* layout.cc (Layout::attach_allocated_section_to_segment): Don't
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // An element in a SECTIONS clause.
47
48 class Sections_element
49 {
50 public:
51 Sections_element()
52 { }
53
54 virtual ~Sections_element()
55 { }
56
57 // Record that an output section is relro.
58 virtual void
59 set_is_relro()
60 { }
61
62 // Create any required output sections. The only real
63 // implementation is in Output_section_definition.
64 virtual void
65 create_sections(Layout*)
66 { }
67
68 // Add any symbol being defined to the symbol table.
69 virtual void
70 add_symbols_to_table(Symbol_table*)
71 { }
72
73 // Finalize symbols and check assertions.
74 virtual void
75 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
76 { }
77
78 // Return the output section name to use for an input file name and
79 // section name. This only real implementation is in
80 // Output_section_definition.
81 virtual const char*
82 output_section_name(const char*, const char*, Output_section***)
83 { return NULL; }
84
85 // Return whether to place an orphan output section after this
86 // element.
87 virtual bool
88 place_orphan_here(const Output_section *, bool*, bool*) const
89 { return false; }
90
91 // Set section addresses. This includes applying assignments if the
92 // the expression is an absolute value.
93 virtual void
94 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*)
95 { }
96
97 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
98 // this section is constrained, and the input sections do not match,
99 // return the constraint, and set *POSD.
100 virtual Section_constraint
101 check_constraint(Output_section_definition**)
102 { return CONSTRAINT_NONE; }
103
104 // See if this is the alternate output section for a constrained
105 // output section. If it is, transfer the Output_section and return
106 // true. Otherwise return false.
107 virtual bool
108 alternate_constraint(Output_section_definition*, Section_constraint)
109 { return false; }
110
111 // Get the list of segments to use for an allocated section when
112 // using a PHDRS clause. If this is an allocated section, return
113 // the Output_section, and set *PHDRS_LIST (the first parameter) to
114 // the list of PHDRS to which it should be attached. If the PHDRS
115 // were not specified, don't change *PHDRS_LIST. When not returning
116 // NULL, set *ORPHAN (the second parameter) according to whether
117 // this is an orphan section--one that is not mentioned in the
118 // linker script.
119 virtual Output_section*
120 allocate_to_segment(String_list**, bool*)
121 { return NULL; }
122
123 // Look for an output section by name and return the address, the
124 // load address, the alignment, and the size. This is used when an
125 // expression refers to an output section which was not actually
126 // created. This returns true if the section was found, false
127 // otherwise. The only real definition is for
128 // Output_section_definition.
129 virtual bool
130 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
131 uint64_t*) const
132 { return false; }
133
134 // Return the associated Output_section if there is one.
135 virtual Output_section*
136 get_output_section() const
137 { return NULL; }
138
139 // Print the element for debugging purposes.
140 virtual void
141 print(FILE* f) const = 0;
142 };
143
144 // An assignment in a SECTIONS clause outside of an output section.
145
146 class Sections_element_assignment : public Sections_element
147 {
148 public:
149 Sections_element_assignment(const char* name, size_t namelen,
150 Expression* val, bool provide, bool hidden)
151 : assignment_(name, namelen, val, provide, hidden)
152 { }
153
154 // Add the symbol to the symbol table.
155 void
156 add_symbols_to_table(Symbol_table* symtab)
157 { this->assignment_.add_to_table(symtab); }
158
159 // Finalize the symbol.
160 void
161 finalize_symbols(Symbol_table* symtab, const Layout* layout,
162 uint64_t* dot_value)
163 {
164 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
165 }
166
167 // Set the section address. There is no section here, but if the
168 // value is absolute, we set the symbol. This permits us to use
169 // absolute symbols when setting dot.
170 void
171 set_section_addresses(Symbol_table* symtab, Layout* layout,
172 uint64_t* dot_value, uint64_t*)
173 {
174 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
175 }
176
177 // Print for debugging.
178 void
179 print(FILE* f) const
180 {
181 fprintf(f, " ");
182 this->assignment_.print(f);
183 }
184
185 private:
186 Symbol_assignment assignment_;
187 };
188
189 // An assignment to the dot symbol in a SECTIONS clause outside of an
190 // output section.
191
192 class Sections_element_dot_assignment : public Sections_element
193 {
194 public:
195 Sections_element_dot_assignment(Expression* val)
196 : val_(val)
197 { }
198
199 // Finalize the symbol.
200 void
201 finalize_symbols(Symbol_table* symtab, const Layout* layout,
202 uint64_t* dot_value)
203 {
204 // We ignore the section of the result because outside of an
205 // output section definition the dot symbol is always considered
206 // to be absolute.
207 Output_section* dummy;
208 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
209 NULL, &dummy);
210 }
211
212 // Update the dot symbol while setting section addresses.
213 void
214 set_section_addresses(Symbol_table* symtab, Layout* layout,
215 uint64_t* dot_value, uint64_t* load_address)
216 {
217 Output_section* dummy;
218 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
219 NULL, &dummy);
220 *load_address = *dot_value;
221 }
222
223 // Print for debugging.
224 void
225 print(FILE* f) const
226 {
227 fprintf(f, " . = ");
228 this->val_->print(f);
229 fprintf(f, "\n");
230 }
231
232 private:
233 Expression* val_;
234 };
235
236 // An assertion in a SECTIONS clause outside of an output section.
237
238 class Sections_element_assertion : public Sections_element
239 {
240 public:
241 Sections_element_assertion(Expression* check, const char* message,
242 size_t messagelen)
243 : assertion_(check, message, messagelen)
244 { }
245
246 // Check the assertion.
247 void
248 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
249 { this->assertion_.check(symtab, layout); }
250
251 // Print for debugging.
252 void
253 print(FILE* f) const
254 {
255 fprintf(f, " ");
256 this->assertion_.print(f);
257 }
258
259 private:
260 Script_assertion assertion_;
261 };
262
263 // An element in an output section in a SECTIONS clause.
264
265 class Output_section_element
266 {
267 public:
268 // A list of input sections.
269 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
270
271 Output_section_element()
272 { }
273
274 virtual ~Output_section_element()
275 { }
276
277 // Return whether this element requires an output section to exist.
278 virtual bool
279 needs_output_section() const
280 { return false; }
281
282 // Add any symbol being defined to the symbol table.
283 virtual void
284 add_symbols_to_table(Symbol_table*)
285 { }
286
287 // Finalize symbols and check assertions.
288 virtual void
289 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
290 { }
291
292 // Return whether this element matches FILE_NAME and SECTION_NAME.
293 // The only real implementation is in Output_section_element_input.
294 virtual bool
295 match_name(const char*, const char*) const
296 { return false; }
297
298 // Set section addresses. This includes applying assignments if the
299 // the expression is an absolute value.
300 virtual void
301 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
302 uint64_t*, Output_section**, std::string*,
303 Input_section_list*)
304 { }
305
306 // Print the element for debugging purposes.
307 virtual void
308 print(FILE* f) const = 0;
309
310 protected:
311 // Return a fill string that is LENGTH bytes long, filling it with
312 // FILL.
313 std::string
314 get_fill_string(const std::string* fill, section_size_type length) const;
315 };
316
317 std::string
318 Output_section_element::get_fill_string(const std::string* fill,
319 section_size_type length) const
320 {
321 std::string this_fill;
322 this_fill.reserve(length);
323 while (this_fill.length() + fill->length() <= length)
324 this_fill += *fill;
325 if (this_fill.length() < length)
326 this_fill.append(*fill, 0, length - this_fill.length());
327 return this_fill;
328 }
329
330 // A symbol assignment in an output section.
331
332 class Output_section_element_assignment : public Output_section_element
333 {
334 public:
335 Output_section_element_assignment(const char* name, size_t namelen,
336 Expression* val, bool provide,
337 bool hidden)
338 : assignment_(name, namelen, val, provide, hidden)
339 { }
340
341 // Add the symbol to the symbol table.
342 void
343 add_symbols_to_table(Symbol_table* symtab)
344 { this->assignment_.add_to_table(symtab); }
345
346 // Finalize the symbol.
347 void
348 finalize_symbols(Symbol_table* symtab, const Layout* layout,
349 uint64_t* dot_value, Output_section** dot_section)
350 {
351 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
352 *dot_section);
353 }
354
355 // Set the section address. There is no section here, but if the
356 // value is absolute, we set the symbol. This permits us to use
357 // absolute symbols when setting dot.
358 void
359 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
360 uint64_t, uint64_t* dot_value, Output_section**,
361 std::string*, Input_section_list*)
362 {
363 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value);
364 }
365
366 // Print for debugging.
367 void
368 print(FILE* f) const
369 {
370 fprintf(f, " ");
371 this->assignment_.print(f);
372 }
373
374 private:
375 Symbol_assignment assignment_;
376 };
377
378 // An assignment to the dot symbol in an output section.
379
380 class Output_section_element_dot_assignment : public Output_section_element
381 {
382 public:
383 Output_section_element_dot_assignment(Expression* val)
384 : val_(val)
385 { }
386
387 // Finalize the symbol.
388 void
389 finalize_symbols(Symbol_table* symtab, const Layout* layout,
390 uint64_t* dot_value, Output_section** dot_section)
391 {
392 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
393 *dot_section, dot_section);
394 }
395
396 // Update the dot symbol while setting section addresses.
397 void
398 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
399 uint64_t, uint64_t* dot_value, Output_section**,
400 std::string*, Input_section_list*);
401
402 // Print for debugging.
403 void
404 print(FILE* f) const
405 {
406 fprintf(f, " . = ");
407 this->val_->print(f);
408 fprintf(f, "\n");
409 }
410
411 private:
412 Expression* val_;
413 };
414
415 // Update the dot symbol while setting section addresses.
416
417 void
418 Output_section_element_dot_assignment::set_section_addresses(
419 Symbol_table* symtab,
420 Layout* layout,
421 Output_section* output_section,
422 uint64_t,
423 uint64_t* dot_value,
424 Output_section** dot_section,
425 std::string* fill,
426 Input_section_list*)
427 {
428 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
429 *dot_value, *dot_section,
430 dot_section);
431 if (next_dot < *dot_value)
432 gold_error(_("dot may not move backward"));
433 if (next_dot > *dot_value && output_section != NULL)
434 {
435 section_size_type length = convert_to_section_size_type(next_dot
436 - *dot_value);
437 Output_section_data* posd;
438 if (fill->empty())
439 posd = new Output_data_zero_fill(length, 0);
440 else
441 {
442 std::string this_fill = this->get_fill_string(fill, length);
443 posd = new Output_data_const(this_fill, 0);
444 }
445 output_section->add_output_section_data(posd);
446 }
447 *dot_value = next_dot;
448 }
449
450 // An assertion in an output section.
451
452 class Output_section_element_assertion : public Output_section_element
453 {
454 public:
455 Output_section_element_assertion(Expression* check, const char* message,
456 size_t messagelen)
457 : assertion_(check, message, messagelen)
458 { }
459
460 void
461 print(FILE* f) const
462 {
463 fprintf(f, " ");
464 this->assertion_.print(f);
465 }
466
467 private:
468 Script_assertion assertion_;
469 };
470
471 // We use a special instance of Output_section_data to handle BYTE,
472 // SHORT, etc. This permits forward references to symbols in the
473 // expressions.
