object);
429 else if (tosize < sym.get_st_size())
430 Symbol_table::report_resolve_problem(false,
431 _("common of '%s' overidden by "
432 "larger common"),
433 to, OBJECT, object);
434 else
435 Symbol_table::report_resolve_problem(false,
436 _("multiple common of '%s'"),
437 to, OBJECT, object);
438 }
439 }
440
441 // Handle the core of symbol resolution. This is called with the
442 // existing symbol, TO, and a bitflag describing the new symbol. This
443 // returns true if we should override the existing symbol with the new
444 // one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
445 // true if we should set the symbol size to the maximum of the TO and
446 // FROM sizes. It handles error conditions.
447
448 bool
449 Symbol_table::should_override(const Symbol* to, unsigned int frombits,
450 elfcpp::STT fromtype, Defined defined,
451 Object* object, bool* adjust_common_sizes,
452 bool* adjust_dyndef)
453 {
454 *adjust_common_sizes = false;
455 *adjust_dyndef = false;
456
457 unsigned int tobits;
458 if (to->source() == Symbol::IS_UNDEFINED)
459 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true);
460 else if (to->source() != Symbol::FROM_OBJECT)
461 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false);
462 else
463 {
464 bool is_ordinary;
465 unsigned int shndx = to->shndx(&is_ordinary);
466 tobits = symbol_to_bits(to->binding(),
467 to->object()->is_dynamic(),
468 shndx,
469 is_ordinary);
470 }
471
472 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
473 && !to->is_placeholder())
474 Symbol_table::report_resolve_problem(true,
475 _("symbol '%s' used as both __thread "
476 "and non-__thread"),
477 to, defined, object);
478
479 // We use a giant switch table for symbol resolution. This code is
480 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
481 // cases; 3) it is easy to change the handling of a particular case.
482 // The alternative would be a series of conditionals, but it is easy
483 // to get the ordering wrong. This could also be done as a table,
484 // but that is no easier to understand than this large switch
485 // statement.
486
487 // These are the values generated by the bit codes.
488 enum
489 {
490 DEF = global_flag | regular_flag | def_flag,
491 WEAK_DEF = weak_flag | regular_flag | def_flag,
492 DYN_DEF = global_flag | dynamic_flag | def_flag,
493 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
494 UNDEF = global_flag | regular_flag | undef_flag,
495 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
496 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
497 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
498 COMMON = global_flag | regular_flag | common_flag,
499 WEAK_COMMON = weak_flag | regular_flag | common_flag,
500 DYN_COMMON = global_flag | dynamic_flag | common_flag,
501 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
502 };
503
504 switch (tobits * 16 + frombits)
505 {
506 case DEF * 16 + DEF:
507 // Two definitions of the same symbol.
508
509 // If either symbol is defined by an object included using
510 // --just-symbols, then don't warn. This is for compatibility
511 // with the GNU linker. FIXME: This is a hack.
512 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
513 || (object != NULL && object->just_symbols()))
514 return false;
515
516 if (!parameters->options().muldefs())
517 Symbol_table::report_resolve_problem(true,
518 _("multiple definition of '%s'"),
519 to, defined, object);
520 return false;
521
522 case WEAK_DEF * 16 + DEF:
523 // We've seen a weak definition, and now we see a strong
524 // definition. In the original SVR4 linker, this was treated as
525 // a multiple definition error. In the Solaris linker and the
526 // GNU linker, a weak definition followed by a regular
527 // definition causes the weak definition to be overridden. We
528 // are currently compatible with the GNU linker. In the future
529 // we should add a target specific option to change this.
530 // FIXME.
531 return true;
532
533 case DYN_DEF * 16 + DEF:
534 case DYN_WEAK_DEF * 16 + DEF:
535 // We've seen a definition in a dynamic object, and now we see a
536 // definition in a regular object. The definition in the
537 // regular object overrides the definition in the dynamic
538 // object.
