PR gold/20462: Fix bogus layout on ARM with linker script using PHDRS clause
[deliverable/binutils-gdb.git] / gold / script-sections.cc
1 // script-sections.cc -- linker script SECTIONS for gold
2
3 // Copyright (C) 2008-2016 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <algorithm>
27 #include <list>
28 #include <map>
29 #include <string>
30 #include <vector>
31 #include <fnmatch.h>
32
33 #include "parameters.h"
34 #include "object.h"
35 #include "layout.h"
36 #include "output.h"
37 #include "script-c.h"
38 #include "script.h"
39 #include "script-sections.h"
40
41 // Support for the SECTIONS clause in linker scripts.
42
43 namespace gold
44 {
45
46 // A region of memory.
47 class Memory_region
48 {
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
56 current_offset_(0),
57 vma_sections_(),
58 lma_sections_(),
59 last_section_(NULL)
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
90 get_current_address() const
91 {
92 return
93 script_exp_binary_add(this->start_,
94 script_exp_integer(this->current_offset_));
95 }
96
97 void
98 set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99 {
100 uint64_t start = this->start_->eval(symtab, layout, false);
101 uint64_t len = this->length_->eval(symtab, layout, false);
102 if (addr < start || addr >= start + len)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr),
105 this->name_.c_str());
106 else if (addr < start + this->current_offset_)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr),
109 this->name_.c_str());
110 this->current_offset_ = addr - start;
111 }
112
113 void
114 increment_offset(std::string section_name, uint64_t amount,
115 const Symbol_table* symtab, const Layout* layout)
116 {
117 this->current_offset_ += amount;
118
119 if (this->current_offset_
120 > this->length_->eval(symtab, layout, false))
121 gold_error(_("section %s overflows end of region %s"),
122 section_name.c_str(), this->name_.c_str());
123 }
124
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
127 bool
128 has_room_for(const Symbol_table* symtab, const Layout* layout,
129 uint64_t amount) const
130 {
131 return (this->current_offset_ + amount
132 < this->length_->eval(symtab, layout, false));
133 }
134
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
137 bool
138 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
139
140 void
141 add_section(Output_section_definition* sec, bool vma)
142 {
143 if (vma)
144 this->vma_sections_.push_back(sec);
145 else
146 this->lma_sections_.push_back(sec);
147 }
148
149 typedef std::vector<Output_section_definition*> Section_list;
150
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
154 get_vma_section_list_start() const
155 { return this->vma_sections_.begin(); }
156
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
160 get_lma_section_list_start() const
161 { return this->lma_sections_.begin(); }
162
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
166 get_vma_section_list_end() const
167 { return this->vma_sections_.end(); }
168
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
172 get_lma_section_list_end() const
173 { return this->lma_sections_.end(); }
174
175 Output_section_definition*
176 get_last_section() const
177 { return this->last_section_; }
178
179 void
180 set_last_section(Output_section_definition* sec)
181 { this->last_section_ = sec; }
182
183 private:
184
185 std::string name_;
186 unsigned int attributes_;
187 Expression* start_;
188 Expression* length_;
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_;
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_;
198 // The latest section to make use of this region.
199 Output_section_definition* last_section_;
200 };
201
202 // Return true if the provided section flags
203 // are compatible with this region's attributes.
204
205 bool
206 Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207 elfcpp::Elf_Xword type) const
208 {
209 unsigned int attrs = this->attributes_;
210
211 // No attributes means that this region is not compatible with anything.
212 if (attrs == 0)
213 return false;
214
215 bool match = true;
216 do
217 {
218 switch (attrs & - attrs)
219 {
220 case MEM_EXECUTABLE:
221 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222 match = false;
223 break;
224
225 case MEM_WRITEABLE:
226 if ((flags & elfcpp::SHF_WRITE) == 0)
227 match = false;
228 break;
229
230 case MEM_READABLE:
231 // All sections are presumed readable.
232 break;
233
234 case MEM_ALLOCATABLE:
235 if ((flags & elfcpp::SHF_ALLOC) == 0)
236 match = false;
237 break;
238
239 case MEM_INITIALIZED:
240 if ((type & elfcpp::SHT_NOBITS) != 0)
241 match = false;
242 break;
243 }
244 attrs &= ~ (attrs & - attrs);
245 }
246 while (attrs != 0);
247
248 return match;
249 }
250
251 // Print a memory region.
252
253 void
254 Memory_region::print(FILE* f) const
255 {
256 fprintf(f, " %s", this->name_.c_str());
257
258 unsigned int attrs = this->attributes_;
259 if (attrs != 0)
260 {
261 fprintf(f, " (");
262 do
263 {
264 switch (attrs & - attrs)
265 {
266 case MEM_EXECUTABLE: fputc('x', f); break;
267 case MEM_WRITEABLE: fputc('w', f); break;
268 case MEM_READABLE: fputc('r', f); break;
269 case MEM_ALLOCATABLE: fputc('a', f); break;
270 case MEM_INITIALIZED: fputc('i', f); break;
271 default:
272 gold_unreachable();
273 }
274 attrs &= ~ (attrs & - attrs);
275 }
276 while (attrs != 0);
277 fputc(')', f);
278 }
279
280 fprintf(f, " : origin = ");
281 this->start_->print(f);
282 fprintf(f, ", length = ");
283 this->length_->print(f);
284 fprintf(f, "\n");
285 }
286
287 // Manage orphan sections. This is intended to be largely compatible
288 // with the GNU linker. The Linux kernel implicitly relies on
289 // something similar to the GNU linker's orphan placement. We
290 // originally used a simpler scheme here, but it caused the kernel
291 // build to fail, and was also rather inefficient.
292
293 class Orphan_section_placement
294 {
295 private:
296 typedef Script_sections::Elements_iterator Elements_iterator;
297
298 public:
299 Orphan_section_placement();
300
301 // Handle an output section during initialization of this mapping.
302 void
303 output_section_init(const std::string& name, Output_section*,
304 Elements_iterator location);
305
306 // Initialize the last location.
307 void
308 last_init(Elements_iterator location);
309
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
313 bool
314 find_place(Output_section*, Elements_iterator** pwhere);
315
316 // Return the iterator being used for sections at the very end of
317 // the linker script.
318 Elements_iterator
319 last_place() const;
320
321 private:
322 // The places that we specifically recognize. This list is copied
323 // from the GNU linker.
324 enum Place_index
325 {
326 PLACE_TEXT,
327 PLACE_RODATA,
328 PLACE_DATA,
329 PLACE_TLS,
330 PLACE_TLS_BSS,
331 PLACE_BSS,
332 PLACE_REL,
333 PLACE_INTERP,
334 PLACE_NONALLOC,
335 PLACE_LAST,
336 PLACE_MAX
337 };
338
339 // The information we keep for a specific place.
340 struct Place
341 {
342 // The name of sections for this place.
343 const char* name;
344 // Whether we have a location for this place.
345 bool have_location;
346 // The iterator for this place.
347 Elements_iterator location;
348 };
349
350 // Initialize one place element.
351 void
352 initialize_place(Place_index, const char*);
353
354 // The places.
355 Place places_[PLACE_MAX];
356 // True if this is the first call to output_section_init.
357 bool first_init_;
358 };
359
360 // Initialize Orphan_section_placement.
361
362 Orphan_section_placement::Orphan_section_placement()
363 : first_init_(true)
364 {
365 this->initialize_place(PLACE_TEXT, ".text");
366 this->initialize_place(PLACE_RODATA, ".rodata");
367 this->initialize_place(PLACE_DATA, ".data");
368 this->initialize_place(PLACE_TLS, NULL);
369 this->initialize_place(PLACE_TLS_BSS, NULL);
370 this->initialize_place(PLACE_BSS, ".bss");
371 this->initialize_place(PLACE_REL, NULL);
372 this->initialize_place(PLACE_INTERP, ".interp");
373 this->initialize_place(PLACE_NONALLOC, NULL);
374 this->initialize_place(PLACE_LAST, NULL);
375 }
376
377 // Initialize one place element.
378
379 void
380 Orphan_section_placement::initialize_place(Place_index index, const char* name)
381 {
382 this->places_[index].name = name;
383 this->places_[index].have_location = false;
384 }
385
386 // While initializing the Orphan_section_placement information, this
387 // is called once for each output section named in the linker script.
388 // If we found an output section during the link, it will be passed in
389 // OS.
390
391 void
392 Orphan_section_placement::output_section_init(const std::string& name,
393 Output_section* os,
394 Elements_iterator location)
395 {
396 bool first_init = this->first_init_;
397 this->first_init_ = false;
398
399 for (int i = 0; i < PLACE_MAX; ++i)
400 {
401 if (this->places_[i].name != NULL && this->places_[i].name == name)
402 {
403 if (this->places_[i].have_location)
404 {
405 // We have already seen a section with this name.
406 return;
407 }
408
409 this->places_[i].location = location;
410 this->places_[i].have_location = true;
411
412 // If we just found the .bss section, restart the search for
413 // an unallocated section. This follows the GNU linker's
414 // behaviour.
415 if (i == PLACE_BSS)
416 this->places_[PLACE_NONALLOC].have_location = false;
417
418 return;
419 }
420 }
421
422 // Relocation sections.
423 if (!this->places_[PLACE_REL].have_location
424 && os != NULL
425 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
426 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
427 {
428 this->places_[PLACE_REL].location = location;
429 this->places_[PLACE_REL].have_location = true;
430 }
431
432 // We find the location for unallocated sections by finding the
433 // first debugging or comment section after the BSS section (if
434 // there is one).
435 if (!this->places_[PLACE_NONALLOC].have_location
436 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
437 {
438 // We add orphan sections after the location in PLACES_. We
439 // want to store unallocated sections before LOCATION. If this
440 // is the very first section, we can't use it.
441 if (!first_init)
442 {
443 --location;
444 this->places_[PLACE_NONALLOC].location = location;
445 this->places_[PLACE_NONALLOC].have_location = true;
446 }
447 }
448 }
449
450 // Initialize the last location.
451
452 void
453 Orphan_section_placement::last_init(Elements_iterator location)
454 {
455 this->places_[PLACE_LAST].location = location;
456 this->places_[PLACE_LAST].have_location = true;
457 }
458
459 // Set *PWHERE to the address of an iterator pointing to the location
460 // to use for an orphan section. Return true if the iterator has a
461 // value, false otherwise.
462
463 bool
464 Orphan_section_placement::find_place(Output_section* os,
465 Elements_iterator** pwhere)
466 {
467 // Figure out where OS should go. This is based on the GNU linker
468 // code. FIXME: The GNU linker handles small data sections
469 // specially, but we don't.
470 elfcpp::Elf_Word type = os->type();
471 elfcpp::Elf_Xword flags = os->flags();
472 Place_index index;
473 if ((flags & elfcpp::SHF_ALLOC) == 0
474 && !Layout::is_debug_info_section(os->name()))
475 index = PLACE_NONALLOC;
476 else if ((flags & elfcpp::SHF_ALLOC) == 0)
477 index = PLACE_LAST;
478 else if (type == elfcpp::SHT_NOTE)
479 index = PLACE_INTERP;
480 else if ((flags & elfcpp::SHF_TLS) != 0)
481 {
482 if (type == elfcpp::SHT_NOBITS)
483 index = PLACE_TLS_BSS;
484 else
485 index = PLACE_TLS;
486 }
487 else if (type == elfcpp::SHT_NOBITS)
488 index = PLACE_BSS;
489 else if ((flags & elfcpp::SHF_WRITE) != 0)
490 index = PLACE_DATA;
491 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
492 index = PLACE_REL;
493 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
494 index = PLACE_RODATA;
495 else
496 index = PLACE_TEXT;
497
498 // If we don't have a location yet, try to find one based on a
499 // plausible ordering of sections.
500 if (!this->places_[index].have_location)
501 {
502 Place_index follow;
503 switch (index)
504 {
505 default:
506 follow = PLACE_MAX;
507 break;
508 case PLACE_RODATA:
509 follow = PLACE_TEXT;
510 break;
511 case PLACE_BSS:
512 follow = PLACE_DATA;
513 break;
514 case PLACE_REL:
515 follow = PLACE_TEXT;
516 break;
517 case PLACE_INTERP:
518 follow = PLACE_TEXT;
519 break;
520 case PLACE_TLS:
521 follow = PLACE_DATA;
522 break;
523 case PLACE_TLS_BSS:
524 follow = PLACE_TLS;
525 if (!this->places_[PLACE_TLS].have_location)
526 follow = PLACE_DATA;
527 break;
528 }
529 if (follow != PLACE_MAX && this->places_[follow].have_location)
530 {
531 // Set the location of INDEX to the location of FOLLOW. The
532 // location of INDEX will then be incremented by the caller,
533 // so anything in INDEX will continue to be after anything
534 // in FOLLOW.
535 this->places_[index].location = this->places_[follow].location;
536 this->places_[index].have_location = true;
537 }
538 }
539
540 *pwhere = &this->places_[index].location;
541 bool ret = this->places_[index].have_location;
542
543 // The caller will set the location.
544 this->places_[index].have_location = true;
545
546 return ret;
547 }
548
549 // Return the iterator being used for sections at the very end of the
550 // linker script.
551
552 Orphan_section_placement::Elements_iterator
553 Orphan_section_placement::last_place() const
554 {
555 gold_assert(this->places_[PLACE_LAST].have_location);
556 return this->places_[PLACE_LAST].location;
557 }
558
559 // An element in a SECTIONS clause.
560
561 class Sections_element
562 {
563 public:
564 Sections_element()
565 { }
566
567 virtual ~Sections_element()
568 { }
569
570 // Return whether an output section is relro.
571 virtual bool
572 is_relro() const
573 { return false; }
574
575 // Record that an output section is relro.
576 virtual void
577 set_is_relro()
578 { }
579
580 // Create any required output sections. The only real
581 // implementation is in Output_section_definition.
582 virtual void
583 create_sections(Layout*)
584 { }
585
586 // Add any symbol being defined to the symbol table.
587 virtual void
588 add_symbols_to_table(Symbol_table*)
589 { }
590
591 // Finalize symbols and check assertions.
592 virtual void
593 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
594 { }
595
596 // Return the output section name to use for an input file name and
597 // section name. This only real implementation is in
598 // Output_section_definition.
599 virtual const char*
600 output_section_name(const char*, const char*, Output_section***,
601 Script_sections::Section_type*, bool*)
602 { return NULL; }
603
604 // Initialize OSP with an output section.
605 virtual void
606 orphan_section_init(Orphan_section_placement*,
607 Script_sections::Elements_iterator)
608 { }
609
610 // Set section addresses. This includes applying assignments if the
611 // expression is an absolute value.
612 virtual void
613 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
614 uint64_t*)
615 { }
616
617 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
618 // this section is constrained, and the input sections do not match,
619 // return the constraint, and set *POSD.
620 virtual Section_constraint
621 check_constraint(Output_section_definition**)
622 { return CONSTRAINT_NONE; }
623
624 // See if this is the alternate output section for a constrained
625 // output section. If it is, transfer the Output_section and return
626 // true. Otherwise return false.
627 virtual bool
628 alternate_constraint(Output_section_definition*, Section_constraint)
629 { return false; }
630
631 // Get the list of segments to use for an allocated section when
632 // using a PHDRS clause. If this is an allocated section, return
633 // the Output_section, and set *PHDRS_LIST (the first parameter) to
634 // the list of PHDRS to which it should be attached. If the PHDRS
635 // were not specified, don't change *PHDRS_LIST. When not returning
636 // NULL, set *ORPHAN (the second parameter) according to whether
637 // this is an orphan section--one that is not mentioned in the
638 // linker script.
639 virtual Output_section*
640 allocate_to_segment(String_list**, bool*)
641 { return NULL; }
642
643 // Look for an output section by name and return the address, the
644 // load address, the alignment, and the size. This is used when an
645 // expression refers to an output section which was not actually
646 // created. This returns true if the section was found, false
647 // otherwise. The only real definition is for
648 // Output_section_definition.
649 virtual bool
650 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
651 uint64_t*) const
652 { return false; }
653
654 // Return the associated Output_section if there is one.
655 virtual Output_section*
656 get_output_section() const
657 { return NULL; }
658
659 // Set the section's memory regions.