474
475 class Output_data_expression : public Output_section_data
476 {
477 public:
478 Output_data_expression(int size, bool is_signed, Expression* val,
479 const Symbol_table* symtab, const Layout* layout,
480 uint64_t dot_value, Output_section* dot_section)
481 : Output_section_data(size, 0),
482 is_signed_(is_signed), val_(val), symtab_(symtab),
483 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
484 { }
485
486 protected:
487 // Write the data to the output file.
488 void
489 do_write(Output_file*);
490
491 // Write the data to a buffer.
492 void
493 do_write_to_buffer(unsigned char*);
494
495 // Write to a map file.
496 void
497 do_print_to_mapfile(Mapfile* mapfile) const
498 { mapfile->print_output_data(this, _("** expression")); }
499
500 private:
501 template<bool big_endian>
502 void
503 endian_write_to_buffer(uint64_t, unsigned char*);
504
505 bool is_signed_;
506 Expression* val_;
507 const Symbol_table* symtab_;
508 const Layout* layout_;
509 uint64_t dot_value_;
510 Output_section* dot_section_;
511 };
512
513 // Write the data element to the output file.
514
515 void
516 Output_data_expression::do_write(Output_file* of)
517 {
518 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
519 this->write_to_buffer(view);
520 of->write_output_view(this->offset(), this->data_size(), view);
521 }
522
523 // Write the data element to a buffer.
524
525 void
526 Output_data_expression::do_write_to_buffer(unsigned char* buf)
527 {
528 Output_section* dummy;
529 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
530 true, this->dot_value_,
531 this->dot_section_, &dummy);
532
533 if (parameters->target().is_big_endian())
534 this->endian_write_to_buffer<true>(val, buf);
535 else
536 this->endian_write_to_buffer<false>(val, buf);
537 }
538
539 template<bool big_endian>
540 void
541 Output_data_expression::endian_write_to_buffer(uint64_t val,
542 unsigned char* buf)
543 {
544 switch (this->data_size())
545 {
546 case 1:
547 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
548 break;
549 case 2:
550 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
551 break;
552 case 4:
553 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
554 break;
555 case 8:
556 if (parameters->target().get_size() == 32)
557 {
558 val &= 0xffffffff;
559 if (this->is_signed_ && (val & 0x80000000) != 0)
560 val |= 0xffffffff00000000LL;
561 }
562 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
563 break;
564 default:
565 gold_unreachable();
566 }
567 }
568
569 // A data item in an output section.
570
571 class Output_section_element_data : public Output_section_element
572 {
573 public:
574 Output_section_element_data(int size, bool is_signed, Expression* val)
575 : size_(size), is_signed_(is_signed), val_(val)
576 { }
577
578 // If there is a data item, then we must create an output section.
579 bool
580 needs_output_section() const
581 { return true; }
582
583 // Finalize symbols--we just need to update dot.
584 void
585 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
586 Output_section**)
587 { *dot_value += this->size_; }
588
589 // Store the value in the section.
590 void
591 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
592 uint64_t* dot_value, Output_section**, std::string*,
593 Input_section_list*);
594
595 // Print for debugging.
596 void
597 print(FILE*) const;
598
599 private:
600 // The size in bytes.
601 int size_;
602 // Whether the value is signed.
603 bool is_signed_;
604 // The value.
605 Expression* val_;
606 };
607
608 // Store the value in the section.
609
610 void
611 Output_section_element_data::set_section_addresses(
612 Symbol_table* symtab,
613 Layout* layout,
614 Output_section* os,
615 uint64_t,
616 uint64_t* dot_value,
617 Output_section** dot_section,
618 std::string*,
619 Input_section_list*)
620 {
621 gold_assert(os != NULL);
622 os->add_output_section_data(new Output_data_expression(this->size_,
623 this->is_signed_,
624 this->val_,
625 symtab,
626 layout,
627 *dot_value,
628 *dot_section));
629 *dot_value += this->size_;
630 }
631
632 // Print for debugging.
633
634 void
635 Output_section_element_data::print(FILE* f) const
636 {
637 const char* s;
638 switch (this->size_)
639 {
640 case 1:
641 s = "BYTE";
642 break;
643 case 2:
644 s = "SHORT";
645 break;
646 case 4:
647 s = "LONG";
648 break;
649 case 8:
650 if (this->is_signed_)
651 s = "SQUAD";
652 else
653 s = "QUAD";
654 break;
655 default:
656 gold_unreachable();
657 }
658 fprintf(f, " %s(", s);
659 this->val_->print(f);
660 fprintf(f, ")\n");
661 }
662
663 // A fill value setting in an output section.
664
665 class Output_section_element_fill : public Output_section_element
666 {
667 public:
668 Output_section_element_fill(Expression* val)
669 : val_(val)
670 { }
671
672 // Update the fill value while setting section addresses.
673 void
674 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
675 uint64_t, uint64_t* dot_value,
676 Output_section** dot_section,
677 std::string* fill, Input_section_list*)
678 {
679 Output_section* fill_section;
680 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
681 *dot_value, *dot_section,
682 &fill_section);
683 if (fill_section != NULL)
684 gold_warning(_("fill value is not absolute"));
685 // FIXME: The GNU linker supports fill values of arbitrary length.
686 unsigned char fill_buff[4];
687 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
688 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
689 }
690
691 // Print for debugging.
692 void
693 print(FILE* f) const
694 {
695 fprintf(f, " FILL(");
696 this->val_->print(f);
697 fprintf(f, ")\n");
698 }
699
700 private:
701 // The new fill value.
702 Expression* val_;
703 };
704
705 // Return whether STRING contains a wildcard character. This is used
706 // to speed up matching.
707
708 static inline bool
709 is_wildcard_string(const std::string& s)
710 {
711 return strpbrk(s.c_str(), "?*[") != NULL;
712 }
713
714 // An input section specification in an output section
715
716 class Output_section_element_input : public Output_section_element
717 {
718 public:
719 Output_section_element_input(const Input_section_spec* spec, bool keep);
720
721 // Finalize symbols--just update the value of the dot symbol.
722 void
723 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
724 Output_section** dot_section)
725 {
726 *dot_value = this->final_dot_value_;
727 *dot_section = this->final_dot_section_;
728 }
729
730 // See whether we match FILE_NAME and SECTION_NAME as an input
731 // section.
732 bool
733 match_name(const char* file_name, const char* section_name) const;
734
735 // Set the section address.
736 void
737 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
738 uint64_t subalign, uint64_t* dot_value,
739 Output_section**, std::string* fill,
740 Input_section_list*);
741
742 // Print for debugging.
743 void
744 print(FILE* f) const;
745
746 private:
747 // An input section pattern.
748 struct Input_section_pattern
749 {
750 std::string pattern;
751 bool pattern_is_wildcard;
752 Sort_wildcard sort;
753
754 Input_section_pattern(const char* patterna, size_t patternlena,
755 Sort_wildcard sorta)
756 : pattern(patterna, patternlena),
757 pattern_is_wildcard(is_wildcard_string(this->pattern)),
758 sort(sorta)
759 { }
760 };
761
762 typedef std::vector<Input_section_pattern> Input_section_patterns;
763
764 // Filename_exclusions is a pair of filename pattern and a bool
765 // indicating whether the filename is a wildcard.
766 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
767
768 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
769 // indicates whether this is a wildcard pattern.
770 static inline bool
771 match(const char* string, const char* pattern, bool is_wildcard_pattern)
772 {
773 return (is_wildcard_pattern
774 ? fnmatch(pattern, string, 0) == 0
775 : strcmp(string, pattern) == 0);
776 }
777
778 // See if we match a file name.
779 bool
780 match_file_name(const char* file_name) const;
781
782 // The file name pattern. If this is the empty string, we match all
783 // files.
784 std::string filename_pattern_;
785 // Whether the file name pattern is a wildcard.
786 bool filename_is_wildcard_;
787 // How the file names should be sorted. This may only be
788 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
789 Sort_wildcard filename_sort_;
790 // The list of file names to exclude.
791 Filename_exclusions filename_exclusions_;
792 // The list of input section patterns.
793 Input_section_patterns input_section_patterns_;
794 // Whether to keep this section when garbage collecting.
795 bool keep_;
796 // The value of dot after including all matching sections.
797 uint64_t final_dot_value_;
798 // The section where dot is defined after including all matching
799 // sections.
800 Output_section* final_dot_section_;
801 };
802
803 // Construct Output_section_element_input. The parser records strings
804 // as pointers into a copy of the script file, which will go away when
805 // parsing is complete. We make sure they are in std::string objects.
806
807 Output_section_element_input::Output_section_element_input(
808 const Input_section_spec* spec,
809 bool keep)
810 : filename_pattern_(),
811 filename_is_wildcard_(false),
812 filename_sort_(spec->file.sort),
813 filename_exclusions_(),
814 input_section_patterns_(),
815 keep_(keep),
816 final_dot_value_(0),
817 final_dot_section_(NULL)
818 {
819 // The filename pattern "*" is common, and matches all files. Turn
820 // it into the empty string.
821 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
822 this->filename_pattern_.assign(spec->file.name.value,
823 spec->file.name.length);
824 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_);
825
826 if (spec->input_sections.exclude != NULL)
827 {
828 for (String_list::const_iterator p =
829 spec->input_sections.exclude->begin();
830 p != spec->input_sections.exclude->end();
831 ++p)
832 {
833 bool is_wildcard = is_wildcard_string(*p);
834 this->filename_exclusions_.push_back(std::make_pair(*p,
835 is_wildcard));
836 }
837 }
838
839 if (spec->input_sections.sections != NULL)
840 {
841 Input_section_patterns& isp(this->input_section_patterns_);
842 for (String_sort_list::const_iterator p =
843 spec->input_sections.sections->begin();
844 p != spec->input_sections.sections->end();
845 ++p)
846 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
847 p->sort));
848 }
849 }
850
851 // See whether we match FILE_NAME.
852
853 bool
854 Output_section_element_input::match_file_name(const char* file_name) const
855 {
856 if (!this->filename_pattern_.empty())
857 {
858 // If we were called with no filename, we refuse to match a
859 // pattern which requires a file name.
860 if (file_name == NULL)
861 return false;
862
863 if (!match(file_name, this->filename_pattern_.c_str(),
864 this->filename_is_wildcard_))
865 return false;
866 }
867
868 if (file_name != NULL)
869 {
870 // Now we have to see whether FILE_NAME matches one of the
871 // exclusion patterns, if any.
872 for (Filename_exclusions::const_iterator p =
873 this->filename_exclusions_.begin();
874 p != this->filename_exclusions_.end();
875 ++p)
876 {
877 if (match(file_name, p->first.c_str(), p->second))
878 return false;
879 }
880 }
881
882 return true;
883 }
884
885 // See whether we match FILE_NAME and SECTION_NAME.
886
887 bool
888 Output_section_element_input::match_name(const char* file_name,
889 const char* section_name) const
890 {
891 if (!this->match_file_name(file_name))
892 return false;
893
894 // If there are no section name patterns, then we match.
895 if (this->input_section_patterns_.empty())
896 return true;
897
898 // See whether we match the section name patterns.
899 for (Input_section_patterns::const_iterator p =
900 this->input_section_patterns_.begin();
901 p != this->input_section_patterns_.end();
902 ++p)
903 {
904 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
905 return true;
906 }
907
908 // We didn't match any section names, so we didn't match.
909 return false;
910 }
911
912 // Information we use to sort the input sections.
