Fix gold to group sections correctly via linker script.
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2015 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
98 increment_offset(std::string section_name, uint64_t amount,
99 const Symbol_table* symtab, const Layout* layout)
100 {
101 this->current_offset_ += amount;
102
103 if (this->current_offset_
104 > this->length_->eval(symtab, layout, false))
105 gold_error(_("section %s overflows end of region %s"),
106 section_name.c_str(), this->name_.c_str());
107 }
108
109 // Returns true iff there is room left in this region
110 // for AMOUNT more bytes of data.
111 bool
112 has_room_for(const Symbol_table* symtab, const Layout* layout,
113 uint64_t amount) const
114 {
115 return (this->current_offset_ + amount
116 < this->length_->eval(symtab, layout, false));
117 }
118
119 // Return true if the provided section flags
120 // are compatible with this region's attributes.
121 bool
122 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
123
124 void
125 add_section(Output_section_definition* sec, bool vma)
126 {
127 if (vma)
128 this->vma_sections_.push_back(sec);
129 else
130 this->lma_sections_.push_back(sec);
131 }
132
133 typedef std::vector<Output_section_definition*> Section_list;
134
135 // Return the start of the list of sections
136 // whose VMAs are taken from this region.
137 Section_list::const_iterator
138 get_vma_section_list_start() const
139 { return this->vma_sections_.begin(); }
140
141 // Return the start of the list of sections
142 // whose LMAs are taken from this region.
143 Section_list::const_iterator
144 get_lma_section_list_start() const
145 { return this->lma_sections_.begin(); }
146
147 // Return the end of the list of sections
148 // whose VMAs are taken from this region.
149 Section_list::const_iterator
150 get_vma_section_list_end() const
151 { return this->vma_sections_.end(); }
152
153 // Return the end of the list of sections
154 // whose LMAs are taken from this region.
155 Section_list::const_iterator
156 get_lma_section_list_end() const
157 { return this->lma_sections_.end(); }
158
159 Output_section_definition*
160 get_last_section() const
161 { return this->last_section_; }
162
163 void
164 set_last_section(Output_section_definition* sec)
165 { this->last_section_ = sec; }
166
167 private:
168
169 std::string name_;
170 unsigned int attributes_;
171 Expression* start_;
172 Expression* length_;
173 // The offset to the next free byte in the region.
174 // Note - for compatibility with GNU LD we only maintain one offset
175 // regardless of whether the region is being used for VMA values,
176 // LMA values, or both.
177 uint64_t current_offset_;
178 // A list of sections whose VMAs are set inside this region.
179 Section_list vma_sections_;
180 // A list of sections whose LMAs are set inside this region.
181 Section_list lma_sections_;
182 // The latest section to make use of this region.
183 Output_section_definition* last_section_;
184 };
185
186 // Return true if the provided section flags
187 // are compatible with this region's attributes.
188
189 bool
190 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
191 elfcpp::Elf_Xword type) const
192 {
193 unsigned int attrs = this->attributes_;
194
195 // No attributes means that this region is not compatible with anything.
196 if (attrs == 0)
197 return false;
198
199 bool match = true;
200 do
201 {
202 switch (attrs & - attrs)
203 {
204 case MEM_EXECUTABLE:
205 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
206 match = false;
207 break;
208
209 case MEM_WRITEABLE:
210 if ((flags & elfcpp::SHF_WRITE) == 0)
211 match = false;
212 break;
213
214 case MEM_READABLE:
215 // All sections are presumed readable.
216 break;
217
218 case MEM_ALLOCATABLE:
219 if ((flags & elfcpp::SHF_ALLOC) == 0)
220 match = false;
221 break;
222
223 case MEM_INITIALIZED:
224 if ((type & elfcpp::SHT_NOBITS) != 0)
225 match = false;
226 break;
227 }
228 attrs &= ~ (attrs & - attrs);
229 }
230 while (attrs != 0);
231
232 return match;
233 }
234
235 // Print a memory region.
236
237 void
238 Memory_region::print(FILE* f) const
239 {
240 fprintf(f, " %s", this->name_.c_str());
241
242 unsigned int attrs = this->attributes_;
243 if (attrs != 0)
244 {
245 fprintf(f, " (");
246 do
247 {
248 switch (attrs & - attrs)
249 {
250 case MEM_EXECUTABLE: fputc('x', f); break;
251 case MEM_WRITEABLE: fputc('w', f); break;
252 case MEM_READABLE: fputc('r', f); break;
253 case MEM_ALLOCATABLE: fputc('a', f); break;
254 case MEM_INITIALIZED: fputc('i', f); break;
255 default:
256 gold_unreachable();
257 }
258 attrs &= ~ (attrs & - attrs);
259 }
260 while (attrs != 0);
261 fputc(')', f);
262 }
263
264 fprintf(f, " : origin = ");
265 this->start_->print(f);
266 fprintf(f, ", length = ");
267 this->length_->print(f);
268 fprintf(f, "\n");
269 }
270
271 // Manage orphan sections. This is intended to be largely compatible
272 // with the GNU linker. The Linux kernel implicitly relies on
273 // something similar to the GNU linker's orphan placement. We
274 // originally used a simpler scheme here, but it caused the kernel
275 // build to fail, and was also rather inefficient.
276
277 class Orphan_section_placement
278 {
279 private:
280 typedef Script_sections::Elements_iterator Elements_iterator;
281
282 public:
283 Orphan_section_placement();
284
285 // Handle an output section during initialization of this mapping.
286 void
287 output_section_init(const std::string& name, Output_section*,
288 Elements_iterator location);
289
290 // Initialize the last location.
291 void
292 last_init(Elements_iterator location);
293
294 // Set *PWHERE to the address of an iterator pointing to the
295 // location to use for an orphan section. Return true if the
296 // iterator has a value, false otherwise.
297 bool
298 find_place(Output_section*, Elements_iterator** pwhere);
299
300 // Return the iterator being used for sections at the very end of
301 // the linker script.
302 Elements_iterator
303 last_place() const;
304
305 private:
306 // The places that we specifically recognize. This list is copied
307 // from the GNU linker.
308 enum Place_index
309 {
310 PLACE_TEXT,
311 PLACE_RODATA,
312 PLACE_DATA,
313 PLACE_TLS,
314 PLACE_TLS_BSS,
315 PLACE_BSS,
316 PLACE_REL,
317 PLACE_INTERP,
318 PLACE_NONALLOC,
319 PLACE_LAST,
320 PLACE_MAX
321 };
322
323 // The information we keep for a specific place.
324 struct Place
325 {
326 // The name of sections for this place.
327 const char* name;
328 // Whether we have a location for this place.
329 bool have_location;
330 // The iterator for this place.
331 Elements_iterator location;
332 };
333
334 // Initialize one place element.
335 void
336 initialize_place(Place_index, const char*);
337
338 // The places.
339 Place places_[PLACE_MAX];
340 // True if this is the first call to output_section_init.
341 bool first_init_;
342 };
343
344 // Initialize Orphan_section_placement.
345
346 Orphan_section_placement::Orphan_section_placement()
347 : first_init_(true)
348 {
349 this->initialize_place(PLACE_TEXT, ".text");
350 this->initialize_place(PLACE_RODATA, ".rodata");
351 this->initialize_place(PLACE_DATA, ".data");
352 this->initialize_place(PLACE_TLS, NULL);
353 this->initialize_place(PLACE_TLS_BSS, NULL);
354 this->initialize_place(PLACE_BSS, ".bss");
355 this->initialize_place(PLACE_REL, NULL);
356 this->initialize_place(PLACE_INTERP, ".interp");
357 this->initialize_place(PLACE_NONALLOC, NULL);
358 this->initialize_place(PLACE_LAST, NULL);
359 }
360
361 // Initialize one place element.
362
363 void
364 Orphan_section_placement::initialize_place(Place_index index, const char* name)
365 {
366 this->places_[index].name = name;
367 this->places_[index].have_location = false;
368 }
369
370 // While initializing the Orphan_section_placement information, this
371 // is called once for each output section named in the linker script.
372 // If we found an output section during the link, it will be passed in
373 // OS.
374
375 void
376 Orphan_section_placement::output_section_init(const std::string& name,
377 Output_section* os,
378 Elements_iterator location)
379 {
380 bool first_init = this->first_init_;
381 this->first_init_ = false;
382
383 for (int i = 0; i < PLACE_MAX; ++i)
384 {
385 if (this->places_[i].name != NULL && this->places_[i].name == name)
386 {
387 if (this->places_[i].have_location)
388 {
389 // We have already seen a section with this name.
390 return;
391 }
392
393 this->places_[i].location = location;
394 this->places_[i].have_location = true;
395
396 // If we just found the .bss section, restart the search for
397 // an unallocated section. This follows the GNU linker's
398 // behaviour.
399 if (i == PLACE_BSS)
400 this->places_[PLACE_NONALLOC].have_location = false;
401
402 return;
403 }
404 }
405
406 // Relocation sections.
407 if (!this->places_[PLACE_REL].have_location
408 && os != NULL
409 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
410 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
411 {
412 this->places_[PLACE_REL].location = location;
413 this->places_[PLACE_REL].have_location = true;
414 }
415
416 // We find the location for unallocated sections by finding the
417 // first debugging or comment section after the BSS section (if
418 // there is one).
419 if (!this->places_[PLACE_NONALLOC].have_location
420 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
421 {
422 // We add orphan sections after the location in PLACES_. We
423 // want to store unallocated sections before LOCATION. If this
424 // is the very first section, we can't use it.
425 if (!first_init)
426 {
427 --location;
428 this->places_[PLACE_NONALLOC].location = location;
429 this->places_[PLACE_NONALLOC].have_location = true;
430 }
431 }
432 }
433
434 // Initialize the last location.
435
436 void
437 Orphan_section_placement::last_init(Elements_iterator location)
438 {
439 this->places_[PLACE_LAST].location = location;
440 this->places_[PLACE_LAST].have_location = true;
441 }
442
443 // Set *PWHERE to the address of an iterator pointing to the location
444 // to use for an orphan section. Return true if the iterator has a
445 // value, false otherwise.
446
447 bool
448 Orphan_section_placement::find_place(Output_section* os,
449 Elements_iterator** pwhere)
450 {
451 // Figure out where OS should go. This is based on the GNU linker
452 // code. FIXME: The GNU linker handles small data sections
453 // specially, but we don't.
454 elfcpp::Elf_Word type = os->type();
455 elfcpp::Elf_Xword flags = os->flags();
456 Place_index index;
457 if ((flags & elfcpp::SHF_ALLOC) == 0
458 && !Layout::is_debug_info_section(os->name()))
459 index = PLACE_NONALLOC;
460 else if ((flags & elfcpp::SHF_ALLOC) == 0)
461 index = PLACE_LAST;
462 else if (type == elfcpp::SHT_NOTE)
463 index = PLACE_INTERP;
464 else if ((flags & elfcpp::SHF_TLS) != 0)
465 {
466 if (type == elfcpp::SHT_NOBITS)
467 index = PLACE_TLS_BSS;
468 else
469 index = PLACE_TLS;
470 }
471 else if (type == elfcpp::SHT_NOBITS)
472 index = PLACE_BSS;
473 else if ((flags & elfcpp::SHF_WRITE) != 0)
474 index = PLACE_DATA;
475 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
476 index = PLACE_REL;
477 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
478 index = PLACE_RODATA;
479 else
480 index = PLACE_TEXT;
481
482 // If we don't have a location yet, try to find one based on a
483 // plausible ordering of sections.
484 if (!this->places_[index].have_location)
485 {
486 Place_index follow;
487 switch (index)
488 {
489 default:
490 follow = PLACE_MAX;
491 break;
492 case PLACE_RODATA:
493 follow = PLACE_TEXT;
494 break;
495 case PLACE_BSS:
496 follow = PLACE_DATA;
497 break;
498 case PLACE_REL:
499 follow = PLACE_TEXT;
500 break;
501 case PLACE_INTERP:
502 follow = PLACE_TEXT;
503 break;
504 case PLACE_TLS:
505 follow = PLACE_DATA;
506 break;
507 case PLACE_TLS_BSS:
508 follow = PLACE_TLS;
509 if (!this->places_[PLACE_TLS].have_location)
510 follow = PLACE_DATA;
511 break;
512 }
513 if (follow != PLACE_MAX && this->places_[follow].have_location)
514 {
515 // Set the location of INDEX to the location of FOLLOW. The
516 // location of INDEX will then be incremented by the caller,
517 // so anything in INDEX will continue to be after anything
518 // in FOLLOW.
519 this->places_[index].location = this->places_[follow].location;
520 this->places_[index].have_location = true;
521 }
522 }
523
524 *pwhere = &this->places_[index].location;
525 bool ret = this->places_[index].have_location;
526
527 // The caller will set the location.
528 this->places_[index].have_location = true;
529
530 return ret;
531 }
532
533 // Return the iterator being used for sections at the very end of the
534 // linker script.
535
536 Orphan_section_placement::Elements_iterator
537 Orphan_section_placement::last_place() const
538 {
539 gold_assert(this->places_[PLACE_LAST].have_location);
540 return this->places_[PLACE_LAST].location;
541 }
542
543 // An element in a SECTIONS clause.
544
545 class Sections_element
546 {
547 public:
548 Sections_element()
549 { }
550
551 virtual ~Sections_element()
552 { }
553
554 // Return whether an output section is relro.
555 virtual bool
556 is_relro() const
557 { return false; }
558
559 // Record that an output section is relro.
560 virtual void
561 set_is_relro()
562 { }
563
564 // Create any required output sections. The only real
565 // implementation is in Output_section_definition.
566 virtual void
567 create_sections(Layout*)
568 { }
569
570 // Add any symbol being defined to the symbol table.
571 virtual void
572 add_symbols_to_table(Symbol_table*)
573 { }
574
575 // Finalize symbols and check assertions.
576 virtual void
577 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
578 { }
579
580 // Return the output section name to use for an input file name and
581 // section name. This only real implementation is in
582 // Output_section_definition.
583 virtual const char*
584 output_section_name(const char*, const char*, Output_section***,
585 Script_sections::Section_type*, bool*)
586 { return NULL; }
587
588 // Initialize OSP with an output section.
589 virtual void
590 orphan_section_init(Orphan_section_placement*,
591 Script_sections::Elements_iterator)
592 { }
593
594 // Set section addresses. This includes applying assignments if the
595 // expression is an absolute value.
596 virtual void
597 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
598 uint64_t*)
599 { }
600
601 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
602 // this section is constrained, and the input sections do not match,
603 // return the constraint, and set *POSD.
604 virtual Section_constraint
605 check_constraint(Output_section_definition**)
606 { return CONSTRAINT_NONE; }
607
608 // See if this is the alternate output section for a constrained
609 // output section. If it is, transfer the Output_section and return
610 // true. Otherwise return false.
611 virtual bool
612 alternate_constraint(Output_section_definition*, Section_constraint)
613 { return false; }
614
615 // Get the list of segments to use for an allocated section when
616 // using a PHDRS clause. If this is an allocated section, return
617 // the Output_section, and set *PHDRS_LIST (the first parameter) to
618 // the list of PHDRS to which it should be attached. If the PHDRS
619 // were not specified, don't change *PHDRS_LIST. When not returning
620 // NULL, set *ORPHAN (the second parameter) according to whether
621 // this is an orphan section--one that is not mentioned in the
622 // linker script.
623 virtual Output_section*
624 allocate_to_segment(String_list**, bool*)
625 { return NULL; }
626
627 // Look for an output section by name and return the address, the
628 // load address, the alignment, and the size. This is used when an
629 // expression refers to an output section which was not actually
630 // created. This returns true if the section was found, false
631 // otherwise. The only real definition is for
632 // Output_section_definition.