539 return true;
540
541 case UNDEF * 16 + DEF:
542 case WEAK_UNDEF * 16 + DEF:
543 case DYN_UNDEF * 16 + DEF:
544 case DYN_WEAK_UNDEF * 16 + DEF:
545 // We've seen an undefined reference, and now we see a
546 // definition. We use the definition.
547 return true;
548
549 case COMMON * 16 + DEF:
550 case WEAK_COMMON * 16 + DEF:
551 case DYN_COMMON * 16 + DEF:
552 case DYN_WEAK_COMMON * 16 + DEF:
553 // We've seen a common symbol and now we see a definition. The
554 // definition overrides.
555 if (parameters->options().warn_common())
556 Symbol_table::report_resolve_problem(false,
557 _("definition of '%s' overriding "
558 "common"),
559 to, defined, object);
560 return true;
561
562 case DEF * 16 + WEAK_DEF:
563 case WEAK_DEF * 16 + WEAK_DEF:
564 // We've seen a definition and now we see a weak definition. We
565 // ignore the new weak definition.
566 return false;
567
568 case DYN_DEF * 16 + WEAK_DEF:
569 case DYN_WEAK_DEF * 16 + WEAK_DEF:
570 // We've seen a dynamic definition and now we see a regular weak
571 // definition. The regular weak definition overrides.
572 return true;
573
574 case UNDEF * 16 + WEAK_DEF:
575 case WEAK_UNDEF * 16 + WEAK_DEF:
576 case DYN_UNDEF * 16 + WEAK_DEF:
577 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
578 // A weak definition of a currently undefined symbol.
579 return true;
580
581 case COMMON * 16 + WEAK_DEF:
582 case WEAK_COMMON * 16 + WEAK_DEF:
583 // A weak definition does not override a common definition.
584 return false;
585
586 case DYN_COMMON * 16 + WEAK_DEF:
587 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
588 // A weak definition does override a definition in a dynamic
589 // object.
590 if (parameters->options().warn_common())
591 Symbol_table::report_resolve_problem(false,
592 _("definition of '%s' overriding "
593 "dynamic common definition"),
594 to, defined, object);
595 return true;
596
597 case DEF * 16 + DYN_DEF:
598 case WEAK_DEF * 16 + DYN_DEF:
599 case DYN_DEF * 16 + DYN_DEF:
600 case DYN_WEAK_DEF * 16 + DYN_DEF:
601 // Ignore a dynamic definition if we already have a definition.
602 return false;
603
604 case UNDEF * 16 + DYN_DEF:
605 case DYN_UNDEF * 16 + DYN_DEF:
606 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
607 // Use a dynamic definition if we have a reference.
608 return true;
609
610 case WEAK_UNDEF * 16 + DYN_DEF:
611 // When overriding a weak undef by a dynamic definition,
612 // we need to remember that the original undef was weak.
613 *adjust_dyndef = true;
614 return true;
615
616 case COMMON * 16 + DYN_DEF:
617 case WEAK_COMMON * 16 + DYN_DEF:
618 case DYN_COMMON * 16 + DYN_DEF:
619 case DYN_WEAK_COMMON * 16 + DYN_DEF:
620 // Ignore a dynamic definition if we already have a common
621 // definition.
622 return false;
623
624 case DEF * 16 + DYN_WEAK_DEF:
625 case WEAK_DEF * 16 + DYN_WEAK_DEF:
626 case DYN_DEF * 16 + DYN_WEAK_DEF:
627 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
628 // Ignore a weak dynamic definition if we already have a
629 // definition.
630 return false;
631
632 case UNDEF * 16 + DYN_WEAK_DEF:
633 // When overriding an undef by a dynamic weak definition,
634 // we need to remember that the original undef was not weak.
635 *adjust_dyndef = true;
636 return true;
637
638 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
639 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
640 // Use a weak dynamic definition if we have a reference.