660 virtual void
661 set_memory_region(Memory_region*, bool)
662 { gold_error(_("Attempt to set a memory region for a non-output section")); }
663
664 // Print the element for debugging purposes.
665 virtual void
666 print(FILE* f) const = 0;
667 };
668
669 // An assignment in a SECTIONS clause outside of an output section.
670
671 class Sections_element_assignment : public Sections_element
672 {
673 public:
674 Sections_element_assignment(const char* name, size_t namelen,
675 Expression* val, bool provide, bool hidden)
676 : assignment_(name, namelen, false, val, provide, hidden)
677 { }
678
679 // Add the symbol to the symbol table.
680 void
681 add_symbols_to_table(Symbol_table* symtab)
682 { this->assignment_.add_to_table(symtab); }
683
684 // Finalize the symbol.
685 void
686 finalize_symbols(Symbol_table* symtab, const Layout* layout,
687 uint64_t* dot_value)
688 {
689 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
690 }
691
692 // Set the section address. There is no section here, but if the
693 // value is absolute, we set the symbol. This permits us to use
694 // absolute symbols when setting dot.
695 void
696 set_section_addresses(Symbol_table* symtab, Layout* layout,
697 uint64_t* dot_value, uint64_t*, uint64_t*)
698 {
699 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
700 }
701
702 // Print for debugging.
703 void
704 print(FILE* f) const
705 {
706 fprintf(f, " ");
707 this->assignment_.print(f);
708 }
709
710 private:
711 Symbol_assignment assignment_;
712 };
713
714 // An assignment to the dot symbol in a SECTIONS clause outside of an
715 // output section.
716
717 class Sections_element_dot_assignment : public Sections_element
718 {
719 public:
720 Sections_element_dot_assignment(Expression* val)
721 : val_(val)
722 { }
723
724 // Finalize the symbol.
725 void
726 finalize_symbols(Symbol_table* symtab, const Layout* layout,
727 uint64_t* dot_value)
728 {
729 // We ignore the section of the result because outside of an
730 // output section definition the dot symbol is always considered
731 // to be absolute.
732 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
733 NULL, NULL, NULL, false);
734 }
735
736 // Update the dot symbol while setting section addresses.
737 void
738 set_section_addresses(Symbol_table* symtab, Layout* layout,
739 uint64_t* dot_value, uint64_t* dot_alignment,
740 uint64_t* load_address)
741 {
742 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
743 NULL, NULL, dot_alignment, false);
744 *load_address = *dot_value;
745 }
746
747 // Print for debugging.
748 void
749 print(FILE* f) const
750 {
751 fprintf(f, " . = ");
752 this->val_->print(f);
753 fprintf(f, "\n");
754 }
755
756 private:
757 Expression* val_;
758 };
759
760 // An assertion in a SECTIONS clause outside of an output section.
761
762 class Sections_element_assertion : public Sections_element
763 {
764 public:
765 Sections_element_assertion(Expression* check, const char* message,
766 size_t messagelen)
767 : assertion_(check, message, messagelen)
768 { }
769
770 // Check the assertion.
771 void
772 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
773 { this->assertion_.check(symtab, layout); }
774
775 // Print for debugging.
776 void
777 print(FILE* f) const
778 {
779 fprintf(f, " ");
780 this->assertion_.print(f);
781 }
782
783 private:
784 Script_assertion assertion_;
785 };
786
787 // An element in an output section in a SECTIONS clause.
788
789 class Output_section_element
790 {
791 public:
792 // A list of input sections.
793 typedef std::list<Output_section::Input_section> Input_section_list;
794
795 Output_section_element()
796 { }
797
798 virtual ~Output_section_element()
799 { }
800
801 // Return whether this element requires an output section to exist.
802 virtual bool
803 needs_output_section() const
804 { return false; }
805
806 // Add any symbol being defined to the symbol table.
807 virtual void
808 add_symbols_to_table(Symbol_table*)
809 { }
810
811 // Finalize symbols and check assertions.
812 virtual void
813 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
814 { }
815
816 // Return whether this element matches FILE_NAME and SECTION_NAME.
817 // The only real implementation is in Output_section_element_input.
818 virtual bool
819 match_name(const char*, const char*, bool *) const
820 { return false; }
821
822 // Set section addresses. This includes applying assignments if the
823 // expression is an absolute value.
824 virtual void
825 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
826 uint64_t*, uint64_t*, Output_section**, std::string*,
827 Input_section_list*)
828 { }
829
830 // Print the element for debugging purposes.
831 virtual void
832 print(FILE* f) const = 0;
833
834 protected:
835 // Return a fill string that is LENGTH bytes long, filling it with
836 // FILL.
837 std::string
838 get_fill_string(const std::string* fill, section_size_type length) const;
839 };
840
841 std::string
842 Output_section_element::get_fill_string(const std::string* fill,
843 section_size_type length) const
844 {
845 std::string this_fill;
846 this_fill.reserve(length);
847 while (this_fill.length() + fill->length() <= length)
848 this_fill += *fill;
849 if (this_fill.length() < length)
850 this_fill.append(*fill, 0, length - this_fill.length());
851 return this_fill;
852 }
853
854 // A symbol assignment in an output section.
855
856 class Output_section_element_assignment : public Output_section_element
857 {
858 public:
859 Output_section_element_assignment(const char* name, size_t namelen,
860 Expression* val, bool provide,
861 bool hidden)
862 : assignment_(name, namelen, false, val, provide, hidden)
863 { }
864
865 // Add the symbol to the symbol table.
866 void
867 add_symbols_to_table(Symbol_table* symtab)
868 { this->assignment_.add_to_table(symtab); }
869
870 // Finalize the symbol.
871 void
872 finalize_symbols(Symbol_table* symtab, const Layout* layout,
873 uint64_t* dot_value, Output_section** dot_section)
874 {
875 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
876 *dot_section);
877 }
878
879 // Set the section address. There is no section here, but if the
880 // value is absolute, we set the symbol. This permits us to use
881 // absolute symbols when setting dot.
882 void
883 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
884 uint64_t, uint64_t* dot_value, uint64_t*,
885 Output_section** dot_section, std::string*,
886 Input_section_list*)
887 {
888 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
889 *dot_section);
890 }
891
892 // Print for debugging.
893 void
894 print(FILE* f) const
895 {
896 fprintf(f, " ");
897 this->assignment_.print(f);
898 }
899
900 private:
901 Symbol_assignment assignment_;
902 };
903
904 // An assignment to the dot symbol in an output section.
905
906 class Output_section_element_dot_assignment : public Output_section_element
907 {
908 public:
909 Output_section_element_dot_assignment(Expression* val)
910 : val_(val)
911 { }
912
913 // An assignment to dot within an output section is enough to force
914 // the output section to exist.
915 bool
916 needs_output_section() const
917 { return true; }
918
919 // Finalize the symbol.
920 void
921 finalize_symbols(Symbol_table* symtab, const Layout* layout,
922 uint64_t* dot_value, Output_section** dot_section)
923 {
924 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
925 *dot_section, dot_section, NULL,
926 true);
927 }
928
929 // Update the dot symbol while setting section addresses.
930 void
931 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
932 uint64_t, uint64_t* dot_value, uint64_t*,
933 Output_section** dot_section, std::string*,
934 Input_section_list*);
935
936 // Print for debugging.
937 void
938 print(FILE* f) const
939 {
940 fprintf(f, " . = ");
941 this->val_->print(f);
942 fprintf(f, "\n");
943 }
944
945 private:
946 Expression* val_;
947 };
948
949 // Update the dot symbol while setting section addresses.
950
951 void
952 Output_section_element_dot_assignment::set_section_addresses(
953 Symbol_table* symtab,
954 Layout* layout,
955 Output_section* output_section,
956 uint64_t,
957 uint64_t* dot_value,
958 uint64_t* dot_alignment,
959 Output_section** dot_section,
960 std::string* fill,
961 Input_section_list*)
962 {
963 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
964 *dot_value, *dot_section,
965 dot_section, dot_alignment,
966 true);
967 if (next_dot < *dot_value)
968 gold_error(_("dot may not move backward"));
969 if (next_dot > *dot_value && output_section != NULL)
970 {
971 section_size_type length = convert_to_section_size_type(next_dot
972 - *dot_value);
973 Output_section_data* posd;
974 if (fill->empty())
975 posd = new Output_data_zero_fill(length, 0);
976 else
977 {
978 std::string this_fill = this->get_fill_string(fill, length);
979 posd = new Output_data_const(this_fill, 0);
980 }
981 output_section->add_output_section_data(posd);
982 layout->new_output_section_data_from_script(posd);
983 }
984 *dot_value = next_dot;
985 }
986
987 // An assertion in an output section.
988
989 class Output_section_element_assertion : public Output_section_element
990 {
991 public:
992 Output_section_element_assertion(Expression* check, const char* message,
993 size_t messagelen)
994 : assertion_(check, message, messagelen)
995 { }
996
997 void
998 print(FILE* f) const
999 {
1000 fprintf(f, " ");
1001 this->assertion_.print(f);
1002 }
1003
1004 private:
1005 Script_assertion assertion_;
1006 };
1007
1008 // We use a special instance of Output_section_data to handle BYTE,
1009 // SHORT, etc. This permits forward references to symbols in the
1010 // expressions.
1011
1012 class Output_data_expression : public Output_section_data
1013 {
1014 public:
1015 Output_data_expression(int size, bool is_signed, Expression* val,
1016 const Symbol_table* symtab, const Layout* layout,
1017 uint64_t dot_value, Output_section* dot_section)
1018 : Output_section_data(size, 0, true),
1019 is_signed_(is_signed), val_(val), symtab_(symtab),
1020 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
1021 { }
1022
1023 protected:
1024 // Write the data to the output file.
1025 void
1026 do_write(Output_file*);
1027
1028 // Write the data to a buffer.
1029 void
1030 do_write_to_buffer(unsigned char*);
1031
1032 // Write to a map file.
1033 void
1034 do_print_to_mapfile(Mapfile* mapfile) const
1035 { mapfile->print_output_data(this, _("** expression")); }
1036
1037 private:
1038 template<bool big_endian>
1039 void
1040 endian_write_to_buffer(uint64_t, unsigned char*);
1041
1042 bool is_signed_;
1043 Expression* val_;
1044 const Symbol_table* symtab_;
1045 const Layout* layout_;
1046 uint64_t dot_value_;
1047 Output_section* dot_section_;
1048 };
1049
1050 // Write the data element to the output file.
1051
1052 void
1053 Output_data_expression::do_write(Output_file* of)
1054 {
1055 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1056 this->write_to_buffer(view);
1057 of->write_output_view(this->offset(), this->data_size(), view);
1058 }
1059
1060 // Write the data element to a buffer.
1061
1062 void
1063 Output_data_expression::do_write_to_buffer(unsigned char* buf)
1064 {
1065 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
1066 true, this->dot_value_,
1067 this->dot_section_, NULL, NULL,
1068 false);
1069
1070 if (parameters->target().is_big_endian())
1071 this->endian_write_to_buffer<true>(val, buf);
1072 else
1073 this->endian_write_to_buffer<false>(val, buf);
1074 }
1075
1076 template<bool big_endian>
1077 void
1078 Output_data_expression::endian_write_to_buffer(uint64_t val,
1079 unsigned char* buf)
1080 {
1081 switch (this->data_size())
1082 {
1083 case 1:
1084 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
1085 break;
1086 case 2:
1087 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
1088 break;
1089 case 4:
1090 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
1091 break;
1092 case 8:
1093 if (parameters->target().get_size() == 32)
1094 {
1095 val &= 0xffffffff;
1096 if (this->is_signed_ && (val & 0x80000000) != 0)
1097 val |= 0xffffffff00000000LL;
1098 }
1099 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
1100 break;
1101 default:
1102 gold_unreachable();
1103 }
1104 }
1105
1106 // A data item in an output section.
1107
1108 class Output_section_element_data : public Output_section_element
1109 {
1110 public:
1111 Output_section_element_data(int size, bool is_signed, Expression* val)
1112 : size_(size), is_signed_(is_signed), val_(val)
1113 { }
1114
1115 // If there is a data item, then we must create an output section.
1116 bool
1117 needs_output_section() const
1118 { return true; }
1119
1120 // Finalize symbols--we just need to update dot.
1121 void
1122 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1123 Output_section**)
1124 { *dot_value += this->size_; }
1125
1126 // Store the value in the section.
1127 void
1128 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
1129 uint64_t* dot_value, uint64_t*, Output_section**,
1130 std::string*, Input_section_list*);
1131
1132 // Print for debugging.
1133 void
1134 print(FILE*) const;
1135
1136 private:
1137 // The size in bytes.
1138 int size_;
1139 // Whether the value is signed.
1140 bool is_signed_;
1141 // The value.
1142 Expression* val_;
1143 };
1144
1145 // Store the value in the section.
1146
1147 void
1148 Output_section_element_data::set_section_addresses(
1149 Symbol_table* symtab,
1150 Layout* layout,
1151 Output_section* os,
1152 uint64_t,
1153 uint64_t* dot_value,
1154 uint64_t*,
1155 Output_section** dot_section,
1156 std::string*,
1157 Input_section_list*)
1158 {
1159 gold_assert(os != NULL);
1160 Output_data_expression* expression =
1161 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1162 symtab, layout, *dot_value, *dot_section);
1163 os->add_output_section_data(expression);
1164 layout->new_output_section_data_from_script(expression);
1165 *dot_value += this->size_;
1166 }
1167
1168 // Print for debugging.
1169
1170 void
1171 Output_section_element_data::print(FILE* f) const
1172 {
1173 const char* s;
1174 switch (this->size_)
1175 {
1176 case 1:
1177 s = "BYTE";
1178 break;
1179 case 2:
1180 s = "SHORT";
1181 break;
1182 case 4:
1183 s = "LONG";
1184 break;
1185 case 8:
1186 if (this->is_signed_)
1187 s = "SQUAD";
1188 else
1189 s = "QUAD";
1190 break;
1191 default:
1192 gold_unreachable();
1193 }
1194 fprintf(f, " %s(", s);
1195 this->val_->print(f);
1196 fprintf(f, ")\n");
1197 }
1198
1199 // A fill value setting in an output section.
1200
1201 class Output_section_element_fill : public Output_section_element
1202 {
1203 public:
1204 Output_section_element_fill(Expression* val)
1205 : val_(val)
1206 { }
1207
1208 // Update the fill value while setting section addresses.
1209 void
1210 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1211 uint64_t, uint64_t* dot_value, uint64_t*,
1212 Output_section** dot_section,
1213 std::string* fill, Input_section_list*)
1214 {
1215 Output_section* fill_section;
1216 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
1217 *dot_value, *dot_section,
1218 &fill_section, NULL, false);
1219 if (fill_section != NULL)
1220 gold_warning(_("fill value is not absolute"));
1221 // FIXME: The GNU linker supports fill values of arbitrary length.
1222 unsigned char fill_buff[4];
1223 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1224 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1225 }
1226
1227 // Print for debugging.
1228 void
1229 print(FILE* f) const
1230 {
1231 fprintf(f, " FILL(");
1232 this->val_->print(f);
1233 fprintf(f, ")\n");
1234 }
1235
1236 private:
1237 // The new fill value.
1238 Expression* val_;
1239 };
1240
1241 // An input section specification in an output section
1242
1243 class Output_section_element_input : public Output_section_element
1244 {
1245 public:
1246 Output_section_element_input(const Input_section_spec* spec, bool keep);
1247
1248 // Finalize symbols--just update the value of the dot symbol.
1249 void
1250 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1251 Output_section** dot_section)
1252 {
1253 *dot_value = this->final_dot_value_;
1254 *dot_section = this->final_dot_section_;
1255 }
1256
1257 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258 // If we do then also indicate whether the section should be KEPT.
1259 bool
1260 match_name(const char* file_name, const char* section_name, bool* keep) const;
1261
1262 // Set the section address.
1263 void
1264 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
1265 uint64_t subalign, uint64_t* dot_value, uint64_t*,
1266 Output_section**, std::string* fill,
1267 Input_section_list*);
1268
1269 // Print for debugging.
1270 void
1271 print(FILE* f) const;
1272
1273 private:
1274 // An input section pattern.