633 virtual bool
634 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
635 uint64_t*) const
636 { return false; }
637
638 // Return the associated Output_section if there is one.
639 virtual Output_section*
640 get_output_section() const
641 { return NULL; }
642
643 // Set the section's memory regions.
644 virtual void
645 set_memory_region(Memory_region*, bool)
646 { gold_error(_("Attempt to set a memory region for a non-output section")); }
647
648 // Print the element for debugging purposes.
649 virtual void
650 print(FILE* f) const = 0;
651 };
652
653 // An assignment in a SECTIONS clause outside of an output section.
654
655 class Sections_element_assignment : public Sections_element
656 {
657 public:
658 Sections_element_assignment(const char* name, size_t namelen,
659 Expression* val, bool provide, bool hidden)
660 : assignment_(name, namelen, false, val, provide, hidden)
661 { }
662
663 // Add the symbol to the symbol table.
664 void
665 add_symbols_to_table(Symbol_table* symtab)
666 { this->assignment_.add_to_table(symtab); }
667
668 // Finalize the symbol.
669 void
670 finalize_symbols(Symbol_table* symtab, const Layout* layout,
671 uint64_t* dot_value)
672 {
673 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
674 }
675
676 // Set the section address. There is no section here, but if the
677 // value is absolute, we set the symbol. This permits us to use
678 // absolute symbols when setting dot.
679 void
680 set_section_addresses(Symbol_table* symtab, Layout* layout,
681 uint64_t* dot_value, uint64_t*, uint64_t*)
682 {
683 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
684 }
685
686 // Print for debugging.
687 void
688 print(FILE* f) const
689 {
690 fprintf(f, " ");
691 this->assignment_.print(f);
692 }
693
694 private:
695 Symbol_assignment assignment_;
696 };
697
698 // An assignment to the dot symbol in a SECTIONS clause outside of an
699 // output section.
700
701 class Sections_element_dot_assignment : public Sections_element
702 {
703 public:
704 Sections_element_dot_assignment(Expression* val)
705 : val_(val)
706 { }
707
708 // Finalize the symbol.
709 void
710 finalize_symbols(Symbol_table* symtab, const Layout* layout,
711 uint64_t* dot_value)
712 {
713 // We ignore the section of the result because outside of an
714 // output section definition the dot symbol is always considered
715 // to be absolute.
716 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
717 NULL, NULL, NULL, false);
718 }
719
720 // Update the dot symbol while setting section addresses.
721 void
722 set_section_addresses(Symbol_table* symtab, Layout* layout,
723 uint64_t* dot_value, uint64_t* dot_alignment,
724 uint64_t* load_address)
725 {
726 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
727 NULL, NULL, dot_alignment, false);
728 *load_address = *dot_value;
729 }
730
731 // Print for debugging.
732 void
733 print(FILE* f) const
734 {
735 fprintf(f, " . = ");
736 this->val_->print(f);
737 fprintf(f, "\n");
738 }
739
740 private:
741 Expression* val_;
742 };
743
744 // An assertion in a SECTIONS clause outside of an output section.
745
746 class Sections_element_assertion : public Sections_element
747 {
748 public:
749 Sections_element_assertion(Expression* check, const char* message,
750 size_t messagelen)
751 : assertion_(check, message, messagelen)
752 { }
753
754 // Check the assertion.
755 void
756 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
757 { this->assertion_.check(symtab, layout); }
758
759 // Print for debugging.
760 void
761 print(FILE* f) const
762 {
763 fprintf(f, " ");
764 this->assertion_.print(f);
765 }
766
767 private:
768 Script_assertion assertion_;
769 };
770
771 // An element in an output section in a SECTIONS clause.
772
773 class Output_section_element
774 {
775 public:
776 // A list of input sections.
777 typedef std::list<Output_section::Input_section> Input_section_list;
778
779 Output_section_element()
780 { }
781
782 virtual ~Output_section_element()
783 { }
784
785 // Return whether this element requires an output section to exist.
786 virtual bool
787 needs_output_section() const
788 { return false; }
789
790 // Add any symbol being defined to the symbol table.
791 virtual void
792 add_symbols_to_table(Symbol_table*)
793 { }
794
795 // Finalize symbols and check assertions.
796 virtual void
797 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
798 { }
799
800 // Return whether this element matches FILE_NAME and SECTION_NAME.
801 // The only real implementation is in Output_section_element_input.
802 virtual bool
803 match_name(const char*, const char*, bool *) const
804 { return false; }
805
806 // Set section addresses. This includes applying assignments if the
807 // expression is an absolute value.
808 virtual void
809 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
810 uint64_t*, uint64_t*, Output_section**, std::string*,
811 Input_section_list*)
812 { }
813
814 // Print the element for debugging purposes.
815 virtual void
816 print(FILE* f) const = 0;
817
818 protected:
819 // Return a fill string that is LENGTH bytes long, filling it with
820 // FILL.
821 std::string
822 get_fill_string(const std::string* fill, section_size_type length) const;
823 };
824
825 std::string
826 Output_section_element::get_fill_string(const std::string* fill,
827 section_size_type length) const
828 {
829 std::string this_fill;
830 this_fill.reserve(length);
831 while (this_fill.length() + fill->length() <= length)
832 this_fill += *fill;
833 if (this_fill.length() < length)
834 this_fill.append(*fill, 0, length - this_fill.length());
835 return this_fill;
836 }
837
838 // A symbol assignment in an output section.
839
840 class Output_section_element_assignment : public Output_section_element
841 {
842 public:
843 Output_section_element_assignment(const char* name, size_t namelen,
844 Expression* val, bool provide,
845 bool hidden)
846 : assignment_(name, namelen, false, val, provide, hidden)
847 { }
848
849 // Add the symbol to the symbol table.
850 void
851 add_symbols_to_table(Symbol_table* symtab)
852 { this->assignment_.add_to_table(symtab); }
853
854 // Finalize the symbol.
855 void
856 finalize_symbols(Symbol_table* symtab, const Layout* layout,
857 uint64_t* dot_value, Output_section** dot_section)
858 {
859 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
860 *dot_section);
861 }
862
863 // Set the section address. There is no section here, but if the
864 // value is absolute, we set the symbol. This permits us to use
865 // absolute symbols when setting dot.
866 void
867 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
868 uint64_t, uint64_t* dot_value, uint64_t*,
869 Output_section** dot_section, std::string*,
870 Input_section_list*)
871 {
872 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
873 *dot_section);
874 }
875
876 // Print for debugging.
877 void
878 print(FILE* f) const
879 {
880 fprintf(f, " ");
881 this->assignment_.print(f);
882 }
883
884 private:
885 Symbol_assignment assignment_;
886 };
887
888 // An assignment to the dot symbol in an output section.
889
890 class Output_section_element_dot_assignment : public Output_section_element
891 {
892 public:
893 Output_section_element_dot_assignment(Expression* val)
894 : val_(val)
895 { }
896
897 // An assignment to dot within an output section is enough to force
898 // the output section to exist.
899 bool
900 needs_output_section() const
901 { return true; }
902
903 // Finalize the symbol.
904 void
905 finalize_symbols(Symbol_table* symtab, const Layout* layout,
906 uint64_t* dot_value, Output_section** dot_section)
907 {
908 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
909 *dot_section, dot_section, NULL,
910 true);
911 }
912
913 // Update the dot symbol while setting section addresses.
914 void
915 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
916 uint64_t, uint64_t* dot_value, uint64_t*,
917 Output_section** dot_section, std::string*,
918 Input_section_list*);
919
920 // Print for debugging.
921 void
922 print(FILE* f) const
923 {
924 fprintf(f, " . = ");
925 this->val_->print(f);
926 fprintf(f, "\n");
927 }
928
929 private:
930 Expression* val_;
931 };
932
933 // Update the dot symbol while setting section addresses.
934
935 void
936 Output_section_element_dot_assignment::set_section_addresses(
937 Symbol_table* symtab,
938 Layout* layout,
939 Output_section* output_section,
940 uint64_t,
941 uint64_t* dot_value,
942 uint64_t* dot_alignment,
943 Output_section** dot_section,
944 std::string* fill,
945 Input_section_list*)
946 {
947 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
948 *dot_value, *dot_section,
949 dot_section, dot_alignment,
950 true);
951 if (next_dot < *dot_value)
952 gold_error(_("dot may not move backward"));
953 if (next_dot > *dot_value && output_section != NULL)
954 {
955 section_size_type length = convert_to_section_size_type(next_dot
956 - *dot_value);
957 Output_section_data* posd;
958 if (fill->empty())
959 posd = new Output_data_zero_fill(length, 0);
960 else
961 {
962 std::string this_fill = this->get_fill_string(fill, length);
963 posd = new Output_data_const(this_fill, 0);
964 }
965 output_section->add_output_section_data(posd);
966 layout->new_output_section_data_from_script(posd);
967 }
968 *dot_value = next_dot;
969 }
970
971 // An assertion in an output section.
972
973 class Output_section_element_assertion : public Output_section_element
974 {
975 public:
976 Output_section_element_assertion(Expression* check, const char* message,
977 size_t messagelen)
978 : assertion_(check, message, messagelen)
979 { }
980
981 void
982 print(FILE* f) const
983 {
984 fprintf(f, " ");
985 this->assertion_.print(f);
986 }
987
988 private:
989 Script_assertion assertion_;
990 };
991
992 // We use a special instance of Output_section_data to handle BYTE,
993 // SHORT, etc. This permits forward references to symbols in the
994 // expressions.
995
996 class Output_data_expression : public Output_section_data
997 {
998 public:
999 Output_data_expression(int size, bool is_signed, Expression* val,
1000 const Symbol_table* symtab, const Layout* layout,
1001 uint64_t dot_value, Output_section* dot_section)
1002 : Output_section_data(size, 0, true),
1003 is_signed_(is_signed), val_(val), symtab_(symtab),
1004 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1005 { }
1006
1007 protected:
1008 // Write the data to the output file.
1009 void
1010 do_write(Output_file*);
1011
1012 // Write the data to a buffer.
1013 void
1014 do_write_to_buffer(unsigned char*);
1015
1016 // Write to a map file.
1017 void
1018 do_print_to_mapfile(Mapfile* mapfile) const
1019 { mapfile->print_output_data(this, _("** expression")); }
1020
1021 private:
1022 template<bool big_endian>
1023 void
1024 endian_write_to_buffer(uint64_t, unsigned char*);
1025
1026 bool is_signed_;
1027 Expression* val_;
1028 const Symbol_table* symtab_;
1029 const Layout* layout_;
1030 uint64_t dot_value_;
1031 Output_section* dot_section_;
1032 };
1033
1034 // Write the data element to the output file.
1035
1036 void
1037 Output_data_expression::do_write(Output_file* of)
1038 {
1039 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1040 this->write_to_buffer(view);
1041 of->write_output_view(this->offset(), this->data_size(), view);
1042 }
1043
1044 // Write the data element to a buffer.
1045
1046 void
1047 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1048 {
1049 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1050 true, this->dot_value_,
1051 this->dot_section_, NULL, NULL,
1052 false);
1053
1054 if (parameters->target().is_big_endian())
1055 this->endian_write_to_buffer<true>(val, buf);
1056 else
1057 this->endian_write_to_buffer<false>(val, buf);
1058 }
1059
1060 template<bool big_endian>
1061 void
1062 Output_data_expression::endian_write_to_buffer(uint64_t val,
1063 unsigned char* buf)
1064 {
1065 switch (this->data_size())
1066 {
1067 case 1:
1068 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1069 break;
1070 case 2:
1071 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1072 break;
1073 case 4:
1074 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1075 break;
1076 case 8:
1077 if (parameters->target().get_size() == 32)
1078 {
1079 val &= 0xffffffff;
1080 if (this->is_signed_ && (val & 0x80000000) != 0)
1081 val |= 0xffffffff00000000LL;
1082 }
1083 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1084 break;
1085 default:
1086 gold_unreachable();
1087 }
1088 }
1089
1090 // A data item in an output section.
1091
1092 class Output_section_element_data : public Output_section_element
1093 {
1094 public:
1095 Output_section_element_data(int size, bool is_signed, Expression* val)
1096 : size_(size), is_signed_(is_signed), val_(val)
1097 { }
1098
1099 // If there is a data item, then we must create an output section.
1100 bool
1101 needs_output_section() const
1102 { return true; }
1103
1104 // Finalize symbols--we just need to update dot.
1105 void
1106 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1107 Output_section**)
1108 { *dot_value += this->size_; }
1109
1110 // Store the value in the section.
1111 void
1112 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1113 uint64_t* dot_value, uint64_t*, Output_section**,
1114 std::string*, Input_section_list*);
1115
1116 // Print for debugging.
1117 void
1118 print(FILE*) const;
1119
1120 private:
1121 // The size in bytes.
1122 int size_;
1123 // Whether the value is signed.
1124 bool is_signed_;
1125 // The value.
1126 Expression* val_;
1127 };
1128
1129 // Store the value in the section.
1130
1131 void
1132 Output_section_element_data::set_section_addresses(
1133 Symbol_table* symtab,
1134 Layout* layout,
1135 Output_section* os,
1136 uint64_t,
1137 uint64_t* dot_value,
1138 uint64_t*,
1139 Output_section** dot_section,
1140 std::string*,
1141 Input_section_list*)
1142 {
1143 gold_assert(os != NULL);
1144 Output_data_expression* expression =
1145 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1146 symtab, layout, *dot_value, *dot_section);
1147 os->add_output_section_data(expression);
1148 layout->new_output_section_data_from_script(expression);
1149 *dot_value += this->size_;
1150 }
1151
1152 // Print for debugging.
1153
1154 void
1155 Output_section_element_data::print(FILE* f) const
1156 {
1157 const char* s;
1158 switch (this->size_)
1159 {
1160 case 1:
1161 s = "BYTE";
1162 break;
1163 case 2:
1164 s = "SHORT";
1165 break;
1166 case 4:
1167 s = "LONG";
1168 break;
1169 case 8:
1170 if (this->is_signed_)
1171 s = "SQUAD";
1172 else
1173 s = "QUAD";
1174 break;
1175 default:
1176 gold_unreachable();
1177 }
1178 fprintf(f, " %s(", s);
1179 this->val_->print(f);
1180 fprintf(f, ")\n");
1181 }
1182
1183 // A fill value setting in an output section.
1184
1185 class Output_section_element_fill : public Output_section_element
1186 {
1187 public:
1188 Output_section_element_fill(Expression* val)
1189 : val_(val)
1190 { }
1191
1192 // Update the fill value while setting section addresses.
1193 void
1194 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1195 uint64_t, uint64_t* dot_value, uint64_t*,
1196 Output_section** dot_section,
1197 std::string* fill, Input_section_list*)
1198 {
1199 Output_section* fill_section;
1200 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1201 *dot_value, *dot_section,
1202 &fill_section, NULL, false);
1203 if (fill_section != NULL)
1204 gold_warning(_("fill value is not absolute"));
1205 // FIXME: The GNU linker supports fill values of arbitrary length.
1206 unsigned char fill_buff[4];
1207 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1208 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1209 }
1210
1211 // Print for debugging.
1212 void
1213 print(FILE* f) const
1214 {
1215 fprintf(f, " FILL(");
1216 this->val_->print(f);
1217 fprintf(f, ")\n");
1218 }
1219
1220 private:
1221 // The new fill value.
1222 Expression* val_;
1223 };
1224
1225 // An input section specification in an output section
1226
1227 class Output_section_element_input : public Output_section_element
1228 {
1229 public:
1230 Output_section_element_input(const Input_section_spec* spec, bool keep);
1231
1232 // Finalize symbols--just update the value of the dot symbol.