641 return true;
642
643 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
644 // When overriding a weak undef by a dynamic definition,
645 // we need to remember that the original undef was weak.
646 *adjust_dyndef = true;
647 return true;
648
649 case COMMON * 16 + DYN_WEAK_DEF:
650 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
651 case DYN_COMMON * 16 + DYN_WEAK_DEF:
652 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
653 // Ignore a weak dynamic definition if we already have a common
654 // definition.
655 return false;
656
657 case DEF * 16 + UNDEF:
658 case WEAK_DEF * 16 + UNDEF:
659 case UNDEF * 16 + UNDEF:
660 // A new undefined reference tells us nothing.
661 return false;
662
663 case DYN_DEF * 16 + UNDEF:
664 case DYN_WEAK_DEF * 16 + UNDEF:
665 // For a dynamic def, we need to remember which kind of undef we see.
666 *adjust_dyndef = true;
667 return false;
668
669 case WEAK_UNDEF * 16 + UNDEF:
670 case DYN_UNDEF * 16 + UNDEF:
671 case DYN_WEAK_UNDEF * 16 + UNDEF:
672 // A strong undef overrides a dynamic or weak undef.
673 return true;
674
675 case COMMON * 16 + UNDEF:
676 case WEAK_COMMON * 16 + UNDEF:
677 case DYN_COMMON * 16 + UNDEF:
678 case DYN_WEAK_COMMON * 16 + UNDEF:
679 // A new undefined reference tells us nothing.
680 return false;
681
682 case DEF * 16 + WEAK_UNDEF:
683 case WEAK_DEF * 16 + WEAK_UNDEF:
684 case UNDEF * 16 + WEAK_UNDEF:
685 case WEAK_UNDEF * 16 + WEAK_UNDEF:
686 case DYN_UNDEF * 16 + WEAK_UNDEF:
687 case COMMON * 16 + WEAK_UNDEF:
688 case WEAK_COMMON * 16 + WEAK_UNDEF:
689 case DYN_COMMON * 16 + WEAK_UNDEF:
690 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
691 // A new weak undefined reference tells us nothing unless the
692 // exisiting symbol is a dynamic weak reference.
693 return false;
694
695 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
696 // A new weak reference overrides an existing dynamic weak reference.
697 // This is necessary because a dynamic weak reference remembers
698 // the old binding, which may not be weak. If we keeps the existing
699 // dynamic weak reference, the weakness may be dropped in the output.
700 return true;
701
702 case DYN_DEF * 16 + WEAK_UNDEF:
703 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
704 // For a dynamic def, we need to remember which kind of undef we see.
705 *adjust_dyndef = true;
706 return false;
707
708 case DEF * 16 + DYN_UNDEF:
709 case WEAK_DEF * 16 + DYN_UNDEF:
710 case DYN_DEF * 16 + DYN_UNDEF:
711 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
712 case UNDEF * 16 + DYN_UNDEF:
713 case WEAK_UNDEF * 16 + DYN_UNDEF:
714 case DYN_UNDEF * 16 + DYN_UNDEF:
715 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
716 case COMMON * 16 + DYN_UNDEF:
717 case WEAK_COMMON * 16 + DYN_UNDEF:
718 case DYN_COMMON * 16 + DYN_UNDEF:
719 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
720 // A new dynamic undefined reference tells us nothing.
721 return false;
722
723 case DEF * 16 + DYN_WEAK_UNDEF:
724 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
725 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
726 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
727 case UNDEF * 16 + DYN_WEAK_UNDEF:
728 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
729 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
730 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
731 case COMMON * 16 + DYN_WEAK_UNDEF:
732 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
733 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
734 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
735 // A new weak dynamic undefined reference tells us nothing.
736 return false;
737
738 case DEF * 16 + COMMON:
739 // A common symbol does not override a definition.