1275 struct Input_section_pattern
1276 {
1277 std::string pattern;
1278 bool pattern_is_wildcard;
1279 Sort_wildcard sort;
1280
1281 Input_section_pattern(const char* patterna, size_t patternlena,
1282 Sort_wildcard sorta)
1283 : pattern(patterna, patternlena),
1284 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
1285 sort(sorta)
1286 { }
1287 };
1288
1289 typedef std::vector<Input_section_pattern> Input_section_patterns;
1290
1291 // Filename_exclusions is a pair of filename pattern and a bool
1292 // indicating whether the filename is a wildcard.
1293 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1294
1295 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296 // indicates whether this is a wildcard pattern.
1297 static inline bool
1298 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1299 {
1300 return (is_wildcard_pattern
1301 ? fnmatch(pattern, string, 0) == 0
1302 : strcmp(string, pattern) == 0);
1303 }
1304
1305 // See if we match a file name.
1306 bool
1307 match_file_name(const char* file_name) const;
1308
1309 // The file name pattern. If this is the empty string, we match all
1310 // files.
1311 std::string filename_pattern_;
1312 // Whether the file name pattern is a wildcard.
1313 bool filename_is_wildcard_;
1314 // How the file names should be sorted. This may only be
1315 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316 Sort_wildcard filename_sort_;
1317 // The list of file names to exclude.
1318 Filename_exclusions filename_exclusions_;
1319 // The list of input section patterns.
1320 Input_section_patterns input_section_patterns_;
1321 // Whether to keep this section when garbage collecting.
1322 bool keep_;
1323 // The value of dot after including all matching sections.
1324 uint64_t final_dot_value_;
1325 // The section where dot is defined after including all matching
1326 // sections.
1327 Output_section* final_dot_section_;
1328 };
1329
1330 // Construct Output_section_element_input. The parser records strings
1331 // as pointers into a copy of the script file, which will go away when
1332 // parsing is complete. We make sure they are in std::string objects.
1333
1334 Output_section_element_input::Output_section_element_input(
1335 const Input_section_spec* spec,
1336 bool keep)
1337 : filename_pattern_(),
1338 filename_is_wildcard_(false),
1339 filename_sort_(spec->file.sort),
1340 filename_exclusions_(),
1341 input_section_patterns_(),
1342 keep_(keep),
1343 final_dot_value_(0),
1344 final_dot_section_(NULL)
1345 {
1346 // The filename pattern "*" is common, and matches all files. Turn
1347 // it into the empty string.
1348 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1349 this->filename_pattern_.assign(spec->file.name.value,
1350 spec->file.name.length);
1351 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
1352
1353 if (spec->input_sections.exclude != NULL)
1354 {
1355 for (String_list::const_iterator p =
1356 spec->input_sections.exclude->begin();
1357 p != spec->input_sections.exclude->end();
1358 ++p)
1359 {
1360 bool is_wildcard = is_wildcard_string((*p).c_str());
1361 this->filename_exclusions_.push_back(std::make_pair(*p,
1362 is_wildcard));
1363 }
1364 }
1365
1366 if (spec->input_sections.sections != NULL)
1367 {
1368 Input_section_patterns& isp(this->input_section_patterns_);
1369 for (String_sort_list::const_iterator p =
1370 spec->input_sections.sections->begin();
1371 p != spec->input_sections.sections->end();
1372 ++p)
1373 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1374 p->sort));
1375 }
1376 }
1377
1378 // See whether we match FILE_NAME.
1379
1380 bool
1381 Output_section_element_input::match_file_name(const char* file_name) const
1382 {
1383 if (!this->filename_pattern_.empty())
1384 {
1385 // If we were called with no filename, we refuse to match a
1386 // pattern which requires a file name.
1387 if (file_name == NULL)
1388 return false;
1389
1390 if (!match(file_name, this->filename_pattern_.c_str(),
1391 this->filename_is_wildcard_))
1392 return false;
1393 }
1394
1395 if (file_name != NULL)
1396 {
1397 // Now we have to see whether FILE_NAME matches one of the
1398 // exclusion patterns, if any.
1399 for (Filename_exclusions::const_iterator p =
1400 this->filename_exclusions_.begin();
1401 p != this->filename_exclusions_.end();
1402 ++p)
1403 {
1404 if (match(file_name, p->first.c_str(), p->second))
1405 return false;
1406 }
1407 }
1408
1409 return true;
1410 }
1411
1412 // See whether we match FILE_NAME and SECTION_NAME. If we do then
1413 // KEEP indicates whether the section should survive garbage collection.
1414
1415 bool
1416 Output_section_element_input::match_name(const char* file_name,
1417 const char* section_name,
1418 bool *keep) const
1419 {
1420 if (!this->match_file_name(file_name))
1421 return false;
1422
1423 *keep = this->keep_;
1424
1425 // If there are no section name patterns, then we match.
1426 if (this->input_section_patterns_.empty())
1427 return true;
1428
1429 // See whether we match the section name patterns.
1430 for (Input_section_patterns::const_iterator p =
1431 this->input_section_patterns_.begin();
1432 p != this->input_section_patterns_.end();
1433 ++p)
1434 {
1435 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1436 return true;
1437 }
1438
1439 // We didn't match any section names, so we didn't match.
1440 return false;
1441 }
1442
1443 // Information we use to sort the input sections.
1444
1445 class Input_section_info
1446 {
1447 public:
1448 Input_section_info(const Output_section::Input_section& input_section)
1449 : input_section_(input_section), section_name_(),
1450 size_(0), addralign_(1)
1451 { }
1452
1453 // Return the simple input section.
1454 const Output_section::Input_section&
1455 input_section() const
1456 { return this->input_section_; }
1457
1458 // Return the object.
1459 Relobj*
1460 relobj() const
1461 { return this->input_section_.relobj(); }
1462
1463 // Return the section index.
1464 unsigned int
1465 shndx()
1466 { return this->input_section_.shndx(); }
1467
1468 // Return the section name.
1469 const std::string&
1470 section_name() const
1471 { return this->section_name_; }
1472
1473 // Set the section name.
1474 void
1475 set_section_name(const std::string name)
1476 {
1477 if (is_compressed_debug_section(name.c_str()))
1478 this->section_name_ = corresponding_uncompressed_section_name(name);
1479 else
1480 this->section_name_ = name;
1481 }
1482
1483 // Return the section size.
1484 uint64_t
1485 size() const
1486 { return this->size_; }
1487
1488 // Set the section size.
1489 void
1490 set_size(uint64_t size)
1491 { this->size_ = size; }
1492
1493 // Return the address alignment.
1494 uint64_t
1495 addralign() const
1496 { return this->addralign_; }
1497
1498 // Set the address alignment.
1499 void
1500 set_addralign(uint64_t addralign)
1501 { this->addralign_ = addralign; }
1502
1503 private:
1504 // Input section, can be a relaxed section.
1505 Output_section::Input_section input_section_;
1506 // Name of the section.
1507 std::string section_name_;
1508 // Section size.
1509 uint64_t size_;
1510 // Address alignment.
1511 uint64_t addralign_;
1512 };
1513
1514 // A class to sort the input sections.
1515
1516 class Input_section_sorter
1517 {
1518 public:
1519 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1520 : filename_sort_(filename_sort), section_sort_(section_sort)
1521 { }
1522
1523 bool
1524 operator()(const Input_section_info&, const Input_section_info&) const;
1525
1526 private:
1527 static unsigned long
1528 get_init_priority(const char*);
1529
1530 Sort_wildcard filename_sort_;
1531 Sort_wildcard section_sort_;
1532 };
1533
1534 // Return a relative priority of the section with the specified NAME
1535 // (a lower value meand a higher priority), or 0 if it should be compared
1536 // with others as strings.
1537 // The implementation of this function is copied from ld/ldlang.c.
1538
1539 unsigned long
1540 Input_section_sorter::get_init_priority(const char* name)
1541 {
1542 char* end;
1543 unsigned long init_priority;
1544
1545 // GCC uses the following section names for the init_priority
1546 // attribute with numerical values 101 and 65535 inclusive. A
1547 // lower value means a higher priority.
1548 //
1549 // 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
1550 // decimal numerical value of the init_priority attribute.
1551 // The order of execution in .init_array is forward and
1552 // .fini_array is backward.
1553 // 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
1554 // decimal numerical value of the init_priority attribute.
1555 // The order of execution in .ctors is backward and .dtors
1556 // is forward.
1557
1558 if (strncmp(name, ".init_array.", 12) == 0
1559 || strncmp(name, ".fini_array.", 12) == 0)
1560 {
1561 init_priority = strtoul(name + 12, &end, 10);
1562 return *end ? 0 : init_priority;
1563 }
1564 else if (strncmp(name, ".ctors.", 7) == 0
1565 || strncmp(name, ".dtors.", 7) == 0)
1566 {
1567 init_priority = strtoul(name + 7, &end, 10);
1568 return *end ? 0 : 65535 - init_priority;
1569 }
1570
1571 return 0;
1572 }
1573
1574 bool
1575 Input_section_sorter::operator()(const Input_section_info& isi1,
1576 const Input_section_info& isi2) const
1577 {
1578 if (this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1579 {
1580 unsigned long ip1 = get_init_priority(isi1.section_name().c_str());
1581 unsigned long ip2 = get_init_priority(isi2.section_name().c_str());
1582 if (ip1 != 0 && ip2 != 0 && ip1 != ip2)
1583 return ip1 < ip2;
1584 }
1585 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1586 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1587 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
1588 && isi1.addralign() == isi2.addralign())
1589 || this->section_sort_ == SORT_WILDCARD_BY_INIT_PRIORITY)
1590 {
1591 if (isi1.section_name() != isi2.section_name())
1592 return isi1.section_name() < isi2.section_name();
1593 }
1594 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1595 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1596 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1597 {
1598 if (isi1.addralign() != isi2.addralign())
1599 return isi1.addralign() < isi2.addralign();
1600 }
1601 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1602 {
1603 if (isi1.relobj()->name() != isi2.relobj()->name())
1604 return (isi1.relobj()->name() < isi2.relobj()->name());
1605 }
1606
1607 // Otherwise we leave them in the same order.
1608 return false;
1609 }
1610
1611 // Set the section address. Look in INPUT_SECTIONS for sections which
1612 // match this spec, sort them as specified, and add them to the output
1613 // section.
1614
1615 void
1616 Output_section_element_input::set_section_addresses(
1617 Symbol_table*,
1618 Layout* layout,
1619 Output_section* output_section,
1620 uint64_t subalign,
1621 uint64_t* dot_value,
1622 uint64_t*,
1623 Output_section** dot_section,
1624 std::string* fill,
1625 Input_section_list* input_sections)
1626 {
1627 // We build a list of sections which match each
1628 // Input_section_pattern.
1629
1630 // If none of the patterns specify a sort option, we throw all
1631 // matching input sections into a single bin, in the order we
1632 // find them. Otherwise, we put matching input sections into
1633 // a separate bin for each pattern, and sort each one as
1634 // specified. Thus, an input section spec like this:
1635 // *(.foo .bar)
1636 // will group all .foo and .bar sections in the order seen,
1637 // whereas this:
1638 // *(.foo) *(.bar)
1639 // will group all .foo sections followed by all .bar sections.
1640 // This matches Gnu ld behavior.
1641
1642 // Things get really weird, though, when you add a sort spec
1643 // on some, but not all, of the patterns, like this:
1644 // *(SORT_BY_NAME(.foo) .bar)
1645 // We do not attempt to match Gnu ld behavior in this case.
1646
1647 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1648 size_t input_pattern_count = this->input_section_patterns_.size();
1649 size_t bin_count = 1;
1650 bool any_patterns_with_sort = false;
1651 for (size_t i = 0; i < input_pattern_count; ++i)
1652 {
1653 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1654 if (isp.sort != SORT_WILDCARD_NONE)
1655 any_patterns_with_sort = true;
1656 }
1657 if (any_patterns_with_sort)
1658 bin_count = input_pattern_count;
1659 Matching_sections matching_sections(bin_count);
1660
1661 // Look through the list of sections for this output section. Add
1662 // each one which matches to one of the elements of
1663 // MATCHING_SECTIONS.
1664
1665 Input_section_list::iterator p = input_sections->begin();
1666 while (p != input_sections->end())
1667 {
1668 Relobj* relobj = p->relobj();
1669 unsigned int shndx = p->shndx();
1670 Input_section_info isi(*p);
1671
1672 // Calling section_name and section_addralign is not very
1673 // efficient.
1674
1675 // Lock the object so that we can get information about the
1676 // section. This is OK since we know we are single-threaded
1677 // here.
1678 {
1679 const Task* task = reinterpret_cast<const Task*>(-1);
1680 Task_lock_obj<Object> tl(task, relobj);
1681
1682 isi.set_section_name(relobj->section_name(shndx));
1683 if (p->is_relaxed_input_section())
1684 {
1685 // We use current data size because relaxed section sizes may not
1686 // have finalized yet.
1687 isi.set_size(p->relaxed_input_section()->current_data_size());
1688 isi.set_addralign(p->relaxed_input_section()->addralign());
1689 }
1690 else
1691 {
1692 isi.set_size(relobj->section_size(shndx));
1693 isi.set_addralign(relobj->section_addralign(shndx));
1694 }
1695 }
1696
1697 if (!this->match_file_name(relobj->name().c_str()))
1698 ++p;
1699 else if (this->input_section_patterns_.empty())
1700 {
1701 matching_sections[0].push_back(isi);
1702 p = input_sections->erase(p);
1703 }
1704 else
1705 {
1706 size_t i;
1707 for (i = 0; i < input_pattern_count; ++i)
1708 {
1709 const Input_section_pattern&
1710 isp(this->input_section_patterns_[i]);
1711 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
1712 isp.pattern_is_wildcard))
1713 break;
1714 }
1715
1716 if (i >= input_pattern_count)
1717 ++p;
1718 else
1719 {
1720 if (i >= bin_count)
1721 i = 0;
1722 matching_sections[i].push_back(isi);
1723 p = input_sections->erase(p);
1724 }
1725 }
1726 }
1727
1728 // Look through MATCHING_SECTIONS. Sort each one as specified,
1729 // using a stable sort so that we get the default order when
1730 // sections are otherwise equal. Add each input section to the
1731 // output section.
1732
1733 uint64_t dot = *dot_value;
1734 for (size_t i = 0; i < bin_count; ++i)
1735 {
1736 if (matching_sections[i].empty())
1737 continue;
1738
1739 gold_assert(output_section != NULL);
1740
1741 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1742 if (isp.sort != SORT_WILDCARD_NONE
1743 || this->filename_sort_ != SORT_WILDCARD_NONE)
1744 std::stable_sort(matching_sections[i].begin(),
1745 matching_sections[i].end(),
1746 Input_section_sorter(this->filename_sort_,
1747 isp.sort));
1748
1749 for (std::vector<Input_section_info>::const_iterator p =
1750 matching_sections[i].begin();
1751 p != matching_sections[i].end();
1752 ++p)
1753 {
1754 // Override the original address alignment if SUBALIGN is specified
1755 // and is greater than the original alignment. We need to make a
1756 // copy of the input section to modify the alignment.
1757 Output_section::Input_section sis(p->input_section());
1758
1759 uint64_t this_subalign = sis.addralign();
1760 if (!sis.is_input_section())
1761 sis.output_section_data()->finalize_data_size();
1762 uint64_t data_size = sis.data_size();
1763 if (this_subalign < subalign)
1764 {
1765 this_subalign = subalign;
1766 sis.set_addralign(subalign);
1767 }
1768
1769 uint64_t address = align_address(dot, this_subalign);
1770
1771 if (address > dot && !fill->empty())
1772 {
1773 section_size_type length =
1774 convert_to_section_size_type(address - dot);
1775 std::string this_fill = this->get_fill_string(fill, length);
1776 Output_section_data* posd = new Output_data_const(this_fill, 0);
1777 output_section->add_output_section_data(posd);
1778 layout->new_output_section_data_from_script(posd);
1779 }
1780
1781 output_section->add_script_input_section(sis);
1782 dot = address + data_size;
1783 }
1784 }
1785
1786 // An SHF_TLS/SHT_NOBITS section does not take up any
1787 // address space.
1788 if (output_section == NULL
1789 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1790 || output_section->type() != elfcpp::SHT_NOBITS)
1791 *dot_value = dot;
1792
1793 this->final_dot_value_ = *dot_value;
1794 this->final_dot_section_ = *dot_section;
1795 }
1796
1797 // Print for debugging.