1233 void
1234 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1235 Output_section** dot_section)
1236 {
1237 *dot_value = this->final_dot_value_;
1238 *dot_section = this->final_dot_section_;
1239 }
1240
1241 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1242 // If we do then also indicate whether the section should be KEPT.
1243 bool
1244 match_name(const char* file_name, const char* section_name, bool* keep) const;
1245
1246 // Set the section address.
1247 void
1248 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1249 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1250 Output_section**, std::string* fill,
1251 Input_section_list*);
1252
1253 // Print for debugging.
1254 void
1255 print(FILE* f) const;
1256
1257 private:
1258 // An input section pattern.
1259 struct Input_section_pattern
1260 {
1261 std::string pattern;
1262 bool pattern_is_wildcard;
1263 Sort_wildcard sort;
1264
1265 Input_section_pattern(const char* patterna, size_t patternlena,
1266 Sort_wildcard sorta)
1267 : pattern(patterna, patternlena),
1268 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1269 sort(sorta)
1270 { }
1271 };
1272
1273 typedef std::vector<Input_section_pattern> Input_section_patterns;
1274
1275 // Filename_exclusions is a pair of filename pattern and a bool
1276 // indicating whether the filename is a wildcard.
1277 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1278
1279 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1280 // indicates whether this is a wildcard pattern.
1281 static inline bool
1282 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1283 {
1284 return (is_wildcard_pattern
1285 ? fnmatch(pattern, string, 0) == 0
1286 : strcmp(string, pattern) == 0);
1287 }
1288
1289 // See if we match a file name.
1290 bool
1291 match_file_name(const char* file_name) const;
1292
1293 // The file name pattern. If this is the empty string, we match all
1294 // files.
1295 std::string filename_pattern_;
1296 // Whether the file name pattern is a wildcard.
1297 bool filename_is_wildcard_;
1298 // How the file names should be sorted. This may only be
1299 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1300 Sort_wildcard filename_sort_;
1301 // The list of file names to exclude.
1302 Filename_exclusions filename_exclusions_;
1303 // The list of input section patterns.
1304 Input_section_patterns input_section_patterns_;
1305 // Whether to keep this section when garbage collecting.
1306 bool keep_;
1307 // The value of dot after including all matching sections.
1308 uint64_t final_dot_value_;
1309 // The section where dot is defined after including all matching
1310 // sections.
1311 Output_section* final_dot_section_;
1312 };
1313
1314 // Construct Output_section_element_input. The parser records strings
1315 // as pointers into a copy of the script file, which will go away when
1316 // parsing is complete. We make sure they are in std::string objects.
1317
1318 Output_section_element_input::Output_section_element_input(
1319 const Input_section_spec* spec,
1320 bool keep)
1321 : filename_pattern_(),
1322 filename_is_wildcard_(false),
1323 filename_sort_(spec->file.sort),
1324 filename_exclusions_(),
1325 input_section_patterns_(),
1326 keep_(keep),
1327 final_dot_value_(0),
1328 final_dot_section_(NULL)
1329 {
1330 // The filename pattern "*" is common, and matches all files. Turn
1331 // it into the empty string.
1332 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1333 this->filename_pattern_.assign(spec->file.name.value,
1334 spec->file.name.length);
1335 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1336
1337 if (spec->input_sections.exclude != NULL)
1338 {
1339 for (String_list::const_iterator p =
1340 spec->input_sections.exclude->begin();
1341 p != spec->input_sections.exclude->end();
1342 ++p)
1343 {
1344 bool is_wildcard = is_wildcard_string((*p).c_str());
1345 this->filename_exclusions_.push_back(std::make_pair(*p,
1346 is_wildcard));
1347 }
1348 }
1349
1350 if (spec->input_sections.sections != NULL)
1351 {
1352 Input_section_patterns& isp(this->input_section_patterns_);
1353 for (String_sort_list::const_iterator p =
1354 spec->input_sections.sections->begin();
1355 p != spec->input_sections.sections->end();
1356 ++p)
1357 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1358 p->sort));
1359 }
1360 }
1361
1362 // See whether we match FILE_NAME.
1363
1364 bool
1365 Output_section_element_input::match_file_name(const char* file_name) const
1366 {
1367 if (!this->filename_pattern_.empty())
1368 {
1369 // If we were called with no filename, we refuse to match a
1370 // pattern which requires a file name.
1371 if (file_name == NULL)
1372 return false;
1373
1374 if (!match(file_name, this->filename_pattern_.c_str(),
1375 this->filename_is_wildcard_))
1376 return false;
1377 }
1378
1379 if (file_name != NULL)
1380 {
1381 // Now we have to see whether FILE_NAME matches one of the
1382 // exclusion patterns, if any.
1383 for (Filename_exclusions::const_iterator p =
1384 this->filename_exclusions_.begin();
1385 p != this->filename_exclusions_.end();
1386 ++p)
1387 {
1388 if (match(file_name, p->first.c_str(), p->second))
1389 return false;
1390 }
1391 }
1392
1393 return true;
1394 }
1395
1396 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1397 // KEEP indicates whether the section should survive garbage collection.
1398
1399 bool
1400 Output_section_element_input::match_name(const char* file_name,
1401 const char* section_name,
1402 bool *keep) const
1403 {
1404 if (!this->match_file_name(file_name))
1405 return false;
1406
1407 *keep = this->keep_;
1408
1409 // If there are no section name patterns, then we match.
1410 if (this->input_section_patterns_.empty())
1411 return true;
1412
1413 // See whether we match the section name patterns.
1414 for (Input_section_patterns::const_iterator p =
1415 this->input_section_patterns_.begin();
1416 p != this->input_section_patterns_.end();
1417 ++p)
1418 {
1419 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1420 return true;
1421 }
1422
1423 // We didn't match any section names, so we didn't match.
1424 return false;
1425 }
1426
1427 // Information we use to sort the input sections.
1428
1429 class Input_section_info
1430 {
1431 public:
1432 Input_section_info(const Output_section::Input_section& input_section)
1433 : input_section_(input_section), section_name_(),
1434 size_(0), addralign_(1)
1435 { }
1436
1437 // Return the simple input section.
1438 const Output_section::Input_section&
1439 input_section() const
1440 { return this->input_section_; }
1441
1442 // Return the object.
1443 Relobj*
1444 relobj() const
1445 { return this->input_section_.relobj(); }
1446
1447 // Return the section index.
1448 unsigned int
1449 shndx()
1450 { return this->input_section_.shndx(); }
1451
1452 // Return the section name.
1453 const std::string&
1454 section_name() const
1455 { return this->section_name_; }
1456
1457 // Set the section name.
1458 void
1459 set_section_name(const std::string name)
1460 { this->section_name_ = name; }
1461
1462 // Return the section size.
1463 uint64_t
1464 size() const
1465 { return this->size_; }
1466
1467 // Set the section size.
1468 void
1469 set_size(uint64_t size)
1470 { this->size_ = size; }
1471
1472 // Return the address alignment.
1473 uint64_t
1474 addralign() const
1475 { return this->addralign_; }
1476
1477 // Set the address alignment.
1478 void
1479 set_addralign(uint64_t addralign)
1480 { this->addralign_ = addralign; }
1481
1482 private:
1483 // Input section, can be a relaxed section.
1484 Output_section::Input_section input_section_;
1485 // Name of the section.
1486 std::string section_name_;
1487 // Section size.
1488 uint64_t size_;
1489 // Address alignment.
1490 uint64_t addralign_;
1491 };
1492
1493 // A class to sort the input sections.
1494
1495 class Input_section_sorter
1496 {
1497 public:
1498 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1499 : filename_sort_(filename_sort), section_sort_(section_sort)
1500 { }
1501
1502 bool
1503 operator()(const Input_section_info&, const Input_section_info&) const;
1504
1505 private:
1506 Sort_wildcard filename_sort_;
1507 Sort_wildcard section_sort_;
1508 };
1509
1510 bool
1511 Input_section_sorter::operator()(const Input_section_info& isi1,
1512 const Input_section_info& isi2) const
1513 {
1514 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1515 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1516 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1517 && isi1.addralign() == isi2.addralign()))
1518 {
1519 if (isi1.section_name() != isi2.section_name())
1520 return isi1.section_name() < isi2.section_name();
1521 }
1522 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1523 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1524 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1525 {
1526 if (isi1.addralign() != isi2.addralign())
1527 return isi1.addralign() < isi2.addralign();
1528 }
1529 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1530 {
1531 if (isi1.relobj()->name() != isi2.relobj()->name())
1532 return (isi1.relobj()->name() < isi2.relobj()->name());
1533 }
1534
1535 // Otherwise we leave them in the same order.
1536 return false;
1537 }
1538
1539 // Set the section address. Look in INPUT_SECTIONS for sections which
1540 // match this spec, sort them as specified, and add them to the output
1541 // section.
1542
1543 void
1544 Output_section_element_input::set_section_addresses(
1545 Symbol_table*,
1546 Layout* layout,
1547 Output_section* output_section,
1548 uint64_t subalign,
1549 uint64_t* dot_value,
1550 uint64_t*,
1551 Output_section** dot_section,
1552 std::string* fill,
1553 Input_section_list* input_sections)
1554 {
1555 // We build a list of sections which match each
1556 // Input_section_pattern.
1557
1558 // If none of the patterns specify a sort option, we throw all
1559 // matching input sections into a single bin, in the order we
1560 // find them. Otherwise, we put matching input sections into
1561 // a separate bin for each pattern, and sort each one as
1562 // specified. Thus, an input section spec like this:
1563 // *(.foo .bar)
1564 // will group all .foo and .bar sections in the order seen,
1565 // whereas this:
1566 // *(.foo) *(.bar)
1567 // will group all .foo sections followed by all .bar sections.
1568 // This matches Gnu ld behavior.
1569
1570 // Things get really weird, though, when you add a sort spec
1571 // on some, but not all, of the patterns, like this:
1572 // *(SORT_BY_NAME(.foo) .bar)
1573 // We do not attempt to match Gnu ld behavior in this case.
1574
1575 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1576 size_t input_pattern_count = this->input_section_patterns_.size();
1577 bool any_patterns_with_sort = false;
1578 for (size_t i = 0; i < input_pattern_count; ++i)
1579 {
1580 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1581 if (isp.sort != SORT_WILDCARD_NONE)
1582 any_patterns_with_sort = true;
1583 }
1584 if (input_pattern_count == 0 || !any_patterns_with_sort)
1585 input_pattern_count = 1;
1586 Matching_sections matching_sections(input_pattern_count);
1587
1588 // Look through the list of sections for this output section. Add
1589 // each one which matches to one of the elements of
1590 // MATCHING_SECTIONS.
1591
1592 Input_section_list::iterator p = input_sections->begin();
1593 while (p != input_sections->end())
1594 {
1595 Relobj* relobj = p->relobj();
1596 unsigned int shndx = p->shndx();
1597 Input_section_info isi(*p);
1598
1599 // Calling section_name and section_addralign is not very
1600 // efficient.
1601
1602 // Lock the object so that we can get information about the
1603 // section. This is OK since we know we are single-threaded
1604 // here.
1605 {
1606 const Task* task = reinterpret_cast<const Task*>(-1);
1607 Task_lock_obj<Object> tl(task, relobj);
1608
1609 isi.set_section_name(relobj->section_name(shndx));
1610 if (p->is_relaxed_input_section())
1611 {
1612 // We use current data size because relaxed section sizes may not
1613 // have finalized yet.
1614 isi.set_size(p->relaxed_input_section()->current_data_size());
1615 isi.set_addralign(p->relaxed_input_section()->addralign());
1616 }
1617 else
1618 {
1619 isi.set_size(relobj->section_size(shndx));
1620 isi.set_addralign(relobj->section_addralign(shndx));
1621 }
1622 }
1623
1624 if (!this->match_file_name(relobj->name().c_str()))
1625 ++p;
1626 else if (this->input_section_patterns_.empty())
1627 {
1628 matching_sections[0].push_back(isi);
1629 p = input_sections->erase(p);
1630 }
1631 else
1632 {
1633 size_t i;
1634 for (i = 0; i < input_pattern_count; ++i)
1635 {
1636 const Input_section_pattern&
1637 isp(this->input_section_patterns_[i]);
1638 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1639 isp.pattern_is_wildcard))
1640 break;
1641 }
1642
1643 if (i >= this->input_section_patterns_.size())
1644 ++p;
1645 else
1646 {
1647 if (!any_patterns_with_sort)
1648 i = 0;
1649 matching_sections[i].push_back(isi);
1650 p = input_sections->erase(p);
1651 }
1652 }
1653 }
1654
1655 // Look through MATCHING_SECTIONS. Sort each one as specified,
1656 // using a stable sort so that we get the default order when
1657 // sections are otherwise equal. Add each input section to the
1658 // output section.
1659
1660 uint64_t dot = *dot_value;
1661 for (size_t i = 0; i < input_pattern_count; ++i)
1662 {
1663 if (matching_sections[i].empty())
1664 continue;
1665
1666 gold_assert(output_section != NULL);
1667
1668 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1669 if (isp.sort != SORT_WILDCARD_NONE
1670 || this->filename_sort_ != SORT_WILDCARD_NONE)
1671 std::stable_sort(matching_sections[i].begin(),
1672 matching_sections[i].end(),
1673 Input_section_sorter(this->filename_sort_,
1674 isp.sort));
1675
1676 for (std::vector<Input_section_info>::const_iterator p =
1677 matching_sections[i].begin();
1678 p != matching_sections[i].end();
1679 ++p)
1680 {
1681 // Override the original address alignment if SUBALIGN is specified
1682 // and is greater than the original alignment. We need to make a
1683 // copy of the input section to modify the alignment.
1684 Output_section::Input_section sis(p->input_section());
1685
1686 uint64_t this_subalign = sis.addralign();
1687 if (!sis.is_input_section())
1688 sis.output_section_data()->finalize_data_size();
1689 uint64_t data_size = sis.data_size();
1690 if (this_subalign < subalign)
1691 {
1692 this_subalign = subalign;
1693 sis.set_addralign(subalign);
1694 }
1695
1696 uint64_t address = align_address(dot, this_subalign);
1697
1698 if (address > dot && !fill->empty())
1699 {
1700 section_size_type length =
1701 convert_to_section_size_type(address - dot);
1702 std::string this_fill = this->get_fill_string(fill, length);
1703 Output_section_data* posd = new Output_data_const(this_fill, 0);
1704 output_section->add_output_section_data(posd);
1705 layout->new_output_section_data_from_script(posd);
1706 }
1707
1708 output_section->add_script_input_section(sis);
1709 dot = address + data_size;
1710 }
1711 }
1712
1713 // An SHF_TLS/SHT_NOBITS section does not take up any
1714 // address space.
1715 if (output_section == NULL
1716 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1717 || output_section->type() != elfcpp::SHT_NOBITS)
1718 *dot_value = dot;
1719
1720 this->final_dot_value_ = *dot_value;
1721 this->final_dot_section_ = *dot_section;
1722 }
1723
1724 // Print for debugging.