740 if (parameters->options().warn_common())
741 Symbol_table::report_resolve_problem(false,
742 _("common '%s' overridden by "
743 "previous definition"),
744 to, defined, object);
745 return false;
746
747 case WEAK_DEF * 16 + COMMON:
748 case DYN_DEF * 16 + COMMON:
749 case DYN_WEAK_DEF * 16 + COMMON:
750 // A common symbol does override a weak definition or a dynamic
751 // definition.
752 return true;
753
754 case UNDEF * 16 + COMMON:
755 case WEAK_UNDEF * 16 + COMMON:
756 case DYN_UNDEF * 16 + COMMON:
757 case DYN_WEAK_UNDEF * 16 + COMMON:
758 // A common symbol is a definition for a reference.
759 return true;
760
761 case COMMON * 16 + COMMON:
762 // Set the size to the maximum.
763 *adjust_common_sizes = true;
764 return false;
765
766 case WEAK_COMMON * 16 + COMMON:
767 // I'm not sure just what a weak common symbol means, but
768 // presumably it can be overridden by a regular common symbol.
769 return true;
770
771 case DYN_COMMON * 16 + COMMON:
772 case DYN_WEAK_COMMON * 16 + COMMON:
773 // Use the real common symbol, but adjust the size if necessary.
774 *adjust_common_sizes = true;
775 return true;
776
777 case DEF * 16 + WEAK_COMMON:
778 case WEAK_DEF * 16 + WEAK_COMMON:
779 case DYN_DEF * 16 + WEAK_COMMON:
780 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
781 // Whatever a weak common symbol is, it won't override a
782 // definition.
783 return false;
784
785 case UNDEF * 16 + WEAK_COMMON:
786 case WEAK_UNDEF * 16 + WEAK_COMMON:
787 case DYN_UNDEF * 16 + WEAK_COMMON:
788 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
789 // A weak common symbol is better than an undefined symbol.
790 return true;
791
792 case COMMON * 16 + WEAK_COMMON:
793 case WEAK_COMMON * 16 + WEAK_COMMON:
794 case DYN_COMMON * 16 + WEAK_COMMON:
795 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
796 // Ignore a weak common symbol in the presence of a real common
797 // symbol.
798 return false;
799
800 case DEF * 16 + DYN_COMMON:
801 case WEAK_DEF * 16 + DYN_COMMON:
802 case DYN_DEF * 16 + DYN_COMMON:
803 case DYN_WEAK_DEF * 16 + DYN_COMMON:
804 // Ignore a dynamic common symbol in the presence of a
805 // definition.
806 return false;
807
808 case UNDEF * 16 + DYN_COMMON:
809 case WEAK_UNDEF * 16 + DYN_COMMON:
810 case DYN_UNDEF * 16 + DYN_COMMON:
811 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
812 // A dynamic common symbol is a definition of sorts.
813 return true;
814
815 case COMMON * 16 + DYN_COMMON:
816 case WEAK_COMMON * 16 + DYN_COMMON:
817 case DYN_COMMON * 16 + DYN_COMMON:
818 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
819 // Set the size to the maximum.
820 *adjust_common_sizes = true;
821 return false;
822
823 case DEF * 16 + DYN_WEAK_COMMON:
824 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
825 case DYN_DEF * 16 + DYN_WEAK_COMMON:
826 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
827 // A common symbol is ignored in the face of a definition.
828 return false;
829
830 case UNDEF * 16 + DYN_WEAK_COMMON:
831 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
832 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
833 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
834 // I guess a weak common symbol is better than a definition.
835 return true;
836
837 case COMMON * 16 + DYN_WEAK_COMMON:
838 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
839 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
840 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
841 // Set the size to the maximum.
842 *adjust_common_sizes = true;
843 return false;
844
845 default:
846 gold_unreachable();
847 }
848 }
849
850 // Issue an error or warning due to symbol resolution. IS_ERROR
851 // indicates an error rather than a warning. MSG is the error
852 // message; it is expected to have a %s for the symbol name. TO is
853 // the existing symbol. DEFINED/OBJECT is where the new symbol was
854 // found.