1798
1799 void
1800 Output_section_element_input::print(FILE* f) const
1801 {
1802 fprintf(f, " ");
1803
1804 if (this->keep_)
1805 fprintf(f, "KEEP(");
1806
1807 if (!this->filename_pattern_.empty())
1808 {
1809 bool need_close_paren = false;
1810 switch (this->filename_sort_)
1811 {
1812 case SORT_WILDCARD_NONE:
1813 break;
1814 case SORT_WILDCARD_BY_NAME:
1815 fprintf(f, "SORT_BY_NAME(");
1816 need_close_paren = true;
1817 break;
1818 default:
1819 gold_unreachable();
1820 }
1821
1822 fprintf(f, "%s", this->filename_pattern_.c_str());
1823
1824 if (need_close_paren)
1825 fprintf(f, ")");
1826 }
1827
1828 if (!this->input_section_patterns_.empty()
1829 || !this->filename_exclusions_.empty())
1830 {
1831 fprintf(f, "(");
1832
1833 bool need_space = false;
1834 if (!this->filename_exclusions_.empty())
1835 {
1836 fprintf(f, "EXCLUDE_FILE(");
1837 bool need_comma = false;
1838 for (Filename_exclusions::const_iterator p =
1839 this->filename_exclusions_.begin();
1840 p != this->filename_exclusions_.end();
1841 ++p)
1842 {
1843 if (need_comma)
1844 fprintf(f, ", ");
1845 fprintf(f, "%s", p->first.c_str());
1846 need_comma = true;
1847 }
1848 fprintf(f, ")");
1849 need_space = true;
1850 }
1851
1852 for (Input_section_patterns::const_iterator p =
1853 this->input_section_patterns_.begin();
1854 p != this->input_section_patterns_.end();
1855 ++p)
1856 {
1857 if (need_space)
1858 fprintf(f, " ");
1859
1860 int close_parens = 0;
1861 switch (p->sort)
1862 {
1863 case SORT_WILDCARD_NONE:
1864 break;
1865 case SORT_WILDCARD_BY_NAME:
1866 fprintf(f, "SORT_BY_NAME(");
1867 close_parens = 1;
1868 break;
1869 case SORT_WILDCARD_BY_ALIGNMENT:
1870 fprintf(f, "SORT_BY_ALIGNMENT(");
1871 close_parens = 1;
1872 break;
1873 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1874 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1875 close_parens = 2;
1876 break;
1877 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1878 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1879 close_parens = 2;
1880 break;
1881 case SORT_WILDCARD_BY_INIT_PRIORITY:
1882 fprintf(f, "SORT_BY_INIT_PRIORITY(");
1883 close_parens = 1;
1884 break;
1885 default:
1886 gold_unreachable();
1887 }
1888
1889 fprintf(f, "%s", p->pattern.c_str());
1890
1891 for (int i = 0; i < close_parens; ++i)
1892 fprintf(f, ")");
1893
1894 need_space = true;
1895 }
1896
1897 fprintf(f, ")");
1898 }
1899
1900 if (this->keep_)
1901 fprintf(f, ")");
1902
1903 fprintf(f, "\n");
1904 }
1905
1906 // An output section.
1907
1908 class Output_section_definition : public Sections_element
1909 {
1910 public:
1911 typedef Output_section_element::Input_section_list Input_section_list;
1912
1913 Output_section_definition(const char* name, size_t namelen,
1914 const Parser_output_section_header* header);
1915
1916 // Finish the output section with the information in the trailer.
1917 void
1918 finish(const Parser_output_section_trailer* trailer);
1919
1920 // Add a symbol to be defined.
1921 void
1922 add_symbol_assignment(const char* name, size_t length, Expression* value,
1923 bool provide, bool hidden);
1924
1925 // Add an assignment to the special dot symbol.
1926 void
1927 add_dot_assignment(Expression* value);
1928
1929 // Add an assertion.
1930 void
1931 add_assertion(Expression* check, const char* message, size_t messagelen);
1932
1933 // Add a data item to the current output section.
1934 void
1935 add_data(int size, bool is_signed, Expression* val);
1936
1937 // Add a setting for the fill value.
1938 void
1939 add_fill(Expression* val);
1940
1941 // Add an input section specification.
1942 void
1943 add_input_section(const Input_section_spec* spec, bool keep);
1944
1945 // Return whether the output section is relro.
1946 bool
1947 is_relro() const
1948 { return this->is_relro_; }
1949
1950 // Record that the output section is relro.
1951 void
1952 set_is_relro()
1953 { this->is_relro_ = true; }
1954
1955 // Create any required output sections.
1956 void
1957 create_sections(Layout*);
1958
1959 // Add any symbols being defined to the symbol table.
1960 void
1961 add_symbols_to_table(Symbol_table* symtab);
1962
1963 // Finalize symbols and check assertions.
1964 void
1965 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
1966
1967 // Return the output section name to use for an input file name and
1968 // section name.
1969 const char*
1970 output_section_name(const char* file_name, const char* section_name,
1971 Output_section***, Script_sections::Section_type*,
1972 bool*);
1973
1974 // Initialize OSP with an output section.
1975 void
1976 orphan_section_init(Orphan_section_placement* osp,
1977 Script_sections::Elements_iterator p)
1978 { osp->output_section_init(this->name_, this->output_section_, p); }
1979
1980 // Set the section address.
1981 void
1982 set_section_addresses(Symbol_table* symtab, Layout* layout,
1983 uint64_t* dot_value, uint64_t*,
1984 uint64_t* load_address);
1985
1986 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1987 // this section is constrained, and the input sections do not match,
1988 // return the constraint, and set *POSD.
1989 Section_constraint
1990 check_constraint(Output_section_definition** posd);
1991
1992 // See if this is the alternate output section for a constrained
1993 // output section. If it is, transfer the Output_section and return
1994 // true. Otherwise return false.
1995 bool
1996 alternate_constraint(Output_section_definition*, Section_constraint);
1997
1998 // Get the list of segments to use for an allocated section when
1999 // using a PHDRS clause.
2000 Output_section*
2001 allocate_to_segment(String_list** phdrs_list, bool* orphan);
2002
2003 // Look for an output section by name and return the address, the
2004 // load address, the alignment, and the size. This is used when an
2005 // expression refers to an output section which was not actually
2006 // created. This returns true if the section was found, false
2007 // otherwise.
2008 bool
2009 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
2010 uint64_t*) const;
2011
2012 // Return the associated Output_section if there is one.
2013 Output_section*
2014 get_output_section() const
2015 { return this->output_section_; }
2016
2017 // Print the contents to the FILE. This is for debugging.
2018 void
2019 print(FILE*) const;
2020
2021 // Return the output section type if specified or Script_sections::ST_NONE.
2022 Script_sections::Section_type
2023 section_type() const;
2024
2025 // Store the memory region to use.
2026 void
2027 set_memory_region(Memory_region*, bool set_vma);
2028
2029 void
2030 set_section_vma(Expression* address)
2031 { this->address_ = address; }
2032
2033 void
2034 set_section_lma(Expression* address)
2035 { this->load_address_ = address; }
2036
2037 const std::string&
2038 get_section_name() const
2039 { return this->name_; }
2040
2041 private:
2042 static const char*
2043 script_section_type_name(Script_section_type);
2044
2045 typedef std::vector<Output_section_element*> Output_section_elements;
2046
2047 // The output section name.
2048 std::string name_;
2049 // The address. This may be NULL.
2050 Expression* address_;
2051 // The load address. This may be NULL.
2052 Expression* load_address_;
2053 // The alignment. This may be NULL.
2054 Expression* align_;
2055 // The input section alignment. This may be NULL.
2056 Expression* subalign_;
2057 // The constraint, if any.
2058 Section_constraint constraint_;
2059 // The fill value. This may be NULL.
2060 Expression* fill_;
2061 // The list of segments this section should go into. This may be
2062 // NULL.
2063 String_list* phdrs_;
2064 // The list of elements defining the section.
2065 Output_section_elements elements_;
2066 // The Output_section created for this definition. This will be
2067 // NULL if none was created.
2068 Output_section* output_section_;
2069 // The address after it has been evaluated.
2070 uint64_t evaluated_address_;
2071 // The load address after it has been evaluated.
2072 uint64_t evaluated_load_address_;
2073 // The alignment after it has been evaluated.
2074 uint64_t evaluated_addralign_;
2075 // The output section is relro.
2076 bool is_relro_;
2077 // The output section type if specified.
2078 enum Script_section_type script_section_type_;
2079 };
2080
2081 // Constructor.
2082
2083 Output_section_definition::Output_section_definition(
2084 const char* name,
2085 size_t namelen,
2086 const Parser_output_section_header* header)
2087 : name_(name, namelen),
2088 address_(header->address),
2089 load_address_(header->load_address),
2090 align_(header->align),
2091 subalign_(header->subalign),
2092 constraint_(header->constraint),
2093 fill_(NULL),
2094 phdrs_(NULL),
2095 elements_(),
2096 output_section_(NULL),
2097 evaluated_address_(0),
2098 evaluated_load_address_(0),
2099 evaluated_addralign_(0),
2100 is_relro_(false),
2101 script_section_type_(header->section_type)
2102 {
2103 }
2104
2105 // Finish an output section.
2106
2107 void
2108 Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2109 {
2110 this->fill_ = trailer->fill;
2111 this->phdrs_ = trailer->phdrs;
2112 }
2113
2114 // Add a symbol to be defined.
2115
2116 void
2117 Output_section_definition::add_symbol_assignment(const char* name,
2118 size_t length,
2119 Expression* value,
2120 bool provide,
2121 bool hidden)
2122 {
2123 Output_section_element* p = new Output_section_element_assignment(name,
2124 length,
2125 value,
2126 provide,
2127 hidden);
2128 this->elements_.push_back(p);
2129 }
2130
2131 // Add an assignment to the special dot symbol.
2132
2133 void
2134 Output_section_definition::add_dot_assignment(Expression* value)
2135 {
2136 Output_section_element* p = new Output_section_element_dot_assignment(value);
2137 this->elements_.push_back(p);
2138 }
2139
2140 // Add an assertion.
2141
2142 void
2143 Output_section_definition::add_assertion(Expression* check,
2144 const char* message,
2145 size_t messagelen)
2146 {
2147 Output_section_element* p = new Output_section_element_assertion(check,
2148 message,
2149 messagelen);
2150 this->elements_.push_back(p);
2151 }
2152
2153 // Add a data item to the current output section.
2154
2155 void
2156 Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2157 {
2158 Output_section_element* p = new Output_section_element_data(size, is_signed,
2159 val);
2160 this->elements_.push_back(p);
2161 }
2162
2163 // Add a setting for the fill value.
2164
2165 void
2166 Output_section_definition::add_fill(Expression* val)
2167 {
2168 Output_section_element* p = new Output_section_element_fill(val);
2169 this->elements_.push_back(p);
2170 }
2171
2172 // Add an input section specification.
2173
2174 void
2175 Output_section_definition::add_input_section(const Input_section_spec* spec,
2176 bool keep)
2177 {
2178 Output_section_element* p = new Output_section_element_input(spec, keep);
2179 this->elements_.push_back(p);
2180 }
2181
2182 // Create any required output sections. We need an output section if
2183 // there is a data statement here.
2184
2185 void
2186 Output_section_definition::create_sections(Layout* layout)
2187 {
2188 if (this->output_section_ != NULL)
2189 return;
2190 for (Output_section_elements::const_iterator p = this->elements_.begin();
2191 p != this->elements_.end();
2192 ++p)
2193 {
2194 if ((*p)->needs_output_section())
2195 {
2196 const char* name = this->name_.c_str();
2197 this->output_section_ =
2198 layout->make_output_section_for_script(name, this->section_type());
2199 return;
2200 }
2201 }
2202 }
2203
2204 // Add any symbols being defined to the symbol table.
2205
2206 void
2207 Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2208 {
2209 for (Output_section_elements::iterator p = this->elements_.begin();
2210 p != this->elements_.end();
2211 ++p)
2212 (*p)->add_symbols_to_table(symtab);
2213 }
2214
2215 // Finalize symbols and check assertions.
2216
2217 void
2218 Output_section_definition::finalize_symbols(Symbol_table* symtab,
2219 const Layout* layout,
2220 uint64_t* dot_value)
2221 {
2222 if (this->output_section_ != NULL)
2223 *dot_value = this->output_section_->address();
2224 else
2225 {
2226 uint64_t address = *dot_value;
2227 if (this->address_ != NULL)
2228 {
2229 address = this->address_->eval_with_dot(symtab, layout, true,
2230 *dot_value, NULL,
2231 NULL, NULL, false);
2232 }
2233 if (this->align_ != NULL)
2234 {
2235 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
2236 *dot_value, NULL,
2237 NULL, NULL, false);
2238 address = align_address(address, align);
2239 }
2240 *dot_value = address;
2241 }
2242
2243 Output_section* dot_section = this->output_section_;
2244 for (Output_section_elements::iterator p = this->elements_.begin();
2245 p != this->elements_.end();
2246 ++p)
2247 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
2248 }
2249
2250 // Return the output section name to use for an input section name.
2251
2252 const char*
2253 Output_section_definition::output_section_name(
2254 const char* file_name,
2255 const char* section_name,
2256 Output_section*** slot,
2257 Script_sections::Section_type* psection_type,
2258 bool* keep)
2259 {
2260 // Ask each element whether it matches NAME.
2261 for (Output_section_elements::const_iterator p = this->elements_.begin();
2262 p != this->elements_.end();
2263 ++p)
2264 {
2265 if ((*p)->match_name(file_name, section_name, keep))
2266 {
2267 // We found a match for NAME, which means that it should go
2268 // into this output section.
2269 *slot = &this->output_section_;
2270 *psection_type = this->section_type();
2271 return this->name_.c_str();
2272 }
2273 }
2274
2275 // We don't know about this section name.
2276 return NULL;
2277 }
2278
2279 // Return true if memory from START to START + LENGTH is contained
2280 // within a memory region.
2281
2282 bool
2283 Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2284 uint64_t start, uint64_t length) const
2285 {
2286 if (this->memory_regions_ == NULL)
2287 return false;
2288
2289 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2290 mr != this->memory_regions_->end();
2291 ++mr)
2292 {
2293 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2294 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2295
2296 if (s <= start
2297 && (s + l) >= (start + length))
2298 return true;
2299 }
2300
2301 return false;
2302 }
2303
2304 // Find a memory region that should be used by a given output SECTION.
2305 // If provided set PREVIOUS_SECTION_RETURN to point to the last section
2306 // that used the return memory region.
2307
2308 Memory_region*
2309 Script_sections::find_memory_region(
2310 Output_section_definition* section,
2311 bool find_vma_region,
2312 bool explicit_only,
2313 Output_section_definition** previous_section_return)
2314 {
2315 if (previous_section_return != NULL)
2316 * previous_section_return = NULL;
2317
2318 // Walk the memory regions specified in this script, if any.
2319 if (this->memory_regions_ == NULL)
2320 return NULL;
2321
2322 // The /DISCARD/ section never gets assigned to any region.
2323 if (section->get_section_name() == "/DISCARD/")
2324 return NULL;
2325
2326 Memory_region* first_match = NULL;
2327
2328 // First check to see if a region has been assigned to this section.
2329 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2330 mr != this->memory_regions_->end();
2331 ++mr)
2332 {
2333 if (find_vma_region)
2334 {
2335 for (Memory_region::Section_list::const_iterator s =
2336 (*mr)->get_vma_section_list_start();
2337 s != (*mr)->get_vma_section_list_end();
2338 ++s)
2339 if ((*s) == section)
2340 {
2341 (*mr)->set_last_section(section);
2342 return *mr;
2343 }
2344 }
2345 else
2346 {
2347 for (Memory_region::Section_list::const_iterator s =
2348 (*mr)->get_lma_section_list_start();
2349 s != (*mr)->get_lma_section_list_end();
2350 ++s)
2351 if ((*s) == section)
2352 {
2353 (*mr)->set_last_section(section);
2354 return *mr;
2355 }
2356 }
2357
2358 if (!explicit_only)
2359 {
2360 // Make a note of the first memory region whose attributes
2361 // are compatible with the section. If we do not find an
2362 // explicit region assignment, then we will return this region.