913
914 struct Input_section_info
915 {
916 Relobj* relobj;
917 unsigned int shndx;
918 std::string section_name;
919 uint64_t size;
920 uint64_t addralign;
921 };
922
923 // A class to sort the input sections.
924
925 class Input_section_sorter
926 {
927 public:
928 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
929 : filename_sort_(filename_sort), section_sort_(section_sort)
930 { }
931
932 bool
933 operator()(const Input_section_info&, const Input_section_info&) const;
934
935 private:
936 Sort_wildcard filename_sort_;
937 Sort_wildcard section_sort_;
938 };
939
940 bool
941 Input_section_sorter::operator()(const Input_section_info& isi1,
942 const Input_section_info& isi2) const
943 {
944 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
945 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
946 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
947 && isi1.addralign == isi2.addralign))
948 {
949 if (isi1.section_name != isi2.section_name)
950 return isi1.section_name < isi2.section_name;
951 }
952 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
953 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
954 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
955 {
956 if (isi1.addralign != isi2.addralign)
957 return isi1.addralign < isi2.addralign;
958 }
959 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
960 {
961 if (isi1.relobj->name() != isi2.relobj->name())
962 return isi1.relobj->name() < isi2.relobj->name();
963 }
964
965 // Otherwise we leave them in the same order.
966 return false;
967 }
968
969 // Set the section address. Look in INPUT_SECTIONS for sections which
970 // match this spec, sort them as specified, and add them to the output
971 // section.
972
973 void
974 Output_section_element_input::set_section_addresses(
975 Symbol_table*,
976 Layout*,
977 Output_section* output_section,
978 uint64_t subalign,
979 uint64_t* dot_value,
980 Output_section** dot_section,
981 std::string* fill,
982 Input_section_list* input_sections)
983 {
984 // We build a list of sections which match each
985 // Input_section_pattern.
986
987 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
988 size_t input_pattern_count = this->input_section_patterns_.size();
989 if (input_pattern_count == 0)
990 input_pattern_count = 1;
991 Matching_sections matching_sections(input_pattern_count);
992
993 // Look through the list of sections for this output section. Add
994 // each one which matches to one of the elements of
995 // MATCHING_SECTIONS.
996
997 Input_section_list::iterator p = input_sections->begin();
998 while (p != input_sections->end())
999 {
1000 // Calling section_name and section_addralign is not very
1001 // efficient.
1002 Input_section_info isi;
1003 isi.relobj = p->first;
1004 isi.shndx = p->second;
1005
1006 // Lock the object so that we can get information about the
1007 // section. This is OK since we know we are single-threaded
1008 // here.
1009 {
1010 const Task* task = reinterpret_cast<const Task*>(-1);
1011 Task_lock_obj<Object> tl(task, p->first);
1012
1013 isi.section_name = p->first->section_name(p->second);
1014 isi.size = p->first->section_size(p->second);
1015 isi.addralign = p->first->section_addralign(p->second);
1016 }
1017
1018 if (!this->match_file_name(isi.relobj->name().c_str()))
1019 ++p;
1020 else if (this->input_section_patterns_.empty())
1021 {
1022 matching_sections[0].push_back(isi);
1023 p = input_sections->erase(p);
1024 }
1025 else
1026 {
1027 size_t i;
1028 for (i = 0; i < input_pattern_count; ++i)
1029 {
1030 const Input_section_pattern&
1031 isp(this->input_section_patterns_[i]);
1032 if (match(isi.section_name.c_str(), isp.pattern.c_str(),
1033 isp.pattern_is_wildcard))
1034 break;
1035 }
1036
1037 if (i >= this->input_section_patterns_.size())
1038 ++p;
1039 else
1040 {
1041 matching_sections[i].push_back(isi);
1042 p = input_sections->erase(p);
1043 }
1044 }
1045 }
1046
1047 // Look through MATCHING_SECTIONS. Sort each one as specified,
1048 // using a stable sort so that we get the default order when
1049 // sections are otherwise equal. Add each input section to the
1050 // output section.
1051
1052 for (size_t i = 0; i < input_pattern_count; ++i)
1053 {
1054 if (matching_sections[i].empty())
1055 continue;
1056
1057 gold_assert(output_section != NULL);
1058
1059 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1060 if (isp.sort != SORT_WILDCARD_NONE
1061 || this->filename_sort_ != SORT_WILDCARD_NONE)
1062 std::stable_sort(matching_sections[i].begin(),
1063 matching_sections[i].end(),
1064 Input_section_sorter(this->filename_sort_,
1065 isp.sort));
1066
1067 for (std::vector<Input_section_info>::const_iterator p =
1068 matching_sections[i].begin();
1069 p != matching_sections[i].end();
1070 ++p)
1071 {
1072 uint64_t this_subalign = p->addralign;
1073 if (this_subalign < subalign)
1074 this_subalign = subalign;
1075
1076 uint64_t address = align_address(*dot_value, this_subalign);
1077
1078 if (address > *dot_value && !fill->empty())
1079 {
1080 section_size_type length =
1081 convert_to_section_size_type(address - *dot_value);
1082 std::string this_fill = this->get_fill_string(fill, length);
1083 Output_section_data* posd = new Output_data_const(this_fill, 0);
1084 output_section->add_output_section_data(posd);
1085 }
1086
1087 output_section->add_input_section_for_script(p->relobj,
1088 p->shndx,
1089 p->size,
1090 this_subalign);
1091
1092 *dot_value = address + p->size;
1093 }
1094 }
1095
1096 this->final_dot_value_ = *dot_value;
1097 this->final_dot_section_ = *dot_section;
1098 }
1099
1100 // Print for debugging.
1101
1102 void
1103 Output_section_element_input::print(FILE* f) const
1104 {
1105 fprintf(f, " ");
1106
1107 if (this->keep_)
1108 fprintf(f, "KEEP(");
1109
1110 if (!this->filename_pattern_.empty())
1111 {
1112 bool need_close_paren = false;
1113 switch (this->filename_sort_)
1114 {
1115 case SORT_WILDCARD_NONE:
1116 break;
1117 case SORT_WILDCARD_BY_NAME:
1118 fprintf(f, "SORT_BY_NAME(");
1119 need_close_paren = true;
1120 break;
1121 default:
1122 gold_unreachable();
1123 }
1124
1125 fprintf(f, "%s", this->filename_pattern_.c_str());
1126
1127 if (need_close_paren)
1128 fprintf(f, ")");
1129 }
1130
1131 if (!this->input_section_patterns_.empty()
1132 || !this->filename_exclusions_.empty())
1133 {
1134 fprintf(f, "(");
1135
1136 bool need_space = false;
1137 if (!this->filename_exclusions_.empty())
1138 {
1139 fprintf(f, "EXCLUDE_FILE(");
1140 bool need_comma = false;
1141 for (Filename_exclusions::const_iterator p =
1142 this->filename_exclusions_.begin();
1143 p != this->filename_exclusions_.end();
1144 ++p)
1145 {
1146 if (need_comma)
1147 fprintf(f, ", ");
1148 fprintf(f, "%s", p->first.c_str());
1149 need_comma = true;
1150 }
1151 fprintf(f, ")");
1152 need_space = true;
1153 }
1154
1155 for (Input_section_patterns::const_iterator p =
1156 this->input_section_patterns_.begin();
1157 p != this->input_section_patterns_.end();
1158 ++p)
1159 {
1160 if (need_space)
1161 fprintf(f, " ");
1162
1163 int close_parens = 0;
1164 switch (p->sort)
1165 {
1166 case SORT_WILDCARD_NONE:
1167 break;
1168 case SORT_WILDCARD_BY_NAME:
1169 fprintf(f, "SORT_BY_NAME(");
1170 close_parens = 1;
1171 break;
1172 case SORT_WILDCARD_BY_ALIGNMENT:
1173 fprintf(f, "SORT_BY_ALIGNMENT(");
1174 close_parens = 1;
1175 break;
1176 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1177 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1178 close_parens = 2;
1179 break;
1180 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1181 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1182 close_parens = 2;
1183 break;
1184 default:
1185 gold_unreachable();
1186 }
1187
1188 fprintf(f, "%s", p->pattern.c_str());
1189
1190 for (int i = 0; i < close_parens; ++i)
1191 fprintf(f, ")");
1192
1193 need_space = true;
1194 }
1195
1196 fprintf(f, ")");
1197 }
1198
1199 if (this->keep_)
1200 fprintf(f, ")");
1201
1202 fprintf(f, "\n");
1203 }
1204
1205 // An output section.
1206
1207 class Output_section_definition : public Sections_element
1208 {
1209 public:
1210 typedef Output_section_element::Input_section_list Input_section_list;
1211
1212 Output_section_definition(const char* name, size_t namelen,
1213 const Parser_output_section_header* header);
1214
1215 // Finish the output section with the information in the trailer.
1216 void
1217 finish(const Parser_output_section_trailer* trailer);
1218
1219 // Add a symbol to be defined.
1220 void
1221 add_symbol_assignment(const char* name, size_t length, Expression* value,
1222 bool provide, bool hidden);
1223
1224 // Add an assignment to the special dot symbol.
1225 void
1226 add_dot_assignment(Expression* value);
1227
1228 // Add an assertion.
1229 void
1230 add_assertion(Expression* check, const char* message, size_t messagelen);
1231
1232 // Add a data item to the current output section.
1233 void
1234 add_data(int size, bool is_signed, Expression* val);
1235
1236 // Add a setting for the fill value.
1237 void
1238 add_fill(Expression* val);
1239
1240 // Add an input section specification.
1241 void
1242 add_input_section(const Input_section_spec* spec, bool keep);
1243
1244 // Record that the output section is relro.
1245 void
1246 set_is_relro()
1247 { this->is_relro_ = true; }
1248
1249 // Create any required output sections.
1250 void
1251 create_sections(Layout*);
1252
1253 // Add any symbols being defined to the symbol table.
1254 void
1255 add_symbols_to_table(Symbol_table* symtab);
1256
1257 // Finalize symbols and check assertions.
1258 void
1259 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1260
1261 // Return the output section name to use for an input file name and
1262 // section name.
1263 const char*
1264 output_section_name(const char* file_name, const char* section_name,
1265 Output_section***);
1266
1267 // Return whether to place an orphan section after this one.
1268 bool
1269 place_orphan_here(const Output_section *os, bool* exact, bool*) const;
1270
1271 // Set the section address.
1272 void
1273 set_section_addresses(Symbol_table* symtab, Layout* layout,
1274 uint64_t* dot_value, uint64_t* load_address);
1275
1276 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1277 // this section is constrained, and the input sections do not match,
1278 // return the constraint, and set *POSD.
1279 Section_constraint
1280 check_constraint(Output_section_definition** posd);
1281
1282 // See if this is the alternate output section for a constrained
1283 // output section. If it is, transfer the Output_section and return
1284 // true. Otherwise return false.
1285 bool
1286 alternate_constraint(Output_section_definition*, Section_constraint);
1287
1288 // Get the list of segments to use for an allocated section when
1289 // using a PHDRS clause.
1290 Output_section*
1291 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1292
1293 // Look for an output section by name and return the address, the
1294 // load address, the alignment, and the size. This is used when an
1295 // expression refers to an output section which was not actually
1296 // created. This returns true if the section was found, false
1297 // otherwise.
1298 bool
1299 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1300 uint64_t*) const;
1301
1302 // Return the associated Output_section if there is one.