1725
1726 void
1727 Output_section_element_input::print(FILE* f) const
1728 {
1729 fprintf(f, " ");
1730
1731 if (this->keep_)
1732 fprintf(f, "KEEP(");
1733
1734 if (!this->filename_pattern_.empty())
1735 {
1736 bool need_close_paren = false;
1737 switch (this->filename_sort_)
1738 {
1739 case SORT_WILDCARD_NONE:
1740 break;
1741 case SORT_WILDCARD_BY_NAME:
1742 fprintf(f, "SORT_BY_NAME(");
1743 need_close_paren = true;
1744 break;
1745 default:
1746 gold_unreachable();
1747 }
1748
1749 fprintf(f, "%s", this->filename_pattern_.c_str());
1750
1751 if (need_close_paren)
1752 fprintf(f, ")");
1753 }
1754
1755 if (!this->input_section_patterns_.empty()
1756 || !this->filename_exclusions_.empty())
1757 {
1758 fprintf(f, "(");
1759
1760 bool need_space = false;
1761 if (!this->filename_exclusions_.empty())
1762 {
1763 fprintf(f, "EXCLUDE_FILE(");
1764 bool need_comma = false;
1765 for (Filename_exclusions::const_iterator p =
1766 this->filename_exclusions_.begin();
1767 p != this->filename_exclusions_.end();
1768 ++p)
1769 {
1770 if (need_comma)
1771 fprintf(f, ", ");
1772 fprintf(f, "%s", p->first.c_str());
1773 need_comma = true;
1774 }
1775 fprintf(f, ")");
1776 need_space = true;
1777 }
1778
1779 for (Input_section_patterns::const_iterator p =
1780 this->input_section_patterns_.begin();
1781 p != this->input_section_patterns_.end();
1782 ++p)
1783 {
1784 if (need_space)
1785 fprintf(f, " ");
1786
1787 int close_parens = 0;
1788 switch (p->sort)
1789 {
1790 case SORT_WILDCARD_NONE:
1791 break;
1792 case SORT_WILDCARD_BY_NAME:
1793 fprintf(f, "SORT_BY_NAME(");
1794 close_parens = 1;
1795 break;
1796 case SORT_WILDCARD_BY_ALIGNMENT:
1797 fprintf(f, "SORT_BY_ALIGNMENT(");
1798 close_parens = 1;
1799 break;
1800 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1801 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1802 close_parens = 2;
1803 break;
1804 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1805 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1806 close_parens = 2;
1807 break;
1808 default:
1809 gold_unreachable();
1810 }
1811
1812 fprintf(f, "%s", p->pattern.c_str());
1813
1814 for (int i = 0; i < close_parens; ++i)
1815 fprintf(f, ")");
1816
1817 need_space = true;
1818 }
1819
1820 fprintf(f, ")");
1821 }
1822
1823 if (this->keep_)
1824 fprintf(f, ")");
1825
1826 fprintf(f, "\n");
1827 }
1828
1829 // An output section.
1830
1831 class Output_section_definition : public Sections_element
1832 {
1833 public:
1834 typedef Output_section_element::Input_section_list Input_section_list;
1835
1836 Output_section_definition(const char* name, size_t namelen,
1837 const Parser_output_section_header* header);
1838
1839 // Finish the output section with the information in the trailer.
1840 void
1841 finish(const Parser_output_section_trailer* trailer);
1842
1843 // Add a symbol to be defined.
1844 void
1845 add_symbol_assignment(const char* name, size_t length, Expression* value,
1846 bool provide, bool hidden);
1847
1848 // Add an assignment to the special dot symbol.
1849 void
1850 add_dot_assignment(Expression* value);
1851
1852 // Add an assertion.
1853 void
1854 add_assertion(Expression* check, const char* message, size_t messagelen);
1855
1856 // Add a data item to the current output section.
1857 void
1858 add_data(int size, bool is_signed, Expression* val);
1859
1860 // Add a setting for the fill value.
1861 void
1862 add_fill(Expression* val);
1863
1864 // Add an input section specification.
1865 void
1866 add_input_section(const Input_section_spec* spec, bool keep);
1867
1868 // Return whether the output section is relro.
1869 bool
1870 is_relro() const
1871 { return this->is_relro_; }
1872
1873 // Record that the output section is relro.
1874 void
1875 set_is_relro()
1876 { this->is_relro_ = true; }
1877
1878 // Create any required output sections.
1879 void
1880 create_sections(Layout*);
1881
1882 // Add any symbols being defined to the symbol table.
1883 void
1884 add_symbols_to_table(Symbol_table* symtab);
1885
1886 // Finalize symbols and check assertions.
1887 void
1888 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1889
1890 // Return the output section name to use for an input file name and
1891 // section name.
1892 const char*
1893 output_section_name(const char* file_name, const char* section_name,
1894 Output_section***, Script_sections::Section_type*,
1895 bool*);
1896
1897 // Initialize OSP with an output section.
1898 void
1899 orphan_section_init(Orphan_section_placement* osp,
1900 Script_sections::Elements_iterator p)
1901 { osp->output_section_init(this->name_, this->output_section_, p); }
1902
1903 // Set the section address.
1904 void
1905 set_section_addresses(Symbol_table* symtab, Layout* layout,
1906 uint64_t* dot_value, uint64_t*,
1907 uint64_t* load_address);
1908
1909 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1910 // this section is constrained, and the input sections do not match,
1911 // return the constraint, and set *POSD.
1912 Section_constraint
1913 check_constraint(Output_section_definition** posd);
1914
1915 // See if this is the alternate output section for a constrained
1916 // output section. If it is, transfer the Output_section and return
1917 // true. Otherwise return false.
1918 bool
1919 alternate_constraint(Output_section_definition*, Section_constraint);
1920
1921 // Get the list of segments to use for an allocated section when
1922 // using a PHDRS clause.
1923 Output_section*
1924 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1925
1926 // Look for an output section by name and return the address, the
1927 // load address, the alignment, and the size. This is used when an
1928 // expression refers to an output section which was not actually
1929 // created. This returns true if the section was found, false
1930 // otherwise.
1931 bool
1932 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1933 uint64_t*) const;
1934
1935 // Return the associated Output_section if there is one.
1936 Output_section*
1937 get_output_section() const
1938 { return this->output_section_; }
1939
1940 // Print the contents to the FILE. This is for debugging.
1941 void
1942 print(FILE*) const;
1943
1944 // Return the output section type if specified or Script_sections::ST_NONE.
1945 Script_sections::Section_type
1946 section_type() const;
1947
1948 // Store the memory region to use.
1949 void
1950 set_memory_region(Memory_region*, bool set_vma);
1951
1952 void
1953 set_section_vma(Expression* address)
1954 { this->address_ = address; }
1955
1956 void
1957 set_section_lma(Expression* address)
1958 { this->load_address_ = address; }
1959
1960 const std::string&
1961 get_section_name() const
1962 { return this->name_; }
1963
1964 private:
1965 static const char*
1966 script_section_type_name(Script_section_type);
1967
1968 typedef std::vector<Output_section_element*> Output_section_elements;
1969
1970 // The output section name.
1971 std::string name_;
1972 // The address. This may be NULL.
1973 Expression* address_;
1974 // The load address. This may be NULL.
1975 Expression* load_address_;
1976 // The alignment. This may be NULL.
1977 Expression* align_;
1978 // The input section alignment. This may be NULL.
1979 Expression* subalign_;
1980 // The constraint, if any.
1981 Section_constraint constraint_;
1982 // The fill value. This may be NULL.
1983 Expression* fill_;
1984 // The list of segments this section should go into. This may be
1985 // NULL.
1986 String_list* phdrs_;
1987 // The list of elements defining the section.
1988 Output_section_elements elements_;
1989 // The Output_section created for this definition. This will be
1990 // NULL if none was created.
1991 Output_section* output_section_;
1992 // The address after it has been evaluated.
1993 uint64_t evaluated_address_;
1994 // The load address after it has been evaluated.
1995 uint64_t evaluated_load_address_;
1996 // The alignment after it has been evaluated.
1997 uint64_t evaluated_addralign_;
1998 // The output section is relro.
1999 bool is_relro_;
2000 // The output section type if specified.
2001 enum Script_section_type script_section_type_;
2002 };
2003
2004 // Constructor.
2005
2006 Output_section_definition::Output_section_definition(
2007 const char* name,
2008 size_t namelen,
2009 const Parser_output_section_header* header)
2010 : name_(name, namelen),
2011 address_(header->address),
2012 load_address_(header->load_address),
2013 align_(header->align),
2014 subalign_(header->subalign),
2015 constraint_(header->constraint),
2016 fill_(NULL),
2017 phdrs_(NULL),
2018 elements_(),
2019 output_section_(NULL),
2020 evaluated_address_(0),
2021 evaluated_load_address_(0),
2022 evaluated_addralign_(0),
2023 is_relro_(false),
2024 script_section_type_(header->section_type)
2025 {
2026 }
2027
2028 // Finish an output section.
2029
2030 void
2031 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2032 {
2033 this->fill_ = trailer->fill;
2034 this->phdrs_ = trailer->phdrs;
2035 }
2036
2037 // Add a symbol to be defined.
2038
2039 void
2040 Output_section_definition::add_symbol_assignment(const char* name,
2041 size_t length,
2042 Expression* value,
2043 bool provide,
2044 bool hidden)
2045 {
2046 Output_section_element* p = new Output_section_element_assignment(name,
2047 length,
2048 value,
2049 provide,
2050 hidden);
2051 this->elements_.push_back(p);
2052 }
2053
2054 // Add an assignment to the special dot symbol.
2055
2056 void
2057 Output_section_definition::add_dot_assignment(Expression* value)
2058 {
2059 Output_section_element* p = new Output_section_element_dot_assignment(value);
2060 this->elements_.push_back(p);
2061 }
2062
2063 // Add an assertion.
2064
2065 void
2066 Output_section_definition::add_assertion(Expression* check,
2067 const char* message,
2068 size_t messagelen)
2069 {
2070 Output_section_element* p = new Output_section_element_assertion(check,
2071 message,
2072 messagelen);
2073 this->elements_.push_back(p);
2074 }
2075
2076 // Add a data item to the current output section.
2077
2078 void
2079 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2080 {
2081 Output_section_element* p = new Output_section_element_data(size, is_signed,
2082 val);
2083 this->elements_.push_back(p);
2084 }
2085
2086 // Add a setting for the fill value.
2087
2088 void
2089 Output_section_definition::add_fill(Expression* val)
2090 {
2091 Output_section_element* p = new Output_section_element_fill(val);
2092 this->elements_.push_back(p);
2093 }
2094
2095 // Add an input section specification.
2096
2097 void
2098 Output_section_definition::add_input_section(const Input_section_spec* spec,
2099 bool keep)
2100 {
2101 Output_section_element* p = new Output_section_element_input(spec, keep);
2102 this->elements_.push_back(p);
2103 }
2104
2105 // Create any required output sections. We need an output section if
2106 // there is a data statement here.
2107
2108 void
2109 Output_section_definition::create_sections(Layout* layout)
2110 {
2111 if (this->output_section_ != NULL)
2112 return;
2113 for (Output_section_elements::const_iterator p = this->elements_.begin();
2114 p != this->elements_.end();
2115 ++p)
2116 {
2117 if ((*p)->needs_output_section())
2118 {
2119 const char* name = this->name_.c_str();
2120 this->output_section_ =
2121 layout->make_output_section_for_script(name, this->section_type());
2122 return;
2123 }
2124 }
2125 }
2126
2127 // Add any symbols being defined to the symbol table.
2128
2129 void
2130 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2131 {
2132 for (Output_section_elements::iterator p = this->elements_.begin();
2133 p != this->elements_.end();
2134 ++p)
2135 (*p)->add_symbols_to_table(symtab);
2136 }
2137
2138 // Finalize symbols and check assertions.
2139
2140 void
2141 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2142 const Layout* layout,
2143 uint64_t* dot_value)
2144 {
2145 if (this->output_section_ != NULL)
2146 *dot_value = this->output_section_->address();
2147 else
2148 {
2149 uint64_t address = *dot_value;
2150 if (this->address_ != NULL)
2151 {
2152 address = this->address_->eval_with_dot(symtab, layout, true,
2153 *dot_value, NULL,
2154 NULL, NULL, false);
2155 }
2156 if (this->align_ != NULL)
2157 {
2158 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2159 *dot_value, NULL,
2160 NULL, NULL, false);
2161 address = align_address(address, align);
2162 }
2163 *dot_value = address;
2164 }
2165
2166 Output_section* dot_section = this->output_section_;
2167 for (Output_section_elements::iterator p = this->elements_.begin();
2168 p != this->elements_.end();
2169 ++p)
2170 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2171 }
2172
2173 // Return the output section name to use for an input section name.
2174
2175 const char*
2176 Output_section_definition::output_section_name(
2177 const char* file_name,
2178 const char* section_name,
2179 Output_section*** slot,
2180 Script_sections::Section_type* psection_type,
2181 bool* keep)
2182 {
2183 // Ask each element whether it matches NAME.
2184 for (Output_section_elements::const_iterator p = this->elements_.begin();
2185 p != this->elements_.end();
2186 ++p)
2187 {
2188 if ((*p)->match_name(file_name, section_name, keep))
2189 {
2190 // We found a match for NAME, which means that it should go
2191 // into this output section.
2192 *slot = &this->output_section_;
2193 *psection_type = this->section_type();
2194 return this->name_.c_str();
2195 }
2196 }
2197
2198 // We don't know about this section name.
2199 return NULL;
2200 }
2201
2202 // Return true if memory from START to START + LENGTH is contained
2203 // within a memory region.
2204
2205 bool
2206 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2207 uint64_t start, uint64_t length) const
2208 {
2209 if (this->memory_regions_ == NULL)
2210 return false;
2211
2212 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2213 mr != this->memory_regions_->end();
2214 ++mr)
2215 {
2216 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2217 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2218
2219 if (s <= start
2220 && (s + l) >= (start + length))
2221 return true;
2222 }
2223
2224 return false;
2225 }
2226
2227 // Find a memory region that should be used by a given output SECTION.
2228 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2229 // that used the return memory region.
2230
2231 Memory_region*
2232 Script_sections::find_memory_region(
2233 Output_section_definition* section,
2234 bool find_vma_region,
2235 Output_section_definition** previous_section_return)
2236 {
2237 if (previous_section_return != NULL)
2238 * previous_section_return = NULL;
2239
2240 // Walk the memory regions specified in this script, if any.
2241 if (this->memory_regions_ == NULL)
2242 return NULL;
2243
2244 // The /DISCARD/ section never gets assigned to any region.
2245 if (section->get_section_name() == "/DISCARD/")
2246 return NULL;
2247
2248 Memory_region* first_match = NULL;
2249
2250 // First check to see if a region has been assigned to this section.
2251 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2252 mr != this->memory_regions_->end();
2253 ++mr)
2254 {
2255 if (find_vma_region)
2256 {
2257 for (Memory_region::Section_list::const_iterator s =
2258 (*mr)->get_vma_section_list_start();
2259 s != (*mr)->get_vma_section_list_end();
2260 ++s)
2261 if ((*s) == section)
2262 {
2263 (*mr)->set_last_section(section);
2264 return *mr;
2265 }
2266 }
2267 else
2268 {
2269 for (Memory_region::Section_list::const_iterator s =
2270 (*mr)->get_lma_section_list_start();
2271 s != (*mr)->get_lma_section_list_end();
2272 ++s)
2273 if ((*s) == section)
2274 {
2275 (*mr)->set_last_section(section);
2276 return *mr;
2277 }
2278 }
2279
2280 // Make a note of the first memory region whose attributes
2281 // are compatible with the section. If we do not find an
2282 // explicit region assignment, then we will return this region.
2283 Output_section* out_sec = section->get_output_section();
2284 if (first_match == NULL
2285 && out_sec != NULL
2286 && (*mr)->attributes_compatible(out_sec->flags(),
2287 out_sec->type()))
2288 first_match = *mr;
2289 }
2290
2291 // With LMA computations, if an explicit region has not been specified then
2292 // we will want to set the difference between the VMA and the LMA of the
2293 // section were searching for to be the same as the difference between the
2294 // VMA and LMA of the last section to be added to first matched region.
2295 // Hence, if it was asked for, we return a pointer to the last section
2296 // known to be used by the first matched region.