2363 Output_section* out_sec = section->get_output_section();
2364 if (first_match == NULL
2365 && out_sec != NULL
2366 && (*mr)->attributes_compatible(out_sec->flags(),
2367 out_sec->type()))
2368 first_match = *mr;
2369 }
2370 }
2371
2372 // With LMA computations, if an explicit region has not been specified then
2373 // we will want to set the difference between the VMA and the LMA of the
2374 // section were searching for to be the same as the difference between the
2375 // VMA and LMA of the last section to be added to first matched region.
2376 // Hence, if it was asked for, we return a pointer to the last section
2377 // known to be used by the first matched region.
2378 if (first_match != NULL
2379 && previous_section_return != NULL)
2380 *previous_section_return = first_match->get_last_section();
2381
2382 return first_match;
2383 }
2384
2385 // Set the section address. Note that the OUTPUT_SECTION_ field will
2386 // be NULL if no input sections were mapped to this output section.
2387 // We still have to adjust dot and process symbol assignments.
2388
2389 void
2390 Output_section_definition::set_section_addresses(Symbol_table* symtab,
2391 Layout* layout,
2392 uint64_t* dot_value,
2393 uint64_t* dot_alignment,
2394 uint64_t* load_address)
2395 {
2396 Memory_region* vma_region = NULL;
2397 Memory_region* lma_region = NULL;
2398 Script_sections* script_sections =
2399 layout->script_options()->script_sections();
2400 uint64_t address;
2401 uint64_t old_dot_value = *dot_value;
2402 uint64_t old_load_address = *load_address;
2403
2404 // If input section sorting is requested via --section-ordering-file or
2405 // linker plugins, then do it here. This is important because we want
2406 // any sorting specified in the linker scripts, which will be done after
2407 // this, to take precedence. The final order of input sections is then
2408 // guaranteed to be according to the linker script specification.
2409 if (this->output_section_ != NULL
2410 && this->output_section_->input_section_order_specified())
2411 this->output_section_->sort_attached_input_sections();
2412
2413 // Decide the start address for the section. The algorithm is:
2414 // 1) If an address has been specified in a linker script, use that.
2415 // 2) Otherwise if a memory region has been specified for the section,
2416 // use the next free address in the region.
2417 // 3) Otherwise if memory regions have been specified find the first
2418 // region whose attributes are compatible with this section and
2419 // install it into that region.
2420 // 4) Otherwise use the current location counter.
2421
2422 if (this->output_section_ != NULL
2423 // Check for --section-start.
2424 && parameters->options().section_start(this->output_section_->name(),
2425 &address))
2426 ;
2427 else if (this->address_ == NULL)
2428 {
2429 vma_region = script_sections->find_memory_region(this, true, false, NULL);
2430 if (vma_region != NULL)
2431 address = vma_region->get_current_address()->eval(symtab, layout,
2432 false);
2433 else
2434 address = *dot_value;
2435 }
2436 else
2437 {
2438 vma_region = script_sections->find_memory_region(this, true, true, NULL);
2439 address = this->address_->eval_with_dot(symtab, layout, true,
2440 *dot_value, NULL, NULL,
2441 dot_alignment, false);
2442 if (vma_region != NULL)
2443 vma_region->set_address(address, symtab, layout);
2444 }
2445
2446 uint64_t align;
2447 if (this->align_ == NULL)
2448 {
2449 if (this->output_section_ == NULL)
2450 align = 0;
2451 else
2452 align = this->output_section_->addralign();
2453 }
2454 else
2455 {
2456 Output_section* align_section;
2457 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
2458 NULL, &align_section, NULL, false);
2459 if (align_section != NULL)
2460 gold_warning(_("alignment of section %s is not absolute"),
2461 this->name_.c_str());
2462 if (this->output_section_ != NULL)
2463 this->output_section_->set_addralign(align);
2464 }
2465
2466 address = align_address(address, align);
2467
2468 uint64_t start_address = address;
2469
2470 *dot_value = address;
2471
2472 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2473 // forced to zero, regardless of what the linker script wants.
2474 if (this->output_section_ != NULL
2475 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2476 || this->output_section_->is_noload()))
2477 this->output_section_->set_address(address);
2478
2479 this->evaluated_address_ = address;
2480 this->evaluated_addralign_ = align;
2481
2482 uint64_t laddr;
2483
2484 if (this->load_address_ == NULL)
2485 {
2486 Output_section_definition* previous_section;
2487
2488 // Determine if an LMA region has been set for this section.
2489 lma_region = script_sections->find_memory_region(this, false, false,
2490 &previous_section);
2491
2492 if (lma_region != NULL)
2493 {
2494 if (previous_section == NULL)
2495 // The LMA address was explicitly set to the given region.
2496 laddr = lma_region->get_current_address()->eval(symtab, layout,
2497 false);
2498 else
2499 {
2500 // We are not going to use the discovered lma_region, so
2501 // make sure that we do not update it in the code below.
2502 lma_region = NULL;
2503
2504 if (this->address_ != NULL || previous_section == this)
2505 {
2506 // Either an explicit VMA address has been set, or an
2507 // explicit VMA region has been set, so set the LMA equal to
2508 // the VMA.
2509 laddr = address;
2510 }
2511 else
2512 {
2513 // The LMA address was not explicitly or implicitly set.
2514 //
2515 // We have been given the first memory region that is
2516 // compatible with the current section and a pointer to the
2517 // last section to use this region. Set the LMA of this
2518 // section so that the difference between its' VMA and LMA
2519 // is the same as the difference between the VMA and LMA of
2520 // the last section in the given region.
2521 laddr = address + (previous_section->evaluated_load_address_
2522 - previous_section->evaluated_address_);
2523 }
2524 }
2525
2526 if (this->output_section_ != NULL)
2527 this->output_section_->set_load_address(laddr);
2528 }
2529 else
2530 {
2531 // Do not set the load address of the output section, if one exists.
2532 // This allows future sections to determine what the load address
2533 // should be. If none is ever set, it will default to being the
2534 // same as the vma address.
2535 laddr = address;
2536 }
2537 }
2538 else
2539 {
2540 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2541 *dot_value,
2542 this->output_section_,
2543 NULL, NULL, false);
2544 if (this->output_section_ != NULL)
2545 this->output_section_->set_load_address(laddr);
2546 }
2547
2548 this->evaluated_load_address_ = laddr;
2549
2550 uint64_t subalign;
2551 if (this->subalign_ == NULL)
2552 subalign = 0;
2553 else
2554 {
2555 Output_section* subalign_section;
2556 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2557 *dot_value, NULL,
2558 &subalign_section, NULL,
2559 false);
2560 if (subalign_section != NULL)
2561 gold_warning(_("subalign of section %s is not absolute"),
2562 this->name_.c_str());
2563 }
2564
2565 std::string fill;
2566 if (this->fill_ != NULL)
2567 {
2568 // FIXME: The GNU linker supports fill values of arbitrary
2569 // length.
2570 Output_section* fill_section;
2571 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
2572 *dot_value,
2573 NULL, &fill_section,
2574 NULL, false);
2575 if (fill_section != NULL)
2576 gold_warning(_("fill of section %s is not absolute"),
2577 this->name_.c_str());
2578 unsigned char fill_buff[4];
2579 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2580 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2581 }
2582
2583 Input_section_list input_sections;
2584 if (this->output_section_ != NULL)
2585 {
2586 // Get the list of input sections attached to this output
2587 // section. This will leave the output section with only
2588 // Output_section_data entries.
2589 address += this->output_section_->get_input_sections(address,
2590 fill,
2591 &input_sections);
2592 *dot_value = address;
2593 }
2594
2595 Output_section* dot_section = this->output_section_;
2596 for (Output_section_elements::iterator p = this->elements_.begin();
2597 p != this->elements_.end();
2598 ++p)
2599 (*p)->set_section_addresses(symtab, layout, this->output_section_,
2600 subalign, dot_value, dot_alignment,
2601 &dot_section, &fill, &input_sections);
2602
2603 gold_assert(input_sections.empty());
2604
2605 if (vma_region != NULL)
2606 {
2607 // Update the VMA region being used by the section now that we know how
2608 // big it is. Use the current address in the region, rather than
2609 // start_address because that might have been aligned upwards and we
2610 // need to allow for the padding.
2611 Expression* addr = vma_region->get_current_address();
2612 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2613
2614 vma_region->increment_offset(this->get_section_name(), size,
2615 symtab, layout);
2616 }
2617
2618 // If the LMA region is different from the VMA region, then increment the
2619 // offset there as well. Note that we use the same "dot_value -
2620 // start_address" formula that is used in the load_address assignment below.
2621 if (lma_region != NULL && lma_region != vma_region)
2622 lma_region->increment_offset(this->get_section_name(),
2623 *dot_value - start_address,
2624 symtab, layout);
2625
2626 // Compute the load address for the following section.
2627 if (this->output_section_ == NULL)
2628 *load_address = *dot_value;
2629 else if (this->load_address_ == NULL)
2630 {
2631 if (lma_region == NULL)
2632 *load_address = *dot_value;
2633 else
2634 *load_address =
2635 lma_region->get_current_address()->eval(symtab, layout, false);
2636 }
2637 else
2638 *load_address = (this->output_section_->load_address()
2639 + (*dot_value - start_address));
2640
2641 if (this->output_section_ != NULL)
2642 {
2643 if (this->is_relro_)
2644 this->output_section_->set_is_relro();
2645 else
2646 this->output_section_->clear_is_relro();
2647
2648 // If this is a NOLOAD section, keep dot and load address unchanged.
2649 if (this->output_section_->is_noload())
2650 {
2651 *dot_value = old_dot_value;
2652 *load_address = old_load_address;
2653 }
2654 }
2655 }
2656
2657 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2658 // this section is constrained, and the input sections do not match,
2659 // return the constraint, and set *POSD.
2660
2661 Section_constraint
2662 Output_section_definition::check_constraint(Output_section_definition** posd)
2663 {
2664 switch (this->constraint_)
2665 {
2666 case CONSTRAINT_NONE:
2667 return CONSTRAINT_NONE;
2668
2669 case CONSTRAINT_ONLY_IF_RO:
2670 if (this->output_section_ != NULL
2671 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2672 {
2673 *posd = this;
2674 return CONSTRAINT_ONLY_IF_RO;
2675 }
2676 return CONSTRAINT_NONE;
2677
2678 case CONSTRAINT_ONLY_IF_RW:
2679 if (this->output_section_ != NULL
2680 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2681 {
2682 *posd = this;
2683 return CONSTRAINT_ONLY_IF_RW;
2684 }
2685 return CONSTRAINT_NONE;
2686
2687 case CONSTRAINT_SPECIAL:
2688 if (this->output_section_ != NULL)
2689 gold_error(_("SPECIAL constraints are not implemented"));
2690 return CONSTRAINT_NONE;
2691
2692 default:
2693 gold_unreachable();
2694 }
2695 }
2696
2697 // See if this is the alternate output section for a constrained
2698 // output section. If it is, transfer the Output_section and return
2699 // true. Otherwise return false.
2700
2701 bool
2702 Output_section_definition::alternate_constraint(
2703 Output_section_definition* posd,
2704 Section_constraint constraint)
2705 {
2706 if (this->name_ != posd->name_)
2707 return false;
2708
2709 switch (constraint)
2710 {
2711 case CONSTRAINT_ONLY_IF_RO:
2712 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2713 return false;
2714 break;
2715
2716 case CONSTRAINT_ONLY_IF_RW:
2717 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2718 return false;
2719 break;
2720
2721 default:
2722 gold_unreachable();
2723 }
2724
2725 // We have found the alternate constraint. We just need to move
2726 // over the Output_section. When constraints are used properly,
2727 // THIS should not have an output_section pointer, as all the input
2728 // sections should have matched the other definition.
2729
2730 if (this->output_section_ != NULL)
2731 gold_error(_("mismatched definition for constrained sections"));
2732
2733 this->output_section_ = posd->output_section_;
2734 posd->output_section_ = NULL;
2735
2736 if (this->is_relro_)
2737 this->output_section_->set_is_relro();
2738 else
2739 this->output_section_->clear_is_relro();
2740
2741 return true;
2742 }
2743
2744 // Get the list of segments to use for an allocated section when using
2745 // a PHDRS clause.
2746
2747 Output_section*
2748 Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2749 bool* orphan)
2750 {
2751 // Update phdrs_list even if we don't have an output section. It
2752 // might be used by the following sections.
2753 if (this->phdrs_ != NULL)
2754 *phdrs_list = this->phdrs_;
2755
2756 if (this->output_section_ == NULL)
2757 return NULL;
2758 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2759 return NULL;
2760 *orphan = false;
2761 return this->output_section_;
2762 }
2763
2764 // Look for an output section by name and return the address, the load
2765 // address, the alignment, and the size. This is used when an
2766 // expression refers to an output section which was not actually
2767 // created. This returns true if the section was found, false
2768 // otherwise.
2769
2770 bool
2771 Output_section_definition::get_output_section_info(const char* name,
2772 uint64_t* address,
2773 uint64_t* load_address,
2774 uint64_t* addralign,
2775 uint64_t* size) const
2776 {
2777 if (this->name_ != name)
2778 return false;
2779
2780 if (this->output_section_ != NULL)
2781 {
2782 *address = this->output_section_->address();
2783 if (this->output_section_->has_load_address())
2784 *load_address = this->output_section_->load_address();
2785 else
2786 *load_address = *address;
2787 *addralign = this->output_section_->addralign();
2788 *size = this->output_section_->current_data_size();
2789 }
2790 else
2791 {
2792 *address = this->evaluated_address_;
2793 *load_address = this->evaluated_load_address_;
2794 *addralign = this->evaluated_addralign_;
2795 *size = 0;
2796 }
2797
2798 return true;
2799 }
2800
2801 // Print for debugging.
2802
2803 void
2804 Output_section_definition::print(FILE* f) const
2805 {
2806 fprintf(f, " %s ", this->name_.c_str());
2807
2808 if (this->address_ != NULL)
2809 {
2810 this->address_->print(f);
2811 fprintf(f, " ");
2812 }
2813
2814 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2815 fprintf(f, "(%s) ",
2816 this->script_section_type_name(this->script_section_type_));
2817
2818 fprintf(f, ": ");
2819
2820 if (this->load_address_ != NULL)
2821 {
2822 fprintf(f, "AT(");
2823 this->load_address_->print(f);
2824 fprintf(f, ") ");
2825 }
2826
2827 if (this->align_ != NULL)
2828 {
2829 fprintf(f, "ALIGN(");
2830 this->align_->print(f);
2831 fprintf(f, ") ");
2832 }
2833
2834 if (this->subalign_ != NULL)
2835 {
2836 fprintf(f, "SUBALIGN(");
2837 this->subalign_->print(f);
2838 fprintf(f, ") ");
2839 }
2840
2841 fprintf(f, "{\n");
2842
2843 for (Output_section_elements::const_iterator p = this->elements_.begin();
2844 p != this->elements_.end();
2845 ++p)
2846 (*p)->print(f);
2847
2848 fprintf(f, " }");
2849
2850 if (this->fill_ != NULL)
2851 {
2852 fprintf(f, " = ");
2853 this->fill_->print(f);
2854 }
2855
2856 if (this->phdrs_ != NULL)
2857 {
2858 for (String_list::const_iterator p = this->phdrs_->begin();
2859 p != this->phdrs_->end();
2860 ++p)
2861 fprintf(f, " :%s", p->c_str());
2862 }
2863
2864 fprintf(f, "\n");
2865 }
2866
2867 Script_sections::Section_type
2868 Output_section_definition::section_type() const
2869 {
2870 switch (this->script_section_type_)
2871 {
2872 case SCRIPT_SECTION_TYPE_NONE:
2873 return Script_sections::ST_NONE;
2874 case SCRIPT_SECTION_TYPE_NOLOAD:
2875 return Script_sections::ST_NOLOAD;
2876 case SCRIPT_SECTION_TYPE_COPY:
2877 case SCRIPT_SECTION_TYPE_DSECT:
2878 case SCRIPT_SECTION_TYPE_INFO:
2879 case SCRIPT_SECTION_TYPE_OVERLAY:
2880 // There are not really support so we treat them as ST_NONE. The
2881 // parse should have issued errors for them already.