1303 Output_section*
1304 get_output_section() const
1305 { return this->output_section_; }
1306
1307 // Print the contents to the FILE. This is for debugging.
1308 void
1309 print(FILE*) const;
1310
1311 private:
1312 typedef std::vector<Output_section_element*> Output_section_elements;
1313
1314 // The output section name.
1315 std::string name_;
1316 // The address. This may be NULL.
1317 Expression* address_;
1318 // The load address. This may be NULL.
1319 Expression* load_address_;
1320 // The alignment. This may be NULL.
1321 Expression* align_;
1322 // The input section alignment. This may be NULL.
1323 Expression* subalign_;
1324 // The constraint, if any.
1325 Section_constraint constraint_;
1326 // The fill value. This may be NULL.
1327 Expression* fill_;
1328 // The list of segments this section should go into. This may be
1329 // NULL.
1330 String_list* phdrs_;
1331 // The list of elements defining the section.
1332 Output_section_elements elements_;
1333 // The Output_section created for this definition. This will be
1334 // NULL if none was created.
1335 Output_section* output_section_;
1336 // The address after it has been evaluated.
1337 uint64_t evaluated_address_;
1338 // The load address after it has been evaluated.
1339 uint64_t evaluated_load_address_;
1340 // The alignment after it has been evaluated.
1341 uint64_t evaluated_addralign_;
1342 // The output section is relro.
1343 bool is_relro_;
1344 };
1345
1346 // Constructor.
1347
1348 Output_section_definition::Output_section_definition(
1349 const char* name,
1350 size_t namelen,
1351 const Parser_output_section_header* header)
1352 : name_(name, namelen),
1353 address_(header->address),
1354 load_address_(header->load_address),
1355 align_(header->align),
1356 subalign_(header->subalign),
1357 constraint_(header->constraint),
1358 fill_(NULL),
1359 phdrs_(NULL),
1360 elements_(),
1361 output_section_(NULL),
1362 evaluated_address_(0),
1363 evaluated_load_address_(0),
1364 evaluated_addralign_(0),
1365 is_relro_(false)
1366 {
1367 }
1368
1369 // Finish an output section.
1370
1371 void
1372 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
1373 {
1374 this->fill_ = trailer->fill;
1375 this->phdrs_ = trailer->phdrs;
1376 }
1377
1378 // Add a symbol to be defined.
1379
1380 void
1381 Output_section_definition::add_symbol_assignment(const char* name,
1382 size_t length,
1383 Expression* value,
1384 bool provide,
1385 bool hidden)
1386 {
1387 Output_section_element* p = new Output_section_element_assignment(name,
1388 length,
1389 value,
1390 provide,
1391 hidden);
1392 this->elements_.push_back(p);
1393 }
1394
1395 // Add an assignment to the special dot symbol.
1396
1397 void
1398 Output_section_definition::add_dot_assignment(Expression* value)
1399 {
1400 Output_section_element* p = new Output_section_element_dot_assignment(value);
1401 this->elements_.push_back(p);
1402 }
1403
1404 // Add an assertion.
1405
1406 void
1407 Output_section_definition::add_assertion(Expression* check,
1408 const char* message,
1409 size_t messagelen)
1410 {
1411 Output_section_element* p = new Output_section_element_assertion(check,
1412 message,
1413 messagelen);
1414 this->elements_.push_back(p);
1415 }
1416
1417 // Add a data item to the current output section.
1418
1419 void
1420 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
1421 {
1422 Output_section_element* p = new Output_section_element_data(size, is_signed,
1423 val);
1424 this->elements_.push_back(p);
1425 }
1426
1427 // Add a setting for the fill value.
1428
1429 void
1430 Output_section_definition::add_fill(Expression* val)
1431 {
1432 Output_section_element* p = new Output_section_element_fill(val);
1433 this->elements_.push_back(p);
1434 }
1435
1436 // Add an input section specification.
1437
1438 void
1439 Output_section_definition::add_input_section(const Input_section_spec* spec,
1440 bool keep)
1441 {
1442 Output_section_element* p = new Output_section_element_input(spec, keep);
1443 this->elements_.push_back(p);
1444 }
1445
1446 // Create any required output sections. We need an output section if
1447 // there is a data statement here.
1448
1449 void
1450 Output_section_definition::create_sections(Layout* layout)
1451 {
1452 if (this->output_section_ != NULL)
1453 return;
1454 for (Output_section_elements::const_iterator p = this->elements_.begin();
1455 p != this->elements_.end();
1456 ++p)
1457 {
1458 if ((*p)->needs_output_section())
1459 {
1460 const char* name = this->name_.c_str();
1461 this->output_section_ = layout->make_output_section_for_script(name);
1462 return;
1463 }
1464 }
1465 }
1466
1467 // Add any symbols being defined to the symbol table.
1468
1469 void
1470 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
1471 {
1472 for (Output_section_elements::iterator p = this->elements_.begin();
1473 p != this->elements_.end();
1474 ++p)
1475 (*p)->add_symbols_to_table(symtab);
1476 }
1477
1478 // Finalize symbols and check assertions.
1479
1480 void
1481 Output_section_definition::finalize_symbols(Symbol_table* symtab,
1482 const Layout* layout,
1483 uint64_t* dot_value)
1484 {
1485 if (this->output_section_ != NULL)
1486 *dot_value = this->output_section_->address();
1487 else
1488 {
1489 uint64_t address = *dot_value;
1490 if (this->address_ != NULL)
1491 {
1492 Output_section* dummy;
1493 address = this->address_->eval_with_dot(symtab, layout, true,
1494 *dot_value, NULL,
1495 &dummy);
1496 }
1497 if (this->align_ != NULL)
1498 {
1499 Output_section* dummy;
1500 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
1501 *dot_value,
1502 NULL,
1503 &dummy);
1504 address = align_address(address, align);
1505 }
1506 *dot_value = address;
1507 }
1508
1509 Output_section* dot_section = this->output_section_;
1510 for (Output_section_elements::iterator p = this->elements_.begin();
1511 p != this->elements_.end();
1512 ++p)
1513 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
1514 }
1515
1516 // Return the output section name to use for an input section name.
1517
1518 const char*
1519 Output_section_definition::output_section_name(const char* file_name,
1520 const char* section_name,
1521 Output_section*** slot)
1522 {
1523 // Ask each element whether it matches NAME.
1524 for (Output_section_elements::const_iterator p = this->elements_.begin();
1525 p != this->elements_.end();
1526 ++p)
1527 {
1528 if ((*p)->match_name(file_name, section_name))
1529 {
1530 // We found a match for NAME, which means that it should go
1531 // into this output section.
1532 *slot = &this->output_section_;
1533 return this->name_.c_str();
1534 }
1535 }
1536
1537 // We don't know about this section name.
1538 return NULL;
1539 }
1540
1541 // Return whether to place an orphan output section after this
1542 // section.
1543
1544 bool
1545 Output_section_definition::place_orphan_here(const Output_section *os,
1546 bool* exact,
1547 bool* is_relro) const
1548 {
1549 *is_relro = this->is_relro_;
1550
1551 // Check for the simple case first.
1552 if (this->output_section_ != NULL
1553 && this->output_section_->type() == os->type()
1554 && this->output_section_->flags() == os->flags())
1555 {
1556 *exact = true;
1557 return true;
1558 }
1559
1560 // Otherwise use some heuristics.
1561
1562 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1563 return false;
1564
1565 if (os->type() == elfcpp::SHT_NOBITS)
1566 {
1567 if (this->name_ == ".bss")
1568 {
1569 *exact = true;
1570 return true;
1571 }
1572 if (this->output_section_ != NULL
1573 && this->output_section_->type() == elfcpp::SHT_NOBITS)
1574 return true;
1575 }
1576 else if (os->type() == elfcpp::SHT_NOTE)
1577 {
1578 if (this->output_section_ != NULL
1579 && this->output_section_->type() == elfcpp::SHT_NOTE)
1580 {
1581 *exact = true;
1582 return true;
1583 }
1584 if (this->name_.compare(0, 5, ".note") == 0)
1585 {
1586 *exact = true;
1587 return true;
1588 }
1589 if (this->name_ == ".interp")
1590 return true;
1591 if (this->output_section_ != NULL
1592 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1593 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1594 return true;
1595 }
1596 else if (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
1597 {
1598 if (this->name_.compare(0, 4, ".rel") == 0)
1599 {
1600 *exact = true;
1601 return true;
1602 }
1603 if (this->output_section_ != NULL
1604 && (this->output_section_->type() == elfcpp::SHT_REL
1605 || this->output_section_->type() == elfcpp::SHT_RELA))
1606 {
1607 *exact = true;
1608 return true;
1609 }
1610 if (this->output_section_ != NULL
1611 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1612 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1613 return true;
1614 }
1615 else if (os->type() == elfcpp::SHT_PROGBITS
1616 && (os->flags() & elfcpp::SHF_WRITE) != 0)
1617 {
1618 if (this->name_ == ".data")
1619 {
1620 *exact = true;
1621 return true;
1622 }
1623 if (this->output_section_ != NULL
1624 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1625 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1626 return true;
1627 }
1628 else if (os->type() == elfcpp::SHT_PROGBITS
1629 && (os->flags() & elfcpp::SHF_EXECINSTR) != 0)
1630 {
1631 if (this->name_ == ".text")
1632 {
1633 *exact = true;
1634 return true;
1635 }
1636 if (this->output_section_ != NULL
1637 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1638 && (this->output_section_->flags() & elfcpp::SHF_EXECINSTR) != 0)
1639 return true;
1640 }
1641 else if (os->type() == elfcpp::SHT_PROGBITS
1642 || (os->type() != elfcpp::SHT_PROGBITS
1643 && (os->flags() & elfcpp::SHF_WRITE) == 0))
1644 {
1645 if (this->name_ == ".rodata")
1646 {
1647 *exact = true;
1648 return true;
1649 }
1650 if (this->output_section_ != NULL
1651 && this->output_section_->type() == elfcpp::SHT_PROGBITS
1652 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1653 return true;
1654 }
1655
1656 return false;
1657 }
1658
1659 // Set the section address. Note that the OUTPUT_SECTION_ field will
1660 // be NULL if no input sections were mapped to this output section.
1661 // We still have to adjust dot and process symbol assignments.
1662
1663 void
1664 Output_section_definition::set_section_addresses(Symbol_table* symtab,
1665 Layout* layout,
1666 uint64_t* dot_value,
1667 uint64_t* load_address)
1668 {
1669 uint64_t address;
1670 if (this->address_ == NULL)
1671 address = *dot_value;
1672 else
1673 {
1674 Output_section* dummy;
1675 address = this->address_->eval_with_dot(symtab, layout, true,
1676 *dot_value, NULL, &dummy);
1677 }
1678
1679 uint64_t align;
1680 if (this->align_ == NULL)
1681 {
1682 if (this->output_section_ == NULL)
1683 align = 0;
1684 else
1685 align = this->output_section_->addralign();
1686 }
1687 else
1688 {
1689 Output_section* align_section;
1690 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
1691 NULL, &align_section);
1692 if (align_section != NULL)
1693 gold_warning(_("alignment of section %s is not absolute"),
1694 this->name_.c_str());
1695 if (this->output_section_ != NULL)
1696 this->output_section_->set_addralign(align);
1697 }
1698
1699 address = align_address(address, align);
1700
1701 uint64_t start_address = address;
1702
1703 *dot_value = address;
1704
1705 // The address of non-SHF_ALLOC sections is forced to zero,
1706 // regardless of what the linker script wants.