2297 if (first_match != NULL
2298 && previous_section_return != NULL)
2299 *previous_section_return = first_match->get_last_section();
2300
2301 return first_match;
2302 }
2303
2304 // Set the section address. Note that the OUTPUT_SECTION_ field will
2305 // be NULL if no input sections were mapped to this output section.
2306 // We still have to adjust dot and process symbol assignments.
2307
2308 void
2309 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2310 Layout* layout,
2311 uint64_t* dot_value,
2312 uint64_t* dot_alignment,
2313 uint64_t* load_address)
2314 {
2315 Memory_region* vma_region = NULL;
2316 Memory_region* lma_region = NULL;
2317 Script_sections* script_sections =
2318 layout->script_options()->script_sections();
2319 uint64_t address;
2320 uint64_t old_dot_value = *dot_value;
2321 uint64_t old_load_address = *load_address;
2322
2323 // If input section sorting is requested via --section-ordering-file or
2324 // linker plugins, then do it here. This is important because we want
2325 // any sorting specified in the linker scripts, which will be done after
2326 // this, to take precedence. The final order of input sections is then
2327 // guaranteed to be according to the linker script specification.
2328 if (this->output_section_ != NULL
2329 && this->output_section_->input_section_order_specified())
2330 this->output_section_->sort_attached_input_sections();
2331
2332 // Decide the start address for the section. The algorithm is:
2333 // 1) If an address has been specified in a linker script, use that.
2334 // 2) Otherwise if a memory region has been specified for the section,
2335 // use the next free address in the region.
2336 // 3) Otherwise if memory regions have been specified find the first
2337 // region whose attributes are compatible with this section and
2338 // install it into that region.
2339 // 4) Otherwise use the current location counter.
2340
2341 if (this->output_section_ != NULL
2342 // Check for --section-start.
2343 && parameters->options().section_start(this->output_section_->name(),
2344 &address))
2345 ;
2346 else if (this->address_ == NULL)
2347 {
2348 vma_region = script_sections->find_memory_region(this, true, NULL);
2349
2350 if (vma_region != NULL)
2351 address = vma_region->get_current_address()->eval(symtab, layout,
2352 false);
2353 else
2354 address = *dot_value;
2355 }
2356 else
2357 address = this->address_->eval_with_dot(symtab, layout, true,
2358 *dot_value, NULL, NULL,
2359 dot_alignment, false);
2360 uint64_t align;
2361 if (this->align_ == NULL)
2362 {
2363 if (this->output_section_ == NULL)
2364 align = 0;
2365 else
2366 align = this->output_section_->addralign();
2367 }
2368 else
2369 {
2370 Output_section* align_section;
2371 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2372 NULL, &align_section, NULL, false);
2373 if (align_section != NULL)
2374 gold_warning(_("alignment of section %s is not absolute"),
2375 this->name_.c_str());
2376 if (this->output_section_ != NULL)
2377 this->output_section_->set_addralign(align);
2378 }
2379
2380 address = align_address(address, align);
2381
2382 uint64_t start_address = address;
2383
2384 *dot_value = address;
2385
2386 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2387 // forced to zero, regardless of what the linker script wants.
2388 if (this->output_section_ != NULL
2389 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2390 || this->output_section_->is_noload()))
2391 this->output_section_->set_address(address);
2392
2393 this->evaluated_address_ = address;
2394 this->evaluated_addralign_ = align;
2395
2396 uint64_t laddr;
2397
2398 if (this->load_address_ == NULL)
2399 {
2400 Output_section_definition* previous_section;
2401
2402 // Determine if an LMA region has been set for this section.
2403 lma_region = script_sections->find_memory_region(this, false,
2404 &previous_section);
2405
2406 if (lma_region != NULL)
2407 {
2408 if (previous_section == NULL)
2409 // The LMA address was explicitly set to the given region.
2410 laddr = lma_region->get_current_address()->eval(symtab, layout,
2411 false);
2412 else
2413 {
2414 // We are not going to use the discovered lma_region, so
2415 // make sure that we do not update it in the code below.
2416 lma_region = NULL;
2417
2418 if (this->address_ != NULL || previous_section == this)
2419 {
2420 // Either an explicit VMA address has been set, or an
2421 // explicit VMA region has been set, so set the LMA equal to
2422 // the VMA.
2423 laddr = address;
2424 }
2425 else
2426 {
2427 // The LMA address was not explicitly or implicitly set.
2428 //
2429 // We have been given the first memory region that is
2430 // compatible with the current section and a pointer to the
2431 // last section to use this region. Set the LMA of this
2432 // section so that the difference between its' VMA and LMA
2433 // is the same as the difference between the VMA and LMA of
2434 // the last section in the given region.
2435 laddr = address + (previous_section->evaluated_load_address_
2436 - previous_section->evaluated_address_);
2437 }
2438 }
2439
2440 if (this->output_section_ != NULL)
2441 this->output_section_->set_load_address(laddr);
2442 }
2443 else
2444 {
2445 // Do not set the load address of the output section, if one exists.
2446 // This allows future sections to determine what the load address
2447 // should be. If none is ever set, it will default to being the
2448 // same as the vma address.
2449 laddr = address;
2450 }
2451 }
2452 else
2453 {
2454 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2455 *dot_value,
2456 this->output_section_,
2457 NULL, NULL, false);
2458 if (this->output_section_ != NULL)
2459 this->output_section_->set_load_address(laddr);
2460 }
2461
2462 this->evaluated_load_address_ = laddr;
2463
2464 uint64_t subalign;
2465 if (this->subalign_ == NULL)
2466 subalign = 0;
2467 else
2468 {
2469 Output_section* subalign_section;
2470 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2471 *dot_value, NULL,
2472 &subalign_section, NULL,
2473 false);
2474 if (subalign_section != NULL)
2475 gold_warning(_("subalign of section %s is not absolute"),
2476 this->name_.c_str());
2477 }
2478
2479 std::string fill;
2480 if (this->fill_ != NULL)
2481 {
2482 // FIXME: The GNU linker supports fill values of arbitrary
2483 // length.
2484 Output_section* fill_section;
2485 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2486 *dot_value,
2487 NULL, &fill_section,
2488 NULL, false);
2489 if (fill_section != NULL)
2490 gold_warning(_("fill of section %s is not absolute"),
2491 this->name_.c_str());
2492 unsigned char fill_buff[4];
2493 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2494 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2495 }
2496
2497 Input_section_list input_sections;
2498 if (this->output_section_ != NULL)
2499 {
2500 // Get the list of input sections attached to this output
2501 // section. This will leave the output section with only
2502 // Output_section_data entries.
2503 address += this->output_section_->get_input_sections(address,
2504 fill,
2505 &input_sections);
2506 *dot_value = address;
2507 }
2508
2509 Output_section* dot_section = this->output_section_;
2510 for (Output_section_elements::iterator p = this->elements_.begin();
2511 p != this->elements_.end();
2512 ++p)
2513 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2514 subalign, dot_value, dot_alignment,
2515 &dot_section, &fill, &input_sections);
2516
2517 gold_assert(input_sections.empty());
2518
2519 if (vma_region != NULL)
2520 {
2521 // Update the VMA region being used by the section now that we know how
2522 // big it is. Use the current address in the region, rather than
2523 // start_address because that might have been aligned upwards and we
2524 // need to allow for the padding.
2525 Expression* addr = vma_region->get_current_address();
2526 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2527
2528 vma_region->increment_offset(this->get_section_name(), size,
2529 symtab, layout);
2530 }
2531
2532 // If the LMA region is different from the VMA region, then increment the
2533 // offset there as well. Note that we use the same "dot_value -
2534 // start_address" formula that is used in the load_address assignment below.
2535 if (lma_region != NULL && lma_region != vma_region)
2536 lma_region->increment_offset(this->get_section_name(),
2537 *dot_value - start_address,
2538 symtab, layout);
2539
2540 // Compute the load address for the following section.
2541 if (this->output_section_ == NULL)
2542 *load_address = *dot_value;
2543 else if (this->load_address_ == NULL)
2544 {
2545 if (lma_region == NULL)
2546 *load_address = *dot_value;
2547 else
2548 *load_address =
2549 lma_region->get_current_address()->eval(symtab, layout, false);
2550 }
2551 else
2552 *load_address = (this->output_section_->load_address()
2553 + (*dot_value - start_address));
2554
2555 if (this->output_section_ != NULL)
2556 {
2557 if (this->is_relro_)
2558 this->output_section_->set_is_relro();
2559 else
2560 this->output_section_->clear_is_relro();
2561
2562 // If this is a NOLOAD section, keep dot and load address unchanged.
2563 if (this->output_section_->is_noload())
2564 {
2565 *dot_value = old_dot_value;
2566 *load_address = old_load_address;
2567 }
2568 }
2569 }
2570
2571 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2572 // this section is constrained, and the input sections do not match,
2573 // return the constraint, and set *POSD.
2574
2575 Section_constraint
2576 Output_section_definition::check_constraint(Output_section_definition** posd)
2577 {
2578 switch (this->constraint_)
2579 {
2580 case CONSTRAINT_NONE:
2581 return CONSTRAINT_NONE;
2582
2583 case CONSTRAINT_ONLY_IF_RO:
2584 if (this->output_section_ != NULL
2585 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2586 {
2587 *posd = this;
2588 return CONSTRAINT_ONLY_IF_RO;
2589 }
2590 return CONSTRAINT_NONE;
2591
2592 case CONSTRAINT_ONLY_IF_RW:
2593 if (this->output_section_ != NULL
2594 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2595 {
2596 *posd = this;
2597 return CONSTRAINT_ONLY_IF_RW;
2598 }
2599 return CONSTRAINT_NONE;
2600
2601 case CONSTRAINT_SPECIAL:
2602 if (this->output_section_ != NULL)
2603 gold_error(_("SPECIAL constraints are not implemented"));
2604 return CONSTRAINT_NONE;
2605
2606 default:
2607 gold_unreachable();
2608 }
2609 }
2610
2611 // See if this is the alternate output section for a constrained
2612 // output section. If it is, transfer the Output_section and return
2613 // true. Otherwise return false.
2614
2615 bool
2616 Output_section_definition::alternate_constraint(
2617 Output_section_definition* posd,
2618 Section_constraint constraint)
2619 {
2620 if (this->name_ != posd->name_)
2621 return false;
2622
2623 switch (constraint)
2624 {
2625 case CONSTRAINT_ONLY_IF_RO:
2626 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2627 return false;
2628 break;
2629
2630 case CONSTRAINT_ONLY_IF_RW:
2631 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2632 return false;
2633 break;
2634
2635 default:
2636 gold_unreachable();
2637 }
2638
2639 // We have found the alternate constraint. We just need to move
2640 // over the Output_section. When constraints are used properly,
2641 // THIS should not have an output_section pointer, as all the input
2642 // sections should have matched the other definition.
2643
2644 if (this->output_section_ != NULL)
2645 gold_error(_("mismatched definition for constrained sections"));
2646
2647 this->output_section_ = posd->output_section_;
2648 posd->output_section_ = NULL;
2649
2650 if (this->is_relro_)
2651 this->output_section_->set_is_relro();
2652 else
2653 this->output_section_->clear_is_relro();
2654
2655 return true;
2656 }
2657
2658 // Get the list of segments to use for an allocated section when using
2659 // a PHDRS clause.
2660
2661 Output_section*
2662 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2663 bool* orphan)
2664 {
2665 // Update phdrs_list even if we don't have an output section. It
2666 // might be used by the following sections.
2667 if (this->phdrs_ != NULL)
2668 *phdrs_list = this->phdrs_;
2669
2670 if (this->output_section_ == NULL)
2671 return NULL;
2672 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2673 return NULL;
2674 *orphan = false;
2675 return this->output_section_;
2676 }
2677
2678 // Look for an output section by name and return the address, the load
2679 // address, the alignment, and the size. This is used when an
2680 // expression refers to an output section which was not actually
2681 // created. This returns true if the section was found, false
2682 // otherwise.
2683
2684 bool
2685 Output_section_definition::get_output_section_info(const char* name,
2686 uint64_t* address,
2687 uint64_t* load_address,
2688 uint64_t* addralign,
2689 uint64_t* size) const
2690 {
2691 if (this->name_ != name)
2692 return false;
2693
2694 if (this->output_section_ != NULL)
2695 {
2696 *address = this->output_section_->address();
2697 if (this->output_section_->has_load_address())
2698 *load_address = this->output_section_->load_address();
2699 else
2700 *load_address = *address;
2701 *addralign = this->output_section_->addralign();
2702 *size = this->output_section_->current_data_size();
2703 }
2704 else
2705 {
2706 *address = this->evaluated_address_;
2707 *load_address = this->evaluated_load_address_;
2708 *addralign = this->evaluated_addralign_;
2709 *size = 0;
2710 }
2711
2712 return true;
2713 }
2714
2715 // Print for debugging.
2716
2717 void
2718 Output_section_definition::print(FILE* f) const
2719 {
2720 fprintf(f, " %s ", this->name_.c_str());
2721
2722 if (this->address_ != NULL)
2723 {
2724 this->address_->print(f);
2725 fprintf(f, " ");
2726 }
2727
2728 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2729 fprintf(f, "(%s) ",
2730 this->script_section_type_name(this->script_section_type_));
2731
2732 fprintf(f, ": ");
2733
2734 if (this->load_address_ != NULL)
2735 {
2736 fprintf(f, "AT(");
2737 this->load_address_->print(f);
2738 fprintf(f, ") ");
2739 }
2740
2741 if (this->align_ != NULL)
2742 {
2743 fprintf(f, "ALIGN(");
2744 this->align_->print(f);
2745 fprintf(f, ") ");
2746 }
2747
2748 if (this->subalign_ != NULL)
2749 {
2750 fprintf(f, "SUBALIGN(");
2751 this->subalign_->print(f);
2752 fprintf(f, ") ");
2753 }
2754
2755 fprintf(f, "{\n");
2756
2757 for (Output_section_elements::const_iterator p = this->elements_.begin();
2758 p != this->elements_.end();
2759 ++p)
2760 (*p)->print(f);
2761
2762 fprintf(f, " }");
2763
2764 if (this->fill_ != NULL)
2765 {
2766 fprintf(f, " = ");
2767 this->fill_->print(f);
2768 }
2769
2770 if (this->phdrs_ != NULL)
2771 {
2772 for (String_list::const_iterator p = this->phdrs_->begin();
2773 p != this->phdrs_->end();
2774 ++p)
2775 fprintf(f, " :%s", p->c_str());
2776 }
2777
2778 fprintf(f, "\n");
2779 }
2780
2781 Script_sections::Section_type
2782 Output_section_definition::section_type() const
2783 {
2784 switch (this->script_section_type_)
2785 {
2786 case SCRIPT_SECTION_TYPE_NONE:
2787 return Script_sections::ST_NONE;
2788 case SCRIPT_SECTION_TYPE_NOLOAD:
2789 return Script_sections::ST_NOLOAD;
2790 case SCRIPT_SECTION_TYPE_COPY:
2791 case SCRIPT_SECTION_TYPE_DSECT:
2792 case SCRIPT_SECTION_TYPE_INFO:
2793 case SCRIPT_SECTION_TYPE_OVERLAY:
2794 // There are not really support so we treat them as ST_NONE. The
2795 // parse should have issued errors for them already.
2796 return Script_sections::ST_NONE;
2797 default:
2798 gold_unreachable();
2799 }
2800 }
2801
2802 // Return the name of a script section type.