2882 return Script_sections::ST_NONE;
2883 default:
2884 gold_unreachable();
2885 }
2886 }
2887
2888 // Return the name of a script section type.
2889
2890 const char*
2891 Output_section_definition::script_section_type_name(
2892 Script_section_type script_section_type)
2893 {
2894 switch (script_section_type)
2895 {
2896 case SCRIPT_SECTION_TYPE_NONE:
2897 return "NONE";
2898 case SCRIPT_SECTION_TYPE_NOLOAD:
2899 return "NOLOAD";
2900 case SCRIPT_SECTION_TYPE_DSECT:
2901 return "DSECT";
2902 case SCRIPT_SECTION_TYPE_COPY:
2903 return "COPY";
2904 case SCRIPT_SECTION_TYPE_INFO:
2905 return "INFO";
2906 case SCRIPT_SECTION_TYPE_OVERLAY:
2907 return "OVERLAY";
2908 default:
2909 gold_unreachable();
2910 }
2911 }
2912
2913 void
2914 Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2915 {
2916 gold_assert(mr != NULL);
2917 // Add the current section to the specified region's list.
2918 mr->add_section(this, set_vma);
2919 }
2920
2921 // An output section created to hold orphaned input sections. These
2922 // do not actually appear in linker scripts. However, for convenience
2923 // when setting the output section addresses, we put a marker to these
2924 // sections in the appropriate place in the list of SECTIONS elements.
2925
2926 class Orphan_output_section : public Sections_element
2927 {
2928 public:
2929 Orphan_output_section(Output_section* os)
2930 : os_(os)
2931 { }
2932
2933 // Return whether the orphan output section is relro. We can just
2934 // check the output section because we always set the flag, if
2935 // needed, just after we create the Orphan_output_section.
2936 bool
2937 is_relro() const
2938 { return this->os_->is_relro(); }
2939
2940 // Initialize OSP with an output section. This should have been
2941 // done already.
2942 void
2943 orphan_section_init(Orphan_section_placement*,
2944 Script_sections::Elements_iterator)
2945 { gold_unreachable(); }
2946
2947 // Set section addresses.
2948 void
2949 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2950 uint64_t*);
2951
2952 // Get the list of segments to use for an allocated section when
2953 // using a PHDRS clause.
2954 Output_section*
2955 allocate_to_segment(String_list**, bool*);
2956
2957 // Return the associated Output_section.
2958 Output_section*
2959 get_output_section() const
2960 { return this->os_; }
2961
2962 // Print for debugging.
2963 void
2964 print(FILE* f) const
2965 {
2966 fprintf(f, " marker for orphaned output section %s\n",
2967 this->os_->name());
2968 }
2969
2970 private:
2971 Output_section* os_;
2972 };
2973
2974 // Set section addresses.
2975
2976 void
2977 Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
2978 uint64_t* dot_value,
2979 uint64_t*,
2980 uint64_t* load_address)
2981 {
2982 typedef std::list<Output_section::Input_section> Input_section_list;
2983
2984 bool have_load_address = *load_address != *dot_value;
2985
2986 uint64_t address = *dot_value;
2987 address = align_address(address, this->os_->addralign());
2988
2989 // If input section sorting is requested via --section-ordering-file or
2990 // linker plugins, then do it here. This is important because we want
2991 // any sorting specified in the linker scripts, which will be done after
2992 // this, to take precedence. The final order of input sections is then
2993 // guaranteed to be according to the linker script specification.
2994 if (this->os_ != NULL
2995 && this->os_->input_section_order_specified())
2996 this->os_->sort_attached_input_sections();
2997
2998 // For a relocatable link, all orphan sections are put at
2999 // address 0. In general we expect all sections to be at
3000 // address 0 for a relocatable link, but we permit the linker
3001 // script to override that for specific output sections.
3002 if (parameters->options().relocatable())
3003 {
3004 address = 0;
3005 *load_address = 0;
3006 have_load_address = false;
3007 }
3008
3009 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
3010 {
3011 this->os_->set_address(address);
3012 if (have_load_address)
3013 this->os_->set_load_address(align_address(*load_address,
3014 this->os_->addralign()));
3015 }
3016
3017 Input_section_list input_sections;
3018 address += this->os_->get_input_sections(address, "", &input_sections);
3019
3020 for (Input_section_list::iterator p = input_sections.begin();
3021 p != input_sections.end();
3022 ++p)
3023 {
3024 uint64_t addralign = p->addralign();
3025 if (!p->is_input_section())
3026 p->output_section_data()->finalize_data_size();
3027 uint64_t size = p->data_size();
3028 address = align_address(address, addralign);
3029 this->os_->add_script_input_section(*p);
3030 address += size;
3031 }
3032
3033 if (parameters->options().relocatable())
3034 {
3035 // For a relocatable link, reset DOT_VALUE to 0.
3036 *dot_value = 0;
3037 *load_address = 0;
3038 }
3039 else if (this->os_ == NULL
3040 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
3041 || this->os_->type() != elfcpp::SHT_NOBITS)
3042 {
3043 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
3044 if (!have_load_address)
3045 *load_address = address;
3046 else
3047 *load_address += address - *dot_value;
3048
3049 *dot_value = address;
3050 }
3051 }
3052
3053 // Get the list of segments to use for an allocated section when using
3054 // a PHDRS clause. If this is an allocated section, return the
3055 // Output_section. We don't change the list of segments.
3056
3057 Output_section*
3058 Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
3059 {
3060 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3061 return NULL;
3062 *orphan = true;
3063 return this->os_;
3064 }
3065
3066 // Class Phdrs_element. A program header from a PHDRS clause.
3067
3068 class Phdrs_element
3069 {
3070 public:
3071 Phdrs_element(const char* name, size_t namelen, unsigned int type,
3072 bool includes_filehdr, bool includes_phdrs,
3073 bool is_flags_valid, unsigned int flags,
3074 Expression* load_address)
3075 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3076 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3077 flags_(flags), load_address_(load_address), load_address_value_(0),
3078 segment_(NULL)
3079 { }
3080
3081 // Return the name of this segment.
3082 const std::string&
3083 name() const
3084 { return this->name_; }
3085
3086 // Return the type of the segment.
3087 unsigned int
3088 type() const
3089 { return this->type_; }
3090
3091 // Whether to include the file header.
3092 bool
3093 includes_filehdr() const
3094 { return this->includes_filehdr_; }
3095
3096 // Whether to include the program headers.
3097 bool
3098 includes_phdrs() const
3099 { return this->includes_phdrs_; }
3100
3101 // Return whether there is a load address.
3102 bool
3103 has_load_address() const
3104 { return this->load_address_ != NULL; }
3105
3106 // Evaluate the load address expression if there is one.
3107 void
3108 eval_load_address(Symbol_table* symtab, Layout* layout)
3109 {
3110 if (this->load_address_ != NULL)
3111 this->load_address_value_ = this->load_address_->eval(symtab, layout,
3112 true);
3113 }
3114
3115 // Return the load address.
3116 uint64_t
3117 load_address() const
3118 {
3119 gold_assert(this->load_address_ != NULL);
3120 return this->load_address_value_;
3121 }
3122
3123 // Create the segment.
3124 Output_segment*
3125 create_segment(Layout* layout)
3126 {
3127 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3128 return this->segment_;
3129 }
3130
3131 // Return the segment.
3132 Output_segment*
3133 segment()
3134 { return this->segment_; }
3135
3136 // Release the segment.
3137 void
3138 release_segment()
3139 { this->segment_ = NULL; }
3140
3141 // Set the segment flags if appropriate.
3142 void
3143 set_flags_if_valid()
3144 {
3145 if (this->is_flags_valid_)
3146 this->segment_->set_flags(this->flags_);
3147 }
3148
3149 // Print for debugging.
3150 void
3151 print(FILE*) const;
3152
3153 private:
3154 // The name used in the script.
3155 std::string name_;
3156 // The type of the segment (PT_LOAD, etc.).
3157 unsigned int type_;
3158 // Whether this segment includes the file header.
3159 bool includes_filehdr_;
3160 // Whether this segment includes the section headers.
3161 bool includes_phdrs_;
3162 // Whether the flags were explicitly specified.
3163 bool is_flags_valid_;
3164 // The flags for this segment (PF_R, etc.) if specified.
3165 unsigned int flags_;
3166 // The expression for the load address for this segment. This may
3167 // be NULL.
3168 Expression* load_address_;
3169 // The actual load address from evaluating the expression.
3170 uint64_t load_address_value_;
3171 // The segment itself.
3172 Output_segment* segment_;
3173 };
3174
3175 // Print for debugging.
3176
3177 void
3178 Phdrs_element::print(FILE* f) const
3179 {
3180 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3181 if (this->includes_filehdr_)
3182 fprintf(f, " FILEHDR");
3183 if (this->includes_phdrs_)
3184 fprintf(f, " PHDRS");
3185 if (this->is_flags_valid_)
3186 fprintf(f, " FLAGS(%u)", this->flags_);
3187 if (this->load_address_ != NULL)
3188 {
3189 fprintf(f, " AT(");
3190 this->load_address_->print(f);
3191 fprintf(f, ")");
3192 }
3193 fprintf(f, ";\n");
3194 }
3195
3196 // Add a memory region.
3197
3198 void
3199 Script_sections::add_memory_region(const char* name, size_t namelen,
3200 unsigned int attributes,
3201 Expression* start, Expression* length)
3202 {
3203 if (this->memory_regions_ == NULL)
3204 this->memory_regions_ = new Memory_regions();
3205 else if (this->find_memory_region(name, namelen))
3206 {
3207 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
3208 name);
3209 // FIXME: Add a GOLD extension to allow multiple regions with the same
3210 // name. This would amount to a single region covering disjoint blocks
3211 // of memory, which is useful for embedded devices.
3212 }
3213
3214 // FIXME: Check the length and start values. Currently we allow
3215 // non-constant expressions for these values, whereas LD does not.
3216
3217 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3218 // describe a region that packs from the end address going down, rather
3219 // than the start address going up. This would be useful for embedded
3220 // devices.
3221
3222 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3223 start, length));
3224 }
3225
3226 // Find a memory region.
3227
3228 Memory_region*
3229 Script_sections::find_memory_region(const char* name, size_t namelen)
3230 {
3231 if (this->memory_regions_ == NULL)
3232 return NULL;
3233
3234 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3235 m != this->memory_regions_->end();
3236 ++m)
3237 if ((*m)->name_match(name, namelen))
3238 return *m;
3239
3240 return NULL;
3241 }
3242
3243 // Find a memory region's origin.
3244
3245 Expression*
3246 Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3247 {
3248 Memory_region* mr = find_memory_region(name, namelen);
3249 if (mr == NULL)
3250 return NULL;
3251
3252 return mr->start_address();
3253 }
3254
3255 // Find a memory region's length.
3256
3257 Expression*
3258 Script_sections::find_memory_region_length(const char* name, size_t namelen)
3259 {
3260 Memory_region* mr = find_memory_region(name, namelen);
3261 if (mr == NULL)
3262 return NULL;
3263
3264 return mr->length();
3265 }
3266
3267 // Set the memory region to use for the current section.
3268
3269 void
3270 Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3271 {
3272 gold_assert(!this->sections_elements_->empty());
3273 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3274 }
3275
3276 // Class Script_sections.
3277
3278 Script_sections::Script_sections()
3279 : saw_sections_clause_(false),
3280 in_sections_clause_(false),
3281 sections_elements_(NULL),
3282 output_section_(NULL),
3283 memory_regions_(NULL),
3284 phdrs_elements_(NULL),
3285 orphan_section_placement_(NULL),
3286 data_segment_align_start_(),
3287 saw_data_segment_align_(false),
3288 saw_relro_end_(false),
3289 saw_segment_start_expression_(false),
3290 segments_created_(false)
3291 {
3292 }
3293
3294 // Start a SECTIONS clause.
3295
3296 void
3297 Script_sections::start_sections()
3298 {
3299 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3300 this->saw_sections_clause_ = true;
3301 this->in_sections_clause_ = true;
3302 if (this->sections_elements_ == NULL)
3303 this->sections_elements_ = new Sections_elements;
3304 }
3305
3306 // Finish a SECTIONS clause.
3307
3308 void
3309 Script_sections::finish_sections()
3310 {
3311 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3312 this->in_sections_clause_ = false;
3313 }
3314
3315 // Add a symbol to be defined.
3316
3317 void
3318 Script_sections::add_symbol_assignment(const char* name, size_t length,
3319 Expression* val, bool provide,
3320 bool hidden)
3321 {
3322 if (this->output_section_ != NULL)
3323 this->output_section_->add_symbol_assignment(name, length, val,
3324 provide, hidden);
3325 else
3326 {
3327 Sections_element* p = new Sections_element_assignment(name, length,
3328 val, provide,
3329 hidden);
3330 this->sections_elements_->push_back(p);
3331 }
3332 }
3333
3334 // Add an assignment to the special dot symbol.
3335
3336 void
3337 Script_sections::add_dot_assignment(Expression* val)
3338 {
3339 if (this->output_section_ != NULL)
3340 this->output_section_->add_dot_assignment(val);
3341 else
3342 {
3343 // The GNU linker permits assignments to . to appears outside of
3344 // a SECTIONS clause, and treats it as appearing inside, so
3345 // sections_elements_ may be NULL here.
3346 if (this->sections_elements_ == NULL)
3347 {
3348 this->sections_elements_ = new Sections_elements;
3349 this->saw_sections_clause_ = true;
3350 }
3351
3352 Sections_element* p = new Sections_element_dot_assignment(val);
3353 this->sections_elements_->push_back(p);
3354 }
3355 }
3356
3357 // Add an assertion.
3358
3359 void
3360 Script_sections::add_assertion(Expression* check, const char* message,
3361 size_t messagelen)
3362 {
3363 if (this->output_section_ != NULL)
3364 this->output_section_->add_assertion(check, message, messagelen);
3365 else
3366 {
3367 Sections_element* p = new Sections_element_assertion(check, message,
3368 messagelen);
3369 this->sections_elements_->push_back(p);
3370 }
3371 }
3372
3373 // Start processing entries for an output section.
3374
3375 void
3376 Script_sections::start_output_section(
3377 const char* name,
3378 size_t namelen,
3379 const Parser_output_section_header* header)
3380 {
3381 Output_section_definition* posd = new Output_section_definition(name,
3382 namelen,
3383 header);
3384 this->sections_elements_->push_back(posd);
3385 gold_assert(this->output_section_ == NULL);
3386 this->output_section_ = posd;
3387 }
3388
3389 // Stop processing entries for an output section.
3390
3391 void
3392 Script_sections::finish_output_section(
3393 const Parser_output_section_trailer* trailer)
3394 {
3395 gold_assert(this->output_section_ != NULL);
3396 this->output_section_->finish(trailer);
3397 this->output_section_ = NULL;
3398 }
3399
3400 // Add a data item to the current output section.
3401
3402 void
3403 Script_sections::add_data(int size, bool is_signed, Expression* val)
3404 {
3405 gold_assert(this->output_section_ != NULL);
3406 this->output_section_->add_data(size, is_signed, val);
3407 }
3408
3409 // Add a fill value setting to the current output section.
3410
3411 void
3412 Script_sections::add_fill(Expression* val)
3413 {
3414 gold_assert(this->output_section_ != NULL);
3415 this->output_section_->add_fill(val);
3416 }
3417
3418 // Add an input section specification to the current output section.
3419
3420 void
3421 Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3422 {
3423 gold_assert(this->output_section_ != NULL);
3424 this->output_section_->add_input_section(spec, keep);
3425 }
3426
3427 // This is called when we see DATA_SEGMENT_ALIGN. It means that any
3428 // subsequent output sections may be relro.
3429
3430 void
3431 Script_sections::data_segment_align()
3432 {
3433 if (this->saw_data_segment_align_)
3434 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
3435 gold_assert(!this->sections_elements_->empty());
3436 Sections_elements::iterator p = this->sections_elements_->end();
3437 --p;
3438 this->data_segment_align_start_ = p;
3439 this->saw_data_segment_align_ = true;
3440 }
3441
3442 // This is called when we see DATA_SEGMENT_RELRO_END. It means that
3443 // any output sections seen since DATA_SEGMENT_ALIGN are relro.