1707 if (this->output_section_ != NULL
1708 && (this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0)
1709 this->output_section_->set_address(address);
1710
1711 this->evaluated_address_ = address;
1712 this->evaluated_addralign_ = align;
1713
1714 if (this->load_address_ == NULL)
1715 this->evaluated_load_address_ = address;
1716 else
1717 {
1718 Output_section* dummy;
1719 uint64_t load_address =
1720 this->load_address_->eval_with_dot(symtab, layout, true, *dot_value,
1721 this->output_section_, &dummy);
1722 if (this->output_section_ != NULL)
1723 this->output_section_->set_load_address(load_address);
1724 this->evaluated_load_address_ = load_address;
1725 }
1726
1727 uint64_t subalign;
1728 if (this->subalign_ == NULL)
1729 subalign = 0;
1730 else
1731 {
1732 Output_section* subalign_section;
1733 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
1734 *dot_value, NULL,
1735 &subalign_section);
1736 if (subalign_section != NULL)
1737 gold_warning(_("subalign of section %s is not absolute"),
1738 this->name_.c_str());
1739 }
1740
1741 std::string fill;
1742 if (this->fill_ != NULL)
1743 {
1744 // FIXME: The GNU linker supports fill values of arbitrary
1745 // length.
1746 Output_section* fill_section;
1747 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
1748 *dot_value,
1749 NULL,
1750 &fill_section);
1751 if (fill_section != NULL)
1752 gold_warning(_("fill of section %s is not absolute"),
1753 this->name_.c_str());
1754 unsigned char fill_buff[4];
1755 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1756 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
1757 }
1758
1759 Input_section_list input_sections;
1760 if (this->output_section_ != NULL)
1761 {
1762 // Get the list of input sections attached to this output
1763 // section. This will leave the output section with only
1764 // Output_section_data entries.
1765 address += this->output_section_->get_input_sections(address,
1766 fill,
1767 &input_sections);
1768 *dot_value = address;
1769 }
1770
1771 Output_section* dot_section = this->output_section_;
1772 for (Output_section_elements::iterator p = this->elements_.begin();
1773 p != this->elements_.end();
1774 ++p)
1775 (*p)->set_section_addresses(symtab, layout, this->output_section_,
1776 subalign, dot_value, &dot_section, &fill,
1777 &input_sections);
1778
1779 gold_assert(input_sections.empty());
1780
1781 if (this->load_address_ == NULL || this->output_section_ == NULL)
1782 *load_address = *dot_value;
1783 else
1784 *load_address = (this->output_section_->load_address()
1785 + (*dot_value - start_address));
1786
1787 if (this->output_section_ != NULL)
1788 {
1789 if (this->is_relro_)
1790 this->output_section_->set_is_relro();
1791 else
1792 this->output_section_->clear_is_relro();
1793 }
1794 }
1795
1796 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1797 // this section is constrained, and the input sections do not match,
1798 // return the constraint, and set *POSD.
1799
1800 Section_constraint
1801 Output_section_definition::check_constraint(Output_section_definition** posd)
1802 {
1803 switch (this->constraint_)
1804 {
1805 case CONSTRAINT_NONE:
1806 return CONSTRAINT_NONE;
1807
1808 case CONSTRAINT_ONLY_IF_RO:
1809 if (this->output_section_ != NULL
1810 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
1811 {
1812 *posd = this;
1813 return CONSTRAINT_ONLY_IF_RO;
1814 }
1815 return CONSTRAINT_NONE;
1816
1817 case CONSTRAINT_ONLY_IF_RW:
1818 if (this->output_section_ != NULL
1819 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
1820 {
1821 *posd = this;
1822 return CONSTRAINT_ONLY_IF_RW;
1823 }
1824 return CONSTRAINT_NONE;
1825
1826 case CONSTRAINT_SPECIAL:
1827 if (this->output_section_ != NULL)
1828 gold_error(_("SPECIAL constraints are not implemented"));
1829 return CONSTRAINT_NONE;
1830
1831 default:
1832 gold_unreachable();
1833 }
1834 }
1835
1836 // See if this is the alternate output section for a constrained
1837 // output section. If it is, transfer the Output_section and return
1838 // true. Otherwise return false.
1839
1840 bool
1841 Output_section_definition::alternate_constraint(
1842 Output_section_definition* posd,
1843 Section_constraint constraint)
1844 {
1845 if (this->name_ != posd->name_)
1846 return false;
1847
1848 switch (constraint)
1849 {
1850 case CONSTRAINT_ONLY_IF_RO:
1851 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
1852 return false;
1853 break;
1854
1855 case CONSTRAINT_ONLY_IF_RW:
1856 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
1857 return false;
1858 break;
1859
1860 default:
1861 gold_unreachable();
1862 }
1863
1864 // We have found the alternate constraint. We just need to move
1865 // over the Output_section. When constraints are used properly,
1866 // THIS should not have an output_section pointer, as all the input
1867 // sections should have matched the other definition.
1868
1869 if (this->output_section_ != NULL)
1870 gold_error(_("mismatched definition for constrained sections"));
1871
1872 this->output_section_ = posd->output_section_;
1873 posd->output_section_ = NULL;
1874
1875 if (this->is_relro_)
1876 this->output_section_->set_is_relro();
1877 else
1878 this->output_section_->clear_is_relro();
1879
1880 return true;
1881 }
1882
1883 // Get the list of segments to use for an allocated section when using
1884 // a PHDRS clause.
1885
1886 Output_section*
1887 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
1888 bool* orphan)
1889 {
1890 if (this->output_section_ == NULL)
1891 return NULL;
1892 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
1893 return NULL;
1894 *orphan = false;
1895 if (this->phdrs_ != NULL)
1896 *phdrs_list = this->phdrs_;
1897 return this->output_section_;
1898 }
1899
1900 // Look for an output section by name and return the address, the load
1901 // address, the alignment, and the size. This is used when an
1902 // expression refers to an output section which was not actually
1903 // created. This returns true if the section was found, false
1904 // otherwise.
1905
1906 bool
1907 Output_section_definition::get_output_section_info(const char* name,
1908 uint64_t* address,
1909 uint64_t* load_address,
1910 uint64_t* addralign,
1911 uint64_t* size) const
1912 {
1913 if (this->name_ != name)
1914 return false;
1915
1916 if (this->output_section_ != NULL)
1917 {
1918 *address = this->output_section_->address();
1919 if (this->output_section_->has_load_address())
1920 *load_address = this->output_section_->load_address();
1921 else
1922 *load_address = *address;
1923 *addralign = this->output_section_->addralign();
1924 *size = this->output_section_->current_data_size();
1925 }
1926 else
1927 {
1928 *address = this->evaluated_address_;
1929 *load_address = this->evaluated_load_address_;
1930 *addralign = this->evaluated_addralign_;
1931 *size = 0;
1932 }
1933
1934 return true;
1935 }
1936
1937 // Print for debugging.
1938
1939 void
1940 Output_section_definition::print(FILE* f) const
1941 {
1942 fprintf(f, " %s ", this->name_.c_str());
1943
1944 if (this->address_ != NULL)
1945 {
1946 this->address_->print(f);
1947 fprintf(f, " ");
1948 }
1949
1950 fprintf(f, ": ");
1951
1952 if (this->load_address_ != NULL)
1953 {
1954 fprintf(f, "AT(");
1955 this->load_address_->print(f);
1956 fprintf(f, ") ");
1957 }
1958
1959 if (this->align_ != NULL)
1960 {
1961 fprintf(f, "ALIGN(");
1962 this->align_->print(f);
1963 fprintf(f, ") ");
1964 }
1965
1966 if (this->subalign_ != NULL)
1967 {
1968 fprintf(f, "SUBALIGN(");
1969 this->subalign_->print(f);
1970 fprintf(f, ") ");
1971 }
1972
1973 fprintf(f, "{\n");
1974
1975 for (Output_section_elements::const_iterator p = this->elements_.begin();
1976 p != this->elements_.end();
1977 ++p)
1978 (*p)->print(f);
1979
1980 fprintf(f, " }");
1981
1982 if (this->fill_ != NULL)
1983 {
1984 fprintf(f, " = ");
1985 this->fill_->print(f);
1986 }
1987
1988 if (this->phdrs_ != NULL)
1989 {
1990 for (String_list::const_iterator p = this->phdrs_->begin();
1991 p != this->phdrs_->end();
1992 ++p)
1993 fprintf(f, " :%s", p->c_str());
1994 }
1995
1996 fprintf(f, "\n");
1997 }
1998
1999 // An output section created to hold orphaned input sections. These
2000 // do not actually appear in linker scripts. However, for convenience
2001 // when setting the output section addresses, we put a marker to these
2002 // sections in the appropriate place in the list of SECTIONS elements.
2003
2004 class Orphan_output_section : public Sections_element
2005 {
2006 public:
2007 Orphan_output_section(Output_section* os)
2008 : os_(os)
2009 { }
2010
2011 // Return whether to place an orphan section after this one.
2012 bool
2013 place_orphan_here(const Output_section *os, bool* exact, bool*) const;
2014
2015 // Set section addresses.
2016 void
2017 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*);
2018
2019 // Get the list of segments to use for an allocated section when
2020 // using a PHDRS clause.
2021 Output_section*
2022 allocate_to_segment(String_list**, bool*);
2023
2024 // Return the associated Output_section.
2025 Output_section*
2026 get_output_section() const
2027 { return this->os_; }
2028
2029 // Print for debugging.
2030 void
2031 print(FILE* f) const
2032 {
2033 fprintf(f, " marker for orphaned output section %s\n",
2034 this->os_->name());
2035 }
2036
2037 private:
2038 Output_section* os_;
2039 };
2040
2041 // Whether to place another orphan section after this one.
2042
2043 bool
2044 Orphan_output_section::place_orphan_here(const Output_section* os,
2045 bool* exact,
2046 bool* is_relro) const
2047 {
2048 if (this->os_->type() == os->type()
2049 && this->os_->flags() == os->flags())
2050 {
2051 *exact = true;
2052 *is_relro = this->os_->is_relro();
2053 return true;
2054 }
2055 return false;
2056 }
2057
2058 // Set section addresses.
2059
2060 void
2061 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2062 uint64_t* dot_value,
2063 uint64_t* load_address)
2064 {
2065 typedef std::list<std::pair<Relobj*, unsigned int> > Input_section_list;
2066
2067 bool have_load_address = *load_address != *dot_value;
2068
2069 uint64_t address = *dot_value;
2070 address = align_address(address, this->os_->addralign());
2071
2072 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2073 {
2074 this->os_->set_address(address);
2075 if (have_load_address)
2076 this->os_->set_load_address(align_address(*load_address,
2077 this->os_->addralign()));
2078 }
2079
2080 Input_section_list input_sections;
2081 address += this->os_->get_input_sections(address, "", &input_sections);
2082
2083 for (Input_section_list::iterator p = input_sections.begin();
2084 p != input_sections.end();
2085 ++p)
2086 {
2087 uint64_t addralign;
2088 uint64_t size;
2089
2090 // We know what are single-threaded, so it is OK to lock the
2091 // object.