2803
2804 const char*
2805 Output_section_definition::script_section_type_name(
2806 Script_section_type script_section_type)
2807 {
2808 switch (script_section_type)
2809 {
2810 case SCRIPT_SECTION_TYPE_NONE:
2811 return "NONE";
2812 case SCRIPT_SECTION_TYPE_NOLOAD:
2813 return "NOLOAD";
2814 case SCRIPT_SECTION_TYPE_DSECT:
2815 return "DSECT";
2816 case SCRIPT_SECTION_TYPE_COPY:
2817 return "COPY";
2818 case SCRIPT_SECTION_TYPE_INFO:
2819 return "INFO";
2820 case SCRIPT_SECTION_TYPE_OVERLAY:
2821 return "OVERLAY";
2822 default:
2823 gold_unreachable();
2824 }
2825 }
2826
2827 void
2828 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2829 {
2830 gold_assert(mr != NULL);
2831 // Add the current section to the specified region's list.
2832 mr->add_section(this, set_vma);
2833 }
2834
2835 // An output section created to hold orphaned input sections. These
2836 // do not actually appear in linker scripts. However, for convenience
2837 // when setting the output section addresses, we put a marker to these
2838 // sections in the appropriate place in the list of SECTIONS elements.
2839
2840 class Orphan_output_section : public Sections_element
2841 {
2842 public:
2843 Orphan_output_section(Output_section* os)
2844 : os_(os)
2845 { }
2846
2847 // Return whether the orphan output section is relro. We can just
2848 // check the output section because we always set the flag, if
2849 // needed, just after we create the Orphan_output_section.
2850 bool
2851 is_relro() const
2852 { return this->os_->is_relro(); }
2853
2854 // Initialize OSP with an output section. This should have been
2855 // done already.
2856 void
2857 orphan_section_init(Orphan_section_placement*,
2858 Script_sections::Elements_iterator)
2859 { gold_unreachable(); }
2860
2861 // Set section addresses.
2862 void
2863 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2864 uint64_t*);
2865
2866 // Get the list of segments to use for an allocated section when
2867 // using a PHDRS clause.
2868 Output_section*
2869 allocate_to_segment(String_list**, bool*);
2870
2871 // Return the associated Output_section.
2872 Output_section*
2873 get_output_section() const
2874 { return this->os_; }
2875
2876 // Print for debugging.
2877 void
2878 print(FILE* f) const
2879 {
2880 fprintf(f, " marker for orphaned output section %s\n",
2881 this->os_->name());
2882 }
2883
2884 private:
2885 Output_section* os_;
2886 };
2887
2888 // Set section addresses.
2889
2890 void
2891 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2892 uint64_t* dot_value,
2893 uint64_t*,
2894 uint64_t* load_address)
2895 {
2896 typedef std::list<Output_section::Input_section> Input_section_list;
2897
2898 bool have_load_address = *load_address != *dot_value;
2899
2900 uint64_t address = *dot_value;
2901 address = align_address(address, this->os_->addralign());
2902
2903 // If input section sorting is requested via --section-ordering-file or
2904 // linker plugins, then do it here. This is important because we want
2905 // any sorting specified in the linker scripts, which will be done after
2906 // this, to take precedence. The final order of input sections is then
2907 // guaranteed to be according to the linker script specification.
2908 if (this->os_ != NULL
2909 && this->os_->input_section_order_specified())
2910 this->os_->sort_attached_input_sections();
2911
2912 // For a relocatable link, all orphan sections are put at
2913 // address 0. In general we expect all sections to be at
2914 // address 0 for a relocatable link, but we permit the linker
2915 // script to override that for specific output sections.
2916 if (parameters->options().relocatable())
2917 {
2918 address = 0;
2919 *load_address = 0;
2920 have_load_address = false;
2921 }
2922
2923 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
2924 {
2925 this->os_->set_address(address);
2926 if (have_load_address)
2927 this->os_->set_load_address(align_address(*load_address,
2928 this->os_->addralign()));
2929 }
2930
2931 Input_section_list input_sections;
2932 address += this->os_->get_input_sections(address, "", &input_sections);
2933
2934 for (Input_section_list::iterator p = input_sections.begin();
2935 p != input_sections.end();
2936 ++p)
2937 {
2938 uint64_t addralign = p->addralign();
2939 if (!p->is_input_section())
2940 p->output_section_data()->finalize_data_size();
2941 uint64_t size = p->data_size();
2942 address = align_address(address, addralign);
2943 this->os_->add_script_input_section(*p);
2944 address += size;
2945 }
2946
2947 if (parameters->options().relocatable())
2948 {
2949 // For a relocatable link, reset DOT_VALUE to 0.
2950 *dot_value = 0;
2951 *load_address = 0;
2952 }
2953 else if (this->os_ == NULL
2954 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2955 || this->os_->type() != elfcpp::SHT_NOBITS)
2956 {
2957 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
2958 if (!have_load_address)
2959 *load_address = address;
2960 else
2961 *load_address += address - *dot_value;
2962
2963 *dot_value = address;
2964 }
2965 }
2966
2967 // Get the list of segments to use for an allocated section when using
2968 // a PHDRS clause. If this is an allocated section, return the
2969 // Output_section. We don't change the list of segments.
2970
2971 Output_section*
2972 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
2973 {
2974 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
2975 return NULL;
2976 *orphan = true;
2977 return this->os_;
2978 }
2979
2980 // Class Phdrs_element. A program header from a PHDRS clause.
2981
2982 class Phdrs_element
2983 {
2984 public:
2985 Phdrs_element(const char* name, size_t namelen, unsigned int type,
2986 bool includes_filehdr, bool includes_phdrs,
2987 bool is_flags_valid, unsigned int flags,
2988 Expression* load_address)
2989 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
2990 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
2991 flags_(flags), load_address_(load_address), load_address_value_(0),
2992 segment_(NULL)
2993 { }
2994
2995 // Return the name of this segment.
2996 const std::string&
2997 name() const
2998 { return this->name_; }
2999
3000 // Return the type of the segment.
3001 unsigned int
3002 type() const
3003 { return this->type_; }
3004
3005 // Whether to include the file header.
3006 bool
3007 includes_filehdr() const
3008 { return this->includes_filehdr_; }
3009
3010 // Whether to include the program headers.
3011 bool
3012 includes_phdrs() const
3013 { return this->includes_phdrs_; }
3014
3015 // Return whether there is a load address.
3016 bool
3017 has_load_address() const
3018 { return this->load_address_ != NULL; }
3019
3020 // Evaluate the load address expression if there is one.
3021 void
3022 eval_load_address(Symbol_table* symtab, Layout* layout)
3023 {
3024 if (this->load_address_ != NULL)
3025 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3026 true);
3027 }
3028
3029 // Return the load address.
3030 uint64_t
3031 load_address() const
3032 {
3033 gold_assert(this->load_address_ != NULL);
3034 return this->load_address_value_;
3035 }
3036
3037 // Create the segment.
3038 Output_segment*
3039 create_segment(Layout* layout)
3040 {
3041 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3042 return this->segment_;
3043 }
3044
3045 // Return the segment.
3046 Output_segment*
3047 segment()
3048 { return this->segment_; }
3049
3050 // Release the segment.
3051 void
3052 release_segment()
3053 { this->segment_ = NULL; }
3054
3055 // Set the segment flags if appropriate.
3056 void
3057 set_flags_if_valid()
3058 {
3059 if (this->is_flags_valid_)
3060 this->segment_->set_flags(this->flags_);
3061 }
3062
3063 // Print for debugging.
3064 void
3065 print(FILE*) const;
3066
3067 private:
3068 // The name used in the script.
3069 std::string name_;
3070 // The type of the segment (PT_LOAD, etc.).
3071 unsigned int type_;
3072 // Whether this segment includes the file header.
3073 bool includes_filehdr_;
3074 // Whether this segment includes the section headers.
3075 bool includes_phdrs_;
3076 // Whether the flags were explicitly specified.
3077 bool is_flags_valid_;
3078 // The flags for this segment (PF_R, etc.) if specified.
3079 unsigned int flags_;
3080 // The expression for the load address for this segment. This may
3081 // be NULL.
3082 Expression* load_address_;
3083 // The actual load address from evaluating the expression.
3084 uint64_t load_address_value_;
3085 // The segment itself.
3086 Output_segment* segment_;
3087 };
3088
3089 // Print for debugging.
3090
3091 void
3092 Phdrs_element::print(FILE* f) const
3093 {
3094 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3095 if (this->includes_filehdr_)
3096 fprintf(f, " FILEHDR");
3097 if (this->includes_phdrs_)
3098 fprintf(f, " PHDRS");
3099 if (this->is_flags_valid_)
3100 fprintf(f, " FLAGS(%u)", this->flags_);
3101 if (this->load_address_ != NULL)
3102 {
3103 fprintf(f, " AT(");
3104 this->load_address_->print(f);
3105 fprintf(f, ")");
3106 }
3107 fprintf(f, ";\n");
3108 }
3109
3110 // Add a memory region.
3111
3112 void
3113 Script_sections::add_memory_region(const char* name, size_t namelen,
3114 unsigned int attributes,
3115 Expression* start, Expression* length)
3116 {
3117 if (this->memory_regions_ == NULL)
3118 this->memory_regions_ = new Memory_regions();
3119 else if (this->find_memory_region(name, namelen))
3120 {
3121 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3122 name);
3123 // FIXME: Add a GOLD extension to allow multiple regions with the same
3124 // name. This would amount to a single region covering disjoint blocks
3125 // of memory, which is useful for embedded devices.
3126 }
3127
3128 // FIXME: Check the length and start values. Currently we allow
3129 // non-constant expressions for these values, whereas LD does not.
3130
3131 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3132 // describe a region that packs from the end address going down, rather
3133 // than the start address going up. This would be useful for embedded
3134 // devices.
3135
3136 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3137 start, length));
3138 }
3139
3140 // Find a memory region.
3141
3142 Memory_region*
3143 Script_sections::find_memory_region(const char* name, size_t namelen)
3144 {
3145 if (this->memory_regions_ == NULL)
3146 return NULL;
3147
3148 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3149 m != this->memory_regions_->end();
3150 ++m)
3151 if ((*m)->name_match(name, namelen))
3152 return *m;
3153
3154 return NULL;
3155 }
3156
3157 // Find a memory region's origin.
3158
3159 Expression*
3160 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3161 {
3162 Memory_region* mr = find_memory_region(name, namelen);
3163 if (mr == NULL)
3164 return NULL;
3165
3166 return mr->start_address();
3167 }
3168
3169 // Find a memory region's length.
3170
3171 Expression*
3172 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3173 {
3174 Memory_region* mr = find_memory_region(name, namelen);
3175 if (mr == NULL)
3176 return NULL;
3177
3178 return mr->length();
3179 }
3180
3181 // Set the memory region to use for the current section.
3182
3183 void
3184 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3185 {
3186 gold_assert(!this->sections_elements_->empty());
3187 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3188 }
3189
3190 // Class Script_sections.
3191
3192 Script_sections::Script_sections()
3193 : saw_sections_clause_(false),
3194 in_sections_clause_(false),
3195 sections_elements_(NULL),
3196 output_section_(NULL),
3197 memory_regions_(NULL),
3198 phdrs_elements_(NULL),
3199 orphan_section_placement_(NULL),
3200 data_segment_align_start_(),
3201 saw_data_segment_align_(false),
3202 saw_relro_end_(false),
3203 saw_segment_start_expression_(false)
3204 {
3205 }
3206
3207 // Start a SECTIONS clause.
3208
3209 void
3210 Script_sections::start_sections()
3211 {
3212 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3213 this->saw_sections_clause_ = true;
3214 this->in_sections_clause_ = true;
3215 if (this->sections_elements_ == NULL)
3216 this->sections_elements_ = new Sections_elements;
3217 }
3218
3219 // Finish a SECTIONS clause.
3220
3221 void
3222 Script_sections::finish_sections()
3223 {
3224 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3225 this->in_sections_clause_ = false;
3226 }
3227
3228 // Add a symbol to be defined.
3229
3230 void
3231 Script_sections::add_symbol_assignment(const char* name, size_t length,
3232 Expression* val, bool provide,
3233 bool hidden)
3234 {
3235 if (this->output_section_ != NULL)
3236 this->output_section_->add_symbol_assignment(name, length, val,
3237 provide, hidden);
3238 else
3239 {
3240 Sections_element* p = new Sections_element_assignment(name, length,
3241 val, provide,
3242 hidden);
3243 this->sections_elements_->push_back(p);
3244 }
3245 }
3246
3247 // Add an assignment to the special dot symbol.
3248
3249 void
3250 Script_sections::add_dot_assignment(Expression* val)
3251 {
3252 if (this->output_section_ != NULL)
3253 this->output_section_->add_dot_assignment(val);
3254 else
3255 {
3256 // The GNU linker permits assignments to . to appears outside of
3257 // a SECTIONS clause, and treats it as appearing inside, so
3258 // sections_elements_ may be NULL here.
3259 if (this->sections_elements_ == NULL)
3260 {
3261 this->sections_elements_ = new Sections_elements;
3262 this->saw_sections_clause_ = true;
3263 }
3264
3265 Sections_element* p = new Sections_element_dot_assignment(val);
3266 this->sections_elements_->push_back(p);
3267 }
3268 }
3269
3270 // Add an assertion.
3271
3272 void
3273 Script_sections::add_assertion(Expression* check, const char* message,
3274 size_t messagelen)
3275 {
3276 if (this->output_section_ != NULL)
3277 this->output_section_->add_assertion(check, message, messagelen);
3278 else
3279 {
3280 Sections_element* p = new Sections_element_assertion(check, message,
3281 messagelen);
3282 this->sections_elements_->push_back(p);
3283 }
3284 }
3285
3286 // Start processing entries for an output section.
3287
3288 void
3289 Script_sections::start_output_section(
3290 const char* name,
3291 size_t namelen,
3292 const Parser_output_section_header* header)
3293 {
3294 Output_section_definition* posd = new Output_section_definition(name,
3295 namelen,
3296 header);
3297 this->sections_elements_->push_back(posd);
3298 gold_assert(this->output_section_ == NULL);
3299 this->output_section_ = posd;
3300 }
3301
3302 // Stop processing entries for an output section.
3303
3304 void
3305 Script_sections::finish_output_section(
3306 const Parser_output_section_trailer* trailer)
3307 {
3308 gold_assert(this->output_section_ != NULL);
3309 this->output_section_->finish(trailer);
3310 this->output_section_ = NULL;
3311 }
3312
3313 // Add a data item to the current output section.
3314
3315 void
3316 Script_sections::add_data(int size, bool is_signed, Expression* val)
3317 {
3318 gold_assert(this->output_section_ != NULL);
3319 this->output_section_->add_data(size, is_signed, val);
3320 }
3321
3322 // Add a fill value setting to the current output section.
3323
3324 void
3325 Script_sections::add_fill(Expression* val)
3326 {
3327 gold_assert(this->output_section_ != NULL);
3328 this->output_section_->add_fill(val);
3329 }
3330
3331 // Add an input section specification to the current output section.
3332
3333 void
3334 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3335 {
3336 gold_assert(this->output_section_ != NULL);
3337 this->output_section_->add_input_section(spec, keep);
3338 }
3339
3340 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3341 // subsequent output sections may be relro.
3342
3343 void
3344 Script_sections::data_segment_align()
3345 {
3346 if (this->saw_data_segment_align_)
3347 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3348 gold_assert(!this->sections_elements_->empty());
3349 Sections_elements::iterator p = this->sections_elements_->end();
3350 --p;
3351 this->data_segment_align_start_ = p;
3352 this->saw_data_segment_align_ = true;
3353 }
3354
3355 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3356 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3357
3358 void
3359 Script_sections::data_segment_relro_end()
3360 {
3361 if (this->saw_relro_end_)
3362 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3363 "in a linker script"));
3364 this->saw_relro_end_ = true;
3365
3366 if (!this->saw_data_segment_align_)
3367 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3368 else
3369 {
3370 Sections_elements::iterator p = this->data_segment_align_start_;
3371 for (++p; p != this->sections_elements_->end(); ++p)
3372 (*p)->set_is_relro();
3373 }
3374 }
3375
3376 // Create any required sections.