3444
3445 void
3446 Script_sections::data_segment_relro_end()
3447 {
3448 if (this->saw_relro_end_)
3449 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3450 "in a linker script"));
3451 this->saw_relro_end_ = true;
3452
3453 if (!this->saw_data_segment_align_)
3454 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3455 else
3456 {
3457 Sections_elements::iterator p = this->data_segment_align_start_;
3458 for (++p; p != this->sections_elements_->end(); ++p)
3459 (*p)->set_is_relro();
3460 }
3461 }
3462
3463 // Create any required sections.
3464
3465 void
3466 Script_sections::create_sections(Layout* layout)
3467 {
3468 if (!this->saw_sections_clause_)
3469 return;
3470 for (Sections_elements::iterator p = this->sections_elements_->begin();
3471 p != this->sections_elements_->end();
3472 ++p)
3473 (*p)->create_sections(layout);
3474 }
3475
3476 // Add any symbols we are defining to the symbol table.
3477
3478 void
3479 Script_sections::add_symbols_to_table(Symbol_table* symtab)
3480 {
3481 if (!this->saw_sections_clause_)
3482 return;
3483 for (Sections_elements::iterator p = this->sections_elements_->begin();
3484 p != this->sections_elements_->end();
3485 ++p)
3486 (*p)->add_symbols_to_table(symtab);
3487 }
3488
3489 // Finalize symbols and check assertions.
3490
3491 void
3492 Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3493 {
3494 if (!this->saw_sections_clause_)
3495 return;
3496 uint64_t dot_value = 0;
3497 for (Sections_elements::iterator p = this->sections_elements_->begin();
3498 p != this->sections_elements_->end();
3499 ++p)
3500 (*p)->finalize_symbols(symtab, layout, &dot_value);
3501 }
3502
3503 // Return the name of the output section to use for an input file name
3504 // and section name.
3505
3506 const char*
3507 Script_sections::output_section_name(
3508 const char* file_name,
3509 const char* section_name,
3510 Output_section*** output_section_slot,
3511 Script_sections::Section_type* psection_type,
3512 bool* keep)
3513 {
3514 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3515 p != this->sections_elements_->end();
3516 ++p)
3517 {
3518 const char* ret = (*p)->output_section_name(file_name, section_name,
3519 output_section_slot,
3520 psection_type, keep);
3521
3522 if (ret != NULL)
3523 {
3524 // The special name /DISCARD/ means that the input section
3525 // should be discarded.
3526 if (strcmp(ret, "/DISCARD/") == 0)
3527 {
3528 *output_section_slot = NULL;
3529 *psection_type = Script_sections::ST_NONE;
3530 return NULL;
3531 }
3532 return ret;
3533 }
3534 }
3535
3536 // If we couldn't find a mapping for the name, the output section
3537 // gets the name of the input section.
3538
3539 *output_section_slot = NULL;
3540 *psection_type = Script_sections::ST_NONE;
3541
3542 return section_name;
3543 }
3544
3545 // Place a marker for an orphan output section into the SECTIONS
3546 // clause.
3547
3548 void
3549 Script_sections::place_orphan(Output_section* os)
3550 {
3551 Orphan_section_placement* osp = this->orphan_section_placement_;
3552 if (osp == NULL)
3553 {
3554 // Initialize the Orphan_section_placement structure.
3555 osp = new Orphan_section_placement();
3556 for (Sections_elements::iterator p = this->sections_elements_->begin();
3557 p != this->sections_elements_->end();
3558 ++p)
3559 (*p)->orphan_section_init(osp, p);
3560 gold_assert(!this->sections_elements_->empty());
3561 Sections_elements::iterator last = this->sections_elements_->end();
3562 --last;
3563 osp->last_init(last);
3564 this->orphan_section_placement_ = osp;
3565 }
3566
3567 Orphan_output_section* orphan = new Orphan_output_section(os);
3568
3569 // Look for where to put ORPHAN.
3570 Sections_elements::iterator* where;
3571 if (osp->find_place(os, &where))
3572 {
3573 if ((**where)->is_relro())
3574 os->set_is_relro();
3575 else
3576 os->clear_is_relro();
3577
3578 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3579 // so that the next one goes after this one.
3580 Sections_elements::iterator p = *where;
3581 gold_assert(p != this->sections_elements_->end());
3582 ++p;
3583 *where = this->sections_elements_->insert(p, orphan);
3584 }
3585 else
3586 {
3587 os->clear_is_relro();
3588 // We don't have a place to put this orphan section. Put it,
3589 // and all other sections like it, at the end, but before the
3590 // sections which always come at the end.
3591 Sections_elements::iterator last = osp->last_place();
3592 *where = this->sections_elements_->insert(last, orphan);
3593 }
3594 }
3595
3596 // Set the addresses of all the output sections. Walk through all the
3597 // elements, tracking the dot symbol. Apply assignments which set
3598 // absolute symbol values, in case they are used when setting dot.
3599 // Fill in data statement values. As we find output sections, set the
3600 // address, set the address of all associated input sections, and
3601 // update dot. Return the segment which should hold the file header
3602 // and segment headers, if any.
3603
3604 Output_segment*
3605 Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3606 {
3607 gold_assert(this->saw_sections_clause_);
3608
3609 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3610 // for our representation.
3611 for (Sections_elements::iterator p = this->sections_elements_->begin();
3612 p != this->sections_elements_->end();
3613 ++p)
3614 {
3615 Output_section_definition* posd;
3616 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3617 if (failed_constraint != CONSTRAINT_NONE)
3618 {
3619 Sections_elements::iterator q;
3620 for (q = this->sections_elements_->begin();
3621 q != this->sections_elements_->end();
3622 ++q)
3623 {
3624 if (q != p)
3625 {
3626 if ((*q)->alternate_constraint(posd, failed_constraint))
3627 break;
3628 }
3629 }
3630
3631 if (q == this->sections_elements_->end())
3632 gold_error(_("no matching section constraint"));
3633 }
3634 }
3635
3636 // Force the alignment of the first TLS section to be the maximum
3637 // alignment of all TLS sections.
3638 Output_section* first_tls = NULL;
3639 uint64_t tls_align = 0;
3640 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3641 p != this->sections_elements_->end();
3642 ++p)
3643 {
3644 Output_section* os = (*p)->get_output_section();
3645 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3646 {
3647 if (first_tls == NULL)
3648 first_tls = os;
3649 if (os->addralign() > tls_align)
3650 tls_align = os->addralign();
3651 }
3652 }
3653 if (first_tls != NULL)
3654 first_tls->set_addralign(tls_align);
3655
3656 // For a relocatable link, we implicitly set dot to zero.
3657 uint64_t dot_value = 0;
3658 uint64_t dot_alignment = 0;
3659 uint64_t load_address = 0;
3660
3661 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3662 // to set section addresses. If the script has any SEGMENT_START
3663 // expression, we do not set the section addresses.
3664 bool use_tsection_options =
3665 (!this->saw_segment_start_expression_
3666 && (parameters->options().user_set_Ttext()
3667 || parameters->options().user_set_Tdata()
3668 || parameters->options().user_set_Tbss()));
3669
3670 for (Sections_elements::iterator p = this->sections_elements_->begin();
3671 p != this->sections_elements_->end();
3672 ++p)
3673 {
3674 Output_section* os = (*p)->get_output_section();
3675
3676 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3677 // the special sections by names and doing dot assignments.
3678 if (use_tsection_options
3679 && os != NULL
3680 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3681 {
3682 uint64_t new_dot_value = dot_value;
3683
3684 if (parameters->options().user_set_Ttext()
3685 && strcmp(os->name(), ".text") == 0)
3686 new_dot_value = parameters->options().Ttext();
3687 else if (parameters->options().user_set_Tdata()
3688 && strcmp(os->name(), ".data") == 0)
3689 new_dot_value = parameters->options().Tdata();
3690 else if (parameters->options().user_set_Tbss()
3691 && strcmp(os->name(), ".bss") == 0)
3692 new_dot_value = parameters->options().Tbss();
3693
3694 // Update dot and load address if necessary.
3695 if (new_dot_value < dot_value)
3696 gold_error(_("dot may not move backward"));
3697 else if (new_dot_value != dot_value)
3698 {
3699 dot_value = new_dot_value;
3700 load_address = new_dot_value;
3701 }
3702 }
3703
3704 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3705 &load_address);
3706 }
3707
3708 if (this->phdrs_elements_ != NULL)
3709 {
3710 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3711 p != this->phdrs_elements_->end();
3712 ++p)
3713 (*p)->eval_load_address(symtab, layout);
3714 }
3715
3716 return this->create_segments(layout, dot_alignment);
3717 }
3718
3719 // Sort the sections in order to put them into segments.
3720
3721 class Sort_output_sections
3722 {
3723 public:
3724 Sort_output_sections(const Script_sections::Sections_elements* elements)
3725 : elements_(elements)
3726 { }
3727
3728 bool
3729 operator()(const Output_section* os1, const Output_section* os2) const;
3730
3731 private:
3732 int
3733 script_compare(const Output_section* os1, const Output_section* os2) const;
3734
3735 private:
3736 const Script_sections::Sections_elements* elements_;
3737 };
3738
3739 bool
3740 Sort_output_sections::operator()(const Output_section* os1,
3741 const Output_section* os2) const
3742 {
3743 // Sort first by the load address.
3744 uint64_t lma1 = (os1->has_load_address()
3745 ? os1->load_address()
3746 : os1->address());
3747 uint64_t lma2 = (os2->has_load_address()
3748 ? os2->load_address()
3749 : os2->address());
3750 if (lma1 != lma2)
3751 return lma1 < lma2;
3752
3753 // Then sort by the virtual address.
3754 if (os1->address() != os2->address())
3755 return os1->address() < os2->address();
3756
3757 // If the linker script says which of these sections is first, go
3758 // with what it says.
3759 int i = this->script_compare(os1, os2);
3760 if (i != 0)
3761 return i < 0;
3762
3763 // Sort PROGBITS before NOBITS.
3764 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3765 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3766 if (nobits1 != nobits2)
3767 return nobits2;
3768
3769 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3770 // beginning.
3771 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3772 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3773 if (tls1 != tls2)
3774 return nobits1 ? tls1 : tls2;
3775
3776 // Sort non-NOLOAD before NOLOAD.
3777 if (os1->is_noload() && !os2->is_noload())
3778 return true;
3779 if (!os1->is_noload() && os2->is_noload())
3780 return true;
3781
3782 // The sections seem practically identical. Sort by name to get a
3783 // stable sort.
3784 return os1->name() < os2->name();
3785 }
3786
3787 // Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3788 // if either OS1 or OS2 is not mentioned. This ensures that we keep
3789 // empty sections in the order in which they appear in a linker
3790 // script.
3791
3792 int
3793 Sort_output_sections::script_compare(const Output_section* os1,
3794 const Output_section* os2) const
3795 {
3796 if (this->elements_ == NULL)
3797 return 0;
3798
3799 bool found_os1 = false;
3800 bool found_os2 = false;
3801 for (Script_sections::Sections_elements::const_iterator
3802 p = this->elements_->begin();
3803 p != this->elements_->end();
3804 ++p)
3805 {
3806 if (os2 == (*p)->get_output_section())
3807 {
3808 if (found_os1)
3809 return -1;
3810 found_os2 = true;
3811 }
3812 else if (os1 == (*p)->get_output_section())
3813 {
3814 if (found_os2)
3815 return 1;
3816 found_os1 = true;
3817 }
3818 }
3819
3820 return 0;
3821 }
3822
3823 // Return whether OS is a BSS section. This is a SHT_NOBITS section.
3824 // We treat a section with the SHF_TLS flag set as taking up space
3825 // even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3826 // space for them in the file.
3827
3828 bool
3829 Script_sections::is_bss_section(const Output_section* os)
3830 {
3831 return (os->type() == elfcpp::SHT_NOBITS
3832 && (os->flags() & elfcpp::SHF_TLS) == 0);
3833 }
3834
3835 // Return the size taken by the file header and the program headers.
3836
3837 size_t
3838 Script_sections::total_header_size(Layout* layout) const
3839 {
3840 size_t segment_count = layout->segment_count();
3841 size_t file_header_size;
3842 size_t segment_headers_size;
3843 if (parameters->target().get_size() == 32)
3844 {
3845 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3846 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3847 }
3848 else if (parameters->target().get_size() == 64)
3849 {
3850 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3851 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3852 }
3853 else
3854 gold_unreachable();
3855
3856 return file_header_size + segment_headers_size;
3857 }
3858
3859 // Return the amount we have to subtract from the LMA to accommodate
3860 // headers of the given size. The complication is that the file
3861 // header have to be at the start of a page, as otherwise it will not
3862 // be at the start of the file.
3863
3864 uint64_t
3865 Script_sections::header_size_adjustment(uint64_t lma,
3866 size_t sizeof_headers) const
3867 {
3868 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3869 uint64_t hdr_lma = lma - sizeof_headers;
3870 hdr_lma &= ~(abi_pagesize - 1);
3871 return lma - hdr_lma;
3872 }
3873
3874 // Create the PT_LOAD segments when using a SECTIONS clause. Returns
3875 // the segment which should hold the file header and segment headers,
3876 // if any.
3877
3878 Output_segment*
3879 Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
3880 {
3881 gold_assert(this->saw_sections_clause_);
3882
3883 if (parameters->options().relocatable())
3884 return NULL;
3885
3886 if (this->saw_phdrs_clause())
3887 return create_segments_from_phdrs_clause(layout, dot_alignment);
3888
3889 Layout::Section_list sections;
3890 layout->get_allocated_sections(&sections);
3891
3892 // Sort the sections by address.
3893 std::stable_sort(sections.begin(), sections.end(),
3894 Sort_output_sections(this->sections_elements_));
3895
3896 this->create_note_and_tls_segments(layout, &sections);
3897
3898 // Walk through the sections adding them to PT_LOAD segments.
3899 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
3900 Output_segment* first_seg = NULL;
3901 Output_segment* current_seg = NULL;
3902 bool is_current_seg_readonly = true;
3903 Layout::Section_list::iterator plast = sections.end();
3904 uint64_t last_vma = 0;
3905 uint64_t last_lma = 0;
3906 uint64_t last_size = 0;
3907 for (Layout::Section_list::iterator p = sections.begin();
3908 p != sections.end();
3909 ++p)
3910 {
3911 const uint64_t vma = (*p)->address();
3912 const uint64_t lma = ((*p)->has_load_address()
3913 ? (*p)->load_address()
3914 : vma);
3915 const uint64_t size = (*p)->current_data_size();
3916
3917 bool need_new_segment;
3918 if (current_seg == NULL)
3919 need_new_segment = true;
3920 else if (lma - vma != last_lma - last_vma)
3921 {
3922 // This section has a different LMA relationship than the
3923 // last one; we need a new segment.
3924 need_new_segment = true;
3925 }
3926 else if (align_address(last_lma + last_size, abi_pagesize)
3927 < align_address(lma, abi_pagesize))
3928 {
3929 // Putting this section in the segment would require
3930 // skipping a page.
3931 need_new_segment = true;
3932 }
3933 else if (is_bss_section(*plast) && !is_bss_section(*p))
3934 {
3935 // A non-BSS section can not follow a BSS section in the
3936 // same segment.
3937 need_new_segment = true;
3938 }
3939 else if (is_current_seg_readonly
3940 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3941 && !parameters->options().omagic())
3942 {
3943 // Don't put a writable section in the same segment as a
3944 // non-writable section.
3945 need_new_segment = true;
3946 }
3947 else
3948 {
3949 // Otherwise, reuse the existing segment.
3950 need_new_segment = false;
3951 }
3952
3953 elfcpp::Elf_Word seg_flags =
3954 Layout::section_flags_to_segment((*p)->flags());
3955
3956 if (need_new_segment)
3957 {
3958 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3959 seg_flags);
3960 current_seg->set_addresses(vma, lma);
3961 current_seg->set_minimum_p_align(dot_alignment);
3962 if (first_seg == NULL)
3963 first_seg = current_seg;
3964 is_current_seg_readonly = true;
3965 }
3966
3967 current_seg->add_output_section_to_load(layout, *p, seg_flags);
3968
3969 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3970 is_current_seg_readonly = false;
3971
3972 plast = p;
3973 last_vma = vma;
3974 last_lma = lma;
3975 last_size = size;
3976 }
3977
3978 // An ELF program should work even if the program headers are not in
3979 // a PT_LOAD segment. However, it appears that the Linux kernel
3980 // does not set the AT_PHDR auxiliary entry in that case. It sets
3981 // the load address to p_vaddr - p_offset of the first PT_LOAD
3982 // segment. It then sets AT_PHDR to the load address plus the
3983 // offset to the program headers, e_phoff in the file header. This
3984 // fails when the program headers appear in the file before the
3985 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3986 // segment to hold the file header and the program headers. This is
3987 // effectively what the GNU linker does, and it is slightly more
3988 // efficient in any case. We try to use the first PT_LOAD segment
3989 // if we can, otherwise we make a new one.