2092 {
2093 const Task* task = reinterpret_cast<const Task*>(-1);
2094 Task_lock_obj<Object> tl(task, p->first);
2095 addralign = p->first->section_addralign(p->second);
2096 size = p->first->section_size(p->second);
2097 }
2098
2099 address = align_address(address, addralign);
2100 this->os_->add_input_section_for_script(p->first, p->second, size,
2101 addralign);
2102 address += size;
2103 }
2104
2105 if (!have_load_address)
2106 *load_address = address;
2107 else
2108 *load_address += address - *dot_value;
2109
2110 *dot_value = address;
2111 }
2112
2113 // Get the list of segments to use for an allocated section when using
2114 // a PHDRS clause. If this is an allocated section, return the
2115 // Output_section. We don't change the list of segments.
2116
2117 Output_section*
2118 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2119 {
2120 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2121 return NULL;
2122 *orphan = true;
2123 return this->os_;
2124 }
2125
2126 // Class Phdrs_element. A program header from a PHDRS clause.
2127
2128 class Phdrs_element
2129 {
2130 public:
2131 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2132 bool includes_filehdr, bool includes_phdrs,
2133 bool is_flags_valid, unsigned int flags,
2134 Expression* load_address)
2135 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2136 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2137 flags_(flags), load_address_(load_address), load_address_value_(0),
2138 segment_(NULL)
2139 { }
2140
2141 // Return the name of this segment.
2142 const std::string&
2143 name() const
2144 { return this->name_; }
2145
2146 // Return the type of the segment.
2147 unsigned int
2148 type() const
2149 { return this->type_; }
2150
2151 // Whether to include the file header.
2152 bool
2153 includes_filehdr() const
2154 { return this->includes_filehdr_; }
2155
2156 // Whether to include the program headers.
2157 bool
2158 includes_phdrs() const
2159 { return this->includes_phdrs_; }
2160
2161 // Return whether there is a load address.
2162 bool
2163 has_load_address() const
2164 { return this->load_address_ != NULL; }
2165
2166 // Evaluate the load address expression if there is one.
2167 void
2168 eval_load_address(Symbol_table* symtab, Layout* layout)
2169 {
2170 if (this->load_address_ != NULL)
2171 this->load_address_value_ = this->load_address_->eval(symtab, layout,
2172 true);
2173 }
2174
2175 // Return the load address.
2176 uint64_t
2177 load_address() const
2178 {
2179 gold_assert(this->load_address_ != NULL);
2180 return this->load_address_value_;
2181 }
2182
2183 // Create the segment.
2184 Output_segment*
2185 create_segment(Layout* layout)
2186 {
2187 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
2188 return this->segment_;
2189 }
2190
2191 // Return the segment.
2192 Output_segment*
2193 segment()
2194 { return this->segment_; }
2195
2196 // Set the segment flags if appropriate.
2197 void
2198 set_flags_if_valid()
2199 {
2200 if (this->is_flags_valid_)
2201 this->segment_->set_flags(this->flags_);
2202 }
2203
2204 // Print for debugging.
2205 void
2206 print(FILE*) const;
2207
2208 private:
2209 // The name used in the script.
2210 std::string name_;
2211 // The type of the segment (PT_LOAD, etc.).
2212 unsigned int type_;
2213 // Whether this segment includes the file header.
2214 bool includes_filehdr_;
2215 // Whether this segment includes the section headers.
2216 bool includes_phdrs_;
2217 // Whether the flags were explicitly specified.
2218 bool is_flags_valid_;
2219 // The flags for this segment (PF_R, etc.) if specified.
2220 unsigned int flags_;
2221 // The expression for the load address for this segment. This may
2222 // be NULL.
2223 Expression* load_address_;
2224 // The actual load address from evaluating the expression.
2225 uint64_t load_address_value_;
2226 // The segment itself.
2227 Output_segment* segment_;
2228 };
2229
2230 // Print for debugging.
2231
2232 void
2233 Phdrs_element::print(FILE* f) const
2234 {
2235 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
2236 if (this->includes_filehdr_)
2237 fprintf(f, " FILEHDR");
2238 if (this->includes_phdrs_)
2239 fprintf(f, " PHDRS");
2240 if (this->is_flags_valid_)
2241 fprintf(f, " FLAGS(%u)", this->flags_);
2242 if (this->load_address_ != NULL)
2243 {
2244 fprintf(f, " AT(");
2245 this->load_address_->print(f);
2246 fprintf(f, ")");
2247 }
2248 fprintf(f, ";\n");
2249 }
2250
2251 // Class Script_sections.
2252
2253 Script_sections::Script_sections()
2254 : saw_sections_clause_(false),
2255 in_sections_clause_(false),
2256 sections_elements_(NULL),
2257 output_section_(NULL),
2258 phdrs_elements_(NULL),
2259 data_segment_align_index_(-1U),
2260 saw_relro_end_(false)
2261 {
2262 }
2263
2264 // Start a SECTIONS clause.
2265
2266 void
2267 Script_sections::start_sections()
2268 {
2269 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
2270 this->saw_sections_clause_ = true;
2271 this->in_sections_clause_ = true;
2272 if (this->sections_elements_ == NULL)
2273 this->sections_elements_ = new Sections_elements;
2274 }
2275
2276 // Finish a SECTIONS clause.
2277
2278 void
2279 Script_sections::finish_sections()
2280 {
2281 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
2282 this->in_sections_clause_ = false;
2283 }
2284
2285 // Add a symbol to be defined.
2286
2287 void
2288 Script_sections::add_symbol_assignment(const char* name, size_t length,
2289 Expression* val, bool provide,
2290 bool hidden)
2291 {
2292 if (this->output_section_ != NULL)
2293 this->output_section_->add_symbol_assignment(name, length, val,
2294 provide, hidden);
2295 else
2296 {
2297 Sections_element* p = new Sections_element_assignment(name, length,
2298 val, provide,
2299 hidden);
2300 this->sections_elements_->push_back(p);
2301 }
2302 }
2303
2304 // Add an assignment to the special dot symbol.
2305
2306 void
2307 Script_sections::add_dot_assignment(Expression* val)
2308 {
2309 if (this->output_section_ != NULL)
2310 this->output_section_->add_dot_assignment(val);
2311 else
2312 {
2313 Sections_element* p = new Sections_element_dot_assignment(val);
2314 this->sections_elements_->push_back(p);
2315 }
2316 }
2317
2318 // Add an assertion.
2319
2320 void
2321 Script_sections::add_assertion(Expression* check, const char* message,
2322 size_t messagelen)
2323 {
2324 if (this->output_section_ != NULL)
2325 this->output_section_->add_assertion(check, message, messagelen);
2326 else
2327 {
2328 Sections_element* p = new Sections_element_assertion(check, message,
2329 messagelen);
2330 this->sections_elements_->push_back(p);
2331 }
2332 }
2333
2334 // Start processing entries for an output section.
2335
2336 void
2337 Script_sections::start_output_section(
2338 const char* name,
2339 size_t namelen,
2340 const Parser_output_section_header *header)
2341 {
2342 Output_section_definition* posd = new Output_section_definition(name,
2343 namelen,
2344 header);
2345 this->sections_elements_->push_back(posd);
2346 gold_assert(this->output_section_ == NULL);
2347 this->output_section_ = posd;
2348 }
2349
2350 // Stop processing entries for an output section.
2351
2352 void
2353 Script_sections::finish_output_section(
2354 const Parser_output_section_trailer* trailer)
2355 {
2356 gold_assert(this->output_section_ != NULL);
2357 this->output_section_->finish(trailer);
2358 this->output_section_ = NULL;
2359 }
2360
2361 // Add a data item to the current output section.
2362
2363 void
2364 Script_sections::add_data(int size, bool is_signed, Expression* val)
2365 {
2366 gold_assert(this->output_section_ != NULL);
2367 this->output_section_->add_data(size, is_signed, val);
2368 }
2369
2370 // Add a fill value setting to the current output section.
2371
2372 void
2373 Script_sections::add_fill(Expression* val)
2374 {
2375 gold_assert(this->output_section_ != NULL);
2376 this->output_section_->add_fill(val);
2377 }
2378
2379 // Add an input section specification to the current output section.
2380
2381 void
2382 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
2383 {
2384 gold_assert(this->output_section_ != NULL);
2385 this->output_section_->add_input_section(spec, keep);
2386 }
2387
2388 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
2389 // subsequent output sections may be relro.
2390
2391 void
2392 Script_sections::data_segment_align()
2393 {
2394 if (this->data_segment_align_index_ != -1U)
2395 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
2396 this->data_segment_align_index_ = this->sections_elements_->size();
2397 }
2398
2399 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
2400 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
2401
2402 void
2403 Script_sections::data_segment_relro_end()
2404 {
2405 if (this->saw_relro_end_)
2406 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
2407 "in a linker script"));
2408 this->saw_relro_end_ = true;
2409
2410 if (this->data_segment_align_index_ == -1U)
2411 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
2412 else
2413 {
2414 for (size_t i = this->data_segment_align_index_;
2415 i < this->sections_elements_->size();
2416 ++i)
2417 (*this->sections_elements_)[i]->set_is_relro();
2418 }
2419 }
2420
2421 // Create any required sections.
2422
2423 void
2424 Script_sections::create_sections(Layout* layout)
2425 {
2426 if (!this->saw_sections_clause_)
2427 return;
2428 for (Sections_elements::iterator p = this->sections_elements_->begin();
2429 p != this->sections_elements_->end();
2430 ++p)
2431 (*p)->create_sections(layout);
2432 }
2433
2434 // Add any symbols we are defining to the symbol table.
2435
2436 void
2437 Script_sections::add_symbols_to_table(Symbol_table* symtab)
2438 {
2439 if (!this->saw_sections_clause_)
2440 return;
2441 for (Sections_elements::iterator p = this->sections_elements_->begin();
2442 p != this->sections_elements_->end();
2443 ++p)
2444 (*p)->add_symbols_to_table(symtab);
2445 }
2446
2447 // Finalize symbols and check assertions.
2448
2449 void
2450 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
2451 {
2452 if (!this->saw_sections_clause_)
2453 return;
2454 uint64_t dot_value = 0;
2455 for (Sections_elements::iterator p = this->sections_elements_->begin();
2456 p != this->sections_elements_->end();
2457 ++p)
2458 (*p)->finalize_symbols(symtab, layout, &dot_value);
2459 }
2460
2461 // Return the name of the output section to use for an input file name
2462 // and section name.
2463
2464 const char*
2465 Script_sections::output_section_name(const char* file_name,
2466 const char* section_name,
2467 Output_section*** output_section_slot)
2468 {
2469 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2470 p != this->sections_elements_->end();
2471 ++p)
2472 {
2473 const char* ret = (*p)->output_section_name(file_name, section_name,
2474 output_section_slot);
2475
2476 if (ret != NULL)
2477 {
2478 // The special name /DISCARD/ means that the input section
2479 // should be discarded.
2480 if (strcmp(ret, "/DISCARD/") == 0)
2481 {
2482 *output_section_slot = NULL;
2483 return NULL;
2484 }
2485 return ret;
2486 }
2487 }
2488
2489 // If we couldn't find a mapping for the name, the output section
2490 // gets the name of the input section.
2491
2492 *output_section_slot = NULL;
2493
2494 return section_name;
2495 }
2496
2497 // Place a marker for an orphan output section into the SECTIONS
2498 // clause.