3377
3378 void
3379 Script_sections::create_sections(Layout* layout)
3380 {
3381 if (!this->saw_sections_clause_)
3382 return;
3383 for (Sections_elements::iterator p = this->sections_elements_->begin();
3384 p != this->sections_elements_->end();
3385 ++p)
3386 (*p)->create_sections(layout);
3387 }
3388
3389 // Add any symbols we are defining to the symbol table.
3390
3391 void
3392 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3393 {
3394 if (!this->saw_sections_clause_)
3395 return;
3396 for (Sections_elements::iterator p = this->sections_elements_->begin();
3397 p != this->sections_elements_->end();
3398 ++p)
3399 (*p)->add_symbols_to_table(symtab);
3400 }
3401
3402 // Finalize symbols and check assertions.
3403
3404 void
3405 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3406 {
3407 if (!this->saw_sections_clause_)
3408 return;
3409 uint64_t dot_value = 0;
3410 for (Sections_elements::iterator p = this->sections_elements_->begin();
3411 p != this->sections_elements_->end();
3412 ++p)
3413 (*p)->finalize_symbols(symtab, layout, &dot_value);
3414 }
3415
3416 // Return the name of the output section to use for an input file name
3417 // and section name.
3418
3419 const char*
3420 Script_sections::output_section_name(
3421 const char* file_name,
3422 const char* section_name,
3423 Output_section*** output_section_slot,
3424 Script_sections::Section_type* psection_type,
3425 bool* keep)
3426 {
3427 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3428 p != this->sections_elements_->end();
3429 ++p)
3430 {
3431 const char* ret = (*p)->output_section_name(file_name, section_name,
3432 output_section_slot,
3433 psection_type, keep);
3434
3435 if (ret != NULL)
3436 {
3437 // The special name /DISCARD/ means that the input section
3438 // should be discarded.
3439 if (strcmp(ret, "/DISCARD/") == 0)
3440 {
3441 *output_section_slot = NULL;
3442 *psection_type = Script_sections::ST_NONE;
3443 return NULL;
3444 }
3445 return ret;
3446 }
3447 }
3448
3449 // If we couldn't find a mapping for the name, the output section
3450 // gets the name of the input section.
3451
3452 *output_section_slot = NULL;
3453 *psection_type = Script_sections::ST_NONE;
3454
3455 return section_name;
3456 }
3457
3458 // Place a marker for an orphan output section into the SECTIONS
3459 // clause.
3460
3461 void
3462 Script_sections::place_orphan(Output_section* os)
3463 {
3464 Orphan_section_placement* osp = this->orphan_section_placement_;
3465 if (osp == NULL)
3466 {
3467 // Initialize the Orphan_section_placement structure.
3468 osp = new Orphan_section_placement();
3469 for (Sections_elements::iterator p = this->sections_elements_->begin();
3470 p != this->sections_elements_->end();
3471 ++p)
3472 (*p)->orphan_section_init(osp, p);
3473 gold_assert(!this->sections_elements_->empty());
3474 Sections_elements::iterator last = this->sections_elements_->end();
3475 --last;
3476 osp->last_init(last);
3477 this->orphan_section_placement_ = osp;
3478 }
3479
3480 Orphan_output_section* orphan = new Orphan_output_section(os);
3481
3482 // Look for where to put ORPHAN.
3483 Sections_elements::iterator* where;
3484 if (osp->find_place(os, &where))
3485 {
3486 if ((**where)->is_relro())
3487 os->set_is_relro();
3488 else
3489 os->clear_is_relro();
3490
3491 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3492 // so that the next one goes after this one.
3493 Sections_elements::iterator p = *where;
3494 gold_assert(p != this->sections_elements_->end());
3495 ++p;
3496 *where = this->sections_elements_->insert(p, orphan);
3497 }
3498 else
3499 {
3500 os->clear_is_relro();
3501 // We don't have a place to put this orphan section. Put it,
3502 // and all other sections like it, at the end, but before the
3503 // sections which always come at the end.
3504 Sections_elements::iterator last = osp->last_place();
3505 *where = this->sections_elements_->insert(last, orphan);
3506 }
3507 }
3508
3509 // Set the addresses of all the output sections. Walk through all the
3510 // elements, tracking the dot symbol. Apply assignments which set
3511 // absolute symbol values, in case they are used when setting dot.
3512 // Fill in data statement values. As we find output sections, set the
3513 // address, set the address of all associated input sections, and
3514 // update dot. Return the segment which should hold the file header
3515 // and segment headers, if any.
3516
3517 Output_segment*
3518 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3519 {
3520 gold_assert(this->saw_sections_clause_);
3521
3522 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3523 // for our representation.
3524 for (Sections_elements::iterator p = this->sections_elements_->begin();
3525 p != this->sections_elements_->end();
3526 ++p)
3527 {
3528 Output_section_definition* posd;
3529 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3530 if (failed_constraint != CONSTRAINT_NONE)
3531 {
3532 Sections_elements::iterator q;
3533 for (q = this->sections_elements_->begin();
3534 q != this->sections_elements_->end();
3535 ++q)
3536 {
3537 if (q != p)
3538 {
3539 if ((*q)->alternate_constraint(posd, failed_constraint))
3540 break;
3541 }
3542 }
3543
3544 if (q == this->sections_elements_->end())
3545 gold_error(_("no matching section constraint"));
3546 }
3547 }
3548
3549 // Force the alignment of the first TLS section to be the maximum
3550 // alignment of all TLS sections.
3551 Output_section* first_tls = NULL;
3552 uint64_t tls_align = 0;
3553 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3554 p != this->sections_elements_->end();
3555 ++p)
3556 {
3557 Output_section* os = (*p)->get_output_section();
3558 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3559 {
3560 if (first_tls == NULL)
3561 first_tls = os;
3562 if (os->addralign() > tls_align)
3563 tls_align = os->addralign();
3564 }
3565 }
3566 if (first_tls != NULL)
3567 first_tls->set_addralign(tls_align);
3568
3569 // For a relocatable link, we implicitly set dot to zero.
3570 uint64_t dot_value = 0;
3571 uint64_t dot_alignment = 0;
3572 uint64_t load_address = 0;
3573
3574 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3575 // to set section addresses. If the script has any SEGMENT_START
3576 // expression, we do not set the section addresses.
3577 bool use_tsection_options =
3578 (!this->saw_segment_start_expression_
3579 && (parameters->options().user_set_Ttext()
3580 || parameters->options().user_set_Tdata()
3581 || parameters->options().user_set_Tbss()));
3582
3583 for (Sections_elements::iterator p = this->sections_elements_->begin();
3584 p != this->sections_elements_->end();
3585 ++p)
3586 {
3587 Output_section* os = (*p)->get_output_section();
3588
3589 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3590 // the special sections by names and doing dot assignments.
3591 if (use_tsection_options
3592 && os != NULL
3593 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3594 {
3595 uint64_t new_dot_value = dot_value;
3596
3597 if (parameters->options().user_set_Ttext()
3598 && strcmp(os->name(), ".text") == 0)
3599 new_dot_value = parameters->options().Ttext();
3600 else if (parameters->options().user_set_Tdata()
3601 && strcmp(os->name(), ".data") == 0)
3602 new_dot_value = parameters->options().Tdata();
3603 else if (parameters->options().user_set_Tbss()
3604 && strcmp(os->name(), ".bss") == 0)
3605 new_dot_value = parameters->options().Tbss();
3606
3607 // Update dot and load address if necessary.
3608 if (new_dot_value < dot_value)
3609 gold_error(_("dot may not move backward"));
3610 else if (new_dot_value != dot_value)
3611 {
3612 dot_value = new_dot_value;
3613 load_address = new_dot_value;
3614 }
3615 }
3616
3617 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3618 &load_address);
3619 }
3620
3621 if (this->phdrs_elements_ != NULL)
3622 {
3623 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3624 p != this->phdrs_elements_->end();
3625 ++p)
3626 (*p)->eval_load_address(symtab, layout);
3627 }
3628
3629 return this->create_segments(layout, dot_alignment);
3630 }
3631
3632 // Sort the sections in order to put them into segments.
3633
3634 class Sort_output_sections
3635 {
3636 public:
3637 Sort_output_sections(const Script_sections::Sections_elements* elements)
3638 : elements_(elements)
3639 { }
3640
3641 bool
3642 operator()(const Output_section* os1, const Output_section* os2) const;
3643
3644 private:
3645 int
3646 script_compare(const Output_section* os1, const Output_section* os2) const;
3647
3648 private:
3649 const Script_sections::Sections_elements* elements_;
3650 };
3651
3652 bool
3653 Sort_output_sections::operator()(const Output_section* os1,
3654 const Output_section* os2) const
3655 {
3656 // Sort first by the load address.
3657 uint64_t lma1 = (os1->has_load_address()
3658 ? os1->load_address()
3659 : os1->address());
3660 uint64_t lma2 = (os2->has_load_address()
3661 ? os2->load_address()
3662 : os2->address());
3663 if (lma1 != lma2)
3664 return lma1 < lma2;
3665
3666 // Then sort by the virtual address.
3667 if (os1->address() != os2->address())
3668 return os1->address() < os2->address();
3669
3670 // If the linker script says which of these sections is first, go
3671 // with what it says.
3672 int i = this->script_compare(os1, os2);
3673 if (i != 0)
3674 return i < 0;
3675
3676 // Sort PROGBITS before NOBITS.
3677 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3678 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3679 if (nobits1 != nobits2)
3680 return nobits2;
3681
3682 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3683 // beginning.
3684 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3685 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3686 if (tls1 != tls2)
3687 return nobits1 ? tls1 : tls2;
3688
3689 // Sort non-NOLOAD before NOLOAD.
3690 if (os1->is_noload() && !os2->is_noload())
3691 return true;
3692 if (!os1->is_noload() && os2->is_noload())
3693 return true;
3694
3695 // The sections seem practically identical. Sort by name to get a
3696 // stable sort.
3697 return os1->name() < os2->name();
3698 }
3699
3700 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3701 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3702 // empty sections in the order in which they appear in a linker
3703 // script.
3704
3705 int
3706 Sort_output_sections::script_compare(const Output_section* os1,
3707 const Output_section* os2) const
3708 {
3709 if (this->elements_ == NULL)
3710 return 0;
3711
3712 bool found_os1 = false;
3713 bool found_os2 = false;
3714 for (Script_sections::Sections_elements::const_iterator
3715 p = this->elements_->begin();
3716 p != this->elements_->end();
3717 ++p)
3718 {
3719 if (os2 == (*p)->get_output_section())
3720 {
3721 if (found_os1)
3722 return -1;
3723 found_os2 = true;
3724 }
3725 else if (os1 == (*p)->get_output_section())
3726 {
3727 if (found_os2)
3728 return 1;
3729 found_os1 = true;
3730 }
3731 }
3732
3733 return 0;
3734 }
3735
3736 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3737 // We treat a section with the SHF_TLS flag set as taking up space
3738 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3739 // space for them in the file.
3740
3741 bool
3742 Script_sections::is_bss_section(const Output_section* os)
3743 {
3744 return (os->type() == elfcpp::SHT_NOBITS
3745 && (os->flags() & elfcpp::SHF_TLS) == 0);
3746 }
3747
3748 // Return the size taken by the file header and the program headers.
3749
3750 size_t
3751 Script_sections::total_header_size(Layout* layout) const
3752 {
3753 size_t segment_count = layout->segment_count();
3754 size_t file_header_size;
3755 size_t segment_headers_size;
3756 if (parameters->target().get_size() == 32)
3757 {
3758 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3759 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3760 }
3761 else if (parameters->target().get_size() == 64)
3762 {
3763 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3764 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3765 }
3766 else
3767 gold_unreachable();
3768
3769 return file_header_size + segment_headers_size;
3770 }
3771
3772 // Return the amount we have to subtract from the LMA to accommodate
3773 // headers of the given size. The complication is that the file
3774 // header have to be at the start of a page, as otherwise it will not
3775 // be at the start of the file.
3776
3777 uint64_t
3778 Script_sections::header_size_adjustment(uint64_t lma,
3779 size_t sizeof_headers) const
3780 {
3781 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3782 uint64_t hdr_lma = lma - sizeof_headers;
3783 hdr_lma &= ~(abi_pagesize - 1);
3784 return lma - hdr_lma;
3785 }
3786
3787 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3788 // the segment which should hold the file header and segment headers,
3789 // if any.
3790
3791 Output_segment*
3792 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3793 {
3794 gold_assert(this->saw_sections_clause_);
3795
3796 if (parameters->options().relocatable())
3797 return NULL;
3798
3799 if (this->saw_phdrs_clause())
3800 return create_segments_from_phdrs_clause(layout, dot_alignment);
3801
3802 Layout::Section_list sections;
3803 layout->get_allocated_sections(&sections);
3804
3805 // Sort the sections by address.
3806 std::stable_sort(sections.begin(), sections.end(),
3807 Sort_output_sections(this->sections_elements_));
3808
3809 this->create_note_and_tls_segments(layout, &sections);
3810
3811 // Walk through the sections adding them to PT_LOAD segments.
3812 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3813 Output_segment* first_seg = NULL;
3814 Output_segment* current_seg = NULL;
3815 bool is_current_seg_readonly = true;
3816 Layout::Section_list::iterator plast = sections.end();
3817 uint64_t last_vma = 0;
3818 uint64_t last_lma = 0;
3819 uint64_t last_size = 0;
3820 for (Layout::Section_list::iterator p = sections.begin();
3821 p != sections.end();
3822 ++p)
3823 {
3824 const uint64_t vma = (*p)->address();
3825 const uint64_t lma = ((*p)->has_load_address()
3826 ? (*p)->load_address()
3827 : vma);
3828 const uint64_t size = (*p)->current_data_size();
3829
3830 bool need_new_segment;
3831 if (current_seg == NULL)
3832 need_new_segment = true;
3833 else if (lma - vma != last_lma - last_vma)
3834 {
3835 // This section has a different LMA relationship than the
3836 // last one; we need a new segment.
3837 need_new_segment = true;
3838 }
3839 else if (align_address(last_lma + last_size, abi_pagesize)
3840 < align_address(lma, abi_pagesize))
3841 {
3842 // Putting this section in the segment would require
3843 // skipping a page.
3844 need_new_segment = true;
3845 }
3846 else if (is_bss_section(*plast) && !is_bss_section(*p))
3847 {
3848 // A non-BSS section can not follow a BSS section in the
3849 // same segment.
3850 need_new_segment = true;
3851 }
3852 else if (is_current_seg_readonly
3853 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3854 && !parameters->options().omagic())
3855 {
3856 // Don't put a writable section in the same segment as a
3857 // non-writable section.
3858 need_new_segment = true;
3859 }
3860 else
3861 {
3862 // Otherwise, reuse the existing segment.