3990
3991 if (first_seg == NULL)
3992 return NULL;
3993
3994 // -n or -N mean that the program is not demand paged and there is
3995 // no need to put the program headers in a PT_LOAD segment.
3996 if (parameters->options().nmagic() || parameters->options().omagic())
3997 return NULL;
3998
3999 size_t sizeof_headers = this->total_header_size(layout);
4000
4001 uint64_t vma = first_seg->vaddr();
4002 uint64_t lma = first_seg->paddr();
4003
4004 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
4005
4006 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
4007 {
4008 first_seg->set_addresses(vma - subtract, lma - subtract);
4009 return first_seg;
4010 }
4011
4012 // If there is no room to squeeze in the headers, then punt. The
4013 // resulting executable probably won't run on GNU/Linux, but we
4014 // trust that the user knows what they are doing.
4015 if (lma < subtract || vma < subtract)
4016 return NULL;
4017
4018 // If memory regions have been specified and the address range
4019 // we are about to use is not contained within any region then
4020 // issue a warning message about the segment we are going to
4021 // create. It will be outside of any region and so possibly
4022 // using non-existent or protected memory. We test LMA rather
4023 // than VMA since we assume that the headers will never be
4024 // relocated.
4025 if (this->memory_regions_ != NULL
4026 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
4027 gold_warning(_("creating a segment to contain the file and program"
4028 " headers outside of any MEMORY region"));
4029
4030 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
4031 elfcpp::PF_R);
4032 load_seg->set_addresses(vma - subtract, lma - subtract);
4033
4034 return load_seg;
4035 }
4036
4037 // Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
4038 // segment if there are any SHT_TLS sections.
4039
4040 void
4041 Script_sections::create_note_and_tls_segments(
4042 Layout* layout,
4043 const Layout::Section_list* sections)
4044 {
4045 gold_assert(!this->saw_phdrs_clause());
4046
4047 bool saw_tls = false;
4048 for (Layout::Section_list::const_iterator p = sections->begin();
4049 p != sections->end();
4050 ++p)
4051 {
4052 if ((*p)->type() == elfcpp::SHT_NOTE)
4053 {
4054 elfcpp::Elf_Word seg_flags =
4055 Layout::section_flags_to_segment((*p)->flags());
4056 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4057 seg_flags);
4058 oseg->add_output_section_to_nonload(*p, seg_flags);
4059
4060 // Incorporate any subsequent SHT_NOTE sections, in the
4061 // hopes that the script is sensible.
4062 Layout::Section_list::const_iterator pnext = p + 1;
4063 while (pnext != sections->end()
4064 && (*pnext)->type() == elfcpp::SHT_NOTE)
4065 {
4066 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4067 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4068 p = pnext;
4069 ++pnext;
4070 }
4071 }
4072
4073 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4074 {
4075 if (saw_tls)
4076 gold_error(_("TLS sections are not adjacent"));
4077
4078 elfcpp::Elf_Word seg_flags =
4079 Layout::section_flags_to_segment((*p)->flags());
4080 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4081 seg_flags);
4082 oseg->add_output_section_to_nonload(*p, seg_flags);
4083
4084 Layout::Section_list::const_iterator pnext = p + 1;
4085 while (pnext != sections->end()
4086 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4087 {
4088 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
4089 oseg->add_output_section_to_nonload(*pnext, seg_flags);
4090 p = pnext;
4091 ++pnext;
4092 }
4093
4094 saw_tls = true;
4095 }
4096
4097 // If we see a section named .interp then put the .interp section
4098 // in a PT_INTERP segment.
4099 // This is for GNU ld compatibility.
4100 if (strcmp((*p)->name(), ".interp") == 0)
4101 {
4102 elfcpp::Elf_Word seg_flags =
4103 Layout::section_flags_to_segment((*p)->flags());
4104 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4105 seg_flags);
4106 oseg->add_output_section_to_nonload(*p, seg_flags);
4107 }
4108 }
4109
4110 this->segments_created_ = true;
4111 }
4112
4113 // Add a program header. The PHDRS clause is syntactically distinct
4114 // from the SECTIONS clause, but we implement it with the SECTIONS
4115 // support because PHDRS is useless if there is no SECTIONS clause.
4116
4117 void
4118 Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4119 bool includes_filehdr, bool includes_phdrs,
4120 bool is_flags_valid, unsigned int flags,
4121 Expression* load_address)
4122 {
4123 if (this->phdrs_elements_ == NULL)
4124 this->phdrs_elements_ = new Phdrs_elements();
4125 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4126 includes_filehdr,
4127 includes_phdrs,
4128 is_flags_valid, flags,
4129 load_address));
4130 }
4131
4132 // Return the number of segments we expect to create based on the
4133 // SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4134
4135 size_t
4136 Script_sections::expected_segment_count(const Layout* layout) const
4137 {
4138 // If we've already created the segments, we won't be adding any more.
4139 if (this->segments_created_)
4140 return 0;
4141
4142 if (this->saw_phdrs_clause())
4143 return this->phdrs_elements_->size();
4144
4145 Layout::Section_list sections;
4146 layout->get_allocated_sections(&sections);
4147
4148 // We assume that we will need two PT_LOAD segments.
4149 size_t ret = 2;
4150
4151 bool saw_note = false;
4152 bool saw_tls = false;
4153 bool saw_interp = false;
4154 for (Layout::Section_list::const_iterator p = sections.begin();
4155 p != sections.end();
4156 ++p)
4157 {
4158 if ((*p)->type() == elfcpp::SHT_NOTE)
4159 {
4160 // Assume that all note sections will fit into a single
4161 // PT_NOTE segment.
4162 if (!saw_note)
4163 {
4164 ++ret;
4165 saw_note = true;
4166 }
4167 }
4168 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4169 {
4170 // There can only be one PT_TLS segment.
4171 if (!saw_tls)
4172 {
4173 ++ret;
4174 saw_tls = true;
4175 }
4176 }
4177 else if (strcmp((*p)->name(), ".interp") == 0)
4178 {
4179 // There can only be one PT_INTERP segment.
4180 if (!saw_interp)
4181 {
4182 ++ret;
4183 saw_interp = true;
4184 }
4185 }
4186 }
4187
4188 return ret;
4189 }
4190
4191 // Create the segments from a PHDRS clause. Return the segment which
4192 // should hold the file header and program headers, if any.
4193
4194 Output_segment*
4195 Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4196 uint64_t dot_alignment)
4197 {
4198 this->attach_sections_using_phdrs_clause(layout);
4199 return this->set_phdrs_clause_addresses(layout, dot_alignment);
4200 }
4201
4202 // Create the segments from the PHDRS clause, and put the output
4203 // sections in them.
4204
4205 void
4206 Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4207 {
4208 typedef std::map<std::string, Output_segment*> Name_to_segment;
4209 Name_to_segment name_to_segment;
4210 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4211 p != this->phdrs_elements_->end();
4212 ++p)
4213 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
4214 this->segments_created_ = true;
4215
4216 // Walk through the output sections and attach them to segments.
4217 // Output sections in the script which do not list segments are
4218 // attached to the same set of segments as the immediately preceding
4219 // output section.
4220
4221 String_list* phdr_names = NULL;
4222 bool load_segments_only = false;
4223 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4224 p != this->sections_elements_->end();
4225 ++p)
4226 {
4227 bool is_orphan;
4228 String_list* old_phdr_names = phdr_names;
4229 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
4230 if (os == NULL)
4231 continue;
4232
4233 elfcpp::Elf_Word seg_flags =
4234 Layout::section_flags_to_segment(os->flags());
4235
4236 if (phdr_names == NULL)
4237 {
4238 // Don't worry about empty orphan sections.
4239 if (is_orphan && os->current_data_size() > 0)
4240 gold_error(_("allocated section %s not in any segment"),
4241 os->name());
4242
4243 // To avoid later crashes drop this section into the first
4244 // PT_LOAD segment.
4245 for (Phdrs_elements::const_iterator ppe =
4246 this->phdrs_elements_->begin();
4247 ppe != this->phdrs_elements_->end();
4248 ++ppe)
4249 {
4250 Output_segment* oseg = (*ppe)->segment();
4251 if (oseg->type() == elfcpp::PT_LOAD)
4252 {
4253 oseg->add_output_section_to_load(layout, os, seg_flags);
4254 break;
4255 }
4256 }
4257
4258 continue;
4259 }
4260
4261 // We see a list of segments names. Disable PT_LOAD segment only
4262 // filtering.
4263 if (old_phdr_names != phdr_names)
4264 load_segments_only = false;
4265
4266 // If this is an orphan section--one that was not explicitly
4267 // mentioned in the linker script--then it should not inherit
4268 // any segment type other than PT_LOAD. Otherwise, e.g., the
4269 // PT_INTERP segment will pick up following orphan sections,
4270 // which does not make sense. If this is not an orphan section,
4271 // we trust the linker script.
4272 if (is_orphan)
4273 {
4274 // Enable PT_LOAD segments only filtering until we see another
4275 // list of segment names.
4276 load_segments_only = true;
4277 }
4278
4279 bool in_load_segment = false;
4280 for (String_list::const_iterator q = phdr_names->begin();
4281 q != phdr_names->end();
4282 ++q)
4283 {
4284 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4285 if (r == name_to_segment.end())
4286 gold_error(_("no segment %s"), q->c_str());
4287 else
4288 {
4289 if (load_segments_only
4290 && r->second->type() != elfcpp::PT_LOAD)
4291 continue;
4292
4293 if (r->second->type() != elfcpp::PT_LOAD)
4294 r->second->add_output_section_to_nonload(os, seg_flags);
4295 else
4296 {
4297 r->second->add_output_section_to_load(layout, os, seg_flags);
4298 if (in_load_segment)
4299 gold_error(_("section in two PT_LOAD segments"));
4300 in_load_segment = true;
4301 }
4302 }
4303 }
4304
4305 if (!in_load_segment)
4306 gold_error(_("allocated section not in any PT_LOAD segment"));
4307 }
4308 }
4309
4310 // Set the addresses for segments created from a PHDRS clause. Return
4311 // the segment which should hold the file header and program headers,
4312 // if any.
4313
4314 Output_segment*
4315 Script_sections::set_phdrs_clause_addresses(Layout* layout,
4316 uint64_t dot_alignment)
4317 {
4318 Output_segment* load_seg = NULL;
4319 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4320 p != this->phdrs_elements_->end();
4321 ++p)
4322 {
4323 // Note that we have to set the flags after adding the output
4324 // sections to the segment, as adding an output segment can
4325 // change the flags.
4326 (*p)->set_flags_if_valid();
4327
4328 Output_segment* oseg = (*p)->segment();
4329
4330 if (oseg->type() != elfcpp::PT_LOAD)
4331 {
4332 // The addresses of non-PT_LOAD segments are set from the
4333 // PT_LOAD segments.
4334 if ((*p)->has_load_address())
4335 gold_error(_("may only specify load address for PT_LOAD segment"));
4336 continue;
4337 }
4338
4339 oseg->set_minimum_p_align(dot_alignment);
4340
4341 // The output sections should have addresses from the SECTIONS
4342 // clause. The addresses don't have to be in order, so find the
4343 // one with the lowest load address. Use that to set the
4344 // address of the segment.
4345
4346 Output_section* osec = oseg->section_with_lowest_load_address();
4347 if (osec == NULL)
4348 {
4349 oseg->set_addresses(0, 0);
4350 continue;
4351 }
4352
4353 uint64_t vma = osec->address();
4354 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4355
4356 // Override the load address of the section with the load
4357 // address specified for the segment.
4358 if ((*p)->has_load_address())
4359 {
4360 if (osec->has_load_address())
4361 gold_warning(_("PHDRS load address overrides "
4362 "section %s load address"),
4363 osec->name());
4364
4365 lma = (*p)->load_address();
4366 }
4367
4368 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4369 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4370 {
4371 // We could support this if we wanted to.
4372 gold_error(_("using only one of FILEHDR and PHDRS is "
4373 "not currently supported"));
4374 }
4375 if (headers)
4376 {
4377 size_t sizeof_headers = this->total_header_size(layout);
4378 uint64_t subtract = this->header_size_adjustment(lma,
4379 sizeof_headers);
4380 if (lma >= subtract && vma >= subtract)
4381 {
4382 lma -= subtract;
4383 vma -= subtract;
4384 }
4385 else
4386 {
4387 gold_error(_("sections loaded on first page without room "
4388 "for file and program headers "
4389 "are not supported"));
4390 }
4391
4392 if (load_seg != NULL)
4393 gold_error(_("using FILEHDR and PHDRS on more than one "
4394 "PT_LOAD segment is not currently supported"));
4395 load_seg = oseg;
4396 }
4397
4398 oseg->set_addresses(vma, lma);
4399 }
4400
4401 return load_seg;
4402 }
4403
4404 // Add the file header and segment headers to non-load segments
4405 // specified in the PHDRS clause.
4406
4407 void
4408 Script_sections::put_headers_in_phdrs(Output_data* file_header,
4409 Output_data* segment_headers)
4410 {
4411 gold_assert(this->saw_phdrs_clause());
4412 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4413 p != this->phdrs_elements_->end();
4414 ++p)
4415 {
4416 if ((*p)->type() != elfcpp::PT_LOAD)
4417 {
4418 if ((*p)->includes_phdrs())
4419 (*p)->segment()->add_initial_output_data(segment_headers);
4420 if ((*p)->includes_filehdr())
4421 (*p)->segment()->add_initial_output_data(file_header);
4422 }
4423 }
4424 }
4425
4426 // Look for an output section by name and return the address, the load
4427 // address, the alignment, and the size. This is used when an
4428 // expression refers to an output section which was not actually
4429 // created. This returns true if the section was found, false
4430 // otherwise.
4431
4432 bool
4433 Script_sections::get_output_section_info(const char* name, uint64_t* address,
4434 uint64_t* load_address,
4435 uint64_t* addralign,
4436 uint64_t* size) const
4437 {
4438 if (!this->saw_sections_clause_)
4439 return false;
4440 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4441 p != this->sections_elements_->end();
4442 ++p)
4443 if ((*p)->get_output_section_info(name, address, load_address, addralign,
4444 size))
4445 return true;
4446 return false;
4447 }
4448
4449 // Release all Output_segments. This remove all pointers to all
4450 // Output_segments.
4451
4452 void
4453 Script_sections::release_segments()
4454 {
4455 if (this->saw_phdrs_clause())
4456 {
4457 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4458 p != this->phdrs_elements_->end();
4459 ++p)
4460 (*p)->release_segment();
4461 }
4462 this->segments_created_ = false;
4463 }
4464
4465 // Print the SECTIONS clause to F for debugging.
4466
4467 void
4468 Script_sections::print(FILE* f) const
4469 {
4470 if (this->phdrs_elements_ != NULL)
4471 {
4472 fprintf(f, "PHDRS {\n");
4473 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4474 p != this->phdrs_elements_->end();
4475 ++p)
4476 (*p)->print(f);
4477 fprintf(f, "}\n");
4478 }
4479
4480 if (this->memory_regions_ != NULL)
4481 {
4482 fprintf(f, "MEMORY {\n");
4483 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4484 m != this->memory_regions_->end();
4485 ++m)
4486 (*m)->print(f);
4487 fprintf(f, "}\n");
4488 }
4489
4490 if (!this->saw_sections_clause_)
4491 return;
4492
4493 fprintf(f, "SECTIONS {\n");
4494
4495 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4496 p != this->sections_elements_->end();
4497 ++p)
4498 (*p)->print(f);
4499
4500 fprintf(f, "}\n");
4501 }
4502
4503 } // End namespace gold.
This page took 0.118134 seconds and 5 git commands to generate.