2499
2500 void
2501 Script_sections::place_orphan(Output_section* os)
2502 {
2503 // Look for an output section definition which matches the output
2504 // section. Put a marker after that section.
2505 bool is_relro = false;
2506 Sections_elements::iterator place = this->sections_elements_->end();
2507 for (Sections_elements::iterator p = this->sections_elements_->begin();
2508 p != this->sections_elements_->end();
2509 ++p)
2510 {
2511 bool exact = false;
2512 bool is_relro_here;
2513 if ((*p)->place_orphan_here(os, &exact, &is_relro_here))
2514 {
2515 place = p;
2516 is_relro = is_relro_here;
2517 if (exact)
2518 break;
2519 }
2520 }
2521
2522 // The insert function puts the new element before the iterator.
2523 if (place != this->sections_elements_->end())
2524 ++place;
2525
2526 this->sections_elements_->insert(place, new Orphan_output_section(os));
2527
2528 if (is_relro)
2529 os->set_is_relro();
2530 else
2531 os->clear_is_relro();
2532 }
2533
2534 // Set the addresses of all the output sections. Walk through all the
2535 // elements, tracking the dot symbol. Apply assignments which set
2536 // absolute symbol values, in case they are used when setting dot.
2537 // Fill in data statement values. As we find output sections, set the
2538 // address, set the address of all associated input sections, and
2539 // update dot. Return the segment which should hold the file header
2540 // and segment headers, if any.
2541
2542 Output_segment*
2543 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
2544 {
2545 gold_assert(this->saw_sections_clause_);
2546
2547 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
2548 // for our representation.
2549 for (Sections_elements::iterator p = this->sections_elements_->begin();
2550 p != this->sections_elements_->end();
2551 ++p)
2552 {
2553 Output_section_definition* posd;
2554 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
2555 if (failed_constraint != CONSTRAINT_NONE)
2556 {
2557 Sections_elements::iterator q;
2558 for (q = this->sections_elements_->begin();
2559 q != this->sections_elements_->end();
2560 ++q)
2561 {
2562 if (q != p)
2563 {
2564 if ((*q)->alternate_constraint(posd, failed_constraint))
2565 break;
2566 }
2567 }
2568
2569 if (q == this->sections_elements_->end())
2570 gold_error(_("no matching section constraint"));
2571 }
2572 }
2573
2574 // Force the alignment of the first TLS section to be the maximum
2575 // alignment of all TLS sections.
2576 Output_section* first_tls = NULL;
2577 uint64_t tls_align = 0;
2578 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
2579 p != this->sections_elements_->end();
2580 ++p)
2581 {
2582 Output_section *os = (*p)->get_output_section();
2583 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
2584 {
2585 if (first_tls == NULL)
2586 first_tls = os;
2587 if (os->addralign() > tls_align)
2588 tls_align = os->addralign();
2589 }
2590 }
2591 if (first_tls != NULL)
2592 first_tls->set_addralign(tls_align);
2593
2594 // For a relocatable link, we implicitly set dot to zero.
2595 uint64_t dot_value = 0;
2596 uint64_t load_address = 0;
2597 for (Sections_elements::iterator p = this->sections_elements_->begin();
2598 p != this->sections_elements_->end();
2599 ++p)
2600 (*p)->set_section_addresses(symtab, layout, &dot_value, &load_address);
2601
2602 if (this->phdrs_elements_ != NULL)
2603 {
2604 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
2605 p != this->phdrs_elements_->end();
2606 ++p)
2607 (*p)->eval_load_address(symtab, layout);
2608 }
2609
2610 return this->create_segments(layout);
2611 }
2612
2613 // Sort the sections in order to put them into segments.
2614
2615 class Sort_output_sections
2616 {
2617 public:
2618 bool
2619 operator()(const Output_section* os1, const Output_section* os2) const;
2620 };
2621
2622 bool
2623 Sort_output_sections::operator()(const Output_section* os1,
2624 const Output_section* os2) const
2625 {
2626 // Sort first by the load address.
2627 uint64_t lma1 = (os1->has_load_address()
2628 ? os1->load_address()
2629 : os1->address());
2630 uint64_t lma2 = (os2->has_load_address()
2631 ? os2->load_address()
2632 : os2->address());
2633 if (lma1 != lma2)
2634 return lma1 < lma2;
2635
2636 // Then sort by the virtual address.
2637 if (os1->address() != os2->address())
2638 return os1->address() < os2->address();
2639
2640 // Sort TLS sections to the end.
2641 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
2642 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
2643 if (tls1 != tls2)
2644 return tls2;
2645
2646 // Sort PROGBITS before NOBITS.
2647 if (os1->type() == elfcpp::SHT_PROGBITS && os2->type() == elfcpp::SHT_NOBITS)
2648 return true;
2649 if (os1->type() == elfcpp::SHT_NOBITS && os2->type() == elfcpp::SHT_PROGBITS)
2650 return false;
2651
2652 // Otherwise we don't care.
2653 return false;
2654 }
2655
2656 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
2657 // We treat a section with the SHF_TLS flag set as taking up space
2658 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
2659 // space for them in the file.
2660
2661 bool
2662 Script_sections::is_bss_section(const Output_section* os)
2663 {
2664 return (os->type() == elfcpp::SHT_NOBITS
2665 && (os->flags() & elfcpp::SHF_TLS) == 0);
2666 }
2667
2668 // Return the size taken by the file header and the program headers.
2669
2670 size_t
2671 Script_sections::total_header_size(Layout* layout) const
2672 {
2673 size_t segment_count = layout->segment_count();
2674 size_t file_header_size;
2675 size_t segment_headers_size;
2676 if (parameters->target().get_size() == 32)
2677 {
2678 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
2679 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
2680 }
2681 else if (parameters->target().get_size() == 64)
2682 {
2683 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
2684 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
2685 }
2686 else
2687 gold_unreachable();
2688
2689 return file_header_size + segment_headers_size;
2690 }
2691
2692 // Return the amount we have to subtract from the LMA to accomodate
2693 // headers of the given size. The complication is that the file
2694 // header have to be at the start of a page, as otherwise it will not
2695 // be at the start of the file.
2696
2697 uint64_t
2698 Script_sections::header_size_adjustment(uint64_t lma,
2699 size_t sizeof_headers) const
2700 {
2701 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2702 uint64_t hdr_lma = lma - sizeof_headers;
2703 hdr_lma &= ~(abi_pagesize - 1);
2704 return lma - hdr_lma;
2705 }
2706
2707 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
2708 // the segment which should hold the file header and segment headers,
2709 // if any.
2710
2711 Output_segment*
2712 Script_sections::create_segments(Layout* layout)
2713 {
2714 gold_assert(this->saw_sections_clause_);
2715
2716 if (parameters->options().relocatable())
2717 return NULL;
2718
2719 if (this->saw_phdrs_clause())
2720 return create_segments_from_phdrs_clause(layout);
2721
2722 Layout::Section_list sections;
2723 layout->get_allocated_sections(&sections);
2724
2725 // Sort the sections by address.
2726 std::stable_sort(sections.begin(), sections.end(), Sort_output_sections());
2727
2728 this->create_note_and_tls_segments(layout, &sections);
2729
2730 // Walk through the sections adding them to PT_LOAD segments.
2731 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
2732 Output_segment* first_seg = NULL;
2733 Output_segment* current_seg = NULL;
2734 bool is_current_seg_readonly = true;
2735 Layout::Section_list::iterator plast = sections.end();
2736 uint64_t last_vma = 0;
2737 uint64_t last_lma = 0;
2738 uint64_t last_size = 0;
2739 for (Layout::Section_list::iterator p = sections.begin();
2740 p != sections.end();
2741 ++p)
2742 {
2743 const uint64_t vma = (*p)->address();
2744 const uint64_t lma = ((*p)->has_load_address()
2745 ? (*p)->load_address()
2746 : vma);
2747 const uint64_t size = (*p)->current_data_size();
2748
2749 bool need_new_segment;
2750 if (current_seg == NULL)
2751 need_new_segment = true;
2752 else if (lma - vma != last_lma - last_vma)
2753 {
2754 // This section has a different LMA relationship than the
2755 // last one; we need a new segment.
2756 need_new_segment = true;
2757 }
2758 else if (align_address(last_lma + last_size, abi_pagesize)
2759 < align_address(lma, abi_pagesize))
2760 {
2761 // Putting this section in the segment would require
2762 // skipping a page.
2763 need_new_segment = true;
2764 }
2765 else if (is_bss_section(*plast) && !is_bss_section(*p))
2766 {
2767 // A non-BSS section can not follow a BSS section in the
2768 // same segment.
2769 need_new_segment = true;
2770 }
2771 else if (is_current_seg_readonly
2772 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
2773 && !parameters->options().omagic())
2774 {
2775 // Don't put a writable section in the same segment as a
2776 // non-writable section.
2777 need_new_segment = true;
2778 }
2779 else
2780 {
2781 // Otherwise, reuse the existing segment.
2782 need_new_segment = false;
2783 }
2784
2785 elfcpp::Elf_Word seg_flags =
2786 Layout::section_flags_to_segment((*p)->flags());
2787
2788 if (need_new_segment)
2789 {
2790 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2791 seg_flags);
2792 current_seg->set_addresses(vma, lma);
2793 if (first_seg == NULL)
2794 first_seg = current_seg;
2795 is_current_seg_readonly = true;
2796 }
2797
2798 current_seg->add_output_section(*p, seg_flags);
2799
2800 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
2801 is_current_seg_readonly = false;
2802
2803 plast = p;
2804 last_vma = vma;
2805 last_lma = lma;
2806 last_size = size;
2807 }
2808
2809 // An ELF program should work even if the program headers are not in
2810 // a PT_LOAD segment. However, it appears that the Linux kernel
2811 // does not set the AT_PHDR auxiliary entry in that case. It sets
2812 // the load address to p_vaddr - p_offset of the first PT_LOAD
2813 // segment. It then sets AT_PHDR to the load address plus the
2814 // offset to the program headers, e_phoff in the file header. This
2815 // fails when the program headers appear in the file before the
2816 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
2817 // segment to hold the file header and the program headers. This is
2818 // effectively what the GNU linker does, and it is slightly more
2819 // efficient in any case. We try to use the first PT_LOAD segment
2820 // if we can, otherwise we make a new one.
2821
2822 if (first_seg == NULL)
2823 return NULL;
2824
2825 size_t sizeof_headers = this->total_header_size(layout);
2826
2827 uint64_t vma = first_seg->vaddr();
2828 uint64_t lma = first_seg->paddr();
2829
2830 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
2831
2832 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
2833 {
2834 first_seg->set_addresses(vma - subtract, lma - subtract);
2835 return first_seg;
2836 }
2837
2838 // If there is no room to squeeze in the headers, then punt. The
2839 // resulting executable probably won't run on GNU/Linux, but we
2840 // trust that the user knows what they are doing.
2841 if (lma < subtract || vma < subtract)
2842 return NULL;
2843
2844 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
2845 elfcpp::PF_R);
2846 load_seg->set_addresses(vma - subtract, lma - subtract);
2847
2848 return load_seg;
2849 }
2850
2851 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
2852 // segment if there are any SHT_TLS sections.