3863 need_new_segment = false;
3864 }
3865
3866 elfcpp::Elf_Word seg_flags =
3867 Layout::section_flags_to_segment((*p)->flags());
3868
3869 if (need_new_segment)
3870 {
3871 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3872 seg_flags);
3873 current_seg->set_addresses(vma, lma);
3874 current_seg->set_minimum_p_align(dot_alignment);
3875 if (first_seg == NULL)
3876 first_seg = current_seg;
3877 is_current_seg_readonly = true;
3878 }
3879
3880 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3881
3882 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3883 is_current_seg_readonly = false;
3884
3885 plast = p;
3886 last_vma = vma;
3887 last_lma = lma;
3888 last_size = size;
3889 }
3890
3891 // An ELF program should work even if the program headers are not in
3892 // a PT_LOAD segment. However, it appears that the Linux kernel
3893 // does not set the AT_PHDR auxiliary entry in that case. It sets
3894 // the load address to p_vaddr - p_offset of the first PT_LOAD
3895 // segment. It then sets AT_PHDR to the load address plus the
3896 // offset to the program headers, e_phoff in the file header. This
3897 // fails when the program headers appear in the file before the
3898 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3899 // segment to hold the file header and the program headers. This is
3900 // effectively what the GNU linker does, and it is slightly more
3901 // efficient in any case. We try to use the first PT_LOAD segment
3902 // if we can, otherwise we make a new one.
3903
3904 if (first_seg == NULL)
3905 return NULL;
3906
3907 // -n or -N mean that the program is not demand paged and there is
3908 // no need to put the program headers in a PT_LOAD segment.
3909 if (parameters->options().nmagic() || parameters->options().omagic())
3910 return NULL;
3911
3912 size_t sizeof_headers = this->total_header_size(layout);
3913
3914 uint64_t vma = first_seg->vaddr();
3915 uint64_t lma = first_seg->paddr();
3916
3917 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3918
3919 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3920 {
3921 first_seg->set_addresses(vma - subtract, lma - subtract);
3922 return first_seg;
3923 }
3924
3925 // If there is no room to squeeze in the headers, then punt. The
3926 // resulting executable probably won't run on GNU/Linux, but we
3927 // trust that the user knows what they are doing.
3928 if (lma < subtract || vma < subtract)
3929 return NULL;
3930
3931 // If memory regions have been specified and the address range
3932 // we are about to use is not contained within any region then
3933 // issue a warning message about the segment we are going to
3934 // create. It will be outside of any region and so possibly
3935 // using non-existent or protected memory. We test LMA rather
3936 // than VMA since we assume that the headers will never be
3937 // relocated.
3938 if (this->memory_regions_ != NULL
3939 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3940 gold_warning(_("creating a segment to contain the file and program"
3941 " headers outside of any MEMORY region"));
3942
3943 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3944 elfcpp::PF_R);
3945 load_seg->set_addresses(vma - subtract, lma - subtract);
3946
3947 return load_seg;
3948 }
3949
3950 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3951 // segment if there are any SHT_TLS sections.
3952
3953 void
3954 Script_sections::create_note_and_tls_segments(
3955 Layout* layout,
3956 const Layout::Section_list* sections)
3957 {
3958 gold_assert(!this->saw_phdrs_clause());
3959
3960 bool saw_tls = false;
3961 for (Layout::Section_list::const_iterator p = sections->begin();
3962 p != sections->end();
3963 ++p)
3964 {
3965 if ((*p)->type() == elfcpp::SHT_NOTE)
3966 {
3967 elfcpp::Elf_Word seg_flags =
3968 Layout::section_flags_to_segment((*p)->flags());
3969 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
3970 seg_flags);
3971 oseg->add_output_section_to_nonload(*p, seg_flags);
3972
3973 // Incorporate any subsequent SHT_NOTE sections, in the
3974 // hopes that the script is sensible.
3975 Layout::Section_list::const_iterator pnext = p + 1;
3976 while (pnext != sections->end()
3977 && (*pnext)->type() == elfcpp::SHT_NOTE)
3978 {
3979 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
3980 oseg->add_output_section_to_nonload(*pnext, seg_flags);
3981 p = pnext;
3982 ++pnext;
3983 }
3984 }
3985
3986 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
3987 {
3988 if (saw_tls)
3989 gold_error(_("TLS sections are not adjacent"));
3990
3991 elfcpp::Elf_Word seg_flags =
3992 Layout::section_flags_to_segment((*p)->flags());
3993 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
3994 seg_flags);
3995 oseg->add_output_section_to_nonload(*p, seg_flags);
3996
3997 Layout::Section_list::const_iterator pnext = p + 1;
3998 while (pnext != sections->end()
3999 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4000 {
4001 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4002 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4003 p = pnext;
4004 ++pnext;
4005 }
4006
4007 saw_tls = true;
4008 }
4009
4010 // If we are making a shared library, and we see a section named
4011 // .interp then put the .interp section in a PT_INTERP segment.
4012 // This is for GNU ld compatibility.
4013 if (strcmp((*p)->name(), ".interp") == 0)
4014 {
4015 elfcpp::Elf_Word seg_flags =
4016 Layout::section_flags_to_segment((*p)->flags());
4017 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4018 seg_flags);
4019 oseg->add_output_section_to_nonload(*p, seg_flags);
4020 }
4021 }
4022 }
4023
4024 // Add a program header. The PHDRS clause is syntactically distinct
4025 // from the SECTIONS clause, but we implement it with the SECTIONS
4026 // support because PHDRS is useless if there is no SECTIONS clause.
4027
4028 void
4029 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4030 bool includes_filehdr, bool includes_phdrs,
4031 bool is_flags_valid, unsigned int flags,
4032 Expression* load_address)
4033 {
4034 if (this->phdrs_elements_ == NULL)
4035 this->phdrs_elements_ = new Phdrs_elements();
4036 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4037 includes_filehdr,
4038 includes_phdrs,
4039 is_flags_valid, flags,
4040 load_address));
4041 }
4042
4043 // Return the number of segments we expect to create based on the
4044 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4045
4046 size_t
4047 Script_sections::expected_segment_count(const Layout* layout) const
4048 {
4049 if (this->saw_phdrs_clause())
4050 return this->phdrs_elements_->size();
4051
4052 Layout::Section_list sections;
4053 layout->get_allocated_sections(&sections);
4054
4055 // We assume that we will need two PT_LOAD segments.
4056 size_t ret = 2;
4057
4058 bool saw_note = false;
4059 bool saw_tls = false;
4060 for (Layout::Section_list::const_iterator p = sections.begin();
4061 p != sections.end();
4062 ++p)
4063 {
4064 if ((*p)->type() == elfcpp::SHT_NOTE)
4065 {
4066 // Assume that all note sections will fit into a single
4067 // PT_NOTE segment.
4068 if (!saw_note)
4069 {
4070 ++ret;
4071 saw_note = true;
4072 }
4073 }
4074 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4075 {
4076 // There can only be one PT_TLS segment.
4077 if (!saw_tls)
4078 {
4079 ++ret;
4080 saw_tls = true;
4081 }
4082 }
4083 }
4084
4085 return ret;
4086 }
4087
4088 // Create the segments from a PHDRS clause. Return the segment which
4089 // should hold the file header and program headers, if any.
4090
4091 Output_segment*
4092 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4093 uint64_t dot_alignment)
4094 {
4095 this->attach_sections_using_phdrs_clause(layout);
4096 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4097 }
4098
4099 // Create the segments from the PHDRS clause, and put the output
4100 // sections in them.
4101
4102 void
4103 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4104 {
4105 typedef std::map<std::string, Output_segment*> Name_to_segment;
4106 Name_to_segment name_to_segment;
4107 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4108 p != this->phdrs_elements_->end();
4109 ++p)
4110 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4111
4112 // Walk through the output sections and attach them to segments.
4113 // Output sections in the script which do not list segments are
4114 // attached to the same set of segments as the immediately preceding
4115 // output section.
4116
4117 String_list* phdr_names = NULL;
4118 bool load_segments_only = false;
4119 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4120 p != this->sections_elements_->end();
4121 ++p)
4122 {
4123 bool is_orphan;
4124 String_list* old_phdr_names = phdr_names;
4125 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4126 if (os == NULL)
4127 continue;
4128
4129 elfcpp::Elf_Word seg_flags =
4130 Layout::section_flags_to_segment(os->flags());
4131
4132 if (phdr_names == NULL)
4133 {
4134 // Don't worry about empty orphan sections.
4135 if (is_orphan && os->current_data_size() > 0)
4136 gold_error(_("allocated section %s not in any segment"),
4137 os->name());
4138
4139 // To avoid later crashes drop this section into the first
4140 // PT_LOAD segment.
4141 for (Phdrs_elements::const_iterator ppe =
4142 this->phdrs_elements_->begin();
4143 ppe != this->phdrs_elements_->end();
4144 ++ppe)
4145 {
4146 Output_segment* oseg = (*ppe)->segment();
4147 if (oseg->type() == elfcpp::PT_LOAD)
4148 {
4149 oseg->add_output_section_to_load(layout, os, seg_flags);
4150 break;
4151 }
4152 }
4153
4154 continue;
4155 }
4156
4157 // We see a list of segments names. Disable PT_LOAD segment only
4158 // filtering.
4159 if (old_phdr_names != phdr_names)
4160 load_segments_only = false;
4161
4162 // If this is an orphan section--one that was not explicitly
4163 // mentioned in the linker script--then it should not inherit
4164 // any segment type other than PT_LOAD. Otherwise, e.g., the
4165 // PT_INTERP segment will pick up following orphan sections,
4166 // which does not make sense. If this is not an orphan section,
4167 // we trust the linker script.
4168 if (is_orphan)
4169 {
4170 // Enable PT_LOAD segments only filtering until we see another
4171 // list of segment names.
4172 load_segments_only = true;
4173 }
4174
4175 bool in_load_segment = false;
4176 for (String_list::const_iterator q = phdr_names->begin();
4177 q != phdr_names->end();
4178 ++q)
4179 {
4180 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4181 if (r == name_to_segment.end())
4182 gold_error(_("no segment %s"), q->c_str());
4183 else
4184 {
4185 if (load_segments_only
4186 && r->second->type() != elfcpp::PT_LOAD)
4187 continue;
4188
4189 if (r->second->type() != elfcpp::PT_LOAD)
4190 r->second->add_output_section_to_nonload(os, seg_flags);
4191 else
4192 {
4193 r->second->add_output_section_to_load(layout, os, seg_flags);
4194 if (in_load_segment)
4195 gold_error(_("section in two PT_LOAD segments"));
4196 in_load_segment = true;
4197 }
4198 }
4199 }
4200
4201 if (!in_load_segment)
4202 gold_error(_("allocated section not in any PT_LOAD segment"));
4203 }
4204 }
4205
4206 // Set the addresses for segments created from a PHDRS clause. Return
4207 // the segment which should hold the file header and program headers,
4208 // if any.
4209
4210 Output_segment*
4211 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4212 uint64_t dot_alignment)
4213 {
4214 Output_segment* load_seg = NULL;
4215 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4216 p != this->phdrs_elements_->end();
4217 ++p)
4218 {
4219 // Note that we have to set the flags after adding the output
4220 // sections to the segment, as adding an output segment can
4221 // change the flags.
4222 (*p)->set_flags_if_valid();
4223
4224 Output_segment* oseg = (*p)->segment();
4225
4226 if (oseg->type() != elfcpp::PT_LOAD)
4227 {
4228 // The addresses of non-PT_LOAD segments are set from the
4229 // PT_LOAD segments.
4230 if ((*p)->has_load_address())
4231 gold_error(_("may only specify load address for PT_LOAD segment"));
4232 continue;
4233 }
4234
4235 oseg->set_minimum_p_align(dot_alignment);
4236
4237 // The output sections should have addresses from the SECTIONS
4238 // clause. The addresses don't have to be in order, so find the
4239 // one with the lowest load address. Use that to set the
4240 // address of the segment.
4241
4242 Output_section* osec = oseg->section_with_lowest_load_address();
4243 if (osec == NULL)
4244 {
4245 oseg->set_addresses(0, 0);
4246 continue;
4247 }
4248
4249 uint64_t vma = osec->address();
4250 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4251
4252 // Override the load address of the section with the load
4253 // address specified for the segment.
4254 if ((*p)->has_load_address())
4255 {
4256 if (osec->has_load_address())
4257 gold_warning(_("PHDRS load address overrides "
4258 "section %s load address"),
4259 osec->name());
4260
4261 lma = (*p)->load_address();
4262 }
4263
4264 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4265 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4266 {
4267 // We could support this if we wanted to.
4268 gold_error(_("using only one of FILEHDR and PHDRS is "
4269 "not currently supported"));
4270 }
4271 if (headers)
4272 {
4273 size_t sizeof_headers = this->total_header_size(layout);
4274 uint64_t subtract = this->header_size_adjustment(lma,
4275 sizeof_headers);
4276 if (lma >= subtract && vma >= subtract)
4277 {
4278 lma -= subtract;
4279 vma -= subtract;
4280 }
4281 else
4282 {
4283 gold_error(_("sections loaded on first page without room "
4284 "for file and program headers "
4285 "are not supported"));
4286 }
4287
4288 if (load_seg != NULL)
4289 gold_error(_("using FILEHDR and PHDRS on more than one "
4290 "PT_LOAD segment is not currently supported"));
4291 load_seg = oseg;
4292 }
4293
4294 oseg->set_addresses(vma, lma);
4295 }
4296
4297 return load_seg;
4298 }
4299
4300 // Add the file header and segment headers to non-load segments
4301 // specified in the PHDRS clause.
4302
4303 void
4304 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4305 Output_data* segment_headers)
4306 {
4307 gold_assert(this->saw_phdrs_clause());
4308 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4309 p != this->phdrs_elements_->end();
4310 ++p)
4311 {
4312 if ((*p)->type() != elfcpp::PT_LOAD)
4313 {
4314 if ((*p)->includes_phdrs())
4315 (*p)->segment()->add_initial_output_data(segment_headers);
4316 if ((*p)->includes_filehdr())
4317 (*p)->segment()->add_initial_output_data(file_header);
4318 }
4319 }
4320 }
4321
4322 // Look for an output section by name and return the address, the load
4323 // address, the alignment, and the size. This is used when an
4324 // expression refers to an output section which was not actually
4325 // created. This returns true if the section was found, false
4326 // otherwise.
4327
4328 bool
4329 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4330 uint64_t* load_address,
4331 uint64_t* addralign,
4332 uint64_t* size) const
4333 {
4334 if (!this->saw_sections_clause_)
4335 return false;
4336 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4337 p != this->sections_elements_->end();
4338 ++p)
4339 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4340 size))
4341 return true;
4342 return false;
4343 }
4344
4345 // Release all Output_segments. This remove all pointers to all
4346 // Output_segments.
4347
4348 void
4349 Script_sections::release_segments()
4350 {
4351 if (this->saw_phdrs_clause())
4352 {
4353 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4354 p != this->phdrs_elements_->end();
4355 ++p)
4356 (*p)->release_segment();
4357 }
4358 }
4359
4360 // Print the SECTIONS clause to F for debugging.
4361
4362 void
4363 Script_sections::print(FILE* f) const
4364 {
4365 if (this->phdrs_elements_ != NULL)
4366 {
4367 fprintf(f, "PHDRS {\n");
4368 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4369 p != this->phdrs_elements_->end();
4370 ++p)
4371 (*p)->print(f);
4372 fprintf(f, "}\n");
4373 }
4374
4375 if (this->memory_regions_ != NULL)
4376 {
4377 fprintf(f, "MEMORY {\n");
4378 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4379 m != this->memory_regions_->end();
4380 ++m)
4381 (*m)->print(f);
4382 fprintf(f, "}\n");
4383 }
4384
4385 if (!this->saw_sections_clause_)
4386 return;
4387
4388 fprintf(f, "SECTIONS {\n");
4389
4390 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4391 p != this->sections_elements_->end();
4392 ++p)
4393 (*p)->print(f);
4394
4395 fprintf(f, "}\n");
4396 }
4397
4398 } // End namespace gold.
This page took 0.129058 seconds and 5 git commands to generate.