855
856 // FIXME: We should have better location information here. When the
857 // symbol is defined, we should be able to pull the location from the
858 // debug info if there is any.
859
860 void
861 Symbol_table::report_resolve_problem(bool is_error, const char* msg,
862 const Symbol* to, Defined defined,
863 Object* object)
864 {
865 std::string demangled(to->demangled_name());
866 size_t len = strlen(msg) + demangled.length() + 10;
867 char* buf = new char[len];
868 snprintf(buf, len, msg, demangled.c_str());
869
870 const char* objname;
871 switch (defined)
872 {
873 case OBJECT:
874 objname = object->name().c_str();
875 break;
876 case COPY:
877 objname = _("COPY reloc");
878 break;
879 case DEFSYM:
880 case UNDEFINED:
881 objname = _("command line");
882 break;
883 case SCRIPT:
884 objname = _("linker script");
885 break;
886 case PREDEFINED:
887 case INCREMENTAL_BASE:
888 objname = _("linker defined");
889 break;
890 default:
891 gold_unreachable();
892 }
893
894 if (is_error)
895 gold_error("%s: %s", objname, buf);
896 else
897 gold_warning("%s: %s", objname, buf);
898
899 delete[] buf;
900
901 if (to->source() == Symbol::FROM_OBJECT)
902 objname = to->object()->name().c_str();
903 else
904 objname = _("command line");
905 gold_info("%s: %s: previous definition here", program_name, objname);
906 }
907
908 // A special case of should_override which is only called for a strong
909 // defined symbol from a regular object file. This is used when
910 // defining special symbols.
911
912 bool
913 Symbol_table::should_override_with_special(const Symbol* to,
914 elfcpp::STT fromtype,
915 Defined defined)
916 {
917 bool adjust_common_sizes;
918 bool adjust_dyn_def;
919 unsigned int frombits = global_flag | regular_flag | def_flag;
920 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
921 NULL, &adjust_common_sizes,
922 &adjust_dyn_def);
923 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
924 return ret;
925 }
926
927 // Override symbol base with a special symbol.
928
929 void
930 Symbol::override_base_with_special(const Symbol* from)
931 {
932 bool same_name = this->name_ == from->name_;
933 gold_assert(same_name || this->has_alias());
934
935 // If we are overriding an undef, remember the original binding.
936 if (this->is_undefined())
937 this->set_undef_binding(this->binding_);
938
939 this->source_ = from->source_;
940 switch (from->source_)
941 {
942 case FROM_OBJECT:
943 this->u_.from_object = from->u_.from_object;
944 break;
945 case IN_OUTPUT_DATA:
946 this->u_.in_output_data = from->u_.in_output_data;
947 break;
948 case IN_OUTPUT_SEGMENT:
949 this->u_.in_output_segment = from->u_.in_output_segment;
950 break;
951 case IS_CONSTANT:
952 case IS_UNDEFINED:
953 break;
954 default:
955 gold_unreachable();
956 break;
957 }
958
959 if (same_name)
960 {
961 // When overriding a versioned symbol with a special symbol, we
962 // may be changing the version. This will happen if we see a
963 // special symbol such as "_end" defined in a shared object with
964 // one version (from a version script), but we want to define it
965 // here with a different version (from a different version
966 // script).
967 this->version_ = from->version_;
968 }
969 this->type_ = from->type_;
970 this->binding_ = from->binding_;
971 this->override_visibility(from->visibility_);
972 this->nonvis_ = from->nonvis_;
973
974 // Special symbols are always considered to be regular symbols.
975 this->in_reg_ = true;
976
977 if (from->needs_dynsym_entry_)
978 this->needs_dynsym_entry_ = true;
979 if (from->needs_dynsym_value_)
980 this->needs_dynsym_value_ = true;
981
982 this->is_predefined_ = from->is_predefined_;
983
984 // We shouldn't see these flags. If we do, we need to handle them
985 // somehow.