2853
2854 void
2855 Script_sections::create_note_and_tls_segments(
2856 Layout* layout,
2857 const Layout::Section_list* sections)
2858 {
2859 gold_assert(!this->saw_phdrs_clause());
2860
2861 bool saw_tls = false;
2862 for (Layout::Section_list::const_iterator p = sections->begin();
2863 p != sections->end();
2864 ++p)
2865 {
2866 if ((*p)->type() == elfcpp::SHT_NOTE)
2867 {
2868 elfcpp::Elf_Word seg_flags =
2869 Layout::section_flags_to_segment((*p)->flags());
2870 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
2871 seg_flags);
2872 oseg->add_output_section(*p, seg_flags);
2873
2874 // Incorporate any subsequent SHT_NOTE sections, in the
2875 // hopes that the script is sensible.
2876 Layout::Section_list::const_iterator pnext = p + 1;
2877 while (pnext != sections->end()
2878 && (*pnext)->type() == elfcpp::SHT_NOTE)
2879 {
2880 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2881 oseg->add_output_section(*pnext, seg_flags);
2882 p = pnext;
2883 ++pnext;
2884 }
2885 }
2886
2887 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2888 {
2889 if (saw_tls)
2890 gold_error(_("TLS sections are not adjacent"));
2891
2892 elfcpp::Elf_Word seg_flags =
2893 Layout::section_flags_to_segment((*p)->flags());
2894 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
2895 seg_flags);
2896 oseg->add_output_section(*p, seg_flags);
2897
2898 Layout::Section_list::const_iterator pnext = p + 1;
2899 while (pnext != sections->end()
2900 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
2901 {
2902 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
2903 oseg->add_output_section(*pnext, seg_flags);
2904 p = pnext;
2905 ++pnext;
2906 }
2907
2908 saw_tls = true;
2909 }
2910 }
2911 }
2912
2913 // Add a program header. The PHDRS clause is syntactically distinct
2914 // from the SECTIONS clause, but we implement it with the SECTIONS
2915 // support becauase PHDRS is useless if there is no SECTIONS clause.
2916
2917 void
2918 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
2919 bool includes_filehdr, bool includes_phdrs,
2920 bool is_flags_valid, unsigned int flags,
2921 Expression* load_address)
2922 {
2923 if (this->phdrs_elements_ == NULL)
2924 this->phdrs_elements_ = new Phdrs_elements();
2925 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
2926 includes_filehdr,
2927 includes_phdrs,
2928 is_flags_valid, flags,
2929 load_address));
2930 }
2931
2932 // Return the number of segments we expect to create based on the
2933 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
2934
2935 size_t
2936 Script_sections::expected_segment_count(const Layout* layout) const
2937 {
2938 if (this->saw_phdrs_clause())
2939 return this->phdrs_elements_->size();
2940
2941 Layout::Section_list sections;
2942 layout->get_allocated_sections(&sections);
2943
2944 // We assume that we will need two PT_LOAD segments.
2945 size_t ret = 2;
2946
2947 bool saw_note = false;
2948 bool saw_tls = false;
2949 for (Layout::Section_list::const_iterator p = sections.begin();
2950 p != sections.end();
2951 ++p)
2952 {
2953 if ((*p)->type() == elfcpp::SHT_NOTE)
2954 {
2955 // Assume that all note sections will fit into a single
2956 // PT_NOTE segment.
2957 if (!saw_note)
2958 {
2959 ++ret;
2960 saw_note = true;
2961 }
2962 }
2963 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
2964 {
2965 // There can only be one PT_TLS segment.
2966 if (!saw_tls)
2967 {
2968 ++ret;
2969 saw_tls = true;
2970 }
2971 }
2972 }
2973
2974 return ret;
2975 }
2976
2977 // Create the segments from a PHDRS clause. Return the segment which
2978 // should hold the file header and program headers, if any.
2979
2980 Output_segment*
2981 Script_sections::create_segments_from_phdrs_clause(Layout* layout)
2982 {
2983 this->attach_sections_using_phdrs_clause(layout);
2984 return this->set_phdrs_clause_addresses(layout);
2985 }
2986
2987 // Create the segments from the PHDRS clause, and put the output
2988 // sections in them.
2989
2990 void
2991 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
2992 {
2993 typedef std::map<std::string, Output_segment*> Name_to_segment;
2994 Name_to_segment name_to_segment;
2995 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
2996 p != this->phdrs_elements_->end();
2997 ++p)
2998 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
2999
3000 // Walk through the output sections and attach them to segments.
3001 // Output sections in the script which do not list segments are
3002 // attached to the same set of segments as the immediately preceding
3003 // output section.
3004 String_list* phdr_names = NULL;
3005 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3006 p != this->sections_elements_->end();
3007 ++p)
3008 {
3009 bool orphan;
3010 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &orphan);
3011 if (os == NULL)
3012 continue;
3013
3014 if (phdr_names == NULL)
3015 {
3016 gold_error(_("allocated section not in any segment"));
3017 continue;
3018 }
3019
3020 // If this is an orphan section--one that was not explicitly
3021 // mentioned in the linker script--then it should not inherit
3022 // any segment type other than PT_LOAD. Otherwise, e.g., the
3023 // PT_INTERP segment will pick up following orphan sections,
3024 // which does not make sense. If this is not an orphan section,
3025 // we trust the linker script.
3026 if (orphan)
3027 {
3028 String_list::iterator q = phdr_names->begin();
3029 while (q != phdr_names->end())
3030 {
3031 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3032 // We give errors about unknown segments below.
3033 if (r == name_to_segment.end()
3034 || r->second->type() == elfcpp::PT_LOAD)
3035 ++q;
3036 else
3037 q = phdr_names->erase(q);
3038 }
3039 }
3040
3041 bool in_load_segment = false;
3042 for (String_list::const_iterator q = phdr_names->begin();
3043 q != phdr_names->end();
3044 ++q)
3045 {
3046 Name_to_segment::const_iterator r = name_to_segment.find(*q);
3047 if (r == name_to_segment.end())
3048 gold_error(_("no segment %s"), q->c_str());
3049 else
3050 {
3051 elfcpp::Elf_Word seg_flags =
3052 Layout::section_flags_to_segment(os->flags());
3053 r->second->add_output_section(os, seg_flags);
3054
3055 if (r->second->type() == elfcpp::PT_LOAD)
3056 {
3057 if (in_load_segment)
3058 gold_error(_("section in two PT_LOAD segments"));
3059 in_load_segment = true;
3060 }
3061 }
3062 }
3063
3064 if (!in_load_segment)
3065 gold_error(_("allocated section not in any PT_LOAD segment"));
3066 }
3067 }
3068
3069 // Set the addresses for segments created from a PHDRS clause. Return
3070 // the segment which should hold the file header and program headers,
3071 // if any.
3072
3073 Output_segment*
3074 Script_sections::set_phdrs_clause_addresses(Layout* layout)
3075 {
3076 Output_segment* load_seg = NULL;
3077 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3078 p != this->phdrs_elements_->end();
3079 ++p)
3080 {
3081 // Note that we have to set the flags after adding the output
3082 // sections to the segment, as adding an output segment can
3083 // change the flags.
3084 (*p)->set_flags_if_valid();
3085
3086 Output_segment* oseg = (*p)->segment();
3087
3088 if (oseg->type() != elfcpp::PT_LOAD)
3089 {
3090 // The addresses of non-PT_LOAD segments are set from the
3091 // PT_LOAD segments.
3092 if ((*p)->has_load_address())
3093 gold_error(_("may only specify load address for PT_LOAD segment"));
3094 continue;
3095 }
3096
3097 // The output sections should have addresses from the SECTIONS
3098 // clause. The addresses don't have to be in order, so find the
3099 // one with the lowest load address. Use that to set the
3100 // address of the segment.
3101
3102 Output_section* osec = oseg->section_with_lowest_load_address();
3103 if (osec == NULL)
3104 {
3105 oseg->set_addresses(0, 0);
3106 continue;
3107 }
3108
3109 uint64_t vma = osec->address();
3110 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
3111
3112 // Override the load address of the section with the load
3113 // address specified for the segment.
3114 if ((*p)->has_load_address())
3115 {
3116 if (osec->has_load_address())
3117 gold_warning(_("PHDRS load address overrides "
3118 "section %s load address"),
3119 osec->name());
3120
3121 lma = (*p)->load_address();
3122 }
3123
3124 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
3125 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
3126 {
3127 // We could support this if we wanted to.
3128 gold_error(_("using only one of FILEHDR and PHDRS is "
3129 "not currently supported"));
3130 }
3131 if (headers)
3132 {
3133 size_t sizeof_headers = this->total_header_size(layout);
3134 uint64_t subtract = this->header_size_adjustment(lma,
3135 sizeof_headers);
3136 if (lma >= subtract && vma >= subtract)
3137 {
3138 lma -= subtract;
3139 vma -= subtract;
3140 }
3141 else
3142 {
3143 gold_error(_("sections loaded on first page without room "
3144 "for file and program headers "
3145 "are not supported"));
3146 }
3147
3148 if (load_seg != NULL)
3149 gold_error(_("using FILEHDR and PHDRS on more than one "
3150 "PT_LOAD segment is not currently supported"));
3151 load_seg = oseg;
3152 }
3153
3154 oseg->set_addresses(vma, lma);
3155 }
3156
3157 return load_seg;
3158 }
3159
3160 // Add the file header and segment headers to non-load segments
3161 // specified in the PHDRS clause.
3162
3163 void
3164 Script_sections::put_headers_in_phdrs(Output_data* file_header,
3165 Output_data* segment_headers)
3166 {
3167 gold_assert(this->saw_phdrs_clause());
3168 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3169 p != this->phdrs_elements_->end();
3170 ++p)
3171 {
3172 if ((*p)->type() != elfcpp::PT_LOAD)
3173 {
3174 if ((*p)->includes_phdrs())
3175 (*p)->segment()->add_initial_output_data(segment_headers);
3176 if ((*p)->includes_filehdr())
3177 (*p)->segment()->add_initial_output_data(file_header);
3178 }
3179 }
3180 }
3181
3182 // Look for an output section by name and return the address, the load
3183 // address, the alignment, and the size. This is used when an
3184 // expression refers to an output section which was not actually
3185 // created. This returns true if the section was found, false
3186 // otherwise.
3187
3188 bool
3189 Script_sections::get_output_section_info(const char* name, uint64_t* address,
3190 uint64_t* load_address,
3191 uint64_t* addralign,
3192 uint64_t* size) const
3193 {
3194 if (!this->saw_sections_clause_)
3195 return false;
3196 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3197 p != this->sections_elements_->end();
3198 ++p)
3199 if ((*p)->get_output_section_info(name, address, load_address, addralign,
3200 size))
3201 return true;
3202 return false;
3203 }
3204
3205 // Print the SECTIONS clause to F for debugging.
3206
3207 void
3208 Script_sections::print(FILE* f) const
3209 {
3210 if (!this->saw_sections_clause_)
3211 return;
3212
3213 fprintf(f, "SECTIONS {\n");
3214
3215 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3216 p != this->sections_elements_->end();
3217 ++p)
3218 (*p)->print(f);
3219
3220 fprintf(f, "}\n");
3221
3222 if (this->phdrs_elements_ != NULL)
3223 {
3224 fprintf(f, "PHDRS {\n");
3225 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
3226 p != this->phdrs_elements_->end();
3227 ++p)
3228 (*p)->print(f);
3229 fprintf(f, "}\n");
3230 }
3231 }
3232
3233 } // End namespace gold.
This page took 0.099861 seconds and 5 git commands to generate.