986 gold_assert(!from->is_forwarder_);
987 gold_assert(!from->has_plt_offset());
988 gold_assert(!from->has_warning_);
989 gold_assert(!from->is_copied_from_dynobj_);
990 gold_assert(!from->is_forced_local_);
991 }
992
993 // Override a symbol with a special symbol.
994
995 template<int size>
996 void
997 Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
998 {
999 this->override_base_with_special(from);
1000 this->value_ = from->value_;
1001 this->symsize_ = from->symsize_;
1002 }
1003
1004 // Override TOSYM with the special symbol FROMSYM. This handles all
1005 // aliases of TOSYM.
1006
1007 template<int size>
1008 void
1009 Symbol_table::override_with_special(Sized_symbol<size>* tosym,
1010 const Sized_symbol<size>* fromsym)
1011 {
1012 tosym->override_with_special(fromsym);
1013 if (tosym->has_alias())
1014 {
1015 Symbol* sym = this->weak_aliases_[tosym];
1016 gold_assert(sym != NULL);
1017 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
1018 do
1019 {
1020 ssym->override_with_special(fromsym);
1021 sym = this->weak_aliases_[ssym];
1022 gold_assert(sym != NULL);
1023 ssym = this->get_sized_symbol<size>(sym);
1024 }
1025 while (ssym != tosym);
1026 }
1027 if (tosym->binding() == elfcpp::STB_LOCAL
1028 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1029 || tosym->visibility() == elfcpp::STV_INTERNAL)
1030 && (tosym->binding() == elfcpp::STB_GLOBAL
1031 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
1032 || tosym->binding() == elfcpp::STB_WEAK)
1033 && !parameters->options().relocatable()))
1034 this->force_local(tosym);
1035 }
1036
1037 // Instantiate the templates we need. We could use the configure
1038 // script to restrict this to only the ones needed for implemented
1039 // targets.
1040
1041 // We have to instantiate both big and little endian versions because
1042 // these are used by other templates that depends on size only.
1043
1044 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1045 template
1046 void
1047 Symbol_table::resolve<32, false>(
1048 Sized_symbol<32>* to,
1049 const elfcpp::Sym<32, false>& sym,
1050 unsigned int st_shndx,
1051 bool is_ordinary,
1052 unsigned int orig_st_shndx,
1053 Object* object,
1054 const char* version);
1055
1056 template
1057 void
1058 Symbol_table::resolve<32, true>(
1059 Sized_symbol<32>* to,
1060 const elfcpp::Sym<32, true>& sym,
1061 unsigned int st_shndx,
1062 bool is_ordinary,
1063 unsigned int orig_st_shndx,
1064 Object* object,
1065 const char* version);
1066 #endif
1067
1068 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1069 template
1070 void
1071 Symbol_table::resolve<64, false>(
1072 Sized_symbol<64>* to,
1073 const elfcpp::Sym<64, false>& sym,
1074 unsigned int st_shndx,
1075 bool is_ordinary,
1076 unsigned int orig_st_shndx,
1077 Object* object,
1078 const char* version);
1079
1080 template
1081 void
1082 Symbol_table::resolve<64, true>(
1083 Sized_symbol<64>* to,
1084 const elfcpp::Sym<64, true>& sym,
1085 unsigned int st_shndx,
1086 bool is_ordinary,
1087 unsigned int orig_st_shndx,
1088 Object* object,
1089 const char* version);
1090 #endif
1091
1092 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1093 template
1094 void
1095 Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1096 const Sized_symbol<32>*);
1097 #endif
1098
1099 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1100 template
1101 void
1102 Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1103 const Sized_symbol<64>*);
1104 #endif
1105
1106 } // End namespace gold.
This page took 0.054901 seconds and 5 git commands to generate.